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Abstract

Cardiovascular diseases (CVD) are currently the leading cause of death worldwide and

x-ray angiography is used to assess a vast majority of CVD cases. Digital subtraction an-

giography (DSA) is a technique that is widely used to enhance the visibility of small vessels

obscured by background structures by subtracting a mask and contrast image. However,

DSA is generally unsuccessful for imaging the heart due to the motion that occurs between

mask and contrasted images which cause motion artifacts. An alternative approach, known

as dual-energy or energy subtraction angiography (ESA) is one that exploits the iodine k-

edge by acquiring images with a low and high kV in rapid succession. The idea for ESA is

to bring the benefits of DSA to cardiac imaging without motion artifacts. However, it was

concluded in 1970’s that image quality for ESA could not compete with that of DSA, and

the approach was abandoned. We believe that this was due to technical limitations. In our

work we show that conclusions about iodine SNR for ESA were based on limitations of

early technical components that are no longer relevant. The goals of this thesis were to: 1)

develop a theoretical model of iodine SNR that is independent of technology for DSA and

ESA and validate our theory with experiment, and then factor in technical components; 2)

optimize the iodine SNR for ESA based on parameters that a user can control; 3) image

ESA in an anthropomorphic phantom to visualize bone suppression. It is shown that scatter

and read noise were technical components that degraded iodine SNR for ESA in the past

and both can overcome today. It is concluded that, when these conditions are satisfied, ESA

iodine SNR equal to that of DSA for low iodine mass loadings (sufficient for artery sizes)

for the same patient entrance exposure, and therefore may provide alternatives to DSA in

situations where motion artifacts are expected to render a study as non-diagnostic, such as

in coronary applications. In the future this will have important applications for subtraction

imaging of the coronary arteries and other vessels where stenosis is vital to patient health.
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Chapter 1

Introduction

1.1 Prevalence and forms of cardiovascular diseases (CVD)

According to the World Health Organization (WHO) cardiovascular diseases (CVDs) are

currently the leading cause of mortality worldwide.[3] In 2011, Statistics Canada reported

that the leading cause of death and acute care hospitalizations in Canada were CVDs, ac-

counting for 30% of all deaths and 3 million hospitalizations.[15] In 2012, the organization

estimated that 17.5 million people died of CVD, representing 31% of all global deaths.[145]

In 2015, the Heart and Stroke Foundation reported that heart disease is the leading cause of

death and disability in Canada, responsible for approximately 66,000 deaths each year.[39]

Cardiovascular disease is any disease involving blood vessels and all of these diseases

involve atherosclerosis which is defined as the incomplete or complete blockage of blood

vessels.[7] The etiology of atherosclerosis is described as the narrowing of the inner surface

of an artery that is caused mainly by cholesterol uptake of white blood cells that accumulate

along the inside of the vessel wall.[8] Examples of prevalent forms of CVDs resulting from

atherosclerosis are coronary artery stenosis, carotid artery stenosis and cerebral aneurysms,

acute limb ischaemia and pulmonary embolisms, and arteriovenous malformations (AVM)

and renal artery stenosis.[7]
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1.1.1 Coronary Artery Disease

In 2013 coronary artery disease (CAD) was the leading cause of death of all the CVDs.[92]

Coronary artery disease develops when atherosclerosis occurs in the major blood vessels

(coronary/epicardial arteries) that supply blood, oxygen and nutrients to the myocardium

of the heart become damaged or diseased and may result in heart attacks and chest pain.

1.1.2 Other forms of CVD

WHO describes many other forms of CVD depending on the location the blood vessels

are supplying. For example, cerebrovascular disease results from atherosclerosis in the

carotid arteries leading to the head area and peripheral disease results from stenosis in

blood vessels supplying the arms and legs. Another example is a pulmonary embolism

(PE) is a blockage in one of the pulmonary arteries of the lungs which may be caused

by a blood clot, fat globule, gas bubble or foreign material that travels to the lung from a

blood vessel in the leg. In the case of PE not only does atherosclerosis impede the amount

of blood traveling from the heart to the lungs, it causes increased pressure to the right

ventricle thereby increasing blood pressure. The embolisms that originate from either the

heart and pelvic region travel towards arteries in the leg, thigh, and lower limbs and cause

acute limb ischaemia. Renal artery stenosis is caused by atherosclerosis that impedes blood

flow to the target kidney in turn causing high blood pressure and atrophy of the affected

kidney. CVD in any location can result in high blood pressure and has considerable impact

on human health.

1.1.3 History of diagnostic techniques for CVD

CVD can affect an individual’s health in many ways, therefore diagnostic images need to

provide information on the location and severity of arterial narrowings (stenosis) for an

accurate diagnosis.
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1.1.3.1 Electrocardiogram limitation

Studies by Waller[141] in 1887 led to Einthoven inventing a string galvanometer. By hook-

ing the galvanometer up to a patient and measuring various types of deflections[48] the

electrocardiograph features could be used to describe and distinguish, and therefore diag-

nose, various cardiovascular diseases.[106] Today electrocardiography (ECG) is a device

that detects electrical changes on the skin that arise from the myocardium depolarizing

during each heartbeat.[72, 142] ECG is a commonly used diagnostic tool because it is sim-

ple to use, cost effective, and capable of diagnosing a diverse number of heart conditions.

However, a major limitation of ECG is not having information on the specific location and

severity of the artery narrowing.

A discovery in the 1890’s would change that.

1.1.3.2 X-ray imaging

In 1895 Willhelm Roentgen discovered the production and detection of electromagnetic

radiation in a wavelength range known as x-rays. He demonstrated this by taking an x-ray

image of his wife’s hand using film and even though the image appeared to be grainy there

was contrast between the bones in her fingers, her ring and the background. There was a

small group that picked up on x-ray imaging and noticed that blood vessels did not show up

in the radiography image, and a year later they demonstrated that contrast could be created

with use of a radio-opaque agent.

1.1.3.3 Contrast agents

In 1896, Haschek and Lindenthal were the very first group to demonstrate that vasculature

could be seen in a radio graphic image by injecting calcium carbonate into cadavers.[1]

Although this was an exciting discovery, they reported that calcium carbonate would not

work in living beings. It was discovered later, in the 1920s, by Sicard and Forestier[115]

that iodine-based contrast agent could be injected into a living human subject and since then
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calcium, bone, water, and gadolinium.

iodine has remained the most commonly used contrast agent in x-ray angiography.[28, 42,

43, 69, 70] The advantage of iodine over calcium carbonate is a K-edge at approximately

33.9 keV where the probability of photoelectric effect increases by a factor of 5, shown

in Fig. 1.1.1. Iodine-based contrast agents were not used for imaging coronary arteries

specifically until cardiac catheters were developed that would allow for selective injection

of a contrast agent into the coronary arteries.

1.2 Cardiac catheterization

The concept of catheterization (without contrast injection) actually began in the early

1700’s when Stephen Hales placed a long, thin, flexible tube, into the right and left ventri-

cles of a live horse with the purpose of understanding the vascular system.[93] Variations

on the technique were performed over the subsequent century until the 1840s when Claude

Bernard picked up catheterization and used it to formally study cardiac physiology.[19] In
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1927, not long after Sicard and Forestier demonstrated that iodine-based contrast agents

can be used in live humans.[115] Around the same time, Dr Moniz for the first time used a

catheter to inject iodine into vessels of the brain and imaged the head using x-rays, a method

know today as cerebral angiography.[11] In 1929 Dr Werner Forssmann reported that he

created an incision in one of his left antecubital veins and inserted a catheter into his ve-

nous system and then guided the catheter into his right atrium by taking many x-ray images

to see inside his body.[29] In 1958 Dr Charles Dotter developed aortic root aortography

where he would guide a catheter towards the aortic root and radiography contrast agent to

visualize the coronary arteries very well.[25] He performed this procedure using animal

models and reported that all animals survived afterwards. Mason Sones performed aortic

root aortography later that year and reported that he had accidentally inserted a catheter into

the patient’s right coronary artery as the patient went into ventricular fibrillation and this

resulted in the first known example of selective coronary arteriogram. The patient survived

this procedure and it showed that contrast agent injected into the coronary artery was not

fatal as was previously thought.[118]

1.2.1 Conventional angiography

In the early 1960s, angiography was emerging as a diagnostic procedure used for imaging

patients that are candidates for having CVD. The purpose of performing angiography is to

obtain an image with information on the location and severity of arterial stenosis. X-ray

radiography is the most common imaging modality used for angiography[13, 62, 81, 23, 58]

despite advances in other modalities such as intravenous ultrasound, CT, and MRI.[73,

123, 108] The advantage of using radiographs for angiography is that the images give a

complete description of the stenosis with image resolution on the order of 0.1 mm.[126]

However, the problem with angiography images is that in order to clearly see contrast

between iodine-filled blood vessels from light and dark background structures such as lung

and bone, respectively, the requirement is high radiation exposure and high concentrations
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a) b) c)

Figure 1.2.1: a) Mask image (left), b) DSA (center), c) and DSA with motion artifacts
(right). Figure demonstrates how DSA images can be compromised by patient motion be-
tween mask and contrast images. (Permission to use images, image a) taken from reference
[10] copyright line © 2008 IEEE, image b) taken from reference [10] copyright line © 2008
IEEE, and image c) taken from reference [10] copyright line © 2008 IEEE).

of iodine.

1.2.2 Necessity for subtraction methods for angiography

1.2.2.1 Digital subtraction angiography

Digital subtraction angiography (DSA) was discovered in the 1970’s as a way of removing

overlying bone, lung fields, and soft-tissue to produce iodine-specific images.[86, 4] A

series of images of the anatomy (mask image) are acquired and subtracted from a series

of images acquired after administration of iodine (contrast image) for the same region of

interest. DSA can provide a clear image of the blood vessels where fig. 1.2.1 shows a

single mask image, a DSA image with motion artifacts removed using motion correction,

and DSA image with motion artifacts. DSA is primarily used for imaging arterial and

venous occlusions, including carotid artery stenosis, pulmonary embolisms (pulmonary

angiography) and acute limb ischaemia, renal artery stenosis, and cerebral aneurysms and

arteriovenous malformations (AVM).[41, 98] The technique has been successfully used

for mapping cerebral blood flow, detecting obstructions and lesions in the carotid arteries,

and is also used for assessing patients prior to surgery and after coronary artery bypass

surgery. DSA using radiography is considered the reference standard for vascular imaging
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[65, 41] and it is therefore the reference technique that will be used when comparing new

methods.[99]

1.2.2.2 Problem with digital subtraction angiography

The problem with DSA is that any motion that occurs in the several seconds between mask

and contrast image acquisitions gives rise to motion artifacts, shown as light and dark

regions, in the image and can render a study non-diagnostic.[78] Although software tools

are available to assist with image registration for in-plane translation [139, 138, 140, 71,

137, 40, 147, 78, 10, 94] or rotation motions,[139, 138, 140, 71, 137, 260, 20, 40, 147,

78, 10, 94] cardiac and respiratory motion, swallowing after injection (carotid arteries),

uncooperative patients, bowel and other involuntary motion remain the primary cause of

failed image quality.[13, 17, 128] It is the need for a mask image that compromises image

quality for DSA.[124]

1.2.3 The need for energy-dependent angiography

1.2.3.1 Introduction to dual-energy subtraction angiography

In 1953 Jacobson first attempted dual-energy subtraction using dichromatic absorption

radiography.[49] Iodine-specific images were obtained by acquiring two images with low

and high energies to exploit the K-edge discontinuity of the iodine mass attenuation coefficient.[4]

This dual-energy subtraction concept developed throughout the late 1970’s with notable

studies by Mistretta,[86, 85, 84, 80, 81, 83, 87, 82] Kelcz,[59, 60] and other colleagues at

the University of Wisconsin. Dual-energy was proposed as an alternative method to DSA

for vascular imaging because it eliminated the need for a mask image.[86, 59, 105, 63, 46,

4] The idea was to implement a fast kV-switching generator to acquire low and high-kV im-

ages in rapid succession thereby making dual-energy angiography less sensitive to motion

artifacts by eliminating the need for a mask image.[46, 13, 37, 90, 135] Early dual-energy
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Figure 1.2.2: DSA (left) and ESA (right) images of an IV injection of the heart acquired in
the 1990’s. (Image taken from Ref. [135] Permission to reproduce is in Appendix.)

cardiac images published by Molloi and Mistretta[90] and Van Lysel[134, 135, 132, 136,

133] were exciting and demonstrated excellent insensitivity to motion artifacts. However,

clinical implementation of energy subtraction was not generally adopted and showed less

image quality in comparison to non-subtracted cardiac angiography. Fig 1.2.2 shows a

dual-energy image of a dog’s heart with the use of gating.

There are three well-known methods for energy-based subtraction described K-edge

subtraction, [148, 86, 46, 13, 59, 60] triple-energy,[146, 59, 60, 107] and dual-energy.[121,

31, 66, 9, 30, 95, 114, 5, 13, 46, 37, 64, 4, 38, 74, 91, 90] each with their own benefits and

limitations discussed in the next sub-sections.

1.2.3.2 K-edge subtraction

Jacobson[49] used x-ray sources with secondary radiation[18] to generate monoenergetic

x-ray beams with energies that were below and above the iodine k-edge. However despite

the ability to quantify iodine concentrations these secondary radiator sources were gen-

erally limited by low x-ray intensity and were not widely accepted as imaging tools.[84]

Atkins et al. and Kramer et al. used solid state detectors for analyzing the energy of each

photon forming the image produced by a conventional x-ray generator. Mistretta et al.[84]

later demonstrated k-edge subtraction with quasi-monoenergetic spectra x-ray sources so
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that higher quality images can be obtained in shorter times. However these energy analyses

for each photon is time consuming and not practical.

In 1979 Houk et al.[46] demonstrated the method described by Mistretta in the left and

right ventricles of a dog with minimal motion artifacts. Like Mistretta, Houk found that to

generate quasi-monoenergetic beams in the clinic is impractical because it requires heavy

filtration of low kV x-ray spectra and the very low number of photons at the kV of the x-ray

spectra.[86, 46] The spectral width decreases with increasing filter thickness, however the

number of photons decreases too, therefore the exposure time needs to increase in order to

accumulate more photons. The number of photons used to generate a K-edge subtracted

image can be a factor of 55-60 lower than DSA.[13]

In 1997 Zhong et al.[148] used emissions from barium and cerium targets and were

successful at imaging stationary objects. However this method was not successful for

imaging coronary arteries because of the time required to generate sufficient x-ray ex-

posure levels. The limited number of photons often resulted in incomplete soft-tissue

and bone suppression and also reduced iodine signal-to-noise ratio (SNR) compared to

DSA.[84, 59, 60, 13, 12] This limits K-edge subtraction to imaging areas where the x-ray

beam is projected through a relatively short path.

The problem of soft-tissue and bone suppression was later addressed and a triple energy

method was proposed.

