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Figure 4.3: a) (left): The path covered by the experimental vehicle. b)
(right): Images obtained by the map building application showing splines as
lane markers. The green spline indicates the middle of lanes.
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Figure 4.4: Vehicle positional and orientational errors. The horizontal axis is
quantified in frames.

sitional and orientational errors of raw GPS data and corrected GPS data as

compared to ground truth. We observe that the both positional and orienta-

tional errors for corrected GPS data are significantly less than those of the raw

GPS data. The mean error value and standard deviation of the absolute po-
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sitional and orientational errors for these experiments are indicated in Tables

5.2 and 4.2. As the tables show, the average vehicle localization error obtained

by using raw GPS is considerably higher than the average error resulting from

our proposed technique (where the positional and orientational errors are 0.36

m and 0.72◦ on average).

Table 4.1: Results of vehicle positioning absolute errors in world
coordinate system.

Mean (m) Std (m)

Raw GPS Data 1.82 1.15
Corrected GPS Data 0.36 0.12

Table 4.2: Results of vehicle orientation absolute errors.

Mean (◦) Std (◦)

Raw GPS Data 1.02 0.67
Corrected GPS Data 0.72 0.31

4.5 Conclusion

It is nowadays possible to specify an absolute position anywhere on the globe

with GPS. Although GPS works adequately in open environments with no

overhead obstructions, it is subject to considerable errors when reception from

some of the satellites is blocked. This occurs frequently in urban environments

and renders accurate vehicle localization problematic. This contribution pro-

posed a novel approach to improve vehicle localization accuracy by estimating

vehicle position and orientation which that minimize the observed difference

between detected lane features and projected lane-marking splines using a

particle filter.
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Chapter 5

Driving Manoeuvre Prediction

This Chapter is a reformatted version of the following article:

S.M. Zabihi, S.S. Beauchemin, and M.A. Bauer, Real-Time Driving Ma-

noeuvre Prediction Using IO-HMM and Driver Cephalo-Ocular Behaviour,

Submitted to, IEEE Intelligent Vehicles Symposium (IV17), Redondo Beach,

California, USA, June 11-14 2017.

Driving Assistance Systems increase safety and provide a more enjoyable

driving experience. Among the objectives motivating these technologies rests

the idea of predicting driver intent within the next few seconds, in order to

avoid potentially dangerous manoeuvres. In this work, we develop a model

of driver behaviour for turn manoeuvres that we then apply to anticipate the

most likely turn manoeuvre a driver will effect a few seconds ahead of time. We

demonstrate that cephalo-ocular behaviour such as variations in gaze direction

and head pose play an important role in the prediction of driver-initiated ma-

noeuvres. We tested our approach on a diverse driving data set recorded with

an instrumented vehicle in the urban area of London, ON, Canada. Exper-

iments show that our approach predicts turn manoeuvres 3.8 seconds before

they occur with an accuracy over 80% in real-time.



92

5.1 Introduction

World-wide injuries in vehicle accidents have increased in recent years, mainly

due to driver error. According to a large field study conducted in the USA,

around 80% of collisions are due to distraction [21]. It is obvious that distrac-

tions caused by recent in-vehicle devices, such as GPS, entertainment systems,

and cellphones, increase a driver’s accident risk [27]. Over the past few years,

several Advanced Driving Assistance Systems (ADAS) have been developed in

an attempt to diminish the number of vehicular accidents. Instances of ADAS

include Adaptive Cruise Control (ACC), Emergency Braking Systems (EBS),

and Collision Avoidance Systems (CAS), among others. These systems pay

attention to the role the driver plays in most driving events. Undoubtedly,

improving these safety systems is an important objective as they may reduce

the frequency and severity of injuries and fatalities.

