








106 Chapter 3. Planet-Disk Interactions viaMMR II: The Effect of Eccentricity

Figure 3.8: Change in MMR libration width with planet mass for 2:1 (top) and 3:1 (bottom)
resonance with a planet exterior to the disk (i.e. interior resonance). Different colors represent
different planet eccentricities used in the simulations while the solid and the dashed lines are
least-square fits to measurements obtained analytically (shown by triangles) and by Gaussian
fitting to gaps in particle distribution (shown by filled squares), respectively.
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Figure 3.9: Same as Figure 3.8 but for exterior resonance.

Table 3.1: Equations relating the mass of a perturber, M in MJ, having various orbital eccen-
tricities to the observed width of a gap, Wo in r′o (the observed gap location), at the 2:1 and 3:1
interior and exterior MMR drawn from our measurements of gap widths.

e Interior Resonance Exterior Resonance

2:1 3:1 2:1 3:1

0.1 M= 1
0.014 (Wo−0.025) M= 1

0.004 (Wo−0.021) M= 1
0.009 (Wo−0.041) M= 1

0.005 (Wo−0.018)

0.15 = 1
0.018 (Wo − 0.026) = 1

0.005 (Wo − 0.022) = 1
0.004 (Wo − 0.054) = 1

0.001 (Wo − 0.037)

0.2 = 1
0.017 (Wo − 0.023) = 1

0.007 (Wo − 0.020) = 1
0.006 (Wo − 0.053) = 1

0.003 (Wo − 0.051)

0.25 = 1
0.016 (Wo − 0.025) = 1

0.006 (Wo − 0.024) = 1
0.008 (Wo − 0.056) = 1

0.006 (Wo − 0.036)

0.3 = 1
0.021 (Wo − 0.027) = 1

0.004 (Wo − 0.031) = 1
0.004 (Wo − 0.070) = 1

0.003 (Wo − 0.041)
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Our measurements of gap widths for structures formed at the 2:1 interior MMR with a

single planetary perturber are within 25% of theoretical values. The difference is larger when

the analysis is done on the 3:1 interior resonance gap as there seems to be a systematic offset

between the calculated and the measured values for the gap width. We attribute the difference

between the measured and the calculated widths to the fact that the equations to calculate δa′max

presented in Murray & Dermott (1999) are only first order approximations when eccentricities

are greater than zero. Furthermore, in Paper I we saw spiral patterns forming in the disk when

the planet was placed interior to the disk (i.e. exterior resonance) which we believed were due

to Lindblad resonances generating from the 3:1 MMR. This makes defining the edges of the

gaps more difficult in this case and may be the reason why our results for the exterior resonance

case shown in Figure 3.9 have an inconsistency in slope with the theoretical values, more so

than in the interior resonance case. Nevertheless, we propose that the set of equations presented

in this study (Table 3.1) can be used to estimate the mass of the planetary perturber to within 1

MJ.

3.5.4 Disk Offset and Peri/Apocenter Glow

As the planet eccentricity increases, so does the forced eccentricity of the disk, causing a net

offset in the overall particle distribution away from the central star. This offset is away from the

direction of the forced pericenter of the disk particle orbits, confirming the findings by Wyatt

et al. (1999) discussed earlier in Section 3.2.2 that a physical disk offset toward apocenter is to

be expected if there is a perturbing body with non-zero orbital eccentricity. Therefore, we also

find that the presence of a disk offset may be evidence for a planetary (or a stellar) companion

on an eccentric orbit.

Furthermore, we investigate the wavelength dependence of the apo/peri-center brightness

variations, the “pericenter (or apocenter) glow”. To do so, we bin particles in x and y and

assign a flux to each bin, assuming that the particles emit as perfect blackbodies. The pixel

values on opposing sides of the disk are then added and compared. We note that the peri-
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versus apocenter glow depends on the wavelength of observation, as was found by Pan et al.

(2016). The magnitude of the effect depends on the disk and star parameters. While a thorough

study of this phenomenon is outside the scope of this paper, particularly since we have not

included sub-micron dust in our simulations, we note that the peri/apo difference can easily

reach several percent. For instance, a Jupiter-mass planet with e = 0.3 placed 1 AU away from

a debris disk orbiting a solar-mass star would result in 8% more flux from the apocenter side

of the disk when observed at 1300 µm. However, when the same disk is observed at 10 µm, we

find a pericenter glow of 10%. Here we note again that resonant structures may not be visible

in the observed disks if studied at sub-micron wavelengths due to the gaps being washed out

by sub-µm size dust as it migrates outward in the disk by stellar radiation pressure (Kuchner &

Stark, 2010).

3.5.5 Simulating ALMA Observations

Whereas MMR gaps are clearly visible in our simulated disks, whether or not they can be de-

tected in a telescopic image of a debris disk depends largely on current observing capabilities.

The technology is reaching the point at which we should start seeing a variety of structures

including the resonance gaps discussed in this paper as ALMA images of second generation

disks emerge. Therefore, we discuss here the observability of MMR gaps as seen by powerful

interferometers such as ALMA. For this purpose, we use the Common Astronomy Software

Applications (CASA) offered by the National Radio Astronomy Observatory (NRAO) to sim-

ulate ALMA observations (McMullin et al., 2007).

We use as our fiducial example the AU Microscopii debris disk, which has already been

well studied with ALMA (MacGregor et al., 2013). Synthetic images of our simulated disks

are created, on the assumption that they are the same size (140 AU radius), distance (9.91 pc)

and overall brightness (7.14 mJy) as the one around AU Mic. AU Mic is a ∼ 10 Myr-old M-

type star with R = 0.83 R� and T = 3600 K (Matthews et al., 2015) that has an edge-on debris

disk first discovered by Kalas et al. (2004).



110 Chapter 3. Planet-Disk Interactions viaMMR II: The Effect of Eccentricity

Our simulated disk is taken to be optically thin and composed of perfect blackbodies emit-

ting at the local equilibrium temperature. We then use CASA to determine how our simulated

disks would appear if observed with the same resolution used to image the AU Mic disk with

ALMA at 230 GHz or 1.3 mm (see MacGregor et al., 2013) if they were to be viewed face-on.

This would correspond to a resolution of 0.6′′ or about 6 AU.

When ALMA was used for the first time to observe the debris disk around AU Mic in 2012,

there were only 20 operational 12 m antennas. However, we utilize all 50 antennas available in

the 12 m array to make our simulated images to achieve the desired resolution. Furthermore,

we set the integration time to 10 s per pointing and assume that the disk is observed for a total

of 4 hours. The RA and Dec of the source are also taken from MacGregor et al. (2013) to

be α = 20h45m09s.34 and δ = −31
◦

20′24′′.09, J2000. Figure 3.10 illustrates an example of

two beam-deconvolved images that we made with CASA where the top and bottom figures

show the same disks as in Figures 3.2(a) and 3.6(a), respectively. In both examples, the MMR

structures in the simulated disks are easily visible.

In order to asses the observability of the structures in our simulated disks, we calculated the

edge-to-center contrast for each gap and noted that for the 2:1 and the 3:1 gaps in our simulated

images, the contrast is about 60% and 30%, respectively (see Figure 3.11). This means that

both the 2:1 and 3:1 gaps in Figures 3.10(a) and 3.10(b) would produce high contrast and

should be visible by ALMA. Therefore, we argue that given the high sensitivity and resolving

power that can be achieved with ALMA, the structures discussed in this paper are, in fact,

within current detectability limits.
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(a)

(b)

Figure 3.10: Using the CASA simulator, this is how the disks in Figures 3.2(a) (top) and
3.6(a) (bottom) would look like after beam deconvolution if they were placed at the AU Mic
distance and observed with the same resolution used in observing its debris disk (0.′′6). The
arcs seen in these images correspond to gaps formed at the 2:1 and 3:1 interior (top) and exterior
(bottom) MMR with a planet. Although the 2:1 gap has a better contrast compared to the 3:1
in both simulated images, both gaps would be visible. The color bar shows the flux in (Jy per
beam) ×10−5. The synthesized beam is shown by a black ellipse in the lower left corner and is
0.′′68 × 0.′′60.
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Figure 3.11: Surface brightness profile of the disk shown in Figure 3.10(a) along the major
axis. A Gaussian function is used to fit each gap to measure its depth. The gap edge-to-center
contrast is 60% for the 2:1 gap and 30% for the 3:1, indicating that both gaps are deep enough
to be detectable.

