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Abstract 

Connexin26 (Cx26) and Cx30 facilitate gap junctional intercellular communication (GJIC) in 

the epidermis and are linked to several syndromic skin diseases. We investigated 5 disease-

linked Cx26 mutants and demonstrated that the severity and extent of disease can be predicted 

from the gain- or loss-of function properties of each mutant, as well as the ability to induce 

cell death. We also used transgenic mice expressing S17F Cx26 (linked to keratitis-ichthyosis-

deafness syndrome) or A88V Cx30 (linked to Clouston Syndrome) to investigate the 

pathophysiology these skin diseases. We demonstrated that S17F Cx26, but not A88V Cx30, 

promotes palmoplantar keratoderma by disrupting keratinocyte differentiation. Primary 

keratinocyte cultures from these mice demonstrated the mutants can also affect gap junction 

intercellular communication and cell migration. Lastly, we showed that mutant mice retain 

most wound healing properties. Together, we suggest that syndromic mutants often display 

gain-of-function properties and can disrupt keratinocyte differentiation in the epidermis. 
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Chapter 1 

1.1 Introduction  

1.1.1 Structure, Function and Life-Cycle of Connexins and Gap Junctions 

Gap junctions are multimeric transmembrane channels that allow adjacent cells to 

communicate via the exchange of ions and small molecular messengers less than 1 kDa 

(Alexander and Goldberg, 2003). Gap junctions and their individual connexin monomers have 

been studied extensively since their discovery and characterization in the 1960’s (Revel and 

Karnovsky, 1967). Cellular communication through gap junction channels plays an important 

role in cell physiology and these molecules have proven indispensable to human health (Garcia 

et al., 2016b). Connexins are 4-pass transmembrane proteins that can be found in nearly all 

cell types in humans (Laird, 2006). Every connexin molecule contains cytosolic amino (NT) 

and carboxy termini (CT), 2 extracellular loops (E1, E2), and one intracellular loop (IL) which 

serve specific roles to make a functional gap junction channel with various properties of 

molecular selectivity, channel gating, docking compatibility, and trafficking (Yeager and 

Harris, 2007). For example, the crystal structure of the Cx26 channel demonstrates that the 

NT can be located inside the pore suggesting it acts like a plug controlling channel gating and 

molecular selectivity (Maeda et al., 2009). Furthermore, Cx26 has a smaller pore size 

compared to other connexins (e.g. Cx43) which restricts molecular permeability (Weber et al., 

2004).  

Connexins are named according to their molecular weight in kDa: for example, connexin26 

(Cx26) is approximately 26 kDa. They are organized into compatibility subgroups in which 

members can oligomerize to form mixed channels that have distinct channel properties from 

channels composed of the individual connexin types; for example Cx26 and Cx30 can intermix 

in connexons and gap junctions (Richard, 2000). Homomeric and heteromeric channels differ 

because they are composed of one or multiple connexin types, respectively (Richard, 2000). 

This variability dramatically increases the number of channel possibilities and intercellular 

communication characteristics in cells expressing multiple connexins – further reinforcing 

their complexity in cellular communication.  
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Connexins are co-translationally inserted into the endoplasmic reticulum and travel to the 

Golgi apparatus where many oligomerize to form connexons (Musil and Goodenough, 1993). 

Small vesicles containing connexons traffic and fuse with the plasma membrane where they 

may function as un-docked hemichannels to couple the cell to the extracellular milieu 

(Goodenough and Paul, 2003). When a connexon docks with another from an adjacent cell, a 

gap junction channel is formed, which allows for signaling molecules to pass between the 

cytosol of both cells in a process called gap junctional intercellular communication (GJIC) 

(Goodenough and Paul, 2009). Gap junction channels often tightly cluster in the plasma 

membrane to form highly organized structures called gap junction plaques which create an 

appositional region with a high degree of cytosolic coupling. Some connexins can be 

phosphorylated to influence channel function (Lampe and Lau, 2004) or bind with any number 

of intracellular proteins suggesting they may have additional non-channel functions (Laird, 

2006). For example, the C-terminus of Cx43 is known to bind  to several intracellular proteins 

including a specific domain of the zona-occludens-1 protein which is best known to be 

involved in the formation of tight junctions (Giepmans and Moolenaar, 1998; Toyofuku et al., 

1998). These findings suggest gap junctions at the membrane may also support intercellular 

adhesion in addition to communication (Prochnow and Dermietzel, 2008). Gap junction 

plaques can vary greatly in size (Zampighi et al., 1989) and composition wherein different 

channel types are known to mix, or form separate clusters within a larger combined plaque 

(Kelly et al., 2015). Gap junctions generally have a half-life of 2 to 5 hours (Beardslee et al., 

1998; Fallon and Goodenough, 1981) and it is thought that their rapid turnover and reassembly 

allows the cell to respond quickly to disruptions in tissue homeostasis by making necessary 

changes in the level of GJIC: for example, following tissue injury (Churko and Laird, 2013).  

1.1.2 Connexin Gene Mutations and Human Disease 

Twenty-one members exist in the connexin family and all have distinct, yet often overlapping 

tissue expression profiles, suggesting they are critical to human physiology (Avshalumova et 

al., 2014; van Steensel, 2004). Furthermore, connexin gene mutations have been linked to 

many human pathologies including skin disorders, hearing loss, cardiopathies, 

neurodegenerative diseases, bone and cartilage abnormalities, and cataracts (Garcia et al., 

2016b).  Due to the complexity of the connexin life cycle, connexin mutations can affect their 
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intracellular trafficking, hemichannel function, gap junction function, stability at the cell 

membrane, or even compatibility with other connexins (Garcia et al., 2016a; Kelly et al., 2014; 

Scott et al., 2012). Not surprisingly, connexin gene mutations often result in disease affecting 

multiple tissues that express the specific connexin (Garcia et al., 2016b). This is exemplified 

in patients harbouring GJB2 mutations that have hearing loss with the comorbidity of skin 

disease due to the expression of Cx26 in both the inner ear and epidermis (Arita et al., 2006; 

de Zwart-Storm et al., 2008b; Martin and van Steensel, 2015; Richard et al., 2004). In addition, 

some connexin mutants produce no disease at all, likely because connexins have the ability to 

compensate for others within the same subgroup (Zheng-Fischhofer et al., 2007). This 

phenomenon is evident in the case of the Bart-Pumphrey Syndrome-causing N54K Cx26 

mutant in the skin, which lowers Cx26 expression, but is compensated by an increased 

expression of Cx30 (Richard et al., 2004). Human epidermis expresses 7 connexin proteins in 

overlapping stages of keratinocyte differentiation including Cx26, Cx30, and Cx43, making 

the skin an extremely complex tissue in terms of intercellular communication. (Di et al., 2001; 

Martin et al., 2014). Due to the dynamic nature of this outward-facing stratified epithelium, a 

high level of intercellular communication is likely required to coordinate the correct balance 

of keratinocyte proliferation and differentiation. 

1.1.3 Epidermal Physiology 

Human and mouse epidermis (Fig. 1.1) consist of four principle strata of keratinocytes; the 

stratum basale, stratum spinosum, stratum granulosum, and stratum corneum which faces the 

external environment (Menon et al., 2012). Highly proliferative basal keratinocytes detach 

from the underlying basement membrane and undergo a ~14-day terminal differentiation 

program as they transition through the epidermal layers (Candi et al., 2005; Segre, 2006). 

Keratinocytes of the stratum spinosum synthesize keratin filaments that form an extensive 

cytoskeleton to provide mechanical strength to cells (Segre, 2006). Keratinocytes of the 

stratum granulosum produce intracellular keratohyaline granules and lamellar bodies that 

release structural proteins and ceramides which further provide cells with mechanical strength 

and hydrophobicity. An important keratin filament aggregating protein, filaggrin, is released 

from keratohyaline granules and condenses the keratin cytoskeleton of differentiating 

keratinocytes to form flat sheet-like cells (Sandilands et al., 2009). Additionally, filaggrin is  
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Figure 1.1 
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Figure 1.1. Connexin protein expression in unwounded and wounded mouse epidermis. 

Adult epidermis is composed of 4 layers of keratinocytes (stratum basale, stratum spinosum, 

stratum granulosum, stratum corneum) which express up to 7 distinct connexin proteins in 

overlapping distribution patterns. Notably, Cx43 is expressed mostly in the stratum spinosum 

and in some cells of the stratum basale, while Cx26 and Cx30 are weakly expressed in the 

stratum granulosum. Twenty-four hours after an epidermal wound, Cx26 and Cx30 are 

expressed in keratinocytes at the wound margins, whereas Cx31.1, Cx40, and notably, Cx43 

are markedly downregulated in keratinocytes at the wound margin. Figure used with 

permission from Dr. Jared Churko.  
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degraded by proteases in the stratum corneum into free amino acids and derivatives which 

constitute the skin’s natural moisturizing factor (Sandilands et al., 2009). Terminal 

differentiation involves a specialized form of apoptosis, called cornification (Eckhart et al., 

2013), whereby keratinocytes transition into enucleate flattened cells, which amongst many 

layers, weave together to form a protective external covering (Menon et al., 2012). Between 

interlocked corneocytes is a mortar of hydrophobic ceramides that generates an effective 

outward-in waterproof barrier (Menon et al., 2012). Together these layers give the epidermis 

its structural integrity, resiliency to damage, and impermeability to water and microbes (Segre, 

2006). It is important to note that the epidermis (especially the stratum corneum) varies greatly 

in thickness between volar skin where it is thickest, and dorsal skin where it is considerably 

thinner (Segre, 2006). Epidermal thickness may correlate with the amount of mechanical stress 

endured by each anatomical region of skin.  

A key factor thought to be involved in keratinocyte differentiation is an increasing calcium 

(Ca2+) gradient found between cells of the stratum basale and granulosum (Bikle et al., 2012). 

Approximately 2µM of Ca2+ 
are found in the basal layer which triple by the granular layer, 

and fall to very low levels in the stratum corneum (Behne et al., 2011). Hemichannels have 

been shown to release adenosine triphosphate (ATP) that can influence purinergic signaling 

and intracellular Ca2+ handling in an autocrine/paracrine fashion (Baroja-Mazo et al., 2013), 

which may affect the natural calcium gradient. Furthermore, GJs regularly permit the passage 

of inositol-trisphosphate (IP3) (Alexander and Goldberg, 2003) which is known to affect Ca2+ 

mobilization, and is likely important in the establishment and maintenance of this gradient, 

and therefore keratinocyte differentiation.  

Cx43 has been highly characterized in many tissues including the skin due to its nearly 

ubiquitous expression and implication in human diseases (Laird, 2008). Cx43 is expressed in 

dermal fibroblasts as well as the keratinocytes of the stratum basale, spinosum, and 

granulosum (Churko and Laird, 2013). However, approximately 10% of basal cells do not 

express Cx43 and these are thought to resemble stem cells (Matic et al., 2002). Both Cx26 and 

Cx30 are expressed at low levels in the stratum granulosum and minimally in the stratum 

spinosum (Scott et al., 2012; Wiszniewski et al., 2000). Currently, the roles of Cx26 and Cx30 

are not well understood in the skin but some studies have revealed Cx26 may influence 
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keratinocyte differentiation and/or proliferation (Djalilian et al., 2006; Lucke et al., 1999; 

Maher et al., 2005). However, researchers are uncovering the importance of connexins in skin 

health and wound healing as 11 inheritable skin diseases are correlated with mutations in 5 

distinct connexin genes (Lilly et al., 2016).  

1.1.4 Cutaneous Wound Healing 

In the case of injury, the skin repairs itself through a highly dynamic process in which key 

events spatially and temporally overlap (Martin, 1997; Reinke and Sorg, 2012). Immediately 

following an injurious breach of the skin barrier, damaged blood vessels vasoconstrict to 

prevent excessive blood loss while thrombogenesis initiates the generation of a protective clot 

that plugs the exposed wound (Reinke and Sorg, 2012). Along with the release of cytokines 

from platelets, local blood vessels dilate to recruit immune cells to clean up debris and 

opportunistic pathogens (Martin, 1997). Damaged keratinocytes, endothelial cells, and 

invading immune cells secrete growth factors to initiate fibroblast proliferation and 

angiogenesis which infiltrates the thrombus to generate a dense granulation tissue composed 

of fibroblasts, thick collagen bundles, immune cells, and a dense capillary network (Martin, 

1997). Growth factors also stimulate wound edge keratinocytes to adopt migratory behaviour 

wherein they crawl along the underside of the granulation tissue, while keratinocytes behind 

wound margins become highly proliferative to aid in re-epithelialization (Martin, 1997). Upon 

re-epithelialization, keratinocytes differentiate to re-establish the functional epidermal layers 

as cells in the granulation tissue undergo apoptosis until the entire tissue and clot are lost 

(Reinke and Sorg, 2012). The time required for complete epidermal re-establishment 

following wounding can vary greatly depending on the severity and type of wound, the age of 

the individual, and the presence of infection (Martin, 1997). Notably, diabetics display poor 

wound healing capabilities and often develop chronic non-healing wounds (Lim et al., 2015). 

While this context is undoubtedly multi-factorial, some suggest that a deregulation of 

epidermal connexins contributes to impaired healing in diabetics (Wang et al., 2007a). In 

additional, chronic venous leg ulcers have repeatedly demonstrated chronically upregulated 

Cx26, Cx30, and Cx43, suggesting that dynamic connexin regulation is necessary for proper 

wound healing (Brandner et al., 2004; Ghatnekar et al., 2015; Mendoza-Naranjo et al., 2012; 

Sutcliffe et al., 2015). 
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1.1.5 Connexins Involved in Cutaneous Wound Healing 

It has been found that during normal wound healing, extensive gap junction remodeling occurs 

(Becker et al., 2012; Churko and Laird, 2013). Several studies have shown a dramatic decrease 

in the expression of Cx43 in keratinocytes surrounding the wound site at the onset of healing 

(Brandner et al., 2004; Goliger and Paul, 1995; Kretz et al., 2003; Lampe et al., 1998). 

Furthermore, reducing Cx43 expression has been shown to improve keratinocyte proliferation 

and migration, limit inflammation and scaring, and promote overall beneficial wound healing 

outcomes (Churko et al., 2012; Ghatnekar et al., 2015; Mori et al., 2006; Qiu et al., 2003). On 

the other hand, both Cx26 and Cx30, which are normally located in the stratum granulosum, 

are expressed at high levels throughout all layers of the epidermis surrounding the wound site 

early in healing (Coutinho et al., 2003; Davis et al., 2013; Djalilian et al., 2006; Goliger and 

Paul, 1995; Kretz et al., 2003; Lemaitre et al., 2006). Down-regulation of these connexins later 

in the healing process is normal and may be necessary for later stages of healing (Brandner et 

al., 2004; Djalilian et al., 2006). Shortly after wounding, keratinocyte hyperproliferation 

results in epidermal thickening (Martin, 1997), and since numerous gain of function Cx26 and 

Cx30 mutants lead to hyperproliferative skin diseases (Xu and Nicholson, 2013), it is possible 

these connexins may promote a proliferative burst to jump start wound healing. However, little 

is known as to what roles Cx26 and Cx30 play in maintaining healthy epidermis. Furthermore, 

although their remodeling has been demonstrated during wound healing, it is unknown 

whether Cx26 and Cx30 gene mutations alter wound healing properties.  

1.1.6 GJB2 Mutations Involved in Skin Disease 

Cx26 is encoded by the GJB2 gene and is becoming a highly characterized member of the 

connexin family. To date, well over 100 distinct GJB2 mutations have been reported in 

patients with skin disease and/or hearing loss (Connexin-deafness homepage) (Laird, 2006; 

Lilly et al., 2016; Xu and Nicholson, 2013). Refer to Fig. 1.2 for an extensive depiction of 

these mutants on the Cx26 polypeptide. Six distinct skin diseases are specifically linked to 

GJB2 mutations that present with focal, or generalized skin abnormalities and often feature 

keratoderma (thickening of the epidermis) (Lilly et al., 2016). For example, Keratitis-

Ichthyosis-Deafness Syndrome (KIDS), Bart-Pumphrey Syndrome and Vohwinkel  
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Figure 1.2 

 

 

 

 

 

 

 

 



!

!

10!

Figure 1.2. Composite diagram of reported disease-linked Cx26 mutants. 

The Cx26 polypeptide sequence highlighting the location of numerous disease-linked mutants. 

Spanning every domain of the Cx26 protein, over 100 distinct Cx26 mutants (not all shown) 

are linked to non-syndromic hearing loss (green circles) and syndromic skin disease (red 

circles). 
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Syndrome, stem from GJB2 mutations and are characterized as diffuse, hyperproliferative skin 

diseases, whereas palmoplantar keratoderma with deafness can present with focal keratoderma 

on volar skin (Avshalumova et al., 2014). A GJB2 gene mutation however, may lead to skin 

disease, hearing impairments, or both, and some mutations lead to more profound disease than 

others (Lee and White, 2009). For example, in KIDS alone, the G45E Cx26 mutant leads to 

an infant-lethal form (Koppelhus et al., 2011), while a milder form is caused by the N14K 

mutant (Lazic et al., 2008). Numerous mutants affecting the NT (amino acids, 1-20) and EL1 

(amino acids 41-75) domains are known to form leaky hemichannels (G11R, G12R, N14K, 

N14Y, S17F, A40V, G45E, D50A, D50N) and are linked to syndromic pathologies displaying 

severe skin disease and hearing impairments (Garcia et al., 2016a). Interestingly, the S17F 

Cx26 mutant has been reported to bind with Cx43, a non-traditional binding partner, and form 

leaky heteromeric hemichannels (Garcia et al., 2015). The connection between leaky 

hemichannels and syndromic disease suggests they may contribute to both skin disease and 

hearing loss in patients. Studies have also shown that some GJB2 mutations render non-

functional Cx26 gap junctions but do not confer any form of skin disease, likely due to 

compensation from other connexins in the epidermis (Scott et al., 2012). A possible reason for 

these differences among disease potential could be due to certain mutations acting in a trans-

dominant manner by affecting other connexins. While many mutations have been identified, 

it is not fully understood how and which mutant connexins interact with other connexins, 

modify channel properties, and finally disrupt tissue homeostasis.  

1.1.7 GJB6 Mutations Involved in Skin Disease 

Cx30 is encoded by the GJB6 gene and has received less investigative attention than 

Cx26 and Cx43. Currently, five mutations are linked to syndromic skin diseases (Clouston 

Syndrome, KIDS, and Vohwinkel Syndrome) and two are linked to non-syndromic hearing 

loss (Fig.1.3). Clouston Syndrome is a rare condition characterized by varying severities of 

palmoplantar keratoderma, alopecia, and nail dystrophy (Lamartine et al., 2000) and is 

prevalent among the French-Canadian population due to a founder effect (Kibar et al., 2000). 

Some mutations leading to skin disease have been shown to induce cell death pathways in 

vitro (V37E and A88V) (Berger et al., 2014), while others display trafficking defects (G11R 

and G59R) (Essenfelder et al., 2004; Nemoto-Hasebe et al., 2009). Furthermore, G11R and  
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Figure 1.3 
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Figure 1.3. Composite diagram of reported disease-linked Cx30 mutants. 

