


This formulation was presented by Cortes and Vapnik [86]. The soft-margin constant has an
important effect on the decision boundary as it can be used for penalizing misclassification and
margin errors. A large value for C assigns a large penalty to margin errors. As illustrated in
Figure 4.8 (left), the two points that are closest to the hyperplane impact its orientation. This
results in a hyperplane that is close to other data points. When C has a smaller value (Figure
4.8 (right)), those points become margin errors.

Figure 4.8: . The effect of the soft margin constant C.

4.2.3 Implementation Details

In this Section, we introduce advanced learning methods and other techniques related to our
traffic sign detector. Any detection system needs a set of positive and negative samples to be
used in the training process. We selected 1000 images as positive training samples. Addition-
ally, we increased the number of positive images by adding the flipped, rotated, and translated
versions of original samples which results in better detection performance. Figure 4.9 shows
the image visualization of the complete list of object training examples and their average.

The initial number of negative samples (2000) are selected from the training images with
the traffic signs regions cropped out. For boosting the performance of the learned classifier, we
use an advanced and popular learning method called hard negative mining. So far, SVM has
been learned using a small sample of negative images. Nevertheless, in essence, every single
image region that does not contain a traffic sign can be considered as a negative sample. There
are too many samples to be used in practice, but we are only looking for key negative samples
which can be extracted from the hard negative mining stage. We train the SVM in an iterated
procedure. In each iteration, the detector is applied to a new image without traffic signs. Then,
we add the resulting false positives (hard negatives) to the training set for the next iteration. We
performed this process for 5 iterations. Finally, the classifier is provided with more key nega-
tive samples which helps make the detection more robust. Figure 4.10 illustrates the extraction
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Figure 4.9: (top): Positive samples (bottom): Average image.

of hard negative samples from a traffic sign-free image.

Once hard negative mining and training have been performed, we evaluate the model on
test data. We use a sliding window over multiple scales. In order to eliminate redundant
detections, a Non-Maximum Suppression (NMS) algorithm is used. NMS keeps the highest-
scoring detection and removes any other detection whose overlap is greater than a threshold.
We used the pascal overlap score [87] so as to establish the overlap ratio between the two
bounding boxes. It is computed as:

_area(B; N By)

= = 4.22
a0 area(B; U B,) ( )

where q 1s the overlap ratio. B; and B, are the two bounding boxes.

4.3 Recognition Phase

This stage of our technique phase is concerned with identifying the exact type of detected
traffic sign candidates. Recognition uses SIFT features and color information. We introduce
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Figure 4.10: Hard negative mining.

the SIFT algorithm and then proceed to describe the combination of SIFT detectors and color
information to build a robust traffic sign recognizer.

4.3.1 Scale Invariant Feature Transform

In order to provide a feature description for any object inside an image, we need to extract
interesting points on the object. By using a feature descriptor that can be extracted from a
training image, we can detect and locate the object inside an image where many other objects
exist. A reliable recognition system should be able to extract features from training images
even under inconsistent illumination changes and noise. Another important factor is that the
relative positions between these extracted features should not vary from one image to another.
For instance, if the four corners of an object are considered as features, they would work with-
out regard to the position of the object. Moreover, features located on flexible objects would
not work if the physical geometry changes between images. However, the SIFT algorithm de-
tects a large number of features from images, which lessens the effect of errors caused by local
variations. The main advantage of SIFT is its ability to identify objects under partial occlusion.
Furthermore, SIFT feature descriptors are invariant to orientation, uniform scaling, and illumi-
nation changes. This Section summarizes the technical details of SIFT algorithm. We divide
our description of the SIFT algorithm into the three following parts: we present the notion of
scale space, then the SIFT detector followed by the SIFT descriptor.
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Scale Space

The SIFT detector and descriptor are built from the Gaussian scale space of an image. The
following equation introduces the Gaussian scale space function, in 1D for simplicity:

G(x;0) = gy * 1(x) (4.23)

where [ is the 1D signal, x is its coordinate, o is the scale parameter, and g, is a Gaussian
kernel. The SIFT algorithm uses the Difference of Gaussians (DoG) to create a scale space.
This scale space is the scale derivative of the Gaussian scale space. It is defined by:

D(x,0(s,0)) = G(x,0(s + 1,0)) — G(x,0(s,0)) (4.24)

where o is the octave index and s is the sub-level index. These two parameters can be mapped
to the corresponding scale o by the formula:

a(o,s) = o,20%% (4.25)
0 € oy +]0,....,0-1] (4.26)
s € [0,..,8 —1] 4.27)

where o, is the base scale level, O is the number of octaves, S is the number of sub-levels, and
Omin 1s the index of first octave. According to the above equations, the Difference of Gaussian
(DoG) is obtained as the blurring of an image with two different o. This procedure is performed
for different octaves of the image in the pyramid. An example is shown in Figure 4.11.

