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Abstract 

The aim of the thesis was to study two important features of the Mechanically Fluidized Reactor 

(MFR): the good distribution of injected liquid on fluidized particles and the high heat transfer 

rate from the heated wall to the bed. Multiple industrial processes use liquid injection in fluidized 

bed reactors. The liquid distribution in the reactor should be efficient to minimize bed 

defluidization and to maximize the yield and quality of the products. 

The study used two MFR units, with internal volumes of 1.0 and 4.42 litre, respectively. Induction 

heating was used to rapidly heat the bed, which is a unique feature of the system.  

To characterize the distribution of injected liquid, an experimental method measured the amount 

of liquid trapped in agglomerates and the mass of agglomerates. The amount of liquid trapped in 

agglomerates decreased with increasing impeller rotation speed. The best impeller speed to achieve 

nearly perfect liquid distribution, with only 1 wt.% of the injected liquid trapped in agglomerates, 

was 130 rpm. 

To study wall to bed heat transfer, temperature measurements for the small MFR were used to 

estimate the overall heat transfer coefficients. It was observed that the overall heat transfer 

coefficient increased significantly with increasing particle size and a strong influence of the 

superficial velocity of the vaporized liquid on the heat transfer coefficients was noted. The wall to 

bed heat transfer coefficient was typical of the values that can be achieved with traditional bubbling 

fluidized beds, even at vapour velocities below the minimum fluidization velocity. 
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CHAPTER 1 

1 INTRODUCTION 

Agglomerate formation has been extensively studied for many industrial processes, in the food, 

oil and gas, pharmaceutical and fertilizers sectors, which employ wet agglomeration in a gas-

solid fluidized bed. It is important to have a proper liquid distribution, along with other 

conditions, in the reactor to enlarge or minimize the agglomerate size, depending on the process, 

to obtain a final product with desired characteristics, quality and yield. Several studies (Reyes, 

2015) focusing on binder characteristics and operating conditions have been performed to better 

understand the liquid distribution on the solids. 

Agglomeration should be minimized in the thermal cracking reactors used for biomass 

conversion (torrefaction, pyrolysis, gasification) and heavy oil coking (Bridgwater, 2012). Due 

to the good gas-solid mixing and heat and mass transfer properties of the fluidized bed reactors, 

they are the most suitable and widely used industrial reactors for thermal cracking (McKendry, 

2002). This work focuses on agglomerate formation and heat transfer characteristics to better 

understand fluidized thermal cracking reactors (e.g., Fluid Cokers, pyrolysis reactors). 

1.1 Fluidized thermal cracking reactors 

Fluid CokingTM is an industrial process where the liquid feed is injected into gas-solid fluidized 

bed reactors. The important components of the Fluid CokingTM process are: the reactor, stripping 

section, scrubbing section and the burner. In the Fluid Cokers, heavy bituminous hydrocarbons 

are atomized with steam into a hot fluidized bed of coke, which provides the heat required to 

convert liquid feed into cracked hydrocarbon vapors (McCaffrey et al., 1998). The liquid does 

not vaporize rapidly in Fluid Cokers, as the reaction temperature is lower than the boiling 

temperature of the heavy bituminous feed. For vaporization to occur, liquid has to be thermally 

cracked into smaller fragments by contacting of a heat carrier, which in this case are the solid 

particles. 
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A stripper section is used to minimize the hydrocarbons being carried into the burner vessel by 

stripping them from the bed coke surface. Gray (2002) studied that the coke grows in size due to 

the formation of fresh layers, coupled with agglomeration of wetted particles. Due to poor liquid 

distribution agglomerates are formed and they will segregate in the bottom section, pass through 

the stripper section and will carry unreacted liquid inside the burner, thereby, reducing the 

overall yield. The burner partially combusts the coke with oxygen to generate the heat required 

for sustaining the endothermic cracking reactions and the coke is then recycled into the reactor. 

Excess coke is then quenched and stockpiled to be used in the future (Hammond et al., 2003). 

The scrubber condenses the product oil, which is then processed downstream (Soskind et al., 

1982). Coke, condensable product oil and non-condensable gases are the final products obtained 

from the Fluid Cokers. 

House et al. (2004, 2008) showed that the formation of coke-bitumen agglomerates can have a 

considerable impact on the cracking reactions in Fluid Cokers. An excellent characteristic of 

fluidized beds is their solids mixing ability. Fluid CokingTM in itself is not intended as a wet-

agglomeration process, but it can be considered so due to the injection of bitumen in the process, 

which acts as a liquid binder of the coke particle aggregates (Gray, 2002). Agglomerate 

formation results in two main problems in Fluid Cokers: the yield of valuable liquids is reduced  

(Stanlick, 2014) and large wet agglomerates can reach the stripping section, fouling the stripper 

sheds and leading to premature shut-down (House et al., 2006). 
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Figure 1-1: Fluid Coker (House et al., 2008). 

1.2 Mechanically Fluidized Reactor (MFR) 

Lago et al. (2015) studied the mixing characteristics of a Mechanically Fluidized Reactor (MFR) 

which was developed for fast pyrolysis of biomass. They investigated stirrer geometries 

including the spiral stirrer, vertical blades stirrer and the paddle stirrer. The stirrer provides the 

desired mixing between the bed material and the injected biomass in the reactor, while 

effectively breaking agglomerates. Furthermore, effective mixing between the bed and the 

heaters is crucial to achieve effective heat transfer between the bed and the injected biomass 

particles. The vertical blades stirrer was found to be the most suitable stirrer resulting in the 

smallest power consumption (Lago et al., 2015), while also requiring the lowest torque. The 

pyrolysis tests performed in the MFR highlighted the improved mixing ability of the vertical 

blade stirrer as it reduced the time required for pyrolysis at all the rotation speeds. Lago et al. 

(2015) demonstrated that heat transfer between the hot bed material and the biomass pellets was 

improved with the vertical blade stirrer.  A main feature of the vertical blade stirrer is that it 

brings reacting particles in the lower region of the reactor bed, so that vapors and gases 

generated by their reaction help aerate the bed. 
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Chaudhari (2012) studied liquid-solid contact in the MFR using a new method called dissipation 

time (td). The method is based on the flowrate measurement of the product vapors exiting the 

MFR, by using an orifice assembly. The liquid-solid contact in the MFR was improved when 

increasing the agitation rate. Similarly, increasing the MFR temperature improved liquid-solid 

contact, whereas liquid-solid contact was degraded when augmenting the liquid flowrate. The 

yield of valuable liquid product increased with improved liquid-solid contact, demonstrating the 

importance of liquid-solid mixing in the MFR. This improvement in the liquid-solid contact was 

due to the increased rotational speed of the agitator. As the agitator speed was increased, more 

particles were exposed to the liquid. With perfect liquid-solid contact, no agglomerates would be 

formed and the dissipation time would be zero. But if the contact between the liquid-solid 

worsens, then larger and wetter agglomerates would be formed and, as the wetter agglomerates 

are stronger, the dissipation time would be increased (Weber et al., 2011). 

Another study (Stanlick, 2014) used an MFR to investigate bitumen thermal cracking, while 

varying the vapor phase residence time to study the impact of vapor thermal cracking on the 

product quality. It was observed during the study that the mechanical agitation in the MFR 

significantly reduced the agglomerate sizes in the agglomerating system of bitumen thermal 

cracking. 

Various fluidization regimes (Daizo and Levenspiel, 1991) obtained when the velocity of the gas 

flowing through a bed of solid particles is increased are: 

i) Particulate regime: In this regime, the bed is fluidized without appearance of the gas 

bubbles and there is an intimate mixture of gas and particles. 

ii) Bubbling regime: The gas bubbles formed rise and coalesce to form larger bubbles 

which may then split and recombine. As the gas velocity increases, the bubbles 

become larger. Also, the bubbles contain almost no particles but they carry particles 

in their wakes which induces intense solid mixing. 

iii) Slugging regime: In this regime, the bubbles continue growing until they fill most of 

the column cross-section and there are almost no solids in the slugs. As the wakes are 

small, they do not carry much solids. Thus, the solid mixing is less intense. 
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iv) Turbulent fluidization: In this transition regime, the gas is flowing as small elongated 

voids. It constantly appears and disappears. The solid mixing in this regime is rapid. 

v) Fast fluidization: The solids entrained are recycled to the bottom of the column by a 

cyclone. There is no bed surface as the solid entrainment is very large and the mixing 

of solids is rapid. 

vi) Pneumatic transport: When there is no recycling of the solids then pneumatic 

transport occurs instead of fast fluidization. 

1.3 Agglomeration 

Agglomerates are groups of particles which are formed when smaller individual particles are 

joined by binding them. This new larger particle is one in which the original particles can still be 

seen (Parveen et al., 2012). 

1.3.1 Wet agglomeration 

Wet agglomeration is the process in which a liquid binder is used to cluster the particles together. 

A liquid binder can be sprayed on a group of particles, which are moving or are agitated, to 

promote their adhesion by viscous forces and solid bridges as the liquid is evaporated (Iveson et 

al., 2001). Typically, gas-solid fluidized beds are used due to their improved solids mixing and 

approximately uniform temperature (Woollard and Potter, 1968), thereby, leading to the uniform 

evaporation of solvent used for binder distribution. There are many reasons to forming 

agglomerates, such as achieving high quality product appearance, increasing the bulk density for 

storage, control of characteristics such as solubility (Mehta et al., 2005). In the case of Fluid 

CokingTM, for example, the presence of agglomerates affects the operability by fouling the 

internals and reducing the yield. Also, for a pyrolysis reactor, heat transfer is an important 

parameter as it helps understand how quickly the reactor can transfer heat to the biomass. The 

gas convective component, particle convective component and radiation are the principal 

mechanisms of heat transfer between the heat transfer surfaces and the bed (Botterill, 1975). The 

drying of wet agglomerates in fluidized bed dryers/granulators and the transfer of heat to the wet 

agglomerates in a fluid coker are the practical examples of heat transfer between a large particle 

and a fluidized bed. 
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It is difficult to quantitatively predict the agglomerate or granule attributes (Iveson et al., 2001). 

Different mechanisms have been used to describe the formation and break-up of agglomerates. 

Differentiation between these mechanisms largely depends on the cut-off size between 

agglomerate and non-agglomerate materials. There are generally three sets of rate processes to 

determine the wet granulation behavior (Iveson et al., 2001), illustrated in Figure 1-2. 

i) Wetting & nucleation: The distribution of liquid over the moving particles, which then 

forms “seeds” for the subsequent agglomerates (nuclei). Nuclei kinetics depend on solids 

mixing and liquid properties. Nuclei formation mechanism is highly dependent on the 

size of the liquid droplet. If the droplet is bigger than the individual sand particle, the 

nuclei will then form by immersion, whereas for droplet sizes smaller than the individual 

particle then the nuclei formation takes place by dispersion.  

 

ii) Consolidation & coalescence: Particles agglomerate due to collisions between granules 

and other granules (coalescence) and/or individual particles (layering). Liquid properties 

have an impact on the consolidation strength. The mechanical properties of the granules 

also affect the consolidation strength. Agglomerate strength is determined by the 

capillary forces, inter-particle forces and the viscous forces (Iveson and Page, 2001). In 

most cases, the capillary forces have more impact than the viscous forces. The 

temperature of the bed and the droplet velocity affects the consolidation of agglomerates. 

 

iii) Attrition & breakage: Breakage and attrition occurs in fluidized beds due to shear forces, 

and thermal or chemical changes (Ayazi Shamlou et al., 1990). Due to intense mixing, 

the breakage rate can be high in the reactor vessel (Iveson and Page, 2001). When using a 

high-shear mixer granulator, the geometry of the mixing blades and the bed temperature 

can significantly impact agglomerate breakup (Benali et al., 2009). 
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Figure 1-2: Mechanisms of agglomeration process (adapted from Iveson et al. (2001)). 

1.3.2 Agglomerate formation and liquid-solid contact in fluidized beds  

Weber et al. (2011) showed that at lower temperatures in a fluidized bed, a higher amount of 

liquid is available for a longer duration as the rate of thermal cracking is reduced. A large 

fraction of the fed bitumen is reacted and devolatilized, while the remainder can be incorporated 

in the formation of agglomerates. The growth, erosion and fragmentation of agglomerates in the 

fluidized bed was studied. Complicated interactions of several parameters affecting the previous 

phenomena were observed. For example, a transition from negligible agglomerate fragmentation 

to complete fragmentation, including an intermediate transition region, was achieved by 

increasing the superficial gas velocity or agitation in the reactor. Weber et al. (2008) also 

observed that the smaller agglomerates were more easily eroded when compared to the larger 

agglomerates. 

Weber et al. (2011) observed that an increase in the initial agglomerate size greatly influenced 

agglomerate survival in the fragmentation regime, but has a negligible impact in the no-

fragmentation regime. Larger agglomerates were fragmented into smaller clusters, thereby 
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increasing the quantity of smaller fragments. This demonstrates that larger agglomerates 

experienced greater erosion, causing them to lose more relative mass than smaller agglomerates. 