The Cx30 polypeptide sequence highlighting the location of disease-linked mutants. T5M and 

A40V are the only mutants linked to non-syndromic hearing loss (green circles), whereas the 

5 other mutants are associated with syndromic skin diseases (red circles). 
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A88V Cx30 may form leaky hemichannels that increase purinergic signaling and deregulate 

keratinocyte proliferation/differentiation (Berger et al., 2014; Essenfelder et al., 2004). 

Despite these observations, it is still poorly understood how Cx30 contributes to overall skin 

integrity. However, relative to Cx26, the lack of Cx30 mutations linked to hearing loss and 

skin disease predicts that Cx30 may have a smaller contribution to auditory and epidermal 

physiology. 

1.1.8 Modeling Connexin-Linked Skin Disease 

While cellular based experiments are useful for understanding certain aspects of gap 

junction function or malfunction, animal based models are superior for understanding the role 

of connexins in the skin as a complete tissue. Numerous researchers have employed rodent 

models to study connexins in the skin and also to investigated their effects on wound healing 

(Bakirtzis et al., 2003; Bosen et al., 2014; Churko et al., 2011a; Djalilian et al., 2006; Schutz 

et al., 2011; Wang et al., 2007a). Several of these models express connexin mutants to 

genetically mirror human connexin-linked skin diseases. For example, the G60S Cx43 mouse 

represents human oculodentodigital dysplasia (Churko et al., 2011a), the conditional D66H 

Cx26 mouse represents true Vohwinkel Syndrome (Bakirtzis et al., 2003), the F137L Cx31 

mouse represents erythrokeratoderma variabilis (Schnichels et al., 2007), and as I will discuss, 

the S17F Cx26 and A88V Cx30 mice represent human KIDS, and Clouston Syndrome, 

respectively (Bosen et al., 2014; Schutz et al., 2011). Additionally, numerous studies, 

including previous work from our lab (Churko et al., 2012; Churko et al., 2010; Churko et al., 

2011b; Langlois et al., 2007; Maher et al., 2005), have generated a greater understanding of 

the role of Cx43 in the epidermis, its effects on wound healing, and how certain mutations 

impact skin health. Some researchers have repeatedly demonstrated the benefits of Cx43 

inhibition during healing (Coutinho et al., 2005; Ghatnekar et al., 2015; Grek et al., 2015; 

Grupcheva et al., 2012; Qiu et al., 2003) and even started companies to develop and 

commercialize Cx43-targetted wound therapies (Colin Green and David Becker – CoDa 

Therapeutics; Gautnam Ghatnekar – FirstString Research). There is, however, only one Cx26 

mouse model that has been used to assess the influence of Cx26 on wound healing, which has 

proposed a role for Cx26 during wound inflammation and epidermal remodeling (Djalilian et 

al., 2006). Despite this, and the evidence suggesting Cx26 and Cx30 are dynamically regulated 
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during proper wound healing, there remains insufficient animal models to investigate their 

impact and potential therapeutic value towards wound healing. 

Recently, a group from Germany lead by Klaus Willecke has generated two disease-linked 

mutant mouse strains that are suitable models of human KIDS and Clouston Syndrome: the 

Cx26S17F/+ mouse and Cx30A88V/+ mouse, respectively (Bosen et al., 2014; Schutz et al., 2011). 

As described in this thesis, our laboratory has generated a tissue specific S17F Cx26 mouse 

(Cx26K14-S17F/+) in which the mutant connexin was expressed solely in tissues expressing 

keratin 14 (K14). Cre-recombinase insertion of the mutant gene only occurred in tissues 

expressing K14 and resulted in selective expression of S17F Cx26 in basal cells of the 

epidermis and a few other stratified epithelial tissues, while under the expression of the 

endogenous Cx26 promoter. This allowed us to study the effect of the S17F Cx26 mutant on 

the epidermis with presumably far less complications from its expression in other tissues such 

as the liver, kidney, intestine, placenta, mammary gland, and brain (Filippov et al., 2003; 

McLachlan et al., 2007). In addition, we have obtained the A88V Cx30 mutant mice 

(Cx30A88V/+ and Cx30A88V/A88V) from the Willecke laboratory. Together, we will use these 

mice to gain insight into the physiological and pathological mechanisms in which connexins 

and connexin mutants affect epidermal homeostasis and wound healing. The importance of 

using disease-relevant mouse models lies in the genetic consistency that reference cell 

experiments cannot recapitulate. These mice have the correct ratio of mutant to wild-type 

alleles; something that is very difficult to reliably attain in cellular transfection-based 

experiments. This gives us the advantage of being able to use mutant mice to culture primary 

keratinocytes for in vitro experiments, while the genetic dosage of the mutant alleles mirrors 

that of the human disease. Lastly, these mice allowed us to examine the temporal and spatial 

localization of mutant connexins within intact murine epidermis while establishing a platform 

to perform wound healing experiments.  

1.1.9 Hypothesis 

We hypothesized that disease-linked Cx26 and Cx30 mutants disrupt epidermal homeostasis 

and wound healing through modification of keratinocyte proliferation, differentiation, and 

migration. To test this hypothesis, we expressed five Cx26 mutants (N14K, D50N, N54K, 



!

!

16!

M163V, S183F) in reference cells and keratinocytes to evaluate their cellular characteristics. 

For each mutant, we investigated their ability to traffic, form gap junction channels, plasma 

membrane hemichannels, and to exhibit trans-dominant effects on Cx30 and Cx43, as well as 

the ability to induce cell death. We further modeled connexin-linked skin diseases using a 

tissue-specific S17F Cx26 mutant mouse, and a global A88V Cx30 mutant mouse. The foot 

pad skin of these mice were assessed to investigate the effect of the mutants on keratinocyte 

differentiation, proliferation, and skin morphology. Primary keratinocytes were isolated from 

these mice to assess connexin localization, overall GJIC competency, and collective cell 

migration. Finally, wound healing was assessed in these mice using a standard dorsal skin 

punch biopsy. The goal of these investigations was to determine the effect of Cx26 and Cx30 

mutants on the epidermis and wound healing, and to shed light on the role of Cx26 and Cx30 

in normal healthy skin.  

1.1.10 Objectives 

The specific objectives for this study were to:  

1. Characterize the skin phenotype in mice harbouring Cx26 and Cx30 mutants. 

 

2. Examine the consequences of keratinocytes harbouring connexin mutants in primary 

mouse cultures and cells engineered to express Cx26 mutants. 

 

3. Assess epidermal wound closure and remodeling in response to wounding in mutant 

mice and littermate controls. 

 

 

 

 



!

!

17!

1.2 References 

Alexander, D.B., and G.S. Goldberg. 2003. Transfer of biologically important molecules 
between cells through gap junction channels. Curr Med Chem. 10:2045-2058. 

 
Arita, K., M. Akiyama, T. Aizawa, Y. Umetsu, I. Segawa, M. Goto, D. Sawamura, M. Demura, 

K. Kawano, and H. Shimizu. 2006. A novel N14Y mutation in Connexin26 in keratitis-
ichthyosis-deafness syndrome: analyses of altered gap junctional communication and 
molecular structure of N terminus of mutated Connexin26. Am J Pathol. 169:416-423. 

 
Avshalumova, L., J. Fabrikant, and A. Koriakos. 2014. Overview of skin diseases linked to 

connexin gene mutations. Int J Dermatol. 53:192-205. 
 
Bakirtzis, G., R. Choudhry, T. Aasen, L. Shore, K. Brown, S. Bryson, S. Forrow, L. Tetley, 

M. Finbow, D. Greenhalgh, and M. Hodgins. 2003. Targeted epidermal expression of 
mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model 
for the pathogenesis of dominant connexin disorders. Hum Mol Genet. 12:1737-1744. 

 
Baroja-Mazo, A., M. Barbera-Cremades, and P. Pelegrin. 2013. The participation of plasma 

membrane hemichannels to purinergic signaling. Biochim Biophys Acta. 1828:79-93. 
 
Beardslee, M.A., J.G. Laing, E.C. Beyer, and J.E. Saffitz. 1998. Rapid turnover of connexin43 

in the adult rat heart. Circ Res. 83:629-635. 
 
Becker, D.L., C. Thrasivoulou, and A.R. Phillips. 2012. Connexins in wound healing; 

perspectives in diabetic patients. Biochim Biophys Acta. 1818:2068-2075. 
 
Behne, M.J., S. Sanchez, N.P. Barry, N. Kirschner, W. Meyer, T.M. Mauro, I. Moll, and E. 

Gratton. 2011. Major translocation of calcium upon epidermal barrier insult: imaging 
and quantification via FLIM/Fourier vector analysis. Arch Dermatol Res. 303:103-
115. 

 
Berger, A.C., J.J. Kelly, P. Lajoie, Q. Shao, and D.W. Laird. 2014. Mutations in Cx30 that are 

linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular 
pathologies. J Cell Sci. 127:1751-1764. 

 
Bikle, D.D., Z. Xie, and C.L. Tu. 2012. Calcium regulation of keratinocyte differentiation. 

Expert Rev Endocrinol Metab. 7:461-472. 
 
Bosen, F., M. Schutz, A. Beinhauer, N. Strenzke, T. Franz, and K. Willecke. 2014. The 

Clouston syndrome mutation connexin30 A88V leads to hyperproliferation of 
sebaceous glands and hearing impairments in mice. FEBS Lett. 588:1795-1801. 

 
Brandner, J.M., P. Houdek, B. Husing, C. Kaiser, and I. Moll. 2004. Connexins 26, 30, and 

43: differences among spontaneous, chronic, and accelerated human wound healing. J 
Invest Dermatol. 122:1310-1320. 



!

!

18!

 
Candi, E., R. Schmidt, and G. Melino. 2005. The cornified envelope: a model of cell death in 

the skin. Nat Rev Mol Cell Biol. 6:328-340. 
 
Churko, J.M., J. Chan, Q. Shao, and D.W. Laird. 2011a. The G60S connexin43 mutant 

regulates hair growth and hair fiber morphology in a mouse model of human 
oculodentodigital dysplasia. J Invest Dermatol. 131:2197-2204. 

 
Churko, J.M., J.J. Kelly, A. Macdonald, J. Lee, J. Sampson, D. Bai, and D.W. Laird. 2012. 

The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation. Exp 
Dermatol. 21:612-618. 

 
Churko, J.M., and D.W. Laird. 2013. Gap junction remodeling in skin repair following 

wounding and disease. Physiology (Bethesda). 28:190-198. 
 
Churko, J.M., S. Langlois, X. Pan, Q. Shao, and D.W. Laird. 2010. The potency of the fs260 

connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-
linked connexin43 mutants. Biochem J. 429:473-483. 

 
Churko, J.M., Q. Shao, X.Q. Gong, K.J. Swoboda, D. Bai, J. Sampson, and D.W. Laird. 2011b. 

Human dermal fibroblasts derived from oculodentodigital dysplasia patients suggest 
that patients may have wound-healing defects. Hum Mutat. 32:456-466. 

 
Coutinho, P., C. Qiu, S. Frank, K. Tamber, and D. Becker. 2003. Dynamic changes in 

connexin expression correlate with key events in the wound healing process. Cell Biol 
Int. 27:525-541. 

 
Coutinho, P., C. Qiu, S. Frank, C.M. Wang, T. Brown, C.R. Green, and D.L. Becker. 2005. 

Limiting burn extension by transient inhibition of Connexin43 expression at the site of 
injury. Br J Plast Surg. 58:658-667. 

 
Davis, N.G., A. Phillips, and D.L. Becker. 2013. Connexin dynamics in the privileged wound 

healing of the buccal mucosa. Wound Repair Regen. 21:571-578. 
 
de Zwart-Storm, E.A., M. van Geel, P.A. van Neer, P.M. Steijlen, P.E. Martin, and M.A. van 

Steensel. 2008. A novel missense mutation in the second extracellular domain of 
GJB2, p.Ser183Phe, causes a syndrome of focal palmoplantar keratoderma with 
deafness. Am J Pathol. 173:1113-1119. 

 
Di, W.L., E.L. Rugg, I.M. Leigh, and D.P. Kelsell. 2001. Multiple epidermal connexins are 

expressed in different keratinocyte subpopulations including connexin 31. J Invest 
Dermatol. 117:958-964. 

 
Djalilian, A.R., D. McGaughey, S. Patel, E.Y. Seo, C. Yang, J. Cheng, M. Tomic, S. Sinha, 

A. Ishida-Yamamoto, and J.A. Segre. 2006. Connexin 26 regulates epidermal barrier 
and wound remodeling and promotes psoriasiform response. J Clin Invest. 116:1243-
1253. 



!

!

19!

 
Eckhart, L., S. Lippens, E. Tschachler, and W. Declercq. 2013. Cell death by cornification. 

Biochim Biophys Acta. 1833:3471-3480. 
 
Essenfelder, G.M., R. Bruzzone, J. Lamartine, A. Charollais, C. Blanchet-Bardon, M.T. 

Barbe, P. Meda, and G. Waksman. 2004. Connexin30 mutations responsible for 
hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet. 
13:1703-1714. 

 
Fallon, R.F., and D.A. Goodenough. 1981. Five-hour half-life of mouse liver gap-junction 

protein. J Cell Biol. 90:521-526. 
 
Filippov, M.A., S.G. Hormuzdi, E.C. Fuchs, and H. Monyer. 2003. A reporter allele for 

investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci. 
18:3183-3192. 

 
Garcia, I.E., F. Bosen, P. Mujica, A. Pupo, C. Flores-Munoz, O. Jara, C. Gonzalez, K. 

Willecke, and A.D. Martinez. 2016a. From Hyperactive Connexin26 Hemichannels to 
Impairments in Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-
Ichthyosis-Deafness Syndrome. J Invest Dermatol. 136:574-583. 

 
Garcia, I.E., J. Maripillan, O. Jara, R. Ceriani, A. Palacios-Munoz, J. Ramachandran, P. 

Olivero, T. Perez-Acle, C. Gonzalez, J.C. Saez, J.E. Contreras, and A.D. Martinez. 
2015. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce 
nonfunctional gap junctions but hyperactive hemichannels when co-expressed with 
wild type Cx43. J Invest Dermatol. 135:1338-1347. 

 
Garcia, I.E., P. Prado, A. Pupo, O. Jara, D. Rojas-Gomez, P. Mujica, C. Flores-Munoz, J. 

Gonzalez-Casanova, C. Soto-Riveros, B.I. Pinto, M.A. Retamal, C. Gonzalez, and 
A.D. Martinez. 2016b. Connexinopathies: a structural and functional glimpse. BMC 
Cell Biol. 17 Suppl 1:17. 

 
Ghatnekar, G.S., C.L. Grek, D.G. Armstrong, S.C. Desai, and R.G. Gourdie. 2015. The effect 

of a connexin43-based Peptide on the healing of chronic venous leg ulcers: a 
multicenter, randomized trial. J Invest Dermatol. 135:289-298. 

 
Giepmans, B.N., and W.H. Moolenaar. 1998. The gap junction protein connexin43 interacts 

with the second PDZ domain of the zona occludens-1 protein. Curr Biol. 8:931-934. 
 
Goliger, J.A., and D.L. Paul. 1995. Wounding alters epidermal connexin expression and gap 

junction-mediated intercellular communication. Mol Biol Cell. 6:1491-1501. 
 
Goodenough, D.A., and D.L. Paul. 2003. Beyond the gap: functions of unpaired connexon 

channels. Nat Rev Mol Cell Biol. 4:285-294. 
 
Goodenough, D.A., and D.L. Paul. 2009. Gap junctions. Cold Spring Harb Perspect Biol. 

1:a002576. 



!

!

20!

 
Grek, C.L., G.M. Prasad, V. Viswanathan, D.G. Armstrong, R.G. Gourdie, and G.S. 

Ghatnekar. 2015. Topical administration of a connexin43-based peptide augments 
healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. 
Wound Repair Regen. 23:203-212. 

 
Grupcheva, C.N., W.T. Laux, I.D. Rupenthal, J. McGhee, C.N. McGhee, and C.R. Green. 

2012. Improved corneal wound healing through modulation of gap junction 
communication using connexin43-specific antisense oligodeoxynucleotides. Invest 
Ophthalmol Vis Sci. 53:1130-1138. 

 
Kelly, J.J., Q. Shao, D.J. Jagger, and D.W. Laird. 2015. Cx30 exhibits unique characteristics 

including a long half-life when assembled into gap junctions. J Cell Sci. 128:3947-
3960. 

 
Kibar, Z., M.P. Dube, J. Powell, C. McCuaig, S.J. Hayflick, J. Zonana, A. Hovnanian, U. 

Radhakrishna, S.E. Antonarakis, A. Benohanian, A.D. Sheeran, M.L. Stephan, R. 
Gosselin, D.P. Kelsell, A.L. Christianson, F.C. Fraser, V.M. Der Kaloustian, and G.A. 
Rouleau. 2000. Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, 
presence of a founder effect in the French Canadian population and fine genetic 
mapping. Eur J Hum Genet. 8:372-380. 

 
Koppelhus, U., L. Tranebjaerg, G. Esberg, M. Ramsing, M. Lodahl, N.D. Rendtorff, H.V. 

Olesen, and M. Sommerlund. 2011. A novel mutation in the connexin 26 gene (GJB2) 
in a child with clinical and histological features of keratitis-ichthyosis-deafness (KID) 
syndrome. Clin Exp Dermatol. 36:142-148. 

 
Kretz, M., C. Euwens, S. Hombach, D. Eckardt, B. Teubner, O. Traub, K. Willecke, and T. 

Ott. 2003. Altered connexin expression and wound healing in the epidermis of 
connexin-deficient mice. J Cell Sci. 116:3443-3452. 

 
Laird, D.W. 2006. Life cycle of connexins in health and disease. Biochem J. 394:527-543. 
 
Laird, D.W. 2008. Closing the gap on autosomal dominant connexin-26 and connexin-43 

mutants linked to human disease. J Biol Chem. 283:2997-3001. 
 
Lamartine, J., G. Munhoz Essenfelder, Z. Kibar, I. Lanneluc, E. Callouet, D. Laoudj, G. 

Lemaitre, C. Hand, S.J. Hayflick, J. Zonana, S. Antonarakis, U. Radhakrishna, D.P. 
Kelsell, A.L. Christianson, A. Pitaval, V. Der Kaloustian, C. Fraser, C. Blanchet-
Bardon, G.A. Rouleau, and G. Waksman. 2000. Mutations in GJB6 cause hidrotic 
ectodermal dysplasia. Nat Genet. 26:142-144. 

 
Lampe, P.D., and A.F. Lau. 2004. The effects of connexin phosphorylation on gap junctional 

communication. Int J Biochem Cell Biol. 36:1171-1186. 
 



!

!

21!

Lampe, P.D., B.P. Nguyen, S. Gil, M. Usui, J. Olerud, Y. Takada, and W.G. Carter. 1998. 
Cellular interaction of integrin alpha3beta1 with laminin 5 promotes gap junctional 
communication. J Cell Biol. 143:1735-1747. 

 
Langlois, S., A.C. Maher, J.L. Manias, Q. Shao, G.M. Kidder, and D.W. Laird. 2007. 