3.6 Summary and Conclusions

We extended our study of gaps formed through resonant interactions of a single planet with

a gas-poor dynamically cold debris disk, presented in an earlier paper (Tabeshian & Wiegert,

2016), to include systems in which the planet has moderate orbital eccentricity. Gravitational

perturbation of the particles by a planet forms gaps whose locations correspond to the mean-

motion resonances with the planet.

Unlike gaps cleared by planets around their orbits, we found that the MMR gaps, formed

away from the orbits of the planets, are not azimuthally symmetric about the star. For the 2:1

MMR, a planet orbiting exterior to the disk leaves its resonance imprint as two arc-shaped gaps

at inferior and superior conjunctions, but forms a single arc at opposition if placed interior to the

disk. This difference allows observers to distinguish between interior and exterior resonances

solely based on the shape of the 2:1 gap.

We thus provided a simple procedure for determining the mass, semimajor axis and ec-
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centricity of the planetary perturber from single-epoch measurements of a debris disk. If

multi-epoch observations are available, the determination becomes easier. Nevertheless, the

planetary parameters can be determined from the resonant structures even if the planet itself

remains unseen by analyzing the resonance gaps in the following way:

(A) The eccentricity at the center of a MMR gap can be measured by least-square fitting of

ellipses to the gap edges (Section 3.5.3).

(B) The distance between a gap and the host star can be determined observationally if the

distance to the system being studied is known, which is often the case for nearby debris disks

that have been observed. This information together with the eccentricity of the gap as well

as the true anomaly of its center can then help calculate the gap’s semimajor axis, a′ using

Equation 3.12.

(C) If we can determine which resonance gap is observed in the disk, calculating the

planet’s semimajor axis is trivial and can be done using Equation 3.1. Alternatively, the planet’s

semimajor axis can be found if its orbital motion is detected in multi-epoch observation of the

disk (Section 3.5.3).

(D) Once the semimajor axes of the planet and the gap are found, the eccentricity of the

planet can be determined using the forced eccentricity at the center of the gap and Equation

3.3. This is true since in a dynamically cold debris disk, where disk particles can be assumed to

have zero or negligible free eccentricities, orbital eccentricity anywhere in the disk is defined

by the forced eccentricity induced by the planet at that location.

(E) Finally, since the libration width of a MMR gap is related to the perturber’s mass and

eccentricity, a measurement of the gap width can help determine the mass of the planet using

the formulae that we presented in this work (see Table 3.1 in Section 3.5.3).

In addition to the 2:1 gap, we found that increasing the perturber’s eccentricity resulted in

formation of a second gap at the 3:1 MMR which forms a single arc. Increasing the perturber’s

orbital eccentricity also resulted in formation of higher order resonance gaps in the disk. Fur-

thermore, we noted that while the 2:1 gap orbits the star at the same rate as the planet, the 3:1
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gap remains stationary in the inertial frame. It appears at apocenter for interior and at pericen-

ter for exterior MMR. This difference can be important if multi-epoch observations of the disk

are available.

Furthermore, we independently confirmed the result of Pan et al. (2016) of the wavelength

dependence of the apocenter/pericenter glow phenomenon, which is a trade-off between larger

number of particles at apocenter and enhanced flux caused by the disk offset away from peri-

center in debris disks that are perturbed by a planet with non-zero orbital eccentricity.

By means of the CASA simulator, we showed that resonance structures should be detectable

in images of suitable debris disks using ALMA or other high resolution facilities. We conclude

that the analysis of MMR gaps in extrasolar debris disks is a useful indirect technique to not

only detect, but also characterize extrasolar planets.



Bibliography
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Chapter 4

Detection and Characterization of

Extrasolar Planets: Applying a

Particle-only Model to the HL Tau Disk

This chapter is adapted from: Tabeshian, M. & Wiegert, P. A., 2017 (in prep).

4.1 Introduction

Planets are believed to form in protoplanetary disks. While doing so, they create complex

symmetric and asymmetric morphological structures. These include density enhancements

due to particle trapping in a planet’s pressure bumps and mean-motion resonances (MMRs),

as well as gap clearing due to dynamical ejection of disk particles as they come into close

encounter with the forming planets. In fact, numerical simulations have shown that a planet

with only 0.1 Jupiter-mass (MJ) is capable of pushing the dust away and significantly changing

the dust-to-gas ratio of a protoplanetary disk in its vicinity and hence can clear a gap in dust

distribution while a planet mass of at least 1 MJ is needed to also form a gap in gas surface

density (see for instance, Paardekooper & Mellema, 2004; Price et al., 2017). Such structures

118
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provide a wealth of information about the planets that are otherwise difficult to directly observe

(such as a planet’s mass); and many studies have attempted to put constraints on the planetary

parameters based on how planets affect the distribution of gas and dust in protoplanetary disks

(see for instance, Casassus et al., 2013; van der Marel et al., 2013; Andrews et al., 2011).

Protoplanetary disks are gas-rich and a full exploration of their dynamics by numerical

methods is expensive in terms of computing power. Such disks also show many features which

are similar to those observed in debris disks - disks of solid particles whose interactions are

much easier to model computationally than gas-rich disks. Here we ask the question “How

well can the parameters of planets embedded in a protoplanetary disk be extracted using simpler

‘particle-only’ methods?” Indeed we find that the masses and semimajor axes of the planets that

may be sculpting the gaps in the HL Tau disk can be extracted with accuracy comparable to that

of full hydrodynamic simulations, assuming that there are 3 hidden planets in the disk. Thus

quick particle-only simulations of protoplanetary disks may be a useful tool for preliminary

analyses, and provide useful initial starting points for parameter searches with more complete

models. It should be noted that planet formation is not the only mechanism that is thought

to explain the origin of the gap structures in protoplanetary disks. For instance, in a study

by Zhang et al. (2015), volatile condensation and rapid pebble growth beyond the snow line

are used to reproduce structures such as those observed in the HL Tau disk. On the other

hand, secular gravitational instability is also discussed as one mechanism that could create ring

structures in protoplanetary disks (see for instance Takahashi & Inutsuka, 2014). Although

these mechanisms may alternatively be used to explain the structures observed in the HL Tau

disk, gap opening by planets embedded in this disk remains a strong possibility, and this is what

we will consider in the present study. The fact that the eccentricities of the rings increase with

increasing distance and that many of the rings are nearly in a chain of mean-motion resonances

indicate that the architecture of the HL Tau disk likely arises from embedded planets (see

ALMA Partnership et al., 2015).

We begin here with a description of the literature on the topics of HL Tau’s embedded
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planets in Section 4.1.1, before turning to our own modelling efforts in Section 4.2 where we

discuss our simulations to match the observed intensity profile of the HL Tau disk including the

fitting procedure as well as uncertainty measurements. We discuss our results in Section 4.3

including a discussion of MMR gaps in the HL Tau disk. Finally, a summary and conclusions

are provided in Section 4.4.

4.1.1 Hydrodynamic Studies of HL Tau to Date

Recent high resolution observation of a proplanetary disk around the young (∼1 Myr) T-Tauri

star HL Tauri by the Atacama Large Millimeter/submillimeter Array (ALMA) has revealed

unprecedented detailed structures, which are considered to be likely the signatures of planets

in the making. This image was taken as part of ALMA’s science verification phase in October

2014 and was released a month later (see NRAO (2014)). The disk was observed in dust

continuum emission at 233 GHz or 1.28 mm using 25-30 antennas and a maximum baseline of

15.24 km as part of ALMA’s Long Baseline Campaign, and achieved an angular resolution of

35 milliarcsecond, equivalent to 5 AU at HL Tau’s distance of 130 parsecs. It reveals a series of

concentric gaps that have become the subject of many studies, with the hope of shedding light

on the properties of the planets that are believed to be carving out these gaps and ultimately

gaining a better understanding of the processes involved in the formation and evolution of

planets and planetary systems. ALMA Partnership et al. (2015) identify 7 pairs of distinct dark

and bright rings in the ALMA image of the HL Tau disk which they label D1...D7 and B1...B7

(more on this in Section 4.4). They approximate the radial distance of the center of each ring

by making a cross-cut along the disk’s major axis and find the dark rings to be at 13.2 ± 0.2,

32.3 ± 0.1, ∼ 42, ∼ 50, 64.2 ± 0.1, 73.7 ± 0.1, and ∼ 91.0 AU, placing the first four dark rings

in a chain of mean-motion resonances, specifically 1:4:6:8. Pinte et al. (2016) measure the

missing dust mass in each of the 7 gaps by integrating the dust surface density of each gap and

comparing it to its surrounding bright rings. These would provide the mass of the rocky cores

of their potentially embedded planets (see Table 4.1 for mass measurements of the planets in 5
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of the 7 gaps).