According to Gray (2002), if the film thickness of bitumen exceeds 20 microns, at a reactor 

temperature of 530 ̊C, then mass transfer limitations will be present. Liquid-solid contact in fluid 

coking is thus quantified based on the liquid feed fraction forming granules, the agglomerate 

sizes, and liquid-solid ratio in the granules. Also, when a feed droplet enters the fluidized bed, it 

impacts multiple particles as it is larger than the bed particles. At the Fluid Coking gas velocities 

(0.3-1.5 m/s), the resulting granule when liquid engulfs the coke particle becomes unstable and is 

pulled apart or broken up due to the shear forces prior to exiting the reactor. 

A mechanism was proposed by Gray (2002) for the distribution of feed from large droplets to 

smaller heat-carrier particles, which requires the wet granules to be unstable under fluidization 

condition. Agglomerate break-up will occur if the internal cohesive forces within the granule are 

smaller than the external forces exerted on the granule by the collisions with other bed particles. 

The wet feed in the reactor account for the interparticle forces due to the liquid bridges between 

the particles. In the case of larger diameter particles, the previous forces dominate over the Van 

der Waals and electrostatic forces, which are significant for finer particles. 

According to McMillan et al. (2013), particle clustering is extensive for the fluidized bed 

systems and their formation can be due to the collisional cooling, van der Waals forces, coulomb 

forces, hydrodynamics and cohesive bridging. Collisional cooling only dominates in the absence 

of other interparticle forces. The result of dipole interaction between two objects is the van der 

Waals force, which is a short-ranged force and the particles must be close for such forces to take 

hold. Hydrodynamics are due to the drag force. The drag when particle interacts with the fluid 

results in shedding of eddie currents or streams that can attract other particles. The heterogeneity 

in the fluid dynamics, caused by the drag results in particle clustering. 

1.3.3 Agglomerate measurement method 

Several experimental models have been developed to study the behavior and formation of 

agglomerates under safe, low temperature, conditions that simulate the high temperature 

processes in Fluid Cokers.  
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A previous study investigated the effect of viscosity on agglomerate formation in a shear mixer 

(Schæfer and Mathiesen, 1996). Mechanisms for the initial wetting of particles by injection of a 

liquid droplet were proposed. One mechanism explains the wetting by distribution, where liquid 

droplets are distributed on the surface of particles in the surrounding forming the initial nuclei. It 

was observed that the mechanism dominates when the droplets and particles are of similar size. 

Another mechanism explains the wetting by immersion, where the initial nuclei is formed by 

large droplets engulfing the individual particles. 

House et al. (2008) first used a sugar solution to study agglomeration in fluidized beds at room 

temperature.  Simulation of the Fluid Cokers evaporation and agglomeration processes was 

experimentally studied by using a sugar solution at high bed temperatures to achieve 

caramelization conditions (Saha, 2012). The solidified agglomerates were recovered for analysis; 

however, the high temperature (up to 250°C) sugar caramelization reaction made it difficult to 

properly measure the agglomerate liquid content. 

Reyes (2015) developed an experimental model and an associated measurement method to study 

the formation of agglomerates and their stability in the fluidized beds. Preliminary tests in a 

small fluidized bed reactor compared the agglomerate properties obtained with the model and 

actual Fluid Coking of bitumen. Studies were then performed in a larger pilot plant scale reactor 

to analyze the effects of various parameters, such as bed temperature and binder viscosity, on the 

total mass, size distribution and internal liquid concentration of agglomerates. It was observed 

that greater average bed temperature during injection resulted in greater agglomerate formation, 

with agglomerates were larger and had a higher liquid content. At lower temperatures, liquid 

evaporation was slower, providing more time for the agglomerates to break up, resulting in drier 

agglomerates. 

1.4 Previous studies on Heat Transfer in a Fluidized Bed 
reactor 

Pyrolysis, Fluid Coking and other thermal cracking reactors usually need to transfer heat from a 

heat exchange surface, such as the reactor wall, to the reactor bed, since significant heat is 

required to convert the solid or liquid feedstock to hot, cracked product vapors. Bubbling and 
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turbulent fluidized beds are a popular solution for these types of process as they provide good 

wall to bed heat transfer (Daizo and Levenspiel, 1991).  

Many correlations are available to estimate the heat transfer coefficients (Syamlal and Gidaspow, 

1985), but these correlations have limitations and are generally only applicable for select 

experimental conditions. In some cases, the correlations may differ from the actual coefficients 

by up to two orders of magnitude (Gelperin and Ainshtein, 1971). Molerus et al. (1995) proposed 

a correlation that allows to predict the heat transfer coefficient based on its dependence on the 

superficial velocity of gas. 

The bed material must be selected to ensure good wall-to-bed heat transfer. Surface to bed heat 

transfer was studied using several fine bed materials such as polymers, quartz sand, ballotini, 

corundum and carborundum (Di Natale et al., 2009). The tests point out that the heat transfer 

coefficient increases with particle Archimedes number. The different polymeric powders tested 

were shown to have an increase in the heat transfer coefficient with an increase in the particle 

size at the gas velocity of 0.1 m/s. 

It is important to select the best particle size.  Reduced particle sizes favor heat transfer both 

from the wall to the bed and within the particles (either reacting biomass particles or wet 

agglomerates) (Molerus, 1993). However, with fluidized bed reactors, smaller particles result in 

larger, undesired entrainment of fines. It is, therefore, important to determine which particle size 

provides a reasonable compromise between entrainment and heat transfer. 

Scale up from laboratory to commerical scale is an important consideration. Stefanova et al. 

(2011) measured the heat transfer coefficients using an identical vertical heater (an electrically 

heated copper tube), alumina particles and geometrically scaled bubble-cap distributors in 

fluidized beds of different diameters. The maximum heat transfer coefficient was found to be 

independent of the column diameter. The maximum heat transfer coefficient reached in the two 

columns were similar, but the superficial gas velocities at which the maximum heat transfer 

coefficient was attained were greater in the case of the larger column. 



11 
 

 

An important feature of the MFR is that bed mixing and turbulence can be adjusted without 

changing the particle characteristics and vapor flows through the bed, by changing the mixer 

rotating speed.  A better understanding of the heat transfer properties in the MFR is needed, in 

particular how they depend on particle properties, bed temperature, impeller mixing speed, and 

reactor diameter. 

Several methods have been used to measure the wall-to-bed heat transfer coefficient in 

conventional fluidized beds. 

The gas convection, particle convection and radiation are the basic mechanisms of heat transfer 

between the bed and the heat transfer surface (Stefanova et al., 2011). The overall heat transfer 

coefficient is thus written as; 

ℎ = (1 − 𝛿𝑑)ℎ𝑔 + 𝜌𝑑ℎ𝑝𝑎 + ℎ𝑟𝑎𝑑        (1) 

where (1 − 𝛿𝑑)ℎ𝑔 is the gas convection component, 𝜌𝑑ℎ𝑝𝑎 is the particle convection component 

and ℎ𝑟𝑎𝑑 is the radiation component, 𝛿𝑑 is the time fraction heat transfer surface is occupied by 

particle packets. 

Mickley and Fairbanks (1955) concluded that the relationship of heat-transfer coefficient to other 

properties of the bed can be understood by using the equation of the form, 

ℎ = √𝑘𝑚 ∗ 𝜌𝑚 ∗ 𝑐 ∗ 𝑆          (2) 

where 𝑆 is the stirring factor accounting for type of bed motion, 𝑐 is heat capacity of fluidized 

solids, 𝑘𝑚 is the thermal conductivity of quiescent bed and 𝜌𝑚 is density of quiescent solids. 

Di Natale et al. (2009) calculated the heat transfer coefficient at constant surface temperature. 

With the use of K-type thermocouples, the surface and bulk temperatures were measured to 

determine the mean and standard deviation of the difference between the wall and bed 

temperatures. The overall heat transfer coefficient was obtained from the following equation: 

ℎ =
𝑅𝐼2

𝐴(𝑇𝑤−𝑇𝑏)
           (3) 
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where 𝑅 is the resistance of the heater cartridge, 𝐼 is electric current, 𝐴 is the exchange surface 

area, 𝑇𝑤 is the surface temperature and 𝑇𝑏 is the bed temperature. 

 

1.5 Research objectives 

The first objective is to study the agglomerates characteristics in a bench-scale MFR (Chapter 3). 

By changing the rotation speed, the impact of bed mixing will be studied while having a minimal 

impact on the vapor residence time and the partial pressure. The experimental method of Reyes 

(2015) will be used to determine the mass of agglomerates, size distribution, amount of liquid 

trapped, and liquid-solid ratio. The effects of different operating variables such as the bed 

temperature and the impeller rotation speed in the agglomerate formation will be studied. 

The second objective is to study wall-to-bed heat transfer in the MFR while varying the bed 

material, the particle size, and the MFR scale. The impacts of operating parameters such as 

mixing speed, bed temperature and vapor flowrate will be studied. 
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CHAPTER 2 

2 Experimental set-up and Methodology 

2.1 Equipment 

The experiments were performed in a small Mechanically Fluidized Reactor (MFR) which uses a 

rotating stirrer to agitate a bed of particles, simulating the performance of a conventional 

fluidized bed without the need for fluidization gas. The reactor vessel is made of stainless steel 

with a wall thickness of 3.2 mm with additional dimensions provided in Table 2-1. 

Table 2-1: Small Mechanically Fluidized Reactor (MFR) sizing details. 

Dimension Units Sizing 

Inner diameter m 0.1015 

Height m 0.127 

Total internal volume L 1.03 

Heat transfer area (Wall) m2 0.0405 

The flanged tank is equipped with stainless steel lid and a BLUE-GARD® Style 300 

Compressed, Non-Asbestos (CNA) gasket. A mixing system is mounted on top of the reactor 

system, with the driveshaft entering through the center of the reactor flange. A 90 V permanent 

magnet D.C. gear motor (Leeson Electric Corporation, Grafton, Wisconsin) and a Vari-Drive™ 

DC Motor Speed Control (KB Electronics, Inc., Coral Springs, FL) are used. The rotational 

speed range of the model is 0-165 Rotations Per Minute (RPM). 

Nitrogen is supplied to the reactor prior to liquid injection and the nitrogen flow is monitored 

using a flowmeter (Model: MR3A02SVVT, Key Instruments). A pressure relief valve is 

connected to the system as an additional safety feature in case of pressurization via an exhaust 

blockage. A 15 psig pressure gauge (ASHCROFT®) is used in this safety arrangement due to its 

durability as well as chemical and corrosion resistance. 
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A vertical blade stirrer was used as it was preciously shown to require less power and torque at 

all aeration rates (Lago et al., 2015). It was also believed to enhance the wall-to-bed heat 

transfer. The blade stirrer has got two vertical blades as shown in Figure 2-1, where the blade 

orientation is such that they scrap the wall and draw solids to the center of the bed. 

 

Figure 2-1: Vertical blade stirrer. 

A syringe pump (Model: NE-1010, New Era Pump Systems Inc.) was used to inject liquid in 

batches at various user defined flowrates. A syringe with an inside diameter of 38 mm and 140 

ml capacity (Monoject™ Piston syringe, Luer-Lock tip) was selected for liquid injection. 

 

Figure 2-2: Syringe Pump (New Era Pump Systems Inc.) and a partially filled syringe for 

liquid injection (Monoject™ Piston syringe, Luer-Lock tip). 
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Figure 2-3: Small MFR schematic (reactor is to scale but injection system and condensation 

train are not to scale). 
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The MFR was initially equipped with a custom built Induction Heating Machine (IHM-1) (refer 

to Appendix A- Agglomerate formation study) for performing the experiments related to Chapter 

3, while a more powerful Induction Heating Machine (IHM-2) (refer to Appendix B- Heat 

Transfer study) for carrying out the experiments presented in Chapters 4 and 5. 

IHM-1 is 1800 W induction heater (Hannex, Hong Kong, China) which was used to set and 

maintain the reactor temperature. Temperature readings for the reactor system were acquired at 

different locations along the wall of the reactor (top, center and bottom regions), in the freeboard 

region and the bed of the reactor using five K-type thermocouples, two 4-channel thermocouple 

input (NI-9211 from National Instruments, Austin, TX), and one bus-powered multifunctional 

DAQ USB Drive (NI USB-6009 from National Instruments, Austin, TX). A program created 

using the LabWindows™/CVI platform (National Instruments, Austin, TX) acquired the 

temperature signals. An ON-OFF controller was used to power the induction heating system. The 

system is equipped with an emergency stop button (BACO) as a safety feature. 

IHM-2 is a compact and more powerful heating machine (Superior Induction Company, 

Pasadena, CA) which can supply power up to 12 kW. It is a medium frequency (30-80 kHz) 

induction heater. The power for the equipment can be controlled either manually or 

automatically. In this study, the power supply was controlled manually, making the heating rate 

control more flexible. Temperature readings were acquired with the same data acquisition 

assembly and program used when operating with the IHM-1. 

The condensing train consisted of two tube condensers in series in an ice-bath, an electrostatic 

precipitator (ESP) to remove fine droplets of liquid from the gas stream and a gas filter to verify 

that the ESP is operating effectively. 