Connexin levels regulate keratinocyte differentiation in the epidermis. J Biol Chem. 
282:30171-30180. 

 
Lazic, T., K.A. Horii, G. Richard, D.I. Wasserman, and R.J. Antaya. 2008. A report of GJB2 

(N14K) Connexin 26 mutation in two patients--a new subtype of KID syndrome? 
Pediatr Dermatol. 25:535-540. 

 
Lee, J.R., and T.W. White. 2009. Connexin-26 mutations in deafness and skin disease. Expert 

Rev Mol Med. 11:e35. 
 
Lemaitre, G., V. Sivan, J. Lamartine, J.M. Cosset, B. Cavelier-Balloy, D. Salomon, G. 

Waksman, and M.T. Martin. 2006. Connexin 30, a new marker of hyperproliferative 
epidermis. Br J Dermatol. 155:844-846. 

 
Lilly, E., C. Sellitto, L.M. Milstone, and T.W. White. 2016. Connexin channels in congenital 

skin disorders. Semin Cell Dev Biol. 50:4-12. 
 
Lim, Y.C., M.P. Bhatt, M.H. Kwon, D. Park, S. Na, Y.M. Kim, and K.S. Ha. 2015. Proinsulin 

C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J 
Invest Dermatol. 135:269-278. 

 
Lucke, T., R. Choudhry, R. Thom, I.S. Selmer, A.D. Burden, and M.B. Hodgins. 1999. 

Upregulation of connexin 26 is a feature of keratinocyte differentiation in 
hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest 
Dermatol. 112:354-361. 

 
Maeda, S., S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, and T. Tsukihara. 

2009. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 
458:597-602. 

 
Maher, A.C., T. Thomas, J.L. Riley, G. Veitch, Q. Shao, and D.W. Laird. 2005. Rat epidermal 

keratinocytes as an organotypic model for examining the role of Cx43 and Cx26 in 
skin differentiation. Cell Commun Adhes. 12:219-230. 

 
Martin, P. 1997. Wound healing--aiming for perfect skin regeneration. Science. 276:75-81. 
 
Martin, P.E., J.A. Easton, M.B. Hodgins, and C.S. Wright. 2014. Connexins: sensors of 

epidermal integrity that are therapeutic targets. FEBS Lett. 588:1304-1314. 
 
Martin, P.E., and M. van Steensel. 2015. Connexins and skin disease: insights into the role of 

beta connexins in skin homeostasis. Cell Tissue Res. 360:645-658. 
 



!

!

22!

Matic, M., W.H. Evans, P.R. Brink, and M. Simon. 2002. Epidermal stem cells do not 
communicate through gap junctions. J Invest Dermatol. 118:110-116. 

 
McLachlan, E., Q. Shao, and D.W. Laird. 2007. Connexins and gap junctions in mammary 

gland development and breast cancer progression. J Membr Biol. 218:107-121. 
 
Mendoza-Naranjo, A., P. Cormie, A.E. Serrano, R. Hu, S. O'Neill, C.M. Wang, C. 

Thrasivoulou, K.T. Power, A. White, T. Serena, A.R. Phillips, and D.L. Becker. 2012. 
Targeting Cx43 and N-cadherin, which are abnormally upregulated in venous leg 
ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS One. 
7:e37374. 

 
Menon, G.K., G.W. Cleary, and M.E. Lane. 2012. The structure and function of the stratum 

corneum. Int J Pharm. 435:3-9. 
 
Mori, R., K.T. Power, C.M. Wang, P. Martin, and D.L. Becker. 2006. Acute downregulation 

of connexin43 at wound sites leads to a reduced inflammatory response, enhanced 
keratinocyte proliferation and wound fibroblast migration. J Cell Sci. 119:5193-5203. 

 
Musil, L.S., and D.A. Goodenough. 1993. Multisubunit assembly of an integral plasma 

membrane channel protein, gap junction connexin43, occurs after exit from the ER. 
Cell. 74:1065-1077. 

 
Nemoto-Hasebe, I., M. Akiyama, S. Kudo, A. Ishiko, A. Tanaka, K. Arita, and H. Shimizu. 

2009. Novel mutation p.Gly59Arg in GJB6 encoding connexin 30 underlies 
palmoplantar keratoderma with pseudoainhum, knuckle pads and hearing loss. Br J 
Dermatol. 161:452-455. 

 
Prochnow, N., and R. Dermietzel. 2008. Connexons and cell adhesion: a romantic phase. 

Histochem Cell Biol. 130:71-77. 
 
Qiu, C., P. Coutinho, S. Frank, S. Franke, L.Y. Law, P. Martin, C.R. Green, and D.L. Becker. 

2003. Targeting connexin43 expression accelerates the rate of wound repair. Current 
Biology. 13:1697-1703. 

 
Reinke, J.M., and H. Sorg. 2012. Wound repair and regeneration. Eur Surg Res. 49:35-43. 
 
Revel, J.P., and M.J. Karnovsky. 1967. Hexagonal array of subunits in intercellular junctions 

of the mouse heart and liver. J Cell Biol. 33:C7-C12. 
 
Richard, G. 2000. Connexins: a connection with the skin. Exp Dermatol. 9:77-96. 
 
Richard, G., N. Brown, A. Ishida-Yamamoto, and A. Krol. 2004. Expanding the phenotypic 

spectrum of Cx26 disorders: Bart-Pumphrey syndrome is caused by a novel missense 
mutation in GJB2. J Invest Dermatol. 123:856-863. 

 



!

!

23!

Sandilands, A., C. Sutherland, A.D. Irvine, and W.H. McLean. 2009. Filaggrin in the frontline: 
role in skin barrier function and disease. J Cell Sci. 122:1285-1294. 

 
Schnichels, M., P. Worsdorfer, R. Dobrowolski, C. Markopoulos, M. Kretz, G. Schwarz, E. 

Winterhager, and K. Willecke. 2007. The connexin31 F137L mutant mouse as a model 
for the human skin disease erythrokeratodermia variabilis (EKV). Hum Mol Genet. 
16:1216-1224. 

 
Schutz, M., T. Auth, A. Gehrt, F. Bosen, I. Korber, N. Strenzke, T. Moser, and K. Willecke. 

2011. The connexin26 S17F mouse mutant represents a model for the human 
hereditary keratitis-ichthyosis-deafness syndrome. Hum Mol Genet. 20:28-39. 

 
Scott, C.A., D. Tattersall, E.A. O'Toole, and D.P. Kelsell. 2012. Connexins in epidermal 

homeostasis and skin disease. Biochim Biophys Acta. 1818:1952-1961. 
 
Segre, J.A. 2006. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 

116:1150-1158. 
 
Sutcliffe, J.E., K.Y. Chin, C. Thrasivoulou, T.E. Serena, S. O'Neil, R. Hu, A.M. White, L. 

Madden, T. Richards, A.R. Phillips, and D.L. Becker. 2015. Abnormal connexin 
expression in human chronic wounds. Br J Dermatol. 173:1205-1215. 

 
Toyofuku, T., M. Yabuki, K. Otsu, T. Kuzuya, M. Hori, and M. Tada. 1998. Direct association 

of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem. 
273:12725-12731. 

 
van Steensel, M.A. 2004. Gap junction diseases of the skin. Am J Med Genet C Semin Med 

Genet. 131C:12-19. 
 
Wang, C.M., J. Lincoln, J.E. Cook, and D.L. Becker. 2007. Abnormal connexin expression 

underlies delayed wound healing in diabetic skin. Diabetes. 56:2809-2817. 
 
Weber, P.A., H.C. Chang, K.E. Spaeth, J.M. Nitsche, and B.J. Nicholson. 2004. The 

permeability of gap junction channels to probes of different size is dependent on 
connexin composition and permeant-pore affinities. Biophys J. 87:958-973. 

 
Wiszniewski, L., A. Limat, J.H. Saurat, P. Meda, and D. Salomon. 2000. Differential 

expression of connexins during stratification of human keratinocytes. J Invest 
Dermatol. 115:278-285. 

 
Xu, J., and B.J. Nicholson. 2013. The role of connexins in ear and skin physiology - functional 

insights from disease-associated mutations. Biochim Biophys Acta. 1828:167-178. 
 
Yeager, M., and A.L. Harris. 2007. Gap junction channel structure in the early 21st century: 

facts and fantasies. Curr Opin Cell Biol. 19:521-528. 
 



!

!

24!

Zampighi, G.A., J.E. Hall, G.R. Ehring, and S.A. Simon. 1989. The structural organization 
and protein composition of lens fiber junctions. J Cell Biol. 108:2255-2275. 

 
Zheng-Fischhofer, Q., M. Kibschull, M. Schnichels, M. Kretz, E. Petrasch-Parwez, J. 

Strotmann, H. Reucher, B.D. Lynn, J.I. Nagy, S.J. Lye, E. Winterhager, and K. 
Willecke. 2007. Characterization of connexin31.1-deficient mice reveals impaired 
placental development. Dev Biol. 312:258-271. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



!

!

25!

Chapter 2 

 
Induction of cell death and gain-of-function properties of Cx26 
mutants predict the severity of diseases linked to GJB2 mutations 

 
Here we investigated five autosomal dominant Cx26 mutants (N14K, D50N, N54K, M163V, 

S183F) that are linked to various syndromic or non-syndromic diseases to uncover the 

molecular mechanisms underpinning their link to disease.  We demonstrated that when the 

N14K and D50N mutants were expressed in gap junction-deficient HeLa cells, cells were 

triggered into a cell death pathway. The N54K mutant was retained primarily within 

intracellular compartments and displayed trans-dominant properties on coexpressed Cx30 and 

Cx43. The S183F mutant formed some gap junction plaques but was largely retained within 

the cell and exhibited only a mild trans-dominant reduction in gap junctional intercellular 

communication when co-expressed with Cx30. The M163V mutant which causes hearing loss 

alone exhibited impaired gap junction function and showed no trans-dominant interactions. 

Taken together, we suggest that Cx26 mutants that promote cell death or cause reductions in 

the functions of connexins co-expressed in keratinocytes will lead to skin diseases and hearing 

loss while mutants that have reduced channel function but exhibit no aberrant effects on co-

expressed connexins cause only hearing loss. Moreover, GJB2 mutations that cause cell death 

lead to more severe syndromic disease.   

A version of this chapter will be submitted for publication by the end of the month. 

Authors: Eric R. Press, John J. Kelly, Katrina Chin, Anton Alaga, Qing Shao, and Dale W. 
Laird 
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2.1  Introduction 

The GJB2 gene encoding connexin26 (Cx26) has an estimated mutation prevalence of 3% in 

the general population (Chan and Chang, 2014). Globally, an estimated 17.3% of hearing loss 

cases are linked to bi-allelic GJB2 mutations highlighting the importance of Cx26 in hearing 

(Chan and Chang, 2014). In addition, numerous syndromic diseases exhibiting hearing deficits 

and a variety of skin abnormalities are linked to GJB2 missense mutations with autosomal 

dominant inheritance (Avshalumova et al., 2014). Interestingly, some speculate the 

pervasiveness of GJB2 mutations may result from a selective heterozygote advantage (Chan 

and Chang, 2014) conferred by sub-clinical epidermal thickening and a stronger cutaneous 

barrier (D'Adamo et al., 2009). In humans, Cx26 is expressed in a variety of tissues and not 

surprisingly, in several cell types within the cochlea (Jagger and Forge, 2015) and in 

keratinocytes of the epidermis (Scott et al., 2012). Within these tissues, several other members 

of the connexin family are expressed, most notably Cx30 and Cx43, wherein mutations in their 

genes have also been implicated in syndromic diseases sharing some similar features 

(Avshalumova et al., 2014; Martin et al., 2014; Scott et al., 2012).  

Cx26 is a gap junction protein that oligomerizes in the cell to form hexameric transmembrane 

channels called connexons (Laird, 2006). Connexons that span the plasma membrane are 

called hemichannels and may allow a cell to pass small signalling molecules between the 

cytosol and the extracellular environment (Laird, 2006). However, when hemichannels from 

adjacent cells dock together, they form a single conduit called a gap junction channel which 

connects the cytosol of these cells and facilitates gap junctional intercellular communication 

(GJIC) (Laird, 2006). ATP, IP3, and cations frequently pass through Cx26 gap junction 

channels and have been shown to play important roles in regulating cell proliferation and 

differentiation as well as maintaining ionic homeostasis within tissues. (Alexander and 

Goldberg, 2003; Djalilian et al., 2006). 

The Cx26 polypeptide chain has four transmembrane domains, two extracellular loops, an 

intracellular loop, and cytosolic N- and C- termini. The N-terminal domain (amino acid 

residues 1-20) is suggested to play a major role in voltage sensing and channel gating (Maeda 

et al., 2009). The extracellular loops (E1 and E2) (amino acid residues 41-75 and 155-192, 

respectively) are thought to be key domains for oligomerization and inter-channel docking 
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(Maeda et al., 2009). Disease-causing point mutations have been documented to affect every 

domain of the Cx26 polypeptide, and depending on the mutation and the motif that harbors 

the altered residue, variations can occur in connexin folding and trafficking, channel assembly, 

channel gating, half-life, degradation, and/or interactions between other co-expressed 

connexins (Laird, 2006). Some mutants have been shown to disrupt several connexin life-

cycle characteristics (Garcia et al., 2015) increasing the complexity of delineating how GJB2 

gene mutations can cause diseases that affect one or more organs and vary in severity.  

In this study we selected 5 autosomal dominant GJB2 missense mutations that result in single 

amino acid substitutions in various domains of the Cx26 polypeptide and are linked to an array 

of auditory and skin pathologies. The N14K mutant causes a disease that shares symptoms 

with Clouston Syndrome and KIDS (Lazic et al., 2008), the D50N mutant leads to KIDS 

(Mazereeuw-Hautier et al., 2007), the N54K mutant results in Bart-Pumphrey syndrome 

(Richard et al., 2004), and the S183F mutant causes palmoplantar keratoderma and hearing 

loss (de Zwart-Storm et al., 2008b). Finally, the M163V mutant is linked to moderate hearing 

loss only (Marlin et al., 2001). Considering the pleiotropic nature of the Cx26 mutants, we 

proposed that mutants which give rise to similar clinical presentations would share common 

mechanisms of action.  

Here we found that the N14K and D50N mutants leading to wide spread erythrokeratoderma 

and severe hearing loss caused cell death, the N54K and S183F mutants leading to 

palmoplantar keratoderma and hearing loss had trafficking defects and reduced channel 

function, and the M183V mutant leading to hearing loss alone had reduced channel function. 

Lastly, all mutants linked to syndromic disease had trans-dominant effects on co-expressed 

connexins. 

 

2.2  Materials and Methods 

2.2.1  Cell Culture 

Connexin-deficient cervical cancer cells (HeLa) as described in (Elfgang et al., 1995) were 

purchased from ATCC and Rat Epidermal Keratinocytes (REKs) originally characterized in 

(Baden and Kubilus, 1983) were generously provided by Dr. Vincent Hascall. All cells were 
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grown in DMEM (Life Technologies Cat# 11965-092) supplemented with fetal bovine serum, 

2 mM L-glutamine (Life Technologies Cat# 25030-081), penicillin and streptomycin 

according to (Penuela et al., 2007). 

2.2.2 cDNA Constructs and Transfections 

cDNA encoding human Cx26 was provided by Dr. C. G. Naus (University of British 

Columbia, Vancouver, BC, Canada). PCR was used to add XhoI and EcoRI restriction sites 

to the 5′ and 3′ ends of Cx26 and the resulting cDNAs were cloned into the pEGFP-N1 vector 

(BD Biosciences Clontech) and sequenced for verification with a 17-amino-acid linker 

sequence separating the Cx26 and GFP moieties. Constructs encoding human N14K, D50N, 

N54K, M163V, and S183F Cx26-GFP were further obtained from NorClone by using a 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) in accordance with the 

manufacturer's instructions. RFP-tagged Cx30 and Cx26 constructs were previously described 

(Berger et al., 2014). All constructs were validated by sequencing. GFP and RFP tags were 

shown not to dramatically affect connexin trafficking or protein function as previously shown 

(Thomas et al., 2005). Cells at ~60% confluency in 35 mm dishes were transiently transfected 

using Lipofectamine 2000. Transfection mixtures contained 200 µl of Opti-MEM Reduced 

Serum Medium (Life Technologies Cat# 31985-070), 1 µl of LF2000 transfection reagent 

(Invitrogen Cat# 11668019), and 1 µg of GFP-tagged Cx26, N14K, D50N, N54K, M163V, or 

S183F cDNA constructs. For co-expression experiments, transfection mixtures differed in that 

0.5 µg of GFP-tagged constructs plus 0.5 µg of RFP-tagged Cx26 or Cx30 were added to 

produce roughly equal expression of mutant to WT connexins. The mixture was gently 

swirled, incubated at room temperature for 10 minutes, and added drop-wise to cells growing 

in DMEM. All cells were used for experiments between 24-48 hours following transfection. 

2.2.3 Immunofluorescent labeling 

HeLa cells or REKs grown to ~80% confluency on sterile glass coverslips, were washed with 

phosphate-buffered saline (PBS), and fixed in an ice-cold solution of 80% methanol and 20% 

acetone for 10 minutes. Coverslips were then washed in PBS, blocked in a 2% bovine serum 

albumin (BSA) solution (diluted in PBS) for 30 minutes then incubated at room temperature 

for 1 hour with the following primary antibodies diluted in BSA solution: 1/500 mouse anti-

protein disulfide isomerase (PDI) (Assay Designs Cat# SPA-891) or 1/500 rabbit anti-Cx43 
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(Sigma-Aldrich Cat# C6219) or 1/200 rabbit anti-cleaved caspase 3 (Sigma-Aldrich Cat# 

C8487). Secondary antibodies 1/500 Alexa-488-conjugated anti-mouse (Invitrogen: Cat# 

A11017) and 1/500 Alexa-555-conjugated anti-rabbit (Invitrogen Cat#A21429) were used to 

detect primary antibodies. Cells were then incubated for 10 minutes at room temperature with 

Hoechst 33342 (1/1000 diluted in ddH20) (Molecular Probes Cat# H3570), mounted with 

Airvol (containing 15% polyvinyl alcohol, 33% glycerin, and 0.1% sodium azide), and imaged 

with a Zeiss LSM 800 confocal Airyscan microscope equipped with ZenWorks software. 

Images were captured with a 63x oil immersion objective. Gap junction plaques between 

REKs were quantified in a blinded fashion by counting the number of green and red punctae 

at individual cell-cell interfaces. A minimum of 24 separate images were captured for each 

mutant and a one-way ANOVA was performed on the means of 3 biological replicates. 