1.2.3.3 Triple-energy subtraction angiography

The goal of the triple-energy approach is to suppress both soft-tissue and bone from an-

giographic images by subtracting three images acquired with x-ray spectra each having

different mean energies. Kelcz et al.[59] used a triple-energy approach using three filters

and three kV to reduce pixel-intensity variations caused by residual soft-tissue and bone

variations. However the required filters need to be thick so that the spectra do not over-

lap. Kelcz implemented a three-spectrum approach with 46, 54, and 62 kV x-ray spectra
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filtered with iodine, cerium, and lead, respectively. While their approach suppressed soft-

tissue and bone, the iodine-specific images suffered from severely reduced SNR due to

power limitations of x-ray tubes. There were so few photons reaching the x-ray detector

that iodine-specific images were severely compromised by noise associated with detector

electronics, and the method suffered from other limitations including increase in patient

dose, exposure time, and anode heat units.

As the concept of energy-based subtraction evolved, dual-energy approach became a

focus of investigation.

1.2.3.4 Dual-energy

The goal of dual-energy approach is to suppress either soft-tissue or bone from angio-

graphic images by subtracting of two images acquired with x-ray spectra having different

mean energies. This is most commonly performed using applied tube voltages of 50-70

kV and 120-130 kV for low and high kV spectra, respectively, with 2-2.5 mm of copper

filtration on the high kV spectrum.[37, 38, 134, 90, 91, 132, 133, 136, 88] This approach

aims to suppress soft-tissue structures because they are the primary surrounding tissue that

move like the heart, for example. Since bone is not fully suppressed in these images,

early investigators subtracted pre-injection dual-energy images from post-injection dual-

energy images to remove overlying bone structures, similar to DSA.[37, 38, 135, 132]

Guthaner et al[37, 38] demonstrated that in cooperative patients this approach combines

the benefits of bone suppression offered by DSA. Molloi et al[90] who used a dual-energy

approach to quantify canine coronary arteries and, while bone was not fully suppressed

from images, soft-tissue suppression resulted in superior iodine visualization compared to

non-subtraction approaches. Also similar approaches have been useful in quantifying left-

ventricular ejection fraction.[91, 135] Dual-energy approaches use much thinner filters than

K-edge subtraction and three material compositions, however these early studies suffered

from reduced SNR compared to DSA by at least a factor of 2-5. [37, 38, 74, 90, 91]
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Early investigators used image intensifiers with video cameras.[74, 133, 143, 104, 101,

103] While these technologies were widely used for DSA, they suffered from veiling glare

and other limitations that compromised the low-noise linear response required for dual-

energy imaging.[111, 112] Even with the introduction of early flat-panel detectors,[258, 5,

104, 113, 27, 26, 109, 103, 100, 6, 124] Molloi et al.[26] showed only modest improve-

ments in dual energy image quality.

1.2.3.5 Approaches to dual-energy

Three approaches to dual-energy imaging have been developed and reported over the years.[114,

5] The first method described requires a single kVp and dual-filtering at the source to

generate two different beams, one with mean energy directed towards the kV peak and

the other with a mean energy above the k-edge energy of the contrast agent.[114] This

approach was not widely accepted because of poor separation of low and high energy

spectra. The second approach is one that uses a single exposure where two radiation

detectors that have different energy sensitivities separated by a filter are “sandwiched”

together . The advantage of this approach is that patient motion misregistration arti-

facts are reduced and it is therefore a preferred method for detecting small calcified le-

sions in the lung in chest radiography.[9, 95, 30, 121, 31, 66] However, as with the first

method, poor separation of energy spectra results in a grainy image. The third approach

requires an x-ray generator to switch between two kilovoltages to produce low and high

kV image exposures that are acquired within milliseconds of each other.[114] Despite

technical complexity, the rapid kV value change seems to be a viable approach to im-

plementing the dual kV technique for dual-energy subtraction imaging without motion

artifacts.[4, 46, 13, 64, 37] Shaw et al[114] compared all three approaches and concluded

that two separate kV and mAs exposures acquired a few milliseconds apart has better spec-

tral separation between low and high kV acquisitions and therefore less noise compared to

the other two, however implementation of a generator that is capable of fast kV switching
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is not trivial. There are other problems that occur generally in a radiography setting with

scatter,[76, 14, 54, 32, 55, 131, 116, 50, 68, 77, 149] beam hardening,[75, 76, 14] and read

noise.

1.2.3.6 Limitations of early dual-energy studies

Early dual-energy studies had severely reduced SNR compared to DSA and non-subtraction

approaches [83, 37, 38, 135, 132, 133, 136, 88] due to the combination of inefficient pro-

duction of low-energy x-ray spectra and altering of high-energy spectra. In addition, early

dual-energy studies were carried out using an image-intensifier-television system that con-

vert x-ray energy to photons with wavelengths in the visible range in combination with

a video camera used to detect visible photons. The image-intensifier-television system

was limited by veiling glare[111, 112] and detector non-uniformities across the field of

view.[16, 34] Cameras used in many of these systems reportedly suffered from substantial

read-out lag that decreased the dual-energy iodine signal by 30-50% in some studies.[86,

87, 132, 88] Read-out lag, however, has minimal affect on DSA image signal because

mask and contrast exposures are acquired many seconds apart. New flat-panel detectors

which have emerged in the past few years do not have these limitations and also provide

other advantages not found in image-intensifier-television systems. Namely, they provide

high detector quantum efficiency (DQE) and a wider dynamic range.[119] However, one

of the remaining limitations of energy subtraction is the increased stochastic noise in the

subtracted image. Approaches to reduce dual-energy image noise have been previously re-

ported which use post-processing on the digitally acquired images.[52, 56, 74, 133, 44, 143]

These approaches work independent of the hardware used for image acquisition. Com-

plementary improvements in hardware design and technology also serve to improve im-

age quality. Past studies of dynamic dual-energy imaging have made use of x-ray image

intensifiers.[89, 90, 132, 133] Advances in detector technology have seen the introduction

of digital flat-panel detectors with high DQE, fast-frame readout capabilities and wide dy-
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namic range. Molloi et al.[26] compared the dual-energy image quality using a current

x-ray image intensifier and a digital flat-panel detector, and found that image quality was

similar for the same patient exposure.

1.2.3.7 Current state of dual-energy subtraction angiography

Early dual-energy studies used technology of the time and it is therefore unclear whether re-

duced image quality was a result of technological limitations or of the fundamental physics.

X-ray source and detector technologies have improved substantially over the past three

decades and the limitations described above may no longer apply. This suggests that it

may be the right time to revisit dual-energy with a focus on the image quality that can be

achieved for a given radiation dose to the patient and how this compares to DSA and would

it be less insensitive to motion artifacts.

1.3 Research problem

There is reason to believe that dual-energy methods, called energy-subtraction angiogra-

phy (ESA), can compete directly with DSA to produce high-quality angiographic images

for the same patient dose. For example, Tanguay et al.[124] compared image quality be-

tween DSA, ESA, and energy-resolving angiography (ERA) using a theoretical model that

was validated using a Monte-Carlo simulation for the application of photon-counting meth-

ods. They concluded that ESA and ERA (using photon-counting detectors with x-ray spec-

troscopy capabilities) could produce comparable image quality in terms of the iodine SNR

compared to DSA at low iodine concentrations. However, those calculations considered

only the fundamental SNR as determined by the physics of x-ray interactions, and were not

validated by experiment. These issues lead to the following research questions:

1. What limited ESA in the past? Was it a physical or technical limitation? If it is a

technical limitation, can we use new technology to make ESA successful today?
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2. Can we use physical parameters to optimize image quality in terms of iodine signal-

to-noise ratio for ESA and how does it compare with DSA for the same radiation exposure

and iodine mass loading?

3. Can we demonstrate that ESA works in an anthropomorphic phantom? Is the phan-

tom a good representation of a patient?

The questions posed are important because they indicate how much research effort

should be invested in developing ESA systems for applications in cardiac imaging. Answer-

ing these questions requires a thorough understanding of image formation and material-

specific imaging and how various technical and physical processes affect ESA image qual-

ity. It will also require understanding of engineering behind the design and implementation

of ESA in real-time.

1.3.1 Research objectives

1. To understand iodine signal and noise we will start our investigation by developing a

theoretical model to come up with a metric of comparison of iodine SNR using the Rose

model between DSA and ESA. We use the Rose model because it describes the minimal

SNR required for visual detection of a uniform low-contrast object of area A in a uniform

background with stationary noise and it only apply to a phantom with uniform background.

We also apply the Rose model to higher concentrations to include signal from thicker io-

dinated structures such as 1 mm arteries. To check if we did the math correctly, we will

validate our theoretical calculations for iodine signal-to-noise ratio for images obtained for

DSA and ESA. We can use our theoretical model to compare technical parameters that may

have affected ESA in the past.

2. To give a complete description and comparison of visual iodine detection for ESA

and DSAwe will extend our Rose model to include noise from iodine in DSA and ESA

images (Sum of Variances). We will use both the Rose and SOV theoretical models to op-

timize ESA and compare the iodine SNR for optimal parameters that the user may control
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such as the kVp and the mAs.. We will use a monoenergetic approximation of the iodine

SNR to optimize it in terms of the ratio of number of incident photons and relate it to the

mAs ratio for our polyenergetic calculation.

3. We will show how well ESA is able to suppress bone in an anthropomorphic phantom

(RANDO and DEXA wedges) while preserving iodine signal.

1.4 Thesis outline

The goal of this thesis is addressed in a series of 3 papers (Chapters 2 to 4) that have either

been published, submitted for publication, or have been prepared for publication.

1.4.1 Chapter 2: Energy subtraction angiography can compete with

digital subtraction angiography in terms of iodine Rose SNR

It is unclear why image quality for ESA was relatively poor compared to DSA in the past

despite investigations into image quality of ESA for computed tomography and mammog-

raphy, and radiography. It is therefore unknown whether dual-energy will generate iodine-

specific images with similar image quality relative to DSA for similar patient entrance

exposures with current technology that is available. It is difficult to compare both methods

without understanding the fundamental iodine signal and noise properties.

Chapter 2 describes a theoretical framework for characterizing image quality and form-

ing a metric of comparison between ESA and DSA. We validated our model by experiment

where ESA and DSA images of a vascular phantom were acquired using an x-ray system

with a flat panel CsI Xmaru1215CF-MPTM (Rayence Co., Ltd., Republic of Korea) detec-

tor. For ESA low and high applied tube voltages of 50 kVp and 120 kVp (2.5 mm-Cu),

respectively, and for DSA mask and contrast images the applied tube voltage was 80 kVp.

Using iodine-specific images of a stepwedge the iodine signal-to-noise ratio (SNR) per Ki-

netic Energy Released per unit mass (KERMA) in air was calculated for each iodine mass
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loading for both ESA and DSA.

We show similar iodine-specific images for DSA and ESA for similar patient entrance

exposures. Our experimental results are in excellent agreement with our theoretical calcu-

lations. A 500 μm CsI thickness can increase the iodine SNR per root exposure by 15-30%

compared to thinner CsI thicknesses in older detector models. The acceptable read noise

for ESA needs to be a factor of 5 lower than DSA and the acceptable scatter-to-primary

ratio for ESA needs to be 0.05 in order for ESA to achieve similar iodine SNR per-root air

KERMA to DSA. We show experimentally that we can achieve a scatter-to-primary ratio

of 0.03-0.05 by increasing the air gap to 30 cm, which is a reasonable air gap used for

fluoroscopy.

We conclude that ESA under these conditions is possible and has the potential to pro-

duce iodine-specific images similar to DSA for similar patient entrance air KERMA. ESA

may potentially be used for background removal in situations where DSA cannot be used

such as cardiac imaging.

[This chapter was published as the article “Energy subtraction angiography can compete

with digital subtraction angiography in terms of iodine Rose SNR” by Christiane S. Burton,

John R. Mayo and I. A. Cunningham, Medical Physics 43(11) 5925-5933 (2016).]

1.4.2 Chapter 3: Optimizing iodine SNR per root air KERMA for

energy-subtraction methods

Once the theoretical framework had been established and validated for DSA and ESA io-

dine SNR we optimized physical parameters to achieve the best possible iodine SNR. A

notable optimization study for dual-energy by Van Lysel[133] showed using a trial and er-

ror approach that the best results were obtained using a low-energy kV setting of 50 - 55 kV

and the highest possible high-kV setting, coupled with a 1.5-2.0 mm beam-hardening filter

on the high-energy spectrum to increase spectral separation[60] (minimize overlap). We

show in chapter 2 that when scatter and detector read noise are taken into consideration
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the iodine SNR for ESA is equal to that of DSA for low iodine mass loadings and for sim-

ilar patient entrance exposure. Image quality is a combination of physical and technical

parameters, therefore it is still unknown whether dual-energy is also limited by physical

parameters.

In Chapter 2 we demonstrated that energy subtraction angiography under special and

practical circumstances has similar iodine signal-to-noise ratio (SNR) for similar patient

entrance air KERMA compared to digital subtraction angiography, the reference standard.

However, the parameters used to achieve an iodine SNR were for a single technique and

may have been sub-optimal, and therefore it is necessary to perform an optimization study.

Image optimization can be determined by the mAs ratio in both the high and low kV beam

for a fixed entrance exposure. In this paper the authors show mAs ratios that will yield

optimal or near optimal (within 10% of optimal) iodine SNR per root air KERMA for

ESA. Iodine SNR per root patient entrance air KERMA was optimized with respect to the

mAs ratio (low/high) kV exposure. The mAs ratio is optimized for ESA by varying the

ratio between the low and high mAs for three different water thicknesses and kVps of 50,

60, and 70 kV. The low kV of 50 kVp and a copper filter thickness of 2.5 mm for high

kVp of 120 kV will yield the best possible iodine SNR per root air KERMA compared

to 60 and 70 kVp. For ESA to translate to the clinic we looked at the iodine SNR for

detector materials that are commercially available such as CsI, Gd2O3, and Se for material

thicknesses of 0.4, 0.4, and 0.1 mm. We concluded that for ESA, techniques of 50 kV and

120 kV (2.5 mm copper) ESA should use an mAs ratio of 1.0, for 60 kV the optimal mAs

ratio is 0.5, and for 70 kV the mAs ratio should be 0.3 for all patient thicknesses. The issue

of heat loading may be overcome with use of a fast kVp-switching x-ray machine so that

fewer images may be acquired.

[This chapter consists of the manuscript “Optimizing iodine SNR per root air KERMA

for energy-subtraction methods” by Christiane S. Burton, John R. Mayo and I. A. Cunning-

ham, being submitted for consideration for publication by Medical Physics.]
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1.4.3 Chapter 4: Residual bone signal for dual-energy subtraction an-

giography

Once we discover what combined parameters will give optimal or near-optimal iodine SNR,

the next step is to look at how well our dual-energy method works in an anthropomorphic

phantom. A key study by Liu et al.[229] looked at dual-energy for a three material decom-

position where they used mass conservation to express the third material in terms of total

mass and found that the three material decomposition produced more accurate Hounsfield

units for CT compared to a two-material decomposition for a three-material composition.

Other studies looked at differentiating iodine from other material such as calcified plaque

in the arteries in CT.[53, 36, 127, 24, 173, 178, 57, 125, 110, 79, 96] Van Lysel[135] has

also shown that bone may be partially suppressed in dual-energy images. However, little

has been done to address removing bone for dual-energy for a three material composition

of iodine, water, and bone. The purpose of this study is to show what parameters are needed

for suppressing bone from a dual-energy image and show the effect bone suppression has

on the iodine signal.

