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Abstract 

Quantifying the processes of coping is one way to make the concept both descriptive and 

testable. Decisional Control (DC) is a formal, mathematically-specified, normative model 

which prescribes that an individual faced with a variety of alternatives in a stressing situation 

will attempt to minimize objective and perceived threat of an adverse event inherent within 

their choices. In this study, a game-theoretic probability mixture model created for DC was 

evaluated using established indexes of model fit to empirical decision and choice data. 

Sources of empirical departure from the fully normative model predictions, notably 

individual and group cognitive mapping of choice linked threat, were investigated in part 

through the use of psychometrical profiling of individual differences. Results of a repeated 

measures ANOVA showed that individualized mappings of subjective threat significantly 

improved model fit over that of the consensual and objective mappings. Additionally, 

psychometric profiling did not identify notable trends in model operation.    
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Chapter 1: Decisional Control: A Normative Model of Coping with Stress 

1.1 Introduction 

Coping with stress is a universal experience and one which requires a complex 

interplay of cognitive functions. Coping with stress can be done in a variety of ways, but 

choice is key in determining how an individual will respond (Averill, 1973; Thompson, 

1981). Through behavioural, cognitive and decisional means, choice in stressful 

situations offers an advantage of accessing less-threatening alternatives and greater 

control of reducing stress reactions (Averill, 1973). Dissecting how individuals judge 

alternatives, when faced with a host of aversive events of varying degrees of 

undesirability or harm, and exert personal control to minimize the anticipated stress can 

increase our understanding of the cognitive underpinnings of stress. To understand the 

role of coping and stress reduction, arguably we must first discuss how a decision maker 

(DM) formulates a choice (Thompson, 1981).  

Beginning with a discussion of normative decision theory, accepted theories and 

their relevance to our model will be introduced. Particularly, the distinction between 

normative and descriptive models in decision research will be elucidated. Following this, 

a normative model of Decisional Control (DC) will be presented in detail along with its 

underlying game-theoretic architecture. Finally, planned model testing and fit will be 

discussed as it pertains to necessity testing. When speaking of necessity testing, a 

distinction from sufficiency testing is needed. The primary goal of the present study is to 

explore sources of differential conformity between our collected data and the theoretical 

predictions posited by our formal normative model. While a secondary aim of this 

research is to understand how psychometric correlates may relate to the operation of the 

model, the primary interest lies in examining sources of improved fit (necessity testing). 

Such sources include the historical distinction between objective and subjective 

properties of stressor processes at an individual and group level (Heukelom, 2008; 

Rappaport, 1983). Specifically, I examine if there is conformity or departure from 

objective utilities imposed by the environment and whether improved model fit is 

observed when taking into account the representation of the environment by the 

individual (subjective utilities; elaborated on below). Lastly, the aim is not to see whether 

the model does so (leaving a non-significant empirical departure from model predictions) 
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sufficiently or to improve model fit, but to examine tendered sources of improved 

empirical fit to predictions.  

1.2 Normative Decision Theory 

Beginning in the 1950s, cognitive psychologists began focusing on two questions: 

how do people make decisions and how should decisions be made (Edwards & Fasolo, 

2001). While related, the two questions frame decision-making in two separate ways. The 

first is concerned with what choice is made (the final result of a decision), while the latter 

incorporates notions about a DM’s use of cognitive mechanisms in explaining how the 

decision is reached.  

The second question is also concerned with the final result, but in this instance the 

process involved in making the decision becomes the focus. A driving force behind this 

area of research stemmed from a pursuit to improve decision-making ability through 

understanding how individuals judge between alternatives (Edwards & Fasolo, 2001). In 

order to separate the two concepts, the terms normative and descriptive were applied to 

decision-making theories.  

In a descriptive theory, the source of interest is how people make decisions. These 

theories are descriptive of the process (from presentation of a dilemma to the choice 

made). Theories concerned with how a decision should be made are referred to as 

normative. The emphasis of normative theories rests on understanding or explaining how 

a DM incorporates environmental demands and intellectual tools available to help make 

the best possible decision. The idea that a best option exists and that it should be the goal 

of a decision is prescribed by a normative approach. In short, a normative model could be 

viewed as one with a hypothesized arsenal of cognitive tools used to estimate and 

incorporate environmental demands in the process of making a decision. On the other 

hand, a descriptive model expresses how the underlying arsenal is actually appropriated 

to lead to a decision. It does not attempt to explain which components of the arsenal exist 

or how they function together to lead to the decision made.  

To identify and quantify the “best” choice under a normative theory, cognitive 

psychologists interested in decision-making rely on mathematics and three specific rules 

which encompass normative decision theory (Edwards & Fasolo, 2001). The three rules 

are multi-attribute utility (MAU) measurement, Bayes’ theorem of probability theory 
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(hereafter referred to as Bayes), and maximization of expected utility (Max EU). Each 

rule will be discussed in turn to an extent that is relevant for understanding its role in the 

present research. 

1.2.1 Multi-attribute utility (MAU).  

In order for an individual to make a decision there must be a choice between two 

or more options. Generating the list of available options can be cognitively taxing as the 

number of options available to the DM grows. Sometimes the list of options is exhaustive 

and fully specifies directly what outcomes occur when selected (e.g., in a quantitative 

closed form solution). An example of this could be choosing what to eat at a restaurant. 

When you order something off the menu, that selection will be what you receive. 

Commonly, what occurs instead is that events beyond the DM’s control combine with the 

options available to determine what outcome occurs. An example of this second case 

could be choosing which route to take home from work and its impact on your trip time. 

You might choose to take the highway instead of a variety of side-streets, find it 

unfortunately deadlocked (an event beyond your control), resulting in a very long and 

unexpected commute.  

In normative decision theory, the options available are called “acts” and the 

events beyond the DM’s control are referred to as “states” of the environment. An 

important element of states is that they are considered mutually exclusive and exhaustive 

of one another; states and state selection have no effect or relation to other non-selected 

states. In order for a DM to make a choice, the outcomes comprised of acts and states 

require some sort of comparable value relative to one another. To be measurable and 

comparable, they must all share the same measurement scale. However, all assessments 

of value are entirely subjective of the DM and can vary from one individual to the next. 

In this respect, all outcomes are considered subjectively different and are referred to as 

“utilities” in normative decision theory. MAU is the process of aggregating utilities to 

create an overall subjective score for choice comparison.   

However, subjective utilities are not always the only type of utility present. 

Sometimes there can be objective utilities; utilities which possess the true ranks of 

outcomes. For example, someone might subjectively appraise their choice of braking at a 

yellow light as less likely to lead to an accident than choosing to go through the 
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intersection. Objectively this may be false if statistics quantitatively illustrate that it is 

three times more likely that an accident will occur if they choose to brake. Problems can 

arise in real world scenarios like this and have consequences for the DM. In this case, a 

normative model would subscribe to the best objective utility to choose (going through 

the yellow light), but a descriptive model might find that selection is made using a 

subjective utility evaluated highest by the DM (braking at the yellow light). To 

investigate which conditions are operant under the normative model, subjective and 

objective utilities must be considered and compared (Heukelom, 2008; Rappaport, 1983). 

More on this topic will follow in subsequent sections on model testing and fit.   

1.2.2 Bayes’ theorem of probability theory. 

In addition to subjectively evaluating utilities, most decisions have a degree of 

uncertainty to them. Decisions may lead to one or more outcomes beyond the DM’s 

control. However, DMs often have varying degrees of information about the possibility 

of one outcome or the other. This information permits judging of the probabilities of the 

outcomes related to that choice, such as in instances where Bayes’ theorem can be 

implemented. Bayes’ theorem assists in choice selection by incorporating prior evidence 

to help in assessing the probability of a particular outcome (Bayes & Price, 1763). DMs 

use this process known as “fallible inference” or “inference under uncertainty” (Edwards 

& Fasolo, 2001) to make judgements regarding which outcomes are likely to occur for 

any given act under a particular state. Using our above traffic example, if the DM had 

been rear-ended multiple times when choosing to brake at a yellow light, they may have 

updated their belief to now believe that going through the intersection is best. The prior 

information that they bring into the decision influences their beliefs and, in this case, their 

subjective utility aligns with the objective utility. However, if the DM had never been 

rear-ended braking at an intersection and had done so hundreds of times, they may hold 

an incorrect belief that their subjective utility is the best choice. Even when additional 

information is introduced, such as explaining that statistics show it is less optimal to 

break at the light, it is possible the DM may hold their subjective utility higher still. 

Further exploration of this and similar concepts is beyond the scope of this present 

research and related to psychological heuristics (Kahneman, Slovic, & Tversky, 1982). 



5 

 

Relevant to this study is the notion that judging between utilities does rely on prior 

learned, experienced, or provided knowledge.  

1.2.3 Maximization of expected utility (Max EU).  

Combining aggregates of relevant utilities and probabilities leads us to a 

quantitative basis upon which acts can be ranked by DMs. As both utilities and 

probabilities are subjectively determined by DMs, normative decision theory refers to the 

aggregates of both as “subjectively expected utilities” (SEUs). Max EU is the process of 

maximizing the desired outcome by selecting the act with the largest SEU value. 

Specifically, the last rule dictates choosing the act with the highest utility when outcomes 

contain no uncertainty and choosing the act with the highest SEU when uncertainty is 

present (Edwards and Fasolo, 2001).  

While this normative theory is a large oversimplification for generating a 

decision, as undoubtedly a number of cognitive processes are present in each step of the 

process, it acts as a good referent for the present work. A very thorough review of the 

literature can be found in Edwards, Miles, and Von Winterfeldt (2007) and Von 

Winterfeldt and Edwards (1986). It should be evident, however, that through the 

exploration of these three rules, the process by which individual DMs come to make a 

decision is largely subjective and can require the use of a variety of cognitive processes. 

Particular individuals may favor careful selection of acts, desiring a large amount of 

information prior to choosing one, while others may be more resigned to have a selection 

delegated to them. Two decision-making strategies related to these sorts of differing 

approaches are maximization and satisficing. In maximization, a DM exhaustively 

considers all acts in order to find the one with the best utility, whereas a DM adopting a 

satisficing strategy will evaluate acts until they find one that is suitable (Simon, 1956). 

Choosing a satisficing strategy does not disqualify the possibility that the DM was able to 

apply the three rules of normal decision theory, but decided the effort was not justified to 

exhaustively search for the objectively best utility. Nor does choosing a maximizing 

strategy assume that the DM will choose the objectively best utility, as their subjective 

utilities or their application of the three rules may be flawed. Clearly decision-making is 

an individualized process likely informed by a variety of dispositional factors. So too is 

the act of coping to reduce stress.  
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1.3 Decisional Control  

DC is a method of coping with stress in which the DM positions oneself in a 

stressor situation so as to avoid situational components harboring higher probabilities of 

threat (Lees & Neufeld, 1999, p. 185). The underlying assumption is that a DM, when 

faced with a selection of varying levels of subjectively adverse events (acts), will make 

probabilistic judgements (arguably a cognitively-intensive process) about the threat 

inherent in each situation (states). The DM then makes a choice to pursue the act they 

believe has the lowest level of stress associated and best chance for a favorable outcome. 

Notably, this normative model is well positioned in normative decisional theory and 

follows the three rules discussed earlier.          

As normative models make use of mathematics to discern MAX EU, it is 

facilitative to start with a practical example that explores the environmental framework 

and begin introducing some of the equations used in the DC model.    

1.4 Environmental Framework of Decisional Control 

Stress can range in severity (from benign to behaviorally and/or cognitively 

paralyzing) and can be evoked by a number of different scenarios (from adverse social 

events to situations with a chance for severe discomfort or physical harm). Many real-life 

scenarios can be drawn on to construct elements in a game-theoretic infrastructure 

composed of stressful alternatives. According to Rasmusen (2007), a game-theoretic 

infrastructure is one in which the following four elements must be present: a player (or 

players), information and actions available at each decision point, and the payoff for each 

outcome. Routed in game theory (Von Neumann & Morgenstem, 2004), well-defined 

mathematical objects are structured in nested hierarchies (decision trees) with each node 

representing a choice the player (DM) can make, each branch attached to a node 

representing an action, and each leaf following an action representing a payoff 

(Fudenberg & Tirole, 1991). As will be illustrated in the example to follow, a game-

theoretic infrastructure can be constructed to model and test our normative model of DC.  

For a real-world example, imagine that you have been invited to two separate social 

gatherings on the same day in similar venues. Each has the same number of guests, but 

varies in the people attending. At both gatherings, there are people with whom you are 

not particularly fond of interacting. As an introvert, the thought of attending either event 
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may prove stressful, but you have decided to at least talk to the person seated beside you 

at your assigned table. For simplicity’s sake, we will assume there are four people at each 

gathering (each one at a separate table) with whom you are particularly averse to having 

to interact with. You predict the conversation will probably lead to adverse social 

interaction (e.g., a strong differing of opinions). These eight individuals could be ranked 

ordered from 1 to 8 (t1, t2, …, t8; t representing threat of an adverse stress-inducing event; 

an act).  There is a discernably increasing probability that a conversation will result in an 

adverse social event (t8 being the highest probability, and t1 being the lowest).  

This example takes the form of a nesting-nested hierarchy in which the DM 

potentially engages one discrete (mutually exclusive) entity within a tier. The social 

gathering and the adverse interactions make up the architecture of our two-tier design 

(with parameters p and q; where p = the number of social gatherings = 2 and q = the 

number of eligible interactants within each = 4). This architecture is substantiated in 

Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As in life, control over which entity (node) is engaged is not always within the 

DM’s control. DC can sometimes only be applied at certain tiers or not at all. In this 

model C is used to represent the scenario structure in which the DM has an unfettered 

Element level 

q = 4 

Bin level 

p = 2 
Social Gathering 1 

t4 t7 t3 t6 

Social Gathering 2 

t2 t1 t8 t5 

Figure 1. An example of a nesting-nested hierarchy (decision tree) with ti 

elements randomized at the most subordinate level. Nodes are located along 

horizontal lines, with two at the bin level and four within each bin (eight total). In this 

example, ti elements are illustrated as static, but would be randomly ordered each 

time the hierarchy is displayed. The two bin groups have been coloured differently 

for illustrative purposes; to make it easier to follow the nesting hierarchy.    
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choice (they have predictive information and decision-making power); N to represent 

external assignment with information but no decision-making power; and U to represent 

external assignment in which the DM has no information or decision-making power. To 

capture the essence of conditions U and N, their assignment is random from available 

options. In this way the elements are neither predictable or controllable for U or 

controllable for N.    