2.2.4 Dye Transfer Studies  

HeLa cells or REKs grown to ~60% confluency and engineered to express GFP-tagged Cx26 

or Cx26 mutants (and RFP-tagged connexins for co-expression experiments) as described 

above were microinjected with Alexa-Fluor-350 (410 Da, Molecular Probes Cat# A10439) to 

assess gap junction dye transfer previously described (Huang et al., 2013). Briefly, cells were 

microinjected using a fine glass needle attached to an Eppendorf FemtoJet automated 

microinjector. Cells were imaged using a Leica DM IRE2 epifluorescent microscope to 

visualize GFP and RFP, then one minute following microinjection, they were imaged again to 

visualize the spread of Alexa-Flor-350. All images were captured with a 20x objective. The 

incidence of dye transfer within each trial was quantified as the percent of microinjected cells 

that passed dye to neighbouring cells and a one-way ANOVA was performed on the means of 

at least 3 replicates. Tukey’s post-hoc test compared the means of each condition to the 

condition in which cells expressed GFP-tagged WT Cx26. Untransfected HeLa cells were used 

as negative controls and HeLa cells expressing Cx26-GFP only, or in addition to Cx26-RFP 

or Cx30-RFP served as positive controls for all dye transfer experiments in HeLa cells. Lastly, 

for dye transfer experiments in REKs, untransfected REKs, or REKs expressing Cx26-GFP 

were used as positive controls.  

2.2.5 Hemichannel Assay 

HeLa cells were seeded at low density to isolate cells from one another and then were 
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engineered to express Cx26 or Cx26 mutants as described above. Propidium iodide (PI) dye 

uptake assays to assess hemichannel activity were performed as noted in (Berger et al., 2014). 

Briefly, cells were washed in extracellular solution (ECS) (142 mM NaCl, 5.4 mM KCl, 1.4 

mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 25 mM D-glucose, osmolarity 298 mOsm, pH 

adjusted to 7.35 using NaOH) and then twice in either ECS or divalent cation free solution 

(DCF-ECS) (same as ECS but with Ca2+ and Mg2+ substituted for 2 mM EGTA). ECS or DCF-

ECS containing 1 mg/ml PI (668.4 Da, Invitrogen) was added to the cells and incubated at 

37˚C for 15 minutes. Cells were washed 3 times with ECS, then ~40 isolated cells per replicate 

were imaged to visualize GFP and PI using the Leica microscope and OpenLab software. For 

each replicate, the number of cells containing PI was recorded as a percentage of the total 

number of GFP-positive cells and a two-way ANOVA was performed on the means of at least 

3 replicates. Sidak’s post-hoc test compared the means of ECS and DCF-ECF conditions.  

2.2.6 Statistical Analysis 

Graph Pad Prism version 6 was used for all statistical analysis and statistical significance was 

noted when p<0.05. All histogram values represent the mean + SEM. 

 

2.3 Results 

2.3.1 N14K and D50N mutants induce cell death in vitro  

In order to assess the impact of Cx26 mutants on cellular health, specific Cx26 mutants were 

expressed in GJIC-deficient HeLa cells. HeLa cells expressing the N14K and D50N mutants 

displayed pyknotic nuclei and blebbing as early as 24 hours post transfection, therefore we 

immunolabelled cleaved caspase 3 (CC3) to determine if cells expressing these mutants were 

undergoing apoptosis (Fig 2.1A). HeLa cells expressing the GFP-tagged N14K and D50N 

mutants displayed a high degree of CC3 immunolabeling (Fig. 2.1B), similar to cells treated 

with staurosporine, suggesting that the expression of these mutants in HeLa cells triggers 

apoptosis in vitro. Consequently, cell expressing the N14K or D50N mutants were deemed 

not suitable for further mutant localization or functional studies.  
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Figure 2.1 
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Fig. 2.1. N14K and D50N Cx26 mutants linked to KIDS induce cell death. (A) HeLa cells 

expressing GFP-tagged Cx26, N14K, and D50N mutants (green) were immunolabelled to 

highlight cleaved-caspase-3 (red) indicating cells undergoing apoptosis and nuclei were 

stained with Hoechst (blue). Cells treated for 2 hours with 1µM staurosporine were used as a 

positive control for apoptotic cells. (B) Cells expressing N14K and D50N mutants were often 

apoptotic compared to Cx26 expressing cells ****p<0.0001, N=3 separate experiments. Scale 

bar = 40µm. 
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2.3.2 N54K and S183F mutants have trafficking defects and impaired dye-
transfer ability 

Cx26 mutants associated with hearing loss and various skin diseases were expressed in HeLa 

cells to examine how a substituted amino acid in Cx26 may affect its trafficking, cellular 

localization, or gap junction function. Cx26 and the M163V mutant formed abundant gap 

junction plaques at cell-cell interfaces (Fig. 2.2A). The S183F mutant was retained primarily 

in intracellular compartments but formed a small number of gap junction plaques while the 

N54K mutant colocalized extensively with PDI labelling of the endoplasmic reticulum (ER) 

(Fig. 2.2A). The ability of the disease-linked mutants to form functional gap junction channels 

was assessed by quantifying intercellular transfer of microinjected Alexa-Fluor-350 in HeLa 

cells expressing Cx26 or the various mutants. Paired cells expressing Cx26 had nearly 100% 

incidence of dye transfer (Fig. 2.2B) while cells expressing the M163V mutant passed dye 

approximately 40% of the time. Cells expressing either the N54K or S183F mutants were 

essentially unable to establishing gap junction channels capable of dye transfer similar to 

controls (Fig. 2.2B).  

2.3.3 Cx26 mutants exhibit dominant-negative effects on Cx26 function.  

To assess the distribution and function of Cx26 mutants under physiological conditions where 

both wild type and mutant Cx26 are expressed in the same cell, we engineered HeLa cells to 

express RFP-tagged Cx26 and GFP-tagged Cx26 mutants at approximately a 1:1 ratio. Cx26 

and the M163V mutant formed numerous gap junction plaques at the cell surface and were 

highly colocalized (Fig. 2.3A). Surprisingly, the N54K mutant was able to traffic to the cell 

surface and form intermixed gap junction plaques when co-expressed with Cx26 (Fig. 2.3A). 

The S183F mutant remained distributed in intracellular compartments, however was also 

found in several plaques when co-expressed with Cx26 (Fig. 2.3A). These findings suggest 

that all mutants were more readily assembled into a gap junction plaque when co-expressed 

with Cx26. To further examine the interaction between the Cx26 mutants and wild-type Cx26, 

we quantified Alexa-Fluor-350 dye-transfer between HeLa cells that coexpressed the mutants 

and Cx26 (Fig 2.3B). Cells expressing M163V and S183F mutants reduced the overall 

functional gap junctional status of Cx26. However, the N54K mutant abolished the functional 

gap junctional status of co-expressed Cx26 as assessed by the ability to pass a fluorescent dye. 

(Fig 2.3B).  
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Figure 2.2 
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Fig. 2.2. Cx26 mutants linked to skin disease are frequently localized to intracellular 

compartments and have limited dye transfer capability. (A) HeLa cells expressing GFP-

tagged Cx26, N54K, M163V, or S183F mutants (green) were immunolabeled for protein 

disulfide isomerase (PDI, red), a resident protein of the endoplasmic reticulum, and stained 

with Hoechst (blue) to denote the nuclei. Cx26 and the M163V mutant form numerous gap 

junction plaques at cell interfaces (arrows). N54K and S183F mutants were mostly located 

within the cell while the S183F mutant formed a few gap junction plaques. (B) Alexa-Fluor-

350 dye transfer in pairs or clusters of HeLa cells expressing N54K and S183F mutants was 

negligible whereas ~ 40% of the cells expressing the M163V mutant transferred dye (C). 

Example images of dye-transfer experiments showing successful (Cx26) and unsuccessful 

dye-transfer (N54K). **p<0.01, ****p<0.0001, N = 3 separate experiments. The number of 

cells that were microinjected to test for dye transfer in each case is noted in (B). Ctrl represents 

untransfected HeLa cells. Scale bar in (A, C) = 20µm. 
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Figure 2.3 



!

!

37!

Fig. 2.3. Cx26 mutants exhibit dominant-negative properties on Cx26 in HeLa cells. (A) 

HeLa cells expressing GFP-tagged Cx26 or N54K, M163V, and S183F mutants (green) 

together with Cx26-RFP (red) were stained with Hoechst (blue). All mutants formed gap 

junction plaques at cell interfaces (arrows) and colocalized with Cx26-RFP. (B) Untransfected 

control cells (Ctrl), or cells expressing the N54K mutant together with Cx26 failed to pass 

microinjected Alexa-350 dye. Cells expressing S183F and M163F mutants together with 

Cx26-RFP had reduced incidences of dye transfer compared to cells expressing Cx26-GFP. 

****p<0.0001, N = 3 separate experiments. The number of cells that were microinjected is 

noted in (B). Scale bar = 20µm. 
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2.3.4 N54K and S183F mutants display trans-dominant effects on Cx30 

Since Cx26 and Cx30 are co-expressed in the same keratinocytes as well as several cell types 

of the inner ear (Jagger and Forge, 2015), we engineered HeLa cells to express RFP-tagged 

Cx30 and GFP-tagged Cx26 mutants to assess potential trans-dominant interactions. Cx26 as 

well as the M163V and S183F mutants were able to form gap junction plaques at the cell 

surface and often colocalized with Cx30 (Fig. 2.4A). The N54K mutant formed very few 

plaques and remained in an ER-like distribution pattern but also appeared to impair the ability 

of Cx30 to form abundant gap junction plaques indicating a trans-dominant effect on Cx30 

trafficking (Fig. 2.4A). Next we determined if the Cx26 mutants exhibited a trans-dominant 

effects on Cx30 channel function using Alexa-Fluor-350 dye-transfer studies (Fig. 2.4B). 

Microinjected HeLa cells expressing Cx30 alone, or co-expressing Cx30 and Cx26 had nearly 

100% incidence of dye-transfer. However, cells coexpressing Cx30 and either the N54K or 

S183F mutants had significantly reduced ability to pass dye indicating that these mutants had 

a trans-dominant effect on Cx30 channel function. Interestingly, the M163V mutant did not 

significantly reduce the ability of Cx30 positive cells to pass dye.  

2.3.5 N54K displays mild trans-dominant effect on endogenous Cx43 

To assess the impact of Cx26 mutants in a more tissue-relevant cell, we engineered REKs to 

express Cx26 mutants and determined their potential for trans-dominant effects on 

endogenous Cx43. The N54K mutant formed fewer gap junction plaques than Cx26 and 

remained mostly intracellular (Fig. 2.5A, B). The M163V and S183F mutants formed 

numerous gap junction plaques although the S183F mutant was found in a typical ER-like 

distribution pattern (Fig. 2.5A). None of the Cx26 mutants appeared to impair Cx43 gap 

junction plaque formation (Fig. 2.5B). REKs engineered to express Cx26 mutants were 

microinjected with Alex-Fluor-350 which readily passes through both Cx26 and Cx43 gap 

junction channels.  Only cells expressing the N54K mutant exhibited a significant decrease in 

dye transfer suggesting that the N54K mutant had a modest trans-dominant-negative effect on 

endogenous Cx43. (Fig. 2.5C).  
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Figure 2.4 
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Fig. 2.4. Cx26 mutants linked to syndromic disease exhibit trans-dominant properties on 

Cx30 in HeLa cells. (A) HeLa cells expressing GFP-tagged Cx26, N54K, M163V, and S183F 

mutants (green) and RFP-tagged Cx30 (red) were stained with Hoechst (blue). S183F and 

M163V mutants formed abundant gap junction plaques at cell interfaces (arrows) and 

colocalized with Cx30, while S183F mutants were also located within the cell. N54K mutants 

remained mostly within the cell although they formed a few gap junction plaques (arrows) and 

impaired the ability of Cx30 to assemble gap junctions at the cell surface. (B) Cells expressing 

the M163V mutant together with Cx30 had dye transfer abilities similar to cells expressing 

Cx26 and Cx30, or Cx30 alone, whereas the incidences of dye transfer in cells expressing the 

N54K and S183F mutants together with Cx30 was markedly reduced. ****p<0.0001, N ≥ 3 

separate experiments. The number of cells that were microinjected in each situation is noted 

in (B). Scale bar = 20µm. 
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Figure 2.5 
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Fig. 2.5. The N54K mutant exhibits trans-dominant inhibition of endogenous Cx43 in 

REKs. (A) REKs expressing GFP-tagged Cx26, N54K, M163V, and S183F mutants (green) 

with endogenous Cx43 immunolabelled in red were stained with Hoechst (blue). The N54K 

and S183F mutants were inefficient at forming gap junction plaques and were often found 

intracellular. The M163V mutant formed abundant GJ plaques similar to Cx26. (B) The N54K 

mutant formed fewer gap junction plaques compared to Cx26, however endogenous Cx43 gap 

junction formation was not impaired by any of the mutants. (C) REKs expressing the N54K 

mutant had reduced dye transfer capabilities compared to untransfected REKs (Ctrl), and 

REKs expressing Cx26. **p>0.01, n ≥ 24 individual images. The number of cells 

microinjected is noted in (C). Scale bar = 20µm. 
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2.3.6 N54K and S183F mutants display reduced hemichannel function 

Aside from GJIC and trafficking defects, mutant connexins may further disrupt hemichannel 

properties. We therefore used a propidium iodide (PI) dye uptake assay to assess the function 

of mutant hemichannels in normal extracellular solution (ECS) and divalent-cation-free ECS 

(DCF-ECS) which stimulates hemichannels to open (Fasciani et al., 2013). All mutant 

expressing cells displayed minimal PI uptake in ECS conditions, and similar to Cx26, the 

M163V mutant exhibited nearly 100% incidence of PI uptake in DCF-ECS, indicating fully 

functional hemichannel activity (Fig. 2.6B). Interestingly, in DCF-ECS, cells expressing the 

N54K mutant demonstrated approximately 60% incidence of PI uptake suggesting moderately 

functional hemichannel formation, while cells expressing the S183F mutant displayed no 

increase in PI uptake, indicating non-functional hemichannel formation (Fig. 2.6B). 

 

2.4 Discussion 

Due to a high carrier frequency of GJB2 mutations in the population and greater than 100 

disease causing Cx26 mutants now identified in humans (Lee and White, 2009; Martin and 

van Steensel, 2015; Xu and Nicholson, 2013), understanding how distinct GJB2 mutations 

cause disease is critical when considering any prospective therapies. The scope of possible 

Cx26 dysfunction is vast considering the possibility of gain- or loss-of functions of gap 

junctions, hemichannels, or additions to the connexin interactome that may present anywhere 

throughout the Cx26 life-cycle. Furthermore, the complexity of Cx26 dysfunction is 

compounded by its potential to interact with several co-expressed connexin binding partners 

in numerous different tissues including the skin and inner ear. The pleiotropic nature of Cx26-

linked diseases raises obvious questions as to how specific GJB2 gene mutations lead to 

hearing loss, or hearing loss combined with skin disorders of varying severity. Here we studied 

five autosomal dominant Cx26 mutants: four that cause hearing loss in addition to various skin 

disorders (N14K, D50N, N54K, S183F), and one that causes hearing loss alone (M163V). We 

found that the N14K and D50N mutants which cause wide spread and severe skin lesions 

overtly induced cell death, whereas the N54K and S183F mutants which cause regional and 

moderate skin lesions, had defects in connexin trafficking, as well as impaired gap junction  
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Figure 2.6 
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Fig. 2.6. Cx26 mutants linked to syndromic disease display reduced hemichannel 

function in HeLa cells. (A) Isolated HeLa cells that were engineered to express GFP-tagged 

Cx26, N54K, S183F, or M163V mutants were incubated in PI-containing ECS or DCF-ECS 

and the incidence of PI-uptake was quantified from random image fields. Image fields 

captured GFP-tagged connexins (green) and intracellular PI-uptake (red). (B) In DCF-ECS, 

cells expressing the N54K mutant displayed approximately 60% incidence of PI-uptake and 

cells expressing the S183F mutant displayed minimal PI-uptake. Cells expressing the M183V 

mutant, much like Cx26, exhibited nearly 100% incidence of PI-uptake. All mutants, except 

for S183F, demonstrated increased PI-uptake in DCF-ECS compared to control ECS 

conditions. ****p>0.0001, N=3 separate experiments. The number of image fields is noted 

below the histogram in (B). Scale bar = 50µm. 
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and hemichannel function (Fig. 2.7). In addition, the M163V mutant which causes moderate 

hearing loss alone, displayed only impaired gap junction function (Fig. 2.7) with no trans-

dominant properties on other co-expressed members of the connexin family. We also showed 

that while all mutants displayed dominant-negative properties on wild type Cx26, the 

syndromic N54K and S183F mutants trans-dominantly impaired the function of co-expressed 

Cx30 and/or Cx43 gap junctions (Fig. 2.7).  

Several extensive reviews have discussed the functional characteristics of over 60 distinct 

disease-causing Cx26 mutants that were investigated using heterologous expression models 

(Garcia et al., 2015; Lee et al., 2009; Xu and Nicholson, 2013). These reports have elucidated 

some major characteristics of disease causing mutants: a reduction or ablation of gap junction 

formation/function, altered selectivity of signaling molecules, and aberrant hemichannel 

activity. While syndromic and non-syndromic mutations affect amino acid residues in 

cytoplasmic, extracellular, and transmembrane domains, the majority of syndromic mutations 

cluster to the N-terminal and EL1 domains (Garcia et al., 2016b; Lee and White, 2009; Martin 

and van Steensel, 2015; Xu and Nicholson, 2013). Additionally, it seems that mutants which 

alter molecular selectivity lead only to non-syndromic hearing loss whereas aberrant 

hemichannels are almost exclusively associated with severe syndromic disease (Garcia et al., 

2016b; Xu and Nicholson, 2013). Recently, the S17F mutant which leads to a relatively severe 

form of KIDS, has been shown to form essentially non-functional homomeric gap junctions 

or hemichannels, yet oddly produces hyperactive heteromeric hemichannels with Cx43 

(Garcia et al., 2015). This finding further established that aberrant hemichannels are a common 

characteristic of KIDS mutants, but importantly, it demonstrated the need to carefully examine 

mutants for trans-dominant effects on co-expressed connexins – including non-traditional 

binding partners. It is important to note that a trans-dominant interaction with a non-traditional 

binding partner such as Cx43, can be considered a gain-of-function property. Therefore, we 

also explored possible trans-dominant effects on Cx30 which is co-expressed with Cx26 in the 

skin and cochlea, as well as Cx43, which is co-expressed with Cx26 in the skin and also found 

in the cochlea. Furthermore, at least eight additional mutants have been identified in patients 

that still require functional analysis (Martin and van Steensel, 2015). This report describes the 

M163V and S183F mutants which have been limitedly investigated (Bruzzone et al., 2003; 

Shuja et al., 2016), and the N54K mutant which was merely reported once in a patient with  
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Figure 2.7 
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Fig. 2.7. Modelling the cellular characteristics of autosomal dominant GJB2 mutations. 

Table of the 5 Cx26 mutants and their associated clinical features (top left). Schematic of the 

Cx26 polypeptide chain including the approximate location of each mutant included in the 

study (top right). Every subsequent square displays the localization (intracellular and/or 

membrane trafficking), channel formation and gap junction and hemichannel function (highly 

functional = double arrows, reduced function = wavy arrows, non-functional = no entry 

symbol) of each Cx26 mutant (green), and is separated into quadrants corresponding to the 

context of cells co-expressing the mutant with Cx26 (blue), Cx30 (purple), or Cx43 (red). 