We use two phantoms to demonstrate the effect of bone removal for iodine signal.

The first phantom used for this study consists of iodinated stepwedge submerged in 20 cm

thickness of water and bone-mimicking DEXA wedge material (SB3; Gammex-RMI, Mid-

dleton, WI, U.S.A.)[35, 45, 77, 33] that is attached to the outside surface of the tank. We

acquired images of the iodine stepwedge and DEXA wedge together, and we took images

of each wedge separately to calculate the transmission factor of iodine and DEXA material

for each thickness. The second phantom consists of RANDO anthropomorphic vascular

phantom,[2] a thin 2 cm thickness tank of water, and water-equivalent iodine-filled tub-

ing submerged in the thin tank of water placed right up against the back of the RANDO

phantom. In both cases we used a 30 cm air gap from Chapter 2 between the surface of

the phantom and the surface of the detector. We used a very-low noise CsI/CMOS de-

tector (Xmaru1215CF-MPTM, Rayence Co., Ltd., Korea) with square 49.5 µm elements
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and 0.5 mm CsI. ESA images were acquired using a fast kV-switching generator (EMD

Technologies, Montreal Canada) operating in single-exposure mode with several seconds

between high and low-energy exposures. The ESA images were acquired using low kV of

50, 60, and 70 kV and a fixed high kV of 120 kV with 2.5 mm of copper filtration. We as-

sessed whether the tubing used is water equivalent or not by filling the tube with water, then

submerging the tube in water and acquiring images of the tubing at 50, 80 and 120 kV. We

excluded the tubing that was visible compared to the background in the image. We attached

small lead pieces to the end of each tube. For the tubes that we could not see we took an

image profile in the x-direction of the image near the lead strip and plot it against the pixel

values of the image. We used Amber Natural Latex Tubing with 1/8” inner diameter (I. D.)

and wall thickness of 1/32”.

In this study we show that soft-tissue suppression will preserve the iodine signal while

weighting to remove cortical bone will suppress the thin DEXA steps only and increase

image noise. Removing soft-tissue rather than bone would be better for iodine signal.

We also show the with RANDO phantom that different weights affect how well iodine and

bone-mimicking material can be visually seen in the image. With a weight of 0.2 the iodine

signal appears to be completely suppressed along with the bone-mimicking material, but as

the weight increases both iodine and bone signal appear in the image. Weights of 0.5 and

0.55 preserve the iodine signal and show better suppression of bone compared to images

with weights of 0.6 and 0.8. We suggest that for 60 and 120 kV that a weight of 0.5 or 0.55

be used for imaging a three material composition. We show the benefits of dual-energy

imaging compared to a single kV image of the RANDO vascular phantom where in the

single kV image the iodine signal shows little contrast to the background.

We show that when using bone weighted ESA images the iodine signal decreases com-

pared to soft-tissue subtraction. We show that iodine signal is very low with DEXA wedge

signal cancellation for thin DEXA wedge thicknesses of 0.1 and 0.4 cm, and in practice we

show that these ESA images will appear quite noisy compared to soft-tissue weighted ESA
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images. We show that with an anthropomorphic phantom that ESA better removes soft-

tissue and partially removes bone-mimicking material compared to conventional single kV

image.

We conclude that soft-tissue weighted imaging is optimal for preserving iodine signal,

partial bone removal (particularly thin bone), and ESA image noise. For 60 and 120 kV the

weight needed to preserve iodine and partially suppress bone-mimicking material the best

is between 0.5 and 0.55. We conclude that for a 3 material composition of iodine, water, and

bone, water is the material that needs to be removed. In a future study we plan to consider

addressing performing ESA in real-time similar to fluoroscopy for cardiac imaging.

[This chapter is a draft manuscript of an article to be submitted for publication “Bone

removal for dual-energy subtraction angiography” by Christiane S. Burton, John R. Mayo

and I. A. Cunningham.]

1.4.4 Goals and objectives

Image quality is determined by a combination of many physical and technical parame-

ters. In this thesis we examine the fundamental signal and noise characteristics that can

be achieved using both energy-based subtraction and DSA methods for the similar patient

entrance exposures. Results are validated experimentally in a phantom study and the tech-

nical parameters required to achieve near ideal image quality are identified. It is shown that

under many situations of practical importance, ESA can have image quality that compares

favourably with DSA.
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Chapter 2

Energy subtraction angiography is

comparable to digital subtraction

angiography in terms of iodine Rose

SNR

This chapter is adapted from a manuscript entitled “Energy subtraction angiography is

comparable to digital subtraction angiography in terms of iodine Rose SNR” by Christiane

Sarah Burton, John R Mayo and I. A. Cunningham, Medical Physics, 43(11) 5925-5933

(2016).
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2.1 Introduction

Cardiovascular disease (CVD) is the leading cause of mortality worldwide.[3] It was esti-

mated that 17.5 million people died of CVD in 2012, representing 31% of all global deaths,

and of these, an estimated 7.4 million were due to coronary artery disease.[73, 7]

Angiography is widely used in the assessment and treatment of CVD[230] and digital

subtraction angiography (DSA)[65] remains the reference standard for most non-cardiac

imaging. DSA requires the acquisition of a series of images acquired before, during and af-

ter injection of an iodinated contrast agent, with subtraction of selected mask (pre-injection)

images from contrasted (post-injection) images to suppress non-iodinated structures. How-

ever, acquisition of mask and contrasted images may be separated by several seconds and

patient motion can introduce artifacts that may render a study non-diagnostic.[78] Although

many software tools have been developed to assist with image registration for in-plane

translation and rotations,[71, 137, 40, 78, 214, 94] uncooperative patients and involuntary

motions (e.g. respiratory, swallowing and bowel gas) remain the primary cause of poor im-

age quality.[13, 17, 128] As a consequence, DSA remains largely unsuccessful for cardiac

imaging[213] where non-subtracted angiography requiring higher radiation exposures and

iodine concentrations remains the standard.

Dual-energy angiography was proposed in the 1970’s[86, 59, 4, 105, 63, 46] as a

method for suppressing non-iodinated vasculature by exploiting the energy-dependence

of the iodine mass-attenuation coefficient relative to that of other tissues.[74, 91, 135, 177]

When implemented using a fast kV-switching generator to acquire low and high energy im-

ages in rapid succession, dual-energy angiography has the potential of being less sensitive

to motion artifacts by eliminating the need for a mask image.[37, 135] Early dual-energy

cardiac images obtained by Molloi and Mistretta[90] and Van Lysel[135] were exciting and

demonstrated reduced sensitivity to motion artifacts. However, energy subtraction showed

poor image quality in comparison to conventional methods and was not generally adopted.
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Instrumentation available to early investigators was based on image intensifiers with

video cameras.[56, 74, 177] These systems suffered from veiling glare[111] and other lim-

itations that provided few options for modifying exposure parameters and compromised

the low-noise linear response required for dual-energy imaging. Even with the introduction

of early flat-panel detectors,[5, 262, 26, 6] Molloi et al.[26] showed only modest improve-

ments in dual energy image quality.

Image quality is determined by a combination of fundamental physics and technical

considerations. While early studies identified an opportunity for dual-energy methods, they

did not identify whether poor image quality resulted from the physics of x-ray interactions

or from engineering limitations of the day.

There is reason to believe that dual-energy methods, called energy-subtraction angiog-

raphy (ESA) in this article, can compete directly with DSA to produce high-quality an-

giographic images for the same patient exposure. For example, Tanguay [124] compared

image quality using DSA, ESA, and photon-counting-based energy-resolving angiography

(ERA) with a theoretical model that was validated using a Monte-Carlo simulation. They

concluded that ESA and ERA could, in principle, produce comparable image quality in

terms of iodine SNR relative to DSA at low iodine concentrations. Similar results were

shown by Burton et al.[218] in our group with a theoretical model that was experimentally

validated, showing that ESA could have image SNR similar to DSA with an ideal imaging

system. Results from that work differ numerically from the present study due to the use of

a sum-of-variances method to estimate image noise rather than the Rose SNR used in this

study.

In this article we generalize these results to include the effects of detector readout noise,

quantum efficiency and x-ray scatter in a comparison of signal and noise using ESA and

DSA. We identify the key system-performance metrics required to achieve near-ideal SNR

to show these would have been difficult or impossible to achieve a few years ago and remain

a modest challenge today.
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2.2 Theory

The success of ESA depends on its ability to produce high-SNR iodine-specific images

while suppressing non-iodinated structures. In this section we describe a basic model of

iodine signal and noise to compare image quality between ESA and DSA. We use the Rose

SNR,[235, 236] normalized by the square-root of patient entrance exposure, as a figure

of merit that is independent of exposure level. The model includes the effect of detector

quantum efficiency and readout noise, and (patient) x-ray scatter.

2.2.1 Rose SNR

Rose described the minimal SNR required for visual detection of a uniform low-contrast

object of area A in a uniform background with stationary noise. Assuming an “ideal picture

device”, he showed (with a change in variables) that[235, 236]

SNR≡C
Nb

σNb

(2.2.1)

must have a value of approximately five or greater for confident visual detection where

C = (qo−qb)/qb is the object contrast (relative incremental change in scene brightness),

qo and qb are the mean numbers of quanta per unit area (image brightness) in object and

background regions respectively, and Nb and σNb are the mean and standard deviation in

the number of background quanta measured in area A. For direct detection of independent

Poisson-distributed quanta, σNb =
√

Nb and Eq. (2.2.1) simplifies to the familiar form:[215,

252]

SNR =C
√

Aqb. (2.2.2)

Burgess[215] showed the Rose model to be a good approximation of the Bayesian ideal

observer assuming the number of quanta detected is sufficiently large that Nb has Gaussian

statistics.
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In this article we use the Rose SNR in Eq. (2.2.1) to describe visual detection of an

iodinated region having area A in a uniform water-only background. This is valid when

A is sufficiently large that all such non-overlapping regions are statistically uncorrelated.

Since in practice finite spatial resolution generally introduces correlations between pixels,

we sum NA×NA pixel values to create non-overlapping “binned pixels” of area A (described

below). This results in smaller images having (nearly) uncorrelated pixels of area A and the

Rose SNR can therefore be applied to each binned pixel.

We define dI and dW as binned-pixel values in iodinated and background regions, re-

spectively. Working with linear images where pixel values are proportional to q, Eq. (2.2.1)

gives

SNR =
dI−dW

σdW

, (2.2.3)

and assuming stationary noise, the discrete auto-covariance function of background regions

in binned images is

Kd[∆] = Kd[i− j] =
〈
(di−d)

(
d j−d

)〉
(2.2.4)

where di is the value of the ith binned pixel and ∆ = i− j. Since Kd[∆] = σ2
d for ∆ = 0 and

zero otherwise for uncorrelated pixels (only), we define the following condition as our test

of pixel independence:

R(NA) ≡
Kd[0]

∑
∆

Kd[∆]


= 1 uncorrelated

< 1 correlated
(2.2.5)

and use this condition to determine a value of NA that gives uncorrelated binned pixels.

It should be mentioned that negative correlations may exist between material-specific

images generated using dual-energy methods, such as between water and aluminum basis

images in bone-canceling applications.[56, 107] These are unrelated to the issue of pixel-to-
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Figure 2.2.1: Schematic illustration of iodine-filled step-wedge immersed in 20 cm of wa-
ter with incident quanta qo, transmitted quanta qW and qI in non-iodinated and iodinated
regions, respectively, and scattered quanta qS. Corresponding average binned pixel values
are dW and dI.

pixel correlations in our application of the Rose SNR to individual iodine-specific images.

2.2.2 Rose SNR/
√

KERMA

Our figure-of-merit (FOM) is the Rose SNR comparing binned pixels in iodinated and

background regions, normalized by the square-root of air KERMA incident on the test

phantom illustrated in Fig. 2.2.1. Background regions have only water along the x-ray

path with associated transmission TW(E) and iodinated regions have additional iodine with

transmission TI(E). The corresponding average x-ray spectral distributions (mm-2 keV-1),

projected onto the image plane, are given by

qW(E) = qo(E)TW(E)(1+ s) (2.2.6)

qI(E) = qo(E)TW(E)(TI(E)+ s) (2.2.7)

respectively where qo(E) is the unattenuated spectrum and s is the scatter-to-primary ratio.

For simplicity, we assume s is not a function of energy and scatter photons have the same
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Figure 2.2.2: Average energy absorbed in binned pixel per interacting photon, Ea(E) =
(Eab(E)+E)/2 where Eab is the tabulated absorbed energy.[161]

energy as primary photons. We accept this simplification since our interesting results are

obtained when s is small. We are also evaluating scatter for a patient thickness of 20 cm.

The average binned-pixel value and corresponding variance in background water regions

for an energy-integrating detector are then given by

dw = kA
∫ kV

0
qW(E)α(E)Ea(E)dE (2.2.8)

σ
2
dw

= k2A
∫ kV

0
qW(E)α(E)E2

a(E)dE +σ
2
R (2.2.9)

respectively, where k is a constant of proportionality, α is the detector quantum efficiency,

Ea is the average energy absorbed in the binned pixel with each interaction and σ2
R is the

detector additive readout noise. The value of Ea differs to E primarily due to escape of

characteristic emissions from the CsI. We make the assumption that, due to partial reab-

sorption of scatter photons, only half of this energy escapes the binned pixel area and use

Ea(E) = (Eab(E)+E)/2 as illustrated in Fig. 2.2.2 using tabulated values of Eab, the en-

ergy absorbed in CsI.[161] Corresponding expressions exist for dI and σ2
dI

in iodinated

regions.

Detector noise σ2
R in detector-signal units is dependent on the detector gain factor k. A
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hardware-independent method to quantify noise is in terms of the detector quantum-limit

exposure, KL, defined as the exposure (air KERMA) at which readout variance equals

quantum-noise variance. Thus, at the quantum limit,

σ
2
R = k2A

∫
qW(E)α(E)E2

a(E)dE

= k2KLA
∫

Qo(E)α(E)E2
a(E)dE (2.2.10)

where the integration limits are dropped for simplicity, Qo is the number of quanta/mm2/Gy

and the gain term k cancels when these equations are used to calculate the Rose SNR for

evaluating DSA and ESA.

2.2.2.1 DSA Rose SNR

The Rose signal in a DSA image, ∆DD, is the difference between binned pixel values in

iodinated and non-iodinated regions of a log-subtracted image, DI and DW respectively,

giving

4DD ≡ {DI−DW}DSA

= [ ln(dI)|m− ln(dI)|c]− [ ln(dw)|m− ln(dw)|c]

= [ln(dI)− ln(dw)]m− [ln(dI)− ln(dw)]c (2.2.11)

where m and c identify mask and contrast images. Noting that dI = dW in the mask image

gives

4DD = ln
( ∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE∫
qo (E)TW (E)(TI(E)+ s)α(E)Ea(E)dE

)
(2.2.12)

≈ −ln〈TI (E)〉αqE (2.2.13)

where the last line shows 4DD is approximately equal to the log of the inverse of iodine

transmission TI weighted by the spectral distribution of deposited energy when scatter is
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negligible. In this study the more accurate result in Eq. (2.2.12) was used rather than the

approximation. Since binned-pixel values are uncorrelated, the background Rose noise,

σ2
DW

, is obtained by differentiating DW with respect to dw in Eq. (2.2.11) combined with

Eq. (2.2.9):

σ
2
DW

= 2
∣∣∣∣∂DW

∂dW

∣∣∣∣2 σ
2
dW

= 2
1

d2
W

σ
2
dW

(2.2.14)

=
2
∫

qo (E)TW (E)(1+ s)α(E)E2
a(E)dE

A |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2

+
2σ2

R

k2A2 |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2
. (2.2.15)

The factor of 2 is a consequence of assuming equal detector exposures (kV, mAs) for mask

and contrasted images and the DSA Rose SNR is therefore given by SNRD = ∆DD/
√

σ2
DW

.