Other works have also attempted to constrain the masses of the planets that are believed to

be shepherding the HL Tau gaps. Based on the depth of the gap seen ∼ 30 AU from the central

star in the HL Tau disk, Kanagawa et al. (2015) estimate the mass of its embedded planet to be

at least 0.3 MJ, where MJ denotes Jupiter’s mass. They do so by using the relationship between

the depth of a gap formed by a planet in its feeding zone in a protoplanetary disk and the mass

of the planet as well as the disk’s viscosity and scale height (Duffell & MacFadyen, 2013; Fung

et al., 2015; Kanagawa et al., 2015, see), given by Equation 4.1 (Kanagawa et al., 2015):

Mp

M?

= 5 × 10−4
(

1
Σp/Σ0 − 1

)1/2 (
hp

0.1

)5/2 (
αss

10−3

)1/2
, (4.1)

where Mp is the planet’s mass in stellar mass unit M?, Σp/Σ0 is the gap depth which is the

ratio of the surface density of the planet-induced gap to that of the unperturbed disk, hp is the

disk’s aspect ratio at the planet’s orbital radius (h/r, with h being the scale height), and αss is

the Shakura-Sunyaev kinematic viscosity parameter (Shakura & Sunyaev, 1973).

Adopting a stellar mass of 1 M�, a viscosity parameter of 10−3, and estimating the gap

depth and the disk’s aspect ratio to be ∼ 1/3 and ∼ 0.07 respectively, Kanagawa et al. (2015)

are able to constrain the mass of the planet at 30 AU to be > 0.3 MJ.

Using hydrodynamic simulations and radiative transfer models, Jin et al. (2016) attempt to

match the width and depth of the three prominent gaps in the HL Tau disk, located at at 13.1,

33.0, and 68.6 AU and constrain the masses of the planets that are believed to be in those gaps

to be 0.35, 0.17, and 0.26 MJ, respectively, assuming no planet migration through the disk. The

model also assumes a disk mass of ∼ 7.35× 10−2 M� and the same αss parameter as Kanagawa

et al. (2015) while the dust to gas ratio is taken to be 1%. Furthermore, the authors also try

to match the eccentricities of the gaps where they place the three planets and find them to be

0.246, 0.274, and 0.277, respectively. On the other hand, smoothed particle hydrodynamic

(SPH) models by Dipierro et al. (2015) constrain the masses of the planets embedded in the

HL Tau disk to be 0.2, 0.27 and 0.55 MJ with planets at 13.2, 32.3 and 68.8 AU.
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Gas and dust interact differently with the planet. Numerical simulations by Jin et al. (2016)

also show that the three gaps formed by tidal interaction with the embedded planets in the

HL Tau disk are shallower in gas distribution and deeper in dust, though both have similar

morphologies (see their Figure 1). The difference in the gap’s gas and dust surface density

arises from the fact that submillimeter dust is pushed toward the edges of the gap as it starts to

open since gas drag tends to accumulate dust particles in high pressure regions as suggested by

the enhanced dust emission near gap edges (see Haghighipour & Boss, 2003; Maddison et al.,

2007; Fouchet et al., 2007).

Most authors place three planets in the HL Tau disk; however, the possibility of additional

planets in this disk has also been discussed in the literature. For instance Tamayo et al. (2015)

consider the presence of up to 5 planets in the HL Tau disk at nominal radii of 13.6, 33.3, 65.1,

77.3 and 93.0 AU. This places the outer three planets nearly in a chain of 4:3 mean-motion

resonance. The authors constrain the masses of the five planets under two different scenarios:

If the planets are not in mean-motion resonance, they find a maximum mass of ∼ 2 Neptune

masses for the outer three bodies. However, if the outer three planets are in resonance, as

suggested by the locations of the gaps, they can grow to larger masses via resonant capture as

they migrate through the disk during which their masses can reach at least that of Saturn. The

masses of the two inner planets are not well constrained in this study since these planets are

dynamically decoupled from the other three.

Planets forming in a multi-planet system can grow up to a certain mass beyond which

the system becomes unstable simply because of the growth in the sizes of the planets’ Hill

spheres. The Hill sphere defines the region around a planet where its gravity dominates over

that of the star: systems of moons, for example, must reside well within a planet’s Hill sphere

to be stable. Planets whose orbits around the star are separated by less than several of their

mutual Hill spheres are also unstable: this stability criterion is defined by Gladman (1993)

who suggests planets that are separated by less than 3.46 rH destabilize on a timescale that

is roughly their conjunction period, where the Hill radius, rH, is defined as ( M
3M∗

)(1/3) a, with
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M and M∗ the masses of the planet and the star, respectively, and a the semimajor axis of

the planet’s orbit (Murray & Dermott, 1999). On the other hand, Tamayo et al. (2015) show

through numerical simulations that planets can still survive well beyond the above stability

criterion if they capture in mean-motion resonance at low masses and grow together. This is

because resonance mitigates the effect of close encounters and allows the planets to become

more massive without disrupting the other planet’s orbit quickly as is the case for non-resonant

planets. For the system to be Hill stable, the maximum masses for the three outermost planets

in the HL Tau disk are found by Tamayo et al. (2015) using Equation 4.2, taking the stellar

mass to be M? = 0.55 M�:

M . Mcrit = 8
(

M?

M�

) (
∆a/a
0.1

)3

M⊕ , (4.2)

where ∆a is the planet separation and Mcrit is the maximum mass to ensure stability.

Therefore, according to numerical simulations of the HL Tau disk by Tamayo et al. (2015),

if the outer three planets are not in mean-motion resonance they become unstable at conjunction

timescale once they exceed the mass threshold beyond which their separation becomes less

than ∼ 3.5 rH. However, if they are captured at resonances while they migrate through the disk,

they can grow well past the above limit until they become so massive (∼ 40% beyond mass

of Saturn or 0.44 MJ) that their mutual gravitational perturbation at conjunctions brings them

out of resonance at which point swift instability ensues (Tamayo et al., 2015). Moreover, their

numerical simulation suggests that the system would be substantially more stable if not all the

gaps were made by planets, particularly the more closely spaced gaps at 65.1 and 77.3 AU.

They suggest that these two gaps may not be made by two different planets; there may instead

be a single planet at 71.2 AU that has shaped a horseshoe-like gap in the disk of HL Tau. If

four planets are considered instead of five in the HL Tau system, their numerical simulation

puts a final mass limit of at least 230 M⊕ for the outer two planets if they are in mean-motion

resonance.

Table 4.1 summarizes the masses and locations of the possible planets in the HL Tau system
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obtained by the studies mentioned above and a few more. It shows that despite many attempts

to constrain planetary parameters in the HL Tau disk, especially since the release of the ALMA

image, much work is still needed to determine the number and parameters of its potentially

embedded planets. This is what we present in this work where we try to reproduce the key

features of the HL Tau disk using the dynamic model of a gas-poor disk to address whether

some parameters of its planets, specifically their mass and semimajor axis, can be determined

without the need for sophisticated models which are, nevertheless, required to fully describe

gas-rich disks. Yet as mentioned earlier, our particle-only approach may be able to serve as a

first step in characterizing planets in protoplanetary disks.