SIFT Detector

SIFT keypoints include a set of points at the local extrema of the DoG scale-space. The selec-
tion of these points is guided by the following parameters:

e Local extrema threshold: if the value |G(x, 0)| of local extrema is less than this threshold,
then they are rejected.

e Local extrema localization threshold: if the local extrema are in a low contrast area, they
are discarded.

e Boundary points removal: keypoints too close to the boundaries of the image are rejected.

The identification of keypoints is performed by comparing each pixel in the DoG images to its
eight neighbors at the same scale as well as nine pixels in next scale and nine pixels in previous
scale. If the pixel value is the maximum or minimum among all existing pixels (local extrema),
it will be selected as a potential keypoint. Figure 4.12 demonstrates this process.

After the extraction of keypoints, the index (xi; x,; s) is fitted to the local extremum by
quadratic interpolation and a threshold on the intensity D(x; o), and a test on the peakedness
of the extremum is applied in order to reject weak points or points on edges [88]. Any low
contrast and edge keypoints are eliminated at this stage.

Following this, an orientation is allocated to every keypoint to provide invariance to image
rotation. By taking a neighborhood around the location of a key point, the gradient magnitude
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Figure 4.12: Searching an image for local extrema over scale and space.

and direction are computed in that area. Then an orientation histogram is created with 36 bins
covering 360 degrees. The histogram is weighted both by the magnitude of the gradient and a
Gaussian window centered on the key point and of deviation 1.5¢0 [88]. Only the highest peaks
are chosen to calculate the orientation. The global maximum and any peak with a value above
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80% of the highest peak is also taken for computation of the orientation.

SIFT Descriptor

The SIFT descriptor of a keypoint is an interpolated histogram of the gradient orientations and
locations in a region surrounding it [88]. The parameters of the descriptor are as follows:

e The magnification factor: spatial bins in the histogram have a size of mo where o is the
scale of the frame.

e The number of spatial bins
e The number of orientation bins

Figure 4.13 depicts the SIFT descriptor layout. In the previous part, the orientations were
assigned to keypoints. This ensured invariance to image rotation, location, and scale. In order
to create a keypoint descriptor, a 16 by 16 neighborhood around the keypoint is chosen. Then
it is divided into 16 sub-blocks of 4 by 4 size. 8 bin orientation histograms are created for each
sub-block . Therefore, a total of 128 bin components are available which form the components
of a vector. Next step is to normalize this vector in order to increase invariance to affine
changes. In order to decrease the effect of non-linear illumination, a threshold of 0.2 is used
and the vector is normalized again. SIFT descriptors are invariant to affine changes to some
extent.It is important to note that the 16 by 16 neighborhood around the keypoint or 4 by 4 size
of sub-blocks are default values of the SIFT algorithm and it has been proved that using these
default values will result in generating more unique descriptors.

i)
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Figure 4.13: The SIFT descriptor layout. The size of a spatial bin is mo.

4.3.2 Implementation Details

Since the SIFT algorithm is able to find distinctive keypoints that are invariant to location,
scale, and rotation, and is robust to affine transformations, it is a judicious choice for object
recognition.
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First, the candidates found in the detection phase are scaled to the size of the template
signs. We gathered a full set of template traffic signs to use in the recognition stage. Figure
4.14 depicts a few examples of images in the template database.

Figure 4.14: Examples of template signs.