Considering this two-tiered example (Figure 1), DC can succinctly be expressed 

in sentential logic. The definition of DC for a two-tiered hierarchy is 

∃ J = {x1, x2} ∋ ∀ xi ∈ J, xi = C ⊻ (U ⊻ N),      (1) 

where x1,2 denote the DC conditions for the upper and lower tiers, respectively (Neufeld, 

Shanahan, & Nguyen, 2014; Shanahan, Nguyen & Neufeld, manuscript in revision). Put 

simply, at each level of the two-tiered hierarchy, either a C, U, or N can be a presenting 

condition to be engaged by the DM. The total number of combinations form a set of J; in 

our example there are nine pairs, as ordered on the first and second tier (CC, CN, CU, 

NC, NN, NU, UC, UN, and UU). Any individual combination is further referred to as j in 

the set of J. Keeping with our example, in an instance of CU, the DM would be able to 

choose which party to attend but have no information about who is attending (the ti’s 

nested within each party) nor any choice of which of the four people they will be required 

to sit beside. Alternatively, in NC, the DM will know which party they are attending 

(perhaps they were forced into attending one gathering by that gathering’s hostess; 

information but no control in the gathering selection). In this scenario, however, they are 

told by the host the table at which each of the four people attending will be sat and the 

DM is given the choice of the table at which they would like to sit (information about 

which 4 individuals are attending and party-wise control).    

In addition, each of the pq elements of the two-tiered hierarchy, has an unique 

appraised probability of adverse-event occurrence ti (Shanahan & Neufeld, 2010) of          

{t1<t2< …<ti< …tpq};  tj<ti iff j<i ; ti ∈ [0,1].        (2) 

As denoted in Equation 2, the threatened event is a Bernoulli outcome (either it 

happened/was encountered, 1, or not, 0) and t is the probability of its occurrence. In 

essence, and as stated in Equation 2, there are a number of possible levels of threat (i.e. t1 

through t8, with probability of engaging any ti denoted Pr[ti]) for the DM which get 
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discernibly worse. As these discrete amounts are mutually exclusive and exhaustive, only 

one level of threat (e.g., a gauche interchange is the occurring outcome; ti is the 

probability of its occurrence) will transpire and the probability of it occurring Pr(ti) is 

related to the level of expected threat, E(t), expressed as 

  = E(t) 

(3) 

 

Each of these ti values is randomly dispersed over the pq elements and can be engaged 

with different probabilities based on the conditions of control available to the DM. 

Assuming that stressor-event magnitude is such that those with higher ti values are 

avoided to a greater extent (thus yielding lower probabilities), we can assume that when 

choice is given to the DM they will select options in favor of achieving the smallest ti 

value available (referred to before as a maximizing or maximax strategy; Janis & Mann, 

1977; Morrison, Neufeld, & Lefebvre, 1988; Rappaport, 1983). Given CC, it is assumed 

that the DM will always select t1 upon making the appropriate number of cognitive 

appraisals required to discern the decisions necessary in reaching it. In our example, this 

requires only two operations of DC – to select the social gathering (bin) that contains t1 

and then select to sit at the table (element) with the individual representing t1.  

 Using basic combinatorics, a potentially helpful way of visualizing the above 

engagement and probabilities is through a visual example using bin or urn terminology. 

Imagine transparent bins labelled t1 through t8, each containing an equal number of balls, 

some black and some white. The black balls represent an adverse event and the white 

balls represent a null event (a non-stressful event). If we say there are 8 balls in each bin, 

then the t1 bin might have 1 black ball and 7 white balls and the t8 bin might have 7 black 

balls and 1 white ball. These balls represent a Bernoulli outcome (there are only two 

possibilities), but the probabilities of drawing either a white ball or a black ball vary 

based on the bin. Further, the probability of accessing different bins varies based on the 

conditions of control (the choice-scenario architecture). The DM will attempt to always 

reach the t1 bin (if available), as the probability that they will draw a black ball (encounter 

an adverse event) is minimal. In this way, the probability of drawing a black ball is nested 

pq 

. 
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within the probability of engaging a particular bin.  If we relate this back to our example 

depicted in Figure 1: if you happen to find yourself in a CU condition, a 

maximizing/maximax strategy would dictate you would choose to engage in social 

gathering 2 in hopes of being assigned to table 1 (where the person represented by t1 is 

present). If you happen to be assigned to table 5 (t5) instead due to the uncertainty (U) at 

this level, it is still possible that your interchange with the person who you do not like at 

that table will not result in an unpleasant experience (i.e., experience a null event; 

although probabilistically you are more likely to experience an adverse event).  

In scenarios where p and q are larger than in the above example (i.e. when there are more 

nested hierarchies, more elements within each, and a mixture of decisional-control 

conditions), there is a greater information processing demand on the DM (Shanahan, 

Pawluk, Hong, & Neufeld, 2012). This can be a source of stress in and of itself; one 

which must be balanced with the stress of the adverse events. This relationship is 

graphically represented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

As cognitive processing (and associated stress) increases, with increased potential 

outcome-set size, so does the probability of engaging the lowest-tier element (ti). 

Alternatively, as cognitive processing is reduced (with the inclusion of more N 
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Figure 2. A simplified graphical representation of the hypothetical relationship between 

cognitive processing and the probability of experiencing an adverse-event.  
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conditions), the stress related to cognition decreases but the probability of engaging in a 

higher-tier element increases. This reciprocal relationship between predictive judgement 

investment (cognitive workload or “challenge”) stress and exogenous-event threat stress 

is what is known in decisional science as an “incompatibility of criteria” (Tversky, 

1972a; Tversky, 1972b). Individual differences in coping strategies may be influenced by 

this dynamic interplay of sources of stress. Some individuals may prefer to adopt a 

maximizing/maximax strategy in order to make the “best decisions” in their pursuit of 

minimal ti, whereas other’s may be willing to tolerate ti values below t5 (for example) if it 

requires less cognitive workload (weighing choices; an example of adopting a satisficing 

strategy). Different susceptibilities to one form of stress or the other, as they interface 

with prevailing DC conditions, represent person-environment fit examined here.  

 In defining a situation amenable to our above example, certain notation is used to 

specify the combination of p and q parameters (the number of elements at the first and 

second tiers of the DC architecture) and the pair of choice conditions from among C, U, 

and N that were present (one at each tier). Typically, the encounter is denoted “Z DC 

combination; pq”, so in the example of CU we would report that this encounter took the form 

of ZCU; 2,4. Let us revisit the NC example, but this time combine it with Figure 1. If we 

assume that the DM was forced into attending social gathering 1 by that event’s host 

(condition N, meaning an assigned element from the p elements composing the top tier, 

the assignment being disclosed at the outset). Next, they are made aware of the location 

of the four guests attending that could result in adverse social exchanges (and associated 

stress) and are able to choose which one to sit beside (C, meaning choice applied to the q 

elements of the lower tier). From Figure 1, we see that the DM can only choose from t3, 

t4, t6, and t7. We assume that they will likely choose t3 as it is the act with the lowest 

probability for an adverse stressful encounter. If this scenario were run a few times, the 

number of times each ti value was engaged would be reported as nti. Since N is randomly 

selected each time and there is a p of 2; one would expect that social gathering 1 and 2 

would be assigned an equal amount of times. Since t1 is eligible for selection at social 

gathering 2, one would predict, that if the scenario of ZNC; 2,4 was run 10 times, that nt1=5 

and some combination of tis other than t1 = 5 (as the ti are shuffled each encounter; unlike 

the static Figure 1). Thus we would expect the probability of engaging t1 would be .50 
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(Pr(t1) = 1/p). In fact, all the probabilities for ti can be readily computed for any two-

tiered encounter using the formulas located in Appendix A (Neufeld, 1999; Shanahan, 

2016; Shanahan & Neufeld, 2010). Some probabilities require combinatorics, based on 

whether t1 is able to be engaged by the DM. Upon further investigation of each, we can 

see that certain combinations of conditional control are favorable to others (based on their 

probabilities of achieving t1 and expectation of threat E[t], which again entails Pr[ti]ti 

from Equation 3). It is important to note that C must be present at one level in the 

scenario for DC to be available at all and that U at a subordinate level increases E(t) 

significantly more than when it is positioned at the upper level (Shanahan et al., 2012; 

Shanahan & Neufeld, 2010). Putting all of these elements together, it should be self-

evident that we have created a game-theoretic paradigm susceptible to testing. Each 

participant assumes the role of the DM, they are given differing levels of information and 

action at each node, and they are aware of (or learn) the differing payoffs (ti values) 

related to each outcome. Unique to this DC normative model is the use of stochastic 

outcomes (Osborne & Rubinstein, 1994). By integrating stochastic outcomes, the 

environment has an active role in deciding the DM’s fate. This can be observed in 

conditions where control is not present, such as when a node is either an N or U 

condition. The environment either withholds information and choice or choice alone and 

assigns the DM a random action.  We have a normative framework (the architecture) 

upon which we can test if participants conform to our predictions.  

1.5 Mixture Modelling 

By fitting choices to a quantitative framework, we can disentangle the interplay of 

different cognitive processes involved when judging environmental stressors. Through 

the individual differences people display in similarly defined situations, we create a 

normative model representing person-environment fit. Captured quantitatively, these 

differences can illustrate differential dispositions towards engaging in presented 

opportunities for choice (a descriptive model), which we can test against our normative 

model of predicted probabilities (afforded by our closed-form equational system). As 

coping strategies (and their underlying cognitive processes) are largely unique, 

individuals will vary in their task performance in situations amenable to DC. At the same 

time, in order to generalize our findings, we are interested in considering how well our 
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model of DC performs with respect to a consensual, group-extracted, cognitive mapping. 

As such, three separate models are required; a normative model (based on conditions 

inherent in the environment), an individualized model (based on subjective appraisals of 

the environment), and a group model (based on the averaged subjective appraisals across 

the group).  

One of the first requirements in setting up a mixture model is defining parameters. 

Parameter estimation normally requires random sampling from a particular conjugate (i.e. 

mathematically tractable) prior distribution that models the probability distribution of the 

parameters (i.e. rate or probability) we are looking for. One advantage of our particular 

setup is that we do not have to do this. We have our own discrete probabilities generated 

from the ground up by our DC architecture. The base-distribution parameters which 

pertain to the decision process itself are defined (ti values) and are subject to a probability 

mixture, whose finite discrete probability mixing parameters are Pr(ti). We have already 

discussed the hyper-parameters above which help define the base-distribution; they are C, 

U, N and p and q. As we have already set up all of the architectures, including forming all 

our combinations (j) in our set (J) and their resultant probabilities (probability of base 

distribution parameter, Pr(ti)). As such, we already have what we need to form 

multinomial likelihood functions involved in model testing. We are at an advantage 

having created a closed form solution, as we are able to generate every single discrete 

value. This can be likened to “samples” and “populations” in classical statistics. 

Typically, one samples from a population to generate a representative group upon which 

generalizations can be formed. In our case, we have the population of explicitly defined 

values and do not need to sample. In order to validate the model using quantitative 

predictions, engagements of particular ti and their related stochastically distributed ti, 

whose Pr(ti) values are governed by the prevailing structure (j), are used to create 

multinomial likelihoods.  

1.6 Model Testing and Fit 

The multinomial likelihood (ML) of nti (the number of times each ti value was 

engaged) is defined similarly to how an encounter (Z DC combination; pq) was defined; ML DC 

combination; pq (in our previously discussed example for CU it would be illustratively 

represented by ML CU; 2,4) and is represented by (Shanahan et al., manuscript in revision) 
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In Equation 4, ZC,U,N; pq is the total number of times a particular encounter was 

experienced, i.e. Nti is the number of ti engagements within that encounter, and Pr(ti) is 

the model stipulated probability of engaging a particular ti within that encounter. Further, 

the prior probabilities of each of j combinations, πj, within the J set of decisional 

structures can be represented by the combined multinomial likelihood (Shanahan et al., 

manuscript in revision) 

 

(5) 

 

For the two-tiered DC structures, there are 9 unique combinations (j) possible within the 

set of J. These unique structures are made of C, U, and N at the bin level, factorially 

combined with C, U and N at the bin-element level (the J structure-combinations of j are 

mutually exclusive and exhaustive; the πj sum to 1). Upon calculating a combined 

multinomial likelihood for each participant, we will have the necessary values of the 

descriptive model upon which to compare the theoretical predictions of our normative 

model. In short, we will compare our generated normative predictions to the descriptive, 

observed participant responding and determine how different element engagements (ti) 

selectively conform to predictions from the prevailing j combinations (Shanahan et al., 

manuscript in revision). If we consider the prior case and apply our static CU example, 

we would expect our participants to always select social gathering 2 (in attempt to 

achieve t1). Due to the U nature of q, we would expect t1, t2, t5, and t8 to be engaged an 

equal number of times (1/q = 1/4).  

When we speak about model fit in the present case, we are referring to how well 

the normative model-generated expected frequencies correspond to the actual observed 

frequencies of participants (the descriptive model). Here, we would want to see if 

participants, presented with a computer simulation representing the J combinations 
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possible within our Figure 1 example, would show an almost identical pattern of nti as we 

would predict from our model assumptions. This equivalence is tested using the 

likelihood ratio chi-square statistic G
2
. As no parameter estimates were necessary (due to 

our architecture, as mentioned above), both Akaike and Bayesian Information Criteria 

(which are both used to adjust G
2
 based on the number of parameters being estimated) are 

not applied. As such, G
2
 is simply equal to -2 ln multiplied by the likelihood ratio.  

To estimate fit of the different descriptive models (Group model and 

Individualized model), we take the participant generated data and test its fit with our DC-

tendered model’s fit (Shanahan et al., 2012). To compute G
2
, a generic saturated model is 

required to form the denominator of a likelihood ratio. In the latter case, the DC 

predictions are replaced with observed engagements; instead of the probability of ti, the 

actual number of ti engagements out of the total number of encounters are used. The 

generic descriptive model is used as a normalizing factor to create a G
2
 value. This is 

illustrated as   

G
2
 = - 2 ln  (

Likelihood Function DC model

Likelihood Function generic saturated model
) 

     = - 2 ln (Likelihood Ratio)        (6) 

     ≈ χ
2
, when n is large.  

In contrast to our DC model used in the numerator, the generic, saturated model used in 

the denominator replaces model predictions with observed proportions of ti selections 

(Riefer & Batchelder, 1988). Additionally, to compliment the G
2
 value, a Pearson χ

2
 

value (Cohen, 1988, Chapter 7) will also be computed as the two converge with a large 

number of observations.   

Based on results from a small simulation, the model of DC does perform as well 

as the generic saturated model (Shanahan et al., manuscript in revision). If our predictions 

and observations are close, we would expect a very good (low) G
2
 and Pearson χ

2
 value 

for our tendered models, indicating their ability to accurately predict empirical 

probabilities of responding. This serves as an estimate of model fit, whose sources of 

change and whose psychometric correlates are the subject of the current thesis.  

