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Abstract 

 

Assessment of electrical impedance of biological tissues at low frequencies offers a great 

potential for a safe, simple, and low-cost medical breast imaging techniques such as 

mammography. As such, in this dissertation a mammography method which uses tissue electrical 

impedance to detect breast malignancies was developed. The dissertation also introduces a new 

technique for measuring the dielectric properties of biological tissues at low frequencies. The 

impedance mammography technique introduced in this study is founded on the assumption that 

dielectric values of breast malignancies are significantly higher than the dielectric values of 

normal breast tissues. While previous studies have shown that this assumption is valid at high 

frequencies (50MHz-20GHz), less research efforts have been dedicated to ascertain the validity 

of such assumption at low frequencies (<1MHz). It is noteworthy that impedance imaging and 

characterization of biological tissues is highly advantageous at low rather than high frequencies. 

This is due to the higher contrast of capacitance and phase angle image data projections at low 

frequencies. Moreover, dispersion (energy loss) in biological tissues decreases significantly at 

low frequencies, rendering impedance imaging safer. The proposed tissue dielectric 

measurement technique in this study is based on tissue impedance measurement and using 

impedance data in an inverse finite element framework. This method was tested on several 

bovine tissue specimens and compared with convectional dielectric measurement techniques via 

simulation. Reliable electrical impedance data of malignant breast tumors are rare in the 

literature. To take a step toward providing such data, the proposed measurement technique was 

employed to measure the dielectric properties of normal and malignant breast tissue in xenograft 

mice model at 100Hz-1MHz. At the end, the possibility of using low frequency impedance 

mammography for detection of breast malignancies was investigated via in silico and tissue 

mimicking phantom studies. Results of this investigation suggest that imaging the electrical 

impedance properties of biological tissues through the proposed electrical impedance 

mammography can be potentially employed for breast cancer detection in a reliable and safe 

manner. 
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Chapter 1 

Introduction 

 
1.1. Background and Motivation 

 
Electrical impedance analysis of biological tissues offers the potential for a safe, simple, portable 

and low-cost technique for a broad range of bio-medical applications [1,2]. These applications 

include analysis of body composition (i.e. in vivo measurement of total body water (TBW) and 

total body fat (TBF) [1-3]), differentiation between different types of tissues (i.e. malignant from 

benign and healthy) [4-8], detection and quantification of lung water [9], bone health assessment 

[10], aortic blood pressure measurement [11], and medical imaging of different organs such as 

the lung [9] and breast [12]. While the bio-impedance assessment approach in some areas such as 

monitoring cardiac function or analysis of body composition is well-established [13], clinical 

applications of bio-impedance imaging requires further development. The motivation of this 

research is derived from the fact that bio-impedance imaging technology has a great potential to 

be used as non-ionizing, easy and low-cost tool for breast imaging. This is mainly because 

previous research in conjunction with one of our studies which is presented in the third chapter 

of this work, have shown that breast malignancies have significantly higher dielectric properties 

and substantially lower impedance values in comparison with normal breast tissues. In this work 

we have taken advantage of the dielectric behaviour of biological tissues in order to image the 

breast and detect its malignancies. In this respect, the second chapter of this work is concentrated 

on introducing a novel technique for measuring the dielectric properties of biological tissues and 

comparing it with conventional measurement techniques introduced in the past three decades 

[14]. In the third chapter, we introduce an improved version of the dielectric measurement 

technique described in Chapter 2. Chapter 3 also describes using this technique to measure 

electrical conductivity and permittivity of normal and cancerous breast tissues harvested from a 

xenograft mouse model. In the fourth and last chapter of this work, we introduce a novel 
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electrical impedance mammography technique in conjunction with three linear image 

reconstruction approaches. In this chapter we present in silico and tissue mimicking phantom 

studies to demonstrate that the technique in conjunction with the phase angle image 

reconstruction is capable of reliably imaging the breast and detecting its malignancies. 

 

1.2. Dielectric Properties of Biological Tissues 

1.2.1. Definition of Dielectric Properties 

The bulk electrical properties of tissues and cell suspensions have been of interest for many 

reasons for over the past century. These properties are used to determine the pathways of current 

flow through the body [15]. In the context of bioelectrical impedance, dielectric property of a 

biological tissue usually refers to its electrical conductivity (σ) and electrical permittivity (ε). 

These two parameters are known as the main intrinsic electrical properties of the tissues. 

Electrical conductivity (σ, in S/m) of tissue is a measure of the tissue’s ability to conduct, i.e. let 

charge pass through it. Electrical permittivity (ε, in F/m) of tissue provides a measure of 

polarizability of the tissue, i.e. its ability to store charge via electrical capacitance. Electrical 

permittivity is often expressed as the relative permittivity ɛr (or dielectric constant, 

dimensionless), which is defined as the permittivity relative to that of vacuum (ɛ0 = 8.854 × 10-

12 F/m): ɛr = ɛ0 ɛr [16]. 

 

1.2.2. Frequency Dependence of Tissue’s Dielectric Properties 

Electrical conductivity and permittivity of biological tissues are highly frequency dependent, 

meaning that the value of these parameters varies based on the excitation frequency. These 

variations are such that the electrical conductivity of biological tissues usually increases with 

frequency, whereas their electrical permittivity decreases sharply as frequency increases. In 

biological tissues, the variation range of electrical permittivity with frequency is an order of 

magnitude broader than that of electrical conductivity. Variations of the tissues dielectric 

properties with frequency can be used to infer valuable information about the body composition. 

These variations are also advantageous as they maybe utilized to find frequencies which are 
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optimal for imaging specific parts of the body. For instance, for assessing the body composition, 

low frequency impedance measurement provides information about the body’s extracellular 

water percentage, while high frequency impedance measurement gives an estimate on the total 

body water and fat free body mass [1-3].  Figure 1.1 and 1.2 show, respectively, the behaviour of 

the electrical conductivity and relative permittivity of a typical soft tissue such as adipose and 

muscle at 10 Hz-20 GHz which are obtained experimentally by using VNA (Vector Network 

Analyzer) [1-3].    

 

           
 

Figure 1.1. Variations of electrical conductivity (blue) and relative permittivity (red) of adipose 

tissue at 10Hz-20GHz [17, 18].  
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Figure 1. 2. Variations of electrical conductivity (blue) and relative permittivity (red) of muscle 

tissue at 10 Hz-20 GHz [16,17].  
 

 
The relative permittivity of a biological tissue may reach up to 106 or 107 at frequencies below 

100 Hz. It decreases at high frequencies in three main steps known as α, β, and γ dispersions 

[17]. For a biological tissue, α dispersion can be found around kilohertz region or lower, while β 

and γ dispersions are located in the hundred kilohertz and gigahertz frequency range, 

respectively [17, 19].  

 

1.2.3. Dielectric Properties of Normal and Malignant Tissues 

Dielectric properties of normal and malignant tissues have been of interest for many years. Only 

in the past three decades, hundreds of dielectric measurements have been conducted on various 

ex and in vivo biological tissues such as the breast, liver, bladder, skin and prostate [20-24]. Most 

of these measurements have shown that malignant tissues have significantly different dielectric 

values from their normal counterparts. For instance, researchers have found that dielectric 

properties of breast malignancies are substantially higher than those properties in benign and 

normal breast tissues [21,25-26]. Some of these findings have shown up to 20-40-fold higher 
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conductivity and permittivity values in malignant tissue compared to normal breast tissues [21]. 

Furthermore, researchers have shown that increase in the dielectric properties of cancer tissues is 

mainly caused by the higher concentration of intra and extracellular fluids, changes in the 

membrane and orientation of the malignant cells [27-29], and higher density of cells in malignant 

compared to normal tissues [16].   

 

1.2.4. Dielectric Measurement Techniques and Tissue Characterization 

1.2.4.1.  VNA-based Approach 

Dielectric properties of biological tissues have been measured by many researchers in the past 

one century [30-32]. While valuable in terms of laying the theoretical and empirical foundations 

of the field, many of these studies including most of the early works, involve theoretical over-

simplification and measurement setups capable of providing only limited accuracy [17]. In the 

past three decades most of the measurements in this field, which have been conducted at high 

frequencies (20 MHz-20 GHz), are based on using network vector analyzer (VNA) and open-end 

coaxial cable. The VNA based approach has remained the method of choice for the dielectric 

characterization of biological materials at high frequencies [14]. This technique involves 

pressing the coaxial probe against the tissue while reflection coefficient or admittance of the 

probe–sample interface is measured and used to approximate the specimen’s dielectric 

properties. Figure 1.3 shows the VNA-based biomedical device known as Margin Probe (Dune 

Medical, PA, USA). This device is used for tissue characterization during breast lumpectomy. 

MarginProbe measures the reflected electromagnetic waves at radio frequency in order to 

distinguish between malignant and healthy breast tissues during breast lumpectomy. The device 

has received FDA approval in 2012.  
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Figure 1.3. MarginProbe is used by a surgeon for breast tissue characterization during breast 

lumpectomy [52]. 

 

The accuracy that can be achieved in the VNA-based measurement approach is dependent on the 

reflected signal and reflection coefficient at the probe–sample interface [33]. While VNA based 

approach has been shown to be quite accurate and effective at high frequency, theoretical and 

empirical results from previous studies [14, 34-35] in conjunction with one of our studies which 

is presented in the second chapter of this work, have shown that VNA based technique is not 

capable of producing reliable dielectric measurements at low frequencies (<1MHz).  

 

1.2.4.2. Inverse Finite Element Approach 

In order to accurately measure the dielectric properties of biological tissues at low frequencies, 

an inverse finite element (FE) approach, which consists of an experimental and computational 

steps, is proposed in the Chapter 2 of this thesis. In the experimental step of this approach, the 

biological tissue is placed between two conductive plates or two conductive electrodes and its 

electrical impedance is measured. In the computational phase, the tissue and conductive 

plates/electrodes are modeled in a FE simulation software. Then the dielectric values of the 
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tissue’s FE model are systematically altered using an optimization algorithm, until the 

impedance components of the FE computational model match with their experimental 

counterparts. The dielectric values that correspond to the best match of experimental and 

computational impedance are considered the tissue’s dielectric values.   

 

1.3. Relationship between Dielectric Properties, Resistance, and 

Capacitance 

 

1.3.1. Relationship between Electrical Resistance and Conductance 

Electrical conductivity (σ) is usually measured through measuring electrical resistance (R) as 

direct measurement of σ may not be feasible. R is a physical property that shows how well a 

material can resist the flow of electric current. It depends on the conductance and geometry of 

the materials which are placed inside the electric field while σ is an intrinsic property of the 

material and does not depend on the geometry or potential difference of the material placed 

inside the electric field. The following is a fundamental relationship used to express R [36]: 

 

 

𝑅 =
V

I
=  

∫ 𝐸.  𝑑𝑙

∮ 𝜎𝐸.  𝑑𝑠
                                            (1.1) 

 

where V is the potential difference between the two electrodes, I is the electric current and E is 

the electric field. Equation 1.1 shows that the relationship between R and σ is complex; it 

depends highly on the conductor electrodes and geometry and conductivity of the material 

between them. Under the assumption of non-uniform E, the exact value of σ can be obtained 

from R by using numerical solutions such as finite element which is explained in section 1.7.2. 

 

1.3.2. Relationship between Electrical Capacitance and Permittivity 
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Electrical permittivity (ɛ) is usually measured through measuring electrical capacitance (C), as 

direct measurement of electrical permittivity may not be feasible. C is a physical property of 

capacitors consisting of conductors and materials placed between them. It shows how well 

electric charge can be stored. Electrical capacitance depends on the geometry of the conductors 

and ε of the material placed between them while ε is an intrinsic property of the material and 

does not depend on the charge or potential difference between the conductors. The following is a 

fundamental relationship used to express C [36]: 

 𝐶 =
Q

V
=  

∮ 𝜀𝐸.  𝑑𝑠

∫ 𝐸.  𝑑𝑙
                                                             (1.2) 

where Q is the electric charge, V the voltage between electrodes and E is the electric field. 

Equation 2 shows that the relationship between C and ε is highly complex as it depends on the 

geometry of the conductor electrodes and geometry and permittivity of the material between 

them. Under the assumption of non-uniform E, the exact value of ε can be obtained from C by 

using numerical solutions such as finite element which is explained in section 1.7.2. 

 

1.4. Lumped Electrical Model of Biological Tissues  

 

Figure 3 illustrates a lumped electrical model of a typical biological tissue. RE and RI in this 

model are influenced by the tissue’s intra and extracellular fluids, respectively whereas CM is 

dependent on the cell membranes of the tissue [1]. At low frequencies, where the electric current 

does not penetrate into the cell membranes, the cell walls act as barriers (insulators) against 

current flow. Consequently, at such frequencies RI becomes very small, hence negligible [1]. At 

high frequencies, the cell membranes do not act as barriers against current flow and CM becomes 

very small, hence negligible. As a result, the lumped electrical model of a biological tissue at 

high frequencies can be approximated by RE paralleled with RI [1].   
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Figure 1.4. (A) A schematic of a typical biological Tissue. (B) Equivalent lumped circuit model. 

 

1.5. Electrical Impedance of Biological Tissues 

1.5.1. Definition of Bio-Electrical Impedance 

Tissue’s electrical or bio-electrical impedance is a physical parameter used to describe the 

combination of electrical resistance and electrical capacitance of a biological tissue [1]. 

Electrical impedance of a biological tissues is a function of frequency where it decreases as the 

frequency increases. At higher frequencies (>20kHz), the electrical impedance of a tissue can be 

approximated by only the tissue’s resistance as its electrical reactance (
1

𝐶𝜔
) becomes significantly 

smaller than the tissue’s resistance such that its impact on the overall tissue impedance becomes 

negligible.   

 

1.5.2. Relationship between Electrical Impedance, Resistance, Capacitance 

and Phase Angle of Biological Tissues at Low Frequencies 

The relationship between the electrical impedance, resistance, capacitance and phase angle of a 

biological tissue at low frequencies, which is derived from its equivalent circuit (Figure 4 (B)) in 

phasor format, is as follows: 
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Zt ∠θt  =  [(RE /CM) / (RE
2

 + (1/CM)2)1/2]  ∠ -90º +Arctg (1/RE CM 

 

where Zt and θt are the amplitude and phase angle of the tissue’s electrical impedance, is the 

natural frequency of the excitation signal, RE and CM are the tissue’s electrical resistance and 

capacitance, respectively. It is noteworthy that RI is considered to be very small and therefore 

negligible at low frequencies.  

 

 

 

 

1.5.3. Phase Angle and its Bio-medical Implication and Application 

The impedance phase angle of a biological tissue, which is usually obtained from the time delay 

between excitation and measured signals, is a function of the ratio of the tissue’s permittivity to 

conductivity. As such, any changes in the ratio of the dielectric properties of a tissue at low 

frequencies manifests itself in the phase angle of the tissue. As described before, the permittivity 

of a tissue is influenced by its cell membranes [1]. In general, healthier and younger tissues 

exhibit higher permittivity and therefore higher phase angle values than older and unhealthy 

(non-cancerous) tissues of the same type [37]. Also, tissues with higher cell densities (e.g. 

cancerous tissues) have been shown to have higher electrical permittivity than tissues with lower 

cell densities [16]. As biological tissues start to die and their cell membranes begin to 

disintegrate, their permittivity and phase angle starts to decrease [13]. As a result, the impedance 

phase angle of biological tissues can be used as a measure of the overall tissue’s health [39]. 

Furthermore, the phase angle has been found to be a prognostic indicator in several chronic 

conditions-such as HIV, liver cirrhosis, chronic obstructive pulmonary disease, and lung cancer-

and in patients receiving dialysis [38]. In this study, we will show that phase angle-based image 

reconstruction can be used effectively to detect breast malignancies in electrical impedance 

mammography.   
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1.6. Literature Review Summary 

1.6.1. Electrical Impedance Mammography (EIM) 

Electrical impedance mammography (EIM) is a breast imaging modality that derives its contrast 

from electrical properties of the breast tissue. In EIM, the breast is compressed between two 

parallel plates or between one plate and the chest wall [41], and the electrical impedance 

projection of the breast tissue is measured before it is converted into 2D mammograms. Many of 

the studies conducted in the field of EIM in the past sixteen years are based on using the Siemens 

TransScan system (Siemens Medical, Germany, and TransScan, Ramsey, NJ, USA) and 

analyzing its performance. TransScan is an impedance mammography system which has 

received FDA approval for adjunctive use with X-ray Mammography [42]. This system consists 

of a hand-held electrode and measuring probe. Excitation signal with amplitudes of 1–2.5 volts 

and frequencies of 100 Hz-100 kHz is applied to the hand-held electrode. The measuring probe 

(Figure 1.6), which consists of a 2D array with multitude electrodes arranged on rectangular grid, 

is placed on the breast during the scan. The diagnosis in the TransScan mammography system is 

based on the spectral behaviour of the currents that pass through the breast tissue, namely the 

amplitude and phase components of the measured currents at various frequencies. These 

components are used to measure the resistance and capacitance of the breast tissue in order to 

generate impedance mammograms (Figure 1.7). Figure 1.5 shows a schematic of a typical breast 

examination performed by the TransScan 2000 system [41]. Based on analytical and simulation 

results, Assenheimer et al. [40] showed that the TransScan system is only capable of detecting 

highly conductive inclusions located close to the breast’s surface. Among studies that assessed 

the performance of the TransScan 2000 for detecting breast carcinomas, Melloul et al. [44] used 

the system on 121 patients, all of whom had their breast lesions previously detected by other 

imaging modalities such as MRI and biopsied. Based on their results, Melloul et al. [44] obtained 

72.2% sensitivity and 67% specificity for the TransScan 2000. Malich et al. [45] also used 

TransScan 2000 to examine 100 suspicious breast lesions and compared their results with MRI 

and US scans. They found that the TransScan 2000 system had 81% sensitivity and 63% 

specificity in detection and differentiation of the breast malignant and benign lesions. It is 

noteworthy that these values were higher than the sensitivity and specificity values of typical x-

ray mammography systems as the sensitivity and specificity of such systems are around 40% and 
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24–58%, respectively [46]. Researchers also indicated that the greatest advantage of the 

TransScan TS2000 system was its ability to detect breast lesions as small as 3mm in diameter 

[44]. Despite these capabilities, previous studies [40] have shown that the TransScan 

mammography system still suffers from limited detectability depth. 

 

 

 

                          Figure 1.5. Schematic of the TransScan 2000 System [41] 
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Figure 1.6. Probe of the TransScan 2000 System [41] 

 

 

            
 

 

Figure 1.7. TransScan 2000 system examination window (LOS-Software) [47]. The bright spots 

in the above projection image represent the breast anomalies with higher dielectric values.    

 

1.6.2. Electrical Impedance Tomography (EIT) of Breast  
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Many studies in the field of EIT are focused on breast imaging and detection of breast 

malignancies. This is mainly because previous studies have shown that breast malignancies have 

significantly higher conductivity and permittivity, and lower impedance values in comparison 

with normal breast tissues [21,25,26].  In breast EIT, usually a large number of electrodes are 

required to be attached to the breast surface to acquire the impedance data of the breast tissue 

between these electrodes before they are processed by a computer to generate tomographic 3D 

images of the impedance distribution within the breast. For impedance measurement, most 

practical EIT systems operate on a so called ‘current-driving mode’. This mode involves 

applying a known, constant AC current to two or more electrodes, and measuring the voltages 

developed between other electrodes [48]. Conversely, the ‘voltage driving mode’ involves 

applying a known AC voltage to two or more electrodes and measuring the currents through 

other electrodes. Various data acquisition techniques have been used by different research groups 

in EIT. They mainly differ in the number and arrangement of electrodes, the excitation mode (i.e. 

current or voltage driving mode), the pattern of the excitation signal, and the working frequency 

range. Though being conceptually simple, the data acquisition process in EIT imaging is difficult 

to implement in practice. The image reconstruction in EIT is a challenging inverse problem, 

which is both nonlinear and ill posed. It usually involves solving the corresponding forward 

problem iteratively where a current estimation of impedance distribution is used to calculate the 

measured surface voltages from the applied currents. This iterative process continues until the 

calculated surface voltages match their measured counterparts [48]. The ill-posed and complex 

image reconstruction algorithms in conjunction with the large number of required electrodes are 

the two main limiting factors that have prevented EIT from becoming a viable clinical option in 

the area of breast imaging.   

 

1.7. Theory 

1.7.1. Maxwell’s Equations 

Data acquisition in EIT and EIM are based on measuring electrical quantities such as electric 

current and voltage on the body surface. These electrical quantities are governed by the 

constitutive physical laws. Maxwell’s equations are the set of partial differential equations that 
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the constitutive physical laws use to define how these electrical quantities are generated and 

altered by each other and by electric and magnetic fields. For a nonmagnetic material such as 

biological tissues, the general form of Maxwell’s equations in the time domain with the inclusion 

of displacement current and continuity equation is as follows [49]:  

D (r, t) =  (r,   t )                                     (1.4) 

× H (r, t)  = J (r, t)  +  
𝜕𝐃 (r,t)

𝜕t
  =   σE (r, t) + Je (r, t)  +  

𝜕𝐃 (r,t)

𝜕t
              (1.5) 

B (r, t)  =                                             (1.6)               

× E (r, t) = −
∂𝐁 (r,t)

∂t
                                  (1.7)                         

Where r is the location of each parameter in space, ρ(r, t) is the electric charge density, J(r, t) = 

σE (r, t) + Je (r, t) is the electric current density, Je is the externally induced current density (from 

the current source), σE (r, t) is known as conduction current density, E is the electric field, D = 

εE(r, t) is the electric displacement current, ε is the electric permittivity, B(r, t)=μ H(r, t)  is the 

magnetic flux density, H(r, t) is the magnetic intensity and μ is the magnetic permeability which 

is considered to be the same as  the permeability of vacuum for biological tissues. In this study 

we assume that the external magnetic flux density is negligible (i.e. B (r, t) = 0). We also assume 

that impedance measurement in EIT and EIM is performed at low frequencies (1MHz or lower) 

where voltage and current source frequencies are low enough for the electromagnetic field 

propagation delay to be neglected [50]. By using the phasor format of equations 1.4-1.7 and 

dropping the time harmonic, the format of Maxwell’s equations in frequency domain are as 

follows: 

D (r, ω) =  (r, ω)                                (1.8) 

× H (r, ω) = J (r, ω) + jω D(r, ω) = σE (r, ω)+ Je (r, ω)+ jω D(r, ω)                      (1.9) 

B (r, ω)  =                                      (1.10)               

× E (r, ω) = -jω B (r, ω)                         (1.11)                         
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Where ω is the natural frequency and Je is externally induced current density. In EIT and EIM, 

Maxwell’s equations are usually solved based on an inverse problem framework where the finite 

element method (FEM) is used as the corresponding forward model.  

 

1.7.2. Finite Element Method 

The description of constitutive laws of physics for Maxwell’s equations are expressed in terms of 

the partial differential equations (PDEs) described earlier. For the vast majority of problems and 

geometries, these PDEs cannot be solved with analytical methods. Instead, an approximation of 

the equations can be constructed, typically based upon different types of discretizations. These 

discretization methods approximate the PDEs with numerical model equations, which can be 

solved using numerical methods. The finite element method (FEM) is used to compute such 

approximations [51]. In other words, FEM discretizes complex geometries (i.e. breast in this 

study) into smaller elements with finite shape and simple geometries such as tetra- or hexahedral 

elements for a 3D object. The process of discretization in FEM is known as mesh generation. In 

this process, the original object is approximated with an assembly of elements which are 

connected at a finite number of joints, known as nodes. The properties of these elements (i.e. 

conductivity, permittivity, etc.)  in conjunction with their geometry are entered to form the so 

called stiffness equation for each element. The element stiffness equation is a small set of 

algebraic equations derived based on the approximate version of the PDE which is strictly valid 

within the respective element. There are several methods (e.g. Galerkin method) to turn the 

PDEs into approximate algebraic equations valid for each element. The element equations are 

obtained in matrix form. The next step is to assemble the element equations into a large system 

of equations that governs the whole body. Next, the boundary conditions are applied and the 

system of equation is solved, leading to the required variables such as voltage, current, and phase 

angle for each element. In FEM, the convergence of the algorithm to an accurate solution is 

highly dependant upon the quality of the generated mesh, including the size, type and shape of 

elements. 
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1.8. Thesis Objective 

The main objective of this work is to investigate the possibility of using the electrical impedance 

of biological tissues for the detection of breast malignancies and generating mammograms at low 

frequencies. As described earlier, for the bio-impedance based detection of breast malignancies 

at any frequency, the dielectric properties of the breast cancer tissues need to be significantly 

higher than the dielectric properties of their surrounding breast tissue. While previous studies 

have somewhat shown that dielectric values of the breast malignancies at high frequencies (20 

MHz-20 GHz) are significantly different from the dielectric values of normal breast tissue, 

sufficient and reliable data pertaining to the dielectric values of normal and malignant breast 

tissues at low frequencies are not available in the literature. The majority of researchers in the 

past three decades utilized conventional VNA-based measurement techniques for measuring 

tissue dielectric properties. Theoretical and empirical studies have shown that VNA-based 

techniques are not capable of accurately measuring the dielectric properties of biological tissue at 

low frequencies. For this reason, another objective of this investigation is to introduce a reliable 

approach for measuring the dielectric properties of biological tissues at low frequencies. The 

other objective of this study is to ensure that the dielectric properties of breast malignancies at 

low frequencies are significantly different from the dielectric properties of normal breast tissues. 