The following step is to devise a way of integrating color information in order to increase
the performance of the SIFT matching. We calculate the color difference between the candidate
target and the template signs. We have tested HSV and lab color spaces and finally used HSV
color model due to its relative insensitivity to noise and illumination. Moreover, The HSV color
space outperformed Lab color space in showing more consistent color difference between the
candidate target and the template signs. Figure 4.15 displays extracted H, S, and V values for
the template and detected signs. Traffic signs include a wide variety of colors, and it is possible
to differentiate them by using all the components of the HSV color space. Hence, we compute
H, S, and V values of the detected candidate sign and all template signs. Then, we obtain the
average of all values based on a defined mask. We then create the delta images:

oH Hchannel - Hstandard
oS Schannel — Sstandard
oV = Vchannel - Vstandard

where the Hchannel, Schannel, and Vchannel are the averaged HSV color parameters of the
detected candidate, and the other three are averaged HSV color parameters of the template
sign. The final value which is the color difference between the two images is obtained as:

5f = VOH? + 652 + 6V2 (4.28)

35



where Af is comprised between 0 and 1. If it is close to 1, we can conclude that there is a large
color difference between the two images, and vice versa. We define a threshold, whose value

H Channel = Channsl V Channel

S Channel VY Channe!

Figure 4.15: HSV color space images a) (top): detected sign b) (bottom). template sign.

was experimentally obtained, to determine whether the two images are color-wise similar or
not. If 6f is less than the defined threshold, then we select the corresponding template sign
for feature matching. Hence, we perform feature matching only between the candidate image
and those images in the template database whose colors are similar to the detected sign. This
method removes some of the potential false matches and significantly improves performance.
Once all the sample images that have a similar color to the detected target are found, we per-
form feature matching between those ones and the candidate image. The SIFT algorithm is
used for feature matching. Figure 4.16 shows an illustration of the DoG scale space in different
octaves and scales for traffic signs. After key point extraction, we calculate the descriptors of
each key point. We then proceed with matching the candidate descriptors. In order to do this,
we define a threshold: a descriptor d; is matched to a descriptor d, if the distance between
them multiplied by a threshold is not greater than the distance of d; to all other descriptors.
The value of this threshold was experimentally obtained and it is equal to 1.5.

The RANdom SAmple Consensus (RANSAC) algorithm [89] is also used to discard pos-
sible outliers. This is an iterative method for estimating a mathematical model from a data set
that contains outliers. The basic stages of this algorithm are summarized as follows [90]:

e Randomly select the minimum number of points needed to determine the model param-
eters

e Solve for the parameters of the model

e Determine how many points from the set of the selected points fit the model parameters
with a predefined tolerance e.
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Figure 4.16: DoG scale space images (left): template sign (right): detected sign.

e Re-estimate the model parameters if the fraction of inliers over the total number of points
in the set is lower than a predefined threshold 7.

e Repeat these steps until an adequate confidence level for the estimated model parameters
is attained.

In order to filter out outliers during training, a small set of samples has been used to train a
homography model. Then the samples which are within the error tolerance of the homography
model are determined. These samples are considered as inliers. If the number of inliers is the
largest found so far, we keep the current inlier set. This process is repeated for a number of
iterations and returns the model with smallest average error among the generated models.
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Chapter 5

Experimental Results

To prove the effectiveness of our framework, the proposed method was tested on 3500 frames.
Among these frames, 1806 traffic signs appeared which were manually annotated. As men-
tioned before, these sequences were recorded with the RoadLAB experimental vehicle. The
size of the recorded images is 320 by 240. While our main focus is on detection and recog-
nition of signs within the visual field of the driver, we also performed sign detection outside
this area in order to provide the driver with a response about a possibly unseen traffic sign. If
the four coordinates of the bounding box are inside the driver’s field of view, we can conclude
that the driver has seen the sign. Otherwise, the driver has missed the sign. Both SEEN and
MISSED feedbacks are given to the driver right after the detection and recognition of signs.

In the first part of this Chapter, we present our traffic sign detection results. Recognition
results are provided in the second part. Finally, some screen shots of detected and recognized
traffic signs both inside and outside of the driver’s visual attentional field are provided.

5.1 Traffic Sign Detection Results

In order to assess the accuracy of sign detection we report two numbers: the Detection Rate
(DR) and the False Positive per Frame (FPPF), defined as:

TP
DR= ——— (5.1)
TP+ FN
FP

where T P is the number of true positives, F'N is the number of false negatives, F'P is the number
of false positives, and F is the number of image frames. Table 5.1 reports on the performance
of traffic sign detection. As mentioned before, the traffic sign detector was applied on 3500
images. Some images have no traffic signs and some have more than one traffic sign. Table 5.1
also demonstrates the performance of the proposed detector. Figure 5.4 depicts the information
provided in Table 5.4.

