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Abstract

Localization has been considered as an important precondition for the location-dependent

applications such as mobile tracking and navigation.To obtain specific location information,

we usually make use of Global Positioning System(GPS), which is the most common plat-

form to acquire localization information in outdoor environments. When targets are in indoor

environment, however, the GPS signal is usually blocked, so we also consider other assisted po-

sitioning techniques in order to obtain accurate position of targets. In this thesis, three different

schemes in indoor environment are proposed to minimize localization error by placing refer-

ence nodes in optimum locations, combining the localization information from accelerometer

sensor in smartphone with Received Signal Strength (RSS) from reference nodes, and utilizing

frequency diversity in Wireless Fidelity (WiFi) environment.

Deployments of reference nodes are vital for locating nearby targets since they are used to

estimate the distances from them to the targets. A reference nodes’ placement scheme based

on minimizing the average mean square error of localization over a certain region is proposed

in this thesis first and is applied in different localization regions which are circular, square and

hexagonal for illustration of the flexibility of the proposed scheme.

Equipped with accelerometer sensor, smartphone provides useful information which out-

puts accelerations in three different directions. Combining acceleration information from smart-

phones and signal strength information from reference nodes to prevent the accumulated error

from accelerometer is studied in this thesis. The combined locating error is narrowed by as-

signing different weights to localization information from accelerometer and reference nodes.

In indoor environment, RSS technology based localization is the most common way to

imply since it require less additional hardware compared to other localization technologies.

However, RSS can be affected greatly by complex circumstance as well as carrier frequency.

Utilization of diverse frequencies to improve localization performance is proposed in the end

of this thesis along with some experiments applied on Software Defined Platform (SDR).

Keywords: indoor localization, reference node, accelerometer sensor, Software Defined Radio
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Chapter 1

Introduction

1.1 Motivation

Over the last decades of years, localization and navigation have been recognized to play an

increasingly important role in human society such as emergency rescue and social network ap-

plications. With fast development in wireless mobile networks and microelectronics technol-

ogy, many smartphone-based applications, which require location information, have become

more and more popular. These location information may include information from user device

such as accelerations and orientation as well as information from base station such as signal

strength. Location-based mobile applications in social networking services in our daily life

such as Twitter, WeChat and Facebook, which allow users to share their locations and find

nearby friends are attracting a lot of attention. Many content-aware applications in other fields

also require location information in order to provide better services [1].

In the context of emergency services [2], locating victims and determining the best routes

for rescue personnel are of vital importance as doing so saves power and time, which is essential

in emergency scenarios. In the healthcare industry [3], real-time patient tracking can provide

position prediction when other attempts to identify a location have failed.

The Global Positioning System (GPS)[4] is popular not only in the military but also in

2



1.1. Motivation 3

day-to-day activities. However, GPS is only effective in outdoor environments as the building

materials cause a lot of multipath situations known as None-Line-of-Sight (NLoS) situations.

NLoS means there is significant multipath propagation or scattering due to a complex environ-

ment. In order to expand the application scenario, there has been a focus on indoor localization

areas as well as joint localization fields.

To reduce the error of localization, improvements can be made in three parts: transmitters,

receivers and the propagation process. Firstly, it is important to ensure that the information

from the transmitters has being fully used. Efforts can be made to the optimum placement

of base stations or reference nodes. In addition, rapid microelectronics development has moti-

vated us to explore the solutions to minimize positioning errors with the help of built-in sensors

from the receiver side such as the portable devices. Furthermore, the propagation process can

be utilized to improve localization performance such as carrier frequency diversity.

In order to improve the localization performance from the first part, transmitters, many re-

searchers have investigated into the reference node selection and placement[5]. All localization

systems, such as ad-hoc networks and wireless sensors, need several reference nodes to locate

and estimate the position of the target. Actually, the localization performance is in close rela-

tionship with the placement of the reference nodes[7][8]. As a result, the information from the

reference nodes plays an important role in the localization process. It has been proved that the

localization error is minimized when the reference nodes are placed uniformly[9]. However,

this does not explain exactly where to place the reference nodes, especially in specific areas of

interest. Thus, we are motivated to find the best placement for reference nodes within a specific

area such that the average error is the lowest.

From the receiver side, since almost everyone in the world are using portable devices and

many social applications are combined with positioning knowledge, a variety of discussions

about the sensor utilization based on the smartphones have become popular. There are several

embedded micro-electro-mechanical sensors in the portable devices collecting different types

of data. The accelerometer sensor is the most common sensor used in the dead-reckoning
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process. The authors in [10] make use of an accelerometer sensor to determine whether the

user is stationary or moving. The sensor data is used as a filter since any acceleration causes

large variation during the measuring process. In this case, the data from the accelerometer is

not used fully, which motivates us to come up with a novel algorithm that combines the data

output from the accelerometer and available anchors in its communication range to improve

the localization performance.

