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Figure 29. MT1-MMP levels were inversely correlated to the extravasation efficiency of 

MCF-7 breast cancer cells in vivo.  

Representative 3D volume views at 20x magnification of MCF-7 MT1-MMP cells stably 

expressing zsGreen 24 hours-post intravenous injection into the chicken embryo CAM 

vasculature. Shown is an overlay displaying the zsGreen cells (green) and CAM vasculature and 

underlying stromal vessels labeled using lectin-rhodamine (red), and the isolated zsGreen 

channel. Scale bars = 100 μm. Bar graph shows quantification of extravasation efficiency of 

MCF-7 MT1-MMP cell lines 24 hours post-injection ± SEM. 
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significant increase in percentage of extravasated cells (~8%), whereas C3 cells, which express 

low levels of MT1-MMP, displayed a significant increase in extravasation efficiency (~15%) 

compared to all other MCF-7 cell lines. Orthogonal sections of extravasated C1 and C3 cells 

acquired using confocal microscopy at 60x magnification showed that C1 cells are capable of 

extravasating out of the CAM vasculature (fig 30) but display membrane blebbing (white 

arrow) and cell fragment release (green arrow), reminiscent of the disseminations observed in 

3D culture (fig 22). In contrast, C3 cells exhibited a uniform morphology as they extravasated 

into the stromal space (blue arrows) and contained cell protrusions trailing from the CAM 

capillary bed into the stroma (red arrow, video 10), suggesting that these cells formed 

invadopodia in vivo.  

3.8 Metastatic 21T breast epithelial cell line produces undetectable 

levels of MT1-MMP protein 

 To extend and corroborate the observations that low levels of MT1-MMP are optimal to 

promote metastatic features in 3D culture and in vivo, the level of MT1-MMP protein in the 21T 

series cell lines was assayed via immunoblot (fig 31). These cells were isolated from a single 

patient and represent a mammary tumour progression series that mimic specific and progressive 

stages of breast cancer progression [111, 123], from atypical ductal hyperplasia (21PT-ADH), to 

ductal carcinoma in situ (21NT – DCIS) to an invasive mammary carcinoma (21MT-1- IMC). 

Assaying MT1-MMP protein levels in these cell lines demonstrated that ADH and DCIS variants 

produced active MT1-MMP, with the non-invasive DCIS cells producing higher levels of MT1-

MMP protein. Direct comparison to the MCF-7 MT1-MMP cell lines showed that C1 and C2 

cells produced more active MT1-MMP than 21T ADH or DCIS cells. In contrast, 21T MT-1   
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Figure 30. MCF-7 cells expressing low levels of MT1-MMP demonstrated a uniform 

protrusive morphology when extravasating in vivo.  

Orthogonal views of Z-stacks acquired using confocal microscopy at 60x of MT1-MMP C1 and 

C3 cells 24 hours post-injection showing the top of the CAM capillary bed (top) and the 

underlying stroma (bottom). Extravasated MT1-MMP C1 cells display cell fragmentation (green 

arrows) and membrane blebbing (white arrow), whereas MT1-MMP C3 cells extravasate to 

below the CAM with uniform morphology (blue arrows) and are capable of forming discrete 

invasive protrusions in the stroma (red arrow). Scale bars = 100 μm. 
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Figure 31. Metastatic human 21T breast cancer cells showed undetectable levels of MT1-

MMP protein similar to MCF-7 C3 cells.  

Protein lysate from human 21T breast cancer cell lines, which represent a progression series 

from atypical ductal hyperplasia (21PT-ADH), to ductal carcinoma in situ (21NT – DCIS), to 

invasive mammary carcinoma (21MT-1- IMC), were analyzed via immunoblot for MT1-MMP 

protein levels along with the MCF-7 MT1-MMP cell lines. The blots were probed with either 

AB6004 (top) or AB51074 (bottom) antibody and shown as the normal exposure and as 

transformed versions to clearly show banding pattern. Asterisks indicate MT1-MMP isoforms 

(green – pro- form, red- active form, orange – degradation forms). β-actin was used as a loading 

control. 
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cells, which represent an invasive mammary carcinoma, produced undetectable levels of MT1-

MMP protein as determined by immunoblot, similar to C3 cells. The 21MT-1 IMC cells have 

been show to possess metastatic qualities in 3D culture and in vivo when compared to the non- 

invasive variants [111], consistent with my observations that low levels of MT1-MMP are 

representative of metastatic breast cancer. 