Another method used for visualizing the performance of our system is the Receiver Op-
erating Characteristics (ROC) curve. ROC curves are commonly used in medicine, radiology,
biometrics, and also in machine learning and data mining research. This curve outputs True
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| | DR | FPPF |
| Proposed method | 0.84 | 0.04 |

Table 5.1: DETECTION RATE AND FALSE POSITIVE PER FRAME

Number of signs 1806
Number of detected signs | 1517
Number of missed signs | 289

Table 5.2: SUMMARY OF TRAFFIC SIGN DETECTION RESULTS
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Figure 5.1: Traffic sign detection rate

Positive Rate (TPR) which is known as sensitivity, hit rate and recall against False Positive
Rate (FPR) which is known as false alarm rate:

Positives Correctly Classified

TPR =
Total Positives

(5.3)

FPR — Negatives Incorrectly Classified

54
Total Negatives (54)

ROC curves can be understood as two-dimensional graphs in which 7 PR is represented on the
Y axis and F PR is represented on the X axis.

The best possible prediction model represents 100% sensitivity (no false negatives) and
100% specificity (no false positives). That is to say, a point that reaches the coordinate (0,1) can
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be called perfect classification. We can measure the accuracy by defining the Area Under the
Curve (AUC). This area is equal to the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one (assuming positive ranks higher
than negative) [91]. Figure 5.2 shows the area under the curve for two different classifiers. As
can be noted, classifier B has a greater area under the curve and as a result a better performance.
But sometimes a classifier with a greater AUC can have a lower performance in comparison
to a classifier with a lower AUC. For example even though classifier B generally performs
better than classifier A, classifier A, at false positive rate greater than 0.6, has a slightly better
performance. A rough model for classifying the accuracy of tests based on AUC is given below.

0 —

o
=4
|

04 —

Tz pos Fve rase

| | | |
0 0.1 G 0 0.8 )
[alse positive rawe

Figure 5.2: The AUC of two classifiers

e 09 AUC £1.0 = Excellent0.8 £ AUC < 0.9 = Good
e 0.7 AUC < 0.8 = Fair0.6 £AUC < 0.7 = Poor

e 0.5 £ AUC < 0.6 = Fail Another important factor in plotting a ROC curve is defining
a threshold. In a classification model, the classifier needs to determine a threshold value for
separating the boundary between classes. Most classifiers produce a score which can be thresh-
olded to decide on the classification. Any threshold applied to a dataset is going to produce four
parameters with different values for: True Positives (7 P), False Positives (F'P), True Negatives
(TN), and False Negatives (FN) (see figure 5.3).

In our case, we obtain a scoring value for each detected bounding box. After normaliza-
tion, the scoring values vary between 0 and 1. These scoring values can be used as threshold
parameters for plotting the ROC curve. We used the ROC curve in order to obtain an optimal
threshold among all scoring values for our classifier which maximizes the true positive rate,
while minimizing the false positive rate. Different thresholds have been used and we found
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_A

Figure 5.3: true positives, false positives, true negatives and false negatives

that a threshold equal to 0.56 gave us the best trade off between the true positive rate and the
false positive rate. Figure 5.4 depicts this ROC curve.
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Figure 5.4: ROC curve with threshold=0.56

It is important to note that due to significant differences between European and North Amer-
ican traffic signs, providing a comparison between our proposed method and other methods
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may not be meaningful. But, we just introduce a state-of-the-art detection method on Euro-
pean traffic sign detection. Authors in [56] have evaluated their method on the German Traffic
Sign (GTS) and the Belgium Traffic Sign (BTS) datasets. Both benchmarks are split in three
main super classes based on their color and shape: (M) mandatory, (D) danger, and (P) pro-
hibitory. The following table summarizes the accuracy of their method by providing the area
under curve (AUC) of their detector.

| Dataset | mandatory | danger | prohibitory |
GTS 96.98 100.00 100.00
BTS 94.79 96.40 86.51

Table 5.3: STATE OF THE ART DETECTION RESULTS ON EUROPEAN TRAFFIC SIGNS

Additionally, limited work has been done on the detection and recognition of North Amer-
ican traffic signs. For instance, authors in [92] proposed a detector only for stop, warning , and
speed limit signs and provided separate accuracies for each category. In contrast, our detector
detects most traffic signs, including warning, temporary conditions, information and direction,
and regulatory signs

5.2 Traffic Sign Recognition Results

The recognition phase is built atop the detection phase in order to confirm the detected candi-
dates and determine the exact type of traffic sign. Table 5.4 demonstrates the accuracy of our
proposed method for recognition of traffic signs. The traffic sign recognition results are also
shown in figure 5.5.