Table 4.1: Estimated locations and masses of possible planets forming HL Tau’s 5 major gaps.
If the last two gaps are formed by a single planet at 71.2 AU, Tamayo et al. (2015) estimate
its mass to be . 0.30 if they are not in MMR and & 0.72 if they are. Pinte et al. (2016)
also estimate the mass of a single planet at 69.0 AU forming the last two gaps to be at least
0.44+0.05

−0.09 MJ.

a (AU) M (MJ) Method Ref.

13.1 33.0 68.6 0.35 0.17 0.26
Hydrodynamic
& radiative
transfer

Jin et al.
(2016)

13.2 32.3 68.8 0.2 0.27 0.55 SPH
Dipierro
et al.
(2015)

28 ± 2 69 ± 2 0.8 2.1 Equation 4.1
Yen
et al.
(2016)

13.5+0.4
−0.4 32.4+0.6

−0.4 65.2+1.3
−0.9 77.2+0.8

−0.7
88.8+5

−5
0.85

3.6+0.7
−0.6

0.61
1.5+0.5
−0.5

0.62
0.3+0.1
−0.1

0.51
Hill Radius
Equation 4.1

Akiyama
et al.
(2015)

13.6+0.2
−0.2 33.3+0.2

−0.2 65.1+0.6
−0.6 77.3+0.4

−0.4 93.0+0.9
−0.9

?

?

?

?

. 0.11
NoMMR
. 0.30
MMR

. 0.11
NoMMR
. 0.30
MMR

. 0.11
NoMMR
. 0.30
MMR

N body sim,
REBOUND
package
(Rein & Liu,
2012)

Tamayo
et al.
(2015)

13.2+0.2
−0.2 32.3+0.1

−0.1 64.2+0.1
−0.1 73.7+0.1

−0.1 91 >0.02+0.01
−0.01 >0.07+0.01

−0.01 >0.03+0.00
−0.01 >0.08+0.03

−0.05 >0.11+0.03
−0.06

Surface density
measurements

Pinte
et al.
(2016)
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4.2 Method

4.2.1 The HL Tau Disk Profile

We use the FITS image of the HL Tau disk available publicly at the ALMA website and ob-

served in dust continuum emission in band 7 for the highest resolution. The observed profile

of the HL Tau disk used here is extracted by the following method:

We make a cross cut across the disk’s major axis to extract HL Tau’s radial brightness pro-

file in Jy/beam per radial distance from the star. The extracted profile is 186 pixels long over

a physical distance of 115 AU. However, the resolution of the image is only 35 milliarcsec-

onds or ∼5 AU at 130 parsec (see NRAO, 2014) and so we assess that we really only have

115/5 ≈ 23 bins for the purposes of determining our degrees of freedom (see section 4.2.4)

and 186/23 ≈ 8 pixels per bin.

4.2.2 Simulations

Our simulations are performed with a symplectic integrator based on the Wisdom–Holman

algorithm (Wisdom & Holman, 1991). A fixed timestep of 150 days is used for all simulations.

Only point particles are simulated, without the gas drag, radiation pressure, or the PR drag.

These effects are likely to be important in sculpting the HL Tau disk but our purpose here

is to determine what, if any, and how much of the planetary parameters can be recovered

by the simplest possible model. The bins are weighted by the blackbody emission of their

particles assuming dust albedo of 0.5 and emissivity of 1.0 at mm wavelength to calculate the

equilibrium temperature of the disk particles. The stellar luminosity and effective temperature

are taken to be 8.3 L� and 4000 K, respectively (Ruge et al., 2016).

Simulations are run for 10,000 years (∼ 1000 inner orbits) and recorded at 100-year inter-

vals. Three planets and 1000 particles are placed within the disk on circular orbits around a 1.3

Solar-mass central star (ALMA Partnership et al., 2015). Particles are removed if they reach a

distance less than ∼500 Solar radii or greater than 220 AU. The planets are placed nominally at
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11.7, 29.1, and 64.5 AU based on the locations of the gaps in the HL Tau disk, but the planet’s

locations will be varied as part of the fitting process, described later in Section 4.2.3.

Simulated disk profiles are created from the last 5 snapshots of the disk. The use of sev-

eral snapshots increases our signal-to-noise without the computational expense associated with

simulating additional particles, though it assumes that the disk is in a quasi-steady state. Ex-

amination of the disk during the final stages confirms that indeed the disk structures are well-

established.

For plotting purposes, the simulation data is extracted into a histogram with 186 bins to

match the observations. For calculation of the chi-square, the data is box-car smoothed down

to the effective resolution of the observations (8.3 bin box-car).

4.2.3 Fitting

Best fit parameters are established on the basis of the chi-squared (χ2) between the observa-

tional profile and a simulated profile normalized to the first bin in the observed profile. This

normalization reduces our degrees of freedom by one. Minimization of the χ2 parameter is ac-

complished using Interactive Data Language (IDL) and the Amoeba package which is a multi-

dimensional derivative-free optimization algorithm based on the downhill simplex method of

Nelder and Mead (Nelder & Mead, 1964). Typical Amoeba runs would require 900-1000 sim-

ulations and a total of 10 hours to complete. Amoeba requires the tolerance to be at least equal

to the machine’s double precision, so we set the tolerance to 10−12. This is the decrease in the

fractional value of the χ2 in the terminating step.

Chi-squared minimization using the Amoeba algorithm does not require calculating deriva-

tives. Furthermore, each iteration only takes one or two function evaluations and therefore

Amoeba converges faster than some other minimization routines such as non-linear least-

square fitting using the Levenberg-Marquardt algorithm (Marquardt, 1944; Levenberg, 1963)

which takes several calculations per iteration. Amoeba is also more robust for problems with

stochastic components such as what we are dealing with here (e.g. the particle positions are
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chosen randomly, which introduces some statistical noise to the profiles). These justify using

the Amoeba algorithm for our purposes.

However, a downside to using Amoeba is that it can get to a point where the change in

the parameter values becomes insignificant before a minimum is reached. Thus it is generally

recommended to restart Amoeba from the point where it seems to have found a minimum

(see Press et al., 1992) and this is what we do a few times until we achieve similar results.

Our procedure was to first perform initial minimization runs using parameter values chosen

arbitrarily, except for the semimajor axes of the three planets that were estimated from the

locations of the major gaps in the HL Tau disk and allowed each parameter to vary by ±50%

by the minimization routine. From the lowest chi-squared obtained from these initial runs (our

‘initial solution’), in order to ensure as much as possible that the minimum χ2 achieved is

the global minimum, we perform 10 additional minimization runs where we change the initial

conditions such that each parameter falls randomly within 10% of the one obtained from the

initial solution. At the end, we record the parameters that produce the lowest χ2 from the 10+1

Amoeba runs.

For our simulations here, we will fit 10 parameters of the planets and disk (in our model

with the broken power-law but 7 when we use a single power-law for disk density distribution,

see Section 4.3). We will assume that there are three planets on circular orbits. In addition

to the masses and semimajor axes of these three planets, we also fit a power-law to the disk

surface density. The surface density of circumstellar disks is generally taken to have a profile

of the form Σ ∝ R−α with the power-law index, α, is between 0 and 1 depending on the mass of

the protoplanetary disk (Andrews & Williams, 2007b) (Note that the power-law index derived

from Minimum Mass Solar Nebula is 1.5 (Weidenschilling, 1977)). However, use of a single

power-law does not well reproduce the radial profile of HL Tau’s flux density. A much lower χ2

value is obtained by selecting a different power-law index beyond the location of the outermost

planet (see Section 4.3). Yen et al. (2016) also use a broken power-law in their measurements

of gap widths and depths in the HL Tau disk where the slopes of the dust distribution based on
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the column density of HCO+ are found to be −0.5 ± 0.2 at ∼ 20 AU and −0.9 ± 0.3 at ∼ 60

AU, suggesting a steep decline in dust continuum emission beyond where the outer major gap

lies. Jin et al. (2016) propose that the deficit in dust in the outer part of the HL Tau disk is due

to the inward drift of dust caused by gas drag and the absence of a source to supply the dust at

large radii (also see Birnstiel & Andrews, 2014). In fact, disks are found to have exponentially

tapered edges and the exponential decrease in dust surface density has also been observed

for a number of other circumstellar disks (see for instance, McCaughrean & O’Dell, 1996)

with power-law indices beyond the above-mentioned range, suggesting that the pure power-

law (i.e. Σ ∝ r−α) does not accurately represent a disk’s intensity profile and must be replaced

by an exponentially truncated density distribution with Σ ∝ r−γ, where γ is the exponent in

the viscosity dependence on distance from the star (e.g. Hartmann et al., 1998). For simplicity

(that is, to avoid adding additional parameters to our fit), we will assume a standard power-law

slope without an exponential term. Therefore, we argue that our fit to the radial profile of the

outer disk would be improved if we adopt the above surface density profile and incorporate

dust re-generation and gas drag in our model which we leave to a future work.