To achieve these objectives, a finite element (FE) based computational approach in conjunction 

with using an impedance sensor for measuring tissues dielectric properties at low frequencies is 

proposed in this study. Based on theoretical evidence and simulation studies, we have shown that 

the proposed FE-based technique, which takes into account the real geometry and inhomogeneity 

of the biological tissues, is superior to the conventional VNA-based approach. For this purpose, 

we used an improved version of the proposed FE-based approach and measured the dielectric 

properties of the normal and malignant breast tissues in xenograft mice model at low frequencies 

(100 Hz-1 MHz). The results of this investigation, which is presented in third chapter of this 

work, indicated that the dielectric properties of breast cancer tissue at low frequencies are 

significantly higher than their corresponding properties of normal breast tissues. Furthermore, 

comparison between the measured conductivity and permittivity in this investigation showed that 

the permittivity of breast tissues at low frequencies can be used as a more powerful bio-marker 

than the conductivity for differentiation of healthy and malignant breast tissues. To achieve the 

main objective of this investigation, we conducted an in silico and tissue mimicking phantom 
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studies which involved using a parallel plate impedance sensor and a breast model with an 

inclusion with higher electrical conductivity and permittivity values. In this investigation, we 

compared different types of data projection images which were obtained from the mentioned in 

silico and tissue mimicking phantom studies and showed that the proposed impedance sensor 

with phase angle projection image can reliably detect breast malignancies with higher dielectric 

values than their surrounding normal breast tissues. 

 

 

 

 

 

1.9. Thesis Outline 

The thesis objectives which are defined above have been presented in three separate chapters 

followed by a closing chapter where the thesis conclusion and future directions are discussed. 

The material presented in each chapter is outlined below.  

1.9.1. Chapter 2 (Paper 1) 

In chapter 2 of this dissertation, a novel technique for measuring the dielectric properties of 

biological tissues such as tissue electrical permittivity at low frequencies is presented. The 

proposed technique utilizes a high precision hardware for impedance measurement of a sensor 

formed by two conductive parallel plates with the tissue specimen as its dielectric. The 

capacitance part of measured impedance is processed using an inverse finite element framework 

to determine the tissue’s electrical permittivity. This framework considers the specimen’s 

accurate geometry and boundary conditions. After successful validation, to demonstrate its 

performance, the technique was employed to measure the electrical permittivity of several 

specimens of bovine heart, liver and bone tissues. Furthermore, the sensitivity and accuracy of 

the proposed technique and the conventional VNA-based approach for measuring the 

permittivity of tissue specimen with inhomogeneity was analyzed and compared via in silico 

studies in this chapter.   
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1.9.2. Chapter 3 (Paper 2) 

The possibility of using dielectric properties for tissue characterization in breast cancer has been 

studied in this chapter. For this purpose, several normal and malignant breast tissue specimens 

harvested from a xenograft mice model were measured at 100 Hz-1 MHz before they were 

compared. The measurements are conducted by using an improved version of the permittivity 

measurement technique presented in chapter 2 of this thesis.  

1.9.3. Chapter 4 (Paper 3) 

In this chapter, the feasibility of using the electrical impedance properties of breast tissues for 

detection of breast malignancies and generation of impedance mammograms are investigated. 

For this purpose, a breast electrical impedance mammography system consisting of a parallel 

plate impedance sensor was developed in conjunction with different types of image 

reconstructions. The effectiveness of the proposed system along with the image reconstruction 

methods was assessed through in silico and tissue mimicking phantom studies.     

1.9.4. Chapter 5 (Conclusions and Future Work) 

This chapter summarizes the materials presented in Chapters 2 through 4. It also suggests 

possible future directions for the research described in this thesis and finally concludes this 

dissertation.   
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Chapter 2 

 

A Method for Tissue Characterization Based on Low Frequency 

Dielectric Measurement and Comparison with Conventional 

Techniques 
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2.1. Introduction 

Accurate measurement of dielectric properties of biological tissues is important for a broad range 

of applications including development of medical imaging techniques that map tissue electrical 

properties (e.g. Electrical Capacitance Tomography (ECT) and Electrical Permittivity 

Tomography (EPT)) [1-4], tissue characterization and classification (e.g. differentiation between 

normal and malignant tissues) [2-4,17], studying biological tissue interaction with 

electromagnetic fields [20-27],  and bone health assessment [5]. For such applications, having a 

reliable database from electrical permittivity (EP) of biological tissues is essential. As an 

example of tissue characterization application based on measuring the tissue dielectric properties, 

an intra-operative device named MarginProbe (MarginProbe, PA, USA), was developed and 

received FDA approval in 2012. MarginProbe is used during breast lumpectomy to distinguish 

malignant from healthy tissues based on the difference in their measured dielectric values [6]. 
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 Among other applications, EP imaging has a good potential as a diagnostic tool. EP properties 

of biological tissues cover a broad range which implies that EP imaging can produce high 

contrast images with enhanced diagnostic data [7,8]. EP can potentially be used as a biomarker 

to differentiate between various pathologies and to detect and classify tissue abnormalities such 

as tumors [2-4,17]. Table 2.1 presents relative electrical permittivity and electrical conductivity 

values of six types of human tissues at 100Hz, 100 kHz, 100 MHz and 10 GHz [7,8]. This table 

shows that relative permittivity (ɛr) of biological tissues decreases significantly while their 

conductivity (S/m increases with higher frequencies. This implies that EP imaging at low 

frequencies is highly advantageous as it can provide images with broad dynamic range and high 

contrast. For example, the table shows a ratio of 1774 as highest to lowest for ɛr at 100 Hz while 

this ratio is only 7.5 at 10 GHz. Furthermore, energy loss in biological tissues at low frequencies 

is significantly lower than at high frequencies due to the lower conductance, rendering tissue 

electrical property imaging safer. While significant efforts have been dedicated to study tissue 

EP at high frequencies, less efforts have been made to study EP at frequencies below 1MHz, 

where the literature values are scarce and have substantial uncertainties [10]. 

Table 2.1. Relative electrical permittivity and conductivity of various human tissues measured at 

four different frequency range [7, 8]. 

Tissue name Muscle 
Bone 

(Cortical) 
Blood 

Brain  
(White matter) 

Brain 
(Grey matter) 

Fat 

r, (S/m)@100 Hz 9329000 ,0.3 5852.8, 0.02 5259.8,0.7 1667700,0.05 3906100,0.06 457060,0.03 

r, (S/m) @100 kHz 8089, 0.5 227.6,0.02 5120,07 2108,0.8 3221,0.1 92.89,0.04 

r, (S/m)@100 MHz 65.9, 0.9 15.3,0.1 76.8,1.2 56.8,0.35 80.14,0.6 6.07,0.08 

r, (S/m)@10 GHz 30, 28 7, 2 45, 12 30, 10 35, 10 4, 0.6 

 

Among researchers who measured electrical permittivity of biological tissues, Peyman et al. 

[9,12] measured EP of porcine and rat tissues at different ages from 40MHz to 20 GHz. Their 

results showed a general trend of EP reduction with age. For bone health assessment, Meaney et 

al. [5] conducted ex vivo microwave dielectric measurements on porcine trabecular bone 

specimens with various densities. Their results showed a strong correlation between both EP 

value and bone volume density. Among researchers who measured the EP of pathological 

tissues, Joines et al. [16,17] measured EP of various normal and malignant tissues acquired from 

rats and humans at 30 MHz-2 GHz, where they showed that at all frequencies the EP of 
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malignant tissues are up to 233% greater than their normal tissue counterparts. For breast and 

prostate benign and malignant tumor assessment, Halter et al. [2-4] developed measurement 

setups and imaging systems where they showed that tissue EP can be used not only to 

differentiate between malignant and benign tumors but also for cancer grade assessment. 

To our knowledge, methods developed over the past three decades for measuring biological 

tissues EP, have used conventional measurement techniques by utilizing open-end coaxial cable 

in conjunction with analytical model based on a lumped parameter approach. More recently, 

such measurement systems utilized vector network analyzer (VNA) in conjunction with the 

open-end coaxial cable. These techniques involve pressing the coaxial probe against the 

specimen while the reflection coefficient or admittance of the probe–sample interface is 

measured and used to approximate the specimen’s EP. Accuracy achieved in this measurement 

approach is dependent on the reflected signal and reflection coefficient at the probe–sample 

interface [36]. At low frequencies (<100kHz), where impedance of biological tissues is 

significantly higher than that of coaxial probe, measurement errors lead to very high 

amplification of the tissue EP estimation errors. Another issue associated with these techniques 

pertains to the lumped parameter approach used for its data processing.  

As shown in this article through an in-silico phantom study, this may lead to large errors when 

the tissue sample has even small amount of inhomogeneity, confirming the importance of 

accounting for tissue actual geometry and boundary conditions. The latter can be effectively 

achieved through a distributed parameter modeling approach formulated using a finite element 

(FE) framework. Among researchers who pointed out limitations of current conventional EP 

measurement techniques, Gabriel and Peyman [11] and Baker et al. [18,19] demonstrated that the 

error percentage of using the conventional approach at low frequencies can exceed 50%. As 

such, a robust technique for EP measurement of biological tissues, which takes into account 

specimen’s geometry and boundary conditions reliably while having low sensitivity to its 

inhomogeneity and raw data measurement errors, is desirable.  

In this study, we introduce a novel technique with improved EP measurement accuracy for 

biological tissue specimens acquired from surgical procedures. In contrast to the conventional 

method which relies on signal reflection, the proposed method does not suffer from EP 

estimation error at low frequencies. It uses the distributed parameter FE approach which models 
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the specimen’s geometry and boundary conditions accurately, leading to low sensitivity to tissue 

inhomogeneity.  

 

2.2. Methods 

2.2.1. Overview of the Conventional Technique for EP Measurement 

Conventional techniques of measuring tissue EP use open-end coaxial probes in conjunction with 

VNAs as shown on Figure 2.1. As illustrated in this figure, the VNA transmits an 

electromagnetic wave (incident signal) into the coaxial probe which is pressed against the tissue 

sample at one end and attached to the VNA at the other end. The incident signal (Vi∠β) 

propagates into the probe and hits the sample at the probe-sample interface region where part of 

it reflects back to the VNA through the probe due to the impedance mismatch. This reflected 

wave (Vr∠α) affects the amplitude and phase of the incident wave (Vi∠β) in the coaxial probe. 

By measuring and analyzing the phase and amplitude of the incident and reflected waves, the 

VNA estimates the sample’s impedance. Equations (2.1) and (2.2) show a fundamental 

relationship between incident and reflected waves and electrical impedance of the two sides of 

the probe-sample interface [38].     

               

Figure 2.1. Schematic of the experimental setup used in conventional methods of tissue EP 

measurement. 

 

The following equation, which is based on a lumped parameter approach, shows a fundamental 

relationship between incident and reflected waves and electrical impedance of the two sides of 

the probe-sample interface [37].      
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Г =
Vr ∠α

Vi ∠β
=  

𝑍𝑠−𝑍𝑖

𝑍𝑠+𝑍𝑖
            (2.1) 

 

This leads to: 

 

𝑍𝑠 =
(1+Г)

(1−Г)
 𝑍𝑖 =  𝛾𝑍𝑖         (2.2) 

where Г is the reflection coefficient at the probe-sample interface, Vr and α are the amplitude 

and phase angle of the reflected wave, Vi and β are the amplitude and phase angle of the incident 

wave, Zi is the impedance of the coaxial probe and Zs is the impedance of the sample. Based on 

Equation 1, at low frequencies where the impedance of biological tissues is significantly higher 

than the impedance of coaxial probe (for instance 50kΩ or higher vs. 0.10kΩ at 10kHz [7-8, 34-

35]) the reflection coefficient at the probe-sample interface becomes very close to 1, leading to a 

very large 𝛾 value. This implies that, at low frequencies, inevitable raw data measurement errors 

involved in the conventional EP measurement technique leads to highly magnified error in the 

tissue’s EP estimation. 

2.2.2. Overview of the Proposed Technique  

The proposed EP measurement technique consists of tissue impedance data acquisition followed 

by data processing to estimate the tissue’s EP. For tissue data acquisition, a freshly excised tissue 

specimen is placed between two plates of a custom-made impedance measurement sensor and 

the resultant resistance (Rm) and capacitance (Cm) values are measured at low frequencies as 

described in detail in Section 2.2.5. It is noteworthy that Cm depends on the geometry of the 

conductors and ε of the tissue while the latter is an intrinsic property of the tissue and does not 

depend on the charge or potential difference between the conductors. The following is a 

fundamental relationship that governs C of an arbitrarily shaped capacitor [15]: 

 

𝐶 =
Q

V
=  

∮ 𝜀𝐸.  𝑑𝑠

∫ 𝐸.  𝑑𝑙
                        (2.3) 
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where Q is the electric charge, V is the voltage between electrodes, E is electric field, and  = 

r0 where r and ε0 are medium’s relative permittivity and vacuum’s permittivity, respectively. 

Equation 3 shows that the relationship between C and  is complex as E is spatially variable. E 

can be calculated by solving Maxwell’s equation which can be achieved numerically using FEM. 

Equation 3 also shows that C depends on the geometry of the conductor plates and geometry and 

permittivity of the materials between them. Given that measured capacitance (Cm) is a complex 

function of r which can be formulated numerically using FEM, inverse problem formulation can 

be used to calculate r corresponding to measured Cm. As such, we use an algorithm based on the 

flowchart shown in Figure 2 to calculate r using measured Cm data. In the proposed inverse FE 

framework, the forward model is an FE model of the sensor with the specimen as the sensor’s 

capacitor dielectric. Given the known geometry of the sensor’s plates and specimen and the 

electrical properties of the plates including their electrical conductance and permittivity, for any 

given input r value of the tissue specimen, this FE model outputs a corresponding capacitance 

(Cc). As such, the inverse problem was formulated as a 1D optimization problem where  r is the 

unknown parameter to be determined. In this optimization problem, the calculation starts with an 

initial guess value of  r = r0. This value is modified iteratively using the optimization algorithm 

until the difference between the sensor’s capacitance value (Cc) calculated using the FE model 

and its measured counterpart (Cm) is minimum. The last r value, which corresponds to this 

minimum difference, will be taken as the specimen’s relative permittivity value.  
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Figure 2.2. Flowchart of the inverse finite element algorithm used to estimate tissue specimen 

relative electrical permittivity 

 

2.2.3. Ex-vivo sample preparation 

Twenty nine bovine specimens were excised up to 4 hours post-mortem. They included 5 

trabecular bone, 15 heart (5 from the right ventricle and the rest from the left ventricles) in 

addition to 9 liver specimens. The samples were mainly cut into block shaped specimens and 

their dimensions were recorded for their FE mesh generation which is required for EP 

calculation. We also cut some of the tissue into curved specimens with uniform thickness as 

shown in Figure 2.3. This was done to demonstrate the effectiveness of the proposed method in 

measuring EP of tissue specimens with arbitrary shape.  
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Figure 2.3. Samples of ex-vivo bovine specimens with arbitrary shapes used in the study. 

 

2.2.4. Experimental setup for capacitance measurement  

A schematic of the experimental setup used in this investigation is illustrated in Figure 2.4. As 

depicted in this figure, the capacitive sensor of the measurement system consists of two parallel 

conductive plates. The distance between the plates is adjustable to fit the specimen being 

measured so as to establish contact with its two sides. The plates have dimensions of 84mm × 

46mm × 1mm. Connection between the sensor’s plates and data acquisition (DA) circuit board 

was made via two pairs of shielded wires. The impedance measurement was carried out through 

a custom-designed DA system which benefits from a high resolution sigma-delta analog-to-

digital converter (ADC). The DA board first measures the amplitude and phase of the current 

that passes through the sensor and send this information to the analog-to-digital converter. The 

ADC then converts the information to two 24-bit packets and feed them to the Digital Signal 

Processing (DSP) chip. The DSP chip then analyzes the phase and amplitude information and 

extracts the sample’s capacitance. The capacitance data is then fed to an 8-bit micro-controller 

via I2C interface. The micro-controller coordinates between different parts of the DA board and 

sends the capacitance data to a computer via USB ports. The architecture of this DA system 

features resolution of 24-bit no missing codes with up to 21-bit effective resolution, high 

linearity of ±0.01% and high accuracy of ±24 fF (calibrated) for measuring capacitance. The DA 

system’s input capacitance range is 0-50 nF. The system uses 5Vp-p excitation pulse at frequency 

of 32 kHz to measure the impedance of the sensor ensemble. 
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Figure 2.4.  Schematic of the experimental setup for impedance measurement. 

 

2.2.5. Optimization based inverse finite-element approach for EP calculation 

As indicated earlier, the proposed EP measurement technique follows an inverse FE framework. 

The forward model in this framework is tissue specimen FE model while the inversion part 

utilizes a constrained optimization algorithm which seeks a relative EP value (r) that leads to the 

closest match between the capacitance value obtained from the FE model (Cc) and its 

experimentally measured counterpart (Cm). For this purpose, an objective cost function 

representing the absolute difference between experimental and simulated capacitance values was 

defined. As such, εr value that minimizes the objective function is the sought relative electrical 

permittivity. Given that the range of relative permittivity values for biological tissues is known 

based on the literature, constrained (bounded) optimization was used to determine tissue εr such 

that the risk of convergence to local minima is minimized. Therefore, the constrained 

minimization problem is formulated as follows: 

  

f(εr)= | Cm – Cc (εr)| 

{
Min. f(εr)

sub. to εrL ≤ εr ≤ εrU
 

 



34 

 

Here Cm and Cc(εr) are, respectively, the experimentally acquired capacitance value and its 

counterpart obtained from the FE model. We used lower bound 𝜀𝑟𝐿 values of 100 and 1000 and 

upper bound 𝜀𝑟𝑈 values of 5000 and 50000 for the trabecular bone and soft tissues (heart and 

liver specimens), respectively. The algorithm is launched with an input relative EP initial guess 

value. To systematically change this value, the bisection search algorithm [28] was used which 

finds a uni-modal function’s minimum by successively narrowing the range of values where the 

minimum occurs. The optimization process is terminated when the current range becomes 

sufficiently small.  

2.2.5.1. Sensor FE model 

As stated earlier, the forward model of the problem involved in the proposed technique inputs 

data of the sensor including the specimen’s geometry and εr and outputs corresponding 

capacitance. This model is formulated numerically using FEM which was implemented in CST 

Studio software package (Computer Simulation Technology AG, Darmstadt, Germany). This 

software calculates the electric field in the specimen by solving the governing Maxwell’s 

equations before determining the capacitance value of the sensor ensemble using Equation 2.3. 

Figures 2.5(a) and (b) illustrate a side view and 3-D view of a coarse FE mesh of the sensor 

including a tissue sample cut into a curved specimen shape. This coarse mesh is illustrated for 

the purpose of clear visualization only as specimens’ FE mesh generated by CST to achieve 

desired accuracy through iterative refinement typically consists of ~1.4-2.8 million 8-noded 

hexahedral elements in this application. The FE model requires the electrical conductance and 

permittivity values for each material within the sensor as input. As stated earlier, the tissue εr 

value is one of the key parameters that affects the overall capacitance of the sensor. In brief, for a 

known excitation voltage and known geometry, EC and r parameters, the FE model outputs the 

C value of the capacitor.    
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Figure 2.5.  Side view of the finite-element model of the proposed sensor with a curved-shape 

specimen and (a), and 3-D view of the proposed sensor with the same curved-shape specimen 

(b). 

 

2.2.6. Measurement sensitivity to specimen geometry  

In order to assess the impact of sample’s geometry errors, both gross and systematic, on accuracy 

of estimated εr of the sample was assessed. Such inaccuracy is expected because of errors 

encountered in specimen’s dimensions measurement or segmentation of its image in case 

geometry is acquired through imaging. For this assessment, a block-shaped liver sample was 

selected and its dimensions of 41mm × 5mm × 5mm were accurately measured. These 
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dimensions which are considered to be the true dimensions, were altered to mimic gross and 

segmentation errors to determine the impact of such level of inaccuracy on the tissue 

reconstructed EP value. To mimic gross geometry errors, the dimensions were randomly altered 

by ±10% to generate 8 different altered geometries. For segmentation error simulation, two 

levels of isotropic errors of ±0.2mm and ±0.1mm were randomly added to the specimen’s 

dimensions, each leading to 8 different altered geometries. The two segmentation error levels 

were considered for high and low image resolution scenarios. Each geometry was fed to the 

inverse FE-based algorithm to calculate the tissue’s corresponding EP values using the original 

geometry and the variants geometries.  

2.2.7. In silico assessment of measurement sensitivity to tissue specimen 

inhomogeneity  

In some tissues such as the breast, acquiring a homogeneous specimen is challenging as the 

breast adipose and fibroglandular tissues are often intertwined where layers/pockets of adipose 

tissues are distributed within the fibroglandular tissue regions or vice versa. Such inhomogeneity 

is often not detectable visually. In order to assess the impact of inevitable biological tissue 

inhomogeneity on measured EP using the proposed technique versus the conventional approach, 

we conducted a computer simulation study where FE models of two breast tissue specimens with 

dimensions of 12mm × 12mm × 10.5mm were used. To mimic inhomogeneity, one of the 

specimens is assumed to consist of fibroglandular block of tissue with 10 mm thickness andr = 

2500 at 10 kHz with a very thin layer of adipose tissue of 0.5 mm thickness andr = 500 at 10 

kHz. The other specimen is assumed to consist of adipose tissue block with the same dimensions 

of 12mm × 12mm and 10 mm thickness andr = 500 at 10 kHz with a very thin layer of 

fibroglandular tissue of 0.5 mm thickness andr = 2500 at 10 kHz [7,31-33]. FE models of these 

specimens were constructed using the CST Studio Software followed by FE analysis of these 

models using the same software to obtain the specimen’s capacitance in the two cases. These 

cases assumed using the two measurement methods of 1) open-end coaxial cable (core conductor 

diameter = 1.30 mm, shield conductor diameter = 5.72 mm) pressing against the tissue samples 

(Figure 2.6(a) and (b)), and 2.2) the proposed method of parallel plate sensor with the tissue 

specimen placed between them as described in Section 2.2.5 (Figure 2.6(c) and (d)), respectively. 
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The obtained capacitance values were used as input to calculate the specimens’ r using the 

conventional and proposed techniques. 

      

Figure 2.6. Schematics of inhomogeneous breast tissue specimen models consisting of 

fibroglandular and adipose tissues. They are shown with an open-end coaxial cable and parallel 

plate sensor used with the conventional measurement ((a) and (b)) and the proposed 

measurement techniques ((c) and (d)), respectively. 

 

2.2.8. Methods validation 

The proposed method in this study was validated by measuring the permittivity of a Plexiglas 

sheet at 32 kHz using the proposed measurement technique. The permittivity of the Plexiglas is 

known at 60 Hz-100 kHz range. According to the specifications provided by the manufacturer, 

from 60 Hz-100 kHz the relative permittivity of the Plexiglas ranges from 3.5 to 2.7 [29]. This 

measurement was conducted 10 times to account for experimental errors. The plexiglas specimen 

was plate shaped with dimensions of 50mm×48mm×1mm which led to a fine FE mesh of 75000 

elements. This model was incorporated into the mathematical cost function of the optimization 
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algorithm used to calculate its relative EP. It noteworthy that plexiglass was chosen for 

validation in this study because its dielectric values were provided by the manufacturer at the 

low frequency range (60Hz-100kHz). Unfortunately for other materials and solutions such as 

saltwater with higher conductivity and permittivity, the reliable data pertaining to their dielectric 

values at low frequencies does not exist in the literature.     

2.3. Results 

2.3.1. Specimen’s geometry sensitivity analysis  

Using the “true” geometry of 41mm × 5mm × 5mm, the r value of the blocked-shape liver 

tissue specimen was calculated at 28300. The first set of altered geometries corresponding to the 

geometry gross errors of ±10% led to r estimation error of 3.4±17.1%. The two other sets of 

altered geometries led to r estimation errors of 0.6±8.7% and 0.1±4.3% corresponding to the 

isotropic segmentation errors of ±0.2mm and ±0.1mm, respectively. These errors indicate that 

while relative EP estimation errors can be significant with gross geometry errors, they are 

insignificant with errors expected from image segmentation in case of imaging based geometry 

acquisition. 

 

2.3.2. In silico assessment of measurement sensitivity to tissue specimen 

inhomogeneity 

Capacitance values of the fibroglandular tissue specimen with a thin layer of adipose was 

calculated at 15.62 pF and 255.09 pF using the conventional method and FE model pertaining to 

the proposed setup, respectively. These differences can be explained by Figure 2.7 which 

illustrates the electrical potential and corresponding electric field pertaining to the conventional 

and proposed setups with this breast specimen model. Figures 2.7(a) and (b) illustrate the electric 

potential while Figures 2.7(c) and (d) illustrate the corresponding electric fields. For example, 

Figure 2.7(c), which corresponds to the conventional technique, shows that the electric field is 

close to zero within the entire tissue sample except for a small region underneath the coaxial 

cable. The field’s depth penetration is very limited and barely reaches the fibroglandular tissue 

layer, leading to capacitance value which is predominantly determined by the permittivity of the 

thin adipose layer according to Equation 2.3. In contrast, Figure 2.7(d), which corresponds to the 
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proposed technique, shows significant non-zero electric field values throughout the entire sample 

including in the thick fibroglandular tissue layer. For the adipose tissue specimen with a thin 

layer of fibroglandular tissue, capacitance values of 46.45 pF and 63.19 pF were obtained using 

the FE models pertaining to the conventional and proposed experimental setups, respectively. 

Using these values, ther values for the fibroglandular tissue were calculated at 650 and 2100 

using the conventional and the proposed techniques, indicating errors of 74% and 16% 

corresponding to these techniques, respectively. The r values obtained for the adipose tissue 

were calculated at 1850 and 520 using the conventional and proposed approaches, indicating 

errors of 270% and only 4% corresponding to these techniques, respectively.  

 

     

Figure 2.7. Simulated distributions of electric potential ((a),(b)) and electric field ((c),(d)) inside 

the inhomogeneous breast tissue specimen model consisting of fibroglandular tissue and a thin 

layer of adipose tissues. Simulated distributions were obtained with conventional ((a),(c)) and the 

proposed ((b),(d)) techniques. 
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2.3.3. Method validation results 

For the methods validation, r of the Plexiglas was measured at 2.9±0.15 with the excitation 

frequency of 32 kHz. Considering linear variation approximation of EP over the frequency range 

of 60 Hz-100 kHz, the given r range of 3.5-2.7 leads to 3.24. This value is sufficiently close to 

the r values measured in our validation experiment.  