An intelligent ADAS (i-ADAS) is a sensory and computer system inside a

vehicle that collaborates with the driver to manage driving tasks. Detecting

a driver’s behaviour in conjunction with the dynamics of the vehicle and its

surroundings provides valuable information in effectively assisting the driver

in different situations. We aim to model driver behaviour and predict the next

manoeuvre a driver will most likely perform in the next few seconds (Figure

5.1).

Predicting driving manoeuvres is still a challenging task since a model of

human behaviour is required. A large number of factors such as emotional

state, physical condition, and driving skills can affect driver behaviour, which

ideally should be included in the model in order to provide a faithful rep-

resentation. A model that incorporates all of these factors would effectively

constitute a computational representation of a human being. This is of course
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Figure 5.1: (top): Our Vehicular instrumentation configuration. (bottom):
Anticipating the probabilities of different driving manoeuvres using vehicle dy-
namics and driver cephalo-ocular behaviour.

highly complex and not yet feasible in practice. Consequently, the presented

methods in the literature focus on manageable subsets of these factors.

We have developed a prediction model using an Input-Output Hidden

Markov Model (IO-HMM). IO-HMMs deal better with long-term dependen-

cies compared to the standard HMMs and perform sequence production and

prediction efficiently [4]. We learn the model parameters from natural driv-

ing data including vehicle dynamics and gaze information, then the system

outputs the probability of each manoeuvre (left turn, right turn, and going

straight) during inference.

This contribution is structured as follows: related work is reviewed in Sec-

tion II. Section III describes our proposed method in detail. Results and

experiments are presented in Section IV. Section V summarizes our results.

5.2 Literature Survey

Driver behaviour prediction models attempt to anticipate actions by observing

how a driver interacts with the vehicle and its environment. In the case of
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manoeuvre prediction, the models infer the driver’s intent by mapping his

interaction with control elements available in the vehicle, such as steering

wheel, accelerator or turn signal, to the manoeuvre being modelled. Many

different techniques have been proposed to model driver behaviour and predict

the action a driver will perform next.

Neural networks are powerful for learning sample input/output relation-

ships. The simplest forms of neural networks (single or multi-layer percep-

trons) construct a mapping between input and output data by adjusting the

weights of neural connections in a learning phase. After the network is trained,

it is able to compute output values from input data not used in the training

process. In the case of predicting driving maneuvers, the input of a neural net-

work could be behavioral data such as steering wheel angle and speed, and the

output of the model a prediction value for a maneuver. For example, authors

in [15] implemented a neural network that learns how to execute overtaking

manoeuvres from primitive manoeuvres.

Several prediction systems have been developed with the aim of anticipat-

ing future human action in various contexts [9, 13, 12]. Similar research is

conducted in the context of vehicle driving. For instance, Frolich et al. [8],

Kumar et al., [17], and Morris et al. [20], attempt to predict future lane change

manoeuvers. Authors in [8] use turn signals of other vehicles to predict the

intent of other drivers before they change lanes or turn. A predictive model for

lane changes is developed in [17] where authors use Support Vector Machines

(SVM) and Bayesian filtering. Morris et al. [20] have developed a real-time

prediction system capable of anticipating a driver’s intent to change lanes a

few seconds before it occurs.

MacAdam and Johnson [18] modelled driver steering behaviour using neu-

ral networks, while Dogan et al. [7] developed a prediction system using feed
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forward and recurrent neural networks to model lane changes on curved roads

and compare lane changing to lane keeping scenarios. Mitrovic [19] built a

model to predict lateral and longitudinal vehicle acceleration by way of train-

ing a neural network.

Even though neural networks are powerful learning mechanisms, their main

drawback is that they are very difficult to analyse since the information they

encode is not easily interpretable. Another disadvantage is that most neural

networks are not able to handle a temporal sequence of data points, but only

compute the output for one data vector at a time. In the domain of driver

behaviour modelling, especially for the prediction of driving manoeuvres, the

data usually consists of sequences of individual phases and including this tem-

poral information is essential.