Use of methods to reduce mask-image exposures (for example Erik et al.[165]) may alter a

comparison of DSA with ESA.

2.2.2.2 ESA Rose SNR

ESA imaging uses low and high-energy images acquired at different kV settings in addition

to calibration images at each energy. In this case, the iodine signal is given by[4]

4DE ≡ {DI−DW}ESA

=
[
w ln(dl,ca)−w ln(dl)+ ln(dh,ca)− ln(dh)

]
I

−
[
w ln(dl,ca)−w ln(dl)+ ln(dh,ca)− ln(dh)

]
W

= w [ln(dca)− ln(dI)− ln(dca)+ ln(dw)]l

− [ln(dca)− ln(dI)− ln(dca)+ ln(dw)]h

= w [ln(dw)− ln(dI)]l− [ln(dw)− ln(dI)]h (2.2.16)
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where l and h indicate low and high kV spectra, and ca indicates a calibration image at each

energy based on an average of many images with 20 cm of water and scaled to match the

mAs of the low and high energy images. The calibration images are part of the Alvarez

algorithm[4] to obtain approximate transmission factors. The weighting factor w is the

ratio between mass attenuation coefficients of water at effective energies El and Eh, chosen

to suppress image contrast due to water (soft tissue):[4]

w =

(
µ

ρ

)
W
(Eh)(

µ

ρ

)
W
(El)

. (2.2.17)

Thus:

4DE = w ln
( ∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE∫
qo (E)TW (E)(TI(E)+ s)α(E)Ea(E)dE

)
l

− ln
( ∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE∫
qo (E)TW (E)(TI(E)+ s)α(E)Ea(E)dE

)
h

(2.2.18)

≈ ln〈TI〉αqE,h−w ln〈TI〉αqE,l (2.2.19)

and

σ
2
DW

=

[∣∣∣∣∂DW

∂dw

∣∣∣∣2 σ
2
dw

]
l

+

[∣∣∣∣∂DW

∂dw

∣∣∣∣2 σ
2
dw

]
h

(2.2.20)

=

[
w2

d2
W

σ
2
dw

]
l
+

[
1

d2
W

σ
2
dw

]
h

(2.2.21)

= w2

[ ∫
qo (E)TW (E)(1+ s)α(E)E2

a(E)dE

A |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2

]
l

+

[ ∫
qo (E)TW (E)(1+ s)α(E)E2

a(E)dE

A |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2

]
h

+
w2σ2

R

k2A2 |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2l

+
σ2

R

k2A2 |
∫

qo (E)TW (E)(1+ s)α(E)Ea(E)dE|2h
(2.2.22)

47



showing that ESA signal and noise are simply weighted combinations of DSA signal and

noise for the two spectra, as expected. As with DSA, the more accurate Eq. (2.2.18) was

used, not the approximation.

2.2.3 Patient Entrance Air KERMA

Patient entrance air KERMA Kq [µGy] associated with a distribution of x-ray photons

incident on the patient q(E) (mm-2 keV-1) is given by:[151]

Kq = 1.6022×10−11
∫ kV

0
q(E)

µen

ρ air
(E)EdE (2.2.23)

where µen
ρ air

(E) [cm2g-1] is the mass energy-transfer coefficient for air and the scaling

factor is required to match units. We use SNR/
√

K , the Rose SNR per root-KERMA, as

our exposure-independent figure-of-merit (FOM) where K is the sum of mask and contrast

exposures for DSA and the sum of low and high-energy exposures for ESA. The FOM is

used to compare expected image quality for a given exposure using DSA and ESA, and to

estimate the impact each parameter has on the FOM to determine conditions necessary for

near-optimal Rose SNR with each.

2.3 Methods and materials

Experimental validation of the theoretical model of SNR/
√

K for each method was

performed by replicating the model conditions using exposure techniques suggested by

previous investigators and summarized in Table 2.1.[135, 262, 171, 162] No effort was

made to optimize exposure conditions or maximize the FOM.

The spectra of interacting photons used to calculate air KERMA are illustrated in

Fig. 2.3.1, generated using an in-house MATLAB library that implements the Tucker-

Barnes algorithm for tungsten-target tubes.[253] Experiments were performed using the
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Figure 2.3.1: Energy spectra of x-ray photons interacting in detector used for DSA and ESA
calculations (20-cm water, 0.01-g cm-2 iodine, 0.5-mm CsI) corresponding to exposure
techniques in Table 2.1.

DSA mask DSA contrast ESA low ESA high
kV 80 80 50 120
mAs 5 5 20 20
Added Filter (material, mm) - - - Cu, 2.5
Phantom air KERMA (µGy) 165 165 189 104
Detector air KERMA (µGy) 0.63 0.63 0.35 2.29

Table 2.1: Exposure techniques used in an experimental comparison of DSA and ESA. The
phantom KERMA was measured with the phantom removed and does not include scatter.
The detector KERMA was measured with a large air gap and does not include scatter.

49



10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

Detector Air KERMA [uGy]

P
ix

e
l 
V

a
ri
a

n
c
e

 

 

Measured Noise Variance

Estimated Quantum Noise Variance

Fit Line

Readout Noise Variance

Q Limit

Figure 2.3.2: The quantum-limit exposure is the detector exposure at which readout noise
variance (horizontal line) and quantum noise variance (sloped line with data points) inter-
sect. Quantum noise was estimated as measured noise minus readout noise. By changing
the mAs setting, it was determined to be approximately 0.0016 µGy at 80 kV as illustrated,
although this determination was rather imprecise due to difficulties in achieving a suffi-
ciently low detector exposure without substantial changes in spectral shape from additional
filtration.

phantom illustrated in Fig. 4.3.1 consisting of a 20-cm water tank with a sealed and hol-

low immersible step-wedge with 0.2 mm PMMA walls and containing a liquid contrast

agent (0.24 g/cm3 iodine). The source-image and source-phantom distances were 148 and

98 cm, respectively. Our lab uses a low-noise CsI/CMOS detector (Xmaru 1215CF-MPTM,

Rayence Co., Ltd., Korea) with square 49.5-µm elements and 0.5 mm thick CsI, and fast

kV-switching generator (EMD Technologies, Montreal Canada) with a custom electronic

interface to carefully synchronize image acquisition with x-ray exposure. Images were ac-

quired in single-exposure mode with an interval of several minutes between mask and con-

trast exposures for DSA while the iodine step wedge was inserted into the water phantom,

and several seconds between high and low-energy exposures for ESA. Background noise

σDW in DSA and ESA images was determined by subtracting two similar images to detrend

the data and scaling by 1/
√

2. Detector readout noise was measured using DQEPro (DQE

Inst., London Canada), expressed as the detector quantum-limit exposure, KL, and deter-

mined to be approximately 0.0016 µGy (Fig. 2.3.2). This is much lower than the detector

exposure used in all experiments, confirming that experimental results are not affected by
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Figure 2.3.3: Average of measured ratio of summed discrete auto-covariance ∑Kd to vari-
ance σ2

R of binned pixels as a function of number of pixels binned in a square ROI.

readout noise.

The required number of detector elements that must be summed to create statistically

independent binned pixels was determined experimentally using Eq. (2.2.5). A detrended

noise-only image was obtained as the difference of two 80-kV images of the water phantom,

scaled by 1/
√

2. The covariance, calculated as NA, was increased from 1 to 10, illustrated

in Fig. 2.3.3. At low values of NA, the ratio R in Eq. (2.2.5) is low due to correlations

between binned pixels caused by system blur. As NA increases, the area A increases and

R increases as blur between binned pixels becomes less significant. When R plateaus at

unity, the binned pixels are uncorrelated. Based on Fig. 2.3.3, it is concluded that binning

NA×NA with NA = 8 is sufficient to achieve near-independent binned pixels, corresponding

to A = 0.4×0.4 mm2.

The scatter/primary ratio s was estimated by measuring exposure at the detector plane

as a function of air gap between the detector and water phantom as the phantom was moved.

Since the x-ray beam was fully within the phantom for all measurements, the total number

of scatter photons generated was not expected to change appreciably, and it was assumed

that with a very large air gap of 105 cm, exposure at the detector plane would correspond to

primary-beam only. The scatter-to-primary ratio for a specified air gap shown in Fig. 2.3.4
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Figure 2.3.4: Measured scatter-to-primary ratio as a function of air gap for 50, 80, and
120 kV spectra.

was then estimated as the relative exposure increase as a function of air gap. The assump-

tion was justified by noting the resulting scatter ratio was less than 0.01 at 85 cm. An air

gap of 30 cm was used for all experiments, corresponding to s≈ 0.04.

2.4 Results

2.4.1 Experimental validation of Rose SNR model

Figure 2.4.1 shows ESA and DSA images of the iodinated step wedge for phantom en-

trance air KERMA values of 293 and 331 µGy respectively. Figure 2.4.2 shows excellent

agreement between measured values of iodine SNR/
√

K determined from these images

with theoretical calculations over a range of iodine thicknesses for both DSA and ESA.

The close agreement gives confidence in accuracy of the model. In this section the model

is used to determine acceptable limits on the model parameters required to ensure near-

optimal SNR/
√

K values.

2.4.2 Acceptable detector quantum efficiency

Figure 2.4.3 shows iodine SNR/
√

K as a function of CsI thickness for ESA and DSA
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Figure 2.4.1: DSA and ESA images of iodinated step wedge immersed in 20 cm of water
with 0.024, 0.096, 0.22, 0.29, and 0.36 g cm−2 of iodine for total patient entrance exposures
of 331 and 293 µGy, respectively.
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Figure 2.4.2: Comparison of theoretical (lines) of DSA and ESA iodine SNR per root
patient air KERMA with experiment (points).
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Figure 2.4.4: Theoretical calculation of iodine SNR per root detector air KERMA as a
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(no scatter, 0.3 mm CsI).
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assuming no scatter and no readout noise. In general, the two curves are similar although

the DSA curve is within 5% of its maximum at 0.4 mm while ESA requires approximately

2 mm. The benefit of increasing from 0.5 mm to 2 mm for ESA is approximately 18%, it

is concluded ESA requires at least 0.5 mm, and more if possible to increase the quantum

efficiency of the detector for the high-energy spectrum.

2.4.3 Acceptable detector readout noise

Detector (additive) readout noise plays an important role in achieving optimal image quality

for both ESA and DSA, but the requirements are more severe with ESA. Figure 2.4.4 shows

SNR/
√

K as a function of readout noise expressed as the quantum-limit exposure of the

detector for 50-keV photons assuming no scatter and 0.3 mm CsI. Results are similar for

ESA and DSA for a noise-free detector, but decrease more quickly for ESA than DSA

with increasing readout noise. For a given reduction in SNR/
√

K , detector noise for

ESA must be one quarter that for DSA. The acceptable quantum limit to prevent reduced

SNR/
√

K for ESA is estimated to be approximately 0.05 µGy. However, this applies to

normally-exposed regions of the image and a patient entrance air KERMA of 293 µGy. In

more-attenuating parts of a patient, or lower patient exposures, the quantum limit must be

lower.

2.4.4 Acceptable scatter

Figure 2.4.5 shows iodine SNR/
√

K as a function of scatter/primary ratio s for DSA and

ESA. For a given reduction in SNR/
√

K , the scatter ratio for ESA must be one third that

for DSA. The largest acceptable scatter ratio to prevent degradation is estimated to be 0.05

for ESA.
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Figure 2.4.5: Theoretical calculation of acceptable scatter-to-primary ratio as a function of
iodine mass loading for iodine signal and variance (0.3 mm CsI, no readout noise).

2.5 Discussion

We have demonstrated experimentally that ESA can provide similar image quality to DSA

in terms of iodine Rose SNR for angiographic imaging for the same patient-entrance expo-

sure. While this may appear contradictory to early experience with dual-energy angiography,[135]

our model of iodine SNR identifies minimal technical requirements to achieve near-optimal

ESA that were almost certainly not achieved in the past. For example, it is shown that it

is important to maximize CsI thickness to achieve the best possible quantum efficiency for

the high-energy spectrum. However, this effect is not dramatic, and while a thickness of at

least 0.5 mm is preferable, any thickness greater than 0.3 mm is likely adequate.

Detector readout noise, expressed as a quantum-limit exposure, is a critical considera-

tion. The necessary quantum limit for ESA is one quarter that for DSA, primarily due to

the need for a low-energy image. The acceptable value depends on the exposure technique

and is 0.05 µGy air KERMA in nominally exposed regions for a patient entrance exposure

of 293 µGy as used in the calculation. Van Lysel used a combined exposure of 65 µGy.

At this level, the necessary detector quantum limit would be closer to 0.005 µGy. This was

not attainable in the past and even today is a challenge to achieve. Our own testing has

shown that state-of-the-art CsI-based aSi flat-panel detectors in use in our hospital have
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a quantum limit of 0.1 - 0.2 µGy, and this is not sufficient to achieve high-quality ESA

imaging. Our laboratory CsI/CMOS detector has a measured quantum limit of 0.0016 µGy

which is sufficient.

X-ray scatter also has a dramatic effect on image quality, and the maximum accept-

able scatter/primary ratio for ESA is one third that for DSA. High-quality images will be

achieved only for scatter-ratio values of approximately 0.05 or less and anti-scatter grids

may not provide this level of scatter rejection. We were able to achieve adequate scatter

rejection using a 30 cm air gap. The practicality of large air gaps is an issue that must

be addressed in some environments and requires larger detectors with lower readout noise.

While this is a technical challenge, the benefits are clear and extend beyond dual-energy

applications. Soderman et al.[172] used a 30 cm air gap in fluoroscopy rather than an anti-

scatter grid and obtained a 70% reduction in patient skin dose with unchanged or slightly

improved image quality. Patridge et al. al[166] and Axelsson[152] have proposed replacing

grids with a larger air gap as a default technique for children and all but large adults.

While not addressed in this study, the detector must also have a very linear response to

ensure adequate contrast suppression with ESA methods, and this is more important with

ESA than DSA. We also did not address additional heat-capacity requirements on the x-ray

tube for ESA that may be an important consideration. Considerations of scintillator lag are

also important with fast kV-switching systems.

Previous investigators have shown that using 50 kV for the low-energy image is close

to optimal for an average-size adult (20 cm) and gives the best SNR for a given patient

exposure, and this technique was used in this study without further optimization. However,

this may be too low for large patients, and places heavy demands on x-ray tube heat loading

due to low x-ray production efficiency. Increasing this energy is expected to reduce ESA

image quality and is currently being addressed in an ESA optimization study.