2.3.4. Tissue relative EP measurement results 

r values of the 35 bovine specimens, which were obtained using the proposed technique, are 

presented in Figure 8. These values are 12162±1800, 11630±1403, 31550±2391 and 283±20 for 

the left ventricle, right ventricle, liver and trabecular bone samples, respectively.  

 

             

Figure 2. 8. r values of bovine heart, liver and trabecular bone specimens at 32 kHz. 

 

The standard deviations values pertaining to the measurements are only 14%, 12%, 7% and 7% 

of the corresponding average values of the left ventricle, right ventricle, liver and trabecular 

bone, respectively. This demonstrates relatively high repeatability of the proposed measurement 
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method, especially that the observed permittivity variations include inter and intra specimen 

variability in addition to experimental errors. It is noteworthy that in Figure 2.8, the left ventricle 

tissue specimens 11 to 16 correspond to the curved shape specimens while the rest correspond to 

the block shaped specimens. T-test was conducted to assess statistical differences between 

measuredr values of these two groups of specimens. The test led to p = 0.5794, indicating that 

the differences are not statistically significant. This consolidates that the proposed method is 

capable of estimating tissuer accurately irrespective of the specimen’s geometric complexity. 

2.4. Discussion and Conclusions 

The technique presented in this article was developed for measurement of relative EP of small 

ex-vivo tissue specimens. It uses an impedance sensor consisting of two parallel plates where the 

tissue sample is placed between the plates and acts as its dielectric. Compared to experimental 

setup used in conventional methods, this sensor is capable of measuring the sample’s impedance 

with high accuracy especially at low frequencies, providing capacitance data which carries the r 

information of the tissue specimen. To extract this information, we developed an inverse FE 

algorithm which inputs the measured capacitance, sensor’s configuration data including the 

specimen’s geometry, known electrical properties of sensor’s plates and excitation voltage to 

output the tissue specimen’s relative EP. Conventional EP measurement techniques were 

developed based on lumped parameter admittance data analysis model [7,10,17,18]. As 

described in Section 2.2.1, while these techniques may provide goodr measurement accuracy at 

higher frequencies, they are highly sensitive to raw data measurement errors at low frequencies. 

Electrode polarization is another issue which is encountered with very low frequencies. Schwan 

1992 showed that electrode polarization at frequencies below 1kHz range may lead to inaccuracy 

in EP measurements. Electrode polarization usually increases with increasing sample 

conductivity, leading to inaccuracy of measured capacitance of ionic solutions and, to some 

extent, biological tissue [30]. With biological tissue specimens, however, the poorly conducting 

tissue structure shields the electrode from the ionic current, thus reducing the polarization effects 

[7].  Therefore, in the proposed method, electrode polarization is expected to have insignificant 

impact on measuredr. Another issue withr measurement using the conventional techniques 

under low frequencies pertains to very limited penetration of electric field generated in the tissue 

specimen tested using conventional methods setup. As demonstrated in this study, limited 
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electric field penetration of conventional techniques may lead to high r estimation errors for 

tissue specimens with even small amount of inhomogeneity. In contrast, through FE simulation, 

the proposed technique models the specimen’s geometry, boundary conditions, and data 

pertaining to the measurement sensor highly accurately. Therefore, in principle, this technique 

offers a more rigorous method for EP measurement of biological tissues under wide range of 

frequencies and specimen size. The latter is particularly important for measuring EP of 

specimens routinely acquired from surgeries as these types of specimens are usually small and 

have irregular shapes. Furthermore, such tissues frequently include some level of inhomogeneity. 

For example, the breast volume mainly consists of fibroglandular and adipose tissue where these 

tissues are often intertwined. This is also true with breast tumors and other types of breast lesions 

which always involve a significant level of inhomogeneity. In Section 2.2.7, we conducted a 

simulation study to assess the impact of such inhomogeneity in measuringr using the 

conventional and the proposed measurement techniques. With such inhomogeneous breast tissue 

specimens, results indicated that the conventional method may lead to errors of as high as 270% 

compared to a maximum error of only 16% obtained with the proposed method. This indicates 

that proposed method’s sensitivity is significantly lower than the conventional methods’ 

sensitivity to inevitable tissue inhomogeneity. In the proposed method, specimen geometry is an 

important input especially for measuring the permittivity of complex shaped tissue specimens 

acquired from surgeries. This geometry can be acquired by manual measurement or using 

imaging with digital cameras or by Computed Tomography (CT). The latter is advantageous as it 

is more accurate while it can provide information about tissue extent of inhomogeneity. To 

investigate the impact of errors in specimens geometry on the tissue estimatedr, three geometry 

error scenarios were investigated. One scenario involved large geometry alteration corresponding 

to gross geometry acquisition while the other two scenarios involved geometry alterations 

corresponding to image segmentation errors. This investigation indicated EP estimation errors of 

3.4±17.1%, 0.6±8.7% and 0.1±4.3% corresponding to the first gross geometry acquisition, and 

two levels of image segmentation errors, respectively. These errors indicate that whiler 

estimation errors can be significant with geometry gross errors pertaining to manual 

measurement, they are insignificant with errors expected from image segmentation. To assess its 

accuracy, the proposed method was applied to measure the relative permittivity of a plexiglas 

specimen. At a frequency of 32 kHz, this measurement led to an average εr value of 2.9. 
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Unfortunately, the ground truth EP value of the Plexiglas specimen is not available at this 

frequency and values are available at frequencies of 60 Hz and 100 kHz. Using linear 

interpolation, an εr value of 3.24 was obtained which indicates an error of 10%. However, using 

more realistic convex interpolation function, which better represents εr variation versus 

frequency, leads to lower error. Such low error is anticipated given that the method is founded on 

a solid theoretical background in conjunction with the high sensitivity of the sensor and 

measurement system. The technique was used to measure εr of several fresh bovine tissue 

specimens including myocardium (left and right ventricles), liver and trabecular bone. Table 2.2 

shows the εr values from the proposed technique for the heart, trabecular bone and liver 

specimens are within the reported εr range in the literature by previous researchers such as 

Gabriel et al. [7,8]. Due to the accuracy of the capacitance data processing model used in the 

proposed technique, the εr values obtained in this study are expected to have improved accuracy 

compared to the ones reported in the literature. To assess the effect of specimen geometry 

complexity on the measurement accuracy, some of the left ventricle tissue specimens were cut 

into curved shape samples while the rest were cut into block shaped samples. T-test at p = 0.01 

indicated that ther values obtained for the two groups of the left ventricle tissue specimens were 

not significantly different. It is noteworthy that temperature and dehydration can affect dielectric 

values of biological tissue. However, in this study the dielectric measurements of all bovine 

tissue specimens were conducted at room temperature (20° C) within 4 hours post-mortem and 

specimens were continuously kept moist during the experiment by using water spray.   

Table 2.2. Comparison between bovine relative EP values obtained from the proposed technique 

and corresponding values reported in the literature for the same type of tissues at 32 kHz 

Specimen’s Type  

 

Mean εr ± STD 

 

 

Reported εr in the 

Literature  
 

Bovine heart (LV, n=16) 12162±1800  
10000 -20000  [6,7] 

Bovine heart (LV, n=5) 11630±1403  

Bovine liver (n=9) 31550 ±2391  10000-30000  [6,7] 

Bovine trabecular bone (n=5)  283 ± 19.5  200-300 [6,7] 
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The standard deviation of the measured relative EP values were at 7% to 14% of their 

corresponding average values. These values indicate high measurement repeatability as the 

corresponding variances include inter- and intra-specimen variability in addition to experimental 

errors.  The εr measurement of bovine specimens in this study was performed at frequency of 32 

kHz only. However, the proposed technique, can be used to measure εr of tissues at a wide range 

of frequencies. While feasible, this was beyond the scope of this work as the main objective of 

this research was to introduce the novel measurement technique and inverse FE based data 

processing algorithm and to demonstrate the effectiveness of εr measurement of tissues at low 

frequencies.  
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Chapter 3 

 

Dielectric Properties of the Normal and Malignant Breast 

Tissues in Xenograft Mice at Low Frequencies (100Hz-

1MHz) 
 

The material presented in this chapter has been submitted to the Measurement journal.  

Authors’ Contributions Statement: The main idea of this chapter is conceived by the principal 

author, Seyyed M. Hesabgar. The research, experiments and tissue dielectric measurements 

presented in this chapter have been conducted by Seyyed M. Hesabgar and guided by the 

research supervisor Dr. Abbas Samani. The preparation of the xenograft mice model for this 

study were instructed by the collaborators of this study, Dr. Ali Sadeghi Nainai and Dr. 

Gregory Czarnota at University of Toronto. The injection of the breast cancer cell lines and 

excision of the breast tumors from xenograft mice for this study were conducted by the 

collaborators’ technicians in the Odette Cancer Centre in Toronto, Ontario.    

 

 

 

3.1. Introduction 

 

Breast cancer is the most common type of cancer in women. In 2012, ~1.7 million new cases 

were diagnosed worldwide, accounting for 25% of all new cancer cases in women [1]. Breast 

cancer survival rate in low-income countries is only 40% compared to over 80% in North 

America [2]. Low survival rates in less developed countries is mainly attributed to lack of early 

detection. This indicates the paramount role that early detection plays in increasing breast cancer 

survival rate. Among methods developed for breast cancer early detection, novel medical 
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imaging techniques are very promising. One of the methods pursued for this purpose is based on 

imaging tissue electrical properties as it does not involve ionizing radiation.  

Tissue dielectric properties (e.g. electrical permittivity (EP)) span a wide range of values [4,5]. 

Particularly, malignant tumors have been shown to have substantially different EP from healthy 

breast tissue [6-9]. These differences stem from tissue structural alterations associated with 

cancer biology. Research has shown that higher dielectric properties of malignant breast tissues 

is due to their higher than normal water and ions concentration [10] and lower than normal fat 

content [11]. While higher concentration of ions and salt in the tissue intra and extra cellular 

matrix leads to a higher conductivity and permittivity at all frequencies [5], lower concentration 

or lack of adipose elevates its dielectric properties. This is consistent with the breast’s lower 

dielectric properties of adipose tissue compared to those of fibroglandular and connective tissues 

[4,5].  Another source of dielectric properties elevation is higher cell density which is a well-

known feature characterising cancerous tissue [12]. This implies that dielectric properties 

imaging can potentially produce high contrast images with rich diagnostic information, hence it 

holds a good promise for breast cancer early detection and diagnosis. As such, accurate dielectric 

measurement of healthy and pathological breast tissues can help further development of 

dielectric property imaging techniques as having reliable EC and EP data pertaining to various 

breast tissues is essential for effective interpretation of EC and EP images.  

Dielectric properties of normal and malignant tissues such as those of the breast and liver have 

been studied by many researchers in the past century [13-17]. While valuable in terms of laying 

theoretical foundations of the field, many of these studies including most of the early works, 

involve theoretical over-simplification and measurement setups capable of providing only 

limited accuracy [3]. More recent studies in this area are dominated by tissue dielectric 

properties measurement at high frequencies using vector network analyzer (VNA) and coaxial 

probe. These studies have shown that dielectric properties of pathological tissues at high 

frequency (10 MHz-20 GHz) are substantially different from their healthy tissue counterparts. 

This demonstrates good potential of imaging these properties at high frequencies for detecting 

and classifying tissue abnormalities especially those arising from cancer.  

Despite that imaging dielectric properties at low frequencies (100 Hz-1MHz) has substantial 

merits, relatively little research has been carried out for reliable electrical characterization of 

tissues at such frequencies. Among those who have conducted dielectric measurements on 
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biological tissues at high frequencies, Joines et al. [10] measured electrical conductivity and 

permittivity of various normal and malignant human tissues at 50-900 MHz They concluded that, 

at all frequencies, both conductivity and permittivity parameters have greater values in malignant 

tumors than in corresponding normal tissue. O’Rourke et al. [17] measured dielectric properties 

of ex vivo and in vivo normal and malignant cirrhotic liver tissues at frequency range of 0.5-20 

GHz. They indicated that at the mentioned frequency range, the dielectric properties of ex vivo 

malignant liver tissue are higher than those of normal liver tissues while differences in the 

dielectric properties of in vivo malignant and normal liver tissues are not statistically significant.  

Preclinical animal tumor models, including tumor xenografts, are known to share main 

characteristics of their human tumor counterparts. As such, they are commonly used in novel 

techniques developmental stages or to acquire preliminary data. Xenograft mice models have 

been used extensively in breast cancer studies over the past decades. Despite some limitations, 

the similarities between these models and clinical human breast cancer are quite substantial. 

Histological studies of various adenocarcinoma xenograft models show close similarities 

between these models and their human counterparts [18]. In the area of breast cancer, studies 

have also shown that breast cancer xenograft models exhibit similar structural and functional 

characteristics of corresponding human breast cancers [19, 20]. Among those who used 

xenograft mice models for dielectric measurement, Yoo et al. [21] conducted EP measurement 

on brain, breast, gastric and colon carcinomas at 0.5-5 GHz using a measurement system 

consisting of vector network analyzer (VNA) and coaxial cable. Their finding suggests that 

relative permittivity values of the brain, breast and colon cancer tissues at these frequencies are 

higher than those of their normal tissue counterpart. Cho et al. [22] also conducted in vivo 

measurements of breast carcinoma dielectric properties in xenograft mice at 0.5-20 GHz 

frequency range using a similar system comprised of VNA and coaxial cable. Based on 

significant differences they observed in the dielectric properties of the tested tissues, they 

concluded that imaging tissue dielectric properties at microwave frequencies can be used to 

detect cancer with high sensitivity and specificity. These studies indicate that while breast tissue 

dielectric properties at high frequencies are relatively well studied, data that can be reliably used 

to interpret breast dielectric property images acquired at low frequencies are scarce. It is 

noteworthy that imaging dielectric properties at low frequencies is advantageous as the 

dissipation of electromagnetic field and energy absorption of biological tissues is low due to the 
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tissue low conductance at such frequencies [3-5]. This may imply higher level of safety with 

imaging dielectric properties at low frequencies. Furthermore, at these frequencies generation of 

electromagnetic waves necessary for tissue stimulation and data acquisition is easier and more 

cost-effective as the electronics involved in imaging at such frequencies is simpler and more 

readily available.  

Conventional VNA-based dielectric measurement techniques assume semi-infinite geometry 

model as well as a high frequency excitation for tissue specimens [5,9,23]. The semi-infinite 

geometry model is reasonably accurate with relatively large tissue specimens excited at high 

frequencies. As such while these techniques provide reasonably good measurement accuracy to 

measure dielectric properties of large tissue specimens at high frequencies, they are inadequate 

for measuring low frequency dielectric properties of small tissue routinely obtained from surgical 

procedures.  

The goal of this study is to estimate low frequency electrical permittivity and conductivity of 

small samples of human breast cancer tumor using a xenograft mice model. Comparison of these 

parameters in tumors and their normal surrounding tissues can help assessing the viability of 

imaging systems designed to image these properties at low frequencies as well as evaluating their 

efficacy for breast cancer screening or diagnosis.  

 

3.2. Methods 

When a biological tissue is placed inside an electric filed, energy of the field inside the tissue is 

primarily lost by either frictional motion of the tissue constituent charge carriers (resistive loss), 

or stored by polarization. As such, the response of tissue stimulated by electric field is described 

by its conductivity (σ, in S/m) and permittivity (ε, in F/m). Conductivity is a measure of the 

tissue ability to let charges pass through it, whereas permittivity is a measure of resistance the 

tissue exhibits when electric field is formed inside it. In the proposed tissue dielectric 

measurement technique, the sample excitation and data acquisition was performed by using a 

custom-made measurement setup. To measure tissue specimen’s conductivity and permittivity 

the acquired data is processed within an inverse problem framework as described in the 

following sections. 
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3.2.1. Tissue Sample Preparation 

In this study, experiments were conducted using human breast cancer (MDA-MB-231) tumor 

xenografts grown on hind legs of severely compromised immunedeficient (SCID) mice (n = 5). 

Tumors reached a size of 8–10 mm in diameter at 8 weeks after injection of cells 

subcutaneously. Cell lines were obtained from American Type Culture Collection (ATCC, 

Manassas, VA). For ultrasound imaging, the mice were anesthetized using (100 mg/kg ketamine, 

5 mg/kg of xylazine, and 1 mg/kg of acepromazine, CDMV, St. Hyacinthe, Quebec, Canada) and 

the tumor and surrounding tissue were epilated before scanning (NairTM Church & Dwight Co., 

Canada). For in vivo tumor visualization, low and high frequency ultrasound b-mode images 

were acquired using a Sonix RP (Ultrasonix, Vancouver, Canada) system with a L14-5/38 

transducer (10 MHz transmit frequency), and a Vevo 770 system (Visual Sonics, Toronto, 

Canada) with a RMV-707B transducer (30 MHz transmit frequency). The animals were 

subsequently euthanized and the tumor and surrounding normal tissue were excised. The 

specimens included five breast tumors and five normal surrounding tissue samples. The 

dimensions of each sample were measured and recorded for their FE mesh generation which is 

required for the specimen’s dielectric calculation as described later. Histological analysis was 

carried out on tumor and normal tissue samples immediately after the electrical data acquisition. 

The samples were fixed in 5% formalin for 24–48 h and then sectioned in two representative 

planes with haematoxylin and eosin (H&E) staining. Microscopy was carried out using a Leica 

DC100 microscope with 20× and 40× objectives and a Leica DC100 camera connected to a 2 

GHz PC running Leica IM1000 software (Leica GmbH, Germany). This study was conducted 

with research ethics approval from the Animal Care Committee of Sunnybrook Research 

Institute, Toronto, Canada (Protocol No. 11-440). 

 

3.2.2. Experimental Setup for Impedance Measurement  

As depicted in Figure 3.1, the setup consists of a plexiglas holder, electrodes, wires, a 1 nF 

ceramic capacitor, a high input impedance buffer, an excitation source and an oscilloscope. The 

electrodes are made from brass and they are 3 mm in diameter. Within few minutes from 

excision, each freshly excised specimen at room temperature (20° C) was placed between the 

electrodes such that its top and bottom surfaces only touched by the two electrodes. The top 
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electrode was connected to an excitation source which provided sinusoidal signal with 4 Vp-p 

amplitude and 100 Hz to 1 MHz frequency. The bottom electrode was connected to one end of a 

1 nF ceramic capacitor. The other end of this capacitor, which forms a series circuit with the 

tissue sample at higher frequencies, was connected to ground. The phase angle and amplitude of 

the capacitor’s voltage at each frequency was measured by an oscilloscope through a high input 

impedance buffer. This buffer, which is made from a unity-gain wideband operational amplifier 

(AD811, Analog Devices, USA), isolates the impedance of the tissue sample and the 1 nF series 

capacitor from the low impedance of the oscilloscope’s probe such that the probe’s low 

impedance does not interfere with the sample’s impedance.  

 

 

Figure 3.1. Schematic of the experimental setup for measuring a tissue specimen impedance 

 

 

3.2.3. Electrical Model of the Tissue Sample in the Impedance Measurement 

Setup  

The proposed technique involves measuring the specimen’s lumped model electrical impedance 

amplitude and phase angle, Zs and Φs shown in Figure 3.2. This is followed by FE model based 

data processing of Zs and Φs to estimate the tissue’s electrical permittivity and conductivity. 

Circuit analysis necessary to derive relationships used to estimate Zs and Φs from data acquired 

from the apparatus is described here. Figure 3.2 shows the electrical model of the tissue sample 
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along with the circuit schematic used for measuring the sample’s impedance. As shown in this 

figure, the tissue sample is modeled as an unknown impedance (Zs∠Φs) which is connected to 

the 1 nF capacitance in series. R2 and C3 are the input resistance and capacitance of the buffer 

(AD811). In the figure, Vs and θ1 are the amplitude and phase of the excitation voltage source, 

respectively while V0 and θ0 are the amplitude and phase of the voltage of the 1 nF series 

capacitance, respectively. Both of Vs∠θ1 and Vo∠θ0 are measured by the oscilloscope in the 

setup. 

 

 

Figure 3.2. Electrical model of the tissue sample and required circuit for measuring sample’s 

impedance 

 

I is the current that passes through the main branch of the circuit. Specimen’s electrical 

permittivity and conductivity are estimated using the amplitudes and phase angle of the sample’s 

Zs and Φs which are calculated as follows. Kirchhoff's current and voltage laws (KCL and KVL 

[24]) in phasor format lead to:  

 

(Vo∠θ0)/(Vs∠θ1) = [Z0∠Φ0]/ [Zs∠Φs + Z0∠Φ0]          (3.1) 
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where Z0∠Φ0 = (R2 || C3 || C2) and Zs∠Φs is the specimen impedance, which is in series with 

Z0∠Φ0 leads to:    

Zs = Z0(Vs-Vo)/Vo       (3.2)      which in turn yields the following: 

Zs∠Φs = Z0∠Φ0 [Vs∠θ1 - Vo∠θ0] / Vo∠θ0                           (3.3) 

 

Γ∠β is defined as: Γ∠β = Vs∠θ1 - Vo∠θ0 which yields the following: 

Γ = √(Vs Cos θ1 − Vo Cos θ0 ) 2 +  (Vs Sin θ1 − Vo Sin θ0 ) 2 , β = Arctg (
Vs Sin θ1 − Vo Sin θ0  

Vs Cos θ1 − Vo Cos θ0  
)   

(3.4) 

 

Φs = Φ0 + β - θ0       (3.5) 

 

3.2.4. Tissue Conductivity and Permittivity Calculation 

To calculate the specimen’s tissue conductivity and permittivity, the calculated Zs and Φs are 

used within an inverse FE framework. Figure 3.3 shows a flowchart summarizing the inverse 

finite element algorithm applied to estimate the tissue’s conductivity and permittivity using the 

acquired impedance amplitude and phase angle data. In the inverse FE framework, FE model of 

the tissue specimen’s impedance amplitude and phase angle including the two electrodes in the 

experimental setup represent the forward model. Given the known geometry of the electrodes 

and specimen and the electrical properties of the electrodes including their electrical conductance 

and permittivity, for any input tissue σ and ε values, the forward model outputs the impedance 

amplitude and phase angle. As such, the inverse problem was formulated as a 2D optimization 

problem where σ and ε are the unknown parameters to be determined. In this optimization 

problem, the calculation starts with the initial guess value for σ0 and ε0. These values are 

modified iteratively using the optimization algorithm until the difference between the specimen’s 

impedance amplitude and phase values, Zc and Φc calculated using the FE model and their 

measured counterparts (Zs and Φs) become minimum. The last σ and ε value, which corresponds 

to this minimum difference, will be taken as the specimen’s EC and EP values.  
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Figure 3.3. Flowchart of the inverse finite element algorithm used to estimate tissue specimen 

dielectric properties 

 

 

3.2.5. Specimen FE Model and Maxwell Equations 

To develop specimen’s finite element (FE) model in this study, Comsol Multiphysics software 

package (COMSOL, Inc., MA, USA) was used. This software package uses finite element 

computational method to calculate the electric field and obtain the sample’s impedance 

amplitude and phase angle values by solving the governing Maxwell’s equations. For a 

nonmagnetic material such as biological tissues, the general format of Maxwell’s equations in 

time domain with the inclusion of displacement current and continuity equation are [25]:  

J (r, t)  = -  
∂ (r,   t )

∂t
        (continuity equation)              (3.6)  

D (r, t) =  (r,   t )                              (3.7) 
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× H(r, t) = J(r, t)  +  
∂𝐃 (𝐫,𝐭)

∂t
                   (3.8) 

B (r, t)  =                                          (3.9)               

× E (r, t) = −
∂𝐁 (r,t)

∂t
                              (3.10)                         

Where ρ(r, t) is electric charge density, J(r, t) is electric current density, E(r, t) is electric field, 

D(r, t) = εE(r, t) is electric displacement current, ε is electric permittivity, B(r, t) is the magnetic 

field, H(r, t) = B(r, t)/μ is magnetic intensity and μ is magnetic permeability which is considered 

to be as the same as  the permeability of vacuum for the biological tissues. It is assumed in this 

study that B (r, t) = 0 and impedance measurements are done at low frequencies (1MHz or lower) 

where voltage source frequency is low enough for the electromagnetic field propagation delay to 

be neglected [25]. Using the phasor format of the above equation and dropping the time 

harmonic, the format of Maxwell equations which are used by Comsol Multiphysics [26] in 

frequency domain is:  

J (ω)  =  Qj (ω)                                      (3.11) 

J (ω)  =  σE(ω)  + jωD (ω) +  Je (ω)            (3.12) 

E (ω) =  −V(ω)                                          (3.13) 

n. J = 0 (current density is set to zero for boundary condition) 

 

Where Qj represents current source, σ electrical conductivity, ω natural frequency, Je externally 

induced current density and V electric potential [25]. Comsol uses finite element method to solve 

equations 3.11- 3.13 and obtain the impedance amplitude and phase angle for each specimen in 

the forward problem.  

 

3.2.6. Inverse Finite-Element Approach for EP Calculation 

The measurement technique proposed in this study follows an inverse FE framework. The 

forward model in this framework is the tissue specimen FE model while the inversion part 

utilizes a constrained optimization algorithm which finds EP and EC values that leads to the best 

match between dielectric values obtained from the specimen’s FE model and its measured 

counterpart. 
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3.2.6.1. Specimen FE Model 

To develop a specimen’s FE model in this study, Comsol Multiphysics software is used. As 

described earlier, this software package uses the FEM computational method to calculate the 

electric field in the specimen by solving the governing Maxwell’s equations before determining 

the impedance amplitude and phase angle values. Figure 3.4 illustrates a coarse FE mesh of a 

tissue sample used in this study. This coarse mesh is illustrated for the purpose of clear 

visualization only as the specimens’ FE meshes generated by Comsol to achieve desired 

accuracy through iterative refinement typically consist of ~0.7-1.2 million 8-noded hexahedral 

elements in this application. The FE model requires the electrical conductance (EC) and 

electrical permittivity value of each material used in the experimental setup including the EC and 

EP of the specimen. As stated earlier, the tissue EC and EP values are the key parameters that 

affects the overall impedance amplitude and phase angle. The EC and EP values of the electrodes 

and Plexiglas holder are known while those of the specimen’s tissue are unknown. In brief, for 

known excitation voltage and geometry and EC and EP parameters of various material parts in 

the sensor, the FE model outputs the impedance amplitude and phase angle of the 

electrodes/specimen assembly. 