Number of detected signs 1517
Number of recognized signs 1348
Number of falsely recognized signs | 169
Accuracy rate 88.9

Table 5.4: SUMMARY OF TRAFFIC SIGN RECOGNITION RESULTS

Another standard evaluation method for traffic sign recognition is the confusion matrix.
In the field of machine learning and computer vision, the confusion matrix is a table that is
commonly used for evaluating the performance of a classification model on a set of test data
when the true values are known. Each column of this table represents the predicted values
while each row represents the true values. Figure 5.6 provides an example of the confusion
matrix for a two-class classifier. The meaning of the entries is explained below:

e a: the number of correct predictions that an instance is positive
e b: the number of incorrect predictions that an instance is negative
e c: the number of incorrect predictions that an instance is positive

e d: the number of correct predictions that an instance is negative
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Figure 5.5: Traffic sign recognition rate

Predicted

Positive | Negative
Actual True a b
Actual False C d

Figure 5.6: Confusion matrix example

Figure 5.7 provides the confusion matrix for our recognition method.
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true values

predicted values

Figure 5.7: Confusion matrix with accuracy of 88.9%
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5.3 Output Images

In this section we provide some output images from our TSDR system. The images include
detected and recognized signs inside and outside of the visual field of drivers as well as SEEN
and MISSED feedbacks. As it is shown in the following images, in some cases the traffic signs
do not appear within the visual field of the driver and it probably means that the sign was not
acknowledged. Therefore, a MISSED feedback is given in these cases. On the other hand, if
traffic signs appear within the visual field of the driver, it also probably means they can be seen
and a SEEN feedback is given.

Figure 5.8: Detection and recognition of the stop sign. The driver has seen the sign.

45



30 100 150 200 280 300

Figure 5.9: Detection and recognition of the speed limit sign. The driver has seen the sign.

a0 100 150 200 250 300

Figure 5.10: Detection and recognition of the traffic light ahead sign. The driver has seen the
sign.
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Figure 5.11: Detection and recognition of the bike lane ends sign. The driver has seen the sign.
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Figure 5.12: Detection and recognition of the school zone sign. The driver has missed the sign.
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Figure 5.13: Detection and recognition of the No heavy trucks permitted on this roadway sign.
The driver has missed the sign.

30 100 150 200 250 300

Figure 5.14: Detection and recognition of the keep to the right of traffic island sign. The driver
has missed the sign.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented an efficient traffic sign detection and recognition system based on
North American traffic signs. The RoadLab traffic sign dataset has been created used for train-
ing and testing the proposed method. Moreover, by using an in-vehicle, non-contact infra-red
binocular gaze tracking system installed in our experimental vehicle, we were able to identify
the exact gaze area of the driver. We were also able to infer whether the driver was likely to
have seen the sign or not based on computing the intersection of the detected bounding box
and driver gaze area. While the detection and recognition of traffic signs have come far in
European countries, little attention has been given to North American signs. We tried to rectify
this dissimilarity by proposing a system for detection and recognition of North American traffic
signs.

This method can be extended to include other possible objects drivers attend to or encounter
such as pedestrians, cyclists, and traffic lights. By identifying all objects that are inside and
outside of the attentional visual field of drivers, an advanced driver assistance system that
informs the driver about those objects can be developed. Such system will be valuable for
safety reasons.

Another important issue which needs to be addressed is the creation of publicly available
North American traffic sign datasets. Most of the proposed TSDR systems have been evalu-
ated on European traffic signs due to a lack of publicly available North American traffic sign
datasets. Based on the differences between these two traffic systems, it is necessary to pay
more attention to detection and recognition of North American traffic signs.
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