K-type thermocouples were strategically placed on the wall of the reactor. A carbon steel coil 

was then wrapped around along the length of the reactor wall, followed by a layer of ceramic 

fiber insulation, and finally by the induction coil. Due to the high temperature requirement of the 

experiments, it is important to protect the induction coils from overheating, where the ceramic 

insulation was used to protect them from any damage. 
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2.2 Binder Solution 

A water, Gum Arabic powder and food dye (Blue No. 1) were used as the particle binder 

solution. It is important to select the components of the binder solution wisely. Water was 

selected as a solvent as there is no risk of explosion with air and the vapors exiting the reactor, 

and they were not harmful if inhaled. Gum Arabic is a polysaccharide that carries a net negative 

charge (Yang et al., 2012). It is non-toxic, soluble in water and stable up to approximately 200 

˚C (Imeson, 2009). The food dye selected for the experiments is neutral or anionic to prevent 

interactions with the gum that would interfere with the estimation of the dye concentration (refer 

to Section 2.4.1.2) in the agglomerates (Flury and Flühler, 1994). 

Reyes (2015) observed the impacts of changing the binder solution pH (i.e., viscosity) on the 

agglomeration. Hydrochloric acid was added to the binder solution to adjust its viscosity as the 

use of strong acid had a great impact in reducing the viscosity when compared to the use of a 

weak acid (e.g., lactic acid). The pH of the binder solution was measured with Thermo 

Scientific™ Orion™ 2-Star Benchtop pH Meter. pH values of 3.0 and 1.5 were tested for 

studying the impact on agglomerate formation. It was observed that for using a pH 1.5, the total 

reduction in mass of agglomerates was approximately 0.5%. Regardless of the change in the 

Gum Arabic concentration, the reduction of pH below 1.5 has no considerable effect on the 

solution viscosity. Pont et al. (2001) reported that the viscosity has a minor effect on the 

agglomerate stability compared to the impact of capillary forces (i.e., surface tension and 

wettability). 

For each experiment presented in this work, the component concentration in the solution were 

maintained at constant values. The 93 wt.% of water accounted for the majority of the solution, 

while Gum Arabic powder with 5 wt.% and Blue No. 1 with 2 wt.% makes up the reminder. The 

solution was stirred using a Fisher Scientific™ Isotemp™ stirrer to properly dissolve the 

components in the solution. The binder solution was injected at selected flowrates in the reactor 

using the syringe pump and syringe arrangement. 
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2.3 Bed Material 

Different bed materials were used for the experiments presented in each Chapter. The particles 

and their properties have been reported in Table 2-2. 

Table 2-2: Details of the bed material used for different Chapters. 

Chapter Reactor Particle 

material 

Particle size 

(𝐝𝐩𝐬𝐦
) 

Particle 

density 

(kg/m3) 

Heat 

Capacity 

(J/kg/K) 

Particle 

group 

3 Small MFR Silica Sand 190 µm 2650 830 B 

4 Small MFR Silica Sand 190, 300 µm 2650 830 B 

5 

Small MFR Silica Sand 600 µm 2650 830 B 

Large MFR Silica Sand 190 µm 2650 830 B 

Large MFR 
Activated 

Carbon 
575 µm 750 1300 

B 

Silica sand: BELL & MACKENZIE CO. LTD. 

Activated Carbon: GC 20 x 50 (General Carbon Corporation, Paterson, NJ) 

Figure 2-4, 2-5 are representations of the particle size distribution of the sand used in Small 

MFR. Figure 2-6 is a representation of the particle size distribution of activated carbon used in 

Large MFR. 
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Figure 2-4: Particle size distribution for silica sand (𝒅𝒑𝒔𝒎
= 𝟏𝟗𝟎, 𝟑𝟎𝟎 µ𝒎) calculated using 

a laser diffraction method (HELOS/BF sensor of Sympatec). 

 

 

Figure 2-5: Particle size distribution for silica sand (𝒅𝒑𝒔𝒎
= 𝟔𝟎𝟎 µ𝒎) calculated using a 

laser diffraction method (HELOS/BF sensor of Sympatec). 

 

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

C
u
m

u
la

ti
v
e 

w
t.

 %
 o

f 
p
ar

ti
cl

es

Volume-equivalent particle diameter (µm)

190 micron

300 micron

𝐝𝐩𝐬𝐦
:

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

C
u
m

u
la

ti
v

e 
w

t.
 %

 o
f 

p
ar

ti
cl

es

Volume-equivalent particle diameter (µm)

dpsm
 = 600 micron 



20 
 

 

 

Figure 2- 6: Particle size distribution for activated carbon (𝒅𝒑𝒔𝒎
= 𝟓𝟕𝟓 µ𝒎) calculated 

using a laser diffraction method (HELOS/BF sensor of Sympatec). 

 

2.4 Methodology 

2.4.1 Agglomerate characterization methods 

Each experiment involved the following steps: - 

 400 g of silica sand weighed for each experiment 

 Bed temperature (eg., 120 ˚C, 130 ˚C) set for the system 

 System is pre-heated using IHM-1 and is allowed to attain steady state 

 The Gum Arabic solution is injected in two pulses at a constant flowrate and a pre- 

determined injection time (e.g., 20 g of liquid solution per pulse at 4 g/min) 

 A permanent magnet D.C. gear motor is used to rotate the mixer blades at specified 

impeller rotation speed (RPM) for each experiment  

 Five minutes after the end of the 2nd pulse, the mixing is stopped 

 The bed temperature is maintained for some time to completely dry the bed 

 The heating is then turned OFF 
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At the different temperature set-point of the bed and the impeller rotation speed used for each 

experiment, different number of runs were performed. Either average of a single run or duplicate 

or triplicate was taken and it is mentioned in the Appendix A- Agglomerate formation study. All 

the methods used for the characterization of agglomerates are as follows: 

2.4.1.1 Agglomerate size distribution 

The analysis of the agglomerate size distribution is crucial to understand the behavior in the 

MFR. With endothermic reactions of the liquid (i.e., thermal cracking), heat transfer within the 

agglomerates and heat transfer limitations are strongly related to the size and liquid content of 

these agglomerates. Heat transfer limitations will thus be more pronounced with larger and 

wetter agglomerates. 

Agglomerate formation depends upon various reactor operating conditions. After preheating the 

reactor bed to the target temperature and the liquid is injected, enough heat is provided for full 

evaporation. The bed is then cooled down and agglomerates are recovered from the bed by 

screening. The agglomerates are further classified into: 

a) Macro-agglomerates: 

Macro-agglomerates have an agglomerate diameter (daggl) larger than 600 µm. The initial bed 

material is prescreened to remove particles bigger than 600 µm and therefore, only agglomerates 

are recovered with a 600 µm screen. Different sieve sizes are then used to classify the macro-

agglomerates: 

daggl ≥ 4000 µm 

4000 µm > daggl ≥ 2000 µm 

2000 µm > daggl ≥ 1400 µm 

1400 µm > daggl ≥ 850 µm 

850 µm > daggl ≥ 600 µm 
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b) Micro-agglomerates 

The diameter of micro-agglomerates is 600 µm > daggl ≥ 355 µm. Thus, in the case of micro-

agglomerates some bed particles are mixed with the recovered micro-agglomerates. The amount 

of sand fines trapped inside the agglomerates is used to estimate the total mass of micro-

agglomerates (Reyes, 2015). This estimation requires the following steps: 

 Recovery of the micro-agglomerates by screening of the bed material, 

 Dissolution of recovered agglomerates in water, 

 Centrifugation of the resulting sand/water/dye mix and sampling of the clear liquid to get 

the dye concentration (refer to Section 2.4.1.2), 

 Use of SYMPATEC HELOS/BF (laser diffraction sensor) analysis system for particle 

size analysis of the samples, 

 Assume that all sand particles are equally likely to be trapped in agglomerates and 

determine the amount of sand trapped in micro-agglomerates from the size distribution of 

the recovered sand and the size distribution of the initial bed particles, 

2.4.1.2 Dye concentration in agglomerates 

Both macro as well as the micro-agglomerates go through the same measurement steps to 

estimate the dye concentration in the agglomerates: - 

 A My Weigh® iBalance® iM01™ digital scale with an accuracy of 0.1 mg is used to 

measure the mass recovered in each sieve size. 

 An approximate weight ratio of water to agglomerates of 5:1 ensures complete 

dissolution of the Gum Arabic and dye and results in an absorbance between 0.1 and 1. 

 Solution is centrifuged for 10 min at 4500 rpm in a Thermo Scientific™ Sorvall™ 

Legend™ X1 Centrifuge to segregate the sand particles from the rest of the solution. 

 Absorbance of the clear liquid is measured using the characteristic wavelength 

corresponding to maximum wavelength of that particular dye (𝜆𝑚𝑎𝑥). 
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 Mass of dye in the agglomerates is determined using Thermo Scientific™ Evolution™ 

220 UV-Visible Spectrophotometer. 

 The wavelength of maximum absorbance for the dye (Blue No. 1) used for all the 

experiments in this study is 𝜆𝑚𝑎𝑥 = 630 nm. 

 Concentration of the dye in the agglomerates, is estimated using the calibration curve for 

a particular dye color (Reyes, 2015), shown in Figure 2-6. 

 

Figure 2-7: Calibration curve for Blue No. 1, 𝝀𝒎𝒂𝒙 = 630 nm (Reyes, 2015). 

2.4.1.3 Liquid-to-Solid ratio 

A dye was added to the original binder solution to act as a tracer of the liquid originally trapped 

in the agglomerates, since it remains in the agglomerates once the rest of the liquid has 

evaporated. From the mass and dye concentration of the dried agglomerates, a mass balance 

provides the amount of liquid trapped in the agglomerates, and the liquid-to-solid mass ratio. 



24 
 

 

2.4.1.4 Deposits on wall and mixer blades 

Solids deposits formed on the wall and the blades were observed during experiments. As the 

solids were stuck to wall and the blades, forming a layer of such deposits, this layer had to be 

scraped off following the experiments. In order to account for the amount of liquid in these 

deposits, they were collected separately after scratching them off of the wall and, blades, and 

their total mass was measured. Their dye concentration was measured with the same procedures 

as for agglomerates (refer to Section 2.4.1.2). 

2.4.2 Heat transfer study methodology 

A more powerful induction heating machine was used for the heat transfer study experiments 

(Chapters 4 and 5). The reactor vessel used a carbon steel coil wrapping and a ceramic fiber 

insulation arrangement similar to that used for experiments performed in Chapter 3. Instead of 

using the previous induction heating coil (Vibraflame® extreme temperatures composite cables), 

it uses a copper coil which needs to be wrapped on top of the ceramic fiber insulation in a 

strategic manner. The copper coil has its own benefits when compared to the induction heating 

coils used for previous study. They are less expensive, have a enhanced durability and are readily 

available. Care should be taken to not pinch the copper coil when plaicng them around the wall 

as it may render them useless. In such a scenario, where the copper coil cannot be used then a 

new copper coil cut to the desired length is to be used. Detailed information explaining the 

control and features of the different induction system is explained in the Appendix -B. 

Water was used as the injected liquid for the heat transfer experiments. Each set of experiments 

had a particular size of silica sand and was studied at varying operating conditions. In the initial 

set of experiments, bed material with dpsm
= 190 µm was used and the impact of the liquid 

injection flow rate was studied. The bed material was then modified to a dpsm
= 300 µm for the 

next set of experiments and similarly, the flow rate of liquid injection was varied for each run. 

A study measuring the overall heat transfer coefficient with an alternating impeller rotation was 

also performed (clockwise and anti-clockwise manner). The direction of the rotating magnetic 

field produced by the main and starter windings was modified. Such a change was accomplished 
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by reversing the polarity of the starter winding. With the help of a rotation controller, the 

impeller then rotates in clockwise manner for 3 secs, stops for 1 sec and then rotates in an anti-

clockwise manner for 3 secs. 

2.4.2.1 Steps per run 

 400g of silica sand of a particular size was used for each experiment in small MFR and 

about 1 kg of different particles used for each experiment in large MFR 

 After inserting the top part of the MFR the copper tubing was placed along the walls of 

the reactor in a strategic manner to minimize the wall temperature fluctuations 

 The water supply to the induction heating system is kept at a desired flowrate and the 

power of the induction heating system is set to 3kW and 6.5kW for small MFR and large 

MFR respectively. 

 Upon starting the induction heating, the carbon steel wires are heated and heat is then 

transferred from the wires to the bed 

 The system is allowed to attain a steady state for approximately 10 to 15 min. Steady 

state is assumed based on the criteria that the temperature measured at respective location 

does not deviate more than 1 to 1.5 ˚C. 

 Water is injected using a syringe pump at a constant flow rate. 

 A permanent magnet D.C. gear motor is used to rotate the mixer blades at constant RPM. 

 After setting the desired mixing speed, allow the system to reach steady state for about 7 

to 10 min and that measurements are taken after steady state is reached. 

 Without shutting off the induction heating, operating conditions (i.e., liquid injection flow 

rate, mixer rotation) were then modified and system was again allowed to reach steady 

state before taking the required measurements. 

2.4.2.2 Wall-to-bed heat transfer coefficient measurement 

The wall-to-bed heat transfer coeffficient were estimated by collecting the temperature 

measurements using several thermocouples for each experiments performed in small MFR and 

large MFR. 
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2.4.2.2.1 Small MFR 

The temperature measurements were collected using six thermocouples. The calculations involve 

the following steps: 

 Data was obtained for the bed temperature and the wall temperature using K-type 

thermocouples having glass insulation 

 Wall temperatures were measured at three locations (top, middle and bottom regions) 

along the wall of the reactor 

 The heat inputted to the injected water was estimated by considering the sensible heat for 

the liquid from the injection temperature to the boiling point, the latent heat of 

vaporisation, and sensible heat of the vapor from the boiling point to the bed temperature 

 The overall heat transfer coefficients obtained from the calculations were then compared 

to correlated values for gas-solid fluidized beds  

2.4.2.2.2 Large MFR 

The sizing details for the large MFR are provided in Table 2-3. 