 

 

Figure 3.4. Finite-element model of one of the specimens used for measuring permittivity. 
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3.2.7. Tissue Dielectric Calculation Using Optimization 

As indicated earlier, for obtaining the specimens’ conductivity and permittivity using the 

measured impedance (Zs∠ Φs), optimization was used to solve the nonlinear inverse finite 

element problem developed in the proposed technique. In this optimization algorithm, we seek a 

conductance (σ) and permittivity (ε) values that leads to the closest match between the 

impedance values obtained from the FE model and its experimental counterpart. For this 

purpose, an objective cost function representing the absolute weighted difference between 

experimental and simulated impedance values (amplitude and phase angle) was defined. As such, 

conductance and permittivity values (σ and ε) that minimize the objective cost function are the 

desired conductivity and permittivity values. Given that the range of conductivity and 

permittivity for biological tissues are known based on the literature, constrained (bounded) 

optimization was developed to determine tissue conductivity and permittivity such that the risk 

of convergence to local minima is minimized. Therefore, the constrained minimization problem 

is formulated as follows: 

 

f(σ, ε)= | Zs(σ, ε) – Zc (σ, ε)| + K | Φs (σ, ε) – Φc (σ, ε)|       (3.16)                          

{
𝑀𝑖𝑛. 𝑓(σ, ε)

𝑠𝑢𝑏. 𝑡𝑜 σ𝐿 ≤ 𝜀 ≤ σ𝑈 𝑎𝑛𝑑 𝜀𝐿 ≤ 𝜀 ≤ 𝜀𝑈
 

 

Where Zs(σ, ε) and Φs (σ, ε) are amplitude and phase angle values of the specimen’s impedance 

which are obtained experimentally and  Zc(σ, ε) and Φc (σ, ε) are the amplitude and phase angle 

values of the specimen’s impedance which are acquired from the FE computational model. K is 

the scaler coefficient with the value of 150. We used the lower bound values (σ𝐿  and εL) of 10-3 

and 1 and the upper bound values (σ𝑈 and εU) of 102 and 107 for the specimen’s conductance and 

relative permittivity, respectively. The algorithm is launched with an initial input values for the σ 

and ε. To systematically change these values, the 2-dimensinal Bi-section search algorithm [27] 

was used which finds a uni-modal function’s minimum by successively narrowing the range of 

values where the minimum occurs. The optimization process is terminated when the current 

range becomes sufficiently small.  
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3.2.8. Methods Validation 

The proposed method in this study was validated by measuring the conductivity and relative 

permittivity (ɛr) of a Plexiglas block at 60Hz-100kHz using the proposed measurement 

technique. The conductivity and relative permittivity of the Plexiglas is known at 60Hz-100kHz 

frequency range. According to the specifications provided by the manufacturer, from frequencies 

of 60Hz-100 kHz the σ and ɛr of the Plexiglas ranges from 0.0001 to 0.00016 and 3.5 to 2.7, 

respectively [28]. This measurement was conducted for 10 times to account for experimental 

errors. The mentioned Plexiglas specimen was plate shaped with dimensions of 

28mm×28mm×1mm which led to a fine FE mesh of 77800 elements. This model was 

incorporated into the mathematical cost function in the optimization algorithm used to calculate 

the conductivity and permittivity. 

 

3.3. Results 

3.3.1. Results Validation 

For the methods validation, relative permittivity of the three Plexiglas samples were measured at 

60Hz, 500Hz, 1KHz, 10KHz and 100KHz using the proposed technique. The average measured 

relative EP for the three Plexiglas samples at the mentioned frequency were found to be 

3.45±0.11, 3.3±0.12, 3.25±0.09, 3±0.13, and 2.8±0.1, respectively. It is noteworthy to mention 

that these values are fairly close to the relative permittivity range of 3.5-2.7 which is provided by 

the manufactures at 50Hz-100 kHz [28]. 

3.3.2. Specimen Dielectric Measurement Results  

Table 3.1 indicates the relative electrical permittivity and conductivity values of five xenograft 

breast cancer tumors and five samples of healthy surrounding tissue calculated using the 

proposed technique. These results in addition to electrical conductivity and relative electrical 

permittivity of breast adipose [3-5] are also shown in Figure 3.5 and Figure 3.6. Furthermore, 

comparison between the ratios of the mean conductivity and permittivity values of the malignant 

to normal tissues at 100Hz-1MHz is summarized in table 3.2. These results indicate that the 

average conductivity of the normal tissue samples measured over the range of frequencies of 100 

Hz to 1 MHz, range from 0.00256 to 0.88275 S/m. While the average conductivity of the 
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xenograft breast tumor samples over the same frequency range varies between 0.009375 to 2.364 

S/m. The average relative permittivity of the normal tissue specimens over this frequency range 

varies from 360361 to 44, while for the xenograft tumor specimens it varies from 4846300 to 

453 over the same frequency range. These values clearly indicate that the relative permittivity 

and conductivity of the xenograft tumors are significantly higher than those of the healthy 

surrounding tissue. It is noteworthy that the difference between the relative permittivity values of 

the tumor and normal tissue samples is higher than the difference in their corresponding 

conductivity values. This indicates that electrical permittivity maybe a more powerful biomarker 

for breast malignancies detection compared to electrical conductivity. The standard deviation of 

the relative permittivity values pertaining to the xenograft tumor tissue samples at 100 Hz-1MHz 

are only 8.3% - 16.2%, while the standard deviation corresponding to the healthy tissue 

specimens are within 12% - 21.4%. The standard deviation of the conductivity values pertaining 

to the xenograft tumor samples at the same frequency range varies from 29% to 65% while the 

standard deviation of the conductance pertaining to the healthy surrounding tissues 

corresponding to the same frequency range are within 20% to 45%. 

The standard deviation values include inter and intra specimen variability in addition to 

experimental errors. The reported standard deviation values indicate less inter and intra specimen 

variability of the electrical permittivity compared to electrical conductivity. This may consolidate 

the higher suitability of electrical permittivity as a biomarker for breast cancer diagnosis.   

Histology images obtained from representative xenograft tissue samples are shown in Figure 3.7. 

The images demonstrate considerable differences in composition, nuclear density and micro-

structures of cancerous and normal surrounding tissues. In contrast to the normal tissue, the 

tumor tissue consists of packed carcinoma cells with high nuclear density and low extra cellular 

space.  The ultrasound b-mode images acquired from the tumor and surrounding tissues are 

shown in figure 3.8. The low and high-frequency ultrasound images demonstrate a lower 

echogenicity within the tumor area in comparison to the normal surrounding tissue. Such 

contrast in tissue echnogenicity is mainly due to substantial differences in micro-structures of the 

two tissue types as observed within the histology images.  
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Figure 3.5. The average relative permittivity of the tumor and surrounding tissue samples at 

100Hz-1MHz 

 

Figure 3.6. The mean and standard deviation of the tumors and surrounding tissues’ relative 

permittivity at 100Hz-1MHz. The standard deviation bars are not to scale. The magnitude of 

each standard deviation is shown in percentage on each bar.   
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Figure 3.7. The average conductivity of the tumor and surrounding tissue samples at 100Hz-

1MHz 

 

 



65 

 

Figure 3.8 The mean and standard deviation of the tumors and surrounding tissues’ conductivity 

at 100Hz-1MHz. The standard deviation bars are not to scale. The magnitude of each standard 

deviation is shown in percentage on each bar.   

 

Table 3.1. Relative Electrical permittivity (ɛr) and electrical conductivity (σ) of five breast tumor 

samples and their normal surrounding tissues at 100Hz - 1MHz .  

 
Tissue type/ 

Sample No. 

ɛr @ 100Hz 

(Relative EP) 

  Mean ɛr ±STD @ 

100Hz  

σ @ 100Hz 

(S/m) 
Mean σ ±STD @ 100Hz  

Breast Tumor 1 4095555 

4846300±607901 

0.00497 

0.009375±0.006164 

Breast Tumor 2 4956390 0.00707 

Breast Tumor 3 5035382 0.01565 

Breast Tumor 4 4453730 0.01621 

Breast Tumor 5 5690443 0.00296 

Tissue type/ 

Sample No. 
ɛr @ 500Hz  

Mean ɛr ±STD @ 

500Hz  

σ @ 500Hz 

(S/m) 

Mean σ ±STD @ 500Hz 

(S/m) 

Breast Tumor 1 1012112 

1160402±188056 

 

0.01646 

0.01109±0.00558 

 

Breast Tumor 2 1112577 0.00775 

Breast Tumor 3 1151011 0.01557 

Breast Tumor 4 1482221 0.01248 

Breast Tumor 5 1044091 0.00312 

Tissue type/ 

Sample No. 
ɛr @ 1KHz  

Mean ɛr ±STD @ 

1KHz  

σ @ 1KHz 

(S/m) 

Mean σ ±STD @ 1KHz 

(S/m) 

Breast Tumor 1 445690 

 

437278±36506 

 

0.01854 

0.01355±0.00741 

Breast Tumor 2 414314 0.00818 

Breast Tumor 3 428107 0.02083 

Breast Tumor 4 495870 0.01678 

Breast Tumor 5 402412 0.00342 

Tissue type/ 

Sample No. 
ɛr @ 10KHz  

Mean ɛr ±STD @ 

10KHz  

σ @ 10KHz 

(S/m) 

Mean σ ±STD @ 

10KHz (S/m) 

Breast Tumor 1 55862 
 

49707±4243 

 

 

0.05485 

0.03055±0.01446 

 

Breast Tumor 2 47775 0.01718 

Breast Tumor 3 52330 0.03074 

Breast Tumor 4 46481 0.02333 

Breast Tumor 5 46085 0.02664 

Tissue type/ 

Sample No. 
ɛr @ 100KHz  

Mean ɛr ±STD @ 

100KHz 

σ @ 100KHz 

(S/m) 

Mean σ ±STD @ 

100KHz (S/m) 

Breast Tumor 1 3358  0.64416 0.38701±0.15704 

55%  
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Breast Tumor 2 3771 4139±639 

 

 

0.23621  

Breast Tumor 3 4487 0.41070 

Breast Tumor 4 5011 0.34159 

Breast Tumor 5 4068 0.30240 

Tissue type/ 

Sample No. 
ɛr @ 1MHz  

Mean ɛr ±STD @ 

1MHz  

σ @ 1MHz 

(S/m) 

Mean σ ±STD @ 1MHz 

(S/m) 

Breast Tumor 1 483  

453.7±58 

 

 

 

2.5704 

2.364±0.7033 

 

Breast Tumor 2 389 1.2856 

Breast Tumor 3 442.8 2.6850 

Breast Tumor 4 537.2 2.1303 

Breast Tumor 5 416 3.1485 

Tissue type/ 

Sample No. 
ɛr @ 100Hz  

Mean ɛr ±STD @ 

100Hz 

σ @ 100Hz 

(S/m) 

Mean σ ±STD @ 100Hz 

(S/m) 

Normal Tissue 1 297037 

360361.5±43537 

 

0.00359 

0.00256±0.001 

 

Normal Tissue 2 373932 0.00165 

Normal Tissue 3 412200.8 0.00178 

Normal Tissue 4 340633 0.00209 

Normal Tissue 5 378004 0.00370 

Tissue type/ 

Sample No. 
ɛr @ 500Hz  

Mean ɛr ±STD @ 

500Hz  

σ @ 500Hz 

(S/m) 

Mean σ ±STD @ 500Hz 

(S/m) 

Normal Tissue 1 109753 

 

96471±20656.6 

 

 

0.00432 

 

0.00246±0.00109 

 

 

Normal Tissue 2 125641.7 0.00210 

Normal Tissue 3 76152 0.00185 

Normal Tissue 4 82116 0.01248 

Normal Tissue 5 88691 0.002415 

Tissue type/ 

Sample No. 
ɛr @ 1KHz  

Mean ɛr ±STD @ 

1KHz  

σ @ 1KHz 

(S/m) 

Mean σ ±STD @ 1KHz 

(S/m) 

Normal Tissue 1 56007.4 
 

45269.7±8820.5 

 

 

0.00472 

0.00263±0.00120 

 

Normal Tissue 2 44362.8 0.00217 

Normal Tissue 3 35728 0.00177 

Normal Tissue 4 52336 0.00195 

Normal Tissue 5 37914 0.00256 

Tissue type/ 

Sample No. 
ɛr @ 10KHz  

Mean ɛr ±STD @ 

10KHz 

σ @ 10KHz 

(S/m) 

Mean σ ±STD @ 

10KHz (S/m) 

Normal Tissue 1 5283.9 
 

5871.5±1131 

 

 

0.01698 

0.01434±0.00517 

 

Normal Tissue 2 5108.6 0.00786 

Normal Tissue 3         4927 0.01016 

Normal Tissue 4 7595.3 0.02036 

Normal Tissue 5 6442.7 0.01634 

Tissue type/ 

Sample No. 
ɛr @ 100KHz  

Mean ɛr ±STD @ 

100KHz 

σ @ 100KHz 

(S/m) 

Mean σ ±STD @ 

100KHz (S/m) 

Normal Tissue 1 383.1  0.13080  

 Normal Tissue 2 312.4 0.11977 
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Normal Tissue 3 276 355.5±58 0.08249 0.13407±0.04314 

 

 
Normal Tissue 4 395.6 0.20166 

Normal Tissue 5 410.3 0.13563 

Tissue type/ 

Sample No. 
ɛr @ 1MHz  

Mean ɛr ±STD @ 

1MHz 

σ @ 1MHz 

(S/m) 

Mean σ ±STD @ 1MHz 

(S/m) 

Normal Tissue 1 37  

44±5.3 

 

 

 

1 

0.88275±0.18319 

 

 

Normal Tissue 2 51.4 0.78716 

Normal Tissue 3 41.5 0.71957 

Normal Tissue 4 44 1.13016 

Normal Tissue 5 46 0.75 

 

 

 

                
Figure 3.9. Light microscopy images of Hematoxylin and eosin (H&E) stained tissue sections at 

different magnifications obtained from a representative xenograft sample. The top row (from left 

to right) shows the normal surrounding tissue at 1-40x magnifications. The bottom row shows 

the breast tumor tissue containing invasive ductal carcinoma at 1-40x magnifications. 
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Figure 3.10. Low and high-frequency ultrasound images of a representative breast tumor 

xenograft and its normal surrounding tissue   obtained before euthanizing the animal.   

 

3.4. Discussion and Conclusions 

 

The study presented in this paper involves using a recently developed technique for measuring 

the dielectric properties of ex vivo tissue specimens of a mouse xenograft model at low 

frequencies. The technique applies a relatively simple hardware configuration consisting of 

signal generator, oscilloscope, buffer, plexiglas holder and two electrodes. The tissue sample 

being tested is placed between the two electrodes such that the electrodes and tissue sample 

assembly form a capacitive-resistive load with the sample acting as the dielectric. The setup is 

capable of measuring the impedance of tissue specimens with reasonably high accuracy, 

providing dielectric data which carries the tissue EP and EC data. The measurement method 

follows an inverse finite element algorithm framework which inputs the setup’s configuration 

data, known electrical properties of the electrodes and excitation voltage in order to output the 

tissue specimen’s dielectric properties. Conventional dielectric measurement techniques were 

previously developed based on admittance data analysis models which assume semi-infinite 

geometry model [5,9,23]. The semi-infinite geometry model is reasonably accurate with 

relatively large tissue specimens excited with high frequencies. As such these techniques provide 

reasonably good measurement accuracy to measure high frequency dielectric properties of large 

tissue specimens. To measure the low frequency dielectric properties of small tissue specimens, 

the technique described in this study models the specimen’s geometry, boundary conditions, the 

data pertaining to the measurement’s setup and the excitation frequency highly accurately 

through finite element simulation. Therefore, in principle, this technique offers a more rigorous 

method of measuring dielectric characteristics of tissues under a wide range of frequencies and 

specimen sizes. The latter is particularly important for measuring dielectric properties of human 

tissues as tissue specimens routinely acquired from surgeries are usually small. To assess the 

accuracy of the proposed technique, the method was applied to measure the relative permittivity 

of plexiglas specimens at a frequency range of 60 Hz – 100 KHz, this measurement led to an 

average relative permittivity value of 3.45-2.8 with maximum error of 3.7% in comparison with 

the permittivity range provided by the manufacturer. Such low error is anticipated given that the 
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method is founded on a solid theoretical background. The technique was used in a preclinical 

study on animal tumor models to measure and compare the dielectric properties of several 

normal and cancerous tissue specimens ex vivo. The obtained measurement result from this study 

which is summarised in table 3.2 indicates that the average conductivity of breast tumors are 2.1-

5.1 times higher than the average conductivity of surrounding healthy tissues at 100 Hz-1 MHz 

frequencies, while the average permittivity of the breast tumors are 8.4-13.4 times higher than 

the average permittivity of the surrounding normal tissues and about 80 times larger than 

permittivity values of adipose tissue reported at the same frequency range [3-5]. This 

substantially higher ratio lends more credibility to the effectiveness of electrical permittivity 

imaging at low frequencies for cancer diagnosis especially with older women whose breasts 

mainly consist of adipose tissue. The higher ratio of permittivity versus conductivity of the 

tumors to healthy tissue specimens (8.4-13.4 vs. 2.1-5.1) shows that electrical permittivity may 

be a better parameter than electrical conductivity for distinguishing between healthy and 

malignant breast tissues at low frequencies. It is noteworthy that the tumor-to-background EP 

ratios measured in this study are significantly higher than ratios obtained for some other tissue 

physical properties (e.g. light absorption).  For instance in optical imaging, near infrared (NIR) 

absorption and hemoglobin concentration levels in tumors are only 2-4 higher in comparison 

with healthy breast tissues [29]. 

The measured dielectric properties of the ten specimens also indicated that the standard deviation 

of the permittivity values are reasonably low (8%-21%) at all frequencies. This implies that the 

technique used for measuring tissue electrical permittivity is reasonably accurate while inter and 

intra specimen variability is relatively low. The standard deviation of the conductance values are 

higher (20%-65%) at the 100 Hz-1 MHz frequency range. Based on what Epstein et al. findings 

[30], this higher standard deviation can be justified by the higher anisotropy in tissues 

conductance in comparison with tissues permittivity at frequencies below 1MHz.  
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Table 3.2. Comparison between ratios of the mean conductivity and relative permittivity of the 

tumor- background tissue specimens at 100 Hz-1 MHz .  
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Chapter 4 

Toward Medical Electrical Impedance Mammography 

Using Low Frequency Excitation 
 

The material presented in this chapter is currently pending submission to the peer-reviewed 

journal papers due to the US Patent W-15-036 filed in August, 2015 by the authors.  

Authors’ Contributions Statement: The main idea of this chapter is conceived by the principle 

author of this study, Seyyed M. Hesabgar.  The research, experiments, and measurements 

presented in this chapter have been conducted by Seyyed M. Hesabgar and guided by the 

research supervisor, Dr. Abbas Samani. 

 

4.1. Introduction 

Breast cancer is the most common type of cancer among women, leading to more than 40,000 

deaths in the US each year. Approximately 12.3% of women (one in every eight women) are 

diagnosed with breast cancer at some point during their lifetime, and current research shows that 

the prevalence of breast cancer will continue to increase throughout the world [1]. Breast 

screening offers the opportunity for early detection of breast cancer, leading to higher chances of 

survival, less extensive treatments and better overall outcomes [2]. The most commonly used 

imaging modality for breast cancer screening is x-ray mammography, however the use of 

ionizing radiation limits the frequency of employing this modality for breast cancer detection. 

Furthermore, x-ray mammography has been shown to be less effective for breast cancer 

detection among young women who have dense breasts. In this regard, studies have shown that 

among this group of women, corresponding to each 10 acquired mammograms, as many as one 

in two women will have at least one false positive [3-5]. As an alternative to x-ray 

mammography, magnetic resonance imaging (MRI) has proven to be a powerful tool in 

monitoring high-risk women, however its high cost and variable specificity limits its usage for 

breast cancer screening [3,5]. Ultrasound imaging is commonly used as a second-line diagnostic 
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tool to differentiate masses detected by x-ray mammography, however, its low sensitivity and 

specificity makes it unsuitable as a front-line screening system [3,5].  

Over the past three decades, electrical impedance tomography (EIT) and electrical impedance 

mammography (EIM) have emerged as novel biomedical imaging modalities with the aim of 

addressing the shortcomings of other breast imaging modalities [6-8]. EIT and EIM modalities 

use low energy electric field to probe and characterize electrical impedance of biological tissues. 

The use of non-ionizing electric field as well as the simplicity and low cost of these imaging 

modalities make them ideal for breast cancer screening. EIT and EIM produce images that 

display the distribution of tissue electrical impedance (electrical conductivity and electrical 

permittivity). Studies aimed at characterizing the electrical properties of normal and pathological 

tissue have shown that electrical conductivity and electrical permittivity of breast malignancies 

are significantly higher than those of benign and normal breast tissues [11-13]. Some of these 

studies have concluded up to 20-40-fold higher values for both parameters in breast tumors 

compared to normal breast tissue [12]. This elevation in the electrical properties of malignant 

tissues stems from the higher intra and extra cellular water content, higher cell density and 

changes in the membrane orientation of the malignant cells [14-17]. EIT and EIM methods take 

advantage of this elevation for breast tumor detection. As such, over the past three decades many 

researchers such as Halter et al. [18], Ye et al [19, 20], Zhang et al. [21], Choi et al. [22] and 

Cherepenin et al. [23] have proposed various EIT and EIM systems for the detection of breast 

lesions.   

While EIT and EIM have been developed and significantly improved over the past three decades, 

they still suffer from shortcomings that have limited their clinical utility for breast cancer 

imaging. The first major issue in this regard is that tissue impedance is usually approximated by 

tissue conductance. Consequently, most proposed EIT and EIM systems only generate one type 

of image which displays tissue conductance distribution or projection. Based on recent literature, 

while the range of conductance variations of biological tissues is relatively small, corresponding 

range of tissue permittivity variation is broad. For instance, Gabriel et al. [24, 25] have shown 

that the range of electrical conductivity of biological tissues at 10 Hz-20 GHz is within 0.01-40 

S/m while their relative permittivity is in the 1-108 range. This implies that imaging tissue 

conductance at 10 Hz-20 GHz frequency may not be suitable for generating high contrast 

images, whereas imaging tissue permittivity may potentially produce high contrast images. 
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Furthermore, while tissue impedance phase angle is known to carry important biological 

information [34,35], its utility in the context of imaging has not been explored significantly. The 

second issue in EIT and EIM pertains to data acquisition where a large number of impedance 

measurements are usually required to produce an image. Although conceptually simple, in 

practice the number of electrodes that can be placed on the patient`s body to perform the 

measurements is limited, rendering the data acquisition step difficult to implement [8,26]. 

Moreover, image reconstruction in EIT is a challenging inverse problem, as it is both nonlinear 

and ill-posed [26]. As such, it requires iterative and time-consuming algorithms necessary for 

image reconstruction. In contrast to EIT, in EIM the image reconstruction step is significantly 

less involved. Among the studies that have investigated the possibility of using EIM for breast 

cancer detection, Assenheimer et al. [33] demonstrated that current EIM technologies such as 

TransScan 2000 (Siemens Medical, Germany, and TransScan, Ramsey, NJ, USA), are only 

capable of detecting low impedance inclusions located close to the breast surface. The primary 

goal of this research is to introduce a novel EIM technique which may potentially mitigate the 

aforementioned issues encountered in this technique. For this purpose, we present an electrical 

impedance imaging system consisting of a parallel plate sensor, where its utility for breast 

mammography is explored. This investigation involves in silico and tissue mimicking phantom 

studies conducted to present a proof of concept for the proposed technique and to demonstrate its 

potential application for breast screening.  

 

4.2. Methods 

4.2.1. Governing Equations 

The electromagnetic field generated by applying current density to a body surface is governed by 

Maxwell’s equations. For a nonmagnetic material such as biological tissues, the general form of 

Maxwell’s equations in the time domain with the inclusion of displacement current and 

continuity equation is as follows [27]: 

J (r, t)  =  -   
𝜕 (𝑟,   𝑡 )

𝜕t
                     (4.1) 

D (r, t) =  (𝑟,   𝑡 )                           (4.2)                         



77 

 

× H (r, t)  = J (r, t)  +  
𝜕𝐃 (r,t)

𝜕t
  =   σE (r, t) + Je (r, t)  +  

𝜕𝐃 (r,t)

𝜕t
              (4.3)  

B (r, t)  =                                        (4.4)     

× E (r, t) = −
∂𝐁 (r,t)

∂t
                             (4.5) 

where ρ(r,t) is the electric charge density, J is the electric current density, E is the electric field, 

D = εE is the electric displacement current, ε is the electric permittivity, B is the magnetic field, 

H = B/μ is the magnetic intensity and μ is the magnetic permeability which is considered to be 

the same as  the permeability of vacuum for biological tissues. In this study, we assume that the 

external magnetic field is negligible (B = 0). We also assume that impedance measurement is 

performed at low frequencies (1MHz or lower) where the frequency of the voltage source is low 

enough for the EM propagation delay to be neglected [28]. Using the phasor format of equations 

1 to 5 and dropping the time harmonic, leads to the following equations in the frequency domain. 

This was performed to facilitate the equations’ computational solution consistent with the 

COMSOL Multiphysics software package (COMSOL, Inc., MA, USA) used in this 

investigation.  