Taken together, the observations in my study demonstrate that low levels of MT1-MMP 

expression are optimal for tumourigenicity and metastatic potential in vivo, and importantly, that 

abnormally high MT1-MMP overexpression correlated with a decrease, rather than enhancement 

of tumorigenic features (see schematic representation fig. 32). 
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Figure 32. Schematic overview of MT1-MMP expression levels and associated changes in 

substrate degradation and cell migration in 2D culture, phenotypes in 3D culture, and 

tumourigenesis in vivo. 

 Schematic representation of the findings of this study showing cell phenotypes across 2D and 

3D culture platforms and in vivo. Legend describing molecular components in diagrams is shown 

at the top, and fold change relative to MCF-7 parental cells is in the brackets to the right of the 

bolded titles. MT1-MMP deficient breast cancer cells, such as MCF-7 cells, are incapable of 

proMMP-2 activation or ECM degradation, and show low migration and viability during serum-

free incubation. These cells retain a circular morphology in 3D culture, and do not form 

vascularized tumours nor display high extravasation efficiency in vivo. Cells expressing high 

levels of MT1-MMP are capable of proMMP-2 activation and widespread ECM degradation, 

have increased survivability to serum-free stress, but do not demonstrate increased migration in 

2D experiments. In 3D culture, these cells demonstrate a dissemination morphology and cell 

fragment release mediated by MT1-MMP. Despite MT1-MMP protein production and associated 

substrate degradation, these cells are unable to form vascularized tumours or increase their 

extravasation efficiency in vivo. Cells expressing low levels of MT1-MMP do not demonstrate 

proMMP-2 activation or widespread ECM degradation, but do show increased migratory 

potential, and high viability during serum-free incubation. These cells demonstrate a protrusive 

morphology in 3D culture, form vascularized tumours in vivo, and have significantly increased 

extravasation efficiency, which are representative features of a metastatic phenotype. 
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Chapter 4 

4 Discussion 

4.1 Low levels of MT1-MMP are optimal to mediate a metastatic 

phenotype across various experimental platforms  

In this study, I utilized overexpression of functional MT1-MMP in MCF-7 and MDA-

MB 231 breast cancer cells and demonstrated how high overexpression corresponds to proMMP-

2 activation and ECM degradation, but inversely correlates to migration and viability in 2D 

culture, protrusive phenotype in 3D culture, and tumorigenic features in vivo. Instead I showed 

that high overexpression of MT1-MMP negatively affects cell viability, and causes an abnormal 

loss of colony structure and cell fragment release in 3D culture that translates to decreased 

tumorigenic potential in vivo. I also demonstrated using the human 21T cell lines mammary 

tumour progression series that breast cancer cells which mimic an invasive mammary carcinoma 

(IMC) are better represented by low, rather than high, levels of MT1-MMP protein. My data is at 

odds with the notion that high MT1-MMP expression is crucial for tumour progression, as 

numerous studies report that MT1-MMP overexpression is associated with enhanced migratory 

ability and tumourigenicity [40, 41, 49, 70, 95, 98], including increased cell migration [98], 

metastatic potential [40, 41], and tumor/metastasis volume [49]; although there is also evidence 

in agreement with my study which shows that high MT1-MMP overexpression is insufficient to 

increase metastasis of human cancer cells [124]. Here, using MCF-7 clonal cell lines stably 

expressing untagged MT1-MMP, I showed that migration, as shown by a scratch closure assay 

and by time-lapse microscopy of cells on fluorescent substrate, is dependent on levels of MT1-
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Analysis of MT1-MMP protein levels in the 21T cell lines mammary tumour progression 

series demonstrated that breast cancer cells which represent early stage ADH and DCIS 

mammary tumours produce high levels of active MT1-MMP protein, whereas invasive 21MT-1 

IMC cells produce undetectable levels of MT1-MMP, an observation that is consistent with my 

findings using MCF-7 C3 cells and my overall conclusion that low levels of MT1-MMP may 

better represent metastatic cancer. A similar study using the HMT-3522 epithelial cell series 

yielded results consistent with my analysis of MT1-MMP levels in 21T cells, as these authors 

analyzed microarray data to show that MMP-9, -13,-15 and -17, but not MT1-MMP, were 

functionally significant in the acquisition of invasiveness [137]. 