While ESA is less susceptible to motion than DSA, it is not immune. We imagine high

and low images acquired in approximately 50 ms each, with 50 ms between exposures
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to allow for the Cu filter (placed as close to the source as possible) to be removed or in-

serted. However, slight motion may result in miss-registration between acquisitions and

create image artifacts. It may be necessary to investigate methods to re-register images,

or use gating methods and acquire both images during diastole when the heart is moving

less. It is expected that any such artifacts will become less significant as the time between

acquisitions is reduced. An alternative may be to use a fast continuous detector readout at

60 - 90 frames/second (achievable with state-of-the-art low-noise CMOS detectors) with

synchronized x-ray exposures that alternate energies and skip every second frame to allow

for a rotating filter assembly to transition the filter through the beam. Relative x-ray ex-

posure control could be achieved by modulating exposure times. This would be similar to

Van Lysel[177] who acquired low and high-kV images sequentially at 15 frames/second in

a dog. More recently, Dean-Ben et al.[158] operated at 50 frames/second without gating or

other motion-reduction methods.

2.6 Conclusions

A Rose model analysis was developed to compare the iodine SNR in images obtained using

DSA (80 kV) and ESA (energy subtraction, 50 and 120 kV with 2.5 mm Cu filtration with

the high energy beam) methods. Excellent agreement was obtained between theoretical

and experimental iodine Rose SNR in both DSA and ESA images over a range of iodine

concentrations. It is shown that ESA and DSA can produce images with similar iodine SNR

for the same phantom entrance exposure, but ESA requires a higher-performing detector to

produce near-optimal images. The following specific conclusions are made from this work.

1. ESA imaging requires a detector with good quantum efficiency at a higher energy

(120 kV) than DSA. This generally means a thicker absorption layer. For a CsI

detector, the CsI should be 0.5 mm or more to achieve near-optimal images.

2. ESA imaging requires a detector with much lower readout noise than DSA, expressed
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here as a quantum-limit exposure (where readout noise variance equals quantum

noise variance). It is shown that near-optimal results are obtained only with a de-

tector having a 50-keV quantum-limit exposure of 0.05 µGy (detector air KERMA)

or lower for the exposure conditions used in this study, and 0.005 µGy or lower for

exposure conditions used by early investigators who have studies dual-energy an-

giography previously. These are both substantially lower than many state-of-the-art

aSi panels in use today.

3. ESA imaging is more susceptible to x-ray scatter than DSA. The scatter-to-primary

ratio must be 0.05 or less to achieve near optimal results.

While other considerations have not been addressed including imperfect background sup-

pression and tube heat loading considerations, we conclude that ESA can provide images

with similar SNR to DSA with the same patient exposure. With implementation of fast

kV-switching x-ray machine ESA may reduce motion artifacts for vascular imaging. We

believe the challenging technical requirements outlined here may be the reason that early

investigations of dual-energy angiography were less successful.
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Chapter 3

Optimizing iodine SNR per root air

KERMA for energy subtraction methods

This chapter is adapted from a manuscript entitled “Optimizing iodine SNR per root air

KERMA for energy subtraction methods” by Christiane Sarah Burton, John R Mayo and

Ian A. Cunningham. It has been submitted for consideration for publication in Medical

Physics.

3.1 Introduction

The World Health Organization reports cardiovascular diseases (CVDs) as the leading

causes of death worldwide and estimated that 17.5 million people died from CVDs in

2012, representing 31% of all global deaths.[3] While x-ray angiography is commonly

used in the assessment and management of CVDs,[230] digital subtraction angiography

(DSA),[65] the reference standard for most non-cardiac applications, is rarely used. DSA

suppresses background and overlying soft-tissue to enhance iodinated vasculature by sub-

tracting a mask image from a series of contrast images.[74, 133, 143, 104, 262, 109] How-

ever, the time interval between mask and contrast exposures may result in motion artifacts

when imaging moving structures or uncooperative patients. A potential alternative ap-

64



proach described in the 1990’s is dual-energy angiography using a pair of contrast images

acquired with low and high kV exposures in rapid succession to produce iodine-specific

images.[135] However, early studies showed poor image quality in comparison to conven-

tional DSA and the method was largely abandoned.[46, 13, 37, 90, 135]

We have recently shown that dual-energy methods, called energy-subtraction angiogra-

phy (ESA) in this article, are able to compete directly with DSA to produce high-quality

angiographic images for the same patient exposure. For example, a previous study showed

that iodine SNR for ESA can be similar to that of DSA for similar patient entrance expo-

sures using a sum-of-variance[124, 251] and Rose model[216] approach in a theoretical

analysis validated by laboratory experiments. However, this can be achieved only when

using a very low-noise detector with excellent scatter rejection. We have shown these

conditions can be satisfied with modern high-performance detectors but likely not with

instrumentation available when dual-energy methods were first investigated.[216]

There have been several optimization studies of iodine SNR for ESA in the past and key

studies have shown the need for good spectral separation, normally using a beam-hardening

filter with the high-kV exposure.[254, 133, 101] The relative exposure ratio between low

and high exposures is also particularly important to achieve optimal image quality. For

example, an early study by Van Lysel[133] looked at optimizing iodine SNR in terms of

the ratio in the number of interacting photons and found that for a technique using 72 kV

for the low-energy exposure and 120 kV with 2.3 mm copper for high-energy exposure,

the optimal low:high ratio in number of interacting photons was 1:3. He also showed that

near-optimal iodine SNR is achieved using a low-kV setting between 50 and 55 kV with

the highest possible high-kV setting, coupled with a 1.5 to 2.0 mm beam-hardening filter

on the high-energy spectrum to increase spectral separation. Kelcz et al.[254] confirmed

the importance of kV separation and a high-kV beam-hardening filter. Despite these early

attempts, iodine SNR for ESA was still deemed inferior to DSA, even with the introduction

of early flat-panel detectors.[258, 5, 104, 113, 101, 26, 109, 100, 6, 124]
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More recently, Alvarez et al.[5] studied performance of a dual-energy detector system

using a relative dose allocation optimization described by Sabol et al.[255]. Subsequent

studies looked at developing an iodine detectability index (DI)[179] that depends on the

system modulation transfer function (MTF) and image noise power spectrum (NPS) with

a task based function[246] and optimized the DI with respect to the weighting and ratio of

low-energy dose to total dose.[101, 109, 249, 248] Richard and Siewerdsen[262] defined

an ROC curve in terms of the DI to optimize true-positive and true-negative fractions for an

ideal observer for lung nodule applications, and found the optimal entrance dose ratio for an

average adult patient to be 1:2 (low:high). Shkumat et al.[241] looked at a bone-only image

and found the signal-difference-to-noise ratio (SDNR) was optimal for a relative dose ratio

of 1:1. Fukao et al.[224] optimized dual-energy subtraction chest radiography using a

direct-conversion flat-panel detector system and still found the optimal energies were 60

and 120 kV with a dose ratio of 1:2. Ducote and Molloi[222] performed a simulation

study to quantify breast density with dual-energy mammography and found the optimal

dose ratio to be 1.5:1 using 32 and 96 kV. Carton et al.[220] showed an optimal dose

ratio for dual-energy photon-counting breast tomosynthesis imaging to be 1:1 and Samei

and Saunders[240] found an optimal dose distribution from low to total dose for breast

tomosynthesis to be between 0.46 and 0.51, similar to a 1:1 ratio.

Yu et al.[249] optimized the contrast-to-noise ratio (CNR) with respect to the dose frac-

tion and found that dose fractions between 0.3 and 0.6 (dose ratios between 1:4 and 1:1.16)

are generally acceptable and 0.5 (1:3) is optimal. In a study in 2011, Yu et al.[248] looked

at optimizing the CNR with respect to dose fraction with monochromatic dual-source dual-

energy and found that with 80 and 120 kV the optimal low:high energy dose ratio was

1:2. Yao et al.[247] looked at mAs ratio for the efficacy of fixed filtration for rapid kVp-

switching dual energy x-ray systems to minimize the noise in dual-energy and found the

optimal dose ratio to be 1:3. Saito[239] derived an equation for low to high mAs ratio in

terms of electrion density and optimizated the mAs ratio for dual-energy computed tomog-
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raphy coupled with balanced filter method. Primak[232] looked at different mAs ratios,

however, did not optimize the SNR with respect to the mAs ratio. Atak[212] optimized the

CNR with respect to the dose ratio from low kV to total dose for different for cadmium-

based photon counting detectors and found that optimal dose ratio is 1:3 for dual-energy.

Many of these studies have shown consistency between (theoretical) numerical calcu-

lations and experimental measurements. However, numerical calculations involving many

parameters, some of which may be poorly known for individual patient procedures, make

it difficult to propose general guidelines and technique recommendations. In this article we

look at the key physical parameters that determine iodine SNR in ESA images and their

relationships with image quality. A simple relationship is developed that can be used as a

guide to determine near-optimal image quality under a wide range of conditions. Results

are validated experimentally and then applied in an optimization study to make technique

recommendations that maximize iodine SNR-per-root-patient-exposure under various con-

ditions and compared with digital subtraction angiography (DSA) for similar patient expo-

sures.

3.2 Theory

In previous studies we have used both a sum-of-variances (SOV)[251] and Rose model[216]

approach to compare iodine SNR per square-root patient-entrance air KERMA (SNR/
√

K )

obtained with ESA and DSA to determine the feasibility of using ESA as an alternative to

DSA. The Rose model assumes stationary noise across the image which is generally valid

for low-contrast iodine signals. The SOV model looks at the sum of noise variance in both

iodinated and background regions. Using a 20-cm water thickness, we showed that ESA

could have similar iodine SNR for the same exposure but only when using a very low noise

detector, sufficiently thick CsI to achieve high quantum efficiency with the high-energy

spectrum, and effective scatter rejection such as a 30 cm air gap. These conditions can be
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Independent Dependent
Iodine mass loading (g/cm2) kVl

Water thickness (cm) mAsl, mAsh
kVh

Detector material (CsI, Se, ...)
Filter thickness (mm)

Table 3.1: Summary of parameters affecting iodine SNR and patient exposure in dual-
energy imaging. Only dependent parameters can be optimized on an individual patient
basis.

achived with some modern systems, but not easily. In particular, an extremely low-noise

detector is required due to the low-level signal acquired with the low-energy exposure. In

this study we use a laboratory CsI-CMOS based detector with negligible noise compared

to the measured image signals. The theoretical model assumes no additive noise and no

scatter.

Table 3.1 shows a summary of parameters that will affect iodine SNR and patient ex-

posure. For purposes of optmization, parameters that cannot be modified during a partic-

ular patient study to maximize image quality are considered independent, including vessel

thickness (iodine mass loading), patient thickness (water thickness) and detector material

and filter thickness. Parameters that can be modified are classified as dependent, including

high and low kV, high and low mAs, and filter thickness. However, it is always desireable

to set the high kV as high as possible to maximize spectral separattion,[133] and hence

this is considered an independent parameter. Iodine SNR/
√

K is therefore optimized with

respect to kVl, mAsl and mAsh.

3.2.1 Optimal mAs ratio

A simple monoenergetic model of x-ray signal and noise is developed to describe the im-

portant parameters affecting ESA image signal and noise as illustrated in Fig. 3.2.1 assum-

ing parallel beam geometry. A distribution of x-ray quanta qo [mm-2] is incident on the

phantom (water tank). If the transmission factors through water and iodine are TW and TI ,
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Figure 3.2.1: Schematic illustration of iodine-filled step-wedge immersed in 20 cm of wa-
ter with incident quanta q0, transmitted quanta qW and qI in non-iodinated and iodinated
regions, respectively. Corresponding average binned pixel values are dW and dI.

α is the detector quantum efficiency, E is the x-ray quanta energy and k is a constant of

proportionality, the detector signals from water-only and iodinated regions of the image are

given by:

dW = kAq0TW αE (3.2.1)

dI = dW TI (3.2.2)

respectively, where A is an image region of interest large enough to be statistically inde-

pendent of other such regions. The high h and low l kV pixel values are therefore given

by:

dW,l = kAq0,l,TW,lαlEl (3.2.3)

dW,h = kAq0,h,TW,hαhEhTCu (3.2.4)

dI,l = kAq0,lTW,lαlElTI,l (3.2.5)

dI,h = kAq0,hTW,hαhEhTI,hTCu (3.2.6)
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where TCu is the transmission factor of the copper filter in the high-kV exposure. The

variance of the background signal is given by

σ
2
dW

= k2Aq0TW αE2. (3.2.7)

The iodine-specific signal in the ESA image is given by ∆DE where

4DE ≡ {DI−DW}ESA

w
[
ln
(
dW,l

)
− ln

(
dI,l
)]

l (3.2.8)

−
[
ln
(
dW,h

)
− ln

(
dI,h
)]

h

and therefore

4DE ≡ ln
〈
TI,h
〉

αqE,h−w ln
〈
TI,l
〉

αqE,l , (3.2.9)

showing that 4DE does not depend on the dependent parameters being optimized and

therefore does not affect the optimization calculation.

The noise variances in ∆DW and ∆DI are given by:

σ
2
DW

=
w2

Aq0,lTW,lαl
+

1
Aq0,hTCuTW,hαh

(3.2.10)

and

σ
2
DI

= σ
2
DW

+
w2

Aq0,lTW,lαlTI,l
+

1
Aq0,hTCuTW,hαhTI,h

(3.2.11)

respectively. Similar to previous work,[216] we normalize the iodine SNR by the patient

entrance air KERMA, K , where:

K ∝ q0,lEl +q0,hTCuEh. (3.2.12)
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3.2.1.1 Rose Model

The Rose model considers background noise only. The Rose figure-of-merit (FOMR) is

therefore given by FOMR = SNR2/K ∝ 4D2
E/
(

σ2
DW

K
)

. Since only the denominator

can be optimized, the FOM is maximized by minimizing the product σ2
DW

K , where:

σ
2
DW

K ∝
w2El

ATW,lαl
+

w2q0,hEhTCu

Aq0,lTW,lαl

+
q0,lEl

Aq0,hTW,hαhTCu
+

Eh

ATW,hαh
.