J (r, ω) =  Qj (r, ω)                                              (4.6) 

J (r, ω) = σE(r, ω) + jωD (r, ω) + Je (r, ω)                (4.7) 

E (r, ω) =  −V(r, ω)                                                 (4.8) 

where Qj represents current source, σ is tissue electrical conductivity, ω is the natural frequency, 

Je is an externally induced current density and V is the electric potential [29]. We use COMSOL 

which uses the finite element method (FEM) to solve equations 4.6-4.8 and obtain the impedance 

amplitude and phase angle in the breast models involved in this investigation.  
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4.2.2. Overview of the Proposed Electrical Impedance Mammography 

Similar to x-ray mammography where the breast is placed in a parallel-plate compression unit 

and projections of x-ray are measured and converted into mammograms, in the proposed EIM 

technique, the breast is gently compressed between the two parallel plates of an impedance 

sensor. While the breast is gently compressed, the electrical impedance its tissue is measured as 

projection data before they are converted into a mammogram. Depending on the excitation 

frequency in the proposed technique, different types of image reconstruction methods such as 

image impedance, resistance, capacitance and phase angle may be employed to generate 

respective images. While imaging impedance and resistance are feasible at all excitation 

frequencies, for the capacitance and phase angle imaging, choosing the right excitation frequency 

is critical. It is assumed throughout this study that the dielectric values of the breast malignancies 

are significantly higher than the dielectric values of the normal breast tissues.  

4.2.3. Electrical Model of Tissues at Low Frequencies 

In order to study the electrical behaviour of a biological tissue, a proper electrical model of it is 

required. A lumped electric model (equivalent circuit) of a tissue part of the breast located 

between two electrodes of the two parallel plates at low frequencies is shown in Figure 4.1. It 

consists of a parallel resistor and capacitor. 
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Figure 4.1. Schematic of a breast tissue sample held between two cylindrical-shaped electrodes 

(right) and its equivalent electrical circuit at low frequencies (left). 

 

It is noteworthy that the electrical model of biological tissues, which is used extensively in the 

literature [32], has an additional series resistor with capacitance Cs. However, at low frequencies, 

the value of this resistor, which represents the resistance of intracellular fluids, becomes 

negligible [32]. The relationship between electrical impedance, resistance, capacitance, and 

phase angle of a biological tissue sample derived from its equivalent circuit, is: 

Zs ∠θs  =  [(Rs /Cs) / (Rs
2

 + (1/Cs)
2)1/2]  ∠ -90º + Arctg (1/Rs Cs 

 

where Zs and θs are the measured amplitude and phase angle of the tissue’s electrical impedance, 

is the natural frequency of the excitation signal, and Rs and Cs are the tissue’s electrical 

resistance and capacitance, respectively.  

4.2.4. Electrical Property Image Reconstruction Types 

In order to examine how the impedance components of a typical biological tissue (e.g. adipose) 

changes with frequency, we conducted a computational simulation involving an adipose tissue 

specimen. Here an electrical model of a 50mm×50mm×50mm block-shaped adipose tissue 

specimen was constructed, and its electrical impedance (Zs ∠θs) was measured at frequencies of 

10 Hz to 1 MHz via simulation using COMSOL. The electrical conductivity and permittivity of 

the tissue specimen at these frequencies, which were input to reconstruct the model, were 

obtained from the literature [24,25]. The measurement was assumed to be conducted using two 

different configurations, leading to two corresponding finite element (FE) models. In one 

configuration the specimen was assumed to be placed between two cylindrical brass electrodes 

with a radius of 1.5 mm and height of 2mm. In the other configuration, the specimen was 

assumed to be held between the parallel plates of the proposed EIM imaging sensor. Each of 

these models consisted of ~2.2 tetrahedral finite elements.  

Using COMSOL solver in conjunction with equation 4.9, the capacitance and resistance data of 

the adipose tissue specimen at the 10 Hz-1MHz frequency range were obtained for each 
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configuration. These data, which are illustrated in Figure 4.2, show that at frequencies higher 

than 1kHz, the adipose tissue capacitance component diminishes, hence the tissue’s impedance 

becomes predominantly resistive at such frequencies. This implies that the reconstruction of 

capacitance, permittivity and phase angle images that require the capacitive component of the 

tissue’s impedance are not feasible at excitation frequencies higher than 1 kHz. Based on these 

observations, the following three types of image reconstruction can be derived.  

 

 

  

Figure 4.2. Electrical resistance, impedance and capacitance of the adipose tissue model at 

10Hz-1MHz while placed between: two electrodes (A) and two parallel plates of the proposed 

scanner (B). 

 

4.2.4.1. Electrical Resistivity and Conductivity Image Reconstructions in 

EIT and EIM        

Electrical conductivity image reconstruction is the easiest and most common type of electrical 

impedance image reconstruction. This method has been used in the majority of EIT (electrical 
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impedance tomography) applications in the past three decades. The following equation shows the 

fundamental relationship between tissue electrical resistivity and its conductivity [30], 

R =
V

I
=  

∫ 𝐸.  𝑑𝑙

∮ 𝜎𝐸.  𝑑𝑠
                       (4.10)      

 

where R is the tissue electrical resistance, V is the potential difference between the two 

electrodes where the voltage is being measured, I is the electric current, E is the electric field and 

σ is the tissue electrical conductivity. In the context of breast imaging, electrical resistance and 

electrical conductivity image reconstruction may be performed in the whole frequency range of 

10Hz-1MHz, as according to Figure 4.2 the measured resistance at this frequency range is 

appreciably high. As such, in the majority of EIT image reconstruction methods which mainly 

use frequencies higher than 1kHz, the measured amplitude of tissue’s impedance is simply 

approximated by its electrical resistance. However, the major problem with conductivity image 

reconstruction stems from the complex relationship between R and σ and its high dependence on 

the electric field. Consequently, this type of image reconstruction leads to an ill-posed problem, 

which requires iterative and non-linear image reconstruction algorithms. Furthermore, previous 

studies have shown that the variation range of conductivities for biological tissues at 10Hz-

20GHz is limited [24,25]. This implies that conductivity and resistance imaging of biological 

tissues may not produce images with high contrast. 

The following equation, which is derived from the lumped electrical model of the tissue (parallel 

capacitor and resistor in Figure 4.1), shows the relationship between the tissue resistance (Rs), 

their electrical impedance (Zs) and phase angle (θs). 

Rs = 
Zs tg(90+θs) 

√(1+tg2(90+θs)
              (4.11)    

In EIM, resistance image reconstruction involves obtaining resistance projection data for each 

point on the breast surface plane, and converting this data into 2D mammograms. As such, in this 

study we measured the breast tissue’s impedance projections on the breast surface plane using 

the proposed impedance sensor. Then by using Equation (4.11), the resistance projection data of 

the breast tissue was calculated and converted into 2D resistance mammograms. As solving 
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Equation 10 for σ is not feasible, to obtain an estimate of the breast tissue’s conductivity 

projection on the breast surface plane, we may assume uniform electric field leading to the 

inverted resistance image can be used.       

4.2.4.2. Electrical Permittivity and Capacitance Image Reconstructions 

Electrical permittivity is an intrinsic property of materials, which may be obtained via the 

material’s electrical capacitance. For measuring tissue electrical capacitance, the amplitude and 

phase angle of the tissue’s impedance must be measured reliably. The following equation shows 

the relationship between the tissue capacitance (Cs), their electrical impedance (Zs) and phase 

angle (θs) based on the lumped electrical model shown in Figure 4.1. 

Cs = 
1

Zs ω √(1+tg2(90+θs)
            (4.12)    

According to Figure 4.2, for a breast adipose tissue specimen placed between two electrodes, 

measuring the capacitance (Cs) and phase angle (θs) at frequencies higher than 1kHz may not be 

feasible, as the tissue capacitance becomes too small to be reliably measured.  As such, for breast 

imaging, capacitance, permittivity and phase angle image reconstructions cannot be performed at 

high frequencies. However, at lower frequencies (e.g. 1 KHz or lower) where the electrical 

capacitance is sufficiently large, a reliable measurement of Cs is feasible.  

Measurement of tissue electrical permittivity () can be achieved by measuring its electrical 

capacitance (Cs) as direct measurement of permittivity is not feasible. The following equation 

shows the fundamental relationship between electrical capacitance (C) and electrical permittivity 

(ɛ) [30]: 

  𝐶 =
Q

V
=  

∮ 𝜀𝐸.  𝑑𝑠

∫ 𝐸.  𝑑𝑙
                                     (4.13) 

where Q represents the electric charge, V is the potential difference between the two electrodes 

where the measurement is performed, E is the electric field and ɛ is the tissue electrical 

permittivity. This equation shows that the relationship between C and ɛ is complex and highly 

dependent on the electric field. As such, tissue permittivity image reconstruction also leads to ill-

posed problems that require iterative and non-linear inverse problem solution algorithms. 

However, as the variation range of permittivity of biological tissues is very broad in comparison 
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with that of conductivity [24, 25], permittivity and capacitance imaging is expected to produce 

images with higher contrast; hence they are preferable over resistance and conductivity imaging. 

In EIM, capacitance image reconstruction involves obtaining capacitance projection data for 

each point on the breast surface plane followed by converting the data into 2D capacitance 

mammograms. In this study we measured the capacitance projections of the breast models on 

their surface plane using the proposed impedance sensor. Using Equation (4.12), the capacitance 

projection data of the breast tissue was calculated from the impedance data before they were 

converted into 2D capacitance mammograms. As solving Equation 13 for  is not feasible, to 

obtain an estimate of the breast tissue’s permittivity projection on the breast surface plane, the 

capacitance image can be used as capacitance and permittivity are approximately proportional.   

4.2.4.3. Phase Angle Image Reconstruction 

Impedance phase angle of a tissue (θs) may be obtained from Equation (9), leading to the 

following equation:  

θs = -90º +Arctg (1/Rs Cs (4.14) 

Using the discrete form of Equations (4.10) and (4.13) leads to:  

 
1

𝑅𝑠𝐶𝑠 𝜔 
=   

∑  𝜎𝑖 𝐸𝑖 .  ∆𝑆𝑖  𝑚
𝑖=1

𝜔 ∑ 𝐸𝑖 . ∆𝐿𝑖 𝑚
𝑖=1

 × 
∑   𝐸𝑖 .   ∆𝐿𝑖  𝑚

𝑖=1

∑ ɛ𝑖 𝐸𝑖 .  ∆𝑆𝑖
𝑚
𝑖=1

                     (4.15) 

Assuming equal ∆𝑆𝑖 and  ∆𝐿𝑖 spacing within each element where tissue homogeneity is a good 

approximation, this relationship may be simplified to the following: 

1

𝑅𝑠𝐶𝑠 𝜔 
=

σ

ɛ 𝜔 
                       (4.16) 

Substituting the above in Equation 15 leads to:       

θs = -90º + Arctg (
σ

ɛ 𝜔 
        (4.17) 

This equation shows that, unlike resistance and capacitance that depend on the electric field and 

element geometry in addition to the tissue intrinsic properties, the impedance phase angle is 

dependent on the intrinsic electrical properties of the tissue only. As such, phase angle images 
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are expected to be of higher quality compared to resistance and capacitance images. Moreover, 

phase angle imaging of the breast is feasible at lower frequencies (e.g. 10Hz-1kHz) only where 

the capacitance and phase angle components of the measured impedance are non-zero. It is 

noteworthy that at frequencies close to zero, the reactance and phase angle of a biological tissue 

also tend to zero and can not be measured reliably. Therefore, this type of image reconstruction 

may not be feasible at frequencies close to zero.   

 It is noteworthy that in this study it is assumed that breast tissue is almost homogenous 

consisting mainly of adipose tissue. As such, the impedance phase angle for the breast tissue at 

low frequencies can be approximated by equation 4.17. 

 

4.2.5. Proposed Electrical Impedance Mammography System  

A custom-made electrical impedance mammography scanner was constructed for our 

experimental studies. It consists of two parallel plates where the breast is placed in between 

before image acquisition is performed. One plate is used for excitation while the other is a sensor 

plate. The excitation plate includes the excitation board while the other is a hand-held plate 

which consists of a sensor board and analog and digital boards.  The excitation board consists of 

a large conductive plate and an electronic board on the back, which generates the excitation 

sinusoidal signals with selectable frequency at 5 Vp-p . The sensor board consists of a 1-D circular 

cells array moved at 5 mm increments along the top surface of the breast to scan its entire 

volume. The 1-D array consists of thirty circular cells. The radius of each cell is 1.5 mm; each 

one is separated from the next by a gap of 0.125 mm on the printed circuit board (PCB). For data 

acquisition, the breast was squeezed gently between the scanner and excitation board. The 

impedance signals, which were obtained from the cells of the 1-D array, were first amplified by 

the analog circuit board before they were sent to the digital board. The digital circuit board 

consists of multiple 24 bit analog to digital converters (AD7766, Analog Devices, 

Massachusetts, USA) and a microcontroller (ATmega320, Atmel, California, USA). AD7766 

converts the analog impedance signal into 24 bits digital packets and sends them through the 

USB port to a computer. A Matlab (MathWorks, Massachusetts, USA) code on the computer 

side, which is connected to the scanner through the USB port, receives the digital impedance 
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data and converts them into 2D digital images. The microcontrollers on the digital board of the 

scanner does all the coordination between the A/D converter and computer. The whole procedure 

is completed in less than 10 seconds.  

A schematic of the proposed sensor in this study is illustrated in Figure 4.3. Each conductive cell 

on the sensor board is connected to a custom-made impedance measurement circuit that 

measures the impedance amplitude and phase angle of the adjacent breast tissue with 0.1Ω and 

0.01° accuracy, respectively. 

The measured tissue’s impedance components (the tissue’s resistant and capacitance) by the 

proposed sensor, can be described theoretically by equations (4.10) and (4.13). As these 

equations show, the measured tissue’s resistance (R) and capacitance (C) are highly dependant 

on the electric field (E) inside the tissue between the parallel plates, the contact area of each 

conductive cell (A), separation between the sensor plates (L) and dielectric property of the tissue 

(σ and ε). If the electric field between the sensor plates was uniform, the equations (4.10) and 

(4.13) could be simplified to     R =  
𝐿

𝜎𝐴
     and  C =  

ε A

L
 , respectively. This implies if E was 

uniform, for a constant A and L, the measured tissue’s resistance and capacitance would be 

functions of tissue dielectric properties, σ and ε only. 

 

                  

Figure 4.3. Schematic of the proposed EIM sensor consisting of two conductive parallel plates 

where the breast is gently squeezed in between. The breast is discretized using a uniform grid 

size where unknown impedance values are assigned to each pixel.   
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4.2.6. In silico Breast Phantom Study         

To assess the capability of the proposed sensor for breast cancer detection, and to evaluate the 

three methods of conductance, permittivity and phase angle imaging, a series of computer 

simulations were carried out on a phantom following the configuration shown in Figure 4. The 

simulations were carried out using the COMSOL Multiphysics software package. The phantom 

mimics a breast gently compressed by two plates, hence it consists of a half-cylinder with a 

radius of 75 mm and height of 50 mm. It embeds a cylindrical inclusion with a radius and 

thickness of 10mm and 20mm, respectively. In order to increase the simulation’s realism, the 

inclusion was positioned as illustrated in Figure 4 in order to mimic the upper outer quadrant 

where the majority of breast cancer tumors are found [31]. The location of the inclusion along 

the height of the cylindrical phantom was set to be variable such that the inclusion’s centre was 

located at the centres of the bottom, middle and top thirds along the height. The permittivity and 

conductivity values assigned to the breast model were chosen based on values reported in the 

literature for breast tissue at 0.5 kHz. The inclusion’s permittivity and conductivity values were 

assumed to be 6 and 8 times higher than normal breast tissue’s conductivity and permittivity, 

respectively. The breast phantom’s FE mesh, which is illustrated in Figure 4.4, consisted of ~2.7 

million tetrahedral elements. Similar to the proposed sensor, one conductive plate was modeled 

to touch the breast model from the bottom to provide an excitation signal, while the top plate 

(sensor) was considered to measure the impedance. The sensor plate consisted of 30 circular 

conductive cells, each with a radius of 1.5 mm and separation of 0.2 mm. The COMSOL solver 

used the FEM approach to numerically solve Maxwell’s equations and compute the amplitude 

and phase angle of the electric current that passed through each sensor cell. From these 

computations, the impedance values of the breast tissue located between each cell and excitation 

plate was acquired sequentially. To obtain the projected mammography image of the resistance 

and capacitance, the required projection value for each cell was calculated using Equations 4.11 

and 4.12.  
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Figure 4.4. A: FE mesh of the in silico breast phantom consisting of half a cylinder embedding 

an inclusion. B: Top view of the breast model with the inclusion on the bottom right side to 

mimic the breast upper outer quadrant.    

   

4.2.7. Tissue Mimicking Breast Phantom Study 

A tissue mimicking phantom study was performed to assess the effectiveness of the proposed 

imaging techniques. As shown in Figure 4.5, the gelatine phantom consists of half a cylinder 

background tissue embedding a cylindrical inclusion constructed of gelatin and common salt. 

The background half cylinder part was 150 mm in diameter and 50 mm in height while the 

diameter and height of the cylindrical inclusion were both 20 mm. Along the phantom’s height, 

the inclusion was placed in the middle. The conductivity and permittivity of the background and 

inclusion tissues were measured independently prior to image data acquisition. At 0.5 kHz, their 

conductivity were 0.23 S/m and 1.2 S/m while their relative permittivity were 1,084,454 and 

8,546,138 for the background and inclusion, respectively. Each of these values were obtained by 

placing a small block shape representative sample between the two electrodes of the apparatus 
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shown in Figure 1 followed by measuring the resultant resistance and capacitance values. The 

conductivity and permittivity values of each tissue were then calculated using a 2-D optimization 

algorithm where the samples’ FE models were used to calculate the resultant resistance and 

capacitance values corresponding to the current estimates of conductivity and permittivity values 

in the optimization process. The algorithm altered the conductivity and permittivity of the 

sample’s FE model systematically until the mismatch between the calculated and experimentally 

measured resistance and capacitance values was minimum. To construct the phantom, gelatin 

and common salt with various concentrations were used. For the background, 12% concentration 

of gelatin in distilled water was used while for making the inclusion 12% of gelatin and 0.09% 

common salt was used. The experimental setup consisted of the data acquisition described earlier 

where an excitation voltage of the sensor was set to 5 Vp-p at 0.5 kHz.    

         

                    

Figure 4.5. Gelatin breast phantom with inclusion located in the bottom right side to mimic the 

breast upper right quadrant.    

 

 

4.3. Results 

4.3.1. In silico Breast Phantom 

Images reconstructed from the in silico breast phantom are shown in Figure 4.6. They show 2D 

mammography images obtained by projection of the impedance, resistance, capacitance, and 

phase angle of the breast phantom corresponding to three different tumor positions along its 

height (z-axis). The images were produced from raw simulation data with no additional filtering 
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or manipulation. As described earlier, the permittivity images is similar to the capacitance 

images while the conductivity images are similar to inverted resistance images. Thus, the 

permittivity and conductivity images of the breast phantom are not shown. Variation profiles of 

the measured impedance, resistance, capacitance and phase angle of the in silico breast phantom 

along the section crossing the inclusion (shown in Figure 4B) are also illustrated in Figure 4.6. 

Due to symmetry, the reconstructed images of the phantom with the inclusion located at the 

centres of low and top height thirds quadrants (rows 1, 2 and 5, 6) are identical. As expected, 

image contrast pertaining to these two cases is higher compared to the case where the inclusion is 

located in the middle of the phantom’s height. This is particularly more important with the 

impedance and resistance images where the respective images can hardly detect the inclusion. 

Among the reconstructed images, the capacitance and phase angle images exhibited higher 

contrast and better quality compared to the impedance and resistance images.  

The results revealed that there are artifacts seen as intensity variations around the phantom and 

inclusion’s periphery in the reconstructed impedance, resistance, and capacitance images. These 

artifacts were caused by the nonlinearity and non-uniformity of the electric field. This led to 

about 9% higher measured impedance and resistance, and about 10% lower measured 

capacitance around the peripheries as shown in the 2nd, 4th, and 6th rows of Figure 4.6.  
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Figure 4.6. From left to right: reconstructed impedance, resistance, capacitance and phase angle 

images of the in silico breast phantom where the inclusion is located at the centers of the height’s 

of a) top third (1st row), b) middle third (3rd row) and c) bottom third (5th row). Also, from left to 

right: variations profile of the impedance, resistance, capacitance and phase angle along a section 

crossing the middle of the inclusion corresponding to the in silico breast phantom where the 

inclusion is located at the centers of the height’s of a) top third (2nd row), b) middle third (4th 

row) and c) bottom third (6th row).  
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4.3.2. Tissue Mimicking Breast Phantom 

Reconstructed images obtained from the tissue mimicking breast phantom study are shown in 

Figure 4.7. Pixel size in these images is 3 mm×5 mm. This figure demonstrates that the inclusion 

can be clearly distinguished from the background on the capacitance and phase angle images. 

Similar to the reconstructed images obtained from the in silico breast phantom study, the 

inclusion in the impedance and resistance images of the gelatin phantom cannot be clearly 

differentiated from its background.  The second row of Figure 4.7 illustrates the variation 

profiles of the impedance, resistance, capacitance, and phase angle signals along the section 

crossing the inclusion.  

 

Figure 4.7. Top row from left to right: Reconstructed impedance, resistance, capacitance and 

phase angle images obtained from the tissue mimicking breast phantom study. Bottom row from 

left to right: variation profiles of the impedance, resistance, capacitance and phase angle signals 

along the section crossing the inclusion. 

 

4.4. Discussion and Conclusions 

It is known that breast tissue in women undergoes significant changes because of different 

factors such as pregnancy, aging, menstrual cycle, menopause, etc. These changes are expected 

to affect the intrinsic properties of the breast tissue such as dielectric properties. However, 

previous studies have shown whatever the intrinsic properties of the breast tissues are, cancer 

tumors tend to have significantly higher dielectric values than their healthy counterparts. In this 
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study, we introduced an electrical impedance mammography approach which takes advantage of 

this higher dielectric values in order to detect breast abnormalities in an effective, safe, simple 

and cost effective way. Based on the components of tissue electrical impedance, we introduced 

methods to obtain three independent images of the breast. These images can be constructed using 

data obtained from a single data acquisition procedure while only extra computer resources are 

required for constructing the three images. Our in silico and tissue mimicking phantom studies 

indicated that, among these images, the permittivity, capacitance and phase angle images were 

shown to be more effective than the impedance, resistance and conductivity images. Moreover, 

the studies demonstrated that the phase angle image reconstruction was capable of producing the 

highest quality images consistent with Equation 4.17, which implied strict dependence on the 

tissue intrinsic properties.   

Based on the simulation results obtained from an adipose tissue specimen, an excitation 

frequency of 0.5 kHz was chosen to reconstruct the capacitance, permittivity and phase angle 

images of the breast phantom. The data presented in Section 4.2.4 demonstrated that significantly 

higher excitation frequencies may not be effective for producing images with high quality, as the 

capacitance component of the tissue’s impedance at higher frequencies becomes too small to be 

measured reliably. Based on dielectric parameter values of different tissues at frequencies of 10 

Hz – 20 GHz [24, 25], the same trend is expected to be observed for other soft tissue types at 

high frequencies. 

Results obtained in this study suggest that breast inclusions with higher dielectric values are 

highly detectable when they are located in the top outer quadrant of the breast. This may be 

highly advantageous for breast cancer detection, as previous research has shown that the majority 

of cancer tumors form in the top outer quadrant of breast [31]. Higher conductivity and 

permittivity of an inclusion also leads to improved tumor detection characterized by higher 

image contrast. Previous studies have shown that the dielectric values of breast cancer tumors are 

20-40-fold higher than those of normal breast tissue [12]. In this investigation however, we 

assigned only conservative 6 and 8 times higher values of conductivity and permittivity to the 

inclusion in the in silico and tissue mimicking phantom studies. Figures 4.8 and 4.9 show the real 

location and size of the inclusion using red dotted outlines on the projection images obtained 

from the in silico and phantom mimicking studies, respectively. These figures indicate that the 
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projection images are be able to properly capture the location of inclusions with higher dielectric 

parameter values. However, the size of the inclusion in these images increase with depth. For 

example, the inclusion in the image corresponding to the case where the inclusion is located in 

the breast’s mid-height appears more diffused, hence its sizes is overestimated in comparison 

with the images corresponding to cases where the inclusion is located in the top or bottom one-

third heights. These size variations are due to the electric field nonuniformity. Results obtained 

from this investigation indicate that, among images produced by the proposed method, the phase 

angle image is superior in terms of cancer detectability. These results also suggest that the 

proposed EIM technique is capable of detecting inclusions located deep inside the breast while 

other EIM technologies such as TransScan are only capable of detecting inclusions located close 

to the breast surface [33]. 

 

 

Figure 4.8. Reconstructed impedance, resistance, capacitance and phase angle images of the in 

silico breast phantoms previously shown in Figure 4.6 where the true location and size of the 

inclusion is shown using red dotted outlines. 
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Figure 4.9. Reconstructed impedance, resistance, capacitance and phase angle images of the 

tissue mimicking breast phantom previously shown in Figure 4.7 where the true location and size 

of the inclusion is shown using red dotted outlines. 
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Chapter 5 

Conclusions and Future Work 

 

5.1. Conclusions 

A low frequency bio-electrical impedance mammography technique with different types of 

impedance data projections in conjunction with low frequency tissue dielectric measurement 

techniques were introduced in this investigation. As described earlier, the proposed impedance 

mammography technique is founded on the assumption that the dielectric values of breast 

malignancies at low frequencies are significantly higher than the dielectric values of healthy 

breast tissues; therefore, they are detectable through impedance measurement of the breast tissue. 

In the mammography technique proposed in this study, the breast is gently compressed between 

the two plates of the impedance sensor and impedance projections of the breast tissue on the 

breast surface plane are measured and converted into 2D mammograms. The impedance sensor 

consists of an excitation and sensor plates. The excitation plate provides a low voltage sin-wave 

excitation signal at low frequencies. The sensor plate consists of a 2D array of electrodes that 

measure the amplitude and phase of the impedance on the breast surface plane. Previous studies 

have indicated that existing impedance mammography systems such the TransScan 2000 

(Siemens Medical, Germany, and TransScan, Ramsey, NJ, USA) are only capable of detecting 

malignancies located close to the breast surface. Based on in silico and tissue mimicking 

phantom studies carried out in this investigation we showed that our proposed impedance 

mammography technique in conjunction with phase angle image reconstruction is capable of 

detecting malignancies which are located deep inside or close to the surface of breast.  