Mutants linked to severe syndromic disease are watermarked in red, mutants linked to 

moderate syndromic disease are watermarked in yellow, and mutants linked to non-syndromic 

hearing loss are watermarked in green.  
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Bart-Pumphrey Syndrome (Richard et al., 2004) and remains otherwise unexamined. N14K 

and D50N mutants are linked to KIDS which is one of the most severe Cx26-linked skin 

disorders. Patients present with erythrokeratoderma, PPK, and frequent cutaneous infections 

can lead to fatal septicemia early in life (Coggshall et al., 2013). We found these mutants 

strongly induced cell death such that meaningful channel function information was 

unattainable. However, reports suggest they form “leaky” hemichannels when expressed in 

Xenopus oocytes where they induce blebbing and substantially reduce cell viability (Lee et al., 

2009; Sanchez et al., 2016; Sanchez et al., 2013). Cx26 hemichannels are sensitive to 

hyperpolarization by extracellular Ca2+ such that they remain closed under physiological 

conditions (Fasciani et al., 2013). However, reduced Ca2+ sensitivity by N14K, D50N, and 

several other KIDS mutants promotes hemichannel opening that can diminish transmembrane 

ion gradients and release molecules including ATP that affect cell viability (Sanchez and 

Verselis, 2014). Excessive ATP release is also known to stimulate purinergic signaling 

capable of mobilizing intracellular Ca2+, and releasing pro-inflammatory cytokines (Burnstock 

et al., 2012). In the epidermis, these mutants may also be able to disrupt the normal epidermal 

Ca2+ gradient and lipid processing (Bosen et al., 2015), which can result in barrier defects and 

a compensatory hyperproliferative response that drives hyperkeratosis in KIDS (Garcia et al., 

2016a). Interestingly, N14 and D50 are pore-lining residues (Garcia et al., 2016a) suggesting 

that changes to the structure of the Cx26 channel pore can produce the aberrant hemichannel 

properties that stand at the forefront of KIDS skin pathogenesis.  

The N54K is linked to moderately severe Bart-Pumphrey Syndrome featuring PPK, knuckle-

pads, leukonychia, and deafness, meanwhile the S183F mutant is linked to PPK with deafness. 

Although no well-defined pathogenic mechanisms for PPK have been established, our 

findings suggest that the high intracellular retention of N54K and S183F mutants is a common 

characteristic of Cx26 mutants linked to PPK. Indeed, this trafficking defect has been indicated 

in previous reports (de Zwart-Storm et al., 2008a; Martin and van Steensel, 2015; Marziano et 

al., 2003; Thomas et al., 2005). The patient with Bart-Pumphrey Syndrome harbouring the 

N54K Cx26 mutant in (Richard et al., 2004) was reported to have a compensatory increase in 

epidermal Cx30 expression. N54 is an invariably conserved residue in the connexin family 

among numerous species (Richard et al., 2004) and forms hydrogen bonds with L56 from the 

opposing hemichannel (Maeda et al., 2009). Interestingly, we found that the N54K mutant 
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impaired Cx30 trafficking and dye transfer, suggesting that Cx30 compensation may act to 

overcome a trans-dominant hindrance of Cx26:Cx30 heteromeric gap junction formation 

between keratinocytes. This study, and only a handful of others (Common et al., 2003; Di et 

al., 2005; Donnelly et al., 2012; Man et al., 2007; Mhaske et al., 2013) investigated Cx26 

mutants in a relevant keratinocyte model rather than connexin-deficient reference cells. We 

found that only REKs expressing the N54K mutant had reduced dye transfer. This suggests 

that N54K Cx26 may also exert trans-dominant effects on endogenous Cx43 which may be an 

important etiological factor in Bart-Pumphrey Syndrome skin. Recently, Shuja and colleagues 

demonstrated that S183F Cx26 does not form gap junctions or hemichannels in Xenopus 

oocytes and junctional conductance was reduced in cells co-expressing Cx43 (Shuja et al., 

2016). We also found that the S183F mutant inhibited dye transfer in cells co-expressing Cx30, 

pointing towards trans-dominant interactions of co-expressed connexins as a mechanism of 

disease. Since S183 is a highly conserved residue in the connexin family among many species 

(de Zwart-Storm et al., 2008b), we suggest that the S183 residue may have an indirect role in 

inter-protomer binding. Additionally, moderately leaky heteromeric hemichannels formed by 

S183F Cx26 and Cx43 (Shuja et al., 2016), similar to those composed of S17F Cx26 and Cx43, 

may also contribute to PPK. Nevertheless, our findings provide additional evidence for the 

impact of trans-dominant interactions between connexins in skin disease where disease 

severity may be linked to the extent of trans-dominant influence – particularly in skin regions 

exposed to greater mechanical stress.  

In this study, only the M163V mutant is linked to hearing loss without added skin disease. 

Since Cx26 is proposed to play an important role in potassium recycling in the inner ear 

(Jagger and Forge, 2015) and dozens of hearing loss Cx26 mutants display reduced or no gap 

junction function (Xu and Nicholson, 2013), it is not surprising that we found the M163V 

mutant had a dominant negative effect on Cx26. However, Cx30 is also highly expressed with 

Cx26 in the inner ear (Jagger and Forge, 2015) such that compensation might be able to rescue 

hearing. However, several studies have shown that Cx30 cannot functionally compensate for 

Cx26 in the inner ear (Cohen-Salmon et al., 2002; Qu et al., 2012; Teubner et al., 2003). This 

may explain why the M163V mutant leads to hearing loss despite that HeLa cells co-

expressing the M163V mutant and Cx30 passed dye at levels not unlike HeLa cells expressing 

Cx30 or Cx30 co-expressed with Cx26. Including our findings from syndromic mutants, we 
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suggest that mutants with trafficking defects, trans-dominant properties, and that induce cell 

death lead to skin phenotypes, whereas mutants with reduced gap junction function, but do not 

interfere with other co-expressed connexins produce non-syndromic hearing loss.  

Human epidermis expresses 7 different connexins in overlapping populations of keratinocytes 

(Di et al., 2001; Martin et al., 2014) making the epidermis a more robust system compared to 

the cochlea. Fortunately, this high degree of redundant intercellular communication affords 

the epidermis with resiliency in response to GJB2 mutations that have minor effects on protein 

function. Because fewer connexin types are expressed within the cochlea and compensation 

may be limited, small perturbations in connexin function are capable of disrupting normal 

hearing. This may speak to the reason why GJB2 mutations almost never produce skin disease 

alone yet Cx26-linked syndromic and non-syndromic deafness is ordinary. While the majority 

of autosomal dominant GJB2 mutations produce hearing loss in addition to skin disease, we 

posit that strongest predictors of syndromic disease severity actually stem from the trans-

dominant status and gain-of-function properties of Cx26 mutant gap junctions and 

hemichannels. Finally, this study provides evidence in support of genetic screening when 

faced with complex syndromic diseases.  
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Chapter 3 

  Mice harboring disease-linked Cx26 and Cx30 mutants 
display volar skin abnormalities but retain most wound 
healing properties.  

 
Here we generated a novel, viable, and fertile mouse (Cx26K14-S17F/+) which expresses the 

keratitis-ichthyosis-deafness syndrome (KIDS) mutant (S17F Cx26) driven from the keratin 

14 promoter. This mutant mouse mirrors several Cx26-linked human skin pathologies 

suggesting that the etiology of Cx26-linked skin disease indeed stems from epidermal 

expression of the Cx26 mutant. Cx26K14-S17F/+ foot pad epidermis formed severe palmoplantar 

keratoderma which expressed elevated levels of Cx26 and filaggrin. Primary keratinocytes 

isolated from Cx26K14-S17F/+ neonates had reduced GJIC and migration. Furthermore, Cx26K14-

S17F/+ mouse skin healed normally after wounding but exhibited abnormal epidermal 

remodeling. Mice harbouring the Clouston Syndrome A88V Cx30 mutant (Cx30A88V/+, 

Cx30A88V/A88V) showed no skin abnormalities or wound healing defects suggesting that 

compared to humans, Cx30 may have a less critical role in mouse epidermis. Taken together, 

we suggest that Cx26 helps regulate keratinocyte differentiation, especially in palmoplantar 

skin, but mice harbouring Cx26 and Cx30 mutants retain most skin wound healing properties.   

 

A version of this chapter will be submitted for publication before the end of the year. 

Authors: Eric R. Press, Katanya C. Alaga, Kevin Barr, Qing Shao, Felicitas Bosen, Klaus 
Willecke and Dale W. Laird 
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3.1 Introduction 

Gap junction channels allow for direct intercellular communication by facilitating the passage 

of small molecular messengers between the cytosol of adjacent cells (Alexander and Goldberg, 

2003). Individual cells may also exchange signaling molecules with the extracellular 

environment through hemichannels at the cell membrane (Saez et al., 2005). Gap junction 

channels are composed of docked hemichannels from adjacent cells, each of which contains 

six oligomerized connexin (Cx) subunits. Connexins comprise a family of transmembrane 

proteins that have large clinical significance due to the discovery of abundant disease-causing 

mutations in connexin genes. Notably, mutations in the genes encoding Cx26 and Cx30 cause 

syndromic diseases where patients suffer from hearing loss and a broad range of skin 

abnormalities that vary in localization and severity (Avshalumova et al., 2014; Martin and van 

Steensel, 2015; Scott et al., 2012). Interestingly, Cx26 and Cx30 mutants can give rise to 

diseases affecting one or multiple tissues and mutants with similar functional characteristics 

often lead to similar phenotypes, suggesting specific functional anomalies are closely tied to 

disease outcomes (Martin and van Steensel, 2015; Xu and Nicholson, 2013). Not surprisingly 

however, Cx26 and Cx30 are both expressed in the cochlea and epidermis, and they share a 

similar localization pattern within the epidermal strata (Yum et al., 2007), and likely form 

heteromeric channels between keratinocytes. 

The human epidermis expresses up to 7 distinct connexin proteins in overlapping populations 

of keratinocytes highlighting the complexity of gap junctional intercellular communication 

(GJIC) in this tissue (Di et al., 2001). Two distinct mouse models demonstrated that persistent 

epidermal Cx26 expression promoted a hyperproliferative, inflammatory response suggesting 

a delicate balance of individual connexins may be required for epidermal health (Djalilian et 

al., 2006). A key factor likely involved in regulating keratinocyte differentiation is an 

increasing intracellular Ca2+ gradient between keratinocytes of the stratum basale and stratum 

granulosum (Adams et al., 2012; Bikle et al., 2012). Gap junction channels are known to pass 

signaling molecules such as IP3 that regulate intracellular Ca2+ handling, which may have a 

profound influence on the synthesis and assembly of skin barrier components such as filaggrin 

and ceramides (Bosen et al., 2015; Sandilands et al., 2009). Furthermore, it is well known that 

following cutaneous wounding, multiple connexins including Cx26, Cx30, and Cx43, are 
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dynamically regulated within the epidermis suggesting they play a major role in coordinating 

wound healing events such as keratinocyte proliferation, migration, and differentiation 

(Brandner et al., 2004; Churko and Laird, 2013). In fact, numerous studies employing Cx43 

knock-down strategies have demonstrated beneficial wound healing outcomes (Churko et al., 

2012; Coutinho et al., 2003; Ghatnekar et al., 2015; Mori et al., 2006; Qiu et al., 2003) which 

strongly promotes Cx43 as a therapeutic target for chronic wounds. Despite the evidence 

supporting the influence of connexins on epidermal health, the roles of Cx26 and Cx30 in the 

skin are still incompletely understood, particularly in the context of healing wounds. 

Several Cx26 mutants, including the S17F mutant, are linked to keratitis-ichthyosis-deafness 

syndrome (KIDS); a rare and severe autosomal dominant disease featuring generalized 

dry/scaly skin, patchy erythematous keratoderma and palmoplantar keratoderma (Coggshall 

et al., 2013). In some cases, frequent cutaneous infections lead to fatal septicemia early in life 

(Coggshall et al., 2013). In vitro ectopic expression studies have revealed hyperactive or 

“leaky” hemichannels as a likely pathogenic characteristic of KIDS mutants (Garcia et al., 

2015; Lee et al., 2009). Interestingly, the S17F mutant does not form functional gap junction 

channels or hemichannels on its own (Garcia et al., 2015; Richard et al., 2002), but rather 

forms heteromeric hyperactive hemichannels when co-expressed with wild type Cx26 or Cx43 

(Garcia et al., 2015). A transgenic mouse that globally expresses the S17F mutant replicates 

several KIDS phenotypes in addition to features typically associated with separate Cx26-

linked diseases (Schutz et al., 2011). However, because these mice have low viability and it is 

still unknown how the mutant specifically affects the epidermis, we generated a tissue-specific 

mouse that harbours the S17F mutant in the epidermis (Cx26K14-S17F/+). The A88V Cx30 

mutant is known to cause the highly variable Clouston Syndrome (Common et al., 2003); a 

rare autosomal dominant disease that presents with PPK, regional hyperpigmentation, 

alopecia, nail dystrophy, clubbed fingers, and in some cases hearing loss (Kibar et al., 2000; 

Sugiura et al., 2013). The A88V mutant forms a small number of partially functional gap 

junctions (Berger et al., 2014) in addition to hyperactive hemichannels that release excessive 

ATP into the extracellular space and induce cell death (Essenfelder et al., 2004). A transgenic 

mouse that globally expresses the A88V Cx30 mutant (Cx30A88V/A88V) exhibits 

hyperproliferative sebaceous glands leading to a greasy coat as well as mild hyperkeratosis of 

foot pad skin (Bosen et al., 2014). While numerous abnormal cellular characteristics of Cx26 
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and Cx30 mutants have been identified, and several transgenic mice have been generated to 

model human connexin-linked skin disorders, the etiology of these diseases as well and their 

impact on cutaneous wound healing remains poorly understood.  

Therefore, by using our novel Cx26K14-S17F/+ mouse and the Cx30A88V/A88V mouse described in 

Bosen et al. (2014), we aimed to assess how Cx26 and Cx30 mutants produce skin disease to 

ultimately gain further insight into the role of these proteins in healthy skin. We found that 

S17F Cx26, but not A88V Cx30 produced severe PPK, wherein expression of Cx26 as well 

as filaggrin was elevated in foot pad skin indicating deregulated differentiation. Moreover, 

primary keratinocytes from Cx26K14-S17F/+ mice had reduced gap junctional coupling and 

changes in migration. Lastly, both Cx26 and Cx30 mutant mice retain most of the properties 

associated with active wound healing.  

 

3.2 Materials and Methods 

3.2.1 Genetically-Modified Mice 

All animal experiments were approved by the Animal Use Committee at Western University 

in accordance with guidelines from the Canadian Council for Animal Care. Cx26K14-S17F/+ mice 

(hereafter referred to as S17F/+) were generated in-house, on a mixed C57BL/6 and 129Sv 

background. Heterozygous floxed mice (Cx26floxS17F/+ - generated in Schütz et al, (2011) and 

obtained from Dr. K. Willecke) were crossed with homozygous keratin 14 Cre mice 

(Gjb2tm2.2Kwi/Cnrm, Jackson Labs) which were obtained from Dr. L. Dagnino. S17F/+ mice 

express S17F Cx26 heterozygously in basal cells of the epidermis, as well as the oral and 

vaginal epithelium (Dassule et al., 2000). Cx30A88V/+ and Cx30A88V/A88V mice, (hereafter 

referred to as A88V/+ and A88V/A88V, respectively) were generated by Bosen and 

colleagues (Bosen et al., 2014) and obtained from Dr. K. Willecke. Due to the differences in 

genetic background between mouse strains, all animal experiments used wild-type littermates 

as controls (hereafter referred to as Control). Roughly equal proportions of male and female 

mice were used for all experiments. 
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3.2.2 Mouse Genotyping� 

Ear notches at the time of weaning were incubated overnight at 58°C in a proteinase K solution 

composed of 0.6 mg of proteinase K (Cat# 25530-049; Invitrogen) dissolved in buffer 

containing 20 mM Tris Cl pH 8.3, 50 mM KCl, 2.5 mM MgCl2, and 0.5% Tween 20. The 

digested tissue solution was incubated for 10 minutes at 95°C and DNA amplification was 

carried out by polymerase chain reaction (PCR). PCR mixtures included 10x PCR buffer (Cat# 

1360566; Invitrogen), 50 mM MgCl (Cat# 11392196; Invitrogen), 10 µm dNTPs (Cat# 10297-

018; Invitrogen), and Platinum Taq polymerase (Cat# 10966-018; Invitrogen). Samples were 

run for 40 cycles with the annealing temperature set to 57°C for S17F/+ samples, and 65°C 

for the A88V/+ and A88V/A88V samples. PCR products were run on a 2% agarose gel 

including 200 µg of ethidium bromide, and gels were visualized under ultra-violet light. 

3.2.3 Skeletal Staining 

Seven day old mice were euthanized, neatly eviscerated to reveal the skeleton, and the skeleton 

was stained according to a modified protocol from (McLeod, 1980). Skeletons were 

dehydrated in 95% overnight and fixed in acetone for 24 hours. Skeletons were stained for 4 

days using a solution containing 0.015% alcian blue, 0.05% alizarin red, and 5% acetic acid 

in 70% ethanol as described in (Wang et al., 2007b). Finally, skeletons were cleared using 1% 

KOH in ddH20 until the stained vertebrae and intervertebral disks were clearly visible. Two 

animals per genotype were used for skeletal staining.  

3.2.4 Micro-Computed Tomography 

Micro-computed tomography (µCT) scans of euthanized 3-month-old S17F/+ and control 

whole mouse bodies were obtained using the eXplore speCZT µCT scanner (GE Healthcare) 

at Robarts Research Institute (London, ON, Canada) to assess the bone structure underlying 

the S17F/+ truncated tail or skeletal abnormalities in the digits. Further technical specifications 

and image processing techniques are outlined in (Caskenette et al., 2016). Briefly, scans were 

acquired with a voxel size of 100 µm3 and 3D composite images were reconstructed and 

manipulated using MicroView software (GE Healthcare Biosciences). One S17F/+ and one 

control mouse were used to create isosurface images. 

 



!

!

62!

3.2.5 Tissue Lysates and Immunoblotting 

Foot pad skin was dissected, frozen with liquid nitrogen, and pulverized with a cold mortar 

and pestle over dry ice. Lysates were generated by dissolving the pulverized tissue in 2x 

immunoprecipitation buffer (containing 1% Triton X-100, 150 mM NaCl, 10 mM Tris, 1 mM 

EDTA, 1 mM EGTA, 0.5% NP-40, 1.0 mg of NaF, 1.0 mg of Na3VO4, and a Complete Mini 

protease inhibitor tablet (Roche Cat# 10570500)). Lysates were stored at -80°C until 

electrophoresis. Protein concentration was determined with standard bicinchoninic acid assay. 