In order to quantify and empirically test this environmental framework of DC and 

explore individual differences in responding, behavioral (e.g., choice selection and their 

latencies), psychophysiological (e.g., heart rate, skin conductance) and subjective 
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measures (e.g., verbal reports, numerical ratings) of stress are collected. Past research has 

supported the use of these empirical measures quantifying DC composition (Shanahan & 

Neufeld, 2010). Gathered empirically, the complex interplay of the above indicators of 

stress can be disentangled to reveal differential dispositions in situational engagement 

and should conform to predictions of fluctuating levels of stress created by the 

environmental framework at both the group and individual level. However, the focus of 

the present thesis squarely is on sources of model fit. Other collected responses, including 

psychophysiological data, response times, and indices of stress generation will be 

analyzed in the future.  

Psychometric measures selected to explore individual differences in sources of 

model fit include the Desirability of Control (DOC; Burger & Cooper, 1979), Need for 

Cognition (NFC; Cacioppo, Petty, & Kao 1982), Intolerance of Uncertainty (IOC; 

Freeston, Rheaume, Letart, Dugas, & Ladouceur, 1994) Uncertainty Tolerance Scale 

(UTS; Dalbert, 1996), the General Decision-Making Style questionnaire (GDMS; Scott & 

Bruce, 1995) and the Endler Multidimensional Anxiety Scale’s Trait scale (EMAS-T; 

Endler, Parker, Bagby, & Cox, 1991). Selection of measures was informed by previous 

DC research or exploratory in nature. Elaboration of the measures is provided within the 

methods section.   

1.7 Aim of Current Research 

Thus, one aim of the present study is to implement a game-theoretic infrastructure 

upon which a probability mixture model can be built and tested using a normal 

population (undergraduate students). This infrastructure/environmental framework will 

allow the development of precise likelihoods of stress-relevant events and the ability to 

test the model at both an individual and group level (Shanahan et al., manuscript in 

revision). By implementing a self-contained model of DC, we can not only determine the 

probabilities of how individuals within a DC amenable scenario should respond 

(objective utility), but also use those computations to test our model (a combination of 

top-down and bottom up approaches to validation). Candidate sources of departure from 

the normative model (contingent/conditional-probability-based) predictions, notably 

departures in the form of individual and group cognitive mapping of ti (subjective 

utilities) and decision-making strategies, can enter into comparisons with normative 
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model prescribed values (objective utilities and maximizing/maximax selection strategy) 

and be correlated with psychometrics. This correlation encompasses the second aim of 

the present research. Doing so will allow for estimation of ti values, to which the 

maximizing/maximax-strategy component of the normative model potentially applies, 

and also residual departure subsequent to allowing for individualized ti estimation.  

In summary, the intended purposes of this study are two-fold: a) to test the normative 

game-theoretic probability mixture model created for DC and b) to investigate sources of 

departure from the normative model including through the use of psychometrically 

profiling individual differences in DC “aptitude” (amenability). 

The resultant model-based findings will provide empirical evidence that identifies 

previously untapped model-testing predictions, including choice-selection behavior and 

multinomial likelihood and Pearson χ
2
 implementation of DC. If the DC normative model 

predictions align with empirical observations, the model could be adapted for use in 

future studies with clinical populations with known cognitive and decisional difficulties. 

This could allow theoretical and empirical exploration and interpretation of group 

differences in navigating stressful situations, which could increase our knowledge of 

aberrant or dysfunctional cognition leading to suboptimal, cognition dependant coping 

strategies in clinical populations.  
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Chapter 2: Methodology 

2.1 Participants 

Participants were recruited from Western University’s undergraduate Psychology 

Research Participation Pool as partial fulfilment of course credit. Fifty-eight participants 

were recruited and tested. Twelve participants were removed as a result of a significant 

change in the paradigm (n = 8), a computer hard drive failing mid-experiment (n = 2), or 

a lack compliance to the task/poor motivation (n = 2). The final participant sample 

consisted of 20 males (Age M = 18.2, S.D. = 0.52, Min = 17, Max = 19, Mode = 18, and 

Mdn = 18) and 26 females (Age M = 18.7, S.D. = 1.25, Min = 17, Max = 21, Mode = 18, 

and Mdn = 18).  

2.2 Inclusion Criteria  

In order to participate in the present study, individuals needed to be under 30 

years of age, right-handed, and self-reported good English reading comprehension. Age is 

positively correlated with diminished electrodermal activity (Boucsein, 2006), with 

noticeable age-related skin changes posited to influence electrodermal activity beginning 

at 30 years of age (Boucsein, 2006). The criteria for age was due to this phenomena, as 

psychophysiological data was collected for future analysis and not as part of the present 

thesis.  

2.3 Exclusion Criteria  

The presence of a self-reported hearing problem is this study’s only exclusion 

criteria.  

2.4 Apparatus 

Equipment used for data collection consisted of three separate hardware 

platforms, one for cognitive, psychometric, and psychophysiological collection.  

2.4.1 Cognitive research platform.  

Cognitive data collection occurred on an internet-disabled desktop computer with 

Windows 7 operating system. The participant and computer were in a room separated 

from the experimenter by a one-way mirror. The participant was positioned so the 

experimenter could observe the participant’s behavior, including the participant’s 
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attention to the task, any discomfort with the adverse noise, choice selections, and time 

spent on instructions. A bell located on the participant’s desk was used to signal task 

completion or request assistance. Presentation of stimuli and collection of behavioral 

responses were completed on the computer using behavioral experiment software (E-

Prime 2.0). Additional responding related to the learning paradigm was collected on 

paper forms.  

2.4.2 Psychometric research platform.  

The Measures phase occurred in the data collection area of the research laboratory 

using an internet-enabled Gateway laptop running Windows 7. Paper-based 

questionnaires were transferred to an online survey software platform (Qualtrics 
TM

), and 

this software was used to administer questionnaires electronically.  

2.4.3 Psychophysiological apparatus.  

Psychophysiological data was collected using equipment manufactured by Biopac 

(BIOPAC Systems, Inc., Goleta, CA). The MP-150 Data Acquisition System, in 

conjunction with ECG-100C (electrocardiography) and EDA-100C (electrodermal 

activity) modules, were used to collect heart rate and electrodermal activity. Heart rate 

was measured using two adhesive, disposable, snap Ag/AgCl electrodes in a Lead II 

configuration, one on the carotid artery above the right collarbone and the second located 

medial above the left ankle. This Lead II configuration was incorporated to avoid 

impeding responses and to decrease movement artifacts associated with the participants 

making selections with their right hand. Electrodermal activity was measured using two 

electrodes on the participant’s left hand, one on each on the first phalanges of the index 

and middle finger (i.e., fingertips). The software package AcqKnowledge 4.1 was used to 

record the signals associated with these electrodes and perform computations. Logitech 

stereo desktop speakers were used to generate white noise at a controlled decibel level 

(85 dB) for the informed consent sample and during the Learning and Testing phases.  

2.5 Measures 

 Published measures exploring a variety of personality and dispositional 

characteristics of participants were recreated digitally on an online survey software 
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platform (Qualtrics 
TM

) and administered to participants using a laptop computer. The 

measures selected explore concepts relevant to DC, including desire for control or 

cognition, intolerance of uncertainty, decision-making style, and features of trait anxiety.   

 In addition, following probability learning trials (described below), a probability 

rating sheet and a rank ordering sheet were used to measure a participant’s judgement of 

the probability and the ordinal ranking that a particular letter would be followed by an 

adverse noise respectively. These sheets were administered after each trial in the 

Learning phase and at the conclusion of the Testing phase of the overall procedure.  

2.5.1 Desirability of Control. 

 The Desirability of Control scale (DOC; Burger & Cooper, 1979) was developed 

to assess motivation to control of events in one’s life. It is a 20 item measure that uses a 

seven-point Likert scale (1 = The statement does not apply to me at all; 7 = The statement 

always applies to me). A factor analysis conducted by Burger and Cooper (1979) found 

five factors accounting for 50.4% of DOC variance: General Desire for Control (e.g., “I 

enjoy having control over my own destiny”); Decisiveness (e.g., “There are many 

situations in which I would prefer only one choice rather than having to make a 

decision”); Preparation-Prevention Control (e.g., “I like to get a good idea of what a job 

is all about before I begin”); Avoidance of Dependence (e.g., “I try to avoid situations 

where someone else tells me what to do”); and Leadership (e.g., “I would rather someone 

else take over the leadership role when I’m involved in a group project”). The DOC scale 

demonstrates good reliability and validity, with adequate construct validity and good test-

retest reliability (α =.78 and α =.76) according to McCutcheon (2000) and has been used 

in previous DC research (Shanahan, 2016).  

2.5.2 Need for Cognition. 

 The Need for Cognition scale (NFC; Cacioppo, Petty, & Kao 1984; Cacioppo & 

Petty, 1982) was developed to assess the tendency and enjoyment in using information 

processing when presented with activities amenable to its use. The 34-item Likert scale 

has nine anchors (-4 = very strong disagreement; 4 = very strong agreement). The NFC 

has strong internal consistency (α =.90; Cacioppo et al., 1984) and measures a single 

factor. Sample questions include “Thinking is not my idea of fun” (reverse scored) and “I 
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really enjoy a task that involves coming up with new solutions to problems”. The NFC 

has been applied successfully in previous DC research to psychometrically profile 

participants (Shanahan, 2016) and abdicate an ability-dependant view of DC in favor of a 

personality-dependant view (Benn, 2001, 1995).  

2.5.3 Intolerance of Uncertainty Scale. 

The Intolerance of Uncertainty Scale (IUS; Freeston, Rheaume, Letarte, Dugas, & 

Ladouceur, 1994) is a 27-item measure initially constructed to evaluate emotional, 

cognitive, and behavioral reactions to uncertainties implicit in situations, oneself, and the 

future, as well as the resulting implications of uncertainty on the individual. Items such as 

“It frustrates me not having all the information I need” and “I must get away from all 

uncertain situations” are rated using a five-point Likert scale (1 = not at all characteristic 

of me; 5= entirely characteristic of me). While the scale is scored using a single summary 

score, a recent review of factor analytical studies has noted a variety of underlying factors 

measured by the IUS (Birrell, Meares, Wilkinson, & Freeston, 2011). In their review, 

Birrell and colleagues (2011) identified two consistent factors tapped by the IUS 

including the “desire for predictability and an active engagement in seeking certainty” 

(IUSF1) and the “paralysis of cognition and action in the face of uncertainty” (IUSF2). 

The IUS has been successfully used in recent DC research (Shanahan, 2016), correlating 

significantly with measures related to DC and possessing a Cronbach’s alpha of 0.91.  

2.5.4 Uncertainty Tolerance Scale. 

The Uncertainty Tolerance Scale (UTS; Dalbert, 1996, 1999) measures the 

tendency to evaluate uncertain situations as a challenge or as a threat. Responses to the 

eight items fall along a 6-point Likert-scale (1 = strongly agree; 6 = strongly disagree. 

Sample items include “I like unexpected surprise” and “I like to let things happen”. The 

scale has been used successfully in a number of studies by its creator (Dalbert, 1999, 

1996a, 1996b; Otto & Dalbert, 2011) and others (Bardi, Guerra, & Ramdeny, 2009; Bude 

& Lantermann, 2006).  
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2.5.5 General Decision-Making Style. 

The General Decision-Making Style (GDMS; Scott & Bruce, 1995) questionnaire 

is a 25-item measure with five scales comprised of five questions each. Each scale refers 

to conceptually independent, but not mutually exclusive, decision-making styles. They 

are: Rational, Intuitive, Dependant, Spontaneous, and Avoidant (GDMS-R, -I, -D, -S, and 

-A respectively). Scott and Bruce (1995) found that their results supported individuals 

adopting a combination of decision-making styles when making important decisions and 

reported internal consistency values (Cronbach’s alpha) for each style ranging from .68 to 

.94. Items are endorsed along a five-point Likert scale ( 1 = strongly disagree; 5= 

strongly agree) and include the following sample items: “My decision making requires 

careful thought” (Rational), “When making decisions, I rely upon my instincts” 

(Intuitive), “I rarely make decisions without consulting other people” (Dependent), “I 

postpone decision making whenever possible” (Avoidant), and “I generally make snap 

decisions” (Spontaneous). One item reported missing by Appelt, Milch, Handgraaf, and 

Weber (2011) from the original publication for the Rational scale was absent in our 

conducted research as well. The 24-item GDMS has been used effectively in the past to 

psychometrically profile participants (Shanahan, 2016).  

2.5.6 Endler Multidimensional Anxiety Scale – Trait scale. 

The Trait scale of the Endler Multidimensional Anxiety Scale (EMAS-T; Endler, 

Parker, Bagby, & Cox, 1991) is used to measure several facets of trait anxiety. It does so 

along four situational dimensions: Physical Danger, Social Evaluation, Novel Situations, 

and Daily Routine (EMAS-PD, -SE, -NS, and -DR respectively). Each dimension 

describes a situation pertinent to what it is measuring and poses 15 identical statements 

regarding the responder’s reactions and feelings. These statements are endorsed along an 

intensity scale ranging from 1 (Not at all) to 5 (Very much) and sample statements 

include “Seek experiences like this” (reverse scored), “Feel upset”, “Perspire”, and 

“Heart beats faster”. Coefficient alpha reliabilities reported by Endler et al. (1991) for a 

Canadian undergraduate population on all subscales of the Trait scale are over .92 for 

both men and women. The EMAS-T has been used successfully in past DC research to 

psychometrically profile individual dispositions linked to its application (Benn 2001; 

Shanahan, 2016).  
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2.5.7 Probability Rating sheet. 

The probability rating sheet was modelled after one used by Lees and Neufeld 

(1999) and consisted of a column of ten blank spaces to write a letter and adjacent 100 

mm lines. Each 100 mm line was marked with an anchor at 0, 25, 50, 75, and 100 

percent. The sheet is used by participants to demark the probability they believe a 

particular learned letter will be followed by a stressor. 

2.5.8 Rank Ordering sheet. 

The rank ordering sheet consisted of 10 blank spaces anchored on the left with the 

word “lowest” and on the right with “highest”. A randomized ordering of the 10 letters 

participants would learn to associate with a stressor adorned at the top. Participants were 

instructed to fill in the 10 blank spaces with the letters in an ordering they believed went 

from the lowest to highest probability of being followed by a noise (the stressor).          

2.6 Procedure 

The experiment consisted of four separate phases hereafter referred to as the 

Measures, Learning, Practice, and Testing phases (elaborated upon below). Learning and 

testing phases were modelled after the general procedures outlined in Kukde and Neufeld 

(1994) and Morrison et al. (1988). Prospective participants read and discussed a brief 

description of the experiment with the experimenter and were exposed to a one-second 

burst of 85 dB white noise from the computer speakers prior to obtaining informed 

consent. All participants agreed to continue and none withdrew. 