Table 2-3: Large Mechanically Fluidized Reactor sizing details. 

Dimensions Units Large MFR 

Inner diameter m 0.15 

Height m 0.25 

Total internal volume L 4.42 

Heat transfer area (Wall) m2 0.1178 

The temperature measurements were collected using two thermocouples. The calculations 

involve the following steps: 
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 Data was obtained for the bed temperature and the wall temperature using K-type 

thermocouples 

 The heat inputted to the injected water was estimated by considering the sensible heat for 

the liquid from the injection temperature to the boiling point, the latent heat of vaporisation, 

and sensible heat of the vapor from the boiling point to the bed temperature 

 The overall heat transfer coefficients obtained from the calculations were then compared 

to correlated values for gas-solid fluidized beds, where the superficial gas velocity is 

estimated based on the volumetric flowrate of steam exiting the large MFR 

The calculation assumes that heat losses for the system were negligible. Although this is not 

accurate, this approximation results in an underestimation of the wall-to-bed heat transfer rate 

and thus provides a conservative estimate, while also allowing for qualitative comparisons 

between experiments. 

The equations required for the overall heat transfer coefficient estimation are listed as follows: 

𝛥𝐻𝑣 = 𝐶𝑃𝐿
∗ (100 − 25) + 𝛥𝐻𝑣𝑟𝑒𝑓

+ 𝐶𝑝𝑣 ∗ (𝑇𝑏𝑒𝑑 − 100)    (4) 

𝐹𝐿 ∗ 𝛥𝐻𝑣 = 𝑈 ∗ 𝐴 (𝑇𝑤𝑎𝑣𝑒𝑟𝑎𝑔𝑒
− 𝑇𝑏𝑒𝑑) − 𝑈𝐿 ∗ 𝐴𝐿 ∗ (𝑇𝑏𝑒𝑑 − 𝑇𝑟𝑜𝑜𝑚)   (5) 

𝑈 ∗ 𝐴 =
𝐹𝐿∗𝛥𝐻𝑣

𝑇𝑤𝑎𝑣𝑒𝑟𝑎𝑔𝑒− 𝑇𝑏𝑒𝑑
        (6) 
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Table 2-4: Data for heat transfer coefficient calculation. 

Parameter Units Value 

𝐶𝑃𝐿
 kJ/kg ˚C 4.181 

𝐶𝑝𝑣 kJ/kg ˚C 2.08 

𝑇𝑟𝑜𝑜𝑚 ˚C 25 

𝛥𝐻𝑣𝑟𝑒𝑓
 kJ/kg 2257 
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CHAPTER 3 

3 Effects of impeller rotation speed and bed temperature on 
the properties of agglomerates formed in small MFR 

 

3.1 Introduction 

Various studies relating to liquid injection in a fluidized bed have been reviewed in Chapter 1. 

Good liquid distribution in such systems is essential to achieve the high process efficiencies, 

operability and reduced environmental footprints that are so important nowadays. Furthermore, 

product quality is an important factor that is affected, as shown in Chapter 1, by liquid 

distribution. The formation of agglomerates may or may not be required based on various steps 

involved in the manufacturing of a given product. In some cases, particle enlargement via 

agglomeration is desired to improve the in-process product handling or as the final product 

(Mehta et al., 2005). On the other hand, agglomeration in other processes is undesirable as it can 

affect the operability of a reactor and the yield of valuable products (Knapper, et al., 2003). 

The main focus of this chapter is studying, in a bench scale mechanically fluidized reactor, the 

relationship between feed flowrate and agglomerate formation, and how the later depends and is 

affected by bed mixing and temperature. More specifically, the objective is to study the impact 

of mixer speed and bed temperature on the mass distribution of agglomerates based on their size, 

liquid-to-solid ratio in the agglomerates and the liquid distribution in agglomerates. The results 

can be used to estimate the effectiveness of the mechanically fluidized reactor for various 

applications. 

The study is original in terms of its use of induction heating to rapidly heat the bed of a small 

mechanically fluidized reactor (MFR) and maintain its temperature during liquid injection, where 

the induction coils are strategically placed on the walls of the reactor vessel to minimize 

temperature gradients. This approach makes it the first application of the agglomerates formation 

measurement using solutions of Gum Arabic and dyes in a small MFR unit. 



30 
 

 

3.2 Materials 

Experiments in this chapter were performed using the equipment (Figure 2-3) described in 

Section 2.1. 

The binder solution (Gum Arabic) prepared for these experiments had a constant concentration 

of its constituent ingredients: 93 wt.% of water which accounts for the main portion of the 

solution, 5 wt.% of Gum Arabic powder, and 2 wt.% of Blue No. 1. The binder solution was 

prepared separately before each run. Hydrochloric acid was added to the binder solution to adjust 

the viscosity to 11.25 cp (Model: Brookfield CAP 2000+ Viscometer) at pH = 1.5. 

Preliminary experiments in an oven showed that there was significant thermal degradation of the 

Gum Arabic at temperatures higher than 130°C, as evidenced by a change in color (more 

information provided in Appendix- A). Experiments were thus conducted at a bed temperature of 

130°C or lower. All experiments were performed so that the bed temperature was above the 

boiling point of water since water was the major constituent of the feed solution. The previous 

ensures that the liquid will evaporate as soon as it is freed from the agglomerates. 

The silica sand used was analyzed with the HELOS/BF sensor of Sympatec before the 

experimental runs to obtain its Sauter mean diameter. The properties of the bed material used to 

perform all the experiments related to this Chapter is mentioned in Section 2.3. Figure 3-1 

provides the particle size distribution of the sand used in Small MFR. 

 

 



31 
 

 

 

Figure 3-1: Particle size distribution for silica sand calculated using a laser diffraction 

method (HELOS/BF sensor of Sympatec). 

3.3 Method 

Silica sand (Group B) is weighed and the binder solution was prepared separately for each 

experiment. The experimental steps involved in the completion of each experiment are discussed 

in Section 2.4.  

3.4 Results and Discussion 

3.4.1 Effect of liquid injection on the bed temperature 

Figure 3-2 illustrates that steady state is reached based on the bed temperature profile. Two 

separate liquid injections are performed, each with a total of 20 ml of water at an injection rate of 

4 ml/min. The control of the system bed temperature is generally stable before and after the 

liquid injections, as observed in the Figure 3-2. 
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Figure 3-2: Impact of liquid injections (20 ml each) on bed temperature. TSP = 120 ˚C, 

Impeller rotation speed = 40 RPM, FL = 4 ml/min. 

The power control for the system is provided in Figure 3-4. The system uses an ON-OFF 

controller to control the bed temperature. The bed temperature set-point the bed (TSP) for each 

experiment is decided by the user. During the ‘ON’ setting, the system heats the wall and the bed 

of the reactor, and as soon as the temperature of the bed reaches its set-point, the controller turns 

‘OFF’ the induction heating system. 

 

Figure 3- 3: ON-OFF control loop. 
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Figure 3-4: Power control of the system for liquid injections (20 ml each). TSP = 120 ˚C, 

Impeller rotation speed = 40 RPM, FL = 4 ml/min. 

Figure 3-5 provides the average bed temperatures in the reactor at both studied set-points. 

Multiple runs at different impeller rotation speed are performed for TSP = 130 ̊C. It can be 

observed in Figure 3-5 (b), that the average bed temperature results are comparable between runs 

and for all the impeller rotation speeds that were used. 

                                          

Figure 3-5: Average bed temperature at different impeller rotation speeds between the 

start of the first liquid injection (3600 s) and the end of mixing (4800 s). Error bars 

represent the standard deviation between 3600 and 4800 s. 
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3.4.2 Cumulative wt. % of agglomerates in the bed as a function of 
agglomerate size 

In Figure 3.6, we see that for both bed temperature set-points, increasing the mixing speed 

reduced the mass of agglomerates. When increasing the impeller rotation speed, agglomerates 

break more easily, resulting in smaller agglomerates. The small agglomerates survive even when 

operated at higher mixing speed because the impeller geometry gives an opportunity for the 

solids to move towards the center of the bed rather than being crushed against the reactor wall. 

A mixing speed of 130 rpm increased the amount of small agglomerates which are capable of 

surviving but at lower rpm’s as the movement of blades is slow, larger agglomerates can survive. 

This trend can be observed for both temperatures. Thus, if the larger agglomerates survive in the 

reactor (by bypassing the blade), the heat and mass transfer limitations imposed by the large size 

affect the vaporization of the liquid (Stanlick, 2014). 

It can be seen in Figure 3-6, that the total mass of agglomerates is higher at 40 RPM for both 

studied bed temperatures. There are two possible causes for this: one can be that the initial 

distribution of the liquid on the particles is not as effective and the agglomerates are wetter, 

stronger (Weber et al., 2008) or it can be that agglomerate breakup is more effective i.e. there is 

more shear in the bed. In this case it can be observed that it is due to the second cause. 
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Figure 3-6: Effect of the impeller rotation speed on the formation of agglomerates 

(mass of agglomerates/mass of bed solids). 

3.4.3 Liquid trapped in macro-agglomerates as a function of 
agglomerate size 

Figure 3.7 shows that for both bed temperature set-points, increasing the impeller rotation speed 

reduced the quantity of liquid trapped in the agglomerates. At a bed temperature of 130°C, 

shown in Figure 3-7(b), the agglomerates appear to break more easily with the higher impeller 

rotation speeds of 95 rpm and 130 rpm, and more small agglomerates are formed. This results in 

a small amount of liquid being trapped in the agglomerates as smaller agglomerates can hold less 

amount of liquid. 

 Increasing the bed temperature set-point also reduced the amount of liquid trapped in macro-

agglomerates (i.e., agglomerates larger than 600 µm). 
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Figure 3-7: Effect of impeller rotation speed on the cumulative liquid trapped in macro-

agglomerates. 

 

3.4.4 Effect of bed temperature and impeller rotation speed on the 
amount of liquid trapped 

For the temperature set-point of 120°C, Figure 3-8 shows that there is a small change in the total 

amount of liquid trapped when increasing impeller rotation speed. At low impeller rotation 

speed, the agglomerates break up but they also dry quickly. Thus, fragments by shear are still 

wet and they grow by capturing dry bed particles. 

 For the higher bed temperature of 130°C, the total liquid trapped in the agglomerates decreases 

as water evaporates faster at this temperature. At low impeller rotation speed, shear is relatively 

low and drying by heat conduction is quick. Also, the shear rate cannot compete the rate of 

drying i.e. there is low break up rate. At lower rpm and higher temperature, Figure 3-8 shows 

that, the total liquid trapped is more because it causes the outside of the agglomerates to solidify 

more quickly if they are not broken up quickly, thus trapping more liquid. 
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The higher bed temperature set-point shows a declining trend in the liquid trapped as we 

increased the impeller rotation speed. This is because the increased impeller rotation speed 

breaks up the larger agglomerates, thus reducing the final amount of liquid that was trapped in 

the agglomerates. 

 

Figure 3-8: Effect of bed temperature and impeller rotation speed on the fraction of 

injected liquid that is trapped in agglomerates. 

 

3.4.5 Effect of bed temperature and impeller rotation speed on total 
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at the higher temperature, the exposed surface dries too quickly to allow for significant capture 

of the dry bed particles. 

 

Figure 3-9: Effect of temperature set-point on the mass of sand (Msand) in agglomerates for 

different impeller rotation speed. 
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Chapter 4 

4 Effect of liquid flow rate and impeller rotation speed on the 
overall heat transfer coefficient in a Small MFR 

4.1 Introduction 

The MFR capacity for pyrolysis use is often limited by heat transfer from the hot wall, which is 

heated by induction, to the bed of biochar particles. The focus of this chapter is thus to 

investigate the Wall-to-Bed heat transfer in a Mechanically Fluidized Reactor. 

Many studies have been conducted on heat transfer from the wall-to-conventional fluidized beds. 

High heat transfer has been investigated widely in the case of a fluidized bed and there is an 

increasing demand in the industrial applications such as coating, drying, combustion and ore 

roasting (Stefanova et al., 2011). It was observed that an increase in the concentration of solids 

and the density of suspension can lead to an increase in the heat transfer coefficient, and an 

important factor to determine heat transfer coefficient is convection by means of particles (Basu 

and Nag, 1987). 

Most of the studies performed are relating to the effect of gas velocity on the heat transfer 

coefficient. Interestingly, different investigators have different take on the effect of the gas 

velocity. The heat transfer coefficient is larger in some cases with an increase in the gas velocity 

(Shen et al., 1991) while it was reduced with an increase in the gas velocity due to a reduction in 

the suspension density (Kee Soo Han et al., 1991). Molerus (1993) observed that the effect of gas 

velocity on the heat transfer coefficient becomes marginal at operating conditions with similar 

suspension densities. 