Interestingly, the observation that DCIS 21T cells produced high levels of active MT1-

MMP in comparison to their IMC counterparts is similar to the 3D culture phenotype of the 

MDA-MB 231 cells overexpressing MT1-MMP. In this study, parental MDA-MB 231 cells, 

which are naturally invasive, readily form irregular networks in 3D culture in contrast to non-

invasive cell lines that partially maintain polarity and form acini similar to the TDLU in the 

human breast (eg MCF-7 cells). It was surprising that overexpression of MT1-MMP in invasive 

MDA-MB 231 cells reverted their phenotype in 3D culture towards a DCIS-like morphology 

where the ability to form networks in matrigel 3D culture was restricted and a higher proportion 

of these cells retain acini-like colonies. The reversion of MDA-MB 231 cells to a DCIS-like 

phenotype in 3D culture as a result of MT1-MMP overexpression is consistent with the analysis 

of MT1-MMP protein levels in the 21T cell lines, whereby DCIS (21NT) cells produce more 

active MT1-MMP and predominantly form acini in 3D culture, and IMC (21MT-1) cells produce 

less MT1-MMP protein and display invasive 3D behavior [111], similar to MT1-MMP MDA-

MB 231 cells and parental MDA-MB 231 cells, respectively. 
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4.2 Inhibited MT1-MMP correlates with increased cell migration and 

viability in 2D culture 

A striking finding of my in vitro analysis regarding the relationship between MT1-MMP 

expression and migration was that the most migratory cells were the ones which had a low MT1-

MMP:high TIMP-2 ratio. Of the MCF-7 MT1-MMP cell lines used, C3 and C3 SH 1 cells 

displayed low MT1-MMP levels (11 and 1.8 fold change vs parental MCF-7 cells, respectively), 

and their migration ability was greatly enhanced when the levels of TIMP-2 increased, especially 

C3 SH 1 cells. MDA-MB 231 MT1-MMP cell lines displayed the same trend whereby MT1-

MMP overexpression with no change in TIMP-2 expression (data not shown) shifted the ratio in 

favor of excess MT1-MMP, leading to uncontrolled proMMP-2 activation and ECM 

degradation, and thereby causing a decrease in migratory potential and viability. Similarly, 

analysis of the natural migration potential of MCF-7, MDA-MB 231, and HS578t cells is 

consistent with this relationship to TIMP-2, as HS578t cells were the most migratory and 

displayed the highest level of TIMP-2 expression relative to MT1-MMP. Noteworthy in this 

analysis was also the observation that MDA-MB 231 cells displayed the highest ERK activation, 

but were not the most migratory. This was consistent with the comparison of MCF-7 C2 and C3 

cells, whereby C2 cells showed the highest ERK activation but were less migratory than C3 

cells, which displayed comparatively lower ERK activation even in the presence of high levels of 

TIMP-2.  

Although TIMP-2 is a natural MMP inhibitor and as such has attracted therapeutic 

interest along with synthetic MMP inhibitors [87-89, 94, 138, 139], neither have shown value in 

clinical trials [93]. Instead, some have suggested that high TIMP-2 levels may promote 

tumourigenicity [37, 99, 140], which has been strengthened by the association of high TIMP-2 
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levels with poor prognosis in various human cancers, including breast [44, 45, 47, 141-143]. 