2.6.1 Measures phase. 

During the measures phase, participants completed the digitized measures (i.e. the 

DOC, NFC, UTS, EMAS, IUS, and GDMS) using Qualtrics
TM

 software on a laptop 

computer in the recording area of the laboratory. A research assistant was present to 

answer questions and clarify wording for participants. The measures phase took 

approximately 30 minutes to complete.   

2.6.2 Learning phase. 

Following the Measures phase, participants were led to the recording area of the 

laboratory, where they sat at a desk with a computer and keyboard. Participants were 
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presented with three rounds of learning trials, each followed by a probability judgement 

trial. All instructions were presented on the computer screen and participant feedback 

during the probability judgement trials was elicited through the use of the probability 

rating sheet and ranked order sheet.   

Each learning trial consisted of the same 104 presentations of capital, English 

alphabetic letters paired with either an "innocuous event" or a "stressor". Each innocuous 

event was a one-second computer screen presentation of a green screen (a non-significant 

event) and each stressor was a one second burst of 85 dB white noise from the computer 

speakers. The stressing properties of the stressor have been ascertained according to 

Thurstonian and other scaled subjective and psychophysiological responses in previous 

DC research and related studies (Kukde & Neufeld, 1994; Lefave & Neufeld, 1980; 

Neufeld & Herzog, 1983; Neufeld & Davidson, 1974). The 104 letter-outcome pairs and 

the conditional probabilities of a stressor given a letter are both included in Table 1. For 

an example of a conditional probability, the letter D would appear seven times per trial, 

two times with a green screen (innocuous event) and five times followed by the white 

noise stressor (giving a conditional probability of 5/7=0.71%). Ordering of these letter-

outcome pairs was randomized across participants and between trials; all participants 

received the same pairs, but in completely random order. The ten letters selected were 

identical to those used in Kukde and Neufeld (1994) and Morrison et al. (1988). Their 

selection was such that the probability of misidentifying one letter for another was less 

than 0.10, as indicated by Townsend's (1971) confusion matrix. The paradigm used in 

this study and the above mentioned studies is one pioneered by Estes (1976). Estes’ 

paradigm allows differential anticipatory stress to occur in response to the chosen letters 

due to memory association mechanisms of probability learning (cf. Estes 1976). Unequal 

letter frequencies are such that stressor and innocuous events are uncorrelated (r =.02), 

but still amenable to Estes’ (1976) model of “categorical memory”.  In essence, Estes’ 

paradigm is designed such that each letter possesses its own inherent probability of a 

stressor and is implicitly separate from the probabilities of other letters. Past research has 

evidenced that participants’ judgement rankings have a greater tendency to align with the 

frequency of stressor occurrences than the conditional probabilities (Morrison et al.,1988; 

Mothersill & Neufeld, 1985; Neufeld & Herzog, 1983). As such, the reported subjective 
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probabilities from participants in past studies (Lees & Neufeld, 1999; Morrison et al., 

1988) were averaged with the conditional probability to create a hybridized probability. 

This hybridized probability is given in Table 1 as the probability of stressor occurrence 

during the Experiment phase. It dictates the probability of feedback during the Testing 

phase to better align with participant expectations of stressor/innocuous event probability.  

Table 1 

Letters for Stimulus Presentation (During Learning and Testing phases) and Associated 

Frequencies and Probabilities 

Letter stimulus D B J L M A Z V P G 

 

Letter frequency 

 

 

7 

 

12 

 

9 

 

5 

 

9 

 

6 

 

14 

 

11 

 

18 

 

13 

Relative frequency of 

stressor 

 

5 4 1 2 2 4 6 7 8 9 

Relative frequency of 

innocuous event 

 

2 8 8 3 7 2 8 4 10 4 

Conditional probability 

of stressor given letter 

occurrence 

 

0.71 0.33 0.11 0.40 0.22 0.67 0.42 0.64 0.44 0.69 

Probability of stressor 

occurrence during 

Testing phase 

0.61 0.42 0.21 0.41 0.33 0.62 0.50 0.63 0.48 0.69 

 

During each learning trial, a letter appeared on the computer screen for two 

seconds followed by a two-second delay and then a one-second innocuous or stressor 

event. A three-second inter-trial interval would precede the subsequent letter presentation 

to allow psychophysiological responding to return to baseline. Participants were 

instructed to say aloud any letter paired with a stressor by saying the letter and the word 

"noise". For example, if the letter Z was presented and followed by the stressor, a 

participant would say "Z noise". If a letter was not followed by a stressor, they were 

instructed to say nothing. This methodology was adopted to facilitate the encoding of 
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letter-outcome pairs from a modified Estes’ (1976) paradigm found to produce the 

greatest salience to noise frequency by Neufeld and Herzog (1983) and to enhance traces 

in categorical memory on which probability judgements were found to be determined 

(Estes, 1976).  

To lessen the cognitive demands of the task on memory and enhance learning, 

participants were instructed to arrange ten physical blocks, each with a letter written on it, 

in order from least to most likely to be followed by a stressor during inter-trial intervals. 

Participants were requested to continue to order the blocks within and across all three 

learning trials. Participants were informed that all learning trials contained the same 

frequency of letter-outcome pairs with only the ordering randomized.  

Participants completed a probability judgement trial following each learning trial. 

During a judgement trial, participants were presented with a random letter on screen for 

two seconds and given a six-second window to record on the Probability Rating sheet the 

letter presented and demark on the line the probability of the letter being followed by the 

stressor. Judgements were requested under a short timeframe of six seconds to encourage 

participants to report their initial beliefs and not deliberate their answers. Participants 

then completed a ranked ordering of the letters from least to most likely to be followed by 

a stressor on the Rank Ordering sheet. Once all answers were recorded, participants were 

given a two-minute break before the subsequent learning trial began. The Learning phase 

took approximately 45 minutes to complete.  

2.6.3 Practice phase. 

Following the Learning phase, participants were instructed on the rules of a DC 

framework and practiced making selections as they would in the Experimental phase. 

Participants were given a sheet containing a separate set of ten letters and their 

hypothetical probability of being followed by a stressor. They were instructed to make 

selections using these letters for the preliminary Practice phase and informed that the ten 

letters they had previously learned to associate with stressor occurrences would be 

present in the Testing phase. No stressor occurrences were provided during the Practice 

phase trials and feedback was displayed for both correct and incorrect selections to 

enhance rule learning. Electrodes and leads were connected at the beginning of this phase 

to allow time to adhere and calibrate. Participants were encouraged to ask questions to 
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the experimenter if any anything was confusing or needed clarification. The Practice 

phase took approximately 15 minutes to complete.  

2.6.4 Testing phase. 

Participants were instructed to respond as they saw fit while obeying the rules of 

the paradigm. They were also requested to make responses as quickly and accurately as 

possible and reminded that the letters they had learned before would be presented and 

followed by either a stressor or an innocuous event. They were informed that although 

good performance on the task would result in a reduced probability of experiencing the 

stressor, it would not altogether eliminate its occurrence.   

All nine architectures (j) were presented twelve times within a block. Participants 

completed three blocks in total with a break of unspecified length (participant’s choice) 

between each block. Architectures were presented in randomized order with each trial 

including a randomized selection of eight of the ten possible letters. An example of each 

architecture, as they would be presented to participants, and how participants should 

respond can be found in Appendix J.   

At the beginning of each trial, participants were instructed to relax for three 

seconds. Following the “relax” screen, they were instructed to depress the space bar 

which would display the architecture and elements until they were ready to make a 

selection. Upon deciding which element to select (from subjective preference and in 

accordance with the rules of the game theoretic paradigm) they would release the space 

bar and type the letter on the keyboard. Depression of the space bar followed by a 

selection is a method used to collect decision-time estimates, a behavioral measure to be 

combined with psychophysiological activation for future consideration. Two seconds 

after their selection they would receive either an innocuous or stressor outcome for one 

second dependant on the probability of stressor occurrence during Testing phase in Table 

1 (in an effort to maintain credibility of the experimental treatments). After a half second 

delay, they would proceed to the next trials relax screen. Following four presentations of 

each architecture per block, however, participants would instead be directed to a stress 

measurement scale before going to the next trial. The stress measurement scale would ask 

how stressed they were during the past trial from one (no stress) to five (a lot of stress). 

Each experimental block took approximately 30 minutes to complete.  
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After the last experimental block, participants completed a final Probability 

Rating sheet and Rank Ordering sheet. They then received a debriefing sheet and were 

assigned course credits for their participation depending on the length of time spent 

completing the experiment (.5 credit per half an hour up to 4 credits maximum).  
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Chapter 3: Results 

 

The results section is broken up in two main parts with several subheadings. The 

results begin by addressing the primary goal of the current research, testing the DC 

model. These results are followed by descriptive statistics of the psychometric measures 

and their correlations with model testing with the aim of psychometrically profiling DC 

amenability.  

3.1 DC Model Testing 

3.1.1 Indication that learning occurred and participant removal.  

Bivariate correlations were completed to investigate the relationship between the 

group-averaged subjective probability ratings pre- and post-Testing phase and the 

components of Table 1. Significant correlations in order of increasing Pearson’s 

correlation coefficients were found between the relative frequency of stressor (r(8) = .89, 

p = .001); the conditional probability of stressor given letter occurrence (r(8) = .93, p < 

.001); and the probability of stressor occurrence during Testing phase (r(8) = .97, p < 

.001). Group-averaged subjective probability ratings were not significantly correlated 

with the relative frequency of the innocuous event (r(8) = -.42, p = .23).  

Additionally, bivariate correlations were calculated between the group-averaged 

subjective probability ratings pre- and post-Testing phase and the subjective probabilities 

of two past DC studies using the same Estes’ (1976) learning paradigm. This was done in 

an effort to investigate if our participant sample had learned the probabilities and mapped 

the ti values in a corresponding way to past research conducted. Pearson’s correlation 

coefficients between both participant’s ratings in Morrison et al. (1988) and Lees and 

Neufeld (1999) were highly significant, r(8) = .92, p < .001 and r(6) = .96, p < .001 

respectively. With these strong correlations, we can say that the findings are consistent 

with past research utilizing the same learning paradigm. Also supported is the use of 

these past studies subjective probabilities in creating a hybridized probability used in the 

Testing phase (see the Methods section for more details).  

As an indication of participants sufficiently learning and retaining letter 

probabilities during the Learning phase, scores on probability rating sheets pre- and post-
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Testing phase were investigated. Spearman’s rank correlations (rho) were calculated 

between participant subjective probability ratings pre- and post-experiment, as the ratings 

become monotonically related ranks (ti values). Spearman’s rank correlations were used 

as an indicator of consistent learning, and, if participants’ pre- and post-experiment 

scores did not correlate highly, it was attributed to a reappraisal of the probabilities 

(subjective utilities) within the experiment. As choice selection is assumed to be 

dependant on consistent use of MAX EU, a large change in SEU during the Testing phase 

undermines the model and our tests of fit. For a participant to be evaluated under this 

model, it must be insured that the only departures from the model are due to fit between 

objective utilities and subjective utilities and the decision-making strategy chosen. If 

participants do not learn the ordering of subjective utilities, we can not attribute the 

departure from the model as either specified source. Participants with a rank correlation 

above .60, indicative of a strong or very strong correlation (Evans, 1996), were kept for 

further analyses. This criterion removed ten participants, bringing the remaining number 

of participants to 36. This group of participants will hereafter be referred to as the 

Learners Group, as they showed a high level of consistent learning and ordering of 

subjective utilities. The group with all participants (except for the 12 eliminated on 

grounds mentioned in the Methods section) will be referred to as the All Group (n = 46).    

3.1.2 Data cleaning procedures. 

Participant data was investigated for any inconsistent rule following during the 

Testing phase. Trial data found inconsistent of the rules was removed from analysis or 

recoded. If the correct answer could be inferred (through the lack of choice, e.g., in an 

NN scenario) or was randomly distributed at the subordinate level (e.g., NU) data was 

recoded. In instances where a selection was outside of the available choices (not 

displayed as an option) and choice selection could not be inferred (e.g., NC), data was 

removed from the total counts for that particular structure (j). Descriptive statistics for the 

frequencies are as follows: for the All Group, removed data (N = 46, M = 5.04, SD = 

7.57, Mdn = 1.5, Min. = 0, Max. = 26, Range = 26) and recoded data (N = 46, M = 14.28, 

SD = 10.37, Mdn = 12.5, Min. = 1, Max. = 38, Range = 37); and for the Learners Group, 

removed data (N = 36, M = 5.36, SD = 8.06, Mdn = 1.5, Min. = 0, Max. = 26, Range = 
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26) and recoded data (N = 36, M = 13.28, SD = 10.63, Mdn = 8, Min. = 1, Max. = 38, 

Range = 37).   

3.1.3 Subjective utilities of ti values. 

Three models of possible fit were conducted to explore fit with our normative 

model; each varying the tendered utilities for each ti value.  

The first model, hereafter referred to as the Conditional model, assumed 

participants’ subjective utilities were in alignment with the conditional probabilities of 

stressor (given letter occurrence) found in Table 1. This model is viewed as the one 

containing the objective utilities upon which a normative model would prescribe choices 

be made.  

The second model, hereafter referred to as the Group model, averaged all 

participants’ subjective probability ratings pre- and post-Testing phase and created a 

group mean of these means. In essence, the Group model contains the group consensus 

on the subjective utilities of each ti value and individual participants’ utilities were 

compared to that using the group subjective utilities.  

The last model, hereafter referred to as the Individualized model, investigated 

model fit using each individuals’ subjective utilities. Using the average of their pre- and 

post-Testing phase probability ratings, ti values were constructed for each participant. In 

instances where one or more ti values were tied, averaged rank orders from the Rank 

Ordering sheet were used to break the tie. In one rare case where both the averaged 

probabilities and rank orders were tied, the tie was broken using the participants second 

Probability Rating sheet (that occurred before the pre-Testing phase).  

Table 2 displays the ti rankings for both the Conditional and Group model.  
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Table 2 

Conditional and Group Rank Orderings and Probabilities of Letter Presentations 

Rank of ti 1 2 3 4 5 6 7 8 9 10 

Conditional model 

letter rankings 
J M B L Z P V A G D 

Conditional model 

objective probabilities 

of stressor given letter 

occurrence 

0.11 0.22 0.33 0.40 0.42 0.44 0.64 0.67 0.69 0.71 

Group model letter 

rankings 
J M L B Z P A D V G 

Group model 

subjective probabilities 

of stressor given letter 

occurrence  

0.16 0.23 0.33 0.35 0.51 0.55 0.57 0.60 0.66 0.69 

3.1.4 G2
 and Pearson χ

2
 calculations. 