Yao et al. (2015) studied the bed-to-wall heat transfer properties of a vertical heat tube in a 

fluidized bed of FCC particles. It was observed that the measured heat transfer coefficients 

increase with greater superficial gas velocities. Furthermore, the wall-to-bed heat transfer 

coefficients were measured at different radial and axial positions with a high accuracy using a 

specially designed instrument for the study. 
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The main focus of the present work is to measure the wall-to-bed heat transfer in the Small 

Mechanically Fluidized Reactor (MFR), and to compare it with heat transfer in conventional 

fluidized beds. Efforts will then be made to correlate the observed heat transfer coefficients with 

the correlation given by Molerus et al. (1995), as it allows the prediction of heat transfer 

coefficient based on its dependence on the superficial velocity of gas. Effects of operating 

variables such as impeller rotation speed and particle size on the heat transfer coefficient will 

also be studied. 

A study measuring the overall heat transfer coefficient with an alternating impeller rotation as 

described in Section 2.4.2 was also performed (clockwise and anti-clockwise manner). 

Another objective was to study whether the liquid feed rate, and hence the flowrate of vapors 

through the bed, had an impact on the heat transfer coefficient values, as it does with 

conventional fluidized beds. Lastly, experiments will use different particle sizes of silica sand to 

study its impact. 

The study is original in terms of its use of induction heating to rapidly heat the bed of a small 

mechanically fluidized reactor (MFR) and maintain its temperature during liquid injection, where 

copper coils are strategically placed on the walls of the reactor vessel to minimize temperature 

gradients. This approach makes it the first study on heat transfer coefficient measurement in a 

small MFR unit. 

4.2 Material 

Experiments relating to this chapter are all performed using the equipment described in Section 

2.1. The properties of the bed material in this Chapter are provided in Section 2.3. Silica sand 

used for performing all the experiments is analyzed before using it for the experimental purpose 

in order to obtain the Sauter mean diameter. Figure 4-1 is a representation of the particle size 

distribution of the sand used in Small MFR. 
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Figure 4-1: Particle size distribution for silica sand calculated using a laser diffraction 

method (HELOS/BF sensor of Sympatec). 

4.3 Method 

The experimental procedure followed has been previously discussed in Section 2.4.2.1. The wall-

to-bed heat transfer coefficient measurement has been described in Section 2.4.2.2. The studies 

presented in this work were performed using two particle sizes in the Small Mechanically 

Fluidized Reactor (MFR). The sizing details of the studied reactor is provided in Table 4-1. In 

this chapter, superficial steam velocities reported are calculated at the freeboard conditions just 

above the bed temperature. 

Table 4-1: The Small MFR reactor vessel sizing details. 

Dimensions Units Small MFR 

Inner diameter m 0.1015 

Height m 0.127 

Total internal volume L 1.03 

Heat transfer area (Wall) m2 0.0405 
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Equations required to estimate the overall heat transfer coefficient have been previously provided 

in Section 2.4.2.2. Heat transfer coefficient obtained for each experimental conditions are then 

compared with correlated vales for standard fluidized beds, based on the following correlation by 

Molerus et al. (1995), which is stuitable for the type of particles used in this study, based on the 

Archimedes number (𝐴𝑟 = 𝑑𝑝
3(𝜌𝑝 − 𝜌𝑔)𝜌𝑔𝑔/𝜇2) where 102 < Ar < 105:   (7) 

ℎ𝑙𝑙

𝑘𝑔
=

0.125 ∗ (1 − 𝜀𝑚𝑓)(1 + 33.3{√[
𝑢 − 𝑢𝑚𝑓

𝑢𝑚𝑓
]33

√(𝜌𝑝𝑐𝑝/𝑘𝑔𝑔)3 (𝑢 − 𝑢𝑚𝑓)}−1)−1

1 + (
𝑘𝑔

2𝑐𝑝
µ) {1 + 0.28(1 − 𝜀𝑚𝑓)

2
[

𝜌𝑔

𝜌𝑝 − 𝜌𝑔
]

0.5

[√(
𝜌𝑝𝑐𝑝

𝑘𝑔𝑔
)

3

(𝑢 − 𝑢𝑚𝑓)]2
𝑢𝑚𝑓

(𝑢 − 𝑢𝑚𝑓)
}

 

+0.165𝑃𝑟
1

3(
𝜌𝑔

𝜌𝑝−𝜌𝑔
)

1

3[1 + 0.05 (
𝑢−𝑢𝑚𝑓

𝑢𝑚𝑓
)

−1

]−1    (8) 

4.4 Results and Discussion 

4.4.1 Experiments with smaller particles (𝑑𝑝𝑠𝑚
 = 190 µm) 

Experiments were first performed using the sand particles (Group B) with properties provided in 

Table 4-2 and using non-alternating rotation for the impeller. 

Table 4-2: Properties of the smaller particles (𝒅𝒑𝒔𝒎
 = 190 µm). 

Particle material 
Particle Sauter mean 

diameter (𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Silica Sand 190 µm 2650 830 

Runs were performed with different flow rates of liquid injection and while varying the impeller 

rotation speeds. Following the injection of several liquid pulses using a syringe pump-syringe 

assembly (refer to Figure 2-2), the system was allowed to reach steady state. Figure 4-2 shows 

an example of steady state being reached at gradually higher mixing speeds during liquid 

injection at flowrate corresponding to a superficial steam velocity of 43 mm/s. The power 
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supplied (3 kW) from the IHM-2 (detailed in Appendix B) is continuous and results in elevated 

temperatures in the reactor bed and wall. The wall temperature was measured at three separate 

locations and reached temperatures of approximately 600°C relatively quickly (approx. 45 mins 

when starting at room temperature) and the system was allowed to reach steady state before 

liquid injection was initiated. 

At a time of 4200 s in Figure 4-2, the liquid injection was initiated with no mixing and an 

injection rate of 5 ml/min, corresponding to a steam velocity of approximately 43 mm/s 

(assuming steam properties at 623°C). The system requires sufficient time to reach steady state 

when there is no mixing, as evident from the Figure 4-2. When the temperature measured at 

different locations on the wall and the bed temperature show a deviation of not more than + 1°C 

for approximately 7 to 10 min, it was then considered to be steady state. A new mixing speed 

was then applied at approximately 7700 s, while maintaining the liquid injection flow rate. The 

system was then again allowed to reach steady state. It can be seen that steady state was reached 

more rapidly at the impeller rotation speed of 22 rpm when compared to 0 rpm. The previous 

method was then followed for different impeller rotation speeds using the same liquid injection 

flow rate. 

 

Figure 4-2: Bed and wall temperatures at an superficial steam velocity of 43 mm/s and 

different mixer speed using Silica sand 𝒅𝒑𝒔𝒎
 = 190 µm. 
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Figure 4-3 presents the effect mixing speed and the superficial steam velocity on the bed 

temperature. The bed temperature was reduced by more than 100 ̊C as the superficial steam 

velocity is increased from 43 mm/s to 112 mm/s. The previous trend was expected as the 

increased heat requirements to evaporate the higher liquid injection resulted in a reduction of the 

bed temperature. It was also observed that there was a small increase in the bed temperature with 

increasing impeller rotation speed, resulting in better liquid-solid contact and an increased heat 

transfer inside the reactor. 

 

Figure 4-3: Effect of mixing speed on the measured bed temperature for superficial steam 

velocities in Small MFR. Silica sand 𝒅𝒑𝒔𝒎
 = 190 µm. 
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4.4.2 Experiments with Small MFR and particles with 𝑑𝑝𝑠𝑚
 = 300 µm 

Experiments were then performed using larger sand particles (Group B) with properties the 

provided in Table 4-3 and using non-alternating rotation for the impeller. 

Table 4-3: Properties of the bed material (𝒅𝒑𝒔𝒎
 = 300 µm). 

Particle material 

Particle Sauter mean 

diameter 

(𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Silica Sand 300 µm 2650 830 

Similar to the smaller particles, Figure 4-4 demonstrates that the bed temperature is also reduced 

for the larger particles when increasing the superficial steam velocity (i.e., liquid injection flow 

rate). 

It can be because at high steam superficial velocities and the increase in the rpm, the gases and 

vapors travel to the bottom of the bed faster. The increased liquid injection flow rate affects the 

cooling of the bed as the latent heat requirement increases. For the superficial steam velocities of 

41 mm/s and 79 mm/s, the impeller rotation speed affects the wall-to-bed heat transfer. At the 

superficial steam velocity of 111 mm/s, the bed temperature decreases slightly with an increase 

in the rpm and is the only exception to the trend seen so far. 
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Figure 4-4: Effect of mixing speed on the measured bed temperature for superficial steam 

velocities in Small MFR. Silica sand 𝒅𝒑𝒔𝒎
 = 300 µm. 

 

4.4.3 Comparison of the overall heat transfer coefficient with different 
particle sizes 

Figure 4-5 shows that the maximum superficial steam velocity corresponds to the highest heat 

transfer coefficient between the wall and bed. This indicates that a better aeration of the bed 

enhances the wall-to-bed heat transfer. The heat transfer coefficient also increases with higher 

rotation speeds, especially at higher superficial steam velocities. An exception is at very high 

impeller speeds and the highest superficial steam velocity, for which there is a decrease in heat 

transfer after exceeding the maximum value (at a RPM of approximately 80). It is suspected that 

at very high impeller rotation speeds, centrifugal forces mean that a thin layer of nearly 

stationary bed material forms along the wall of the reactor, impairing heat transfer. 
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The overall heat transfer coefficient values for the smaller particle size (dpsm
 = 190 µm) are 

generally lower when compared to the bigger sand particle size (dpsm
 = 300 µm) for the studied 

impeller rotation speeds. In the case of higher flowrates of liquid, there is formation of much 

stronger and wetter agglomerates inside of the reactor, thus, more time is needed to break the 

agglomerates and dissipate the liquid from the agglomerates. 

        

Figure 4-5: Overall heat transfer coefficient for two different particle size of silica sand at 

different impeller rotation speeds and superficial steam velocities in Small MFR. 

 

Table 4-4 and Table 4-5 provides the overall heat transfer coefficient obtained with the Small 

MFR for both studied particle sizes. The overall heat transfer coefficient increased with at the 

higher superficial steam velocity for both particle sizes. A more interesting analysis of the 

experimental results is obtained by comparing with the Molerus correlation. It is observed that 

the Molerus correlation for conventional fluidized beds provides comparable predictions for the 

studied 300 µm silica sand. 
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Table 4-4: Comparison of the average overall heat transfer coefficient with that obtained 

from Molerus correlation for Silica sand 𝒅𝒑𝒔𝒎
= 190 µm in Small MFR. 

Flow rate 

(ml/min) 

 Superficial 

steam velocity 

(mm/s) 

Uaverage for studied 

RPM 

(W/m2·K) 

U from 

correlation 

(W/m2·K) 

Umax 

(W/m2·K) 

Umax /Ucorrelation 

(-) 

5 43 66 142 68 0.48 

10 81 152 344 158 0.46 

15 112 295 428 338 0.79 

 

Table 4-5: Comparison of the average overall heat transfer coefficient with that obtained 

from Molerus correlation for Silica sand 𝒅𝒑𝒔𝒎
= 300 µm in Small MFR. 

Flow rate 

(ml/min) 

Superficial 

steam velocity 

(mm/s) 

Uaverage for 

studied RPM 

(W/m2·K) 

U from 

correlation 

(W/m2·K) 

Umax 

 (W/m2·K) 

Umax /Ucorrelation 

 (-) 

5 41 90 73 98 1.34 

10 79 208 329 256 0.78 

15 111 305 423 333 0.79 

 

In Figure 4-6, U (300 µm)/U (190 µm) indicate the ratio for the overall heat transfer coefficient 

values for two different particle sizes. It is observed that the Molerus correlation for conventional 

fluidized beds accounts well for the impact of bed particle size on the measured overall heat 

transfer coefficient values for the two highest liquid injection flow rates. At the lowest liquid 

flowrate, there would not be enough steam generated to fluidize the bed. The minimum 

fluidization velocity is obtained using the Richardson and S. Jeronimo (1979) correlation. For 
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particles with dpsm
 = 300 µm, in the case of lowest liquid flow rate (i.e., at 5 ml/min) the 

superficial steam velocity is 41mm/s, while the minimum fluidization velocity is 47 mm/s. 

 

Figure 4-6: Molerus U (300 µm)/U (190 µm) vs. Measured U (300 µm)/U (190 µm). 

4.4.4 Small MFR with alternating rotation for the impeller 

Experiments were performed using the sand with properties provided in Table 4-6. Runs were 

performed with different flow rates of liquid injection and while varying the impeller rotation 

speeds. Following the injection of several liquid pulses using a syringe pump-syringe assembly 

(refer to Figure 2-2), the system is allowed to reach steady state. The impeller rotates in 

clockwise manner for 3 secs, stops for 1 sec and then rotates in an anti-clockwise manner for 

3secs. 

Table 4-6: Properties of the bed material (𝒅𝒑𝒔𝒎
 = 190 µm). 

Particle material 

Particle size 

(𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Silica Sand 190 µm 2650 830 
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Figure 4-7 presents the effect of the mixing speed and the superficial steam velocity on the bed 

temperature. The temperature of the bed falls as the superficial steam velocity is increased from 

40 mm/s to 104 mm/s. The previous trend was expected as the increased heat requirements to 

evaporate the higher liquid injection resulted in a reduction of the bed temperature. 