Bayesian networks (BN) are probabilistic models which provide the possi-

bility to define a structure of causal dependencies between variables in a di-

rected acyclic graph, where the directions of these links imply a causal relation.

A variety of driver models have been developed using Bayesian networks. As an

example, Tezuka et al. [28] implemented a model that discriminates between

lane keeping, lane change and emergency lane change using steering wheel

angle as input information. Amata et al. [1] predicted stopping behaviour

at intersections based on environmental conditions (traffic signs, pedestrian

crossing, and leading vehicle) and a calculated driver type. Since Bayesian

networks are probabilistic models, they are well suited at dealing with uncer-

tainties. This is an advantage for driver modelling, where uncertainty plays a

significant role. A drawback that simple Bayesian networks share with neural

networks is the difficulty of including temporal information. A more complex

form of Bayesian networks, dynamic Bayesian networks, can be used to model

changes in a variable over time. However, this makes the construction and
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analysis of a network more complex.

Fuzzy logic is a form of logic used for approximate, rather than exact

reasoning. Since driving a vehicle is largely a reasoning process, it is intuitive

to use fuzzy logic to model driving behaviour, especially in the context of

driving manoeuvres. A prediction system based on fuzzy logic was presented

in [26] to distinguish emergency braking from merely strong braking behaviour.

Ohashi et al. also predicted left and right turns using fuzzy logic and case-

based learning [22]. Khodayari et al. et al. implemented a car-following model

based on fuzzy logic aimed at predicting the driver’s car-following behavior

[11].

Hidden Markov models (HMM) are another type of probabilistic networks,

a special case of Bayesian networks. The purpose of an HMM is to estimate

a Markov chain. An example of a driver model using HMMs was proposed

by Kuge et al. [16]. The model consisted of three HMMs, one for each of

these manoeuvres: emergency lane change, ordinary lane change and lane

keeping. Authors in [10] developed several driving models based on HMM and

its extensions to predict turns and lane changes. Other driver models that

predict lane changes based on HMM have been proposed in [6], [23], [24]. Since

the strength of HMMs lies in sequential pattern recognition, they are suited

for the prediction of driving manoeuvres, given that these are sequential in

nature.

5.3 Proposed Method

Several factors such as the driver, the vehicle, and surrounding context influ-

ence driver intent and manoeuvres. In order to predict driving manoeuvres,

we need to model the driver’s intent and driving context jointly. A driver
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Figure 5.2: Overview of the proposed approach for predicting driving manoeu-
vres.

Figure 5.3: IO-HMM Layers: The model includes a Hidden Layer, repre-
senting the driver’s state; an Output Layer, representing features related to
driver cephalo-ocular behaviour; and an Input Layer representing features re-
lated to vehicle dynamics.

behaviour model requires the ability to accept data time series concerning the

driving context. Hence, a model such as HMM is better suited than discrim-

inative models such as SVM or others that do not consider these temporal

aspects. We chose an Input Output Hidden Markov Model (IO-HMM, an ex-

tension of HMM), to build a driving manoeuvre prediction model. Figure 5.2

shows an overview of our system.

5.3.1 Modelling Driver Manoeuvres Using IO-HMM

A Hidden Markov Model (HMM) is a probabilistic model of two sets of random

variables, states and outputs [25]. States result from a stochastic process and

their evolution cannot be observed over time, but only through substantiation
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Figure 5.4: Gaze points are shown on driving images 5 seconds before a left
turn, going straight, and a right turn. Images are divided into six regions.

of the outputs. IO-HMM is an extension of an HMM in which the distri-

bution of both states and outputs are influenced by a set of input variables

[25]. Input variables are associated to the observed sequences in a classifica-

tion problem where the output variables are considered as classes. IO-HMM

presents similarities to HMM, but utilizes the same process as recurrent neural

networks to map input sequences to output sequences. The training structure

for IO-HMMs is more discriminant than for HMMs and takes advantage of

EM algorithms [5]. An IO-HMM graphical model for driving manoeuvres pre-

diction is depicted in Figure 5.3.