Although this association between an MMP inhibitor and poor cancer prognosis may be 

paradoxical, I describe here that while TIMP-2 regulation of MT1-MMP activity is complex, as 

exemplified by MDA-MB 231 and HS578t cells, high TIMP-2:low MT1-MMP ratios in these 

cells correlate with their migratory potential, and also with their low proMMP activation ability 

and lack of gelatin degradation. Despite the fact that MDA-MB 231 and HS578t cells naturally 

express MT1-MMP, MMP-2, and -9, the extracellular gelatinases are predominantly found in 

their pro-forms yet to be activated. As MT1-MMP activity is pivotal in gelatinase activation [85], 

this indicates that MT1-MMP present in these cells is inhibited, likely by TIMP-2. This is 

consistent with lack of gelatinase activity of C3 cells, and in stark contrast to C1 and C2 cells, 

suggesting that cells with non-physiologically high MT1-MMP levels but low TIMP-2 levels 

(which is not typical of cancers) exhibit excessive proteolysis which may be counterproductive 

to migration and cell viability. This is corroborated both with the rescued serum free viability 

and migration of C1 cells as a result of BB94 treatment, and with the role of TIMP-2 in 

mediating survivability under serum free conditions as shown by others [100]. Since MT1-MMP 

is a proteolytic enzyme that can cleave and alter the function of many ECM and non-ECM 

proteins crucial for proper cell behavior [22], it is logical that such a potent protease with wide 

substrate specificity would be under tight control by TIMP-2 to appropriately mediate cell 

behaviour. 

4.3 Immunological detection of human MMPs is unreliable 

Recently Maden and Bugge (2015) analyzed the last two decades of literature to examine 

if there was a consensus regarding the cellular source of MMPs (including MT1-MMP) in human 

cancers and whether they were predominantly stromal or cancer cell derived [78]. These authors 
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noted that publications were widely inconsistent in regards to the cellular source of MMPs, 

particularly when immunodetection was involved. Only when in situ hybridization was used was 

there a consensus seen that MMPs were likely stromal cell derived. The authors proposed 

reasons for these difficulties, one being that there is likely inherently low expression of MMPs in 

cancer cells compared to stromal cells making immunodetection technically challenging.  

I believe that unreliable immunodetection reagents (discussed in [144]) is a major 

contributing reason as to why there is such inconsistency when assessing the abundance of 

MMPs in human cancers and their value as prognostic markers. In this study, I initially 

experienced difficulties assessing immunoblots for MT1-MMP, which could only be correctly 

interpreted after examining the immunological banding pattern for MT1-MMP expressing MCF-

7 and MDAMB-231 cell lines, and probing with two different primary antibodies against human 

MT1-MMP (fig 33). To strengthen the idea that improper immunodetection of MT1-MMP 

protein can lead to incorrect conclusions, I highlight my (lack of) immunodetection of MT1-

MMP in MCF-7 breast cancer cells. I strongly believe, as supported by my data, and as 

suggested by others, that MCF-7 cells are MT1-MMP deficient [40, 99], particularly because it 

has been shown that the MT1-MMP promoter in these cells is hypermethylated and thus 

transcriptionally repressed [106]. Yet despite this observation, published studies claim to detect 

both pro- and active MT1-MMP protein via immunoblot in MCF-7 cells [41, 145], which could 

be due to incorrect identification of the cell line used for experimentation, or lack of stringency 

when conducting immunodetection. As can be seen from my immunoblot data, usage of a 

polyclonal antibody against MT1-MMP resulted in a non-specific signal that could easily be 

misinterpreted as pro- and active MT1-MMP in MCF-7 cells (fig 33, AB6004). Furthermore, in   
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Figure 33. Immunological detection of MT1-MMP protein can be confounding depending 

on antibody utilized.  

(a) Immunoblot analysis of MCF-7 and MDA-MB 231 MT1-MMP cell lines (top), or MCF-7, 

MDA-MB 231 and HS578t breast cancer cell lines (bottom) using a polyclonal anti-MT1-MMP 

rabbit antibody (AB6004 – Millipore). (b) Immunoblot analysis of MCF-7, MDA-MB 231, and 

HS578t breast cancer cells, along with the MCF-7 MT1-MMP cell lines, using a monoclonal 

rabbit antibody (AB51075- Abcam). These blots were ran for 6 hours at 140 volts on a 15% 

acrylamide gel to ensure optimal band separation. On the left is a normal exposure of each blot 

and on the left is transformed version to clearly demonstrate banding pattern. Arrows indicate 

non-specific signal, whereas asterisks indicate specific signal pertaining to MT1-MMP isoforms 