 

Figure 4-7: Effect of mixing speed on the measured bed temperature for superficial steam 

velocities in Small MFR with alternating effect of the impeller. Silica sand 𝒅𝒑𝒔𝒎
 = 190 µm. 

Figure 4-8 shows that the maximum superficial steam velocity corresponds to the highest heat 

transfer coefficient between the wall and bed. This indicates that a better aeration of the bed 

enhanced the wall-to-bed heat transfer. 

The heat transfer coefficients generally increased with increasing rotation speed, especially at 

higher superficial steam velocities. An exception to the trend is seen at the superficial steam 

velocity (76 mm/s) beyond impeller rotation speed of 95 rpm (nominal), for which there is a 

decrease in heat transfer as is evident in Figure 4-8. It is suspected that at very high impeller 

rotation speeds (using non-alternating impeller rotation), centrifugal forces result in a thin layer 

of nearly stationary bed material forms along the wall of the reactor, impairing heat transfer. It is 

believed that the alternating effect of the impeller rotation reduced this layer of stationary solids 
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which is formed (which otherwise would have resulted in lower heat transfer coefficients) as the 

impeller rotates in both directions. 

 

Figure 4-8: Overall heat transfer coefficient for different mixer speeds and superficial 

steam velocities in Small MFR with alternating effect of the impeller. Silica sand 𝒅𝒑𝒔𝒎
 = 190 

µm. 

Table 4-7 provides the overall heat transfer coefficient obtained with the Small MFR. The 

overall heat transfer coefficient increased with at higher superficial steam velocities for both 

particle sizes. A more interesting analysis of the experimental results is obtained by comparing 

with the Molerus correlation. The overall heat transfer coefficient obtained from the experiment 

is higher at higher superficial steam velocities than the values obtained from the Molerus 

correlation. 
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Table 4-7: Comparison of the average overall heat transfer coefficient with that obtained 

from Molerus correlation for Silica sand 𝒅𝒑𝒔𝒎
= 190 µm in Small MFR with alternating 

effect of the impeller. 

Flow rate 

(ml/min) 

Superficial 

steam velocity 

(mm/s) 

Uaverage for studied 

RPM 

(W/m2·K) 

U from 

correlation 

(W/m2·K) 

Umax 

(W/m2·K) 

Umax /Ucorrelation 

(-) 

5 40 123 118 148 1.25 

10 76 425 300 554 1.85 

15 104 584 387 676 1.75 

Table 4-8 compares the effect of alternating and non-alternating impeller rotation in Small MFR. 

It can be seen that, with an increase in the superficial steam velocity there is an increase in the 

overall heat transfer in Small MFR for both impeller rotation methods. Nonetheless, the overall 

heat transfer coefficient is significantly greater in the case of the alternating rotation of the 

impeller. This can be caused due to the rotation of the impeller in an alternating manner which 

likely reduces the formation of the solid layer along the wall of the reactor, improving the wall-

to-bed heat transfer. 
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Table 4-8: Comparison of the average overall heat transfer coefficient for particles of same 

size and the rotation of impeller in two different manners. 

Flow rate 

(ml/min) 

Superficial 

steam 

velocity 

(mm/s) 

Uaverage for studied RPM 

(W/m2·K) 

Flow rate 

(ml/min) 

Superficial 

steam 

velocity 

(mm/s) 

Small MFR 

(Non-alternating 

impeller rotation) 

Small MFR 

(Alternating 

impeller rotation) 

Sand size 

= 190 µm 

Sand size 

= 190 µm 

5 43 66 123 5 40 

10 81 152 425 10 76 

15 112 295 584 15 104 

The increase in the heat transfer coefficient for alternating impeller rotation is presented in 

Figure 4-9. The increased heat transfer coefficient, starts with the onset of fluidization, when the 

superficial steam velocities (vg) in excess of the minimum fluidization velocity (Umf). The 

minimum fluidization velocities (presented in Table 4-9) obtained from the correlation by Wen 

and Yu (1966) help us obtain the velocity ratio (vg /Umf). The velocity ratio appropriately shows 

the dependence of the overall heat transfer coefficient on the superficial steam velocity. 
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Table 4-9: Minimum fluidization velocities for particles of same size and the rotation of 

impeller in two different manners. 

Superficial steam 

velocity 

(mm/s) 

Minimum fluidization velocity 

(mm/s) 
Superficial steam 

velocity 

(mm/s) 

Small MFR 

(Non-alternating 

impeller rotation) 

Small MFR 

(Alternating impeller 

rotation) 

43 16 17 40 

81 17 18 76 

112 19 20 104 

 

Figure 4-9: Overall heat transfer coefficient as a function of velocity ratio and the 

alternating or non-alternating impeller rotation with silica sand (𝒅𝒑𝒔𝒎
= 190 µm). 

 

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

U
 (

W
/m

2
·K

)

vg/Umf

190 micron (Non-alternating impeller rotation)

190 micron (Alternating impeller rotation)



55 
 

 

Chapter 5 

5 Effect of reactor volume, particle size and material on heat 
transfer in a mechanically fluidized reactor  

5.1 Introduction 

Scale-up of a bench-scale reactor is a considerable and essential task. This is especially 

important for the MFR, as the ratio of the wall surface to bed volume decreases with increasing 

reactor diameter, making heat transfer more critical in larger units. 

The objective of this work is to compare the overall heat transfer coefficients measured in two 

reactors with different diameters: Small MFR and Large MFR. Efforts will then be made to 

correlate the observed heat transfer coefficients with the correlation given by Molerus et al. 

(1995). The effect of the impeller rotation speed on the heat transfer coefficient will also be 

studied for different particle sizes. Furthermore, experiments will use different particle materials 

(activated carbon and silica sand) to study the impact of the material properties. This study 

focuses on the effect of reactor scale on the wall-to-bed heat transfer coefficient in compact 

mechanically fluidized beds. 

5.2 Materials 

Particles used for the experiments performed in this Chapter are described in Section 2.3. 

5.3 Methods 

The experimental procedure followed has been previously discussed in Section 2.4.2.1. The wall-

to-bed heat transfer coefficient measurement method has been described in Section 2.4.2.2. The 

studies presented in thus work were performed using two particle sizes in the Small 

Mechanically Fluidized Reactor (MFR). 

IHM-2 is used for the experiments performed in this Chapter (refer to Appendix B for detailed 

specifications) as it has a very flexible heating process control and continuous supply of heat to 

the system can be provided. Some specifications of the induction system are given in Table 5-1. 



56 
 

 

In this chapter, superficial steam velocities reported are calculated at the freeboard conditions 

just above the bed temperature. 

Table 5-1: Specification of the IHM-2. 

Model SI – 12KW 

Voltage 230 V (3 phase) 

Input Power 15 kVA 

Output Power 12 kW 

Detailed descriptions of the two MFRs can be found in Chapter 2. The sizing details of the 

studied reactors are provided in Table 5-2.  The method used to measure the heat transfer 

coefficient from the MFR wall to the bed is described in section 2.4.2.2 (Chapter 2). 

 

Table 5-2: MFR reactors vessel sizing details. 

Dimensions Units Small MFR Large MFR 

Inner diameter m 0.1015 0.15 

Height m 0.127 0.25 

Total internal volume L 1.03 4.42 

Heat transfer area (Wall) m2 0.0405 0.1178 

Equations required to estimate the overall heat transfer coefficient have been previously provided 

in Section 2.4.2.2. Heat transfer coefficients obtained for each experimental conditions are then 

compared with correlated values for standard fluidized beds, based on the correlation (8) by 

Molerus et al. (1995), which is stuitable for the type of particles used in this study, based on the 

Archimedes number (7). 
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5.4 Results and Discussion 

5.4.1 Small MFR with non-alternating rotation for the impeller 

5.4.1.1 Wall-to-bed heat transfer for Sauter mean diameter of 600 µm 

Several experiments were performed using the sand particles (Group B) with properties provided 

in Table 5-3. 

Table 5-3: Properties of the sand particles (𝒅𝒑𝒔𝒎
 = 600 µm). 

Particle material 
Particle Sauter mean 

diameter (𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Silica Sand 600 µm 2650 830 

Runs were performed with different flow rates of liquid injection while varying the impeller 

rotation speeds. Following the injection of several liquid pulses using a syringe pump-syringe 

assembly (refer to Figure 2-2), the system is allowed to reach steady state. The power supplied 

(3 kW) from the IHM-2 (detailed in Appendix B) is continuous and results in elevated 

temperatures in the reactor wall. The wall temperature was measured at three different locations 

and reaches temperatures of approximately 600°C and the system is allowed to reach steady state 

before liquid injection is initiated. 

 Figure 5-1 presents the effect of the mixing speed and the superficial steam velocity on the bed 

temperature. The bed temperature was reduced as the superficial steam velocity increased from 

42 mm/s to 110 mm/s. Increasing the liquid injection rate means that more heat must be 

transferred from the wall to cool the bed; if the bed wall is maintained at an approximately 

constant temperature, this means that the bed temperature must decrease to increase the heat 

transfer rate. The previous trend was expected as the increased heat requirements to evaporate 

the higher liquid injection resulted in a reduction of the bed temperature. 
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The relationship between bed temperature and mixer rotation speed varied depending on the 

superficial steam velocity. A relatively small increase in the bed temperature was observed when 

increasing the rotation speed for a superficial steam velocity of 42 mm/s and 80 mm/s. 

Conversely, the bed temperature was reduced when increasing the rotation speed for the highest 

studied superficial steam velocity of 110 mm/s which is an exception to the trend. The observed 

trends demonstrate the impact of rotation speed and liquid injection on the bed temperature. For 

a relatively low liquid injection, the rotation speed enhances the wall-to-bed heat transfer, thus 

increasing the bed temperature. 

 

Figure 5-1: Effect of mixing speed on the measured bed temperature for superficial steam 

velocities. Silica sand 𝒅𝒑𝒔𝒎
 = 600 µm. 

Figure 5-2 shows that the highest studied superficial steam velocity corresponded to the highest 

heat transfer coefficient between the reactor wall and bed, indicating better bed aeration and 

improved heat transfer. The estimated heat transfer coefficients generally increased with quicker 

rotation speeds, especially at higher superficial steam velocities. An exception was observed at 

high impeller speeds and the highest studied superficial steam velocity (110 mm/s), where the 

overall heat transfer coefficient was slightly reduced beyond 95 rpm. It is suspected that at high 

impeller rotation speeds, centrifugal forces result in a thin layer of nearly stationary bed material 

along the wall of the reactor, impairing heat transfer. 
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The particle Archimedes number (7) calculated at the different superficial velocities of steam are 

reported in Table 5-4. 

The minimum fluidization velocity obtained using correlation provided by Richardson and S. 

Jeronimo (1979) is shown in Table 5-4, for the bed temperature corresponding to the three 

injection flowrates; it shows that the superficial gas velocity is much smaller than the minimum 

fluidization velocity and the bed is not fluidized properly. Hence, the overall heat transfer 

coefficient from correlation (Molerus et al., 1995) cannot be obtained for this particle size. 

Table 5-4: Archimedes number calculated at corresponding steam velocities for particles 

𝒅𝒑𝒔𝒎
 = 600 µm. 

Superficial steam velocity 

(mm/s) 

Minimum fluidization 

velocity 

(mm/s) 

Archimedes number 

42 217 1.46 * 103 

80 223 1.63 * 103 

110 246 2.19 * 103 

Experimental results show that the overall heat transfer coefficient increases with particle 

Archimedes number. And as the 102 < Ar < 105, the gas convective heat transfer coefficient 

becomes dependent on the particles size as mentioned in Molerus (1995). 
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Figure 5-2: Overall heat transfer coefficient as a function of mixer rotation speed and 

superficial steam velocities. Silica sand 𝒅𝒑𝒔𝒎
 = 600 µm. 

5.4.2 Large MFR with non-alternating rotation for the impeller 

5.4.2.1 Wall-to-bed heat transfer using sand (𝑑𝑝𝑠𝑚
 = 190 µm) 

Several experiments were performed using the sand particles (Group B) with properties 

mentioned in Table 5-5 while studying the impact of liquid injection flow rates and impeller 

rotation speed. Following the injection on several liquid pulses using a syringe pump-syringe 

assembly (refer to Figure 2-2), the system reaches steady state. 

Table 5-5: Properties of the smaller particles (𝒅𝒑𝒔𝒎
 = 190 µm). 

Particle material 
Particle Sauter mean 

diameter (𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Silica Sand 190 µm 2650 830 
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The particle Archimedes number calculated at the different superficial velocities of steam are 

reported in Table 5-6. The minimum fluidization velocity obtained using correlation provided by 

Richardson and S. Jeronimo (1979) is shown in Table 5-6. The gas velocity for the smaller sand 

particles was extremely high when compared to the minimum fluidization velocity. 

 

Table 5-6: Archimedes number, Minimum fluidization velocities calculated at 

corresponding steam velocities for particles 𝒅𝒑𝒔𝒎
 = 190 µm. 