In order to assess the validity of the assumption that breast malignancies at low frequencies have 

substantially higher dielectric values than normal breast tissues, we conducted dielectric 

measurements on normal and malignant breast tissues in a xenograft mice model at 100 Hz-1 

MHz. The outcome of this measurement indicated that both conductivity and permittivity values 

were significantly higher in breast cancer in comparison with normal breast tissues. The average 

conductivity of malignant to normal breast tissues were 2.1 to 5.1 times higher than that of 

surrounding normal tissues at 100 Hz-1 MHz, while the average permittivity of the breast tumors 
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were 8.4 to 13.4 times higher than that of the surrounding normal tissues. Permittivity values of 

the tumors in this study were ~80 times higher than reported values of permittivity of breast 

adipose at 100Hz-1MHz. The higher permittivity than conductivity ratios of malignant to normal 

breast tissue, shows the merit of permittivity and phase angle image reconstructions for detecting 

the breast malignancies. To reliably measure the dielectric properties of biological tissues at low 

frequencies, an inverse finite element computational approach in conjunction with using a 

parallel plate impedance sensor was presented in Chapter 2 of this study. In this approach the 

tissue specimen is placed between the plates of the impedance sensor and the amplitude and 

phase of the specimen’s impedance is measured. The measured phase and amplitude of the 

impedance, or extracted resistance and capacitance of the tissue specimen are then used in an 

inverse finite element algorithm for calculating the permittivity and conductivity of the tissue 

specimen. The permittivity measurements of the bovine specimens and in silico studies of 

Chapter 2 suggest that the proposed dielectric measurement technique is comparable and even 

superior to the conventional VNA-based approach of measuring dielectric properties of 

biological tissue at low frequencies. It was shown through computer simulation that the 

inaccuracy of the conventional VNA-based approach in measuring the dielectric properties of a 

tissue such as breast which consist of layers of adipose and fibro-glandular tissues can be as high 

as 270%, while the maximum error associated with our proposed dielectric measurement 

technique in this study for the same breast tissue is only 4%. An improved version of the 

proposed dielectric measurement technique which uses cylindrical shaped electrodes instead of 

parallel plates sensor, was presented in the Chapter 3 of this work. This technique was employed 

to estimate the conductivity and permittivity values of breast tumors at low frequencies of 100 

Hz-1 MHz using a xenograft mice model.  

 

 

5.2. Future Directions 

5.2.1. Chapter 2: A Novel Technique for Measuring Electrical Permittivity of 

Biological Tissues at Low Frequencies 

In this chapter a novel method for measuring the electrical permittivity of biological tissues at 

low frequencies was presented, and the permittivity of several bovine liver, heart and bone tissue 

specimens were measured by the proposed technique. Furthermore, a comparison between the 
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performance of the proposed and conventional VNA-based approaches for measuring the 

permittivity of a breast tissue model which consisted of layers of adipose and fibro-glandular 

tissues, was conducted through the in silico studies. To study the viability of impedance imaging 

and tissue characterization (i.e. differentiation of healthy and diseased tissues) for different 

organs (such as liver, lung, prostate, etc.), more variety of soft and hard tissue specimens, 

including human tissues specimens can be measured by the proposed and conventional technique 

in future works. The measurements for these tissue specimens can be carried out through a broad 

range of low frequencies such as 10Hz-10MHz. Resulting dielectric values from these two 

measurement methods can be compared to each other and to dielectric values reported in the 

literature. The proposed measurement method can also be modified to utilize different types and 

configurations of impedance sensors with different conductive plates and electrodes, in order to 

be suitable for different types of biomedical applications.  Furthermore, the possibility of in vivo 

dielectric measurement of biological tissues should be investigated in future works. For this 

purpose, the possibility of using CT and MRI for obtaining the real geometries of organs and 

tissues maybe considered. The dielectric measurement of blood vessels in cancer tumors and in 

diseases such as sepsis can also be taken into account for future works. Furthermore, the 

sensitivity of dielectric variation to the blood oxygenation for detection of hypoxia can be 

investigated.   

 

5.2.2. Chapter 3: Dielectric Properties of the Normal and Malignant Breast 

Tissues in Xenograft Mice at Low Frequencies (100Hz-1MHz) 

The dielectric properties of normal and malignant breast tissues in xenograft mice model at 

frequencies of 100 Hz-1 MHz were investigated in Chapter 3 of this work. The results indicated 

that both conductivity and permittivity values in breast cancer tissues were significantly higher 

than normal breast tissues. In the future, more investigations can be conducted at low frequencies 

for measuring and comparing the dielectric values of normal and malignant human breast tissues 

obtained from surgeries. Also, more dielectric measurements can be carried out on different 

types of benign lesions and various breast malignancies to examine the possibility of using the 

tissue dielectric properties for differentiation between different categories and stages of benign 

and cancer breast lesions. Furthermore, the feasibility of the in vivo breast cancer dielectric 
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measurements both on human and on xenograft breast cancer model at low frequencies should be 

taken into consideration. The possibility of detecting hypoxia based on the changes in the 

dielectric values of oxygenated and deoxygenated blood, as well as the impact of the denser 

vasculature on dielectric values of cancer tumors can also be studied. Finally, the feasibility of 

using the electrical conductivity, permittivity and phase angle of breast tissues at low frequencies 

for finding tumor margins in breast lumpectomy procedure can be investigated. 

 

5.2.3. Chapter 4: Towards Medical Electrical Impedance Mammography 

Using Low Frequency Excitation 

The possibility of using electrical properties of biological tissues, such as electrical conductivity 

and electrical permittivity at low frequencies, for screening the breast and detecting its 

malignancies were investigated in Chapter 4 of this thesis. As described earlier, the results of this 

investigation is based on in silico and tissue mimicking phantom studies. A potential future 

research project can be directed toward clinical examination of the proposed impedance 

mammography system on breast cancer patients. Other future projects maybe designed to 

determine the minimum inclusion size that can be detected by the proposed impedance 

mammography system at different breast depths. Another future research project may involve 

determining the maximum resolution that can be obtained from the proposed impedance 

mammography technique and the relationship between this resolution and the sensor cell’s area 

and plates separation. The viability of using different types and configurations of impedance 

sensor in conjunction with utilizing multiple excitation voltages and frequencies for obtaining the 

optimum projection signal from the impedance sensor at different inclusion’s depth is also of 

interest, hence maybe considered as a future research project.    
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Appendix 1: Invention Report 

 

UWO4-0050PCT PATENT 

ELECTRICAL IMPEDANCE IMAGING 

BACKGROUND OF THE INVENTION 

Field of the Invention 

I.  The present invention relates to electrical impedance imaging, and more particularly to 

electrical impedance imaging for medical applications.  

Description of the Related Art 

II.  Many current medical imaging methods have limitations such as tissue ionization, 

noise and high cost, which may impact their effectiveness in the clinic. For instance, X-ray and 

Computer Tomography (CT) imaging techniques, which are based on tissue attenuation 

coefficient, both expose patients to radiation and also are not capable of generating images with 

high contrast for many soft tissue regions. In contrast to X-ray and CT, MRI does not involve 

exposure to radiation, but is expensive and often requires contrast agents for imaging tissues. 

Another common imaging modality is ultrasound which visualizes tissue acoustic properties. 

This modality often suffers from high levels of noise, frequently leading to low quality imaging. 

In addition to these limitations, it is known that various imaging modalities display only specific 

types of data (e.g. morphology, microcalcification, etc.) pertaining to tissue pathology. As such, 

clinicians often use the approach of fusing data obtained from different modalities for more 

accurate diagnosis.  

III.  Imaging techniques are founded on tissue physical properties that are reconstructed 

by processing measured data using a mathematical framework which describes the physics of 

interaction between tissue and its excitation. The heterogeneity various tissues exhibit in terms of 

the physical property used in an imaging technique influences the medical image contrast in 

clinical applications, and affects the technique’s sensitivity and specificity.  Among tissue 

physical properties that have not been sufficiently explored for developing effective medical 

imaging techniques, electrical properties have good potential. While tissue electrical impedance 

(EI) has been somewhat explored for medical imaging, leading to the Electrical Impedance 

Tomography (EIT) technique, electrical permittivity (EP) or electrical capacitance (EC) have not 

been given significant attention in the medical imaging field. [Does this last sentence imply that 

EI is mutually exclusive of EC and EP? Does EI encompass EP and EC?] While EIT has been 

developed and significantly improved over the past two decades, it still suffers from two major 

drawbacks which have limited its clinical utility. The first is that the range of EI variation for 

most biological tissues at low frequencies, i.e. 100 KHz or lower, is limited (S Gabriel, R W Lau 

and C Gabriel, The dielectric properties of biological tissues: III. Parametric models for the 

dielectric spectrum of tissues, Phys. Med. Biol. 41 (1996) 2271–2293. S Gabriel, R W Lau and C 

Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 

10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996) 2251–2269). This means that obtaining high 

contrast EI images at low frequencies is often not feasible. The second is that imaging tissue with 
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EI requires the use of contacting electrodes. However, in many clinical applications, contacting 

electrodes either cannot be used or using the required number of electrodes is impractical.  

IV.  Accordingly, there is a continuing need for alternative medical imaging techniques. 

V.   
SUMMARY OF THE INVENTION 

VI.  In an aspect there is provided an electrical permittivity tomography sensor, 

comprising: 

VII.  a first planar plate comprising a plurality of excitation cells; 

VIII.  a second planar plate comprising a plurality of detector cells; 

IX.  the first planar plate held in spaced parallel relation to the second planar plate and 

defining a chamber therebetween; 

X.  the first and second planar plates arranged to align each excitation cell with a 

corresponding detector cell in a one-to-one paired relationship; and 

XI.  each paired excitation cell and detector cell configured for synchronized activation 

with a substantially uniform electric field communicating therebetween. 

XII.   
BRIEF DESCRIPTION OF THE DRAWINGS 

XIII.  Figure 1 shows a schematic view of a capacitive sensor; 

XIV.  Figure 2 shows a schematic cross-sectional view of a prior art capacitive sensor; 

XV.  Figure 3 shows a 2D non-uniform electric field in a homogeneous medium within 

the prior art capacitive sensor shown in Figure 2; 

XVI.  Figure 4 shows a computer controlled imaging system comprising the capacitive 

sensor shown in Figure 1; 

XVII.  Figure 5 shows a schematic of a sample section of a phantom consisting of two 

tissues (e.g. background healthy tissue and tumor) placed between two-parallel-plates of a 

diaphragm variant of the capacitive sensor shown in Figure 1; 

XVIII.  Figure 6 shows block shape phantoms with cylindrical inclusions with various 

sizes mimicking tumor in healthy background tissue used in an in silico phantom study for 

permittivity image reconstruction using data back propagation; 

XIX.  Figure 7 shows a tissue mimicking phantom consisting of background and 

inclusion with permittivity values of 180 F/m and 420 F/m, respectively; 

XX.  Figure 8 shows plots of deviation error from linear approximation vs. frequency 

along the centreline of in silico breast phantoms with 10, 15 and 25mm diameter spherical 

inclusions with permittivity values three times higher than the background tissue permittivity; 

XXI.  Figure 9 shows plots of deviation error from linear approximation vs. frequency 

along the centreline of in silico bone-muscle phantom for the 10, 15 and 25mm diameter 

cylindrical inclusions with permittivity values twenty times lower than the background tissue 

permittivity; 

XXII.  Figure 10 shows plots of deviation error from linear approximation along the 

diaphragm’s motion axis in the in silico breast phantom consisting of a block with 15mm, 20mm 

and 25mm diameter cylindrical inclusions with permittivity values three times higher than the 

background tissue permittivity; 

XXIII.  Figure 11 shows reconstructed tomography images of the block phantoms shown 

in Figure 6 with 15, 20 and 25 mm inclusions (top row) and corresponding segmented images 

obtained with a threshold value of 2000F/m (bottom row); 



104 

 

XXIV.  Figure 12 shows a plot of an experimentally acquired projection along the X-axis 

of the tissue mimicking phantom shown in Figure 7; 

XXV.  Figure 13 shows plots of (A) average values and  (B) maximum values of the 

metric c as a function of permittivity and plate separation (phantom height); 

XXVI.  Figure 14 shows a schematic of a capacitive sensor plate with a guard 

surrounding each excitation cell; and 

XXVII.  Figure 15 shows a schematic of a needle biopsy variant of the capacitive sensor 

shown in Figure 1. 

XXVIII.   
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS 

XXIX.  In contrast to EI, EP of biological tissues has a broad range. For example, at 

100MHz, EP of biological tissues varies from 6 F/m for fat to 56.2 F/m for brain white matter, 

and to 98 F/m for the kidney. The difference in tissue EP becomes even more significant at lower 

frequencies, so that at 1 KHz the EP values of the aforementioned tissues are 24104 F/m, 69811 

F/m and 212900 F/m, respectively. Therefore, it can be concluded that image contrast and hence 

quality in EP imaging is potentially high. Table 1 presents EP values of six different human 

tissues at 100Hz, 100 KHz and 100 MHz (S Gabriel, R W Lau and C Gabriel, The dielectric 

properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, 

Phys. Med. Biol. 41 (1996) 2271–2293. S Gabriel, R W Lau and C Gabriel, The dielectric 

properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. 

Med. Biol. 41 (1996) 2251–2269). Table 1 shows that tissue EP values decrease significantly 

with higher frequencies. The significant variation observed in tissue EP while excited with 

different frequencies indicates an important potential advantage of EP imaging where excitation 

frequency may be determined/tuned for given anatomical sites to improve image contrast. 

XXX.  Table1. Frequency dependent variation of Electrical Permittivity of human tissues 

Tissue name Muscle 
Bone 

(Cortical) 
Blood 

Brain 
(White m.) 

Brain 
(Grey m.) 

Fat 

@ 100 Hz 9329000 5852.8 5259.8 1667700 3906100 457060 

@ 100KHz 8089 227.6 5120 2108 3221 92.89 

@ 100MHz 65.9 15.3 76.8 56.8 80.14 6.07 

XXXI.   
XXXII.  Another important advantage of imaging EP over EI [Does this imply that EI is 

mutually exclusive of EP? Does EI encompass EP?]is the possibility of image data acquisition 

through capacitance measurement. Capacitive sensors usually consist of a number of electrodes 

or metal plates, and the electrical capacitance is usually estimated through measurement of the 

voltage and current that passes through them. Achieving high image resolution using capacitive 

sensors with electrodes is not practical because of the small number of relatively large electrodes 

used for data acquisition. Electrodes are discrete elements attached to the skin. Given the size of 

electrodes it is not possible to place a large enough number of such electrodes to achieve high 

image resolution - for example although 16 to 32 electrodes are typically used for imaging a 

thorax, this number of electrodes still does not produce a high resolution image.  

XXXIII.  Now referring to the drawings, Figure 1 shows an example of a capacitive 

sensor 10 that can be used for medical impedance imaging including, for example, medical 

electrical permittivity imaging or impedance phase angle imaging. The capacitive sensor 10 

comprises two parallel planar plates, a first planar plate 12 housing a plurality of electrically 
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conductive excitation cells 14 arranged in a first array and a second planar plate 16 housing a 

plurality of electrically conductive detector cells 18 arranged in a corresponding second array. 

Each excitation cell 14 is electrically isolated from other neighboring excitation cells by 

surrounding a perimeter of the excitation cell 14 with a non-conductive insulating gap 20. Each 

detector cell 18 is electrically isolated from other neighboring detector cells by surrounding a 

perimeter of the detector cell 18 with a non-conductive insulating gap 20. Thus, the first and 

second planar plates are segmented by the non-conductive insulating material 20, with each 

segment of the first planar plate including a single excitation cell and each segment of the second 

planar plate including a single detector cell. 

XXXIV.  Each of the first and second planar plates are bound by first and second 

surfaces with an insulation layer 22 covering the first surface and a grounding shield 24 covering 

the second surface. The first and second planar plates are arranged so that their respective 

insulation layers 22 face each other. 

XXXV.  The first and second planar plates are maintained in a substantially parallel 

spaced relation defining a chamber 26 for receiving a biological sample in between the first and 

second planar plates. More specifically, the chamber 26 is defined in between the insulation 

layers 22 covering the first surfaces of the first and second planar plates. The insulation layers 22 

provide contacting surfaces for the biological sample.  The spacing between the first and second 

planar plates is adjustable so that surfaces of variously sized biological samples can be 

maintained in abutting contact with both the insulation layers 22 of the first and second planar 

plates. 

XXXVI.  The first and second planar plates are oriented so that an excitation cell and a 

corresponding detector cell are held in opposing alignment. When in use, each excitation cell and 

its corresponding detector cell are located on opposing sides of a biological sample. The plurality 

of excitation cells and the plurality of detector cells are typically equal in number so that each 

excitation cell opposes a detector cell in a one-to-one relationship (C’1 to C1, … ,  C’n to Cn). 

Each excitation cell and each detector cell can each be independently electrically controlled. A 

first multiplexer 28 comprises an input connector 30 in electrical communication with a voltage 

source and a plurality of relays, each relay 32 controlling electrical activation of a single 

excitation cell. The input connector 30 communicates an excitation signal from the voltage 

source through a closed relay to a corresponding excitation cell. The excitation signal may be 

modulated with respect to amplitude, frequency, or both amplitude and frequency. A second 

multiplexer 34 comprises an output connector 36 in electrical communication with data 

acquisition circuitry and a plurality of relays, each relay 38 controlling electrical communication 

of a single detector cell.  

XXXVII.  The first and second multiplexers function to synchronize any desired pattern 

of sequential activation or simultaneous activation of corresponding opposing pairs of excitation 

cells and detector cells to generate a substantially 1D uniform electric field traversing the 

chamber space through a biological sample, the substantially 1D uniform electric field having an 

orientation substantially perpendicular/normal to both the first and second planar plates. The data 

acquisition circuitry can measure an electrical property of a substantially 1D uniform electric 

field generated between each oppositely aligned pairing of a single excitation cell and a 

corresponding single detector cell. Typically, the measured electrical property is permittivity, 

conductivity or both permittivity and conductivity. [Insert here impedance for phase angle?] 
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XXXVIII.  The schematic capacitive sensor has been validated experimentally. The 

following experimental examples are for illustration purposes only and are not intended to be a 

limiting description. 

XXXIX.  In a first set of experimental examples the capacitive sensor is used to 

determine electrical permittivity (EP) of a sample held between the two parallel plates and 

process the EP data to generate an image of the sample. 

XL.  Electrical permittivity (denoted by ε), is a parameter that shows how much electric 

field is generated per unit charge in a medium. It is usually measured through measuring 

electrical capacitance (C) as direct measurement of ε may not be feasible. Electrical Capacitance 

(C) is a physical property of capacitors consisting of two conductors with a material (medium) 

between them and it can be measured using capacitive sensors. It is a property of the capacitor 

which depends on the geometry of the conductors and the permittivity of the medium between 

them; it does not depend on the charge or potential difference between the conductors. The 

following is a fundamental relationship used to express C: 

XLI.     𝐶 =
Q

V
=  

∮ 𝜀𝐸.  𝑑𝑠

∫ 𝐸.  𝑑𝑙
       (1) 

XLII.  where Q is the electric charge, V the voltage between electrodes and E is the electric field. 

The surface integral in the numerator is carried out over the surface enclosing the conductor 

while the line integral in the denominator is calculated from the negative to positive conductor or 

low to high potential. As it can be seen from this relationship, if E is uniform, C will be 

proportional to the permittivity of medium between the electrodes or plates of the capacitive 

sensor. 

XLIII.  Most current Electrical Capacitance Tomography (ECT) systems have used a 

relatively simple electrode configuration with electrodes arranged around the periphery of the 

object being imaged. For data acquisition, one pair of the electrodes is activated at a time and the 

corresponding capacitance is measured. Another approach of medium excitation involves 

exciting one electrode with a positive potential while the other electrodes are activated with a 

negative voltage. For data acquisition, again the capacitance values between pairs of the positive 

electrode with each negative electrode are measured. Figure 2 shows a typical configuration of a 

capacitive sensor which is used by most researchers in the field, including, for example, 

Soleimani et al. (Manuchehr Soleimani, Phaneendra K. Yalavarthy, Hamid Dehghani; 

Helmholtz-Type Regularization Method for Permittivity Reconstruction Using Experimental 

Phantom Data of Electrical Capacitance Tomography; IEEE TRANSACTIONS ON 

INSTRUMENTATION AND MEASUREMENT, VOL. 59, NO. 1, January 2010), Alme et al. 

(Kjell Joar Alme, Saba Mylvaganam, Electrical Capacitance Tomography, Sensor Models, 

Design, Simulations, and Experimental Verification, IEEE SENSORS JOURNAL, VOL. 6, NO. 

5, October 2006), Warsito et al. (Warsito Warsito, Qussai Marashdeh, Liang-Shih Fan, Electrical 

Capacitance Volume Tomography IEEE SENSORS JOURNAL, VOL. 7, NO. 4, April 2007) 

and Cao et al. (Zhang Cao, Lijun Xu, Wenru Fan, Huaxiang Wang, Electrical Capacitance 

Tomography for Sensors of Square Cross Sections Using Calderon’s Method, IEEE 

TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, 

March 2011). A major issue with such capacitive sensors is that the electric field inside the 

sensor between pairs of electrodes is neither uniform nor 1-dimensional, leading to a nonlinear 

relationship between the measured capacitance and medium permittivity distribution. A typical 

electric field developed in such sensors can be obtained using computational simulation and is 

depicted in Figure 3. This field was created within a homogeneous medium (imaging area) which 
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has uniformly distributed permittivity (ε) values of 1. Inhomogeneous media is expected to 

create a more complex electric field. As the electric field in these sensors is dependent on the 

permittivity distribution, it is not possible to derive an explicit expression which relates 

permittivity distribution to the measured capacitance. As such, previous studies have developed 

complex iterative inverse finite-element solutions to reconstruct the medium’s permittivity using 

measured sensor’s capacitance data. Apart from high computer power and time demand, such 

solutions suffer from serious ill-conditioning and uniqueness issues. 

XLIV.  In contrast to prior art capacitive sensors, the capacitive sensor shown in Figure 1 

produces a sufficiently uniform electric field within the medium (e.g. tissue) to facilitate straight 

forward image reconstruction using linear equations, such as linear back projection. While 

electrical permittivity (EP) is an intrinsic property of a material, the electric field is a function of 

the geometry and permittivity distribution of the object being imaged and the sensor’s 

configuration and excitation scheme. The latter two can be designed in order to achieve a linear 

electric field.  

XLV.  Figure 4 shows the capacitive sensor from Figure 1 incorporated within a 

computer implemented imaging system. The sensor, consistent with Figure 1, comprises two 

parallel plates housing opposing excitation cells and detector cells. The imaging system includes 

the parallel plate capacitive sensor, multiplexers, analog board, data acquisition system (DAQ), 

microcontroller, data bus, address bus, computer interface and a computer. The microcontroller 

controls the performance of the whole system by providing proper addresses and control 

commands to the DAQ system and multiplexers via the address and data buses. It also 

communicates with the DAQ system via these buses to receive the A/D convergence data [ 

elaborate on generation of A/D convergence data?]. After reading the convergence data from the 

DAQ system, the microcontroller sends this information to the computer via a serial interface. 

The convergence data can then be processed using an image reconstruction computer code 

[Confirm whether this computer code can easily be varied/substituted for the different imaging 

techniques shown in the new manuscript?] , leading to the image. In order to switch the 

electronic relays inside the multiplexers, the microcontroller changes the address from 0 to n-1 

on the address bus.  

XLVI.  One option for an excitation/data acquisition scheme is that each pair of 

excitation cell and a corresponding opposite detector cell (e.g. C1 and C'1) is switched on and 

then off one at a time such that the linear cell array is excited and data acquired sequentially. 

Alternatively, the excitation/data acquisition scheme can involve simultaneous excitation and 

data acquisition from a plurality of pairs of opposing excitation cells and detector cells. 

Activation of cells can be accomplished through a number of multiplexers which are connected 

to each cell on the sensor plates. A multiplexer is an electronic chip which consists of one output 

and multiple input pins. The input pins are connected or disconnected from the output pin via 

internal electronic switches (relays). Multiplexers are significantly faster and produce less noise 

in comparison with electromechanical or mechanical switches. A single pass of the sequential or 

simultaneous excitation/data acquisition yields a projection corresponding to one angle. The 

sensor can be rotated incrementally to acquire sufficient data projections necessary for image 

reconstruction. [Is this rotation needed with impedance phase angle imaging?] 

XLVII.  In silico phantom studies were conducted using an alternative parallel plate 

capacitive sensor configuration comprising two parallel brass plates, each plate comprising a 

diaphragm, which can be opened and shut, on each plate side, the diaphragms maintained in 

opposing alignment. The opposing diaphragms are a functional equivalent of the opposing 
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excitation cell and detector cell pairing. Movement of the diaphragms is coordinated so that the 

diaphragms are always maintained in opposing alignment and are synchronized to either be both 

open or both closed. In order to achieve an approximately linear relationship necessary for 

efficient EC reconstruction, a two-stage measurement scheme is executed. At each position along 

the diaphragm’s motion direction, two capacitance measurements are conducted in sequence 

while the diaphragm is shut and then open. This pair of measurements is repeated at pixel size 

intervals until an object’s field of view (FOV) is swept. EP of each pixel can be obtained easily 

using the corresponding EC value of the pixel and Equation 2. 

XLVIII.  Discretization and EC Image Reconstruction with the diaphragm variant 

capacitive sensor: Figure 5 shows a schematic of two different tissue mimicking materials (e.g. 

background tissue and tumor) placed inside a parallel plate capacitive sensor. The medium is 

discretized into small pixels with the size of the diaphragm hole using the shown grid. A medium 

column bridging the diaphragm holes consisting of pixel array labelled by C1, C2, C3, …, Cn is 

also shown. These C parameters represent the capacitance of material portion enclosed by a pixel 

which can be considered as a small capacitor. If the dimension of each pixel between the 

sensor’s plates is assumed to be small enough, the permittivity and electric field within each 

pixel can be considered to be uniform while its direction is along the column’s axis. Therefore, 

for each pixel Equation 1 can be approximated as follows: 

XLIX.     C = ε A/L                                                                                 (2) 

L.  where C, ε, A and L are the pixel’s capacitance, permittivity, surface area and size, 

respectively. 