4.2.4 Uncertainties

Uncertainties in the fitted parameters are estimated based on the chi-square values. The number

of degrees of freedom, ν, will be the effective number of bins (23, see Section 4.2.1) minus one

for the normalization discussed in Section 4.2.3, and minus one for each free parameter. We

have 10 free parameters, giving us a total of 12 degrees of freedom.

The uncertainties to be at the locations in phase-space can be approximated as where the

χ2 value is increased over its minimum value by an amount ∆χ2 dependent on the degrees

of freedom, ν, and the stringency of the uncertainty bounds desired. Here we choose a p =

0.95 (nominally 2σ) confidence region, which means that our uncertainties correspond to the

locations for which (Press et al., 1992):
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Q
(
ν

2
,
∆χ2

2

)
= 1 − p , (4.3)

where Q is the incomplete gamma function, and ∆χ2 gives the increase in χ2 corresponding to

our uncertainty.

Note that we compute our uncertainties from chi-squared values with all the parameter

values except the one in question held constant. This implicitly assumes that the parameters

are uncorrelated, which we assume here for reasons of simplicity and practicality. Our χ2 is

derived by a process with inherent stochasticity (i.e. the initial conditions of particles within

the disk have a random component), thus we have too many free parameters and too noisy a

system to determine the covariance between them all effectively. This will be more apparent

when the uncertainty results are discussed in Section 4.3.

4.3 Results

As mentioned earlier in Section 4.2.3, a single power-law index for the surface density cannot

reproduce the observed density profile of the HL Tau disk due to a steep fall-off in the outer

part of the disk beyond the location of the outermost planet. This is shown by figure 4.1.

Therefore, we break the disk into two segments, each having a different power-law index, α1

and α2, which we leave as free parameters in our simulations. We also allow the location of the

boundary between the two segments to vary, and introduce an additional parameter to allow for

a change in the surface density of the disk at the boundary between the two segments.
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Figure 4.1: Comparison between the radial profile of the HL Tau disk extracted from the FITS
image observed by ALMA (red) and our simulation (black). We place three planets at nominal
radii of 11.03, 28.91, and 64.52 AU and allow Amoeba to determine the best fit parameters
(i.e. the three planet masses, M(MJ), and semimajor axes, a(AU), as well as the power-law
index, alpha) by minimizing the chi-squared. For simplicity, we assume that the three planets
are in circular orbits but acknowledge that the gaps in the HL Tau disk are found to have some
eccentricity (see Section 4.1.1). Here we use a single power-law surface density index for the
disk that extends from r1 = 5.0 AU to r2 = 120.0 AU. However, the model with a single
power-law index fails to reproduce the disk profile beyond the location of the outermost planet.

To obtain the best fit values, we thus need to include 10 free parameters in our simulations:

one for each planet’s mass (M) and semimajor axis (a), two for the surface density power-

law indices (α1 and α2), one for the transition point that separates the two parts of the disk

with different slopes (r2), and finally one for the fractional increase in surface density at the

transition point ( f ). Note that we keep r1 and r3 fixed at 5.0 and 120.0 AU which roughly

mark the inner and outer edges of the HL Tau disk. The use of the broken power-law for the

disk’s surface density as well as introducing an increase in the surface density at the boundary

between the two segments result in a lower χ2 value which is shown by Figure 4.2.
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Figure 4.2: Same as Figure 4.1 except that we use two different power-law indices for dust
surface density distribution to account for the exponentially decaying surface density profile
of the HL Tau disk and the steeper slope beyond the orbit of the planet that we place inside
the third major gap. The chi-squared value in this case is significantly improved. The nominal
locations of the three planets are shown by the solid blue lines. We also identify two gaps
that fall at mean-motion resonances with the planets at a2 and a3 and mark their locations with
dotted blue lines (see Section 4.3.1 for a discussion on possible MMR gaps in the HL Tau disk).

The 2σ uncertainties for each parameter are found using the procedure outlined in Section

4.2.4. Figure 4.3 shows uncertainty calculations for the three planet masses. In each case, we

fit a polynomial spline curve of the lowest possible degree to the bowl-shaped part of the χ2

surface and mark the two points where it crosses the 2σ cut-off. The difference between either

of those points and the lowest χ2 value determines the positive and negative uncertainties.

Figure 4.3: Uncertainty calculations at 2σ confidence level for the masses of the three planets
in the HL Tau disk: M1 (left), M2 (middle), M3 (right). We exclude the points that fall outside
the bowl-shaped part of the χ2 surface around the minimum (the blue diamond) as well as
those that are outside the 2σ level by more than 10%. The excluded points are shown by the
red symbols in the top panels. We then fit a spline curve of the lowest possible degree (the
blue curve) and note the points where it crosses the 2σ cut-off (the dashed green line). The
difference between the minimum χ2 and either of those points is taken as the uncertainties for
the parameter value. Note that we are unable to constrain the negative uncertainty for M2.
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The best fit parameters obtained and their uncertainties are shown in Table 4.2 for the

masses and semimajor axes of the three planets that we place in the major gaps of the HL Tau

disk. Though some authors have placed two planets in the last two major gaps of the HL Tau

disk (at ∼ 59 and 70 AU), we are able to produce both gaps with a single planet at ∼ 64 AU.

We attribute the increase in dust emission at the location of the outermost planet to particles

that are trapped in 1:1 MMR with the planet. For comparison, in Table 4.2 we also provide the

range of values proposed in the literature for the orbital radii and masses of the three planets

(see Table 4.1 for more details). All our parameters are well within the range of values given

by others who have studied the HL Tau disk structure using various other techniques as listed

in Table 4.1, except for the mass of the second planet, which overlaps the literature range but

extends to smaller masses.

Table 4.2: The best-fit parameters and uncertainties obtained using the downhill simplex
method for the semimajor axes and masses of the three planets that are likely responsible
for sculpting the prominent gaps of the HL Tau disk (top row) along with the range of values
proposed by others (bottom row). Note that we exclude mass measurements using the size of
each planet’s Hill radius by Akiyama et al. (2015) since that has led to obtaining a very large
(stellar) mass for the innermost planet.

a (AU) M (MJ)

11.26+0.20
−0.11 29.44+2.56

−3.62 63.66+0.46
−0.37 0.81+0.02

−0.01 0.04+0.04 0.37+0.01
−0.03

[13.0, 13.9] [26.0, 33.5] [64.1, 71.0] [0.01, 0.85] [0.06, 4.3] [0.02, 2.0]

Our best-fit parameters for the power-law indices of the disk’s surface density profile are

α1 = 0.18+0.01
−0.01 and α2 = 4.68+0.06

−0.05 where the break occurs at r2 = 67.51+0.68
−0.23. We note that

these two values are very different from each other and from what Yen et al. (2016) report

(see Section 4.2.3), partly owing to the fact that we introduced a sudden increase in the disk’s

surface density by almost a factor of 3 (i.e. f = 2.85+0.05
−0.10) where we broke the intensity profile

of the disk into the two segments. However, our surface density slope in the outer disk is close



4.3. Results 133

to the value obtained by Pinte et al. (2016). According to their model, the surface density

profile of the HL Tau disk has a slope of -3.5 out to about 75 AU but falls off faster in the outer

part of the disk. They find the power-law slope in the outer disk to be -4.5 which is similar to

what we obtain from our model. They attribute the change in the surface density of dust to two

possible reasons: lack of efficient grain growth in the outer disk or the removal of a significant

fraction of mm-sized grains from the outer disk via radial migration of dust. When using a

single power-law for the disk’s surface density, we find α to be ∼ 0.20. We therefore conclude

that we would need a more robust model for the disk surface density to better estimate the

power-law indices in the two segments.