5.3.2 Cephalo-Ocular Behaviour and Vehicle Dynamics

Features

Eyes play an important role in detecting driver intent since the driver looks

directly at objects prior to taking action based on the information provided by
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the fixation [2]. We believe that combining cephalo-ocular behaviour (3D Line

of Gaze (LoG) and head pose) and vehicle dynamics can yield a predictive

model of driver manoeuvres.

We consider two features related to the cephalo-ocular behaviour of the

driver, namely the 3D Point of Gaze (PoG) in absolute coordinates, and the

horizontal (left-right) head motion extracted from the head pose data. In order

to relate the 3D LoG of the driver to a 3D PoG, a cross-calibration technique

due to Kowsari et al. is used to transform the 3D LoG expressed in the

coordinates of the eye-tracker into that of the forward stereo camera system

of the experimental vehicle [14]. The 3D PoG is obtained by intersecting the

projected 3D LoG onto the imaging plane of the stereo scene with a valid

depth estimate. We divide the image scene to six non-overlapping rectangular

regions (as shown in Figure 5.4) and construct a histogram of 3D PoGs falling

into these regions. Figure 5.4 shows the PoGs over the last 5 seconds before

a manoeuvre (left turn, right turn or going straight) occurs. As it is clear in

the picture, drivers pay attention to different parts of the scene when deciding

to perform different manoeuvres. We also calculate horizontal driver’s head

movements and build a 20-bin histogram to track the driver’s head movement

prior to a manoeuvre.

The feature vector forming the input layer of our model includes the

data captured from the vehicle’s CANbus network. Contemporary vehicles

equipped with on-board diagnostic systems (OBD-II) allow sensors to report

on current status and constitute the interface through which odometry is made

available in real-time. Since 2008, the CANbus protocol has become manda-

tory for OBD-II. This standardization simplifies the real-time capture of vehic-

ular data. We encode steering wheel angle and speed of the vehicle as features.

We make a histogram of steering wheel angles over the last 5 seconds before
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Figure 5.5: Our data set.

a manoeuvre occurs. We also calculate the minimum, maximum and average

speed of the vehicle over this time.

Table 5.1: Description of Driving Sequences Used For Experi-
ments.

Seq. # Date Of Capture Age Gender Temperature Weather Condition

Seq. 8 Sep. 12, 2012 21 M 27◦C Sunny
Seq. 9 Sep. 17, 2012 21 F 24◦C Partially Cloudy
Seq. 10 Sep. 19, 2012 20 M 8◦C Sunny
Seq. 11 Sep. 19, 2012 22 F 12◦C Sunny
Seq. 13 Sep. 21, 2012 23 M 19◦C Partially Sunny
Seq. 14 Sep. 24, 2012 47 F 7◦C Sunny
Seq. 15 Sep. 24, 2012 44 F 13◦C Partially Sunny
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5.4 Experimental Setup

5.4.1 Driving Sequences

To evaluate our prediction model, we used several driving sequences recorded

by driving our instrumented vehicle in the urban area of London Ontario,

Canada [3]. These sequences consist of natural driving sequences1 with the

sum of the aforementioned information, such as gaze, head pose, GPS data,

vehicle speed, and steering wheel angle. Figure 5.5 depicts a few samples

from our 3TB data set. Table 5.1 describes the driving sequences we used to

perform the experiments. We annotated the driving videos with 220 events

including 65 left turns, 75 right turns, and 80 randomly sampled instances of

driving straight. Each turn annotation marks the start time of the manoeuvre

before the vehicle starts to yaw.

5.4.2 Prediction Procedure

Algorithm 2 depicts the complete procedure of our prediction model using IO-

HMM. As it was shown in Figure 5.3, the hidden layer Y , which represents

the driver’s state depends on the input layer X. The input layer represents

features obtained by the vehicle’s CANbus data network2 (vehicle dynamics).