(green – pro- form, red- active form, orange – degradation forms). Note the substantial amount of 

non-specific signal obtained when using AB6004 compared to AB51074, despite both antibodies 

being able to specifically detect multiple isoforms of MT1-MMP. Of particular interest are the 

red and green non-specific bands obtained using AB6004, which could be misinterpreted as pro- 

and active forms of MT1-MMP, respectively (see banding pattern for MT1-MMP deficient 

MCF-7 cells). 
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the study done by Köhrmann et al. (2009), although the authors reported MT1-MMP protein in 

MCF-7 cells, they were not able to detect MT1-MMP protein from tumour samples via 

immunoblot, despite showing increased MT1-MMP mRNA in these samples compared to 

normal breast tissue [41]. However, these authors were able to detect MT1-MMP protein using 

histology in tissue sections from tumour samples and not from normal tissues. Studies such as 

this that are internally inconsistent regarding MT1-MMP protein detection, and when containing 

clinical samples, can create confounding conclusions regarding the role of MMPs in cancer. This 

is in agreement with the observations of Madsen and Bugge regarding the discrepancies of the 

source of MMPs in human cancer, and the potential role of unreliable immunodetection when 

examining MMPs, including MT1-MMP, in different human cancer tissue. 

Additionally, visualizing MT1-MMP protein localization at a cellular level using 

immunofluorescence may also lead to similar immunodetection problems. Lodillinsky et al. 

(2016) recently implicated the p63/MT1-MMP axis in the transition from ductal carcinoma in 

situ to metastatic breast cancer, reporting that MT1-MMP protein is present during BM invasion 

of MCF10DCIS.com xenografts [59]. However, with the knowledge that MT1-MMP should be 

localized to distinct specialized regions of the cell membrane to initiate invasion (invadopodia), I 

question such immunofluorescence data that show MT1-MMP protein is present throughout the 

cell membrane of every cell in the xenograft, regardless of whether it is in physical proximity to 

invade the BM.  
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4.4 Modest increase in MT1-MMP expression is physiologically 

relevant in human cancer 

To assess the physiological relevance of observed levels of MT1-MMP expression in this 

study, I searched the literature for recently reported MT1-MMP mRNA levels in malignant 

human breast tissue compared to non-malignant tissue. The reported increase in MT1-MMP 

mRNA levels in malignant breast tissue compared to normal tissue ranged between ~1.7 to ~3.2 

fold [48, 59, 64]. Similarly, a pioneering study used MDA-MB 231 variants that produced 

constitutively active scr kinase, which is known to be upregulated during cancer progression 

[66]. These MDA-MB 231 variants generated significantly more MT1-MMP containing 

invadopodia. Analysis of MT1-MMP mRNA changes between control and constitutively active 

src kinase cells demonstrated a ~1.8 fold change increase in MT1-MMP mRNA, which the 

authors describe as a mechanistically meaningful increase in MT1-MMP expression level. 

Therefore, the physiological relevance of extreme changes in expression levels, such as ~17,000 

fold change in MT1-MMP mRNA seen in transient transfectants, or ~1500 fold change in stable 

cell lines, would be difficult to reconcile with primary human breast cancers which have a ~1.7 

to 3.2 fold change in MT1-MMP mRNA compared to normal tissue. Additionally, in line with 

the idea that immunological reagents of MT1-MMP may be unreliable, if normal non-malignant 

tissues do not contain detectable levels of MT1-MMP [41, 70] and cancerous tissues demonstrate 

only a ~1.7 to 3.2 fold increase in MT1-MMP mRNA, then is it reasonable that a transcriptional 

increase of that magnitude would be difficult to immunodetect at the protein level. 

Taken together, my study shows that a physiologically relevant increase in MT1-MMP 

levels during metastatic breast cancer is a best represented by a 1.8 to 11-fold change compared 

to normal tissue. Additionally, although abnormally high levels of MT1-MMP overexpression 
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may not reflect those seen in primary breast cancers, there is still mechanistic value in this 

approach, as utilized in this study to demonstrate the constancy of the TIMP-2 mediated 

activation of proMMP-2 by MT1-MMP. With this work I challenge the long-standing view that 