On the other hand, a comparison between planetary parameters (masses and semimajor

axes) that we obtain using our relatively simpler model of the HL Tau disk where we do not

consider the effect of gas drag, radiation pressure or the PR drag shows that the values we

obtain are within the range proposed by others found using various models with higher levels

of complexity. Therefore, our model is successful in reproducing the observed intensity profile

of the HL Tau disk without the need to include certain elements that are necessary to fully

study a gas disk.

4.3.1 MMR Gaps in the HL Tau Disk

The orbital radii of the planets found by our fitting procedure represent the locations of the

three major gaps in the HL Tau image to within uncertainties (where the two gaps made by

the outermost planet are considered to be a single wide gap separated by particles in 1:1 mean-

motion resonance with a planet at ∼ 64 AU). A closer look at the observed intensity profile

of the HL Tau disk reveals a few other relatively narrower gaps which have motivated some

authors to include more planets in their modeling of the HL Tau disk. However, our earlier

studies, Tabeshian & Wiegert (2016, 2017), have shown that not all disk gaps need to contain

planetary bodies and that some gaps can, in fact, be made via mean-motion resonance with a

planet that is located outside the gaps and can be used to learn about the hidden planets. We
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note that our model of the HL Tau disk which only includes three planets is able to reproduce

some of those narrower gaps as well. In fact, given the locations of the second and the third

planets, we argue that the gaps seen at ∼38 and ∼84 AU are made by exterior 3:2 MMR with

those two planets, respectively. These are shown by the vertical dotted lines in Figure 4.2.

Furthermore, the location of the first and second planets places them in a 4:1 MMR with each

other.

In order to visually compare the result of our simulation with ALMA’s image of the HL

Tau disk, we make a simulated image using the Common Astronomy Software Applications

(CASA) for simulating ALMA observations (McMullin et al., 2007) based on the disk pro-

duced with our best-fit parameters. To make the CASA simulated image, we assume that our

disk is placed at the HL Tau distance of 130 pc and therefore has the same radial size on the sky.

We also assume that the particles are perfect blackbodies at local thermal equilibrium and take

the disk’s total flux to be 700 mJy at 1.3 mm (Kwon et al., 2011). Stellar radius and effective

temperature are 6.0 R� and 4000 K, respectively (Ruge et al., 2016). We set the image resolu-

tion at 35 milliarcseconds or ∼5 AU to match that of ALMA’s observation of the HL Tau disk

and use all the 50 available antennas in the 12 m array. We assume that the disk is observed for

a total of 4 hours and set the integration time to 10 sec per pointing. The RA and Dec of the

center of the image are α = 04h31m38s.45 and δ = 18
◦

13′59′′.0, J2000 (Tamayo et al., 2015).

Beam deconvolution is done using CASA’s CLEAN algorithm. The result is shown by Figure

4.4. We adopt the same nomenclature used by ALMA Partnership et al. (2015) for the dark

gaps that we see in our simulations, except that we take the two gaps around the outermost

planet to be the same with the planet in the middle.

It must be noted that we are not claiming that the properties of gas-rich disks can be fully

learned from simple models that do not incorporate gas and radiation forces. However, based

on the results of our simulations to reproduce the intensity profile of the HL Tau disk, we argue

that reasonable matches with observations can be achieved with relatively simple particle-only

models of this intrinsically much more complicated gas disk. Therefore, at least as far as
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understanding the dynamics of the system is involved, we make the case that simple models

could be used to extract useful information about the number and properties of possible planets

embedded in gas-rich disks which could be used in future thorough analyses of these disks.

Figure 4.4: Comparison between ALMA’s (deprojected) image of the HL Tau disk (ALMA
Partnership et al., 2015) on the left with a CASA simulated image drawn from our best-fit
parameters on the right. The dark and bright rings are labeled D1 through D7 and B1 through
B7 by ALMA Partnership et al. (2015). We use the same notation to mark the locations of the
gaps that we believe are sculpted by planets in the HL Tau disk (D1, D2, and D5+D6) as well
as the two narrower gaps (D3 and D7) that we believe to be due to mean-motion resonances
with the embedded planets. The mean-motion resonance gaps are also marked on Figure 4.2
with dotted blue lines. Note that to make this CASA simulated image, we increased the number
of disk particles by 10 times for clarity.

4.4 Summary and Conclusions

The advancements of observing capabilities in the recent years have revolutionized our under-

standing of planet formation and evolution. Interferometric data made available in the mm and

sub-mm regime, particularly by ALMA, has provided remarkably detailed images of circum-

stellar disks with unprecedented angular resolution of a few milliarcseconds. In protoplanetary

disks, the structures observed are mostly believed to be due to tidal interactions with unseen

planets that clear gaps as they accumulate and then sweep up their orbits of gas and dust.
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Therefore, studying such structures would provide insight into the processes involved in the

formation and evolution of planets and planetary systems and would help determine some

planetary parameters without the need to resolve the planets themselves, a task that has proved

to be challenging.

We provided a dynamical model of the HL Tau disk, the most detailed protoplanetary disk

structure observed by ALMA to this day, without much of complex physics typically required

in modeling gas-rich disks. In particular, we hypothesized that the gas does not dominate the

dynamics, and set out to explore whether the radial profile of the HL Tau disk could be re-

covered using a particle-only model. We were, indeed, able to reproduce the disk’s intensity

profile and determined the masses of the planets that could likely be sculpting the most promi-

nent gaps in the HL Tau disk. The values we obtained for the masses and radial distances of the

three planets we believe are embedded in this disk are within the range quoted in the literature

that are derived from more complicated hydrodynamic simulations. We note that the mass of

the middle planet in our model also overlaps previous values but is more on the low end. Fur-

thermore, we recovered the tapered-edge of the disk, in which the surface density of the disk

changes exponentially beyond the orbit of the outermost planet, as also noted by others and

determined the surface density slope of the disk in the two regions using data from ALMA’s

observation at band 7. Though more work is required to understand dust density distribution

in protoplanetary disks, we found the disk to have a significantly different dust density distri-

bution in the outer regions which is consistent with the exponential fall-off in dust emission

observed in gas disks. Another achievement by our model was reproducing a few narrow gaps

away from the orbit of the three planets. Whereas the number of planets in the HL Tau disk has

remained a matter of debate, our results indicate that at least 5 gaps can form in the HL Tau

disk by including only 3 planets: the additional gaps are attributed to mean-motion resonances

with the embedded planets.

Our intention here is not to undermine the importance of hydrodynamic and SPH analy-

ses of gas-rich disks. Though computationally more intensive, such studies are undoubtedly
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essential in gaining a better understanding of the underlying physics at work in gas disks as

sites of planet formation and evolution. However, simpler particle-only models can be used

to glean some important information with regards to the dynamics of planet-disk interactions.

Such models provide initial conditions to hydrodynamics codes as a first step toward in-depth

studies of disk structures, particularly those that are believed to have been formed by unseen

planets.
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Chapter 5

Summary, Conclusions, and Future

Prospects

5.1 Summary and Conclusions

Our observing capabilities of circumstellar disks reached a milestone in November of 2014

with the release of an image of a protoplanetary disk around the young star HL Tau by the

Atacama Large Millimeter/submillimeter Array (ALMA) (see NRAO, 2014), transforming our

understanding of structures formed in circumstellar disks which are likely the result of gravi-

tational interaction with planets concealed in these disks. Considering the difficulty in direct

detection of extrasolar planets, observations of the gravitational signature of planets embedded

or near circumstellar disks can not only provide important clues into their existence but can also

be used to study some of their properties such as semimajor axis, mass, and orbital eccentricity

(see Appendix A for a brief overview of orbital elements).

Circumstellar disks were first revealed indirectly through analyses of their Spectral Energy

Distributions (SEDs). However, more recent direct observations of these disks have provided

a wealth of information and revealed rich structures including spirals, offsets, warps, clumps,

rings and gaps that offer invaluable information about disk dynamics. Although interactions
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with planets may not be the only reason such structures are formed in circumstellar disks,

planet-disk dynamics remains an integral part of the observed architecture of disks, from young

primordial gas-rich disks to older, left-over disks of dust and planetesimals that have lost most

of their gas content.

