Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Electrical and Computer Engineering

Supervisor

Prof. S. Primak

Abstract

The Telecommunication market is driven by the increasing need of the end users for multimedia services which require high data rates. Within the fixed satellite service, frequency bandwidths wide enough to carry such high data rates are to be found in Ka band (26-40 GHz), and Q/V bands (40-50 GHz). However, at Ka band and above, transmitted signals can be severely affected by tropospheric attenuation for substantial percentages of time, resulting in the degradation of the quality and of the availability of communication services. Fade Mitigation Techniques (FMTs) must be used to counteract these severe propagation impairments. In this thesis we explore the joint use of two of the most promising techniques, known as Reconfigurable Antenna and Adaptive Coding and Modulation, which up to now has been separately developed. Some of our accomplishments include, but are not limited to: a methodology to describe rain attenuation conditions for multiple users in large geographical areas, a tractable framework for the generation of correlated time series of rain attenuation for multiple receiving stations, the comparison of performance between fixed antenna systems and Reconfigurable Antenna system coupled with Adaptive Coding and Modulation.


Share

COinS