As specified in the introduction, DC model and generic saturated model 

multinomial likelihoods were calculated for each particular structure (j) using participant 

selections and ti rankings (above). Values were calculated for each of the nine structures 

using these likelihoods and a summed aggregate (per participant) was created for each 

model. This aggregate value represented the overall fit between the participant’s 

empirical responses and the model predictions.  

3.1.5 Outliers, normality, and transformation. 

Outlier data was screened using methodology recommended originally by Tukey 

(1977) and updated by Hoaglin and Ignlewicz (1987). This stringent form of outlier 

removal multiplies the difference between the 25
th

 and the 75
th

 percentile by a factor of 

2.2. This product is then added to the 75
th

 percentile and removed from the 25
th

 

percentile, with extreme values falling outside of this range. Using this methodology, one 

G
2 
value and three Pearson χ

2
 values were removed. Due to the listwise nature of repeated 
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measures ANOVA, the final participant count used in the ANOVA analysis below was 

32.   

The assumption of normality was tested through examination of the 

unstandardized residuals for all G
2 
and Pearson χ

2
 values. Review of the Kolmogorov-

Smirnov (Lilliefors correction) and the Shapiro-Wilk tests of skewness and normality 

suggested both were violated and histograms suggested data was positively skewed in all 

cases. For G
2
, D(32) = .19, p = .005 and W(32) = .86, p = .001, D(32) = .20, p = .002 and 

W(32) = .84, p < .001, and D(32) =.20, p = .002 and W(32) = .89, p = .003 for the 

Conditional, Group, and Individualized models respectively. For Pearson χ
2
, D(32) = .25, 

p < .001 and W(32) = .76, p < .001, D(32) = .24, p < .001 and W(32) = .77, p < .001, and 

D(32) = .22, p < .001 and W(32) = .77, p < .001 for the Conditional, Group, and 

Individualized models respectively.  

  Due to violations in normality, a log10 transformation was performed on the data 

(Field, 2013). Following the transformation, no significant violations of normality were 

observed and no outliers were recommended for removal. As results from analyses 

performed below were in alignment with results occurring with the log10 transformed 

data, results on untransformed data alone are presented in both the ANOVA and 

correlations.  
 
      

 
     

3.1.6 Repeated measures one-way ANOVA.  

A one-way within subjects (repeated measures) ANOVA was conducted to 

compare the effect of model (Conditional, Group, and Individualized) on G
2
 and Pearson 

χ
2
 fit indices. Mauchly’s test indicated that the assumption of sphericity had been violated 

for the main effects of model on both G
2
 and Pearson χ

2 
values, χ

2
(2) = 18.43, p < .001 

and χ
2
(2) = 52.23, p < .001 respectively, therefore degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ɛ = .69 and ɛ = .55 respectively). The 

results show that the G
2
 and Pearson χ

2 
values were both significantly affected by which ti 

configuration that was used, F(1.37, 42.50) = 12.02, p < .001, ɳp
2 
= .28 and F(1.10, 

33.98) = 8.77, p = .005, ɳp
2 
= .22  respectively.  

A priori post hoc tests using the Bonferroni correction were conducted and were 

appropriately warranted given the statistically significant omnibus ANOVA F-test. All 

significance testing reported below used two-tails in order to be conservative. For G
2
 



34 

 

values, no significant difference was found between the Conditional (M = 192.14, SD = 

117.25) and Group model (M = 172.00, SD = 106.25), however, there was a significant 

difference between the Individualized model (M = 116.59, SD = 60.19) and both the 

Conditional model (p = .002, Cohen’s dz = .70) and the Group model (p = .006, Cohen’s 

dz = .60). For Pearson χ
2 
values, the same pattern appeared with no significant difference 

between the Conditional (M = 705.55, SD = 783.48) and Group model (M = 733.10, SD = 

832.51), but a significant difference between the Individualized model (M = 288.20, SD = 

294.79) and both the Conditional model (p = .018, Cohen’s dz = .52) and the Group 

model (p = .014, Cohen’s dz = .54). Estimated marginal means patterns are depicted in 

Figure 3 and Figure 4.   

3.1.7 Canonical correlations.  

 In addition to the repeated measures analysis, a canonical correlation analysis was 

conducted in order to determine the relationship between the three G
2
 values and the 

three Pearson χ
2
 values. The first of the two variable sets consisted of the three G

2
 values 

and the second set consisted of the three Pearson χ
2
 values. Two separate canonical 

correlations were conducted, one with all participants (the All Group) and the other with 

the Learners Group. The results presented below are for the Learners Group; All Group 

results can be found in Appendix B. Bivariate Pearson correlation coefficients between 

the fit indices can be found below in the Correlations section of Psychometric Data.  

Results from the Learners Group indicated three significant canonical functions 

emerged, Rc = .974, Wilk’s Λ = .006, F(9, 73.16) = 56.32, p < .001, for function 1; Rc = 

.885, Wilk’s Λ = .127, F(4, 62.00) = 27.952, p < .001, for function 2; and Rc = .643, 

Wilk’s Λ = .587, F(1, 32.00) = 22.56, p < .001, for function 3. As Wilk’s Λ represents the 

variance unexplained by the model and 1- Λ gives us the full model effect size in r
2
, the 

full model explained about 99.4% of the variance shared between the two variable sets. 

Given that the Rc
2 
effects for the first two functions accounted for 95% and 78% of shared 

variance respectively, only the first two functions were considered relevant in the context 

of the study.  
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Figure 3. Marginal Means of G
2 
Values for the Three Models. Error bars represent 

standard error of the marginal means. * indicates p <.05; ** indicates p <.01. 
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Figure 4. Marginal Means of 2 
Values for the Three Models. Error bars represent 

standard error of the marginal means. * indicates p <.05; ** indicates p <.01. 
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 In the first function, all of the G
2
 values of the first set (Individualized Model [-

.649], Group Model [.557], and Conditional Model [.509]) and all of the Pearson χ
2
 

values of the second set (Individualized Model [-.716], Group Model [.686], and 

Conditional Model [.656]) loaded onto the function with moderate canonical loadings. 

The redundancy indices for the first and second set were .341 and .447 respectively. Of 

particular interest is the directionality of the two Individualized Model fit values which 

are negatively related to this canonical variate relative to the other two models. As 

participants’ subjective utilities of rank ti values dominate their ti selections, their fit 

values on the Group and Conditional models become worse and vice versa. It appears 

that the first factor is parsing out two sets of individuals, those who rely on subjective 

utilities and those who rely on environmentally defined utilities. Elaborately separating 

those whose cognitive mapping was rooted in uniquely subjective utilities, which 

surmounted normative and group choice selection, and those who correctly inferred the 

environment defined utilities and whose subjective utilities evidently corresponded to 

normative utilities. 

 In the second function, all of the G
2
 values of the first set (Individualized Model [-

.758], Group Model [-.829], and Conditional Model [-.477]) and all of the Pearson χ
2
 

values of the second set (Individualized Model [-.698], Group Model [-.727], and 

Conditional Model [-.685]) loaded onto the function with moderate to high canonical 

loadings. The redundancy indices for the first and second set were .389 and .387 

respectively. From these results, there appears to be a factor which accounts for 

unidirectional variance in each model which is not accounted for by the first factor.    

3.2  Psychometric Data 

 A MANOVA was run to investigate any gender differences in psychometric 

responding and with fit indexes prior to reporting descriptive statistics. No significant 

results were found and descriptive statistics reported below will be collapsed across 

gender.  
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3.2.1 Desirability of Control.  

 The DOC with college students has a theoretical mean around 100 and a standard 

deviation around 10. Participant scores on the DOC were normally distributed (n = 36, M 

= 99.14, SD = 8.19, and range = 83 to 115).  

3.2.2 Need for Cognition. 

  The need for cognition has a theoretical range from -136 to 136. Participant scores 

on the NFC were normally distributed (n = 36, M = -5.11, SD = 15.43, and range = -42 to 

28). A positive score represents an enjoyment in using cognition and a negative score 

represents an aversion to it.  

3.2.3 Intolerance of Uncertainty. 

The need for cognition has a theoretical range from 27 to 135. Participant total 

scores on the IUS were normally distributed (n = 36, M = 65.89, SD = 13.51, and range = 

38 to 98), as were the aggregated scores on the two factors identified by Birrell et al. 

(2011) as “desire for predictability and an active engagement in seeking certainty” (n = 

36, M = 34.67, SD = 8.28, and range = 17 to 51) and “paralysis of cognition and action in 

the face of uncertainty” (n = 36, M = 21.19, SD = 4.79, and range = 12 to 29). Hereafter, 

the two factors will be referred to as IUSFactor1 and IUSFactor2 respectively.  

3.2.4 Uncertainty Tolerance Scale. 

 The UTS has a theoretical range from 8 to 48. Participant total scores on the UTS 

were normally distributed (n = 36, M = 26.97, SD = 5.16, and range = 13 to 39). Higher 

values are indicative of a greater tolerance to uncertainty.  

3.2.5 General Decision-Making Style. 

The GDMS yields five scores, one for each of the decision-making styles it 

investigates. The Rational, Dependent, Spontaneous, and Avoidant decision styles were 

normally distributed, but the Intuitive style was not, W(32) = .93, p = .031. Each 

aggregate score is made up of five questions, except for Rational (for reasons mentioned 

in the methods section).   
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3.2.6 Endler Multidimensional Anxiety Scale – Trait scale.  

 The Trait scale of the EMAS yields a measure of trait-based anxiety along four 

situational dimensions: Physical Danger (PD), Social Evaluation (SE), Novel Situations 

(NS), and Daily Routines (DR). Each dimension ranges from 15 to 75 and every 

dimension was normally distributed except for Daily Routines, W(32) = .89, p = .002. 

 

3.2.7 Fit indices.  

Descriptive statistics for the fit indices can be found in Table 3. Tests of normality can be 

found in 3.1.5. Outliers, normality, and transformation. 

Table 3 

Descriptive Statistics for the Fit Indices by Model 

  G
2
    Pearson χ

2
  

Model n M (SD) range  n M (SD) range 

Conditional 32 192.14 (117.25) 393.62  32 705.55 (783.48) 2878.81 

Group 32 172.00 (106.25) 375.49  32 733.10 (832.51) 2994.37 

Individualized 32 116.59 (60.19) 256.01  32 288.20 (294.79) 1102.35 

 

3.2.8 Correlations.  

Table 4 contains the bivariate correlations for all psychometric measures and the 

G
2
 and Pearson χ

2 
values for the Learners Group. As the majority of measures were 

normally distributed, Pearson’s correlation coefficient is reported for all. A Spearman’s 

rho correlation, not reported, found a consistent trend in the results and supported our use 

of Pearson’s correlation coefficient. All reported Pearson correlation coefficient 

significance tests are two-tailed.   

DOC significantly correlated with GDMS-S (r[34] = -.428, p = .009), which 

represents that those who endorsed enjoying and desiring the use of cognition would be 

less likely to endorse a spontaneous approach to decision-making.  

EMAS-PD significantly correlated with NFC (r[34] = -.458, p = .005), indicating 

that those who would prefer more cognitive control and have a greater tendency (and 

want) for thinking about problems possess lower levels of trait anxiety towards situations 
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of PD. EMAS-PD also significantly correlated with GDMS-D (r[34] = .419, p = .011), 

GDMS-I (r[34] = -.429, p = .009) and GDMS-R (r[34] = .353, p = .035). These results 

indicate a positive relationship between having trait anxiety towards situations of PD and 

preferring others to assist in the decision-making process or make decisions for the 

individual, not wanting to rely on one’s instincts to make decisions, and preferring to 

rationally contemplate a choice of action.  

The IUS was also significantly correlated with the UTS (r[34] = -.410, p = .013), 

indicating that those endorsing a greater intolerance to uncertainty would be less likely to 

endorse being tolerant of uncertainty. In particular, the first factor of IUS was quite 

significantly correlated with the UTS (r[34] = -.396, p = .017), which means that those 

endorsing a lower tolerance (aversion) to uncertainty would desire more predictability 

and engage in activities which seek certainty.  

The NFC was significantly correlated with the GDMS-D (r[34] = -.446, p = .006), 

indicating that those who would prefer more cognitive control and have a greater 

tendency (and want) for thinking about problems would be less likely to adopt a 

dependant decision making style.  

A number of the decision-making styles in the GDMS have significant 

correlations with one another, indicative of individuals using a combination of decision-

making styles. Significant correlations include: GDMS-D with GDMS-A (r[34] = ..660, 

p < .001), GDMS-S (r[34] = .442, p = .007), and GDMS-R (r[34] = .578, p < .001); 

GDMS-A with GDMS-S (r[34] = .371, p = .026), and GDMS-R (r[34] = .480, p = .003); 

and GDMS-S with GDMS-R (r[34] = .476, p = .003).  

In a similar fashion to the canonical correlations, correlations between fit indexes 

found a highly positive correlation between Individualized G
2
 and Pearson χ

2
 values 

(r[34] = .922, p = < .001), between Group G
2
 and Pearson χ

2
 values (r[34] = .906, p = < 

.001), between Conditional G
2
 and Pearson χ

2
 values (r[34] = .469 p = .004), and 

between Group and Conditional G
2
 (r[34] = .718, p < .001) and Pearson χ

2
 values (r[34] 

= .940, p = < .001) respectively. No significant correlations between the Individualized 

model and the Group or Conditional models for either fit index were found.    

The only significant correlations found with fit indexes and psychometric 

measures were between the EMAS-NS and both the Individualized model G
2
 (r[34] = 
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.358, p = .032) and Pearson χ
2
 (r[34] = .377, p = .023) values. This indicates that those 

who experience a higher degree of trait anxiety towards novel situations would be more 

inclined to deviate from the Conditional model’s objective and the Group model’s 

consensual utilities in favor of (personal) subjective utilities. 

A number of significant correlations within the All Group overlap and have the 

same intuitive meaning with those in the Learners Group. Future sufficiency testing will 

consider disparate and similar responding between both groups to elucidate group 

differences. A correlation matrix for the All Group can be found in Appendix C for 

further consideration.  

3.2.9  Canonical correlations. 

A canonical correlation analysis was conducted in order to determine the 

relationship between the psychometric measures and the G
2
 and Pearson χ

2
 values across 

models. Two canonical correlations were conducted, one with the All Group and one 

with the Learners Group.  No significant canonical correlations were found for either 

analysis. Following methodology outlined for Canonical Correlation (Neufeld, 1977), 

proportions of redundant variance were explored. By aggregating the redundancy indexes 

of the second set (fit indexes) by the first set (psychometric measures), the total variance 

accounted for by the first set can be enumerated. In the Learners group, the collect 

amount of variance was .403, making the average amount of variance accounted for by 

each (n=6) of the non-significant canonical correlations 6.7% of the variance.  
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  Underline indicates p < .05 (2-tailed); Boldface indicates p < .001(2-tailed). 