The output layer Z describes cephalo-ocular behavioural features (driver gaze

and head pose). PM is the probability of manoeuvre M .

1The stereo cameras operate at 30 frames/sec.
2A Controller Area Network (CANbus) is a vehicle bus standard designed to allow

micro controllers and devices to communicate with each other in applications without a
host computer.
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Algorithm 2 Predicting Driving Maneuvers Using IO-HMM

Input: Cephalo-Ocular Behaviour and Vehicle Dynamics Features
Output: Probability of each maneuver

while driving do
Extract features Zk

1 and Xk
1 (Sec. III. B)

Calculate probabilities of manoeuvres PM = P (M |Zk
1,X

k
1)

Choose a manoeuvre if any of PM > 0.7
end while

5.5 Experimental Results

To evaluate the accuracy of our method, we needed to calculate how correctly

our algorithm anticipates future manoeuvres. We anticipate manoeuvres every

20 frames (0.67 seconds) at which times the algorithm performs a series of

processes on the recent driving data. The prediction system produces three

probabilities for left turn, right turn, and driving straight events which together

sum to 1. After prediction, the system chooses one of the manoeuvres based

on these probabilities. If any of the probabilities is above a threshold1, the

system picks that manoeuvre, and chooses otherwise to make no prediction.

We rate our algorithm performance using precision (Pr) and recall (Re) scores:

Pr =
tp

tp + fp
(5.1)

Re =
tp

tp +mp

(5.2)

where tp is the sum of correctly predicted manoeuvres, fp the sum of wrongly

predicted manoeuvres, and mp the manoeuvres that were wrongly not pre-

dicted (the system does not choose any manoeuvre). The precision Pr mea-

1The prediction threshold is set to 0.7 for our experiments.
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sures the fraction of predicted manoeuvres that are correct, while recall or

sensitivity Re measures the fraction of manoeuvres that are correctly pre-

dicted. We also calculate the average Time-to-Manoeuvre which determines

the time between prediction and that of the start of a manoeuvre.

Table 5.2: Results of driving manoeuvres prediction on our data
set.

Pr (%) Re (%) Time-to-Manoeuvre (s)

IO-HMM 74.5 76.6 2.9
IO-HMM G 74.2 78.8 3.2
IO-HMM H 77.9 80.3 3.4

IO-HMM G+H 79.5 83.3 3.8

We use a 5-fold cross validation process to train and test our prediction

model. Table 5.2 reports the precision, recall, and Time-to-Manoeuvre for

anticipating driving manoeuvres (left turn, right turn, and straight) under

three settings:

• IO-HMM: the prediction model considers only vehicle dynamics infor-

mation

• IO-HMM G: the prediction model considers only gaze information in

the output layer

• IO-HMM H: the prediction model considers only head information in

the output layer

• IO-HMM G+H: the prediction model considers both gaze and head

information in the output layer

As Table 5.2 indicates, both precision and recall are higher for IO-HMM

G+H, where both driver’s gaze information and head motion are taken into



104

(a) IO-HMM G (b) IO-HMM H(c) IO-HMM
G+H

Figure 5.6: Confusion matrices for our prediction model.

account for building the prediction mechanism. The model predicts manoeu-

vres 3.8 seconds before they occur, on average. It is interesting to note that

while precision is roughly equivalent between IO-HMM and IO-HMM G,

both recall and Time-to-Manoeuvre improve (by 2.2% and 0.3s, respectively).

A similar but more pronounced effect occurs when comparing IO-HMM with

IO-HMM H, where all metrics improve. Lastly, IO-HMM G+H improves

precision by 5%, recall by 6.7% and Time-to-Manoeuvre by 0.9s over IO-

HMM. These results empirically demonstrate the value of cephalo-ocular be-

haviour for the prediction of driver-initiated manoeuvres.