The optimal ratio in number of low:high energy x-ray quanta incident on the phantom, γ ,

is obtained by substituting

γ =
q0,l

q0,h

and differentiating:

∂

∂γ

(
σ

2
DW

K
)

= − 1
γ2

w2EhTCu

ATW,lαl
+

El

ATCuTW,hαh
. (3.2.13)

Setting the result to zero gives the low:high ratio in the number of quanta incident on the

phantom that maximizes FOMR as:

γ =
q0,l

q0,h
= wTCu

√
EhTW,hαh

ElTW,lαl
. (3.2.14)

Similarly, for a given low and high energy the optimal mAs ratio for low and high energy

spectra is given by
mAsl

mAsh
= wTCu

√
Eh

El

TW,h

TW,l

αh

αl
. (3.2.15)

3.2.1.2 Sum of Variances

The SOV model considers background and iodinated region noise separately, and is a more

accurate description of detectability when image noise is different in background and iodi-
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nated regions. This is expected with higher iodine mass loadings. The SOV FOM is given

by FOMS = SNR2/K ∝4D2
E/
(
(σ2

DW
+σ2

DI
)K

)
. Extending the above analysis gives:

σ
2
DI

K ∝
w2El

ATW,lαlTI,l
+

w2q0,hEhTCu

Aq0,lTW,lαlTI,l

+
q0,lEl

Aq0,hTW,hαhTCuTI,h
+

Eh

ATW,hαhTI,h

+
w2El

ATW,lαl
+

w2q0,hEhTCu

Aq0,lTW,lαl

+
q0,lEl

Aq0,hTW,hαhTCu
+

Eh

ATW,hαh
. (3.2.16)

Differentiating with respect to γ gives

∂

∂γ

((
σ

2
DW

+σ
2
DI

)
K
)

= − 1
γ2

w2EhTCu

ATW,lαl
+

El

ATCuTW,hαh

− 1
γ2

w2EhTCu

ATW,lαlTI,l
+

El

ATCuTW,hαhTI,h
(3.2.17)

and setting to zero gives

mAsl

mAsh
= wTCu

√√√√√Eh

El

TW,h

TW,l

αh

αl

(
1+ 1

TI,l

)
(

1+ 1
TI,h

) . (3.2.18)

Equations (3.2.15) and (3.2.18) give similar conditions for optimal results and can be used

as a guide for determining optimal mAs ratio as a function of ratios in average energies,

water transmission through the phantom (patient) and detector quantum efficiencies, as

well as iodine transmission and copper filter transmission. For low iodine concentrations

(TI ≈ 1) the Rose model and SOV model are nearly equivalent as expected.
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Detector Type Compound Density
Cesium Iodide[228], CsI 4.51 g

cm3

Gadolinium(III) Oxisulphide[231], Gd2O2S 7.41 g
cm3

Selenium, Se 4.81 g
cm3

Table 3.2: Density of elements that are used in detectors

3.2.2 Heat units

Production of x rays at lower kV settings is less efficient, and tube heat loading can be an

important consideration with large patients.[133] Heat produced at the target x-ray tube,

measured in radiographic heat units may be calculated using the following formula:[223]

H = kV ×mAs (3.2.19)

where H is the number of heat units per exposure, kV is the peak kilo-voltage, and mAs

is the product of current (mA) and time (s). The quantity H is used to compare expected

heat units for a similar patient entrance air KERMA for DSA and ESA, and to estimate the

impact each parameter has on the quantity to determine conditions necessary for optimal

or near-optimal ESA.

3.2.3 Detector type

The detector quantum efficiencies in Eqs. (3.2.15) and (3.2.18) are determined by the de-

tector converter material, density and thickness. Table 3.2 shows converter materials and

compound density for detectors in common use.

3.3 Methods and materials

We examined each component of eq. 3.2.14 and eq. 3.2.18 separately and used mass-

attenuation coefficients provided from the National Institute of Standards and Technology

where applicable. For each component examined we used low kVs of 50, 60, and 70 kV,
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Figure 3.3.1: Plot showing theoretical (line) polyenergetic Rose (left) and SOV (right)
calculations for iodine SNR/

√
K (no scatter, no read noise) as a function of mAs ratio

with corresponding experimental validation (points) for water thicknesses of 20 cm for a
fixed high kV of 120 kV with 2.5 mm copper filtration and low kV of 50, 60, and 70 kV, for
iodine mass loading 0.048 (upper) and 0.24 g cm-2(lower). The bold line segments show
iodine SNR/

√
K values that are within 10% of the optimal iodine SNR/

√
K .

and kept the high kV at 120 kV with additional 2.5 mm copper, and with 2.0 mm aluminum

for low and high kV. The phantom used for this study is described in Fig. 2.2.1.[251, 216]

Using our theoretical model for iodine SNR/
√

K we varied the mAs ratio for low kV of

50, 60, and 70 kV, and with a fixed high kV of 120 kV (2.5 mm copper) each for water

thicknesses of 10, 20, and 30 cm and experimentally validated results for water thickness

of 20 cm. For a water thickness of 20 cm we varied the mAs ratio for different flat panel de-

tector each with a thickness of 500 µm. Using our theoretical model for iodine SNR/
√

K

we varied the mAs ratio for 50 and 60 kV using different detector materials each with a

thickness of 500 µm.
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Figure 3.4.1: Optimal mAs ratio as a function of low kV that produces a maximum
FOM (SNR/

√
K ) for Rose (left) and SOV (right) methods using iodine mass loadings

of 0.048 g cm-2(upper) and 0.24 g cm-2 (lower). The dashed line gives a near-optimal mAs
ratio that is within 10% of the peak FOM at a low-kV setting of both 50 and 60 kV. The
two solid lines bound a range in mAs ratio values in which the FOM is within 10% of the
peak FOM for 50, 60 and 70 kV.

3.4 Results

3.4.1 Optimal mAs ratio

Figure 3.3.1 shows excellent agreement between theoretical calculations and experimen-

tally measured Rose and SOV iodine SNR/
√

K values. The close agreement gives confi-

dence in the theoretical model. Experimental uncertainties (standard deviation of multiple

measurements) are indicated as error bars on each symbol.

Several other observations can be made from these results. For example, the Rose

model FOM values depend on iodine mass loading, but the optimal mAs ratio does not.

This is expected as the Rose model result is based on noise in water background only and
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iodine loading does not appear in the simple optimal mAs ratio expression in Eq. (3.2.15).

The Rose optimal mAs ratio decreases with increasing low kV setting, although the FOM

curve has a relatively broad peak. With low iodine mass loadings (0.048 g/cm2) the

SOV and Rose methods give the same optimal mAs ratio. As iodine loading increases

(0.24 g cm-2), the SOV optimal mAs ratio is dependent on the low kV setting. These

results are all consistent with Eqs. (3.2.15) and (3.2.18).

Figure 3.4.1 shows the mAs ratio that gives an optimal FOM using both Rose and

SOV methods as a function of low kV using iodine mass loadings of 0.048 g cm-2 and

0.24 g cm-2. The error bars give the range of mAs ratio values that will produce a FOM

within 10% of the peak FOM. The 10% threshold was chosen arbitrarily as an indication

in the range of mAs values that will have minimal impact on image quality and FOM. The

dashed line gives a near-optimal mAs ratio that is within 10% of the peak FOM at a low-kV

setting of both 50 and 60 kV. This gives an optimal mAs ratio of 1:1 for all iodine loadings

using the Rose method, and increases from 1:1 at low iodine loadings to 3:1 at high iodine

loadings with the SOV method. The two solid lines bound a range in mAs ratio values in

which the FOM is within 10% of the peak FOM for 50, 60 and 70 kV. It gives a range of

0.4:1 to 0.6:1 for all iodine loadings using the Rose method.

Technique optimization to maximize image SNR is most critical for imaging low-

contrast iodinated structures. A more complete picture of low-contrast optimization is

obtained from the contour plots in Fig. 3.4.1 showing both Rose and SOV FOM values as

a function of phantom thickness and mAs ratio. For 50 and 60 kV, an mAs ratio of 1:1

gives optimal or near optimal iodine SNR for water thicknesses of 10-30 cm and above,

correponding to average and thick patient thicknesses. For a limb or patient thicknesses

less than 10 cm, an mAs ratio of 0.6:1 to 0.8:1 gives optimal or near optimal iodine SNR.

Similar results are obtained using the average energy of both low and high energy spec-

tra in a mono-energetic model as illustrated in Fig. 3.4.3.

As illustrated in Fig. 3.4.5, the optimal mAs ratio for 50/120 and 60/120 kV does not
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Figure 3.4.5: Theoretical polyenergetic iodine SNR/
√

K as a function of mAs ratio for
CsI, Se and Gd2O2S detector converter materials for an iodine mass loading of 0.048 g cm-2

for 20 cm of water for a fixed high kV (120 kV) and low kV of 50 and 60 kV.

depend on detector material, suggesting the recommendations from this study apply to CsI,

Se and Gd2O2S based detector systems.

Figure 3.4.6 shows the Rose and SOV iodine FOM as a function of iodine mass loading.

The Rose result increases monotonically as the iodine mass loading increases since noise

does not change and iodine signal increases with increasing iodine attenuation. However,

the SOV result increases to approximately 0.1 gcm-2 and decreases above this due to the

increase in image noise in high-iodine attenuation regions of the image. In general, the

SOV method is more correct for describing detectability but the Rose method is fine for

optimization of low iodine signals where optimization is generally more important.

Table 3.3 shows a comparison of tube heat loading associated with the optimal mAs

ratio compared with DSA for the same Rose FOM.
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and 70 kV with fixed high kVp of 120 kV with 2.5 mm copper filtration for monoenergetic
spectra.

Method kV combination mAs combination mAs Ratio heat units
ESA 50/120 20/20 1:1 3400
ESA 60/120 16/20 0.8:1 3360
ESA 70/120 6/20 0.3:1 2820
DSA 80/80 10/10 1:1 1600

Table 3.3: The kV and mAs combination used to calculate heat units for ESA and DSA
exposures with the same Rose FOM.
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3.5 Discussion

The optimization results presented here are in general agreement with previous studies

where directly comparable. We have shown optimal and near-optimal conditions for the

iodine SNR/
√

K for low and high iodine mass loadings 0.048 g cm-2and 0.24 g cm-2,

respectively. We show the Rose and sum-of-variance iodine SNR/
√

K as a function

of mAs ratio (polyenergetic) and incident quanta ratio (monoenergetic), with experimen-

tal validation for the polyenergetic calculation, for low and high iodine mass loadings of

0.048 g cm-2and 0.24 g cm-2using low kVs of 50, 60, and 70, a high kV of 120 kV (2.5 mm

copper), and 20 cm of water. We show that the optimal mAs ratio depends on the low kV

for a high kV of 120 kV (2.5 mm of copper filter) and for different thicknesses of water and

that the bracket for mAs ratio is being within 10% of optimal iodine SNR/
√

K is wide.

For 50 kV, mAs ratios of 0.6-1.0 give optimal or within 10% of optimal iodine SNR/
√

K

for water thicknesses between 2-30 cm. For 60 kV mAs ratios of 0.4-0.8 gives optimal or

within 10% of optimal iodine SNR/
√

K for water thicknesses between 2-30 cm. For 70

kV mAs ratios of 0.2-0.5 gives optimal or within 10% of optimal iodine SNR/
√

K for

water thicknesses between 2-30 cm.

We have shown that spectral separation is necessary to achieve relatively good image

quality for the same patient entrance air KERMA. This is confirmed by showing that the

best iodine SNR/
√

K is achieved with low kV values of 50-60 kV for a fixed high kV and

for a copper thickness of 2.5 mm for the high kV beam. A few past studies have used kV

pairs like 60/120 (2.5 mm copper) kV[89] and 70/120 (1.5-2.0 mm copper) kV[133] with

sub-optimal mAs ratios for those kVs. We also confirmed but did not show that varying

the high kV from 90-120 kV does not have a significant effect on the iodine SNR, however

varying the low kV between 50-90 kV does have a more significant effect on the iodine

SNR/
√

K .[262]

We show that detectors materials, CsI and Gd2O2S, with thicknesses of 0.5-mm give

better iodine SNR/
√

K by a factor of 1.36 and 1.27, respectively, compared to Se detec-
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tors. There is a small dependency of detector material with optimal mAs ratio, for CsI and

Gd2O2S, the optimal ratio is 1.05 and 1.0, respectively, and 0.8 for a-Se using 50 and 120

kV (2.5 mm copper for 120 kV).

We have shown that the heat units per unit detector air KERMA for ESA are a fac-

tor of 2 greater than DSA. This might be a limitation, however, we anticipate that fewer

images would be required with ESA compared to DSA. With implementation of a fast kV-

switching machine motion artifacts may be reduced in addition to providing image quality

similar to DSA and ESA may be a viable alternative to DSA when there is patient motion

present.

3.6 Conclusion

The optimization of our Rose and sum-of-variance models to maximize the iodine SNR

per root incident air KERMA (SNR/
√

K ) was developed for ESA imaging for fixed high

kV of 120 kV with 2.5 mm Cu filtration and low kV values of 50, 60, and 70 kV for water

phantom thicknesses between 2 and 30 cm. Excellent agreement was obtained between

theoretical and experimental iodine Rose SNR over a range of mAs ratios for a water phan-

tom thickness of 20 cm. We identified the impact of detector material for detectors that

are readily available at present that will yield the best possible iodine SNR. We have also

identified that heat loading may be a minor limitation. The following specific conclusions

are made from this work.

1. A simple expression for the optimal mAs ratio was developed in terms of low and

high ratios of: average spectral energies; water transmission factor through a test

phantom (representing patient thickness) and detector quantum efficiencies, given by

Eq. (3.2.15). The expression was validated experimentally and gave results consistent

with a more comprehensive poly-energetic calculation.

2. For water thickness of 2 to 30 cm, optimal ESA images are produced with mAs ratios
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(low Energy : high energy) of 1:1 for 50/120 and 60/120 kV settings and 0.3:1 for

70/120 with 2.5 mm copper filtration the high kV spectrum. The low kV settings that

give the best possible iodine SNR/
√

K range from 50 to 60 kV for a fixed high kV

of 120 kV.

3. Heat units for ESA were estimated to be a factor of 2 greater than DSA for the same

iodine SNR/
√

K . If heat loading is a limitation with DSA, this could restrict the

number of images acquired during an ESA procedure.

4. Best ESA results will be obtained using a CsI-based detector, with an improvement

of 30% over Se and 20% over Gd2O2S based detectors for the same SNR/
√

K .
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Chapter 4

Energy-subtraction method in RANDO

anthropomorphic phantom

This chapter consists of a manuscript “Evaluation of an energy subtraction method of an-
giography in a RANDO anthropomorphic phantom” by Christiane S. Burton, John R. Mayo
and Ian A. Cunningham that is being prepared for submission to Medical Physics for con-
sideration as a research article.
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4.1 Introduction

Cardiovascular diseases (CVDs) are the leading causes of death globally. It is estimated

that 17.5 million people died from CVDs in 2012, representing 31% of all global deaths.[3]

X-ray angiography is used to asses CVD, however, in order to increase conspicuity of

vessels from soft-tissue and bone in an image, a higher patient entrance exposure is needed.

Digital subtraction angiography (DSA) is a technique used in vascular imaging to remove

background structures such as bone and lung to enhance iodine filled blood vessels. The

problem with DSA is motion artifacts arise between the several seconds between the mask

and contrast image acquisition.

Although key previous studies from our laboratory addressed iodine signal-to-noise

ratio (SNR) for a given patient entrance exposure for ESA. Tanguay et al.[124] developed

a theoretical model for iodine SNR and compared ESA with DSA, and validated the model

with Monte Carlo calculations using a Cd-Te based photon counting detector with quantum

efficiency is unity. This led into the next few studies where we developed a theoretical

model for iodine SNR per root air KERMA but this time with experimental validation

using CsI based detectors of thickness 0.05 cm. We concluded that for a technique of 50

and 120 (2.5 mm copper filtration) kVp iodine SNR for ESA to be similar to DSA for

similar exposure the scatter-to-primary ratio needs to be less than 0.05 achievable with an

air gap of 30 cm and a detector with a quantum-limit on the order of 0.05 µGy.[218, 216]

Subsequently we optimized the iodine SNR per root air KERMA with respect to the number

of interacting quanta for low and high kV exposures and concluded that an mAs ratio of 1.0

is optimal or near-optimal for low kV of 50-60 kVp.[217] These studies were performed

using a two-material composition of water and iodine, however, sometimes in vascular

images there is bone, and therefore a two-material decomposition will remove one material

(water) and partially suppress two other materials (bone, iodine).