  DOC: Desirability of Control; EMAS: Endler Multidimensional Anxiety Scale – Trait Scale, -PD: Physical Danger, -SE: Social     

  Evaluation, -NS: Novel Situations, -DR: Daily Routines; IUSTot: Intolerance of Uncertainty total score, -F1: factor 1, -F2: factor 2;  

  NFC: Need for Cognition; UTS: Uncertainty Tolerance Scale; GDMS: General Decision-Making Scale, -D: Dependent, -A:  

  Avoidant, -S: Spontaneous, -I: Intuitive, -R: Rational; GInd: G
2
 for the Individualized model; PInd: Pearson χ

2
 for Individualized  

  model; GGroup: G
2
 for the Group model; PGroup: Pearson χ

2
 for Group model; GCon: G

2
 for the Conditional model; PCon: Pearson  

  χ
2
 for Conditional model. 

Table 4 

Correlation Matrix for Psychometric Measures and Fit Indices 

DOC EMAS-PD EMAS-SE EMAS-NS EMAS-DR IUSTot IUSF1 IUSF2 NFC UTS GDMS-D

DOC

EMAS-PD .00

EMAS-SE -.12 -.02

EMAS-NS .17 .25 .07

EMAS-DR -.27 .31 -.05 -.02

IUSTot -.01 .16 -.01 -.13 .29

IUSF1 .06 .01 .03 -.06 .18 .90

IUSF2 -.06 .17 -.08 -.20 .21 .71 .37

NFC .23 -.46 -.10 .16 -.24 -.21 -.05 -.30

UTS -.10 -.17 -.09 -2.8 .03 -.41 -.40 -.26 .13

GDMS-D -.25 .42 .15 .10 .20 .16 .06 .16 -.45 -.26

GDMS-A -.33 .16 .06 -.07 -.07 -.05 -.05 .00 -.23 -.14 .66

GDMS-S -.43 .32 -.12 .21 .04 .20 .19 .04 -.24 -.18 .44

GDMS-I .15 -.43 -.05 .05 -.23 -.02 .09 -.16 .30 -.06 -.19

GDMS-R -.07 .35 -.11 .08 .08 -.04 -.04 -.04 -.13 -.15 .58

GInd .10 .00 -.17 .36 -.11 -.33 -.26 -.25 .04 .05 .13

PInd -.03 .18 -.12 .38 -.10 -.28 -.24 -.22 -.09 -.04 .26

GGroup .22 .02 .04 .30 .15 -.09 -.10 .01 .08 -.05 .09

PGroup .23 .16 .12 .29 .22 .13 .07 .12 .07 -.18 .08

GCon .08 .01 -.06 .15 .27 .02 -.07 .14 -.08 .01 -.01

PCon .25 .21 .17 .24 .20 .06 .02 .06 .05 -.14 .11
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  Underline indicates p < .05 (2-tailed); Boldface indicates p < .001(2-tailed). 

  DOC: Desirability of Control; EMAS: Endler Multidimensional Anxiety Scale – Trait Scale, -PD: Physical Danger, -SE: Social     

  Evaluation, -NS: Novel Situations, -DR: Daily Routines; IUSTot: Intolerance of Uncertainty total score, -F1: factor 1, -F2: factor 2;  

  NFC: Need for Cognition; UTS: Uncertainty Tolerance Scale; GDMS: General Decision-Making Scale, -D: Dependent, -A:  

  Avoidant, -S: Spontaneous, -I: Intuitive, -R: Rational; GInd: G
2
 for the Individualized model; PInd: Pearson χ

2
 for Individualized  

  model; GGroup: G
2
 for the Group model; PGroup: Pearson χ

2
 for Group model; GCon: G

2
 for the Conditional model; PCon: Pearson  

  χ
2
 for Conditional model. 

Table 5 

Correlation Matrix for Psychometric Measures and Fit Indices (Continued) 

GDMS-A GDMS-S GDMS-I GDMS-R GInd PInd GGroup PGroup GCon

DOC

EMAS-PD

EMAS-SE

EMAS-NS

EMAS-DR

IUSTot

IUSF1

IUSF2

NFC

UTS

GDMS-D

GDMS-A

GDMS-S .37

GDMS-I -.21 -.12

GDMS-R .48 .48 -.20

GInd .16 .04 .11 .07

PInd .24 .22 -.02 .13 .92

GGroup .08 -.26 -.07 -.19 .26 .12

PGroup -.02 -.22 -.12 -.24 .05 .02 .91

GCon -.05 -.17 -.03 -.40 -.01 -.07 .72 .66

PCon -.03 -.25 -.22 -.10 .06 .02 .85 .94 .47
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Chapter 4: Discussion 

4.1 Discussion for the Primary Purpose of the Study 

Using a game-theoretic probability mixture-model created for our normative 

model of DC, sources of differential conformity between our collected participant data 

and the theoretical predictions posited by our formal normative model were explored. 

Specifically, the conformity or departure from the objective utilities imposed by the 

environmental framework were explored using three models of potential subjective 

utilities. The first model denoted the Conditional model, posited that participants would 

be perfect learners of the conditional probabilities of stressor occurrence from the Estes’ 

(1976) paradigm and their subjective utilities would perfectly match the objective 

utilities.  

Previous DC research has shown this not to be the case and have found that group 

averages of subjective utilities differ from the objective utilities one would except having 

learned the conditional probabilities (Lees & Neufeld, 1999; Morrison et al., 1988). As 

such, the second model, the Group model, had ti values that were created through 

averaging pre- and post-Testing phase subjective probabilities. This was viewed as a 

logical way of accounting for departures in learning from the Estes’ paradigm (1976) and 

learning was consistent with findings from previous DC studies using the same learning 

paradigm (Lees & Neufeld, 1999; Morrison et al., 1988). Another reason for using a 

Group model is that it allows the generalization of findings. It helps educe those item 

properties that did enter into subjects’ formations of ti (properties that were encoded at 

least in part), with an aim of generating consensus.   

The final Individualized model used the participant’s individually-specific, 

subjective utilities to investigate any departure from the normative model. Since the 

participant’s own subjective utilities were used, the normative model would expect a 

perfect fit if it was being followed rigorously by participants. Incongruence under this 

model may be accounted for by varied decision-making styles or not perceiving 

accurately the experimental contingencies. The normative DC model assumes a 

maximizing/maximax strategy is adopted by participants, which may be true of some 

individuals and not of others.     



42 

 

Three different models of potential fit were investigated using G
2
 and Pearson χ

2
 

fit indices. While there are many potential ways of assessing fit, both were selected as 

each allows statistical inference at the individual level. This is an important characteristic 

that will be required for future sufficiency testing and one which is advantageously used 

for the secondary aim of this current research.  The use of G
2
 is common place in model 

testing as maximum likelihood procedures are often favored over procedures using sum 

of squares (cf. Ashby, 1992; Wickens, 1982).   

 Results indicated that the Individualized model fit the participants responding 

significantly better than the Group and Conditional models. The departure of the 

Individualized model does leave us to believe that incorporating individual subjective 

utilities into our DC normative model is necessary to achieve the best fit. Results from 

both canonical correlations (between G
2
 and Pearson χ2 variable sets) are in agreement 

with this statement. The first function when analyzing all participants (All Group; in 

Appendix B), found that subjectivity of the individual ti values accounted for 92% of the 

variance shared between the two variable sets. The variance accounted for combined with 

the loading, imply that subjective utilities were the driving force of fit. As this canonical 

correlation included all participants (All Group), including those not included in the 

repeated measures ANOVA due to poor learning, it can be contrasted with the Learners 

Group. Comparing both canonical correlation’s first factor, we see that the All Group’s 

canonical loadings were specific to the Individualized model of ti configurations alone, 

while in the Learners Group all three models had high canonical loadings. The interesting 

finding from the Learners Group, as mentioned in the methods section, was due to the 

directionality of the loadings. In the Learners Group, it appears that individuals who were 

kept for analysis either had ti values that conformed somewhat to the objective and group 

ti values or who consistently adhered to their subjective utilities (in the face of the 

environmental contingencies of stressor probability and likely many negative outcomes). 

These canonical loadings support the normative DC models use by individuals whose 

subjective utilities were in line with objective utilities. These individuals had learned to 

appropriately create optimal subjective utilities given Estes’ learning paradigm (1976), 

were reinforced by the environmental framework of the normative model, and were able 

to assess and select MAX EU. Another subpopulation utilizing the normative DC model, 
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but likely not performing as well (experiencing more stressor outcomes), were 

individuals who had departures in creating optimal subjective utilities given Estes’ 

learning paradigm (1976), were or were not reinforced by the environmental framework 

of the normative model, but were able to select consistently the subjective utility they 

believed had MAX EU. Further research could investigate what dispositional and 

personality factors individuals in either group possessed, combined with outcomes of the 

environment, may have led these individuals to either learn to appropriately create SEUs 

or adhere to their SEUs while responding as the normative DC model theorized.    

Considering our three groups, it is worth noting that we used the conditional 

(objective) probabilities as our normative representative throughout testing. Given that 

participants could been develop and operate off of a range of unforeseen utilities, the use 

of the normative probabilities was a limitation of the study that could bias participants in 

favor of its use. Especially as the conditional probabilities were fortified according to the 

credibility-maintaining delivery of stressor or innocuous event during the experimental 

trials. If anything entered into the participants cognitive mapping, it presumably would be 

the influence of the Conditional model objective probabilities. For example, considering 

the role of Bayes’, one would assume that participants would pick up on the normative 

prescribed environmental cueing and being to conform to the objective probabilities (if 

they were not using these utilities already). Despite this, the findings supported the 

subjective utilities as the prevailing structure predicting selections.   

Understanding what factors lead to the departure from the Conditional model to 

the Individualized one is relevant to improving person-environment interchange. 

Individuals may subjectively appraise one act as worse than another, but that does not 

make it so. In situations where being able to discern and utilize objective utilities is 

gravely important (e.g., in a combat scenario, flying a plane, hitting an ice patch while 

driving), a way is needed to help these individuals make better decisions. To have them 

learn and use objective utilities over subjective utilities. Departures from normative 

models are the result of DMs not being perfect rational beings. Comparing these three 

models allows us to empirically quantify the departure. These results necessarily inform 

the inclusion of subjective utilities in the present research and highlight that the group-

averaged (consensus) subjective utilities conform more with the objective utilities. Future 
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sufficiency research will investigate the critical values for each individual, under each 

model, necessary to identify a non-trivial departure. Further follow up work comparing 

individual critical values of fit and psychometric data, may better identify the 

characteristics of an individual with a high or low DC amenability.     

The significant difference between the Individualized model and the other two 

models highlights the importance of considering SEUs when studying coping. In recent 

DC studies (Benn, 2001; Shanahan, 2016), participants were provided and learned the 

objective utilities that corresponded to the ti values prior to model testing. Rigorously 

parsing out the subjectivity in stress and coping research may reduce the real-world 

applicability of the model. By incorporating the Estes’ paradigm (1976), participants 

were able to form their own subjective utilities, which also allowed the three rules of a 

normative model to influence their decision. This was a strength of the current research. 

For example, the participants who were removed to form the Learners group may have 

had their subjective utilities change during the Testing phase due to inference under 

uncertainty (Edwards & Fasolo, 2001). It is possible that poor performance during the 

Testing phase coupled with potential personal factors (e.g., trait anxiety to novel 

situations, intolerance of uncertainty, etc.) brought about dynamic updating (re-appraisal) 

of SEUs. It does not mean that the DC normative model was not at work, it might be that 

the subjective utilities had not be concretely mapped for these participants and more 

readily changed.  

Purposefully, the Testing phase was broken into three blocks of identical, but 

randomly ordered trials. In future research, outcomes (benign or with a stressor) and their 

relation to dynamical updating and personality variables will be investigated. It may be 

possible to illustrate when a cognitive re-appraisal occurs during the blocks and accounts 

for differences seen in pre- and post-Testing phase subjective probabilities. As well, 

identifying these areas of interest could lend further support our normative model of DC, 

by allowing responses to be recoded due to subjective re-appraisal of MAX EU values 

between and during Testing phase blocks. The inclusion a measures which tap 

participant’s confidence in their rated subjective probabilities and queries self-reported 

re-appraisal of SEUs during the session would be recommended inclusions for future 

research.  
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Currently, a limitation of using an averaged (consensus) score consisting of pre- 

and post- subjective probabilities is that rank orderings may have differed throughout the 

Testing phase blocks. An average value also limits our understanding of the magnitude of 

the re-appraisal which occurred. For example, a participant may rightly believe that letter 

J possesses the MAX EU and is followed by a stressor roughly 10% of the time after 

completing the Learning phase. After the first block of the Testing phase, which may 

have contained many instances of selecting J and receiving the stressor, the participant 

may update their subjective utility to believe J is followed by a stressor 60% of the time. 

Continuing to work on this belief through the next two blocks, they report that J is 

followed by a stressor 60% of the time on the post-Testing phase probability rating sheet. 

An average of these two probabilities leads to a score of 35%, which may situate J as 

their t3 value. Responding across the first block where J was their t1 value and across the 

next two blocks where J was possibly their t5 value may conform to our DC normative 

model predictions, but not be captured properly by the averaging. In essence, the 

averaging of these rating sheets, while the best choice at attempting to understand their 

subjective utilities and common, may increase departure from the DC normative model. 

For this reason, only participants with strong internal consistency (as evaluated by 

Spearman’s rank correlations), and presumably a small magnitude of change pre- and 

post-Testing phase, were included in the repeated measures ANOVA. While this is likely 

to minimize its effect on our results, it cannot be disregarded altogether. Results should 

be considered with this limitation in mind until future sufficiency testing on this data can 

assist in evaluating how well individuals conform to the DC normative model.  

In the Individualized model, individuals varied in the size of their fit estimate. As 

alluded to in previous sections, this departure can be due to sub-optimal decision-making 

styles. The DC model assumes that DMs will utilize a maximizing/maximax strategy and 

make a choice at a node that potentially leads to the minimally available ti. From the 

range of fit scores, this may not be true of all individuals. Further analyses would 

deconstruct the aggregate fit indices into their nine different architectures (j) and explore 

in what situations, where DC is available, do participants select the minimally available 

ti. These results will be further augmented with analyses investigating response time and 

psychophysiological indices of stress generation. Based on prior DC research (Shanahan 
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et al., 2012; Shanahan & Neufeld, 2010), U at a subordinate node leads to higher stress 

generation and more contemplation. It is possible to disentangle those individuals who 

exhaustively search for and select the MAX EU as one would expect from a maximizer 

using the gathered empirical sources of corroborating data in this research. By 

investigating these individuals’ data, we can hope to discern what about this group of 

DMs makes them more likely to adopt a maximizing decision-making style.  