This work began by considering gravitational interactions of a single planet with a gas-poor

and dynamically cold debris disk in an attempt to propose an indirect technique to detect as well

as characterize extrasolar planets via their resonant signature on the disk. Since the discovery of

the first planet outside the Solar System in 1992, more than 3000 planets have been confirmed

to exist beyond the Solar System and a few thousand more are awaiting confirmation. The

majority of these planets have been found through indirect means that are mostly based on the

planets’ effects on their host stars. This is due to the fact that direct detection of exoplanets

has been proved to be difficult even with the present-day technology. We proposed a new

indirect method for exoplanet detection and characterization that is based on the gravitational

perturbation of a single, non-migrating planet on a debris disk via mean-motion resonances

(MMRs). Each planet detection technique has its own limitations and we often rely on more

than one technique to confirm exoplanets and measure their mass and orbital parameters. Thus

it is important to understand the advantages and shortcomings of each technique.

First noted in 1867 as distinct gaps in the distribution of asteroids’ semimajor axis in the

Solar System’s Main Asteroid Belt (Kirkwood, 1867), structures formed by mean-motion res-

onances can be used in the study of planets causing them, which often remain challenging

to detect directly. Using the already established relation between the location and width of a

MMR gap and the location and mass of the planet with which it is in resonance (see Equations

2.2 and 2.4 and Murray & Dermott (1999)), we set out to quantify how some planetary param-

eters can be determined from the locations and widths of observed gaps. This was achieved

through numerical simulations based on the Wisdom-Holman algorithm (Wisdom & Holman,

1991) where we simulated both interior and exterior MMRs with a single planet on zero or

very low (e ∼ 0.05) eccentricity orbit (see Chapter 2). In both cases, our simulations revealed a
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MMR gap at the planet’s 2:1 (interior and exterior) resonance even when the mass of the planet

was as small as 1.0 M⊕. We conclude that some of these gaps are wide enough that may be

revealed through telescopic observations of debris disks with current technology.

Our results showed a linear relationship between the mass of the planetary perturber and

the width of the MMR gap it creates, in line with our theoretical calculations of gap widths

as a function of planetary mass. Thus we argued that disk gaps do not necessarily need to

contain planetary bodies and that MMR gaps can be highly diagnostic of the properties of the

planets creating them. These results are published in The Astrophysical Journal (see Tabeshian

& Wiegert, 2016).

A slight increase in the orbital eccentricity of the planetary perturber was found to produce

an additional gap in the disk, which prompted us to extend our study to the case where the

planet can take on a wider range of orbital eccentricities (see Chapter 3). We noted that the

additional gap occurs at a higher order resonance, in this case 3:1, which can not only be alter-

natively used to measure planetary parameters, especially if the 2:1 gap is eroded by increasing

planet mass and/or eccentricity, but it can also be used to distinguish 3:1 from 2:1 MMR if both

gaps are observed. This is important because in cases where the planet is undetected, once we

can identify which resonance gap we see in the disk, determining the planet’s semimajor axis

becomes trivial. Following the same analysis from our earlier work, we quantified how the

mass of a planetary perturber placed exterior and interior to a debris disk can be measured

from the width of both 2:1 and 3:1 gaps. Moreover, we showed that the orbital eccentricity of

the planetary perturber could also be determined from the forced eccentricity at the semimajor

axes of the MMR gaps, assuming that the disk particles have negligible free eccentricities.

Unlike gaps formed in the feeding zone of planets that are generally azimuthally symmet-

ric (unless there is significant particle trapping at the planet’s 1:1 MMR or if it is caused by

geometric effects, see Chapter 1, Section 1.2.2), we found gaps formed by MMRs away from

the orbit of the planet to not only be asymmetric about the star but also to have different shapes

for interior versus exterior 2:1 and 3:1 resonances. According to our simulations, a 2:1 interior
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MMR forms two arcs whose centers lie at the planet’s inferior and superior conjunctions while

the same gap is a single arc with its center at the planet’s opposition if it is formed exterior

to the planet’s orbit. Furthermore, we noted that while the center of the 2:1 resonance gap

traces the planet, a MMR gap formed by the 3:1 resonance with a planet has its center fixed in

the inertial frame at the disk’s apocenter for interior MMR and at pericenter if it is formed by

exterior resonance. Therefore, the distinctive shape and behavior by MMR gaps can be used

to direct targeted searches for extrasolar planets, whose direct observation has remained chal-

lenging. We, therefore, provided an algorithm for measuring planetary parameters, in particular

semimajor axis, mass, and orbital eccentricity based on the location, width, and eccentricity of

gaps formed through mean-motion resonances. Furthermore, we investigated the observability

of MMR gaps using the Common Astronomy Software Applications (CASA) for simulating

observations by ALMA (McMullin et al., 2007) and concluded that under certain conditions,

detecting MMR gaps is within the reach of our current observing capabilities. These results

are submitted for publication to The Astrophysical Journal (see Tabeshian & Wiegert, 2017).

Adding gas to circumstellar disks introduces an extra level of complication, making the

study of any structures in gas disks computationally challenging. Therefore, in Chapter 4, we

examined the question of whether a simpler particle-only model can be used as a first step

to understanding dynamical structures in gas disks, particularly those formed by planets, to

determine the nature of the structures as well as some parameters of the hidden planets. For this

purpose, we chose the famous image of the HL Tau disk observed by ALMA in dust continuum

emission at band 7 and tried to match its intensity profile using the same numerical model we

applied to our previous work with debris disks. We placed three planets in the major gaps of the

HL Tau disk and allowed their masses and semimajor axes to vary by our fit. The fit was made

by comparing our simulation with HL Tau’s radial profile by minimizing the chi-squared value

using the downhill simplex method of Nelder and Mead (Nelder & Mead, 1964). To match

the radial profile of the HL Tau disk, in addition to fitting the masses and semimajor axes of

the three planets, we fit a double power-law model for dust surface density distribution where
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we also allowed the boundary between the two segments with different power-law indices as

well as the fractional increase in dust surface density at that boundary to be changed by our fit.

The best-fit parameters obtained for the masses and semimajor axes of the planets are all well

within the range of values estimated by hydrodynamic simulations, except for the mass of the

second planet, which overlaps that range but extends to lower values. The best-fit planetary

parameters were 0.81+0.02
−0.01, 0.04+0.04, and 0.37+0.01

−0.03 Jupiter-mass for the planets at 11.26+0.20
−0.11,

29.44+2.56
−3.62, and 63.66+0.46

−0.37 AU.

Our simulations also reproduced a few narrower gaps that appear in ALMA’s image of

the HL Tau away from the orbit of the three planets. The nature of these gaps has been a

matter of debate but based on our simulations, we believe that they are the result of planet-disk

interactions via mean-motion resonances. On the other hand, we are not as certain about the

power-law indices we found for the disk’s surface density distribution. In fact, the density

distribution in the HL Tau disk - and in protoplanetary disks in general - is not well constrained

in the literature and we need a more robust model to be able to prescribe power-law indices that

represent HL Tau’s density distribution. Nevertheless, our results indicate that we can, indeed,

use a rather simpler particle-only model to extract some valuable information from complicated

systems involving gas disks, especially with regards to their embedded planets before applying

a disk hydrodynamic model to investigate the disk and planet properties more thoroughly.

5.2 Future Prospects

Astrophysical disks are complex systems. Future studies will improve our understanding by

challenging the assumptions and simplifications of current models. For example, for planet

interactions with debris disks, we assumed that the system contains only one planet. However,

more than 70% of the confirmed extrasolar planets to date are found in multiple-planet systems1

while the statistics could suffer from detection bias inherent to the search for extrasolar planets.

1https://exoplanets.nasa.gov/
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Therefore, considering that planets most likely have at least one other planetary companion,

the need to investigate the effect of multiple planets on MMR structures as well as the effect of

secular resonances formed by precessing planets cannot be overlooked. This work could then

be extended to investigate MMRs in Saturn’s rings that are affected by multiple satellites. We

also assume that the system is well-established and that all planetary migration has stopped.