Figure 5.6 shows the confusion matrices for joint prediction of all the ma-

noeuvres. Modelling manoeuvre prediction with IO-HMM provides a dis-

criminative modelling of the state transition probabilities using features ex-

tracted from vehicle dynamics and driver cephalo-ocular behaviour. Figure 5.7

plots the F1-score changes for different values of the prediction threshold and

shows how the threshold can act as a trade-off between precision and recall.

The F1-score is the harmonic mean of precision and recall, defined as

F1 =
2PrRe

Pr +Re

. (5.3)
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Figure 5.7: The plot shows the impact of prediction threshold on F1-score for
IO-HMM G+H.

We observe that the F1-scores from our prediction algorithm remain relatively

stable as the threshold changes. The prediction model anticipates manoeuvres

every 0.67 seconds and processes the last 20 frames to current time. The system

predicts driving manoeuvres under 3 milliseconds on average on a 3.40GHz

Core i7-6700 CPU with Windows 10.

5.6 Conclusion

We developed a prediction model using IO-HMM that anticipates a particular

type of driving manoeuvres. Our focus was on demonstrating that eye and

head movements are predictive of driver-initiated manoeuvres. We utilized

features extracted from the cephalo-ocular behaviour of drivers and vehicular

dynamics as inputs to our predictive model. Experimental results empirically

proved that cephalo-ocular behaviour is at least a partial predictor of driver

intent. Future work includes demonstrating this fact for other types of driver

manoeuvres.
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Chapter 6

Conclusion and Future Work

Nowadays, driving is a daily, fun and yet intricate task which is composed of

several critical subtasks. To explore drivers’ intentions in different situations

during driving, we must model and analyze drivers’ behaviors. Researchers are

trying to understand and model driver behavior to predict the most probable

next maneuver and assist the driver to make a good decision. In chapter

5, we utilized the driver cephalo-ocular behavior to specify the relationship

between this information (gaze position, head position, ...), current driving

maneuvers, vehicular attitude and driving behavior of the driver in order to

predict the next maneuver. We developed a prediction model using IO-HMM

that anticipates turning maneuvers. Experimental results proved that cephalo-

ocular behavior and visual search patterns of drivers can be demonstrative of

driver intentionality.

In chapter 4, we proposed a novel approach to improve vehicle localization

accuracy by estimating vehicle position and orientation which that minimize

the observed difference between detected lane features and projected lane-

marking splines using a particle filter.
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Consequently, we proposed algorithms to detect surrounding objects such

as vehicles and traffic signs within the attentional visual area of drivers to

investigate their impact on predicting driving maneuvers. Our experiments

showed that our method robustly detects vehicles and signs in driving scenes.

Our contribution to this research can be summarized as follows:

1. Constructing a real-time system to detect vehicles within the attentional

visual area of drivers.

2. Presenting an approach to detect and recognize traffic signs inside the

attentional field of drivers.

3. Proposing a novel approach to improve vehicle localization accuracy.

4. Developing a prediction method to anticipate driver intent.

5. Annotating the sequences. (turning maneuvers, signs, vehicles, ...)

6.1 Future Work

Research on driver intent and advanced driving assistance systems are rela-

tively recent with the potential for significant results and applications in the

near future. Here are a few possible research areas that may be undertaken

immediately:

1. Objects detected within the attentional visual area of drivers can be used

in the driving maneuver prediction model.

2. We believe similar detection systems could easily be developed to iden-

tify other objects drivers routinely encounter and attend to, such as

pedestrians, cyclists, traffic lights, and more.
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3. While the instrumentation represents a successful proof of concept, it was

noted that wider viewing angles for the stereo cameras and eye-trackers

using more than two cameras (to compensate for head rotations) would

allow us to track the 3D driver gaze into the surroundings in a more

comprehensive manner.

4. The physical limitations of the instrumentation prevented its use at night

and in adverse weather conditions. Such limitations could be removed

entirely by a judicious choice of hardware, enabling the study of driver

intent in diverse conditions.
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