With regards to testing the model using participant responses, the DC normative 

model’s theoretically prescribed probabilities for responding can be adjusted to fit the 

data. Currently the normative model assumes a very rigid degree of conformity that does 

not allow for decision-making styles other than maximizing/maximax. Using the 

Individualized model, whereby strategy per se is thrown into relief, these theoretical 

predictions can be relaxed and aligned with typical responding (accounting for other 

decision-making styles). By doing so, the model can more accurately capture normative 

stress-coping and attempts at replication with a new sample are possibilities.   

4.2 Discussion for the Secondary Purpose of the Study. 

In order to investigate sources of departure from the normative DC model, 

correlations were run between measures used in previous DC research and presumed to 

have role in decision-making, disposition towards uncertainty and fit indices. While a 

number of significant correlations were found between psychometric measures, decidedly 

fewer significant correlations were found between psychometric measures and fit indices.  

A canonical correlation was run between the fit indices and the psychometric 

measures in an effort to identify measures which account for a large proportion of 

variance seen between fit indices. Results were non-significant and redundancy indexes 

did not account for much variance. There were a couple notable significant correlations 

between trait anxiety to novel situations and both fit values for the Individualized model, 

as well as interesting trends between fit indices. However, based on the relatively small 

value from aggregating the redundancy indexes and due to the paucity of bivariate 

correlations found, speculations and judgements will be withheld until future studies can 

address personality variables in a confirmatory way. For example, future research could 

include running this canonical correlation again between individuals who are identified 

by sufficiency testing as applicable users of the normative DC model and those who did 
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not sufficiently use the model. Lastly, it is noteworthy that the bivariate collection array 

is exploratory, as there is no provision for multiple tests on the individual conditions (cf. 

Larzelere & Mulaik, 1977).  
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Chapter 5: Conclusions 

In pursuit of necessity testing the normative DC model, the Individualized model 

was found to be significantly better than both the Conditional and Group models. As 

such, for the normative DC model to operate in conditions amenable to its use, subjective 

ti values unique to each individual must be collected and used in creating fit indices. 

Individual differences in fit were not tapped by the selected psychometric measures and 

possibly lay outside of the personality domain. Future sufficiency testing used to identify 

conditions, decision-making styles (maximizers or satisficers) and psychometric 

correlates which are sufficient for the function of the normative DC model will require 

the use of subjective utilities. 

As the first DC study to use frequency data in order to construct multinomial 

likelihood ratios with the aim of evaluating goodness-of-fit (and also contrasting these 

results with Pearson’s χ
2 
values of fit), this study has identified the necessary components 

of model fit to be considered for future research. With our novel mixture model 

architecture, we are also well situated for subsequent sufficiency testing.  
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Appendices 

Appendix A: Formulae for the Probabilities of Engaging Decisional Control 

structure element i, Pr(ti) 

 

 

 

 

 

 

 

1.0    if  

if  i ≤  p (q – 1) + 1 
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Appendix B: All Group Canonical Correlations 

Results for the All Group indicated that three significant canonical functions 

emerged, Rc = .964, Wilk’s Λ = .007, F(9, 97.5) = 71.50, p < .001, for function 1; Rc = 

.927, Wilk’s Λ = .101, F(4, 82.00) = 44.14, p < .001, for function 2; and Rc = .532, 

Wilk’s Λ = .717, F(1, 42.00) = 16.58, p < .001, for function 3. As Wilk’s Λ represents the 

variance unexplained by the model and 1- Λ gives us the full model effect size in r
2
, the 

full model explained about 99.3% of the variance shared between the two variable sets. 

Given that the Rc
2 
effects for the first two functions accounted for 92% and 86% of shared 

variance respectively, only the first two functions were considered relevant in the context 

of the study.  

The only variable in the first set that loaded onto the first function was the G
2
 

value for the Individualized Model (.889) and the only variable from the second set that 

loaded was the Pearson χ
2
 value for the Individualized Model (.887). The redundancy 

indices for the first and second set were .249 and .251 respectively. From these results, it 

appears the first function demonstrates a link between both measures of Individualized 

model fit and accounts for variance unique to the use of subjective ti values. Thus, it can 

be inferred that ti values are related the first canonical correlation.  

 In the second function, both the G
2
 value for the Group Model (.996) and the G

2
 

value for the Conditional Model (.670) from the first set loaded, as did both the Pearson 

χ
2
 value for the Group Model (.983) and the Pearson χ

2
 value for the Conditional Model 

(.963) in the second set. The redundancy indices for the first and second set were .471 

and .597 respectively. From these results, it appears the second function demonstrates a 

link between both measures of Group and Conditional Model fit and accounts for 

variance shared between the Group and Conditional orderings of ti values. It is worth 

pointing out that this variance is orthogonal to the variance accounted for by both 

measures of Individualized Model fit.  
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DOC EMAS-PD EMAS-SE EMAS-NS EMAS-DR IUSTot IUSF1 IUSF2 NFC UTS GDMS-D

DOC

EMAS-PD .07

EMAS-SE .02 .10

EMAS-NS .12 .30 .08

EMAS-DR -.25 .30 -.05 .16

IUSTot -.01 .29 .05 .21 .42

IUSF1 .06 .15 .08 .15 .28 .90

IUSF2 -.09 .28 -.03 .21 .39 .84 .54

NFC .14 -.44 -.23 -.18 -.32 -.39 -.21 -.44

UTS -.08 -.09 -.11 -.24 .00 -.35 -.40 -.18 .21

GDMS-D -.25 .32 .10 -.06 .12 .01 -.01 -.02 -.20 -.17

GDMS-A -.14 .12 .00 -.10 -.10 -.08 -.05 -.07 .05 -.01 .61

GDMS-S -.32 .21 -.02 .14 .06 .18 .17 .08 -.13 -.12 .42

GDMS-I .20 -.14 -.04 .05 -.14 .10 .12 .06 .14 .03 -.21

GDMS-R .05 .28 -.01 .11 .12 .02 .01 -.01 -.13 -.14 .50

GInd .13 .10 -.11 .08 -.09 -.06 .00 -.12 -.07 -.12 -.03

PInd -.01 .22 -.08 .16 -.02 .05 .08 -.01 -.19 -.19 .03

GGroup .25 .15 .12 .27 .15 .09 .07 .09 -.11 -.15 -.04

PGroup .24 .19 .15 .25 .21 .18 .16 .12 -.07 -.24 -.02

GCon .11 .08 .01 .16 .27 .10 .02 .14 -.14 -.03 -.05

PCon .22 .27 .20 .30 .25 .25 .20 .21 -.19 -.23 -.04

Appendix C: All Group Correlation Matrix for Psychometric Measures and Fit Indices 

 

 

 

 

 

 

 

 

 

 

  Underline indicates p < .05 (2-tailed); Boldface indicates p < .001(2-tailed). 

  DOC: Desirability of Control; EMAS: Endler Multidimensional Anxiety Scale – Trait Scale, -PD: Physical Danger, -SE: Social     

  Evaluation, -NS: Novel Situations, -DR: Daily Routines; IUSTot: Intolerance of Uncertainty total score, -F1: factor 1, -F2: factor 2;  

  NFC: Need for Cognition; UTS: Uncertainty Tolerance Scale; GDMS: General Decision-Making Scale, -D: Dependent, -A:  

  Avoidant, -S: Spontaneous, -I: Intuitive, -R: Rational; GInd: G
2
 for the Individualized model; PInd: Pearson χ

2
 for Individualized  

  model; GGroup: G
2
 for the Group model; PGroup: Pearson χ

2
 for Group model; GCon: G

2
 for the Conditional model; PCon: Pearson  

  χ
2
 for Conditional model. 
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  Appendix D: All Group Correlation Matrix for Psychometric Measures and Fit Indices (continued) 

 

 

 

 

 

 

 

 

 

 

 

  Underline indicates p < .05 (2-tailed); Boldface indicates p < .001(2-tailed). 

  DOC: Desirability of Control; EMAS: Endler Multidimensional Anxiety Scale – Trait Scale, -PD: Physical Danger, -SE: Social     

  Evaluation, -NS: Novel Situations, -DR: Daily Routines; IUSTot: Intolerance of Uncertainty total score, -F1: factor 1, -F2: factor 2;  

  NFC: Need for Cognition; UTS: Uncertainty Tolerance Scale; GDMS: General Decision-Making Scale, -D: Dependent, -A:  

  Avoidant, -S: Spontaneous, -I: Intuitive, -R: Rational; GInd: G
2
 for the Individualized model; PInd: Pearson χ

2
 for Individualized  

  model; GGroup: G
2
 for the Group model; PGroup: Pearson χ

2
 for Group model; GCon: G

2
 for the Conditional model; PCon: Pearson  

  χ
2
 for Conditional model. 

GDMS-A GDMS-S GDMS-I GDMS-R GInd PInd GGroup PGroup GCon

DOC

EMAS-PD

EMAS-SE

EMAS-NS

EMAS-DR

IUSTot

IUSF1

IUSF2

NFC

UTS

GDMS-D

GDMS-A

GDMS-S .42

GDMS-I -.19 -.19

GDMS-R .47 .49 -.19

GInd -.12 -.27 .24 -.06

PInd -.16 -.20 .16 -.06 .95

GGroup -.13 -.33 .07 -.17 .48 .44

PGroup -.19 -.30 -.01 -.23 .29 .30 .91

GCon -.12 -.20 .03 -.36 .13 .12 .72 .68

PCon -.25 -.30 -.06 -.10 .33 .37 .88 .93 .51
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Appendix E: Probability Rating Sheet 

 

Judgement Phase 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

0 25% 50% 75% 100

Letter 
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Appendix F: Rank Ordering Sheet 

 

Rank Ordering Judgement 1: 

 

Please rank these 10 letters in order from LOWEST to HIGHEST probability of being 

followed by a noise: 

V Z L J B D P G M A 

Lowest                   Highest       

 

____       ____       ____       ____       ____       ____       ____       ____       ____       ____         
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Appendix F Letter of Information 

Project Title: Individual Differences in Stress and Coping: Testing a Model of 

Decisional Control 

Principal Investigator: Dr. Richard Neufeld, PhD, Psychology, Western University 

Co-investigator: Bryan Grant, BSc, Psychology, Western University  

 

Letter of Information 
1. Invitation to Participate 

You are being asked to take part in a study investigating how people make 

decisions when faced with stressful situations. Discerning how individuals judge 

alternatives when faced with a host of aversive events and exert personal control 

to minimize the anticipated stress can increase our understanding of the cognitive 

underpinnings of stress.  

 

2. Purpose of the Letter 
The purpose of this letter is to provide you with information required for you to 
make an informed decision regarding participation in this research and stimulate 
any questions you may have concerning your participation. 
 

3. Purpose of this Study 
Stress is a universally experienced phenomenon, but we have yet to understand 

why stress is generated in response to varying situations. How one assesses 

stressful situations and the degree to which stress is experienced when control is 

limited is the target for this study.   

Stress has cognitive, psychophysiological, and behavioural components – thinking 

about stressful situations and ways of coping, reacting with physical changes 

(heart rate, sweating, muscle agitation, etc), and choosing what to do – all factor 

into how stress is experienced and coped with. “Decisional Control” is a method 

of coping with stress in which the decision maker chooses to insert himself or 

herself into a stressful situation in order to avoid other situations with higher 

probabilities of a stressful occurrence. The underlying assumption is that a 

decision maker, when faced with a selection of varying levels of adverse events, 

will make judgements (a cognitively-intensive process using learned probabilities) 

about the stress inherent in each situation and choose available options 

accordingly. In other words, when an individual is given a choice, he or she will 

attempt to choose the situation with the least likelihood of producing a bad 

outcome (with the likelihood being based on previous experience of the bad 

outcome happening or not). Deciding which situation is the least likely to produce 

the most stress requires some planning and knowledge about the probabilities that 

something will go wrong; this, of course, is a thought-intensive process.    

One way of conceptualizing and testing this “decisional control” coping strategy 

is to use a “game-theoretic approach” whereby stress negotiation is envisioned as 

playing a “game” with created scenarios. These scenarios combine to form a 

model (a “game-theoretic infrastructure”), that is used to predict how people are 
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likely to respond in stressful situations. The model can be thought of as the 

“board” and the parameters as the “rules”. Assuming that people are following the 

rules and playing using this game-theoretic infrastructure, we are able to predict 

the advantageous decisions they would make to achieve the best result. One such 

game-theoretic infrastructure has been created by this lab and simulation work has 

predicted how people should respond. However, to validate this infrastructure, we 

need to know if our predictions align with how people actually respond. Thus, the 

intended purposes of this study are as follows: 

1) To compare our generated model’s probability predictions to participants’ 

actual behaviour, in order to see how well the model predictions accurately 

describe real responses. 

2) To gather data to support this decisional control infrastructure and explore 

individual differences in responding to stress. These differences may include 

behavioral (e.g., what people select and the time taken to make these selections), 

psychophysiological (e.g., heart rate, skin conductance) and subjective measures 

(e.g., verbal reports about how stressful making selections was through the use of 

numerical ratings). 

By empirically gathering data and modelling behavioural, cognitive and 

psychophysiological responses to stressful scenarios, we can generate a picture 

for how people actually do respond. By further incorporating the use of 

psychometric questionnaires (e.g. personality measures, intelligence tests, 

preferred methods of coping, etc), individual differences in how decisional control 

was applied will create a richer picture of how individuals cope with stress. We 

are also interested in how people in a group respond; by combining all the 

individual responses, we are able to map out a range of responses that can provide 

an idea of how a variety of people in a group might respond. In this way, the 

model will be tested not only at an individual level but also at a group level.  

 

4. Inclusion Criteria 
Individuals who are under 30 years old, right handed, have no hearing problems 
and good English reading comprehension are eligible to participate in this study. 
 

5. Exclusion Criteria 
Non-consenting individuals and those who are 30 years old or older, left handed, 

having hearing problems or do not have good English reading comprehension are 

not eligible to participate in this study. 

 

6. Study Procedures 
This experiment includes a questionnaire phase, a learning phase, a practice phase 

and a test phase. Before giving consent, you will be briefly exposed to 1 seconds 

of white noise calibrated to a maximum of 85 decibels (about the noise of a 

subway car 200 feet away). If you have a hearing impairment or sensitivity, 

please let the experimenter know, as it is not advisable to continue with the 

experiment in this case. Prior to giving and documenting written consent, you will 

hear the 1 second sample of white noise, so that you will know what it sounds 

like.  
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In the first phase of the experiment, you will be asked to complete several 

questionnaires about personality, coping, and decision-making. This should take 

between 15 and 30 minutes.  