Superficial steam velocity 

(mm/s) 

Minimum fluidization 

velocity 

(mm/s) 

Archimedes number 

503 39 2.93 * 102 

528 44 4.22 * 102 

 

Figure 5-3 presents the effect of the mixing speed and the liquid flow rate on the bed 

temperature. Superficial steam velocities of 503, 528 mm/s correspond to liquid flow rates of 250 

ml/min, 290 ml/min (assuming steam properties at 190 ˚C, 160 ˚C respectively). The temperature 

of the bed falls as with an increase in liquid injection flow rate. The previous trend was expected 

as the increased heat requirements to evaporate the higher liquid injection flow resulted in a 

reduction of the bed temperature. 
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Figure 5-3: Effect of mixing speed on the bed temperature measurements with the change 

in superficial steam velocities. Silica sand 𝒅𝒑𝒔𝒎
 = 190 µm. 

The overall heat transfer coefficient decreases sharply with the increase in the mixer speed for 

the two different superficial steam velocities (503 and 528 mm/s) as reported in Figure 5-4. The 

maximum value of heat transfer coefficient obtained at 47 rpm is surprising. Based on the trend 

followed by the small MFR (radius = 0.10 m or 5 * 10-2 cm) and using the sand with 𝑑𝑝𝑠𝑚
 = 190 

µm the peak was obtained at 80 rpm (Chapter 4, Figure 4-5). 

So in the case of large MFR (radius = 0.075 m or 7.75 * 10-2 cm) by assuming that the peak 

corresponds to the same centrifugal acceleration is at 80 rpm, we can calculate the optimum rpm. 

Thus, 80 * (5/7.5)0.5 = 65 rpm. This value of rpm gives us a scope to try many different rpm’s so 

as to have a better understanding about the heat transfer in large MFR for the given particle size. 
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Figure 5-4: Overall heat transfer coefficient for different impeller rotation speeds and 

superficial steam velocities. Silica sand 𝒅𝒑𝒔𝒎
 = 190 µm. 

Table 5-7 provides the overall heat transfer coefficients obtained with the large MFR. The 

overall heat transfer coefficient increased with at the higher superficial steam velocity. A more 

interesting analysis of the experimental results is obtained by comparing with the Molerus 

correlation. It is observed that the Molerus correlation for conventional fluidized beds provides 

comparable predictions for the studied 190 μm silica sand. 

Table 5-7: Comparison between experimental overall heat transfer coefficient and Molerus 

correlation for 𝒅𝒑𝒔𝒎
= 190 µm. 

Flow rate 

(ml/min) 

Superficial 

steam velocity 

(mm/s) 

Uaverage for 

studied RPM 

(W/m2·K) 

U from 

correlation 

(W/m2·K) 

Umax 

(W/m2·K) 

Umax/Ucorrelation 

(-) 

250 503 238 280 243 0.87 

290 528 250 261 270 1.03 
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5.4.2.2 Wall-to-bed heat transfer using activated carbon (𝑑𝑝𝑠𝑚
 = 575 µm) 

Experiments were performed using the activated carbon (Group B) with properties mentioned in 

Table 5-8 while studying the impact of the liquid injection flow rate and impeller rotation speeds. 

After injecting several liquid pulses using a syringe pump-syringe assembly (refer to Figure 2-2), 

the system reaches steady state. 

 

Table 5-8: Properties of the activated carbon (𝒅𝒑𝒔𝒎
 = 575 µm). 

Particle material 
Particle Sauter mean 

diameter (𝐝𝐩𝐬𝐦
) 

Particle density 

(kg/m3) 

Heat Capacity 

(J/kg/K) 

Activated Carbon 575 µm 750 1300 

The particle Archimedes number calculated at the different superficial velocities of steam are 

reported in Table 5-9. The minimum fluidization velocity obtained using correlation provided by 

Richardson and S. Jeronimo (1979) is shown in Table 5-9. The gas velocity for the char particle 

was very high when compared to the minimum fluidization velocity. 

 

Table 5-9: Archimedes number, Minimum fluidization velocities calculated at 

corresponding steam velocities for particles 𝒅𝒑𝒔𝒎
 = 575 µm. 

Superficial steam 

velocity 

(mm/s) 

Minimum fluidization 

velocity 

(mm/s) 

Archimedes number 

168 84 4.68 * 103 

398 93 6.36 * 103 
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Figure 5-5 presents the effect of the mixing speed and liquid flow rate on the bed temperature. 

The liquid flow rates of 70 ml/min, 180 ml/min correspond to estimated superficial steam 

velocities of 168, 398 mm/s (assuming steam properties at 280 ̊C, 235 ̊C respectively). The 

temperature of the bed shows a fall in the bed temperature on increasing the superficial steam 

velocity. 

 

 

Figure 5-5: Effect of mixing speed on the bed temperature measurements with the change 

in liquid flow rate. Activated Carbon bed 𝒅𝒑𝒔𝒎
 = 575 µm. 

 

Figure 5-6 presents the overall heat transfer coefficient, measured at various impeller rotation 

speeds and superficial steam velocities. As the superficial steam velocity increased, a significant 

effect on the overall heat transfer coefficient was observed. The increase in the impeller rotation 

speed have a small impact on the overall heat transfer coefficient for the bed of char. At high 

superficial steam velocity, the gas bubbles disrupt the formation of the layer of particles which 

makes them fall back into the reactor. This leads to a high overall heat transfer coefficient values 

even when operating at different impeller rotation speeds. 
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Figure 5-6: Overall heat transfer coefficient for different mixing speeds and superficial 

steam velocities. Activated Carbon bed 𝒅𝒑𝒔𝒎
 = 575 µm. 

Table 5-10 shows that, the Molerus correlation gives an adequate approximation of the 

experimental results. This correlation can provide a rough estimate of the overall heat transfer 

coefficient. 

Table 5-10: Comparison of the average overall heat transfer coefficient with the values 

from Molerus correlation for activated carbon 𝒅𝒑𝒔𝒎
 = 575 µm. 

Flow rate 

(ml/min) 

Superficial 

steam velocity 

(mm/s) 

Uaverage for 

studied RPM 

(W/m2·K) 

U from 

correlation 

(W/m2·K) 

Umax 

(W/m2·K) 

Umax/Ucorrelation 

(-) 

70 168 73 104 77 0.74 

180 398 182 124 192 1.55 
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Chapter 6 

6 Conclusions and Recommendations 

6.1 Conclusions 

In this work, the experimental method of Reyes (2015) was successfully used to study the effect 

of impeller rotation speed and bed temperature on the properties of agglomerates formed in the 

Small MFR. Increasing the impeller rotation speed reduced the formation of larger agglomerates 

as the agglomerates break more easily and resulted in formation of smaller agglomerates. Also, 

increasing the bed temperature set-point reduced the amount of liquid trapped in macro-

agglomerates. 

A separate study on the effect of liquid flow rate and impeller rotation speed on the wall-to-bed 

overall heat transfer coefficient was performed in a Small MFR using silica sand. Experimental 

results demonstrated that higher superficial steam velocities corresponded to increased heat 

transfer coefficients between the wall and bed for both studied particle Sauter mean diameters 

(190 µm and 300 µm). This shows that the gas convective heat transfer becomes dependent on 

the size of the particle used for study based on Molerus (1993) correlation when Ar > 108. 

Experimental results were compared with the overall heat transfer coefficient obtained using 

Molerus et al. (1995) coefficient which shows that the overall heat transfer coefficient increases 

with the particle Archimedes number. 

The effect of alternating rotation for the impeller was also completed in the Small MFR using 

silica sand with dpsm
 = 190 µm. The overall heat transfer coefficient almost doubled for the 

studied superficial steam velocities when using the alternating impeller rotation as the alternating 

rotation disrupts the relatively stable solid layer that forms at the wall and promotes surface 

renewal of the particles near the hot wall, enhancing heat transfer between the wall and the bed. 

The overall heat transfer coefficient increased significantly with increasing particle size, as the 

heat transfer coefficient increases with increasing particle Archimedes number (Baskakov et al., 

1973) which was the highest in comparison to the two smaller particle sizes (silica sand = 190, 

300 µm) tested and at higher superficial steam velocities. 



68 
 

 

Silica sand with dpsm
 = 600 µm resulted in the highest overall heat transfer coefficient at the 

maximum superficial steam velocity (110 mm/s). 

In the case of activated carbon (dpsm
 = 575 µm), the change in the overall heat transfer 

coefficient was not significant with the change in the impeller rotation speed. 

6.2 Recommendations 

It was observed when using Gum Arabic that increasing the bed temperature set-point beyond 

130°C led to caramelization. It is recommended to investigate the use of different binder 

solutions to allow bed temperature set-points higher than 130 ̊C, and to inject more liquid in a 

single pulse or multiple pulses. Furthermore, different dye colors can be used to evaluate the 

liquid spreading as the agglomerates are formed in the bed. The use of different dyes can help 

understand the pattern in which the agglomerates travel in the bed. 

After the injection of second pulse is over, the mixing is stopped after 5 min in the current study 

but instead it is recommended to freeze the bed instantly or mixing at very low impeller rotation 

speed (5 rpm) for just 15 sec allowing the bed to stabilize and then freezing the bed. In this 

manner, different time intervals (30 secs, 60 secs) for which the mixing is allowed after the end 

of second pulse can be tried. Thus, the data obtained about the agglomerate formation can be 

extrapolated and it can lead to a better understanding with respect to the effect of mixing speed.  

More values of the impeller rotation speed would need to be studied to understand the properties 

of agglomerates formed for the large MFR. Also, additional blades can be added to the impeller 

used in large MFR to study its effect on the heat transfer coefficient. It is also recommended to 

do more studies in large MFR with different particle sizes of silica sand and then comparison can 

be done based for the heat transfer coefficients measured in this work. Studying the impact of 

impeller geometry on the overall heat transfer coefficient in small MFR is also recommended.  

Finally, since the impeller alternating motion greatly improves the wall to bed heat transfer, its 

impact on liquid distribution should be determined. 
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The heat transfer study performed in small MFR using different liquid injection flow rates 

showed that the maximum liquid flow rate, and thus highest superficial steam velocity, 

corresponded to the highest overall heat transfer coefficient. Future work should perform more 

studies to investigate the operability limit for different reactor temperatures. 

More studies can be performed to observe the effect of alternating impeller rotation on the 

overall heat transfer coefficient while changing the particle size and trying different bed 

materials (glass beads) for reactors with different diameter. 
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Appendices 

Appendix A- Agglomerate formation study 

A- 1 Silica sand and solvent solution mixture 

The sample mixture prepared in order to have an estimate of the temperature set-point of the bed 

with which the experiments are to be performed is tested in an oven. The components of the 

mixture are: 

Silica sand weighing 50 g (measured with the help of a scale with an accuracy of 0.1 mg) is 

taken in a beaker. The binder solution is separately prepared in a small beaker. It composition is: 

Gum Arabic solution weighing 5 gm (5 wt. % Gum Arabic, 2 wt. % dye, 93 wt. % water). The 

viscosity of the binder solution is adjusted using Hydrochloric acid (pH = 1.5). The binder 

solution is then mixed properly with the silica sand and the mixture is then spread on an 

aluminum foil as shown in figure A-2. This sample mixture is then placed in an oven. The 

temperature in the oven is set to 130 ˚C. The sample is kept in the oven for about 3h. 

The mixture is then carefully removed from the oven. The absorbance of this sample is obtained 

(the mixture sample is dissolved in water in a water to mixture ratio of 5:1) using an UV-vis 

Spectrophotometer. 

 

Figure A-1.1: With all 3 components of Gum Arabic solution (𝑻𝑺𝑷 = 130 ˚C). 
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Figure A-1.2: The thermal degradation of Gum Arabic observed in a sample kept for 

observation in an oven. 

A- 2 Sample calculation for % of liquid trapped  

The amount of liquid trapped calculated using the values for the Avg. (L/S) which can then be 

compared to the amount of liquid trapped from the graphs plotted in the Results and Discussion 

section of Chapter 3. 

Example: 

(a) 𝑇𝑆𝑃 = 120 ˚C, Impeller rotation speed = 130 RPM 

Total Msand in agglomerates = 6.18 (g) 

Avg. (L/S) = 0.16 

Avg. (L) = 6.18*0.16 = 0.98 (g) 

% liquid trapped = 0.98/40 = 2.5% 

(a) 𝑇𝑆𝑃 = 130 ˚C, Impeller rotation speed = 130 RPM 

Total Msand in agglomerates = 2.03 (g) 

Avg. (L/S) = 0.18 

Avg. (L) = 2.03*0.18 = 0.36 (g) 

% liquid trapped = 0.36/40 = 0.92% 
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A- 3 Small MFR Induction Heating System 

The Small Mechanically Fluidized Reactor (MFR) is designed and equipped with custom built 

Induction Heating Machine (IMS-1). The heating machine comprise of 1800 W induction heater 

(Hannex, Hong Kong, China) which is used to regulate the reactor temperature. 

The system is suitable for use on a circuit capable of delivering not more than 5000 RMS 

Symmetrical Amperes and 120 V Maximum. The system has got more than one power supply 

(120*2 V, 1A/15A, 60 HZ and single phase system) and is an accepted form of approval of 

electrical products by the Electrical Safety Authority. 

Temperature readings for the reactor were acquired at different locations along the wall of the 

reactor, vapor temperature in the freeboard region and in the bed of the reactor using five type K 

thermocouples, two 4-channel thermocouple input (NI-9211 from National Instruments, Austin, 

TX), and one Bus-Powered Multifunctional DAQ USB Drive (NI USB-6009 from National 

Instruments, Austin, TX). Program created using the LabWindows ™/CVI platform (National 

Instruments, Austin, TX) helped collecting the temperature signals and an ON-OFF controller is 

used to power the induction heating system. 