LI.  Given the approximately 1D uniform electric field directed perpendicular to the 

plates’ plane, pixels along each column can be approximated as series capacitors. As such, the 

relationship between the measured C (i.e. capacitance difference between closed and open 

diaphragm states) and these elements is: 

LII.  
1

∆𝐶
=  

1

𝐶1
+ 

1

𝐶2
+ ⋯ +

1

𝐶𝑛
=

𝐿1

𝜀1 𝐴1
+  

𝐿2

𝜀2 𝐴2
+ ⋯ +  

𝐿𝑛

𝜀𝑛 𝐴𝑛
 

LIII.  Assuming a uniform grid, this relationship can be simplified to the following: 

LIV.      
1

∆𝐶
=  

𝐿

𝐴
∑

1

𝜀𝑖

𝑛
𝑖=1               (3) 

LV.  This is a linear relationship between the reciprocals of the measured data and tissue 

permittivity. In principle, the plates can be rotated around the object to acquire data pertaining to 

a number of projections sufficient for image reconstruction using linear back projection. 

LVI.  In silico Phantom Study for Linearity Assessment with Different Frequencies: to 

assess the effect of voltage source frequency in the diaphragm variant imaging system and 

determine the range of frequencies where the linear relationship given in Equation 3 is still valid, 

an in silico phantom study was carried out on two sets of phantoms. The first set involved three 

phantoms consisting of 60mm×100mm×60mm block simulating background tissue with 10mm, 

15mm and 25mm diameter spherical inclusions, respectively. To mimic soft tissue stiffening 

resulting from cancer (e.g. breast cancer), the permittivity of inclusions for each frequency was 

assumed to be 3 times larger than the permittivity of the background tissue. The second set 

involved three phantoms consisting of 60mm×100mm×60mm block simulating background 

tissue with 15mm, 20mm and 25mm diameter spherical inclusions, respectively. In this set of 

phantoms, the permittivity of inclusion for each frequency was assumed to be 20 times lower 

than the permittivity of the background tissue to mimic bone inside muscle tissue. Each of these 

phantoms was assumed to be placed between the two parallel plates of the sensor such that the 

two diaphragms were aligned with the inclusion’s centre during data acquisition. A square-
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shaped excitation voltage with 5v amplitude and frequencies varying from 10 kHz to 10 GHz 

was applied to the sensor. A finite-element mesh consisting of ~2.2 million 8-noded hexahedral 

elements was used for discretizing each phantom. The phantoms were analyzed under varying 

frequencies and corresponding electric fields were calculated using CST Studio Suite (Computer 

Simulation Technology AG, Darmstadt, Germany). Using this solver C between the two 

diaphragm points arising from shutting and opening the diaphragm were also calculated and 

compared to the corresponding value obtained from Equation 3. 

LVII.  In silico Phantom Study for Linearity Assessment with Different Diaphragm 

Locations: to assess the validity of the linear approximation presented in Equation 3 along the 

plates’ long axis (X direction), an in silico breast phantom study involving three phantoms was 

carried out. Each phantom consists of a 60mm×100mm×10mm block simulating background 

mimicking healthy fibroglandular tissue. To evaluate inclusion size in this study, cylindrical 

inclusions of 15mm, 20mm and 25mm in diameter were included in the phantoms to mimic 

breast tumors. The permittivity of inclusion for each phantom was assumed to be 3 times larger 

than the permittivity of the background tissue. Each of these phantoms was assumed to be placed 

between the two parallel plates of the sensor and the two diaphragms were moved along the X 

axis from -30mm to 30mm with 3mm increments during data acquisition. The sensor’s 

diaphragms’ diameter was assumed to be 2 mm. A square-shaped excitation voltage with 5v 

amplitude and 32 KHz frequency was applied to the sensor. In each step along the X axis, the 

capacitance of the sensor in the model with open and closed diaphragms was measured, and the 

deviation from Equation 3 linear approximation was calculated. Each phantom was discretized 

using ~ 2.2 million 8-noded hexahedral elements to obtain its respective FE model which was 

solved using CST Studio Suite (Computer Simulation Technology AG, Darmstadt, Germany) to 

obtain C at each diaphragm location. These values were compared to values obtained from 

Equation 3. 

LVIII.  Image Reconstruction of a Phantom Using in silico Data: an in silico phantom 

study was conducted to investigate the quality of reconstructed permittivity images expected 

from the diaphragm variant capacitive sensor in conjunction with the linear back projection 

algorithm. In this study three thin block 60 mm  60 mm  20 mm phantoms with round 

inclusions of 15mm, 20mm and 25mm in diameter were used as illustrated in Figure 6. The 

phantom was assumed to consist of tissues with permittivity values of 858 F/m and 2574 F/m for 

the background and inclusion, respectively. In order to generate capacitance data required for the 

permittivity image reconstruction, each phantom was discretized using 8-noded hexahedral 

elements. To ensure high accuracy, a fine mesh consisting of 1.2 million elements was used for 

modelling. Using CST Studio Suite (Computer Simulation Technology AG, Darmstadt, 

Germany), the phantom and capacitive sensor were modeled and the electric field resulting from 

an excitation voltage source with amplitude of 5v and 32 kHz frequency was calculated. Using 

the obtained electric field in conjunction with the permittivity distribution, the sensor’s 

capacitance was calculated. This calculation was performed with open and closed diaphragms 

with varying position ranging from -30mm  x  30mm along the plates.  To obtain sufficient 

data necessary for image reconstruction using parallel beam projection algorithm, capacitance 

data were similarly obtained after rotating the two plates and once again varying the diaphragms 

position along the plates from -30mm to 30mm. This was performed along angles ranging from 0 

to 180 degrees with 5 degree increments. Data obtained from this simulation was fed into a 

Linear Back Projection image reconstruction algorithm and a tomography permittivity image 

was reconstructed for each phantom. 
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LIX.  Tissue Mimicking Phantom Study: a study involving the tissue mimicking phantom 

shown in Figure 7 was conducted. This phantom consists of a background and an inclusion 

constructed from gelatin, agar and salt. Dimensions of the background and inclusion are 100mm 

 100mm  90mm and 50mm  50mm  25mm, respectively. Permittivity values of the 

background and inclusion tissues were measured at 180 F/m and 420 F/m at 32 KHz, 

respectively. Each of these values was obtained by placing a small block shape representative 

sample of the material inside the capacitive sensor and measuring the resultant capacitance value. 

Each permittivity value was then calculated using a 1-D minimization algorithm where the 

sample’s finite-element model was used to calculate resultant capacitance corresponding to given 

permittivity value. This algorithm alters the permittivity of the sample’s FE model systematically 

until the calculated capacitance matches the experimentally measured counterpart sufficiently 

closely. To construct the phantom, gelatin, agar and salt with various concentrations were used. 

For the background, 15% concentration of gelatin in distilled water was used while for the 

inclusion construction 15% gelatin and 1% agar in addition to 3% salt were used. The 

experimental setup consists of a data acquisition system with capability of measuring capacitance 

values as low as 10-18 F. The diameter of the diaphragms was 1.5mm. The diaphragms on the 

sensor’s plates were moved along X-axis from -50mm to +50mm with 5mm increments. The 

data acquisition system was connected to the sensor’s plates and continuously measured the 

sensor’s capacitance at 32 KHz with open and closed diaphragms along this motion range. The 

excitation voltage of the sensor was set to 5V. 

LX.  Results of in silico Phantom Study for Linearity Assessment with Different 

Frequencies: simulation results of the phantom study for frequency dependence assessment are 

illustrated in Figures 8 and 9. Figures 8 and 9 summarize the percentage error between 

theoretical C obtained from CST studio and corresponding values obtained from Equation 3 for 

various frequencies. For all of the phantoms, at low frequencies (e.g. 100 KHz or lower) the 

electrical behavior of the capacitive sensor becomes very close to linear. The maximum error 

occurs for the phantom with the 25 diameter inclusion. In this case, the maximum error with the 

inclusion with higher permittivity is ~7% as shown in Figure 8. This error is only ~0.5% for the 

phantom where the inclusion has significantly lower permittivity in comparison to the 

background tissue as shown in Figure 9 at frequencies lower than 100 KHz. This implies that at 

low frequencies, the electrical behaviour of the capacitive sensor is such that the discretization 

where the tissue enclosed in columns bridging the two diaphragm points is approximated by 

series capacitors with a capacitance value of Ci = εi Ai/Li, (see Equation 2) is a reasonably good 

approximation. 

LXI.  Results of in silico Phantom Study for Linearity Assessment with Different 

Diaphragm Locations: simulation results of a phantom study for diaphragm location assessment 

along the longitudinal axis (diaphragm’s motion axis) of the sensor plates is illustrated in Figure 

10. Figure 10 shows C errors corresponding to deviation of the linear model from the numerical 

FE model of the phantoms used for linearity assessment with different diaphragm locations. 

These errors were obtained from simulation with an excitation voltage of 5v amplitude and 32 

kHz frequency with various diaphragm locations along the X axis. This figure shows that the 

errors increase sharply while approaching the inclusions’ periphery and it remains almost 

constant outside the inclusions’ width. As expected, the maximum errors correspond to the 

largest inclusion of 25 mm where the maximum errors within the inclusion and near its periphery 

are 3.7% and 14.8%, respectively. 
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LXII.  Results of Image Reconstruction of a Phantom Using in silico Data: Figure 11 

shows reconstructed permittivity images of the three tissue mimicking phantoms shown in Figure 

6. These images indicate that an artifact known as smoothing (blurring) effect are present around 

the inclusions in the reconstructed images. In order to mitigate this problem and reduce the 

smoothing effect, the images were segmented using thresholding technique. For this purpose 

different permittivity threshold values ranging from 2000 F/m to 2800 F/m were chosen to assess 

the sensitivity of resulting inclusion size with the threshold value. Segmented images obtained 

with   threshold value of 2000 F/m are illustrated in the bottom row of Figure 11. Segmentation 

results with the different threshold values indicate that the size of inclusions change by up to 5%, 

implying that the accuracy of inclusion geometry obtained by segmentation is not very sensitive 

to the threshold’s value.   

LXIII.  Results of Tissue Mimicking Phantom Study: Figure 12 illustrates the acquired 

capacitance projection along the X axis. The amplitude of projection graph significantly rises as 

it reaches the inclusion and falls back to its initial value as it passes the inclusion which implies 

that the experimental setup was able to accurately detect the inclusion. 

LXIV.  Linearity Deviation Metric with Simultaneous Firing of Cells of the Capacitive 

Sensor variant shown in Figure 1: an in silico phantom study involving a block shaped phantom 

with a 10 mm inclusion was conducted to assess deviation from the 1D linearity assumption as a 

function of permittivity and plate separation. Permittivity values ranging from 102 F/m to 106 

F/m consistent with the range of biological tissue permittivity were used for the background 

while 3 times greater permittivity values were used for the inclusion. Note that plate separation 

represents the breast’s thickness after being held between the two plates of the capacitive sensor. 

This parameter was varied between 80 mm to 120 mm. Deviation from the 1D linearity 

assumption was characterized using the metric c = 100*|(CFEM – CL/ CFEM| where CFEM and CL 

are the capacitance between a cell pair using the FEM method taken as ground truth and using 

the analytical formula used to calculate capacitance of capacitors connected in series, 

respectively. Average and maximum values of this deviation metric are shown in Figures 13A 

and 13B, respectively, as functions of tissue permittivity and plate separation. Figures 13A and 

13B indicate that there is very little variation of the deviation metric with respect to permittivity 

values for biological tissues while the maximum deviation from uniform 1D electric field is only 

8%. 

LXV.  In a second set of experimental examples the capacitive sensor is used to 

determine phase angle of impedance measurements of a sample held between the two parallel 

plates and process the phase angle data to generate an image of the sample. 

LXVI.  Electrical impedance (EI) imaging modalities can address shortcomings of other 

medical imaging modalities currently used in medical imaging including, for example, cancer 

screening/imaging applications, such as X-ray, CT, ultrasound or MRI techniques. EI modalities 

use low energy electric field to probe and characterize electrical impedance of biological tissues. 

The use of non-ionizing electric field as well as the simplicity and low cost of these imaging 

modalities make them ideal for tumour screening/imaging including, for example, breast cancer 

screening. With regard to breast cancer screening/imaging EI modalities can include Electrical 

impedance tomography (EIT) and electrical impedance mammography (EIM). EIT and EIM 

produce images that display the distribution of tissue electrical impedance (electrical 

conductivity and electrical permittivity). Studies aimed at characterizing the electrical properties 

of normal and pathological tissue have shown that electrical conductivity and electrical 
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permittivity of breast malignancies are significantly higher than those of benign and normal 

breast tissues 

LXVII.  Despite recognized advantages of EI imaging, only a few studies have used EIM 

for breast cancer detection. Among them, Assenheimer et al. (Michel Assenheimer, Orah Laver-

Moskovitz, Dov Malonek, David Manor, Udi Nahaliel, Ron Nitzan, Abraham Saad, The T-

SCANTM technology: electrical impedance as a diagnostic tool for breast cancer detection, 

Physiol. Meas., Vol. 22(1), Feb 2001, 1-8) demonstrated that current EIM technologies such as 

TransScan 2000 (Siemens Medical, Germany, and TransScan, Ramsey, NJ, USA), are only 

capable of detecting high impedance inclusions located close to the breast surface. This research 

introduces a novel EIM technique which uses an electrical impedance imaging system consisting 

of a parallel plate sensor. This investigation involves in silico and tissue mimicking phantom 

studies conducted to demonstrate its application for medical diagnosis including, for example, 

breast cancer screening. 

LXVIII.  The electromagnetic field generated by applying current density to a body 

surface is governed by Maxwell’s equations. For a nonmagnetic material such as biological 

tissues, the general form of Maxwell’s equations in the time domain with the inclusion of 

displacement current and continuity equation is as follows: 

  
𝜕 (𝑟,   𝑡 )

𝜕t
  + J (r, t)  =  σ                                                        (4) 

D (r, t) =  (𝑟,   𝑡 )                                                                               (5) 

× H (r, t)  = J (r, t)  +  
𝜕𝐃 (r,t)

𝜕t
  =   σE (r, t) + Je (r, t)  +  

𝜕𝐃 (r,t)

𝜕t
                (6) 

B (r, t)  =                                                         (7) 

× E (r, t) = −
∂𝐁 (r,t)

∂t
                                         (8) 

LXIX.  where ρ(r,t) is the electric charge density, J is the electric current density, E is the 

electric field, D = εE is the electric displacement current, ε is the electric permittivity, B is the 

magnetic field, H = B/μ is the magnetic intensity and μ is the magnetic permeability which is 

considered to be the same as  the permeability of vacuum for biological tissues. In this study, the 

external magnetic field is assumed to be negligible (B = 0). A further assumption is that 

impedance measurement is performed at low frequencies (1MHz or lower) where the frequency 

of the voltage source is low enough for the EM propagation delay to be neglected. Using the 

phasor format of Equations 4 to 8 and dropping the time harmonic, leads to the following 

equations in the frequency domain. This was performed to facilitate the equations’ computational 

solution consistent with the COMSOL Multiphysics software package (COMSOL, Inc., MA, 

USA) used in this second set of experiments. 

J (r, ω)  =  Qj (r, ω)                                         (9) 

J (r, ω)  =  σE(r, ω)  + jωD (r, ω) +  Je (r, ω)               (10) 

E (r, ω) =  −V(r, ω)                                                        (11) 
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LXX.  where Qj represents current source, σ is tissue electrical conductivity, ω is the 

natural frequency, Je is an externally induced current density and V is the electric potential. 

COMSOL finite element method (FEM) can be used to solve Equations 9 to 11 to obtain the 

impedance amplitude and phase angle in the breast models involved in this second set of 

experiments. 

LXXI.  Similar to x-ray mammography where the breast is placed in a parallel-plate 

compression unit and projections of x-ray are measured and converted into mammograms, in the 

EIM technique for this second set of experiments, the breast is gently compressed between the 

two parallel plates of an impedance sensor. While the breast is gently compressed, the electrical 

impedance its tissue is measured as projection data before they are converted into a 

mammogram. Depending on the excitation frequency [Can this excitation frequency dependency 

be further delineated? What is this dependency? Explicit frequency ranges?] in the proposed 

technique, different types of image reconstruction methods such as image impedance, resistance, 

capacitance and phase angle may be employed to generate respective images. While imaging 

impedance and resistance are feasible at all excitation frequencies, for the capacitance and phase 

angle imaging, choosing the right excitation frequency is critical [How critical? Is this ‘critical’ a 

different way of stating frequencies less than 1 KHz are preferred? – or more generally that 

lower frequencies (eg., less than 5 KHz are preferred?]. 

LXXII.  In order to study the electrical behaviour of a biological tissue, a proper 

electrical model is useful. A lumped electric model (equivalent circuit) of a tissue part of the 

breast located between two electrodes of the two parallel plates at low frequencies is shown in 

Figure 16. It consists of a parallel resistor and capacitor. 

LXXIII.  It is noteworthy that this electrical model of biological tissues, which is used 

extensively in the literature, has an additional series resistor [Is this series resistor in addition to 

the parallel resistor shown? is this series resistor not shown?] with capacitance Cs. However, at 

low frequencies, the value of this resistor, which represents the resistance of intracellular fluids, 

becomes negligible. The relationship between electrical impedance, resistance, capacitance, and 

phase angle of a biological tissue sample derived from its equivalent circuit, is: 

Zs ∠θs  =  [(Rs /Cs) / (Rs
2

 + (1/Cs)
2)1/2]  ∠ -90º + Arctg (1/Rs Cs  

LXXIV.  where Zs and θs are the measured amplitude and phase angle of the tissue’s 

electrical impedance, ω is the natural frequency of the excitation signal, and Rs and Cs are the 

tissue’s electrical resistance and capacitance, respectively. 

LXXV.  In order to examine how the impedance components of a typical biological 

tissue (e.g. adipose) changes with frequency, a computational simulation was performed 

involving an adipose tissue specimen. An electrical model of a 50mm×50mm×50mm block-

shaped adipose tissue specimen was constructed, and its electrical impedance (Zs ∠θs) was 

measured at frequencies of 10 Hz to 1 MHz via simulation using COMSOL. The electrical 

conductivity and permittivity of the tissue specimen at these frequencies, which were input to 

reconstruct the model, were obtained from the literature (C Gabriel, S Gabriel and E Corthout, 

The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol. 41 (1996) 

2231–2249; S Gabriel, R W Lau and C Gabriel, The dielectric properties of biological tissues: II. 

Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996) 2251–2269). 

The measurement was conducted using two different configurations, leading to two 

corresponding finite element (FE) models. In one configuration the specimen was assumed to be 
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placed between two cylindrical brass electrodes with a radius of 1.5 mm and height of 2mm. In 

the other configuration, the specimen was assumed to be held between the parallel plates of an 

imaging sensor of a type shown in Figure 1. Each of these models consisted of ~2.2 tetrahedral 

finite elements. 

LXXVI.  Using COMSOL solver in conjunction with Equation 12, the capacitance and 

resistance data of the adipose tissue specimen at the 10 Hz-1 MHz frequency range were 

obtained for each configuration. These data, which are illustrated in Figure 17, show that at 

frequencies higher than 1 kHz, the adipose tissue capacitance component diminishes, hence the 

tissue’s impedance becomes predominantly resistive at such frequencies. This implies that the 

reconstruction of capacitance, permittivity and phase angle images that involve the capacitive 

component of the tissue’s impedance are advantageously generated at excitation frequencies 

lower than 1 kHz. Based on these observations, the following three types of image reconstruction 

can be derived. 

LXXVII.  First type of image reconstruction: Electrical Resistivity and Conductivity 

Image Reconstructions in EIT and EIM. Electrical conductivity image reconstruction is the 

easiest and most common type of electrical impedance image reconstruction. This method has 

been used in the majority of EIT (electrical impedance tomography) applications in the past three 

decades. The following equation shows the fundamental relationship between tissue electrical 

resistivity and its conductivity, 

R =
V

I
=  

∫ 𝐸.  𝑑𝑙

∮ 𝜎𝐸.  𝑑𝑠
                       (13)      

LXXVIII.  where R is the tissue electrical resistance, V is the potential difference 

between the two electrodes where the voltage is being measured, I is the electric current, E is the 

electric field and σ is the tissue electrical conductivity. In the context of breast imaging, electrical 

resistance and electrical conductivity image reconstruction may be performed in the whole 

frequency range of 10Hz-1MHz, as according to Figure 17 the measured resistance at this 

frequency range is appreciably high. As such, in the majority of EIT image reconstruction 

methods which mainly use frequencies higher than 1 kHz, the measured amplitude of tissue’s 

impedance is simply approximated by its electrical resistance. However, the major problem with 

conductivity image reconstruction stems from the complex relationship between R and σ and its 

high sensitivity to the electric field. Consequently, this type of image reconstruction leads to an 

ill-posed problem, which requires iterative and non-linear image reconstruction algorithms. 

Furthermore, previous studies have shown that the variation range of conductivities for 

biological tissues at 10 Hz-20 GHz is limited. This implies that conductivity and resistance 

imaging of biological tissues may not produce images with high contrast. 

LXXIX.  The following equation, which is derived from the lumped electrical model of 

the tissue (parallel capacitor and resistor in Figure 16), shows the relationship between the tissue 

resistance (Rs), their electrical impedance (Zs) and phase angle (θs). 

Rs = 
Zs tg(90+θs) 

√(1+tg2(90+θs)
            (14)    

LXXX.  In EIM, resistance image reconstruction involves obtaining resistance projection 

data for each point on the breast surface plane, and converting this data into 2D mammograms. 

As such, the breast tissue’s impedance projections on the breast surface plane was measured 

using the type of sensor shown in Figure 1. Then by using Equation (14), the resistance 

projection data of the breast tissue was calculated and converted into 2D resistance 
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mammograms. As solving Equation 13 for σ is not convenient, to obtain an estimate of the breast 

tissue’s conductivity projection on the breast surface plane, an  assumption of uniform electric 

field leading to the inverted resistance image can be used.      

LXXXI.  Second type of image reconstruction: Electrical Permittivity and Capacitance 

Image Reconstructions. Electrical permittivity is an intrinsic property of materials, which may be 

obtained via the material’s electrical capacitance. For measuring tissue electrical capacitance, the 

amplitude and phase angle of the tissue’s impedance must be measured. The following equation 

shows the relationship between the tissue capacitance (Cs), their electrical impedance (Zs) and 

phase angle (θs) based on the lumped electrical model shown in Figure 16. 

Cs = 
1

Zs ω √(1+tg2(90+θs)
            (15)    

LXXXII.  According to Figure 17, for a breast adipose tissue specimen placed between 

two electrodes, measuring the capacitance (Cs) and phase angle (θs) at frequencies higher than 

1kHz may not be feasible, as the tissue capacitance becomes too small to be reliably measured.  

As such, for breast imaging, capacitance, permittivity and phase angle image reconstructions 

performed at high frequencies (eg., greater than 5 KHz) are of reduced reliability. However, at 

lower frequencies (e.g. 1 KHz or lower) where the electrical capacitance is sufficiently large, a 

reliable measurement of Cs is feasible. 

LXXXIII.  Measurement of tissue electrical permittivity () can be achieved by 

measuring its electrical capacitance (Cs) as direct measurement of permittivity is not feasible. 

The following equation shows the fundamental relationship between electrical capacitance (C) 

and electrical permittivity (ɛ): 

  𝐶 =
Q

V
=  

∮ 𝜀𝐸.  𝑑𝑠

∫ 𝐸.  𝑑𝑙
                                     (16) 

LXXXIV.  where Q represents the electric charge, V is the potential difference between 

the two electrodes where the measurement is performed, E is the electric field and ɛ is the tissue 

electrical permittivity. This equation shows that the relationship between C and ɛ is complex and 

highly dependent on the electric field. As such, tissue permittivity image reconstruction may also 

lead to ill-posed problems that require iterative and non-linear inverse problem solution 

algorithms. However, as the variation range of permittivity of biological tissues is very broad in 

comparison with that of conductivity, permittivity and capacitance imaging is expected to 

produce images with higher contrast; hence they are preferable over resistance and conductivity 

imaging. 

LXXXV.  In EIM, capacitance image reconstruction involves obtaining capacitance 

projection data for each point on the breast surface plane followed by converting the data into 2D 

capacitance mammograms. In this study we measured the capacitance projections of the breast 

models on their surface plane using the type of sensor shown in Figure 1. Using Equation 15, the 

capacitance projection data of the breast tissue was calculated from the impedance data before 

they were converted into 2D capacitance mammograms. As solving Equation 16 for ɛ is not 

feasible, to obtain an estimate of the breast tissue’s permittivity projection on the breast surface 

plane, the capacitance image can be used as capacitance and permittivity are approximately 

proportional. 

LXXXVI.  Third type of image reconstruction: Phase Angle Image Reconstruction. 

Impedance phase angle of a tissue (θs) may be obtained from Equation 12, leading to the 

following equation: 
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θs = -90º +Arctg (1/Rs Cs (17) 

LXXXVII.  Using the discrete form of Equations 10 and 13 leads to: 
1

𝑅𝑠𝐶𝑠 𝜔 
=   

∑  𝜎𝑖 𝐸𝑖 .  ∆𝑆𝑖  𝑚
𝑖=1

𝜔 ∑ 𝐸𝑖 . ∆𝐿𝑖 𝑚
𝑖=1

 × 
∑   𝐸𝑖 .   ∆𝐿𝑖  𝑚

𝑖=1

∑ ɛ𝑖 𝐸𝑖 .  ∆𝑆𝑖
𝑚
𝑖=1

             (18) 

Assuming equal ∆𝑆𝑖 and  ∆𝐿𝑖 spacing within each element where tissue homogeneity is a good 

approximation, this relationship may be simplified to the following: 

1

𝑅𝑠𝐶𝑠 𝜔 
=

σ

ɛ 𝜔 
        (19) 

LXXXVIII.  Substituting the above in Equation 18 leads to: 

θs = -90º + Arctg (
σ

ɛ 𝜔 
        (20) 

LXXXIX.  This equation shows that, unlike resistance and capacitance that depend on the 

electric field and element geometry in addition to the tissue intrinsic properties, the impedance 

phase angle is dependent on the intrinsic electrical properties of the tissue only. As such, phase 

angle images are expected to be of higher quality compared to resistance and capacitance 

images. Moreover, phase angle imaging of the breast is feasible at lower frequencies (e.g. <1 

kHz) only where the capacitance component of the measured impedance is non-zero. 