However, planet migration through the disk can affect the dynamic sculpting of the disk and

needs to be thoroughly investigated.

Another assumption we made for simplicity in our model is that the disk particles only

interact gravitationally with the planet, thereby ignoring particle-particle interactions as well

as the effects of the radiation pressure and the Poynting-Robertson (PR) drag. These simplifi-

cations are justified when considering dynamically cold debris disks and where the collisional

lifetime of dust is shorter than the timescale for the inspiralling of dust due to the PR drag (see

Wyatt et al. (1999) and our discussion in Chapter 3, Section 3.2.3). However, future models

should include these effects for more precision.

We also assumed that the orbital eccentricities of disk particles are defined solely by the

forced eccentricity of the planet at their semimajor axes and that they have no free eccentricity,

an assumption justified in studying dynamically cold debris disks. Another assumption that

arises from the disk being dynamically cold is that the disk particles lie in the same orbital

plane as the planet. Although studies have shown that a planet inclined to a disk can cause the

disk to be warped, (see for instance Augereau et al., 2001), our preliminary results using a small

orbital inclination for the planet relative to the plane containing the disk particles revealed no

significant difference in MMR gap structures but needs to be studied in more detail.

Varying the surface density distribution of disk particles in our simulations as well as sim-

ulating disks with a combination of various particle sizes are also important in quantifying

planet-disk dynamical interactions. On the same note, modelling MMR structures in disks

with ongoing collisional fragmentation must also be incorporated in our model. It must be

noted that although some authors have studied collisional debris disks through simulations (see
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for instance Nesvold & Kuchner, 2015), the effect of collisional fragmentation on determining

planetary parameters from MMR structures remains to be studied.

Our modeling of the HL Tau disk, though successful in illustrating that dynamics of a pro-

toplanetary disk can be explained to some extent with a simpler gas-poor model, needs further

improvements especially with regards to the use of a better model for dust density distribution

that includes factors such as the scale height of the disk, disk viscosity and temperature, dust

replenishment via collision among larger bodies, planet migration, secular effects, etc. Future

models should also include radiation effects such as stellar radiation pressure and the PR drag

as well as more planets to investigate the structure of the HL Tau disk more thoroughly.

Planet-disk dynamical interactions are important in shaping the architecture of circumstel-

lar disks. With direct detection of extrasolar planets being difficult to achieve, gaps and other

symmetric and asymmetric structures in circumstellar disks can serve as potential signatures

of hidden planets. As ALMA and other facilities continue to image extrasolar disks with un-

precedented resolution and sensitivity, planet hunters would have the increasingly powerful

tool of detecting and characterizing extrasolar planets through their gravitational imprint on

circumstellar disks.
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Appendix A

Orbital Elements

The contents of this appendix are adapted from Murray & Dermott (1999) and Roy (2005).

The orbit of a particle (e.g. a planet) around a central body (e.g. the host star) may fully be

described by a set of six parameters, called the orbital elements, two of which specify the size

and shape (and hence the ‘nature’) of the orbit, three define the orientation of the orbit and the

remaining element marks the position of the orbiting body at any given time. Orbital elements

that specify angles are measured with respect to a reference plane and a reference line. In

the case of Solar System objects, the reference plane is taken to be the plane of Earth’s orbit

around the Sun (i.e. the ecliptic) and the reference direction is toward the first point of Aries

(à) which is the direction of the vernal equinox (i.e. where the Sun appears to be on the first

day of Spring) and where the ecliptic intersects Earth’s celestial equator. These six elements,

shown by Figure A.1 are briefly outlined here.

A.1 Semimajor Axis (a)

Keplerian orbits are elliptical with the star at one focus of the ellipse. Therefore, the planet-star

distance varies over the orbit of the planet with the maximum and the minimum distances called

the apocenter (apoastron or apoapse) and the pericenter (periastron or periapse), respectively.
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The longest diameter of an ellipse is called the major axis, half of which is referred to as the

semimajor axis (a). It can also be described as half of the sum of pericenter and apocenter

distances. Thus the major axis of an ellipse is sometimes called the line of apsis, the line

connecting the two apsis and passing through the central body. The orbital sizes of celestial

bodies are often expressed in terms of the semimajor axis of their orbits. Similarly, half of the

smallest diameter of an ellipse is called the semiminor axis (b). The two parameters are related

via the eccentricity of the ellipse (see the next section). Furthermore, the orbital period (the

time to complete one orbit around the central body) is related to the semimajor axis of the orbit

via Kepler’s third law given by Equation A.1:

P2 =
4π2

G(M? + Mp)
a3 , (A.1)

where G is the universal gravitational constant while M? and Mp are the masses of the star and

the planet (or the two bodies involved) respectively. When using standard units, Equation A.1

reduces simply to P2 = a3. Thus the orbital period can be used to determine the size of the

orbit and vice versa and the two are used for mass measurement.

A.2 Eccentricity (e)

Eccentricity (e) is a measure of the elongation of the orbit. For bound orbits, it varies between

0 and 1, with e = 0 defining a circle, a special form of an ellipse. Eccentricity can be calculated

from the major and minor axes through Equation A.2:

e =

√
1 −

b2

a2 . (A.2)

Therefore, the pericenter and apocenter distances, denoted by rperi and rapo, can be ex-

pressed in terms of the size and eccentricity of the orbit and are given by Equations A.3:
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rperi = a(1 − e)

rapo = a(1 + e) .
(A.3)

This means that the distance between the center of the ellipse to either of its focii is ae, thus

eccentricity is a measure of deviation from a circle.

Except for Mercury, the orbital eccentricities of the Solar System planets are all less than

10%. However, this is not necessarily the case for the extrasolar planets that have thus far been

detected, with some such as Fomalhaut b having an eccentricity as high as ∼ 0.8 (Pearce et al.,

2015).

A.3 Inclination (i)

The angle between the orbital plane of a body with the reference plane (i.e. the ecliptic for the

Solar System objects) is called the inclination (i). It varies between 0◦ (if the body’s orbit lies

in the reference plane) to 180◦. By definition, Earth’s orbital inclination is 0◦ while the other

Solar System planets are found to orbit the Sun to within 10◦ of the ecliptic plane.

A.4 Longitude of the Ascending Node (Ω)

The two points where the orbital plane of a body intersects the reference plane are called the

nodes and the line connecting them is referred to as the line of nodes. The point at which the

orbiting body crosses a node going upward (downward) is called the ascending (descending)

node. On the other hand, the longitudes of the nodes are measured from a reference direction

(the first point of Aries for the Solar System). Therefore, the angle between the ascending node

of the orbiting body and the reference direction measured along the plane of reference is called

the longitude of the ascending node (Ω) and varies from 0◦ to 360◦.
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A.5 Argument of Pericenter (ω)

The orbital element specifying the direction of the line of apses is given by the argument of

pericenter (ω) which is the angle between the pericenter (closest point of orbit to the central

body) and the ascending node measured along the orbital plane of the body. The sum of the

argument of pericenter and the longitude of the ascending node is called the Longitude of

Pericenter ($): $ = Ω + ω.

A.6 True Anomaly (ν)

Due to the elliptical nature of bound orbits, the position of an orbiting body along its orbit is

often quantified using the angle its radius vector makes with the pericenter and is called the

true anomaly, ν, or more precisely ν(t). It can be used to calculate the distance, r between the

two bodies at any given time if the size and shape of the orbit are known (see Equation A.4).

r =
a(1 − e)2

1 + e cos(ν)
(A.4)

Note that at pericenter (ν = 0) and apocenter (ν = 180), equation A.4 reduces to Equation

A.3 for rperi and rapo, respectively.
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Figure A.1: Orbital parameters that describe the size, shape, and orientation of any Keplerian
orbit. The size of the orbit is defined by its semimajor axis, a (panel (a)), its shape by eccen-
tricity, e (panel (b)) and its orientation by three parameters that are measured with respect to
a reference plane and a reference direction: inclination, i, longitude of the ascending node, Ω,
and the argument of pericenter, ω (panel (c)*). These together with true anomaly, ν, provide a
complete set of elements describing orbits in celestial mechanics.

*Credit: Wolfram Research
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