MMPs, particularly MT1-MMP, exert their role in cancer progression as proteases that 

predominantly degrade ECM components to allow cancer cell invasion, and instead suggest a 

subtle role for MT1-MMP in tumour progression as metastatic cancer appears to be better 

represented by low levels of TIMP-2-inhibited MT1-MMP protein. 
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Chapter 5 

Conclusions  

MT1-MMP is a multifunctional protease that can affect cell function via proteolytic and 

non-proteolytic mechanisms, and it was presumed that high levels of MT1-MMP mediate 

metastatic progression via ECM degradation. My findings that low levels of MT1-MMP are 

physiologically relevant and correlate with a metastatic phenotype suggest that very high levels 

MT1-MMP overexpression represents a non-relevant level of MT1-MMP expression during 

cancer progression. Excessive ECM degradation mediated by high levels of MT1-MMP is not 

permissive to cell migration and tumourigenesis, while low levels of MT1-MMP promote 

extravasation and vascularization in vivo via increased cell migration and viability. 

Future work could focus on the examination of the binding partners of MT1-MMP, and 

their role in mediating the phenotypes of the cells utilized in this study. As well, an in-depth 

analysis of changes in cell signaling cascades in cell overexpressing MT1-MMP should be 

conducted to determine the mechanisms responsible for the phenotype of these cells. 

Additionally, MT1-MMP expression should be knocked down in the cell lines overexpressing 

high levels of MT1-MMP to determine if an invasive phenotype is rescued when the level of 

MT1-MMP expression is reduced.  
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Video Legends 

Videos 1-4. Time-lapse analysis of ECM degradation and cell migration of MCF-7 MT1-

MMP cells. Parental MCF-7 (Video 1), and MT1-MMP C1, C2, and C3 (Videos 2, 3, 4, 

respectively) cells stably expressing zsGreen (green) were seeded on Alexa594 gelatin coated 

coverslips (red) and incubated in a live imaging chamber at 37
0
C, 5 % CO2. Images were 

acquired using a Leica DM16000 B fluorescent microscope. Frames were taken every 10 

minutes for 20 hours and compiled into time-lapse movies using ImageJ. Representative stills of 

each cell line at time 0 and 20 hours are shown in Figure 16a. Scale bars = 100 μm. 

 

Videos 5. ADAPT workflow for automated analysis of cell migration. Shown is an example 

of the ADAPT plugin and associated trajectory visualization of the MCF-7 MT1-MMP C2 video 

(Video 3). Video 3 is shown as the overlay of zsGreen cells (green) and Alexa594 gelatin coating 

(red), as well as the individual channels (top). The zsGreen channel was used for the ADAPT 

analysis (bottom, left) to yield a trajectory visualization of individual cells from initial point of 

tracking (bottom, right). Three videos from independent experiments were analyzed in this 

manner and the trajectory visualization from each was used to quantify individual cell migration 

after 20 hours. Cell migration data is compiled in Figure 16b. Scale bars = 100 μm. 

 

Videos 6-9. Time-lapse analysis of 3D culture dynamics of MCF-7 MT1-MMP cells. Parental 

MCF-7 (Video 6), and MT1-MMP C1, C2, and C3 (Videos 7, 8, 9, respectively) cells were 

embedded in 50% matrigel and incubated in a live imaging chamber at 37
0
C, 5 % CO2. Z-stacks 

(100 μm, 5 μm slices) were acquired using a Leica DM16000 B microscope. Frames were taken 

every 30 minutes for 72 hours and focal planes showing colony features with the greatest clarity 
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were compiled into time-lapse movies using ImageJ. Representative stills of each cell line at 

three different time points are shown in fig 19. Scale bars = 100 μm. 

 

Video 10. Real-time intravital imaging of extravasated MCF-7 MT1-MMP C3 cells. MCF-7 

MT1-MMP C3 cells stably expressing zsGreen (green) were injected intravenously into the 

CAM vasculature of day 13 chicken embryos and imaged 24 hours post-injection after labeling 

the vessels with lectin rhodamine (red). A movie in real-time was acquired using the resonant 

scanner of a Nikon A1R+ confocal microscope. The focus of the microscope was moved 

manually to show that a single C3 cells has extravasated from the CAM vasculature and shows a 

protrusion into the stroma (devoid of lectin-rhodamine signal). Scale bar = 100 μm 
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