Lysates were run on a 12% polyacrylamide gel using SDS-PAGE and protein was transferred 

to nitrocellulose membranes with the iBlot dry transfer system (7 minute transfer). Membranes 

were blocked in 2% BSA in PBST and probed with 1:1000 mouse anti-Cx26 (Invitrogen Cat# 

138100), 1:1000 rabbit anti-Cx30 (Invitrogen Cat# 71-2200), 1:5000 rabbit anti-Cx43 (Sigma 

Cat# 112M4824), 1:5000 mouse anti-GAPDH (Millipore Cat# 2145925), 1:1000 mouse anti-

keratin 14 (ThermoFisher Cat# MA5-11599), 1:1000 rabbit anti-filaggrin (Covance Cat# 

PRB-417P), and 1:400 rabbit anti-proliferating cell nuclear antigen (PCNA) (Santa Cruz Cat# 

FL-261:sc-7907) antibodies. Secondary antibodies included AlexaFluor680 (Cat# A21076; 

Life Technologies) and IRDye800 (Cat# 24058; Rockland) and membranes were visualized 

using the Odyssey infrared imaging system. An unpaired t-test (for S17F/+) or one-way 

ANOVA (for A88V/+ and A88V/A88V) was performed on the mean intensity (K counts) of 

biological replicates. 

3.2.6 Immunohistochemistry and Immunofluorescence Imaging 

Foot pad skin was fixed with 10% neutral buffered formalin overnight at 4˚C, paraffin 

embedded, sectioned, and stained with hematoxylin and eosin for histological analysis 

according to (Stewart et al., 2013). Separate tissue samples were also fixed, cryopreserved in 

30% sucrose in PBS, embedded in 1% low melting point agarose containing 18% sucrose and 

0.01% NaN3, flash frozen with liquid nitrogen, and cryosectioned for immunofluorescent 

imaging. Frozen sections were blocked in 3% BSA + 0.2% Triton X-100 and labeled with 

1:400 rabbit anti-Cx26 (Invitrogen Cat# 512800), 1:400 rabbit anti-Cx30, 1:500 rabbit anti-

Cx43, 1:200 mouse anti-keratin 14, 1:200 rabbit anti-filaggrin, and 1:400 rabbit anti-Ki67 

(Abcam Cat# ab66155). The secondary antibodies used were 1:500 anti-rabbit Alexa488 (Life 

Technologies Cat# A11008), 1:500 anti-rabbit Alexa555 (Life Technologies Cat# A21429), 
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and 1:500 anti-mouse Alexa488 (Life Technologies Cat# A11017). Sections were counter-

stained with Hoechst, mounted using Airvol, and imaged with a Zeiss LSM 800 confocal 

microscope equipped with ZenWorks software. Images were captured with a 40x water 

immersion objective.  

3.2.7 Wound Healing Assays 

Three month old mice were anesthetized with isoflurane, administered analgesics 

subcutaneously, then a small section of dorsal hair was shaved and depilated with Nair, and 

the skin was sterilized using the standard 3-stage preparation. Wounds were performed using 

a 5mm human punch biopsy to remove the full thickness of the skin as described in (Churko 

et al., 2011b). Briefly, dorsal skin was held taut and a punch biopsy tool was twisted on the 

skin with light pressure until a full-thickness circle of skin was removed. Skin tension was 

released and allowed to retract for approximately 30 seconds before imaging. Wound 

inspection and imaging was performed the day of surgery, and every second day until fully 

healed. Wound sizes were measured using ImageJ in a blinded fashion. A two-way ANOVA 

was performed on the mean wound area of at least 6 mice per genotype.  

3.2.8 Cell Lines 

Connexin-rich rat epidermal keratinocytes (REKs) were originally described in (Baden and 

Kubilus, 1983) were provided by Dr. V. Hascall. Cells were grown in DMEM (Life 

Technologies Cat# 11965-092) supplemented with fetal bovine serum (Gibco Cat# 12484-

028), 2 mM L-glutamine (Life Technologies Cat# 25030-081), penicillin and streptomycin 

according to (Penuela et al., 2007). 

3.2.9 Primary Murine Keratinocyte Culture 

Keratinocytes were isolated from neonatal mice (P2-P3) according to (Churko et al., 2012) 

with minor procedural adjustments. Briefly, complete body skin was carefully dissected from 

neonates was rinsed in Ca2+ and Mg2+ free PBS (Invitrogen Cat# 14190-144) containing 5 

µg/mL gentamycin (Invitrogen Cat# 15750-060). Skins were floated dermis side down over 

1.5 mL of 50 cU/mL dispase (Corning Cat#354235) at 4˚C overnight with gentle rocking. The 

epidermis was gently separated from the dermis, minced with sterile scissors, and incubated 

in 0.25% trypsin-EDTA (Invitrogen Cat# 25200-056) for ~10 minutes at 37°C. The cell 
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suspension was removed and placed into 1.5 mL of Keratinocyte Serum-Free Medium (K-

SFM) (Invitrogen Cat# 37010-022) supplemented with 1.4 mM CaCl2 and 1.5 mL of stock 

trypsin neutralizer solution (Invitrogen Cat# R-002-100), and centrifuged. The pellet was 

resuspended in K-SFM supplemented with 0.05 mM CaCl2, poured through a 70 µm cell 

strainer (Falcon Cat# 21008-952), and plated in dishes pre-coated with 50 µg/mL collagen I 

(BD Biosciences Cat# 354236). The next day, cells were washed 2 times with Ca2+ and Mg2+ 

free PBS then incubated in K-SFM containing 1.4 mM CaCl2. Cells were used for experiments 

between 48-72 hours following initial plating. 

3.2.10  Calcein-AM Dye Recovery 

Primary mouse keratinocytes and REKs were grown on 35mm glass bottom dishes and pre-

loaded for 10 minutes at 37˚C in a 0.3 mM isotonic glucose solution containing 2 µl/mL 

calcein-AM dissolved in DMSO. Cells were washed in PBS and photobleached to 20% of 

original fluorescence intensity with a 488 nm argon laser at 50% strength. Images were 

subsequently captured every 10 seconds for approximately 10 minutes with a LSM 800 Zeiss 

confocal microscope and a 40x water-immersion lens. Image series were exported to ImageJ 

and fluorescence recovery of photobleached cells were measured using the Time Series 

Analyzer V3 plugin. Fluorescence recovery curves displayed summarized data and a one-way 

ANOVA was performed on the area under the curve (AUC) of biological replicates.  

3.2.11 Scratch-Wound Assay 

Primary mouse keratinocytes were seeded at 1x106 cells per 35 mm gridded dish (Sarstedt 

Cat# 83.1800.001). Culture dishes were pre-coated with collagen as previously described and 

following 48 hours of incubation in K-SFM containing 1.4 mM CaCl2, cells were rinsed with 

Ca2+ and Mg2+ free PBS and scraped with a P1000 pipette tip. Cells were then replenished 

with K-SFM containing no supplements or CaCl2 and images of 10 identical sections per dish 

(0.5 mm2), were captured at 24 and 48 hours following the scrape. For each image, the gap 

between keratinocyte fronts was measured in 5 similar regions and an unpaired t-test (S17F/+ 

cultures) or a one-way ANOVA (A88V/+ and A88V/A88V cultures) was performed on the 

calculated migration distances of replicates. 
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3.2.12 Scrape-Load Assay 

Primary mouse keratinocytes were seeded at 1x106 cells per 35 mm dish and incubated in K-

SFM containing 1.4 mM CaCl2 for 48 hours. Cells were washed twice with warm HBSS and 

then incubated in HBSS containing 2.5% Lucifer Yellow and 1% DiI. Cells were scraped with 

a sharp surgical blade and incubated at 37˚C for 5 minutes. Cells were then washed 3 times 

with warm HBSS and images with a Leica inverted epifluorescent microscope using a 20x 

objective. Five similar fields were imaged for each experimental replicate. For each image, 

Lucifer Yellow transfer distance minus DiI transfer distance was calculated, and a one-way 

ANOVA was performed on the calculated means of biological replicates. 

3.2.13 Statistical Analysis 

Graph Pad Prism version 6 was used for all statistical analysis and statistical significance was 

noted when p<0.05. All student’s t-tests were two tailed. All histogram values represent the 

mean + SEM. 

 

3.3 Results 

3.3.1 Epidermal expression of S17F Cx26, but not A88V Cx30, results in severe 
skin features plus comorbidities  

S17F/+ mice harbouring the mutated Gjb2 gene only in cells expressing keratin 14 (basal 

keratinocytes) resulted in a tissue-defined transgenic mouse that expressed the S17F mutant 

under the control of the endogenous Cx26 promoter. This primarily epidermis expression 

profile was capable of reproducing KIDS skin features in a novel mutant mouse in addition to 

several intriguing phenotypes (Fig. 3.1). S17F/+ pups were visibly smaller and had red, dry, 

scaly skin (Fig. 3.1A). PCR analysis of skin tissue confirmed the heterozygous expression of 

S17F Cx26 (Fig. 3.1B). Contrary to global Cx26S17F/+ mice (Schutz et al., 2011), our tissue-

defined S17F/+ mice had no loss of viability and were born in equal proportion to wild type 

littermates (Fig. 3.1C). Interestingly, S17F/+ mice were approximately 15% smaller by 3 

months of age (Fig. 3.1E), and had a shortened tail (Fig. 3.1D) which coincided with the 

formation of a cutaneous bulb at the distal tail by post-natal day 7 (Fig. 3.1F, G). This appeared 

to impair proper vertebral formation within the bulb preventing normal tail growth (Fig. 3.1H).  
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Figure 3.1 
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Fig. 3.1. S17F/+ mice mimic KIDS skin characteristics and have several additional 

phenotypes. (A) S17F/+ neonates were smaller and visually distinguishable from control 

littermates. (B) Skin sample PCR amplification confirms the heterozygous expression of S17F 

Cx26 in S17F/+ mice. (C) Litters contained equal portions of S17F/+ and control pups with 

no loss of mouse viability (n ≥ 148). (D) Representative photos of 3-month-old S17F/+ and 

control mice reveal moderate differences in size but a pronounced tail phenotype. (E) Whole 

mouse weights at 3 months of age showed S17F/+ mice are ~15% smaller (**p<0.01, N ≥ 17). 

(F) Skeletal stains of P7 tails revealed vertebral malformations underlying the tail phenotype 

in S17F/+ mice. (G) Cross-section of a distal tail paraffin section stained with hematoxylin 

and eosin revealed grossly thickened epidermis. (H) µCT scans of 3-month-old mouse tails 

revealed vertebral abnormalities in S17F/+ mice. Red arrows in (H) denote the relative 

locations of cross sections in (G). 
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Severe PPK was clearly visible in adult S17F/+ mice in which foot pad epidermis displayed 

protruding hyperpigmented calluses (Fig. 3.2A). Histological examination confirmed a gross 

thickening of vital epidermal layers (stratum basale, spinosum, and granulosum) (Fig. 3.2B). 

In addition to the bulbous region at the distal tail, middle regions of tail epidermis also 

displayed moderate thickening of these vital layers (Fig. 3.2B). 

The Cx30 mutant mice (homozygotes indicated as A88V/A88V and heterozygotes as A88V/+) 

were previously described in (Bosen et al., 2014) and reported to have hyperproliferative 

sebaceous glands and mild hyperkeratosis of foot pad skin. Besides a greasy matted coat, we 

found no cutaneous phenotypes, nor a measureable thickening of foot pad epidermis (Fig. 

3.3A).   

3.3.2 S17F Cx26, but not A88V Cx30, disrupts keratinocyte differentiation in 
foot pad epidermis 
Tissue lysates of hind foot pad skin from 3-month-old S17F/+ mice showed elevated levels of 

Cx26 (Fig. 3.2C). While no differences in Cx30 or Cx43 levels were detected in mutant 

epidermis, all three connexins had large overlapping distribution profiles that were clearly 

distinguishable from control epidermis (Fig. 3.2D). Each connexin formed abundant gap 

junction plaques indicating that the S17F Cx26 mutant does not impair connexin trafficking 

in vivo. S17F/+ epidermis also had normal levels of keratin 14 (expressed in basal 

keratinocytes) but a greater amount of filaggrin (expressed in the stratum granulosum and 

corneum) which was found in numerous suprabasal keratinocyte layers (Fig. 3.4A, B). 

Epidermal proliferation was not affected based on Ki67 (Fig. 3.4C) and proliferating cell 

nuclear antigen (PCNA) assessment (Fig. 3.4D). Foot pad epidermis from A88V/+ and 

A88V/A88V mice had no changes in epidermal connexin expression level (Fig. 3.3B) or 

distribution pattern (Fig. 3.3C). Additionally, A88V/+ and A88V/A88V epidermis were 

similar to control epidermis for keratin and filaggrin expression, as well as proliferation (Fig. 

3.5). Together these findings suggest epidermal S17F Cx26 but not A88V Cx30 disrupts 

keratinocyte proliferation-differentiation balance and promotes the formation of PPK in mice.   

3.3.3 Primary keratinocytes harvested from S17F/+ mice exhibit reduced GJIC 
and collective cell migration 

Keratinocytes were harvested from newborn connexin mutant mice and WT littermates to 

assess the influence of physiological levels of S17F Cx26 and A88V Cx30 on keratinocyte 
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Figure 3.2 
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Fig. 3.2. S17F/+ mice display thicker foot pad and tail epidermis, and deregulated 

epidermal connexin expression. (A) 3-month-old S17F/+ mice exhibit severe foot pad 

epidermal thickening including abnormal non-squamous keratinocytes in suprabasal layers as 

well as thicker tail epidermis compared to controls (B) (unpaired t-test, ***p<0.001, 

****p<0.0001, N ≥ 7). (C) Foot pad skin lysates from 3-month-old S17F/+ mice exhibited 

elevated levels of Cx26 expression compared to controls (unpaired t-test, **p<0.01, ns = 

p>0.05, N ≥ 10). (D) Cryosections of 3-month-old S17F/+ foot pad epidermis revealed that 

Cx26, Cx30, and Cx43 formed abundant gap junctions in a broad range of keratinocyte layers. 

Complete and dashed lines denote the dermis-epidermis boundary and stratum granulosum-

corneum boundary, respectively. Scale bar in (A-upper) = 50µm (inset = 10µm), (A-lower) = 

10µm, (D) = 20µm (inset = 20µm).  
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Figure 3.3 
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Fig. 3.3. A88V/+ and A88V/A88V mice display normal foot pad epidermis and connexin 

expression. (A) Foot pad skin from 3-month-old mutant mice displayed normal epidermal 

appearance and thickness (ns = p>0.05, N ≥ 5) and no differences in Cx26, Cx30, and Cx43 

expression (B) (ns = p>0.05, N = 7). (C) Foot pad skin cryosections from 3-month-old mutant 

mice also displayed Cx26, Cx30, and Cx43 formed abundant gap junction plaques (arrows in 

insets) and were expression in discrete keratinocyte layers. Complete and dashed lines denote 

the dermis-epidermis boundary, and the stratum granulosum-corneum boundaries, 

respectively. Scale bar in (A) = 50µm (C) = 20µm, (inset = 20µm). 
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Figure 3.4 
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Fig. 3.4. S17F/+ mice display abnormal keratinocyte differentiation in foot pad 

epidermis. (A) Foot pad skin lysates from 3-month-old S17F/+ mice have elevated filaggrin, 

but normal keratin 14 levels compared to controls (**p<0.01, N ≥ 10). (B) 3-month-old foot 

pad epidermis labeled for filaggrin (red) and keratin 14 (green) revealed elevated filaggrin 

labelling of suprabasal keratinocytes in S17F/+ epidermis. (C) 3-month-old foot pad epidermis 

labeled for Ki67 (red) and lysates immunoblotted for PCNA (D) demonstrated unaltered levels 

of cell proliferation in S17F/+ epidermis (ns = p>0.05, N ≥ 10). Complete and dashed lines 

denote the dermis-epidermis boundary and stratum granulosum-corneum boundary, 

respectively. Scale bar in (B) and (C) = 20µm.  
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Figure 3.5 
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Fig. 3.5. A88V/+ and A88V/A88V mice display normal keratinocyte differentiation and 

proliferation in foot pad epidermis. (A) 3-month-old A88V/+ and A88V/A88V foot pad 

skin cryosections revealed similar localization of immunolabelled filaggrin (red) and keratin 

14 (green) which were also expressed at normal levels in foot pad skin lysates (B) (ns = 

p>0.05, N = 7). Foot pad epidermis immunolabelled labelled for Ki67 (C) and lysates 

immunoblotted for PCNA (D) displayed unaltered levels of cell proliferation in A88V/+ and 

A88V/A88V epidermis (ns = p>0.05, N=7). Scale bar in (A, C) = 20µm. 
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and migration. Similar to a well characterized rat epidermal keratinocyte (REK) cell line (Fig. 

3.6A), nearly all primary cells labeled thoroughly with keratin 14 and intermediate filaments 

were clearly visible under high magnification (Fig. 3.6B), indicating a highly pure 

keratinocyte population. In dense clustered regions, cells stratified and increased filaggrin 

expression, mimicking the behavior of stratified keratinocytes in live epidermis (Fig. 3.6B). 

Keratinocyte cultures were incubated in media containing 1.4mM CaCl2 for 24 hours to 

stimulate differentiation and the subsequent expression of Cx26 and Cx30. Compared to 

controls, S17F/+ cultures appeared to form fewer and smaller Cx26 gap junction plaques 

between cells, and demonstrated reduced fluorescence recovery following photobleaching 

(Fig. 3.7A, B). Furthermore, S17F/+ cultures displayed reduced collective migration in 

response to scratch wounds (Fig. 3.7C). Keratinocytes from A88V/A88V mice also appeared 

to form far fewer Cx26 and Cx30 gap junction plaques compared to A88V/+ and control 

cultures (Fig. 3.8A). Interestingly, A88V/A88V keratinocytes displayed no differences in 

GJIC yet demonstrated increased collective migration in response to scratch wounds (Fig. 

3.8C). Together these findings suggest Cx26 intercellular communication may influence 

keratinocyte migration whereas Cx30 may influence migration in a GJIC independent 

mechanism.  

3.3.4 S17F/+ mice display irregular dorsal skin remodeling and tail skin wound 
healing  

Since dynamic regulation of Cx26 and Cx30 coincides with different stages of wound healing, 

we tested whether mutant Cx26 or Cx30 mutant mice had any overt wound healing defects. 

Between 3 and 4 months of age, a punch biopsy of depilated dorsal skin created a wound in 

which healing was monitored. S17F/+ mice displayed no differences in wound size at any 

stage of recovery (Fig. 3.9A) however, repaired epidermis was measurably thicker in S17F/+ 

mice suggesting possible aberrant epidermal remodeling in response to the wound (Fig. 3.9B). 