A key study by Liu et al.[229] looked at dual-energy for a three material decomposition

where they used mass conservation to express the third material in terms of total mass
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and found that the three material decomposition produced more accurate hounsfield units

for CT compared to a two-material decompositon for a three-material composition. Other

studies looked at differentiating iodine from other material such as calcified plaque in the

arteries in CT.[53, 36, 127, 24, 173, 178, 57, 125, 110, 79, 96] However, little has been

done to address removing bone for dual-energy for a three material composition of iodine,

water, and bone.

The purpose of this study is to show what parameters are needed for suppressing bone

from a dual-energy image and show the effect bone suppression has on the iodine signal.

4.2 Theory

The distributions of x-ray quanta (mm-2 keV-1) incident on the detector corresponding to

non-iodinated and bone regions (Fig. 4.3.1) are given by

qW(E) = q0(E)TW(E) (4.2.1)

qB(E) = qW(E)TB(E) (4.2.2)

respectively, where the overhead indicates a random variable (RV), the subscript W denotes

water and B denotes cortical bone. The corresponding signals from ideal energy-integrating

detectors are given by

dW = k
∫

A

∫ kV

0
qW(E)α(E)E dA (4.2.3)

dB = k
∫

A

∫ kV

0
qB(E)α(E)ETI(E)dA (4.2.4)

where k is a constant of proportionality, α is the quantum efficiency of the detector, E is

the energy of the photon, and A is a small region of interest (for example, a single pixel).

ESA imaging uses low and high energy images acquired at different kV settings in

addition to calibration images at each energy. It is assumed they can be determined by
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averaging many exposures and hence noise from calibration images is assumed negligible.

In this case, the iodine signal is given by

∆DESA = {DB−DW}ESA

= w [ln(dW)− ln(dB)]l− [ln(dW)− ln(dB)]h (4.2.5)

where l and h indicate low and high kV spectra and the weighting factor w is the ratio

between mass attenuation coefficients of water at effective energies El and Eh, chosen to

suppress image contrast due to water (soft tissue) and cortical bone:

wW =

(
µ

ρ

)
W
(Eh)(

µ

ρ

)
W
(El)

. (4.2.6)

wB =

(
µ

ρ

)
B
(Eh)(

µ

ρ

)
B
(El)

. (4.2.7)

Therefore,

∆DESA = w ln

(∫ kVl
0 qW (E)α(E)EdE∫ kVl
0 qB (E)α(E)EdE

)

− ln

(∫ kVh
0 qW (E)α(E)EdE∫ kVh
0 qB (E)α(E)EdE

)
. (4.2.8)

Our objective is to find out whether we should be removing bone or soft-tissue from the

ESA image.

4.3 Methods and Materials

Figure 4.3.1 shows the first phantom used for this study which consists of iodinated step-

wedge submerged in 20 cm thickness of water and bone-mimicking DEXA wedge material

(SB3; Gammex-RMI, Middleton, WI, U.S.A.)[35, 45, 77, 33] attached to the outside sur-
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Figure 4.3.1: Phantom setup with DEXA wedge material. Iodine stepwedge not shown.
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Figure 4.3.2: RANDO anthropomorphic phantom setup with DEXA wedge material. Io-
dine stepwedge not shown.

face of the tank. We acquired images of the iodine stepwedge and DEXA wedge together,

and we took images of each wedge separately to calculate the trasmission factor of iodine

and DEXA material for each thickness.

Figure 4.3.2 shows the RANDO anthropomorphic vascular phantom[2] used for this

study which also included a thin 2 cm thickness tank of water and water-equivalent iodine-

filled tubing submerged in the thin tank of water placed right up against the back of the

RANDO phantom. In both cases we used a 30 cm air gap between the surface of the

phantom and the surface of the detector. We used a very-low noise CsI/CMOS detec-
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Figure 4.4.1: Transmission of DEXA wedge as a function of DEXA wedge thickness (left).

tor (Xmaru1215CF-MPTM, Rayence Co., Ltd., Korea) with square 49.5 µm elements and

0.5 mm CsI. ESA images were acquired using a fast kV-switching generator (EMD Tech-

nologies, Montreal Canada) operating in single-exposure mode with several seconds be-

tween high and low-energy exposures. The ESA images were acquired using low kV of 50,

60, and 70 kV and a fixed high kV of 120 kV with 2.5 mm of copper filtration.

We assess the tubing used is water equivalent by filling the tube with water, then sub-

merging the tube in water and acquiring images of the tubing at 50, 80, and 110 kV. We

excluded the tubing that was visible compared to the background in the image. We attached

small lead pieces to the end of each tube. For the tubes that we could not see we took an

image profile in the x-direction of the image near the lead strip and plot it against the pixel

values of the image. We used Amber Natural Latex Tubing with 1/8” inner diameter (I. D.)

and wall thickness of 1/32”.

4.4 Results

Fig. 4.4.1 on the left shows the DEXA wedge transmission factor as a function of DEXA

wedge thickness and, similarly, the iodine transmission factor as a function of iodine-filled

wedge thickness. The purpose was to confirm the mass loading of the DEXA wedge ma-

terial and show that the theoretical calculation agrees with our experiment. We also con-
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Figure 4.4.2: ESA signal as a function of the iodine mass loading using water weighted
and DEXA material weighted with 0 bone thickness.

firmed the mass loading of iodine for different thicknesses of iodine-filled stepwedge.

Fig. 4.4.2 shows the difference of iodine signal with soft tissue removal is a factor of

2.6 compared to that with cortical bone removal. This suggests that in order to achieve the

best contrast for iodine, soft-tissue must be removed from the image. Our experimental

points show excellent agreement with our theoretical calculation.

Fig. 4.4.3 shows an example of ESA images with iodine stepwedge superimposed on

DEXA stepwedge for optimal soft-tissue weighted removal and weighted for cortical bone

removal. This shows that removing soft-tissue has preserved the iodine signal but kept

the DEXA wedge signal in the image, while the DEXA wedge cancellation only cancels

out thin DEXA material, increases image noise, and improperly subtracts low iodine sig-

nal. This confirms that soft-tissue suppression is best to preserve iodine signal with partial

subtraction of DEXA material.

Figure 4.4.4a) shows a conventional (single kV at 80 kV, 330 µGy) angiographic im-

age of the RANDO anthropomorthic phantom with a 2-cm thick water overlay containing

iodine-filled tubing similar to what would be acquired in a coronary angiographic exam-

ination. The three horizontal lines that cross the image are part of the phantom layered
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60/120 kV

w = 0.71

w = 0.30

Figure 4.4.3: Images showing DEXA stepwedge superimposed on iodine stepwedge for
optimal soft-tissue cancellation (top) and thin DEXA wedge cancellation (bottom).

construction and may be ignored for this study.

For comparison, ESA images of the same phantom are shown in Fig. 4.4.4b) to f). We

used similar exposures of 293 µGy to make this comparison and calculated using different

weighting factors. The lower weight of 0.2 suppresses bone-mimicking material from the

dual-energy image, but also suppresses the iodine signal. The weights 0.5 and 0.55 partially

suppress the bone material well while preserving the iodine signal, and weights 0.60 and

0.80 preserve the iodine signal, although less than weights of 0.5 and 0.55. Despite 0.71

being the optimal weight for the iodine SNR at 60 and 120 kV with 2.5 mm copper, for

imaging a three material composition of iodine, water, and bone, a weight of 0.5 is a good

compromise in preserving iodine signal and partially suppressing bone. Having bone in the

image may be beneficial for landmarking.

4.5 Discussion

We confirmed that the DEXA material has a density of 1.82 g cm-3and we show the ex-

perimental calculation of transmission factor for DEXA is in excellent (close) agreement

theoretical calculations for all thicknesses. Similarly with iodine we confirmed that the
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a) b)
w = 0.50 w = 0.55

c) d)
w = 0.60 w = 0.80

e) f)

Figure 4.4.4: a) Conventional single-kV (80 kV) contrast image of RANDO anthropomor-
phic phantom and thin slab of water containing iodine-filled tubing. b)...f) ESA images at
60/120 kV with 2.5 mm copper for 120 kV using different weighting factors. The optimal
weight appears to be approximately 0.55.
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mass attenuation coefficient is 0.24 g cm-3and we show the experimental calculation of

transmission factor for iodine is in excellent agreement theoretical calculations for all step-

wedge thicknesses.

We show that soft-tissue suppression will preserve the iodine signal while weighting

to remove cortical bone will suppress the thin DEXA steps only and increase image noise.

Removing soft-tissue rather than bone would be better for iodine signal.

We have shown with the RANDO phantom that different weights affect how well iodine

and bone-mimicking material can be visually seen in the image. With a weight of 0.2 the

iodine signal appears to be completely suppressed along with the bone-mimicking material,

but as the weight increases both iodine and bone signal appear in the image. Weights of

0.5 and 0.55 preserve the iodine signal and show better suppression of bone compared to

images with weights of 0.6 and 0.8. We suggest that for 60 and 120 kV that a weight of 0.5

or 0.55 be used for imaging a three material composition. We show the benefits of dual-

energy imaging compared to a single kV image of the RANDO vascular phantom where in

the single kV image the iodine signal shows little contrast to the background.

The next step in this project is to implement our fast-kV switching x-ray machine to

demonstrate ESA in real-time.

4.6 Conclusion

We show excellent agreement was obtained between theoretical and experimental calcula-

tion of transmission factor for DEXA wedge material at different thicknesses. We show that

when using bone weighted ESA images the iodine signal decreases compared to soft-tissue

subtraction. We show that iodine signal is very low with DEXA wedge signal cancellation

for thin DEXA wedge thicknesses of 0.1 and 0.4 cm, and in practice we show that these

ESA images will appear quite noisy compared to soft-tissue weighted ESA images. We

show that with an anthropomorphic phantom that ESA removes soft-tissue and partially
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removes bone-mimicking material compared to a conventional single kV image. We made

the following conclusions:

1. The soft-tissue weighted image is optimal for preserving iodine signal, partial bone

removal (particularly thin bone), and ESA image noise.

2. Optimal image weights - ratio of high to low water mass attenuation coefficients - for

low kV of 50, 60, and 70 kV is 0.67, 0.71, 0.74, respectively.

We conclude that for a 3 material composition of iodine, water, and bone, water is the mate-

rial that needs to be removed. In a future study we plan to consider addressing performing

ESA in real-time similar to fluoroscopy for cardiac imaging. With implementation of fast

kVp-switching x-ray machine ESA may reduce motion artifacts for vascular imaging. We

have already shown in previous studies[218, 216] that technical requirements may be the

reason that early investigations of dual-energy angiography were less successful and now

that we have optimized those parameters.
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Chapter 5

Conclusions

A Rose model analysis was developed to compare the iodine SNR/
√

K in images obtained

using DSA (80 kV) and ESA (energy subtraction, 50 and 120 kV with 2.5 mm Cu filtration

with the high energy beam) methods. Excellent agreement was obtained between theoreti-

cal and experimental iodine Rose SNR/
√

K in both DSA and ESA images over a range of

iodine concentrations. It is shown that ESA and DSA can produce images with similar io-

dine SNR for the same phantom entrance exposure, but ESA requires a higher-performing

detector to produce near-optimal images. There are specific conclusions made from our

first study. First, ESA imaging requires a detector with good quantum efficiency at a higher

energy (120 kV) than DSA. This generally means a thicker absorption layer. For a CsI

detector, the CsI should be 0.5 mm or more to achieve near-optimal images, although the

benefits above 0.3 mm are modest for both DSA and ESA. Second, ESA imaging requires

a detector with much lower readout noise than DSA, expressed here as a quantum-limit

exposure (where readout noise variance equals quantum noise variance). It is shown that

near-optimal results are obtained only with a detector having a 50-keV quantum-limit ex-

posure of 0.05 µGy (detector air KERMA) or lower for the exposure conditions used in

this study, and 0.005 µGy or lower for exposure conditions used by early investigators who

have studies dual-energy angiography previously. These are both substantially lower than
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many state-of-the-art aSi panels in use today. Lastly, ESA imaging is more susceptible to

x-ray scatter than DSA. The scatter-to-primary ratio must be 0.05 or less to achieve near op-

timal results. Overall we conclude that ESA can provide images with similar SNR to DSA

with the same patient exposure today. The limitations in this study were not considering

noise in the iodine region (sum-of-variance iodine SNR/
√

K model), tube heat loading

considerations, and addressing imperfect background suppression. We believe the chal-

lenging technical requirements outlined here may be the reason that early investigations of

dual-energy angiography were less successful.

In a subsequent study we added noise in the iodine signal to the total noise component

part of the image into our theoretical and experimental calculations. The optimization

of our Rose and sum-of-variance model for ESA for fixed high kV of 120 kVp (2.5 mm

Cu filtration) and for low kVps of 50, 60, and 70 kV and for patient thicknesses of 2-30

cm. Excellent agreement was obtained between theoretical and experimental iodine Rose

SNR/
√

K for ESA images over a range of mAs ratios for a patient thickness of 20 cm.

We identified the detector material, from detectors that are currently available, that will

yield the best possible iodine SNR/
√

K . We have also identified that heat loading may

be a minor limitation. There are specific conclusions made from this study. First, for each

water thickness of 2-30 cm, ESA can produce images with similar iodine SNR/
√

K for

mAs ratio of 1.0 for 50/120 and 60/120 and 0.3 for 70/120 with 2.5 mm copper. The low

kVps that will give the best possible iodine SNR/
√

K range from 50-60 kVp for a fixed

high kVp of 120 kV (2.5 mm copper filter). Second, heat units for ESA were estimated

to be a factor of 2 greater than DSA, therefore the number of images acquired during an

ESA procedure is estimated to be half that of DSA. This limitation may only be minor or

may be overcome with implementation of fast kVp-switching x-ray system where, unlike

a DSA procedure, the motion artifacts may be removed and therefore the procedure would

not need to be redone. We expect that ESA in real-time will eliminate motion artifacts and

therefore the number of images needed for a procedure will be significantly less than that of
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DSA. Third, ESA requires detector materials, like CsI and GdO, for example, to achieve the

best possible of iodine Rose SNR/
√

K with thicknesses of 300-500 µm. Current detector

technology may be used to achieve optimal iodine SNR/
√

K .

We conclude that ESA can provide images with similar SNR/
√

K to DSA with the

same patient exposure. With implementation of fast kVp-switching x-ray machine ESA

may reduce motion artifacts for cardiac application and other applications of vascular imag-

ing. We believe the challenging technical requirements outlined here may be the reason that

early investigations of dual-energy angiography were less successful.