XC.  Configuration of an Electrical Impedance Mammography System. An electrical 

impedance mammography scanner was constructed. It comprises two parallel plates where the 

breast is placed in between before image acquisition is performed. One plate is used for 

excitation while the other is a detector plate. The excitation plate includes the excitation board 

while the detector plate is a hand-held plate which can include a detector board and analog and 

digital boards.  The excitation board comprises a large conductive plate and an electronic board 

on the back, which generates the excitation sinusoidal signals with selectable frequency at 5 Vp-

p . The detector board consists of a 1-D circular cells array moved at 5 mm increments along the 

top surface of the breast to scan its entire volume. The 1-D array consists of thirty circular cells. 

The radius of each cell is 1.5 mm; each one is separated from the next by a gap of 0.125 mm on 

the printed circuit board (PCB). For data acquisition, the breast was squeezed gently between the 

detector plate and the excitation plate. The impedance signals, which were obtained from the 

cells of the 1-D array, were first amplified by the analog circuit board before they were sent to 

the digital circuit board. The digital circuit board consists of multiple 24 bit analog to digital 

converters (AD7766, Analog Devices, Massachusetts, USA) and a microcontroller (ATmega320, 

Atmel, California, USA). AD7766 converts the analog impedance signal into 24 bits digital 

packets and sends them through the USB port to a computer. A Matlab (MathWorks, 

Massachusetts, USA) code on the computer side, which is connected to the sensor (more 

specifically , the microcontroller) through the USB port, receives the digital impedance data and 

converts them into 2D digital images. The microcontrollers on the digital board of the sensor 

[Which of “scanner” or “sensor” is more appropriate? -  “scanner” is used in the new manuscript, 

whereas “sensor” is used in US provisional?] does all the coordination between the A/D 

converter and computer. The whole procedure can be completed in less than 10 seconds. 
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XCI.  A schematic of the sensor in this second set of experiments is illustrated in Figure 

18. Each conductive cell on the detector board is connected to an impedance measurement circuit 

that measures the impedance amplitude and phase angle of the adjacent breast tissue with 0.1Ω 

and 0.01° accuracy, respectively. 

XCII.  The tissue’s impedance components (the tissue’s resistance and capacitance) 

measured by the sensor, can be described theoretically by Equations 13 and 16. As these 

equations show, the measured tissue’s resistance (R) and capacitance (C) are highly dependant 

on the electric field (E) inside the tissue between the parallel plates, the contact area of each 

conductive cell (A), separation between the sensor plates (L) and dielectric property of the tissue 

(σ and ε). If the electric field between the sensor plates was uniform, the Equations 13 and 16 

could be simplified to     R =  
𝐿

𝜎𝐴
     and  C =  

ε A

L
 , respectively. This implies if E was uniform, 

for a constant A and L, the measured tissue’s resistance and capacitance would be functions of 

tissue dielectric properties, σ and ε only. 

XCIII.  Methods of in silico Breast Phantom Experiment. To assess the capability of the 

sensor for breast cancer detection, and to evaluate the three types of image reconstruction (ie., 

conductance, permittivity and phase angle imaging) a series of computer simulations were 

carried out on a phantom following the configuration shown in Figure 19. The simulations were 

carried out using the COMSOL Multiphysics software package. The phantom mimics a breast 

gently compressed by two plates, hence it consists of a half-cylinder with a radius of 75 mm and 

height of 50 mm. It embeds a cylindrical inclusion with a radius and thickness of 10mm and 

20mm, respectively. In order to increase the simulation’s realism, the inclusion was positioned as 

illustrated in Figure 19 in order to mimic the upper outer quadrant where the majority of breast 

cancer tumors are found. The location of the inclusion along the height of the cylindrical 

phantom was set to be variable such that the inclusion’s centre was located at the centres of the 

bottom, middle and top thirds along the height. The permittivity and conductivity values 

assigned to the breast model were chosen based on values reported in the literature for breast 

tissue at 0.5 kHz. The inclusion’s permittivity and conductivity values were assumed to be 6 and 

8 times higher than normal breast tissue’s conductivity and permittivity, respectively. The breast 

phantom’s FE mesh, which is illustrated in Figure 18, consisted of ~2.7 million tetrahedral 

elements. Similar to the sensor, one conductive plate was modeled to touch the breast model 

from the bottom to provide an excitation signal, while the top plate (detector) was considered to 

measure the impedance. The detector plate consisted of 30 circular conductive cells, each with a 

radius of 1.5 mm and separation of 0.2 mm. The COMSOL solver used the FEM approach to 

numerically solve Maxwell’s equations and compute the amplitude and phase angle of the 

electric current that passed through each detector cell. From these computations, the impedance 

values of the breast tissue located between each detector cell and excitation cell was acquired. To 

obtain the projected mammography image of the resistance and capacitance, the projection value 

for each cell was calculated using Equations 14 and 15.    

XCIV.  Methods for Tissue Mimicking Breast Phantom Experiment. A tissue mimicking 

phantom study was performed to assess the effectiveness of the three types of imaging 

techniques. A gelatine phantom was prepared following the general shape of the in silico 

phantom shown in Figure 19, the gelatine phantom comprising a half-cylinder background tissue 

embedding a cylindrical inclusion constructed of gelatin and common salt. The background half 

cylinder part was 150 mm in diameter and 50 mm in height while the diameter and height of the 

cylindrical inclusion were both 20 mm. Along the phantom’s height, the inclusion was placed in 

the middle. The conductivity and permittivity of the background and inclusion tissues were 
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measured independently prior to image data acquisition. At 0.5 kHz, their conductivity were 0.23 

S/m and 1.2 S/m while their relative permittivity were 1,084,454 and 8,546,138 for the 

background and inclusion, respectively. Each of these values were obtained by placing a small 

block shape representative sample between the two electrodes of the apparatus shown in Figure 

16 followed by measuring the resultant resistance and capacitance values. The conductivity and 

permittivity values of each tissue were then calculated using a 2-D optimization algorithm where 

the sample’s FE models were used to calculate the resultant resistance and capacitance values 

corresponding to the current estimates of conductivity and permittivity values in the optimization 

process. The algorithm altered the conductivity and permittivity of the sample’s FE model 

systematically until the mismatch between the calculated and experimentally measured resistance 

and capacitance values was a minimum. To construct the phantom, gelatin and common salt with 

various concentrations were used. For the background, 12% concentration of gelatin in distilled 

water was used while for making the inclusion 12% of gelatin and 0.09% common salt was used. 

The experimental setup consisted of the data acquisition described above where an excitation 

voltage of the sensor was set to 5 Vp-p at 0.5 kHz.    

XCV.  Results of in silico Breast Phantom Experiment. Images reconstructed from the in 

silico breast phantom are shown in Figure 20. They show 2D mammography images obtained by 

projection of the impedance, resistance, capacitance, and phase angle [This appears to be four-

types of images. How does this correlate to the three types of image reconstruction techniques? 

Resisatance, capacitance and phase angle are described above – is impedance technique 

described above? Is impedance technique based on impedance amplitude/magnitude?] of the 

breast phantom corresponding to three different tumor positions along its height (z-axis). The 

images were produced from raw simulation data with no additional filtering or manipulation. As 

described above, the permittivity images are similar to the capacitance images while the 

conductivity images are similar to inverted resistance images. Thus, the permittivity and 

conductivity images of the breast phantom are not shown. Variation profiles of the measured 

impedance, resistance, capacitance and phase angle of the in silico breast phantom along the 

section crossing the inclusion (shown in Figure 19B) are also illustrated in Figure 20. Due to 

symmetry, the reconstructed images of the phantom with the inclusion located at the centres of 

bottom and top thirds along the height of the phantom (rows 1, 2 and 5, 6) are identical. As 

expected, image contrast pertaining to these bottom third and top third locations is higher 

compared to the case where the inclusion is located in the middle of the phantom’s height. This 

is particularly more important with the impedance and resistance images where the respective 

images can hardly detect the inclusion. Among the reconstructed images, the capacitance and 

phase angle images exhibited higher contrast and better quality compared to the impedance and 

resistance images.  

XCVI.  The results revealed that there are artifacts seen as intensity variations around the 

phantom and inclusion’s periphery in the reconstructed impedance, resistance, and capacitance 

images. These artifacts were caused by the nonlinearity and non-uniformity of the electric field. 

This led to about 9% higher measured impedance and resistance, and about 10% lower measured 

capacitance around the peripheries as shown in the 2nd, 4th, and 6th rows of Figure 20. 

XCVII.  Results of Tissue Mimicking Breast Phantom Experiment. Reconstructed images 

obtained from the tissue mimicking breast phantom study are shown in Figure 21. Pixel size in 

these images is 3 mm×5 mm. Figure 21 demonstrates that the inclusion  can be clearly 

distinguished from the background on the capacitance and phase angle images. Similar to the 

reconstructed images obtained from the in silico breast phantom study, the inclusion in the 
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impedance and resistance images of the gelatin phantom cannot be clearly differentiated from its 

background. The second row of Figure 21 illustrates the variation profiles of the impedance, 

resistance, capacitance, and phase angle signals along the section crossing the inclusion as shown 

in Figure 19B. 

XCVIII.  The in silico and tissue mimicking phantom studies indicated that, among the 

various tested  imaging techniques, the permittivity, capacitance and phase angle images were 

shown to be more effective than the impedance, resistance and conductivity images. Moreover, 

the studies demonstrated that the phase angle image reconstruction was capable of producing the 

highest quality images consistent with Equation 20, which implied strict dependence on the 

tissue intrinsic properties.   

XCIX.  Experimental results described herein suggest that breast inclusions with higher 

dielectric values are highly detectable when they are located in the top outer quadrant of the 

breast. This may be highly advantageous for breast cancer detection, as previous research has 

shown that the majority of cancer tumors form in the top outer quadrant of breast. Higher 

conductivity and permittivity of an inclusion also leads to improved tumor detection 

characterized by higher image contrast. Results provided are conservative, as only conservative 

increases of 6 and 8 times higher values of conductivity and permittivity were assigned to the 

inclusion in the in silico and tissue mimicking phantom studies relative to background, compared 

to previous studies that have established the dielectric values of breast cancer tumors at 20-40-

fold higher than those of normal breast tissue. Experimental results indicate that the projection 

images are able to properly capture the location of inclusions with higher dielectric parameter 

values. However, the size of the inclusion in these images increase with depth. For example, the 

inclusion in the image corresponding to the case where the inclusion is located in the breast’s 

mid-height appears more diffused (3rd row of Figure 20), hence its sizes is overestimated in 

comparison with the images corresponding to cases where the inclusion is located in the top or 

bottom one-third heights. These size variations are due to the electric field non-uniformity. 

Results obtained from this investigation indicate that, among images produced by the various 

image reconstruction techniques, the phase angle image is superior in terms of cancer 

detectability. These results also suggest that the proposed EIM technique is capable of detecting 

inclusions located deep inside the breast while other EIM technologies such as TransScan are 

only capable of detecting inclusions located close to the breast surface. 

C.  The capacitive sensor described herein provides several advantages over existing 

technologies. The sensor can measure capacitance as low as Femtofarad. Using in silico phantom 

studies, it was shown that at low frequencies of 1 kHz to 10 kHz [This range was stated in the 

US provisional - Why is freq range stated as a 1 kHz lower limit? Is it that the diaphragm version 

has a lower limit of 1 kHz while the non-diaphragm version has a lower limit of approx.. 100 

Hz?] the average error due to deviation from the linear equation approximation is reasonably 

low, especially at the centre of inclusion. As such, the sensor can operate at low frequencies 

within this range, leading to reasonably good quality images constructed using linear back 

projection. Figure 10, which was obtained from an in silico phantom study involving block shape 

phantoms with inclusions with various sizes, indicated that the maximum deviation from the 

linear equation approximation occurs at the periphery of the inclusions which suggests that the 

blurring artifact around the periphery of inclusions in the reconstructed images is caused by the 

mentioned approximation error. This artifact, which is also known as smoothing effect, is quite 

common in electrical properties imaging. Results indicate that the quality of images obtained by 

the capacitive sensor described herein is comparable or superior to those of prior art ECT and 
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EIT.  Moreover, image reconstruction is carried out using straight forward linear back projection 

in contrast to nonlinear optimization techniques associated with prior art ECT and EIT 

techniques. As expected, a trade-off exists between the contrast and resolution of the capacitive 

sensor imaging system. In other words resolution and contrast of the imaging system is 

determined by the size of diaphragms/cells such that smaller diaphragms/cells produce smaller 

and narrower perturbation in the sensor’s electric field and can produce images with high 

resolution and small dynamic range while large diaphragms/cells produce larger perturbation 

with higher SNR and high image dynamic range but with lower resolution. It was concluded 

from the results of the in silico and tissue-mimicking phantom studies that inclusions with both 

higher and smaller EP values compared to their surrounding tissues are highly detectable using 

the proposed method. Being safe and low-cost are two further advantages that the capacitive 

sensor offers. Results are encouraging and indicate that the capacitive sensor is capable of 

detecting tissue abnormalities effectively, rendering it a safe, effective and inexpensive tool for 

cancer screening applications. [Can this paragraph be adapted to include phase angle aspect and 

experiments?] 

CI.  Several illustrative variants have been described above. Further variants and 

modifications are described below. Moreover, guiding relationships for configuring variants and 

modifications are also described below. Still further variants and modifications are contemplated 

and will be recognized by the person of skill in the art. It is to be understood that guiding 

relationships and illustrative variants or modifications are provided for the purpose of enhancing 

the understanding of the person of skill in the art and are not intended as limiting statements. 

CII.  Frequency of the capacitive sensor electric field will typically range between 1Hz 

and 1MHz for medical applications. More specifically, for most medical imaging/screening 

applications the frequency will be less than 100KHz and may be optimized for a specific tissue 

type. In many examples of medical imaging/screening applications the frequency will range 

between 10 Hz and 10 KHz. In examples of medical imaging/screening applications for human 

breast tumors, the frequency will often be set in a range with a lower limit of 10 Hz and an upper 

limit that may be less than 5 KHz, less than 4 KHz, less 3 KHz, less than 2 KHz, less than 1 KHz 

or less than 0.5 KHz. In further examples of medical imaging/screening applications for human 

breast tumors, the frequency can be set in a range with a lower limit of about 100 Hz and an 

upper limit that may be less than 5 KHz, less than 4 KHz, less 3 KHz, less than 2 KHz, less than 

1 KHz or less than 0.5 KHz. 

CIII.  Experiments indicate that both circular and non-circular (eg., square) shaped cells 

generate equally uniform 1D electric field. Thus, the shape of cells can be modified as desired. 

CIV.  Deviation of an electric field communicating between a paired excitation cell and 

detector cell from 1D linearity may be characterized using a deviation metric c. Typically, 

average deviation of the electric field from linearity will be less than 25%. For example, average 

deviation may be less than 20%, 15%, 10%, 5% or less than any percentage therebetween. 

CV.  The size of a cell typically ranges from 0.2 mm for high resolution imaging to 2 mm 

for low resolution imaging.  

CVI.  Distance between perimeters of neighboring cells is at least 0.05 mm, more 

typically at least 0.1 mm, generally ranging from about 0.1 mm to about 5 mm depending on 

requirements of a specific application. A minimum distance between perimeters of neighboring 

cells may be required to avoid significant disturbance of the 1D electric field uniformity. The 

minimum distance may vary depending on the manufacturing technique and process used to 
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construct the capacitive sensor plates. For example, in a printed circuit board (PCB) etching 

process, a cell is insulated from neighboring cells by a non-conductive gap of at least 0.1 mm. 

CVII.  The capacitive sensor has been described as comprising a single line array of 

paired excitation and detector cells. The capacitive sensor may readily be configured as a two-

dimensional grid array of opposing paired excitation and detector cells. 

CVIII.  Each excitation cell may be surrounded by a guard. The guard is a conductive 

material that may be the same material as the cell. The guard is electrically isolated from the cell 

by a non-conductive gap or non-conductive material, with the cell positioned within a central 

opening or aperture of the guard. The shape of the guard may be varied as desired. Figure 14 

shows a circular excitation cell surrounded by a guard of conductive rectangular area defining a 

central circular opening or aperture for capturing the circular excitation cell and its surrounding 

non-conductive material area. The guard is excited with the same frequency and phase as the 

cell. The purpose of the guard is to focus the electric field line between corresponding excitation 

and detector cell pair and to minimize its bending. Each guard is electrically isolated from 

neighboring guards and each detector cell is electrically isolated from neighboring detector cells. 

This isolation is generated through the printed circuit board (PCB) process using non-conductive 

material where the gap between neighboring cells or neighboring guards range from 0.1 mm to 

0.2 mm. 

CIX.  Capacitive sensors may be driven by an excitation signal to fire individual cells 

sequentially or to fire a plurality of cells simultaneously. Sequential firing, in the absence of a 

guard, may reduce linearity but may achieve higher contrast. Thus, firing cells sequentially, in 

the absence of a guard, achieves better contrast but at the cost of solving nonlinear equations. 

Use of a guard may improve linearity for sequential firing. Furthermore, as shown in Figure 13A 

and 13B, simultaneous firing achieves good linearity.  

CX.  In the variant shown in Figure 14 the material used to make the guard and cell 

arrays are the same. The cells and guards are made/etched from a thin copper layer laminated on 

an insulator pad/substrate (the insulator may be a suitable type of glass epoxy). The guards and 

cells are separated by a thin non-conductive gap on the copper layer of PCB through an etching 

process. The area which is located at the center is the cell and the area which surrounds the cell is 

the guard. In other examples, the guard and the excitation cell may be made of different 

conductive materials. 

CXI.  Both the cell and its surrounding guard are excited at the same time 

(simultaneously), thus the emission/propagation of the electric field from the cell and guard is 

simultaneous. In certain examples, the guard may be excited in advance of the excitation cell. 

CXII.  Typically, the guard and the cell are excited with the same frequency and phase.  

Amplitude of an applied excitation signal can be different between the guard and the excitation 

cell and maybe optimized to achieve a more focused beam. For example, a higher electric 

potential can be applied to the guard compared to the excitation cell in order to further focus the 

beam emitted by the excitation cell. 

CXIII.  The purpose of the guard is to focus the electric field line between corresponding 

excitation and detection cell pair. Without wishing to be bound by theory, an electric field 

emitted from the guard may surround the electric field from the cell and constrain the electric 

field from the cell to a linear direction. Thus, the configuration of the guard may be modified to 

improve the 1D uniform electric field between an opposing excitation cell and detector cell pair. 

CXIV.  The capacitive sensor system may be used for medical screening or medical 

imaging. A simplified variant of the capacitive sensor system which does not require image 
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reconstruction can be used effectively for medical screening. This is possible by visualizing the 

projected capacitance data, for example capacitance data from a single pass of a linear cell array. 

For medical imaging, the capacitive sensor must be configured to capture sufficient data 

projections at different angles for image reconstruction. 

CXV.  Medical screening or medical imaging may be useful wherever existing imaging 

of tissues is performed, and may be particularly useful for tumour detection or imaging. For 

example, medical screening or medical imaging of a human female breast may be performed for 

detection of breast cancer. 

CXVI.  Medical imaging may be conducted for the purpose of image guided needle 

biopsy of a human female breast to accurately diagnose breast cancer. This is achieved by adding 

a grid with openings spaced in between excitation cells as illustrated in Figure 15. The openings 

slidably receive a needle of a needle biopsy device. The grid openings provide a template for 

guiding needle insertions while guidance is provided by electrical permittivity tomography 

imaging achieved using the capacitive sensor. This grid/template modification may also be used 

for insertions for therapeutic purposes. 

CXVII.  The capacitive sensor system may be used in conjunction with other imaging 

modalities such as x-ray, CT. and MRI as may benefit a specific application. 

CXVIII.  Embodiments described herein are intended for illustrative purposes without 

any intended loss of generality. Still further variants, modifications and combinations thereof are 

contemplated and will be recognized by the person of skill in the art. Accordingly, the foregoing 

detailed description is not intended to limit scope, applicability, or configuration of claimed 

subject matter. 
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WHAT IS CLAIMED IS: 

1. An electrical permittivity tomography [electrical impedance imaging] sensor [or capacitive 

sensor], comprising: 

a first planar plate comprising a plurality of excitation cells; 

a second planar plate comprising a plurality of detector cells; 

the first planar plate held in spaced parallel relation to the second planar plate and defining a 

chamber there between; 

the first and second planar plates arranged to align each excitation cell with a corresponding 

detector cell in a one-to-one paired relationship; and 

each paired excitation cell and detector cell configured for synchronized activation with a 

substantially uniform electric field communicating there between. 

 

2. The sensor of claim 1, wherein each excitation cell and each detector cell is independently 

controlled by an electronic switch. 

 

3. The sensor of claim 2, wherein a plurality of electronic switches are coordinated in a 

multiplexer.  

 

4. The sensor of claim 3, wherein activation of the plurality of excitation cells is coordinated by a 

first multiplexer and activation of the plurality of detector cells is coordinated by a second 

multiplexer. 

 

5. The sensor of claim 4, further comprising a voltage source in communication with an input of 

the first multiplexer, the voltage source generating an excitation signal. 

 

6. The sensor of claim 5, wherein the excitation signal can be modulated for amplitude, 

frequency or both amplitude and frequency. 

 

7. The sensor of claim 4, further comprising data acquisition circuitry in electrical 

communication with an output of the second multiplexer [, the data acquisition circuitry 

controlling measurement of an electrical property]. 
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8. The sensor of claim 7, wherein the data acquisition circuitry measures capacitance [or 

impedance]. 

 

9. The sensor of claim 1, wherein each excitation cell is electrically isolated from neighboring 

excitation cells and each detector cell is electrically isolated from neighboring detector cells. 

 

10. The sensor of claim 9, wherein the electrical isolation is a non-conductive insulation material 

surrounding the perimeter of each cell. 

 

11. The sensor of claim 10, wherein the non-conductive insulation material comprises a 

dielectric material. 

 

12. The sensor of claim 1, further comprising a plurality of guards, each guard comprising a 

central opening for placing a single excitation cell, the guard electrically isolated from the 

excitation cell and from other guards, and the guard made of a conductive material. 

 

13. The sensor of claim 12, wherein the excitation cell and the guard are made of the same 

material. 

 

14. The sensor of claim 12, wherein the excitation cell and the guard are driven by an excitation 

signal of the same frequency and phase. 

 

15. The sensor of claim 1, wherein each of the first and second planar plates comprise a 

contacting surface covered with an insulation material intended for abutting contact with a 

biological object. 

 

16. The sensor of claim 1, wherein the plurality of excitation cells are arranged in a linear array 

in the first planar plate, and the plurality of detector cells are arranged in a linear array in the 

second planar plate. 
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17. The sensor of claim 1, wherein the number of plurality of excitation cells is equal to the 

number of plurality of detector cells. 

 

18. The sensor of claim 1, wherein activation of each paired excitation cell and detector cell 

occurs while all other paired excitation cells and detector cells are off .  

 

19. The sensor of claim 1, wherein activation of a plurality of paired excitation cells and detector 

cells occurs at the same time.  

 

20. The sensor of claim 1, wherein the spaced relation between the first and second planar plates 

is adjustable to adjust the chamber volume. 

 

21. The sensor of claim 7, further comprising an image reconstruction processor in electrical 

communication with the data acquisition circuitry. 

 

22. The sensor of claim 21, wherein the image reconstruction processor executes linear image 

reconstruction algorithms. 

 

23. The sensor of claim 22, wherein the linear image reconstruction algorithm is linear back 

projection. 

 

24. The sensor of any one of claims 1 to 23, wherein the electric field is a substantially linear 

electric field.  

 

25. The sensor of claim 24, wherein deviation of the electric field from linearity is less than 20%. 

 

26. The use of the sensor of any one of claims 1 to 25, for medical screening using capacitance 

data without image reconstruction. 

 

27. The use of claim 26, wherein the medical screening uses capacitance data of a human female 

breast for detection of breast cancer. 
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28. The use of the sensor of any one of claims 1 to 25, for medical imaging. 

 

29. The use of claim 28, wherein the medical imaging is imaging of a human female breast for 

detection of breast cancer. 

 

30. The use of claim 28, wherein the medical imaging is conducted for the purpose of image 

guided needle biopsy of a human female breast to diagnose breast cancer. 

 

31. The use of the sensor of any one of claims 1 to 25, for medical screening using phase angle 

calculation of impedance data without image reconstruction. 

 

32. The use of claim 31, wherein the medical screening uses impedance data of a human female 

breast for detection of breast cancer. 

 

33. The use of the sensor of any one of claims 1 to 25, for medical imaging using phase angle 

calculation of impedance data. 

 

34. The use of claim 33, wherein the medical imaging is imaging of a human female breast for 

detection of breast cancer. 

 

35. The use of claim 34, wherein the medical imaging is conducted for the purpose of image 

guided needle biopsy of a human female breast to diagnose breast cancer. 
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* 

ABSTRACT OF THE DISCLOSURE 

CXIX.  Described herein is an electrical permittivity tomography sensor, comprising: a 

first planar plate comprising a plurality of excitation cells; a second planar plate comprising a 

plurality of detector cells; the first planar plate held in spaced parallel relation to the second 

planar plate and defining a chamber therebetween; the first and second planar plates arranged to 

align each excitation cell with a corresponding detector cell in a one-to-one paired relationship; 

and each paired excitation cell and detector cell configured for synchronized activation. 

CXX.   
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