For the second phase and third phases, you will be tutored by a set of computer 

instructions and learning screens and then asked to practice decision-making tasks 

on the computer (a total of about 45 minutes). During the learning phase, you will 

learn to associate the probability of a 1 second sample of the white noise, or a 

green computer screen, for a set of 10 random letters.  

Before beginning the next phase, you will receive a brief introduction to the 

experimental apparatus and fitted by a same-sex research assistant (or choose to 

apply yourself) with 4 electrodes: one on the neck, one above the ankle, and two 

on fingers of your left-hand. Depending on the region and in order to attach these 

electrodes, it may be necessary for you to move or lift the collar of your shirt 

and/or your pant leg (only during their application and removal of these 

electrodes). These electrodes are disposable and are only used for one participant 

and discarded. These electrodes are for detecting a signal and are incapable of 

delivering a shock. 

During the proceeding test phase, the 10 random letters from the learning phase 

will be presented again for selection in a computer-driven game-theoretic model. 

These trials presented on the computer will be structures with letters arranged on 

the bottom that you will have varying amount of control over. You will be asked 

to consider the layout of these structures and choose a letter available for 

selection. Upon selection of a letter, you will either experience the white-noise or 

green-light event based on the probability you learnt in the practice screens. As 

such, you will experience brief (1 second) instances of the white noise or green 

light again throughout this phase. In consultation with the Department of 

Communication Disorders and in keeping with Ontario Ministry of Labour 

guidelines, this noise exposure is not considered to be harmful in the short 

duration it will be administered for individuals with normal hearing. 

The total amount of time involved for completion of the study is about three to 

four hours over this 1 session in room 6b of Westminster Hall. You can choose to 

take part in the entire session or stop at any particular 30 min (approx.) block. 

Please note that you will be compensated on a pro-rated amount based on how 

much of the study you complete (see Compensation below). By agreeing to take 

part in this study, you will be one of a total of 80 participants.   

 
7. Possible Risks and Harms 

Part of the experiment is to present you with minimal discomfort (i.e., brief 

exposure to annoying or aversive "white noise”) in order to generate occurrences 

of varying levels of stress.  However, there are no known physical or 

psychological risks involved and such noise is designed not to harm your hearing. 

This stimulus is somewhat standard in this type of study and has been used in past 

studies in this lab.  
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8. Possible Benefits  
 You may not directly benefit from participating in this study but information 

gathered may provide benefits to society as a whole by increasing our 
understanding of individual responding in making choices under stress 
conditions. 

 
9. Compensation 

For those in Psych 1000: You will be compensated up to 4 research credits for 

your participation in this study. If you do not complete the entire study you will 

still be compensated at a pro-rated amount of 0.5 credit per half hour of 

participation.  

For those in other courses with a research component: You will be compensated 

according to the criteria set forth on your course syllabus. Please consult your 

specific course outline for details of your compensation. 

 

10. Voluntary Participation 
Participation in this study is voluntary. You may refuse to participate, refuse to 

answer any questions or withdraw from the study at any time with no effect on 

your future academic status and without loss of promised pro-rated compensation. 

 

11. Confidentiality 
All data collected, which will be stored by code (and not by name) to protect 
your privacy, will remain confidential and accessible only to the investigators of 
this study. The coded data will be stored on a computer hard drive, an external 
hard drive, and in a locked cabinet all within locked offices. The list of 
participants' names with their corresponding codes will be stored in a separate 
locked place. If the results are published, your name will not be used. If you 
choose to withdraw from this study, your data will be removed and destroyed 
from our database. All data will be destroyed five years after publication. While 
we will do our best to protect your information there is no guarantee that we 
will be able to do so. The inclusion of your initials and your age (years and 
months) may allow someone to link the data and identify you.  
 

12. Contacts for Further Information 
If you require any further information regarding this research project or your 
participation in the study you may contact Dr. Neufeld in Room 310, 
Westminster Hall, or Bryan Grant, 225 Westminster Hall (ext. 84682, 
bgrant29@uwo.ca). If you have any questions about your rights as a research 
participant or the conduct of this study, you may contact The Office of Research 
Ethics (519) 661-3036, email: ethics@uwo.ca.  
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13. Publication 
 
In publication of results of the study, your name will not be used. If you would 
like to receive a copy of any potential study results, please provide your name 
and contact information on the sheet entitled Consent to Contact with Results 
included in this package. 

 
 
 

This letter is yours to keep for future reference.  
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Consent Form 

 

Project Title: Individual Differences in Stress and Coping: Testing a Model 

of Decisional Control 

 

Study Investigator’s Name: Dr. Richard Neufeld, PhD, Psychology, 

Western University 

 

I have read the Letter of Information, have had the nature of the study 

explained to me and I agree to participate. All questions have been answered 

to my satisfaction. 
 

 

Participant’s Name (please print): ________________________________________ 
 
 
Participant’s Signature:         _______________________________________________ 
 
 
Date:  
                                       _______________________________________________ 
 

 

 

 

Person Obtaining Informed Consent (please print): _____________________________ 
 
 
 
Signature:____________________________ 
 
 
Date:       
 _____________________________ 
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Appendix G: SONA Outline 

Project Title: Individual Differences in Stress and Coping: Testing a Model of 

Decisional Control 

Principal Investigator: Dr. Richard Neufeld, PhD, Psychology, Western University 

Co-investigator: Bryan Grant, BSc, Psychology, Western University  

SONA template:  

In this study, you will be asked to complete a number of personality questionnaires and a 

decision making computer task (where you will make selections based on several choices 

available). During the computer task, you will have psychophysiological-measuring 

electrodes attached by a same-sex research assistant to your neck, breastbone, and upper 

and lower rib cage. As such, we ask that you wear a loose, short-sleeved shirt when you 

attend the testing session; this will enable the same-sex research assistant to attach the 

electrodes without needing you to remove your shirt entirely. To generate some stress in 

completing the decision making computer task, you will experience quick, one second 

bursts of loud noise (roughly equivalent to a passing subway car) throughout the study 

based on a combination of probability and performance.  Please note, that the use of this 

noise is kept at safe levels and with a total length well below what is advised by Ontario’s 

Ministry of Labour guidelines for exposure in loud environments. 

The study will take between 3 and 4 hours (based on how long you would like to 

participate) and will take place in Westminster Hall Room 6b. If you are a Psychology 

1000 student, you will receive 0.5 credits toward your Psychology 1000 research 

participation option for each half hour of the study.  

In order to participate in this study, you must be right handed, have good reading 

comprehension and are younger than 30 years old. 

If you have any questions about the study, please contact Bryan Grant at 

bgrant29@uwo.ca  

Please note: your participation is voluntary and all information collected will be kept 

confidential. 

 

 

 

 

 



68 

 

Email correspondence: 

Subject Line: Invitation to participate in research 

You are being invited to participate in a study that explores the physiological and 

behavioural effects of stress on decision making. This email is a courtesy message briefly 

detailing the study before you come in for your selected session time in Westminster Hall 

6b. During this meeting you will go over the letter of information, establish consent and 

complete the study if you choose to consent. This is a reminder that you are able to take 

part in the study only if you are right handed, have good reading comprehension and are 

younger than 30 years old.  

The study can take between 3 and 4 hours to complete and its length is based on how 

many blocks of the experiment you would like to complete. For participating in the study, 

you will receive credits towards your course requirements on a prorated amount based on 

the amount of the study that has been completed. For example, if you are in Psych 1000, 

you will receive half a credit for every half an hour of the study you complete up to a 

total of 4 credits. For other courses, please see your course syllabus for criteria on how 

you will receive credits for participation.  

In the study, you will required to complete a number of personality questionnaires (on 

how you respond to stressful/anxiety provoking situations) and a decision making 

computer task (where you will make selections based on several choices available). 

During the computer task, you will have psychophysiological-measuring electrodes 

attached by a same-sex research assistant to your neck, breastbone, and upper and lower 

rib cage. As such, we ask that you wear a loose, short-sleeved shirt when you attend the 

testing session as this will enable the same-sex research assistant to attach the electrodes 

without needing you to remove your shirt entirely. To generate some stress in completing 

the decision making computer task, you will experience quick, one second bursts of loud 

noise (roughly equivalent to a passing subway car) throughout the study based on 

combination of probability and performance.  Please note, that the use of this noise is 

kept at safe levels and with a total length well below what is advised by Ontario’s 

Ministry of Labour guidelines to exposure for loud environments.  

To aid you in finding the testing room, a research assistant will you meet you in the main 

lobby of Westminster Hall a few minutes before your testing session.  

If you have any further questions about the study, do not hesitate to ask them in a reply to 

this email.  

Thank you,Dr. Richard Neufeld 

Western University 

rneufeld@uwo.ca 

519-661-3696 

Bryan Grant 

Western University 

bgrant29@uwo.ca 
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Appendix H: Debriefing Sheet 

Project Title: Individual Differences in Stress and Coping: Testing a Model of 

Decisional Control 

Principal Investigator: Dr. Richard Neufeld, PhD, Psychology, Western University 

Co-investigator: Bryan Grant, BSc, Psychology, Western University  

Decisional Coping Experimental Debrief Sheet 

This study you have just participated in was concerned with how people react 

when under the effects of stress. Coping with stress is a universal experience and, 

undoubtedly, one that requires a complex interplay of cognitive functions. Coping with 

stress can be done in a variety of ways, but choice is key in determining how an 

individual will respond (Averill, 1973). Through behavioural, cognitive and decisional 

means, choice in stressful situations offers an advantage of accessing less-threatening 

alternatives and greater control of reducing stress reactions (Averill, 1973).  

Decisional Control is a method of coping with stress in which the decision maker 

positions “oneself in a stressor situation so as to avoid situational components harboring 

higher probabilities of stress” (Lees & Neufeld, 1999, p. 185) from a physically or 

socially adverse event. The underlying assumption is that a decision maker, when faced 

with a selection of varying levels of adverse events, will make probabilistic judgements 

(a cognitively-intensive process) about the stress inherent in each situation and make a 

choice to pursue the option they believe has the lowest associated level of stress.  

The paradigm you completed on the computer was one in which decisional 

control was conceptualized and tested through a game-theoretic approach whereby stress 

negotiation is cast as playing a game with the environment, the goal of which is to 

maximize well-being or safety. The stressor used in the experiment was the 

administration of loud white noise. You were presented with choices involving selection 

of letters that represented a threat level. Selections varied to some extent in the degree to 

which they were controllable (i.e., sometimes you were given only one selection and 

other times you were allowed to make your own choice).  

The first aim of this study is to test this game-theoretic infrastructure upon which 

a mathematical model (technically a probability mixture model) was built. Such an 

infrastructure (or representative environmental framework) would allow us to develop 

precise likelihoods of stress-relevant events and test our model at both an individual and 

group level. If our model predictions align with empirical observations, the model could 

be adapted for use in future studies with clinical populations with known cognitive and 

decisional difficulties. This could allow theoretical exploration and interpretation of 

aberrant or dysfunctional cognition leading to suboptimal, cognition dependant coping 

strategies in these groups.  



70 

 

In order to quantify and empirically test this environmental framework of 

decisional control and explore individual differences in responding, behavioural (e.g., 

choice selection and their latencies), psychophysiological (e.g., heart rate, skin 

conductance, facial muscle responses) and subjective measures (e.g., verbal reports, 

numerical ratings) of stress were collected from you. Past research has supported the use 

of these empirical measures quantifying decisional control composition (reviewed in 

Shanahan & Neufeld, 2010). 

The second aim of this study is to explore how people differ in the way in which 

they react to similar situations. That is, not all people find controllable situations to be 

less stressful than uncontrollable situations.  In fact, some people may actually find 

controllable situations to be more stressful than uncontrollable ones.  This study was 

designed to examine the preferences people have about the different kinds of stressful 

situations they might find themselves in indicative of their decisional coping style.  The 

model will be further augmented with individual-difference psychometric analyses 

(participants competing personality measures) to explore individual aptitude differences 

in application of decisional control. The resultant findings will give rise to new model-

testing predictions including how individuals use decisional control to varying degrees in 

making decisions.   

If you find you are having trouble managing stress in your own life, or have been 

upset by anything in particular during this experiment, please let the experimenter know. 

Two counseling resources available for students include the: 

Student Development Centre, Western Student Services Building, Suite 4100, 519-

661-3031, www.sdc.uwo.ca 

Student Health Services, UCC Rm 11 (basement), 519-661-3030, www.shs.uwo.ca 

If you have any questions about the experiment which were not answered during 

or after the experiment itself, feel free to contact Bryan Grant, Rm 225 Westminster Hall, 

519-661-2111 ext. 84682, bgrant29@uwo.ca or Prof. Richard W.J. Neufeld, Rm. 310, 

Westminster Hall, Phone: 661-3696. If you have questions about your rights as a research 

participant, you should contact the Director of the Office of Research Ethics at 

ethics@uwo.ca, or 519-661-3036. 

 

Thank you very much for your participation. 
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Appendix J: Hierarchal Structures Presented During Testing   

Note: The eight letters presented at the bin level were completely randomized each trial 

and random, static letters are presented below for example purposes. 

CC: 

 

In a CC condition, participants have information and control at both the bin and element 

level. They can select any letter within either group. 

CU: 

 

In a CU condition, participants have information and control at the element level, but 

neither control or information at the bin level. They can select either group (pressing 1 or 

2), but a letter at random within that group is assigned to them. 
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CN: 

 

In a CN condition, participants have information and control at the element level, and 

only information at the bin level. They can only select the letter indicated within each 

group.  

UC: 

 

 

In a UC condition, participants have neither information or control at the bin level, but 

have information and control at the element level. They can select any letter in either 

group. Once they have made their selection, the group from which they selected would 

have its colours fade, indicating that no further selections are available from this group. 

In the example above, let us assume J was selected in the first group. The participants 
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would then make a letter selection from the other group (P for example) and the letter 

assigned would be randomly chosen between both letter selections (50-50 chance of 

either J or P). This is indicative of the participants having either group assigned to them 

at random, with no information nor control.  

UU:

 

In a UU condition, participants have neither information or control at the bin or element 

levels. They can select any letter, but are assigned one of the eight randomly.  

UN: 
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In a UN condition, participants have neither information or control at the bin level and 

only information at the element level. They can select each letter indicated within each 

group and are assigned either at random.  

NC: 

 

In a NC condition, participants have information, but not control at the bin level and 

information and control at the element level. They can select any letter within the group 

indicated as accessible, but are not able to select letters from the other group.  

NU: 

 

In a NU condition, participants have only information at the element level and neither 

information or control at the bin level. They can select any letter within the group 

indicated, but the letter assigned to them is random within that group.  
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NN: 

 

In a NN condition, participants have only information at both the element and bin levels. 

They can only select the letter indicated to them.  
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