No differences in wound healing or abnormalities in repaired epidermis were found in Cx30 

mutant mouse dorsal wounds (Fig. 3.9 C, D).  
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Figure 3.6 
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Fig. 3.6. Isolated keratinocyte cultures are highly pure. Similar to well-characterized REKs 

(A), highly pure primary keratinocyte cultures (B) immunolabelled extensively with keratin 

14 (green) and demonstrated elevated filaggrin expression in regions where cells began to 

stratify (left). Individual keratin filaments were visible under high magnification (right). Scale 

bar in (A) = 10µm, (B-left) = 20µm, (B-right) = 10µm. 

wherein patients express connexin mutants with defects in cellular communication (van 

Steensel, 2004). The epidermis relies on complex GJIC to coordinate a balance of cell 

proliferation and differentiation for the maintenance of rapid physiological turnover and  
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Figure 3.7 
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Fig. 3.7. Keratinocytes isolated from S17F/+ neonates have reduced GJIC and collective 

cell migration. (A) S17F/+ keratinocyte cultures appeared to form fewer and smaller Cx26 

gap junctions between cells. (B) S17F/+ keratinocytes have reduced calcein-AM fluorescence 

recovery after photobleaching compared to controls indicative of reduced GJIC (*p<0.05, N 

= 8). (C) Collective keratinocyte migration in response to scratch-wounds was reduced in 

S17F/+ cultures compared to controls (***p<0.001, ****p<0.0001, N = 4 separate 

experiments). Scale bar in (A) = 20µm (inset = 10µm), (B) = 10µm, (C) = 100µm. 
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Figure 3.8 
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Fig. 3.8. Keratinocytes from A88V/A88V mice display normal GJIC but increased 

collective cell migration. (A) Keratinocytes from A88V/A88V mice appeared to form fewer 

gap junction plaques compared to control and A88V/+ keratinocytes. (B) Following scrape-

loading, mutant keratinocytes displayed similar Lucifer yellow dye transfer to controls (ns = 

p>0.05, N = 4). DiI is a gap junction impermeable tracer to denote keratinocytes at the scrape 

edge denoted by the dashed line. (C) A88V/A88V keratinocytes exhibited increased collective 

cell migration compared to A88V/+ and control keratinocytes (**p<0.01, ***p<0.001, 

****p,0.0001, N = 4). Scale bar in (A) = 10µm, (B) = 20µm, (C) = 50µm. 
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Figure 3.9 
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Fig. 3.9. Mutant mice display normal wound closure, but S17F/+ mice exhibit abnormal 

epidermis remodeling. (A) Dorsal skin wound closure was found to be normal in S17F/+ as 

well as A88V/+ and A88V/A88V mice (C), however, epidermis remodeling following wound 

closure generated thicker epidermis in S17F/+ mice compared to controls (B) (*p<0.05, N ≥ 

4). (D) A88V/+ and A88V/A88V mice displayed normal epidermis remodeling following 

wound closure. Scale bar in (B, D) = 10µm. 
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3.4 Discussion 

Connexin-linked skin diseases encompass a diverse array of congenital skin abnormalities 

resiliency to injury. Of particular interest are Cx26 and Cx30 linked skin diseases due to the 

large number of distinct gene mutations that lead to syndromic diseases featuring variable skin 

disorders (Martin and van Steensel, 2015). Patients dominantly expressing the S17F Cx26 or 

A88V Cx30 mutants are diagnosed with KIDS and Clouston Syndrome, respectively, and 

display some dissimilar phenotypes, but share the common characteristic of PPK (Lamartine 

et al., 2000; Richard et al., 2002). Although mutant connexins undoubtedly underpin these 

diseases, specific pathogenic mechanisms are poorly understood and the question of whether 

these patients have wound healing defects has not been explored. In this study, we generated 

a novel tissue-specific S17F Cx26 mouse and used the previously described A88V Cx30 

mouse (Bosen et al., 2014) to address these questions. We found that our novel Cx26K14-S17F/+ 

mice displayed severe PPK and importantly, no decrease in viability. Foot pad epidermis of 

S17F/+ mice displayed increased Cx26 expression and irregular localization profiles of 

epidermal connexins. Furthermore, S17F/+ foot pad epidermis exhibited elevated filaggrin 

expression, but normal expression of keratin 14 and displayed normal proliferation. Primary 

keratinocytes isolated from connexin mutant neonates displayed altered GJIC and migration 

abilities in culture. S17F/+ skin exhibited aberrant epidermal remodeling during wound 

healing but wounds healed at a similar rate to littermate control mice. Lastly, A88V/+ and 

A88V/A88V mice displayed no epidermal phenotypes or differences in wound healing 

compared to controls.  

S17F Cx26 was first linked to KIDS in 2002 (Richard et al., 2002) and is now understood to 

form non-functional gap junction channels or hemichannels but does form hyperactive 

heteromeric hemichannels with wild type Cx26 and Cx43 in culture (Garcia et al., 2015). 

Many syndromic Cx26 mutants fail to form functional channels (Xu and Nicholson, 2013), 

however studies investigating separate KIDS linked mutants reveal that hyperactive 

hemichannels may be a strong etiological factor in KIDS (Garcia et al., 2015; Gerido et al., 

2007; Lee et al., 2009).  A mutant mouse globally expressing S17F Cx26 was found to 

replicate KIDS skin and hearing phenotypes making it a suitable model for KIDS (Schutz et 

al., 2011). However, one drawback with this model was a sharp loss of mouse viability. To 
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alleviate this concern and to directly assess the role of the S17F Cx26 mutant in the epidermis, 

we generated a conditional mutant mouse which expresses the mutant in cells expressing 

keratin 14. We showed here that indeed epidermal expression of S17F Cx26 produced the 

severe PPK seen in KIDS, as well as a short, blunted tail reminiscent of autoamputated digits 

in patients with the Cx26-linked Vohwinkel Syndrome (Maestrini et al., 1999). Furthermore, 

tissue-specific S17F Cx26 mice were generally healthy suggesting that expression of S17F 

Cx26 in other tissues such as liver, kidney, brain, and gut may reduce mouse viability.  

The nearly universal feature of PPK in connexin-linked skin diseases suggests that proper 

GJIC is crucial to maintain highly stratified volar epidermis (Avshalumova et al., 2014). We 

found an imbalance of keratinocyte proliferation and differentiation in foot pad epidermis of 

S17F/+ mice indicated by increased filaggrin expression yet normal expression of Ki67 and 

PCNA. Since filaggrin condenses the keratin cytoskeleton in differentiated keratinocytes, we 

surprisingly observed that suprabasal keratinocytes from S17F/+ foot pad skin did not appear 

to adopt a squamous morphology like those in control epidermis. We also showed that Cx26, 

Cx30, and Cx43 were not confined to specific keratinocyte layers but rather were expressed 

in most keratinocytes, further suggesting deregulated differentiation. Calcium homeostasis in 

the epidermis is thought to have a large impact on keratinocyte differentiation (Adams et al., 

2012), and since Ca2+ mobilizing molecules such as IP3 and ATP are permissible by gap 

junctions and hemichannels, the calcium profile in lesioned epidermis is an attractive, albeit 

difficult element to assess. Interestingly, Bosen and colleagues showed that unlike control 

littermates, global S17F Cx26 mice exhibited large amounts of Ca2+ in the stratum corneum, 

suggesting that S17F Cx26 may disrupt the calcium profile in the epidermis (Bosen et al., 

2015). As some connexin hemichannels are known to release ATP in response to mechanical 

stimulation (Bao et al., 2004; Baroja-Mazo et al., 2013; Saez et al., 2005), it is plausible that 

mutant connexins in the mechanical environment of volar skin could stimulate aberrant 

purinergic signaling that disrupts calcium homeostasis and finally differentiation (Baroja-

Mazo et al., 2013; Martin et al., 2014). Furthermore, lesions of flexural skin regions are also 

commonly observed in KIDS and Vohwinkel Syndrome patients (Avshalumova et al., 2014; 

Coggshall et al., 2013) further supporting mechanically stimulated Cx26 mutants in skin 

pathogenesis. Nevertheless, investigations into the mechanical sensitivity of Cx26 mutants is 

warranted to shed light on this notion.  
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Keratinocytes isolated from our mice demonstrated that physiological levels of S17F Cx26 

led to reduced gap junctional coupling and a similar reduction in collective cell migration. 

Following wounding, undamaged keratinocytes at the wound edge initiate re-epithelialization 

by migrating under the coagulum (Martin, 1997). During this process, a transient reduction of 

cell surface Cx43 favours cell migration by reducing cell-cell adhesion through its binding 

partner zona occludens-1, a protein linked to junctional complexes (Mendoza-Naranjo et al., 

2012). Our results suggest that Cx26, which is thought to only bind an ubiquitin-ligase protein 

(Henzl et al., 2004), can also influence cell migration through direct intercellular 

communication. It is well documented, yet poorly understood why Cx26 and Cx30 are 

transiently upregulated in wound edge keratinocytes (Coutinho et al., 2003; Davis et al., 2013; 

Goliger and Paul, 1995; Kretz et al., 2003), however our results suggest this may generate a 

highly coupled keratinocyte network to optimize collective cell migration. To our surprise, 

S17F/+ cultures also appeared to form fewer and smaller gap junction plaques in light of 

extensive Cx26 gap junction formation in intact S17F/+ epidermis. Reduced gap junction 

formation by S17F Cx26 has however, been reported in HeLa cells (Garcia et al., 2015), 

therefore the disparagement of connexin expression between native epidermis and in vitro 

models highlights the importance of using mutant mouse models in understanding connexin-

linked pathologies.  

Because Cx26 is dynamically regulated during wound healing (Brandner et al., 2004) and 

KIDS patients develop inflammatory skin lesions (Coggshall et al., 2013), it raises questions 

as to whether KIDS patients have abnormal wound healing. There are currently no reports of 

KIDS patients exhibiting wound healing defects, however, the protective care these patients 

require (Coggshall et al., 2013) and the rare nature of this disease argues that a wound healing 

defect may be under reported.  In one study linking Cx26 levels to wound healing, two mouse 

models with persistent epidermal Cx26 expression developed inflammatory lesions and 

wounds which displayed improper remodeling (Djalilian et al., 2006) suggesting that Cx26  

may contribute to the inflammatory and remodeling phases of wound healing. However, the 

S17F/+ mice used in our study displayed no overt wound healing defects, and if this finding 

can be extrapolated to humans, this would suggest that KIDS patients may actually heal 

wounds well. That being said, our findings also suggest that the abnormal keratinocyte 

differentiation required for epidermal remodeling may result in thicker epidermis in the healed 
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skin from KIDS patients. We also demonstrated that hyperkeratotic foot pad epidermis in 

S17F/+ mice had elevated levels of Cx26, suggesting that while unchallenged skin was 

relatively normal, challenged skin by weight bearing or wound healing may provide the 

conditions for S17F Cx26 to disrupt epidermal physiology. Although the exact nature of these 

conditions remains uncertain, our findings support the notion that S17F Cx26 disrupts 

epidermal homeostasis by deregulating keratinocyte differentiation.  

Contrary to our S17F/+ mice, mice globally expressing A88V Cx30 showed almost no 

evidence of skin disease, as the only differential elements were found between A88V/A88V 

and control primary keratinocytes. Since differences arose only once mutant keratinocytes 

were isolated in vitro, this suggests the influence of A88V Cx30 was easily overcome in native 

epidermis where other regulatory are likely at play. Despite differences in genetic background, 

the striking dissimilarity of disease presentation between our mouse models, which express 

functionally similar connexin mutants, suggests that Cx30 may play a minimal role in murine 

epidermis. This notion is supported by the observation that adult Cx30 null mice displayed no 

obvious cutaneous phenotypes (Dere et al., 2003).  

Lastly, Clouston Syndrome is a highly variable disease in humans which suggests that other 

genetic predispositions likely play a large part in disease presentation. For example, Clouston 

Syndrome patients do not generally have hearing loss, however one patient expressing A88V 

Cx30 in addition to a benign Cx26 mutant exhibited mild deafness (Sugiura et al., 2013). 

Despite subtle differences between murine and human epidermis, our findings strongly 

support the generation and assessment of animal models that mirror connexin-linked diseases. 
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4 General Discussion 

A high degree of GJIC is a hallmark of stratified epidermis (Scott et al., 2012). This 

communication is, in part, facilitated by Cx26 and Cx30 gap junctions and it is well known 

that their proper assembly and function is critical for overall skin health (Martin and van 

Steensel, 2015). This thesis compiles the analyses of several connexin-linked skin diseases at 

the level of cells and the intact epidermis. Using transgenic mice, primary keratinocytes, and 

reference cell lines, we examined the cellular characteristics of Cx26 and Cx30 mutants and 

their link to disease. The goal of this work is to elucidate genotype/phenotype relationships of 

distinct connexin mutants as they relate to skin disease and to further understand the 

contribution of these critical molecules in epidermal physiology. Here, I will establish a 

narrative to integrate our findings within the current literature, discuss their clinical 

implications, and present questions for continued investigation. 

4.1 Learning outcomes from transgenic mice 

Limitations to the clinical translatability of cell-based experiments have forced researchers to 

develop animal models to better understand, not only the disease-causing features of connexin 

mutants, but also the role of connexins in normal skin development, healing, and homeostasis. 

Excluding the novel Cx26K14-S17F/+ mouse used in the current study, at least 10 different mouse 

models have been generated as tools to investigate disease-linked connexins (i.e. Cx26, Cx30, 

Cx30.3, Cx31, and Cx43) in skin physiology (Bakirtzis et al., 2003; Bosen et al., 2014; Churko 

et al., 2012; Cogliati et al., 2015; Djalilian et al., 2006; Maass et al., 2004; Mese et al., 2011; 

Schnichels et al., 2007; Schutz et al., 2011). Five of these models feature GJB2 modifications 

that have helped reveal the pathogenesis of KIDS and Vohwinkel Syndrome (Bakirtzis et al., 

2003; Mese et al., 2011; Schutz et al., 2011), whereby a role was proposed for Cx26 in 

epidermal barrier establishment and cutaneous wound healing (Djalilian et al., 2006). In 

addition, Cx30 (Dere et al., 2003) and Cx31 (Plum et al., 2001) null mice displayed no 

cutaneous phenotypes despite their expression in normal healthy skin. While it may therefore 

be compelling to suggest that Cx30 and Cx31 are unlikely candidates for human skin disease, 

in fact, mutations in their genes are linked to Clouston Syndrome, KIDS, and 

erythrokeratoderma variabilis (Lamartine et al., 2000; Lilly et al., 2016; Richard et al., 1998). 
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These findings strongly suggest that the presence of a connexin mutant can lead to more 

pathology than the entire absence of the same connexin. Also, the redundancy of GJIC within 

the epidermis likely protects the skin from disease when one connexin is ablated. In our current 

study, we took the approach of using partially characterized connexin mutants to assess their 

impact on the keratinocytes and the epidermis, and further modeled two connexin mutants in 

mouse models of human skin diseases.   

Within the steadily-solidifying paradigm that the scope of disease manifestation is governed 

by the gain- or loss-of function status of Cx26 mutants, we chose to model KIDS using the 

S17F mutant. First pass analyses demonstrated that this mutant conformed to the loss-of-

function grouping as no functional homomeric gap junction channels or hemichannels could 

be observed (Garcia et al., 2015; Lee et al., 2009), however, a careful consideration of gain-

of-function properties neatly investigated by Isaac Garcia and colleagues first demonstrated 

the extended influence of S17F Cx26 on Cx43. Since Cx26 and Cx43 do not normally intermix 

in connexons (Gemel et al., 2004), the curious ability of a non-functional Cx26 mutant to 

trans-dominantly bind Cx43 and form hyperactive complexes is indeed an odd concept in 

connexin biology. Nevertheless, this surprising finding added substantial value to, not only 

our understanding of KIDS, but also the study of connexinopathies, since it demonstrated the 

legitimacy of considering all possible connexin interactions within each disease context. 

Schütz and colleagues took the next step by first introducing the S17F mutant into a mouse 

model (Schutz et al., 2011). This mouse exhibited a dysfunctional epidermal barrier, annular 

tail restrictions, foot pad hyperplasia, and moderate hearing loss, making it a suitable model 

for KIDS (Schutz et al., 2011). However, the global expression of this mutant significantly 

reduced mouse viability, suggesting that tissue-specific knock-in of the mutant Cx26 would 

be beneficial. Thus, using the Cx26+/floxS17F mouse provided by Dr. Willecke, we crossed it 

with a mouse expressing Cre-recombinase driven from the keratin 14 promoter. Herein, we 

demonstrated that epidermis specific expression of S17F Cx26 does not reduce mouse 

viability. We further showed that our mice had an intact epidermal barrier as evaluated by 

using the exact protocol from (Schutz et al., 2011) (refer to Appendix 1). This observation was 

surprising and suggested that perhaps S17F Cx26 expression in embryonic tissues may 

interfere with the establishment of the epidermal barrier in utero and contribute to their poor 

prognosis. Cx26 is indeed expressed in the labyrinth layer of the fetal mouse placenta and 
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interestingly, Cx26 null embryos die by 11 days post coitum due to a placental defect (Gabriel 

et al., 1998). Direct empirical comparison of the development of global mutant and tissue 

specific versions of this mouse may shed light on the nature of the barrier defect and loss of 

viability in global mutant mice, and could further point to developmental complications in 

patients who harbour KIDS mutations. Nevertheless, our novel mutant mouse model allowed 

us to evaluate the influence of the S17F Cx26 on the epidermis alone, and whether this 

expression profile can disrupt wound healing which involves numerous unaffected cell types 

such as fibroblasts, leukocytes, and endothelial cells. 

Primary keratinocytes isolated from S17F/+ mice demonstrated reduced migratory capabilities 

and brought into question whether the mice may exhibit wound healing defects. We therefore 

assessed wound healing using a standard dorsal skin punch biopsy and measured wound 

closure over a period of 13 days. While we found no differences in wound closure between 

S17F/+ mice and controls, we must acknowledge that wound-edge keratinocytes migrate 

beneath the coagulum (Martin, 1997) and were therefore not visible within our assay. 

Furthermore, it is understood that murine wound closure is accomplished primarily by dermal 

fibroblast contraction to bring wound edges in close proximity, and differs from human 

healing which favours keratinocyte re-epithelialization (Reid et al., 2004; Wong et al., 2011). 

The Cx30 A88V mutant mouse used in our study also did not display any wound repair 

defects. Together, one might conclude that patients harboring either of these connexin 

mutations would heal normally from an acute skin wound. To that end, there is no documented 

clinical reports that this cohort of patients have acute skin wounding defects but these events 

are not routinely reported in clinically studies. Since wound closure is somewhat different 

between mice and humans, caution needs to be exercised in translating our mouse findings to 

the human populous.    

In Chapter 2, we demonstrated that the cellular characteristics of Cx26 mutants could predict 

disease outcomes. Our findings suggested that mutations at highly conserved amino acid 

residues (N54K and S183F) can affect connexin binding and trafficking and are linked to 

moderate skin diseases. In addition, mutations that interfere with properties of the channel 

pore (N14K and D50N) led to cell death in culture and are linked to inflammatory skin 

diseases. While we could not determine that cell death was driven by mutant hyperactive 
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hemichannels, there is a body of literature that supports their contribution to cell death as well 

as inflammation (Essenfelder et al., 2004; Garcia et al., 2015; Gerido et al., 2007; Lee et al., 

2009; Levit and White, 2015). This alludes to the question of how hyperactive hemichannels 

may promote inflammation in live epidermis. Conceptually, it can be surmised that since 

hemichannels are conduits for molecular exchange between the cytosol and extracellular 

milieu, their aberrant activity can radically disrupt the extracellular concentration of 

permissible molecular messengers, including inflammatory mediators. Mechanistically, a 

study demonstrated that Cx26-expressing human keratinocytes, generated a strong ATP 

release response following acute exposure to peptidoglycan (PGN) harvested from the 

opportunistic pathogen, S. aureus (Donnelly et al., 2012). Furthermore, they showed that PGN 

challenged keratinocytes expressing KIDS mutants generated even stronger ATP responses 

and led to exaggerated interleukin-6 release, demonstrating the interaction between KIDS 

mutant hemichannels, purinergic signaling, and inflammation. Finally, these responses were 

abolished by the connexin channel blocker, carbenoxolone (Donnelly et al., 2012). In addition 

to forming non-functional gap junctions, S17F Cx26 was shown to potently inhibit 

intercellular dye transfer in cells co-expressing Cx43 (Garcia et al., 2015). This supports our 

finding that S17F/+ primary keratinocytes demonstrated reduced gap junctional coupling. 