Induction heating system is capable of reaching temperatures of about 450-500 ̊C in 30-40 

minutes for the small MFR. 

Table A- 3.1: Specifications of the induction heating system using IHM-1. 

Induction Power Supply 

Wattage 1800 W 

Frequency 33 kHz 

Induction wiring 

Wiring specifications 
Vibraflame® extreme temperatures 

composite wire- 14 AWG 

Total wire length 13 m 

Small MFR wiring 26 loops 
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A-4 (a) Sample calculation for L/S ratio 

The experiment is performed at 𝑇𝑆𝑃 = 120 ˚C, Impeller rotation speed = 40 rpm, 𝐹𝐿 = 4 ml/min. 

 

Table A- 4.1: Example of the calculation for agglomerates study in Chapter 3. 

Part -1: 

Size cut 

(µm) 

Absorbance Concentration 

of dye 

(wt. %) 

Weight of 

all cuts 

(g) 

Water Pure blue Blue Solution 

[actual] 

(g) 

Gum 

Arabic 

(g) 

9500 0.68 6.1E-06 3.1 15.5 9.5 E-05 0.0098 0.0245 

4000 0.92 8.3E-06 1.3 6.5 5.4 E-05 0.0056 0.0139 

2000 0.35 3.2 E-06 0.32 1.6 5.1 E-06 0.0005 0.0013 

1400 0.74 6.7 E-06 0.21 1.05 7.0 E-06 0.0007 0.0018 

850 0.9 8.1 E-06 0.24 1.2 9.7 E-06 0.001 0.0025 

600 0.74 6.6 E-06 0.28 1.4 9.3 E-06 0.001 0.0024 

500 0.57 5.1 E-06 0.28 1.4 7.1 E-06 0.0007 0.0018 

425 0.34 3.0 E-06 0.9 4.5 1.4 E-05 0.0014 0.0035 

355 0.21 1.9 E-06 3.45 17.25 3.3 E-05 0.0034 0.0084 
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Part-2: 

Size cut 

(µm) 

Water 

trapped 

(g) 

Water 

trapped 

(%) 

Cumulative % 

of water trapped 

Whole 

solution 

(g) 

Msand in 

agglomerates 

(g) 

L/S 

9500 0.46 1.22 1.22 0.49 3.08 0.16 

4000 0.26 0.69 1.92 0.28 1.29 0.22 

2000 0.02 0.07 1.98 0.03 0.32 0.08 

1400 0.03 0.09 2.07 0.04 0.21 0.17 

850 0.05 0.13 2.2 0.05 0.24 0.21 

600 0.04 0.12 2.32 0.05 0.28 0.17 

500 0.03 0.09 2.41 0.04 0.35 0.11 

425 0.07 0.18 2.59 0.07 0.58 0.12 

355 0.16 0.42 3.01 0.17 0.47 0.36 

Part-3: 

For micro-agglomerates Blue + 

Gum Arabic 

(g) 

Msand 

(g) 

Xf for 

215 µm 

(%) 

Xfbed for 

215 µm 

(%) 

mp 

(g) 

Mµaggl 

(g) 

500 0.0018 0.3 60.20 47.78 0.35 0.35 

425 0.0035 0.9 30.95 47.78 0.58 0.58 

355 0.0085 3.4 6.56 47.78 0.47 0.48 
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A-4 (b) Different number of runs at each operating conditions 

Table A- 4.2 provides the data for the weight percentage of liquid trapped for each run and their 

average while operating at different impeller rotation speeds. 

 

Table A- 4.2: Details of the wt. % of liquid trapped at different operating conditions for 

each run. TSP = 120 ˚C. 

Wt. % of liquid trapped at 𝑻𝑺𝑷 = 120 ˚C 

Size cuts (µm) Run 1 

(40 RPM) 

Run 1 

(95 RPM) 

Run 1 

(130 RPM) 

Run 2 

(130 RPM) 

Average 

(130 RPM) 

4000 0.73 0.60 0.10 0.16 0.13 

2000 0.07 0.04 0.49 0.36 0.42 

1400 0.10 0.07 0.14 0.06 0.10 

850 0.13 0.13 0.18 0.07 0.12 

600 0.13 0.22 0.43 0.42 0.42 

500 0.10 0.21 0.27 0.28 0.27 

425 0.19 0.34 0.37 1.02 0.70 

355 0.44 0.83 0.89 0.59 0.74 
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Tables A- 4.3, A- 4.4 and A- 4.5 provide the data for the weight percentage of liquid trapped for 

each run and their average while operating at different impeller rotation speeds. 

 

Table A- 4.3: Details of the wt.% of liquid trapped for each run at impeller rotation speed 

= 40 rpm. TSP = 130 ˚C. 

Wt. % of liquid trapped at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Run 3 Average 

4000 0.09 1.23 0.74 0.69 

2000 0.08 0.96 0.45 0.50 

1400 0.02 0.20 0.26 0.16 

850 0.10 0.52 0.48 0.37 

600 0.22 0.46 0.49 0.39 

500 0.21 0.33 0.25 0.26 

425 0.35 0.61 0.90 0.62 

355 0.64 0.96 0.48 0.69 
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Table A- 4.4: Details of the wt.% of liquid trapped for each run at impeller rotation speed 

= 95 rpm. TSP = 130 ˚C. 

Wt. % of liquid trapped at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Run 3 Average 

4000 0.22 0.05 0.09 0.12 

2000 0.01 0.06 0.11 0.06 

1400 0.01 0.05 0.09 0.05 

850 0.04 0.01 0.07 0.04 

600 0.09 0.02 0.02 0.04 

500 0.07 0.01 0.08 0.05 

425 0.11 0.10 0.16 0.12 

355 0.44 0.33 0.47 0.42 
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Table A- 4.5: Details of the wt.% of liquid trapped for each run at impeller rotation speed 

= 130 rpm. TSP = 130 ˚C. 

Wt. % of liquid trapped at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Average 

4000 0.23 0.05 0.14 

2000 0.07 0.04 0.05 

1400 0.03 0.01 0.02 

850 0.12 0.06 0.09 

600 0.14 0.06 0.10 

500 0.08 0.22 0.15 

425 0.15 0.13 0.14 

355 0.50 0.31 0.41 
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Table A- 4.6 provides the data for the weight percentage of agglomerates in the bed for each run 

and their average while operating at different impeller rotation speeds. 

 

Table A- 4.6: Details of the wt. % of agglomerates in the bed at different operating 

conditions for each run. TSP = 120 ˚C. 

Wt. % of agglomerates in the bed at 𝑻𝑺𝑷 = 120 ˚C 

Size cuts (µm) Run 1 

(40 RPM) 

Run 1 

(95 RPM) 

Run 1 

(130 RPM) 

Run 2 

(130 RPM) 

Average 

(130 RPM) 

4000 0.33 0.29 0.05 0.09 0.07 

2000 0.08 0.02 0.21 0.19 0.20 

1400 0.05 0.03 0.07 0.03 0.05 

850 0.06 0.09 0.13 0.08 0.10 

600 0.07 0.14 0.20 0.22 0.21 

500 0.07 0.17 0.12 0.17 0.14 

425 0.23 0.32 0.26 0.53 0.39 

355 0.86 1.11 1.20 1.28 1.24 

 

 

 

 



80 
 

 

Tables A- 4.7, A- 4.8 and A- 4.9 provide the data for the weight percentage of agglomerates in 

the bed for each run and their average while operating at different impeller rotation speeds. 

 

Table A- 4.7: Details of the wt. % of agglomerates in the bed at impeller rotation speed = 

40 rpm. TSP = 130 ˚C. 

Wt. % of agglomerates in the bed at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Run 3 Average 

4000 0.19 0.58 0.49 0.42 

2000 0.07 0.45 0.28 0.27 

1400 0.02 0.13 0.21 0.12 

850 0.07 0.34 0.37 0.26 

600 0.16 0.31 0.39 0.29 

500 0.14 0.21 0.22 0.19 

425 0.32 0.33 0.42 0.35 

355 1.12 1.2 1.23 1.18 
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Table A- 4.8: Details of the wt. % of agglomerates in the bed at impeller rotation speed = 

95 rpm. TSP = 130 ˚C. 

Wt. % of agglomerates in the bed at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Run 3 Average 

4000 0.28 0.13 0.09 0.16 

2000 0.03 0.09 0.10 0.07 

1400 0.01 0.07 0.06 0.05 

850 0.02 0.03 0.06 0.04 

600 0.06 0.03 0.01 0.03 

500 0.07 0.05 0.08 0.06 

425 0.17 0.17 0.24 0.19 

355 1.00 0.99 1.10 1.03 
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Table A- 4.9: Details of the wt. % of agglomerates in the bed at impeller rotation speed = 

130 rpm. TSP = 130 ˚C. 

Wt. % of agglomerates in the bed at 𝑻𝑺𝑷 = 130 ˚C 

Size cuts (µm) Run 1 Run 2 Average 

4000 0.16 0.08 0.12 

2000 0.04 0.02 0.03 

1400 0.02 0.01 0.01 

850 0.06 0.04 0.05 

600 0.06 0.03 0.04 

500 0.05 0.10 0.07 

425 0.23 0.42 0.32 

355 1.12 1.16 1.14 
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Appendix B- Heat Transfer study 

B- 1 Induction Heating System used for Small MFR and Large 
MFR 

The Small Mechanically Fluidized Reactor (MFR) is using a different induction heating system 

to carry out all the experiments related to Chapter 4, 5. The Induction Heating Machine (IMS-2) 

has a very flexible heating process control. IMS-2 is a medium frequency (30-80 kHz) induction 

heater (Superior Induction Company, Pasadena, CA). 

The use of the previous Induction Heating Machine discussed in Appendix A- Agglomerate 

formation study is not done as higher temperature conditions and continuous supply of heat to 

the system are the requirements for all the tests. A much more powerful system with high heating 

speed, therefore, needs to be used. All the tests done with Small MFR and Large MFR uses 

IHM-2. Below mentioned are some of its specifications: 

Table B- 1.1: Specifications of the induction heating system using IHM-2. 

Model 
SI – 12KW 

Voltage 230 V (3 phase) 

Input Power 15 kVA 

Output Power 12 kW 

Output Frequency 30 – 80 kHz 

Output Current 1000 A 

Auto Heating Time 1 – 99 seconds 

Auto Cooling Time 1 – 99 seconds 

Air Cooling Rear Fan 

Heat- Station Weight ~ 35 kg 
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The induction system uses copper coil which are wrapped carefully on the walls of the reactor 

and then connected to the terminals on the induction unit. The system uses water at a certain flow 

rate for cooling itself and allows the continuous flow of water from the two inlet ports at the back 

of the Heat- Station. Also, there are four outlet ports situated at the back of the Heat- Station (for 

the heated water which comes from the coil wrapped on the walls of the reactor) which are then 

connected using four tubes to a single water exit pipe and the water can thus be drained. 

 

Figure B- 1.1: The Heat-Station of the induction heating system using IHM-2. 

For experiments performed with Small MFR, about 3 kW of power is supplied for heating 

requirements. Similarly, the experiments performed with Large MFR uses the IHM-2. The power 

supplied in order to carry out the experiments in the Large MFR is about 6.5 kW. This allows the 

system to be rapidly heated and achieve a very high temperature in the bed and the wall of the 

reactor given its bigger size compared to the Small MFR. 
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B-2 Sample Overall Heat Transfer Coefficient Calculation 

The experiment is performed at 𝐹𝐿 = 5 ml/min (8.33E-05 kg/s) and different impeller rotation 

speeds. 

Table B- 2.1: Example of the calculation for Overall Heat Transfer Coefficient for Chapter 

4, 5. 

RPM 

𝑇𝑏𝑒𝑑  

(˚C) 

𝑇1 

(˚C) 

𝑇2 

(˚C) 

𝑇3 

(˚C) 

𝑇𝑤𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 

(˚C) 

𝑇𝑤𝑆𝑇𝐷𝐸𝑉
 

(˚C) 

𝛥𝐻𝑣 

(
𝑘𝐽

𝑘𝑔
) 

𝑈 

(
𝑊

𝑚2. 𝐾
) 

0 587 673 755 778 735.3 55.2 3583.5 49.7 

22 615 677 740 788 735 55.6 3641.7 62.4 

40 622 676 745 789 736.6 56.9 3656.3 65.6 

61 624.5 680 744 783 735.6 52.0 3661.5 67.7 

79 625.5 685 745 783 737.6 49.4 3663.6 67.2 

95 625 692 744 783 739.6 45.6 3662.5 65.7 

112 624 698 744 783 741.6 42.5 3660.4 64.0 
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Table B- 2.2: Input for calculating the superficial gas velocity. 

GAS DENSITY kg/m3 0.24 

GAS VISCOSITY kg/s/m 3.36E-05 

GAS THERMAL CONDUCTIVITY W/ (m. K) 0.083 

GAS HEAT CAPACITY J/ (kg. K) 2220.5 

LIQUID FLOWRATE kg/s/m 8.33E-05 

SUPERFICIAL GAS VELOCITY 

m/s 

mm/s 

0.0426 

43 
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