The transmission factor of DEXA material was added to our ESA signal. Excellent

agreement was obtained between theoretical and experimental calculation of transmission

factor for DEXA wedge material at different thicknesses. We show that when using bone

weighted ESA images the iodine signal decreases compared to soft-tissue subtraction. We

show that iodine signal is very low with DEXA wedge signal cancellation for thin DEXA

wedge thicknesses of 0.1 and 0.4 cm, and in practice we show that these ESA images

will appear quite noisy compared to soft-tissue weighted ESA images. We show that with

an anthropomorphic phantom that ESA removes soft-tissue and partially removes bone-

mimicking material compared to conventional single kV image. We made the following

conclusions from the final study in this thesis. First, the soft-tissue weighted image is op-

timal for preserving iodine signal, partial bone removal (particularly thin bone), and ESA

image noise. Second, optimal image weights - ratio of high to low water mass attenuation

coefficients - for low kV of 50, 60, and 70 kV is 0.67, 0.71, 0.74, respectively. Third, ESA

has the potential to improve visibility of diseased coronary arteries compared to conven-

tional non-subtraction approaches

We conclude that for a three material composition of iodine, water, and bone, water is

the material that needs to be removed. In a future study we plan to consider addressing

performing ESA in real-time similar to fluoroscopy for cardiac imaging. With implemen-

tation of fast kVp-switching x-ray machine ESA may reduce motion artifacts for vascular
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imaging. We have already shown in a previous studies that technical requirements may be

the reason that early investigations of dual-energy angiography were less successful and

now that we have optimized those parameters.

The long term goal for our work for cardiac imaging is a form of subtraction imaging

of the coronary arteries and the results of this thesis suggest that this is possible experimen-

tally. This method has the potential to improve the visibility of arterial stenosis compared

to the non-subtraction methods which require higher iodine concentration and high x-ray

patient entrance exposure. The next step in this story is to show that ESA images can be

acquired in real-time. As discussed in the Future Work section we discuss the possibility

of implementing a fast kV-switching x-ray machine.
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Chapter 6

Future Work with Preliminary Results

6.1 Implementation of fast kV-switching x-ray system

The next step in this project is to implement ESA in real-time. In this chapter we show pre-

liminary design for this fast kV-switching x-ray machine with fast switching filter design.

In this chapter we show the design of a fast kV-switching machine for demonstrating

ESA in real-time. It has been shown that ESA will work with a 2.5 mm copper filter in

the high kV beam therefore it is necessary to build a device that will put a copper filter in

front of the source aparture. Mistretta[90] and Van Lysel[135] have implemented a fast-kV

switcher in the past for cardiac imaging in real time using a spinning disk to filter the high

kV beam. However, it was never clear as to how the system was designed or implemented.

The goal of this chapter is to describe in detail the design and implementation of the fast

kV switching x-ray machine and two designs of fast switching copper filter system.

6.1.1 Solenoid system and filter design

Figure 6.1.1 shows the system design for the fast kV-switching x-ray machine. There is a

master-slave dynamic between the PC-generator complex to the filter. The one way and two

way arrows indicate a 1 bit and 2 bit connection, respectively. The PC sends instructions
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Figure 6.1.1: X-ray system design and setup showing the connection between different
components and type of connection between

to the control unit (CU) to send a pulse “D” to the detector to start detector read out. The

PC also sends instructions to the CU to send a pulse “X” to trigger the x-rays to turn on

and this follows 10 D pulses have been sent to the detector. Software on the PC contains

information regarding the time between the kV switch and sends instructions to switch the

kV to the generator. The information is sent directly from the PC to the generator to switch

the kV settings during the x-ray on time. Because the PC contains information regarding

the time of the kV switch, it sends information to the CU to send a pulse “F” to the filter to

move into a “ready” position. Fig 6.1.2 shows the timing diagram for our system design.

We selected a solenoid to move the filter bi-directionally. Fig 6.1.3 shows the filter design

with solenoid. We calculate the mass as follows:

mCu = ρCuVCu (6.1.1)

= ρCuACuxCu (6.1.2)
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Figure 6.1.2: Timing diagram for solenoid filter design
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Figure 6.1.3: Solenoid filter design (top) top view and (bottom) front view.
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We calculate the acceleration using simple kinematics as follows:

d =
1
2

at2 (6.1.3)

a =
2d
t2 (6.1.4)

We then calculate the force as follows:

F = mCua (6.1.5)

= ρCuACuxCua (6.1.6)

Our filter is attached to the bars.

6.1.2 Spinning disk system and filter design

Using the same setup as fig. 6.1.1 we can design the spinning disk filter.

Figure 6.1.4 shows the timing diagram for our system design. We turn on the PC and

“set phase” indicated that the PC is connected to the generator. The PC then sends a pulse

to the CU, and the CU sends a pulse D to the detector. The detector reads out 10 dark

images (10 D pulses) and right after the 10th pulse the CU sends pulse X to the generator

to start the exposures. The x-rays come on right after the x-ray trigger. During this time the

filter is ramping up speed to get to the rpm required and the IR pulse is received at the PC.

Figure 6.1.5 shows the time needed for the kV to change from low to high kV. First the

x-rays are triggered and the low kV is turned on, and at the same time instructions are sent

from the PC to the generator to switch from low to high kV. The same thing occurs after

the second high kV x-ray trigger, the instructions are sent from the PC to the generator to

switch from high kV to low kV. The filter is ready when the high kV exposures are on and
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Figure 6.1.4: Timing diagram for system design
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Figure 6.1.5: Timing diagram for filter design
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Figure 6.1.6: Sideview and topview of filter design for spinning disk.

transitions from ready to not ready position during the time the two kV are switching.

Figure 6.1.6 shows the side and front view of the filter design. The filter is synchro-

nized to the entire x-ray system. The filter speed is limited by the transition time, the time

between the filter in ready vs not read positon,

τ = t4kV − tXON (6.1.7)

where τ [ms] is the transition time (indicated in Fig ), t4kV [ms] is the time it takes to and

tXON [ms] is the x-ray on time. The frame rate is limited to the following,
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FR =
1frame

τ
(6.1.8)

where FR is the frame rate and τ is the transition time. We round down to the next integer

to get the limiting frame rate at which our system can operate relative to. There are a few

steps to calculating the transition time also limits the angular frequency,

r =
S
θ

(6.1.9)

C = 2πr (6.1.10)

Nslices =
C
z

(6.1.11)

θslice =
S
r

(6.1.12)

ωavg =
θslice

τ
(6.1.13)

The ON and OFF time of the filter is calculated as follows,

4tOFF =4tON =
2θslice

ωavg
(6.1.14)

The transition time was calculated by subtracting the time for the kV change and the x-ray

ON time. Currently our system can change kVp from 50-110 kV in approximately 0.300

sec and therefore the calculations are limited by this time. For a chosen x-ray ON time of

0.0167 sec, our transition time τ can be calculated as follows,
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τ = 0.300−0.0167

= 0.283s (6.1.15)

Therefore, our frame rate FR is calculated as the following,

FR =
1frame
0.283s

= 3.53
frame

s

= 3
frames

s
, (roundeddown) (6.1.16)

Therefore the transition time is now limited to 0.33 s. The source aperture dimensions in

our case is 1.0× 1.0 cm2 and we have the copper filter surface set up at 1.0 cm from the

source opening. Using like triangles we take into account the beam divergence as it reaches

the surface of the copper filter, 1.1× 1.1 cm2. These parameters can be used to calculate

z using the Pythagorean theorem to find the minimum distance that needs to be accounted

for when calculating the arc length of the two copper areas.

z =
√

2×1.59 (6.1.17)

≈ 2.24cm

We design for the arc length to be a bit larger than 1.6 cm, and we add 0.2 cm to ensure full

coverage. Each copper area has an angular displacement of π

2 therefore we can calculate

radius of the filter as the following,
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r =
4×2.24

π

2
(6.1.18)

= 5.71cm (6.1.19)

Therefore the circumference of the circle is calculated as,

C = 2π (5.71) (6.1.20)

= 28.8cm (6.1.21)

If the calculations are correct then the number of equal slices is 16.

Nslice =
28.8cm
1.8cm

= 16 (6.1.22)

and the angle of each slice should be π

8

θslice =
Sslice

r

=

2πr
Nslice

r

=
2π

Nslice

=
π

8
rad (6.1.23)

Based on the transition time we can now calculate the angular frequency of the filter as the

following,
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Figure 6.1.7: Schematic illustration of iodine-filled step-wedge immersed in 20 cm of water
with an incident spectrum q̃o [quanta mm-2], and interacting spectra q̃W and q̃I , and pixel
values d̃W and d̃I , in water and iodinated regions of the image respectively.

ωavg =
θslice

τ

=
π

8 rad
0.33s

= 1.19
rad
s

= 11.4rpm (6.1.24)

The ready ON and ready OFF times of the filter are used to check the calculation as follows,

4tOFF = 4tON =
4θ

ωavg

=
π

4 rad

1.19 rad
s

= 0.66s (6.1.25)

Our phantom set up is shown in fig 6.1.7. We attach the water-equivalent tubing to the
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Copper
ρCu 8.96 g cm-3

ACu 3x3 cm2

xCu 0.25 cm

Table 6.1: Specifications for copper

Parameters
d 1.6 cm
t 0.050 s

Table 6.2: Stroke length and transition time

pulsatile pump. We pump the iodine through the tubing at the same frame rate. We fill

the tubing with water and then inject iodine in the tube and acquire images at that frame

rate. We validate that the tubing used is water equivalent by filling the tube with water,

then submerging the tube in water and acquiring images of the tubing at 50, 80 and 110

kV. We tested several types of tubing and if the tubing does not show up in the images then

we can conclude that the tubing is water equivalent. We attached little pieces of lead onto

each tube and took the contrast between the tubing and the background. If the tubing did

not show up in the image then the small lead strip would indicate where the tubing would

be.

6.1.3 Future filter design and experiment setup

Table 6.1 shows the specifications for the copper filter.

Table 6.2 shows the parameters for the stroke length and transition time of the copper

filter.

Fig 6.1.7 illustrates the experiment setup to simulate a real patient. We attach tubing

to the pulsatile pump where the iodine is pumped through the tubing at less than the frame

rate. We fill the tubing with water and then inject iodine and gadolinium in the tube and

acquire images with a frame rate of 3 frames/s. For iodine we acquired images of the

vascular phantom at 50 and 110 kV, and the high kV was filtered with 2.5 mm of copper.

119



We assess the tubing used is water equivalent by filling the tube with water, then sub-

merging the tube in water and acquiring images of the tubing at 50, 80 and 110 kV. We

excluded the tubing that was visible compared to the background in the image. We at-

tached small lead pieces to the end of each tube. For the tubes that we could not see we

took an image profile in the x-direction of the image near the lead strip and plot it against

the pixel values of the image. We used Amber Natural Latex Tubing with 1/8 inner diame-

ter (I. D.) and wall thickness of 1/32”. Once the device has been tested on a phantom, the

next step would be to do animal testing.

6.2 Gadolinium as an ESA Contrast Agent

We have shown iodine SNR per root air KERMA for ESA is comparable to that of DSA

and we have shown that ESA images have partial bone suppression. Since the purpose

of dual-energy is to exploit the k-edge of the iodine contrast agent, an alternative solu-

tion is to use a contrast agent with similar characteristics to iodine but with a k-edge that

occurs at a higher kV. Gadolinium that was introduced in the early 1980’s to the clinic

as a contrast agent in the form of chelates for MR imaging.[263] It was also noticed that

gadolinium’s radiodensity allows the chelates to be used as radiographic contrast agents.

[256, 250] Gadolinium chelates offer an alternative to iodinated contrast in patients with

anaphylactic responses or requiring subsequent administration of radioiodide in the setting

of thyroid disease. However, there are several significant drawbacks to gadolinium us-

age as a radiographic contrast agent, including nephrotoxicity at clinically relevant doses,

cost and relatively poor x-ray attenuation at ‘safe doses’.[259] Recent reports regarding

nephrogenic systemic fibrosis also limit the routine use of gadolinium in patients with re-

nal insufficiency.[261] Gadolinium chelates contain one gadolinium atom per molecule,

whereas low-osmolality, non-ionic iodinated contrast agents contain three iodine atoms per

monomer. At the photon energies used for DSA, the attenuation produced by a single atom
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Figure 6.2.1: Mass attenuation coefficients

of gadolinium is roughly half that of an atom of iodine.[257] In this chapter we analyze

gadolinium SNR per root air KERMA and compare it to iodine SNR per root air KERMA.

Fig 6.2.1 shows the mass attenuation coefficient for iodine, gadolinium, calcium, corti-

col bone, and soft-tissue (water). The k-edge for gadolinium is at 50 keV and it is a factor

of 2 lower than iodine.

Fig. 6.2.2 shows the gadolinium SNR/
√

K as a function of low kV for a fixed high kV

of 120 kV and low gadolinium mass loading of 0.048 g cm-2. Selecting a low kV of 75-90

kV will yield optimal or near optimal image quality.

Fig. 6.2.3 shows the gadolinium SNR/
√

K as a function of mAs ratio for fixed low and

high kV of 70 and 120 kV, respectively, and low gadolinium mass loading of 0.048 g cm-2.

Selecting an mAs ratio of 0.3 will yield optimal or near optimal image quality.

Fig. 6.2.4 shows the spectra used in our theoretical calculations.

6.2.1 Results

Fig. 6.2.5 shows the gadolinium and iodine SNR/
√

K as a function of mass loading and

found that iodine Rose SNR/
√

K is a factor of 6 greater than gadolinium Rose SNR/
√

K ,
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123



Figure 6.2.6: Image of gadolinium-filled stepwedge with uniform background

Figure 6.2.7: Image of gadolinium-filled stepwedge with non-uniform background

and iodine S. O. V. SNR/
√

K is also a factor of 6 greater than gadolinium S. O. V. SNR/
√

K

for the same mass loadings.

Fig. 6.2.6 show gadolinium-filled stepwedge showing that signal from low gadolinium

mass loading does not have good contrast with the background, and the image is quite

noisy.

Fig. 6.2.7 show gadolinium-filled stepwedge showing removal of PMMA stepwedge in

the background, and again this image shows poor contrast between signal of low gadolin-

ium mass loading and the background.

Figure 6.2.8: Dual-energy images of gadolinium-filled stepwedge each next to a cylinder
of calcium with a 3 cm radius with soft-tissue removal (left) and bone-removal (right).
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Fig. 6.2.8 shows dual-energy image of gadolinium stepwedge next to a cylinder of cal-

cium with a 3 cm radius. The soft-tissue weighted (w = 0.74) image partially subtracts

the calcium cylinder and the bone-weighted (w = 0.60) suppresses the calcium quite well,

however in the bone-weighted image the signal from the thin gadolinium-filled step does

not give good contrast compared to the background and the image is noisy. Using k-edge

subtraction would yield poorer contrast because the difference between the mass attenua-

tion coefficients at the mean energies would yield a difference comparable to the difference

in water.

6.2.2 Conclusion

We conclude that gadolinium as a contrast agent would not be useful for low gadolinium in

dual-energy angiography. Iodine is a better choice for contrast agent compared to gadolin-

ium.
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