While hyperactive hemichannels have been strongly linked to the inflammatory nature of 

KIDS, we wondered if reduced GJIC also contributed to the skin phenotype observed in our 

mice. Fortunately, we can begin to address this question by examining the findings from a 

mouse that was generated to model human Vohwinkel Syndrome by expressing D66H Cx26 

in suprabasal keratinocytes (Bakirtzis et al., 2003). This mutant is not associated with 

hyperactive hemichannels, however, similar to S17F Cx26, it inhibits Cx26 and Cx43 

mediated GJIC (Rouan et al., 2001). The D66H Cx26 mouse is the only Cx26 mutant mouse 

to model a non-inflammatory skin disease and displays scaling skin with a dense, thick corneal 

layer (Bakirtzis et al., 2003). In addition, Cx26 and Cx30 were highly intracellular in 

suprabasal keratinocytes of mutant epidermis and resulted in increased DNA fragmentation 

suggesting that reduced keratinocyte GJIC may deregulate terminal differentiation 

(cornification) (Bakirtzis et al., 2003). Empirical comparison of hyperkeratotic lesions from 

the D66H Cx26 mouse and KIDS mice (S17F and G45E Cx26) may shed light on the influence 

of loss-of-function versus gain-of-function mutants in vivo.  
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Taken together, our findings and the literature involving Cx26 mutants and Cx26 mutant mice, 

suggest that reduced GJIC via intracellular connexin retention or reduced gap junction 

function may result in deregulated keratinocyte differentiation and abnormal skin phenotypes.  

4.2 Therapeutic strategies for connexin linked skin diseases and wound 
healing 

Over a decade of applied research towards connexin-based therapies has generated potential 

improvements for the treatment of several chronic health complications such as 

neuroinflammatory disorders, vasculopathies, ocular disorders, and notably, chronic skin 

wounds (Becker et al., 2016). Using in vitro and animal models of wound healing, some 

researchers have developed successful connexin-based strategies to improve wound healing 

and as a result, have spurred spinoff companies to commercialize novel connexin therapeutics 

(Becker et al., 2016; Ghatnekar and Elstrom, 2013). Of note, Cx43-targeted therapeutic 

compounds developed by CoDa Therapeutics and FirstString Research have delivered 

promising improvements for the healing of chronic venous and diabetic leg ulcers (Ghatnekar 

and Elstrom, 2013) (clinical results update from CoDa). The vast majority of connexin-based 

therapeutics focus on Cx43 largely due to the wealth of prior research demonstrating its 

involvement in many chronic and acute disease states (Nakase et al., 2004; Ormonde et al., 

2012; Sutcliffe et al., 2015; Wang et al., 2007a). CoDa Therapeutics is developing strategies 

to target both Cx43 protein translation using antisense oligodeoxynucleotides, and Cx43 

channel function using targeted mimetic peptides or non-specific small molecules such as 

HCB1019 (Becker et al., 2016). FirstString Research is another company highly focused on 

targeting the C-terminal tail of Cx43 to modulate its function with the intent of improving 

chronic wound healing (Becker et al., 2016; Ghatnekar and Elstrom, 2013).  

To date, there are no targeted  therapies for Cx26 or Cx30-linked skin disease and the current 

clinical treatments rely mainly on early diagnosis and management; especially for severe 

diseases such as KIDS (Coggshall et al., 2013). Maintenance of the skin barrier is of upmost 

importance for such patients since infectious and inflammatory complications are common 

and can be life-threatening (Coggshall et al., 2013). Therefore, patients must treat 

hyperkeratotic plaques with keratolytic and retinoid compounds, frequently moisturize the 

skin, and generously apply antibiotic and antifungal agents (Coggshall et al., 2013; Levit and 
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White, 2015). However, some studies have demonstrated that certain clinically approved small 

molecules such as mefloquin, carbenoxolone, and benzopyran have the ability to block Cx26 

channels demonstrating their potential for therapeutic impact (Cao and Zheng, 2014; Donnelly 

et al., 2012; Levit et al., 2015; Levit and White, 2015). Indeed, the greatest therapeutic value 

may come from attenuating hemichannel activity since their link to diseased states is well 

outlined (Levit and White, 2015), yet their contribution to normal skin physiology is largely 

undetermined. There are, however, no clinical trials for any such therapies due to the 

inadequate number of recruitable patients (Levit and White, 2015). Fortunately for S17F Cx26 

KIDS patients, the Cx43-targetted therapies from CoDa and FirstString may in fact provide 

clinical relief due to the specific involvement of Cx43 in their pathophysiology. In addition, 

the connexin mimetic peptide, Gap19, which targets the intracellular loop of Cx43, inhibits 

Cx43 hemichannels without affecting GJIC as shown in astrocytes (Abudara et al., 2014). It 

would certainly be interesting to assess its effectiveness in S17F Cx26 expressing 

keratinocytes, as perhaps aberrant heteromeric hemichannels may be neutralized without 

disrupting normal Cx43 function.  

As evidence builds for the impact of Cx26 on wound healing, we may begin to see Cx26-

targeted therapeutics emerge in applied clinical research. Since abnormal expression of both 

Cx26 and Cx43 has been established in non-healing diabetic wounds (Becker et al., 2012; 

Wang et al., 2007a), there may be considerable therapeutic value in pursuing Cx26-targeted 

wound therapies, which would undoubtedly provide sufficient patient numbers to organize 

clinical trials. In addition, such therapies may provide relief for patients with congenital Cx26-

linked diseases.  

 
 
 
 
 
 
 
 
 
 



!

!

101!

4.3 References 
 
Abudara, V., J. Bechberger, M. Freitas-Andrade, M. De Bock, N. Wang, G. Bultynck, C.C. 

Naus, L. Leybaert, and C. Giaume. 2014. The connexin43 mimetic peptide Gap19 
inhibits hemichannels without altering gap junctional communication in astrocytes. 
Front Cell Neurosci. 8:306. 

 
Bakirtzis, G., R. Choudhry, T. Aasen, L. Shore, K. Brown, S. Bryson, S. Forrow, L. Tetley, 

M. Finbow, D. Greenhalgh, and M. Hodgins. 2003. Targeted epidermal expression of 
mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model 
for the pathogenesis of dominant connexin disorders. Hum Mol Genet. 12:1737-1744. 

 
Becker, D.L., A.R. Phillips, B.J. Duft, Y. Kim, and C.R. Green. 2016. Translating connexin 

biology into therapeutics. Semin Cell Dev Biol. 50:49-58. 
 
Becker, D.L., C. Thrasivoulou, and A.R. Phillips. 2012. Connexins in wound healing; 

perspectives in diabetic patients. Biochim Biophys Acta. 1818:2068-2075. 
 
Bosen, F., M. Schutz, A. Beinhauer, N. Strenzke, T. Franz, and K. Willecke. 2014. The 

Clouston syndrome mutation connexin30 A88V leads to hyperproliferation of 
sebaceous glands and hearing impairments in mice. FEBS Lett. 588:1795-1801. 

 
Cao, Y., and O.J. Zheng. 2014. Tonabersat for migraine prophylaxis: a systematic review. 

Pain Physician. 17:1-8. 
 
Churko, J.M., J.J. Kelly, A. Macdonald, J. Lee, J. Sampson, D. Bai, and D.W. Laird. 2012. 

The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation. Exp 
Dermatol. 21:612-618. 

 
Coggshall, K., T. Farsani, B. Ruben, T.H. McCalmont, T.G. Berger, L.P. Fox, and K. Shinkai. 

2013. Keratitis, ichthyosis, and deafness (KID) syndrome: A review of infectious and 
neoplastic complications. Journal of the American Academy of Dermatology. 69:127-
134. 

 
Cogliati, B., M. Vinken, T.C. Silva, C.M. Araujo, T.P. Aloia, L.M. Chaible, C.M. Mori, and 

M.L. Dagli. 2015. Connexin 43 deficiency accelerates skin wound healing and 
extracellular matrix remodeling in mice. J Dermatol Sci. 79:50-56. 

 
Dere, E., M.A. De Souza-Silva, C. Frisch, B. Teubner, G. Sohl, K. Willecke, and J.P. Huston. 

2003. Connexin30-deficient mice show increased emotionality and decreased rearing 
activity in the open-field along with neurochemical changes. Eur J Neurosci. 18:629-
638. 

 
Djalilian, A.R., D. McGaughey, S. Patel, E.Y. Seo, C. Yang, J. Cheng, M. Tomic, S. Sinha, 

A. Ishida-Yamamoto, and J.A. Segre. 2006. Connexin 26 regulates epidermal barrier 



!

!

102!

and wound remodeling and promotes psoriasiform response. J Clin Invest. 116:1243-
1253. 

 
Donnelly, S., G. English, E.A. de Zwart-Storm, S. Lang, M.A. van Steensel, and P.E. Martin. 

2012. Differential susceptibility of Cx26 mutations associated with epidermal 
dysplasias to peptidoglycan derived from Staphylococcus aureus and Staphylococcus 
epidermidis. Exp Dermatol. 21:592-598. 

 
Essenfelder, G.M., R. Bruzzone, J. Lamartine, A. Charollais, C. Blanchet-Bardon, M.T. 

Barbe, P. Meda, and G. Waksman. 2004. Connexin30 mutations responsible for 
hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet. 
13:1703-1714. 

 
Gabriel, H.D., D. Jung, C. Butzler, A. Temme, O. Traub, E. Winterhager, and K. Willecke. 

1998. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-
deficient mice. J Cell Biol. 140:1453-1461. 

 
Garcia, I.E., J. Maripillan, O. Jara, R. Ceriani, A. Palacios-Munoz, J. Ramachandran, P. 

Olivero, T. Perez-Acle, C. Gonzalez, J.C. Saez, J.E. Contreras, and A.D. Martinez. 
2015. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce 
nonfunctional gap junctions but hyperactive hemichannels when co-expressed with 
wild type Cx43. J Invest Dermatol. 135:1338-1347. 

 
Gemel, J., V. Valiunas, P.R. Brink, and E.C. Beyer. 2004. Connexin43 and connexin26 form 

gap junctions, but not heteromeric channels in co-expressing cells. Journal of Cell 
Science. 117:2469-2480. 

 
Gerido, D.A., A.M. DeRosa, G. Richard, and T.W. White. 2007. Aberrant hemichannel 

properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell 
Physiol. 293:C337-345. 

 
Ghatnekar, G.S., and T.A. Elstrom. 2013. Translational strategies for the development of a 

wound healing technology (idea) from bench to bedside. Methods Mol Biol. 1037:567-
581. 

 
Lamartine, J., G. Munhoz Essenfelder, Z. Kibar, I. Lanneluc, E. Callouet, D. Laoudj, G. 

Lemaitre, C. Hand, S.J. Hayflick, J. Zonana, S. Antonarakis, U. Radhakrishna, D.P. 
Kelsell, A.L. Christianson, A. Pitaval, V. Der Kaloustian, C. Fraser, C. Blanchet-
Bardon, G.A. Rouleau, and G. Waksman. 2000. Mutations in GJB6 cause hidrotic 
ectodermal dysplasia. Nat Genet. 26:142-144. 

 
Lee, J.R., A.M. Derosa, and T.W. White. 2009. Connexin mutations causing skin disease and 

deafness increase hemichannel activity and cell death when expressed in Xenopus 
oocytes. J Invest Dermatol. 129:870-878. 

 



!

!

103!

Levit, N.A., C. Sellitto, H.Z. Wang, L. Li, M. Srinivas, P.R. Brink, and T.W. White. 2015. 
Aberrant connexin26 hemichannels underlying keratitis-ichthyosis-deafness 
syndrome are potently inhibited by mefloquine. J Invest Dermatol. 135:1033-1042. 

 
Levit, N.A., and T.W. White. 2015. Connexin hemichannels influence genetically determined 

inflammatory and hyperproliferative skin diseases. Pharmacol Res. 99:337-343. 
 
Lilly, E., C. Sellitto, L.M. Milstone, and T.W. White. 2016. Connexin channels in congenital 

skin disorders. Semin Cell Dev Biol. 50:4-12. 
 
Maass, K., A. Ghanem, J.S. Kim, M. Saathoff, S. Urschel, G. Kirfel, R. Grummer, M. Kretz, 

T. Lewalter, K. Tiemann, E. Winterhager, V. Herzog, and K. Willecke. 2004. 
Defective epidermal barrier in neonatal mice lacking the C-terminal region of 
connexin43. Mol Biol Cell. 15:4597-4608. 

 
Martin, P. 1997. Wound healing--aiming for perfect skin regeneration. Science. 276:75-81. 
 
Martin, P.E., and M. van Steensel. 2015. Connexins and skin disease: insights into the role of 

beta connexins in skin homeostasis. Cell Tissue Res. 360:645-658. 
 
Mese, G., C. Sellitto, L. Li, H.Z. Wang, V. Valiunas, G. Richard, P.R. Brink, and T.W. White. 

2011. The Cx26-G45E mutation displays increased hemichannel activity in a mouse 
model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell. 
22:4776-4786. 

 
Nakase, T., G. Sohl, M. Theis, K. Willecke, and C.C. Naus. 2004. Increased apoptosis and 

inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am 
J Pathol. 164:2067-2075. 

 
Ormonde, S., C.Y. Chou, L. Goold, C. Petsoglou, R. Al-Taie, T. Sherwin, C.N. McGhee, and 

C.R. Green. 2012. Regulation of connexin43 gap junction protein triggers vascular 
recovery and healing in human ocular persistent epithelial defect wounds. J Membr 
Biol. 245:381-388. 

 
Plum, A., E. Winterhager, J. Pesch, J. Lautermann, G. Hallas, B. Rosentreter, O. Traub, C. 

Herberhold, and K. Willecke. 2001. Connexin31-deficiency in mice causes transient 
placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev 
Biol. 231:334-347. 

 
Reid, R.R., H.K. Said, J.E. Mogford, and T.A. Mustoe. 2004. The future of wound healing: 

pursuing surgical models in transgenic and knockout mice. J Am Coll Surg. 199:578-
585. 

 
Richard, G., L.E. Smith, R.A. Bailey, P. Itin, D. Hohl, E.H. Epstein, Jr., J.J. DiGiovanna, J.G. 

Compton, and S.J. Bale. 1998. Mutations in the human connexin gene GJB3 cause 
erythrokeratodermia variabilis. Nat Genet. 20:366-369. 

 



!

!

104!

Rouan, F., T.W. White, N. Brown, A.M. Taylor, T.W. Lucke, D.L. Paul, C.S. Munro, J. Uitto, 
M.B. Hodgins, and G. Richard. 2001. trans-dominant inhibition of connexin-43 by 
mutant connexin-26: implications for dominant connexin disorders affecting 
epidermal differentiation. J Cell Sci. 114:2105-2113. 

 
Schnichels, M., P. Worsdorfer, R. Dobrowolski, C. Markopoulos, M. Kretz, G. Schwarz, E. 

Winterhager, and K. Willecke. 2007. The connexin31 F137L mutant mouse as a model 
for the human skin disease erythrokeratodermia variabilis (EKV). Hum Mol Genet. 
16:1216-1224. 

 
Schutz, M., T. Auth, A. Gehrt, F. Bosen, I. Korber, N. Strenzke, T. Moser, and K. Willecke. 

2011. The connexin26 S17F mouse mutant represents a model for the human 
hereditary keratitis-ichthyosis-deafness syndrome. Hum Mol Genet. 20:28-39. 

 
Scott, C.A., D. Tattersall, E.A. O'Toole, and D.P. Kelsell. 2012. Connexins in epidermal 

homeostasis and skin disease. Biochim Biophys Acta. 1818:1952-1961. 
 
Sutcliffe, J.E., K.Y. Chin, C. Thrasivoulou, T.E. Serena, S. O'Neil, R. Hu, A.M. White, L. 

Madden, T. Richards, A.R. Phillips, and D.L. Becker. 2015. Abnormal connexin 
expression in human chronic wounds. Br J Dermatol. 173:1205-1215. 

 
Wang, C.M., J. Lincoln, J.E. Cook, and D.L. Becker. 2007. Abnormal connexin expression 

underlies delayed wound healing in diabetic skin. Diabetes. 56:2809-2817. 
 
Wong, V.W., M. Sorkin, J.P. Glotzbach, M.T. Longaker, and G.C. Gurtner. 2011. Surgical 

approaches to create murine models of human wound healing. J Biomed Biotechnol. 
2011:969618. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 



!

!

105!

Appendix 1 
  

Cx26K14-S17F/+ mice have an intact epidermal barrier 

One of the principle functions of the skin is to provide a protective barrier from environment 

insults including UV radiation and opportunistic pathogens, and to limit water loss. As a first 

pass assessment for water barrier function, a toluidine blue barrier penetration assay was 

performed. Katanya C. Alaga and I contributed equally to this work.  

Methods 

The barrier assay was performed exactly as described in (Schutz et al., 2011). Briefly, P1 pups 

were CO2 euthanized and put through a series of increasing concentration methanol washes, 

followed by decreasing concentration methanol washes. Pups were then stained for 15 minutes 

in an aqueous 0.2% toluidine blue solution. Following staining, the pups were washed several 

times in 90% ethanol, dried, and imaged with an iPhone5. Areas of dark blue/purple staining 

indicated toluidine blue dye penetration and therefore a non-functional water barrier. A 

positive control was performed by making a small laceration to the skin. 

Results  

We found that similar to littermate controls, S17F/+ epidermis did not stain blue indication 

little to no epidermial penetration of the water soluble dye. However, epidermal staining was 

evident in areas of the skin that had ben cut, or treated with acetone which disrupts lipids in 

the epidermal barrier (Tsai et al., 2001). This suggests that neonatal S17F/+ epidermis indeed 

forms an effective water barrier. 
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Figure A1. P1 neonates were euthanized and submerged in an aqueous 0.2% toluidine blue 

solution for 15 minutes. The absence of epidermal staining of both S17F/+ and controls 

indicates a functional epidermal barrier. A small incision and treatment with acetone were 

used as a positive control.  
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Appendix 2 

Permissions for Artwork Reproduction 

Dr. Jared Churko, a former PhD student in Dr. Dale Laird’s lab, generated a graphic to depict 

the expression of several connexins in adult mouse epidermis. Since I used this graphic in 

Chapter 1 of this thesis, I have included here his written permission from our email 

conversation. 
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Appendix 3 
Animal Use Protocol Approval 
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