A target can be positioning or tracking when people know how the signal propagates. The

most widely used algorithm in this field is based on the received signal strength, as this saves

the expense of adding specialized facilities. One of the popular methods, the radio map, relies

on comparing the online signal strength with an offline recording. In [11], multiple frequencies

and powers are recorded and selected to form a large fingerprint. Unfortunately, due to the

complicated and varying surroundings, the radio map has to be updated frequently when used in

indoor environments, otherwise significant errors may occur. On the other hand, accuracy will

be affected as the frequency of the signal determines how the propagated signal is influenced

by the surroundings. Due to the reasons above, we are motivated to explore the process of

utilizing frequency diversity in indoor environment.

1.2 Research Objectives

The research objectives are to investigate the possibility of minimizing the localization error

as well as improving the positioning performance, which can be divided into three different

aspects: transmitter side, receiver side and signal propagation side.

Optimum Reference Nodes Placement: From the transmitter side, utilizing the information

collected by the reference nodes for positioning has an obvious impact on the localization per-

formance. Hence, the first research objective is to locate the reference nodes so as to improve

the locating performance. According to the minimum mean square error, the optimum refer-

ence nodes placement is fixed. For more general situations, the deployment scheme is analyzed
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over an area of interest with a random shape to set a certain number of reference nodes in it.

Thus, the research objective is to minimize the average mean square error at the level of aver-

age localization.

Accelerometer Combined Localization: From the receiver side, the accelerometer sensor

embedded in smartphones can be helpful when tracking a portable device. However, the ac-

celerometer sensor accumulates measurement errors with time. As a result, we combine accel-

erations from accelerometer sensors with other localization technology such as received signal

strength in order to decrease errors while tracking. The research objective here is to analyze the

weighted least square error based on the joint localization system which combined localization

information from accelerometer and available reference nodes.

Improved Positioning Using Frequency Diversity : From the signal propagation side, the

frequency is a changeable parameter that can influence the path loss from the transmitter to

the receiver. Investigating these impacts and making use of them is also a research objective

herein. As frequency diversity leads to multi-channel measurements, which can be utilized to

reduce the localization error, we propose a weighted scheme according to path loss fluctuation

to improve the localization performance.

1.3 Contributions

The main contributions of this thesis are summarized below:

• An optimum reference node placement scheme to improve the localization performance

is carried out in Chapter 3. The proposed algorithm can be implied in an arbitrary area

with a set of reference nodes that is applicable in any real-world scenario. Instead of

providing the best positioning result for a specific point, we offered the scheme that puts

the reference node in the proper positions to present overall best results. As a result,
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the positioning performance over a certain range is much better than when the reference

nodes are placed randomly.

• A joint localization algorithm utilizing an embedded accelerometer sensor in the smart-

phone and available reference node in user’s communication range is proposed in Chap-

ter 4. The acceleration error is accumulates with time due to measurement error of the

sensor. Based on weighted error minimization algorithm, tracking a user is achievable

by combining the accelerometer information and available reference node information

by assigning suitable weights to them.

• A frequency diversity-based positioning system is discussed in Chapter 5. The signal

frequency information is applied instead of utilizing the reference nodes’ position and

distance information. Frequency diversity is investigated and different weights are as-

signed to frequency-based measurements according to path loss fluctuations to reduce

the localization error thus to improve the positioning performance.

1.4 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we review the literature survey

about localization technologies and examine some existing localization algorithms. In Chapter

3, the reference nodes placement scheme is presented according to minimum average mean

square error over a certain region. In Chapter 4, we propose an algorithm to combine the loca-

tion information from accelerometer with available reference nodes within its communication

range. In Chapter 5, a frequency diversity-based localization scheme is proposed according to

path loss fluctuations. We conclude our results and discuss future works in Chapter 6.



Chapter 2

Localization Techniques and Algorithms

Over the last few decades, localization has been a emerging topic in many fields, including

healthcare, military and mobile applications. Mobile applications based on Location Based

Services(LBSs) are becoming more and more popular, as the portable devices are everywhere

in human society. LBSs can be defined as services that combines the location or position

knowledge of the user with other information in order to provide better and more accurate

services for a user[12]. As one of the most fundamental services in the LBSs, the localization

of a node in a wireless network is valuable for enhancing the communication performance

as well as achieving location-based services. Nevertheless, there are many challenges related

to large-scale wireless network-based localization[13]. An immediate localization solution is

to use the GPS. Of all the systems, technologies and platforms for localization, GPS is the

most widely used as it provides comparatively good results. However, this approach fails in

many scenarios because of the GPS signal blockage (e.g., indoor environments) or is not cost-

effective when nodes are manufactured at a very large scale (e.g., wireless sensor networks).

Due to this, localization results are not precise in many such situations. As a result, there has

been extensive investigation into more practical and inexpensive localization methodologies.

In this chapter, we will review some of the localization methods and systems.

7



8 Chapter 2. Localization Techniques and Algorithms

2.1 Range Based Localization Technologies

According to [14], localization schemes can be divided into two general categories, range-

based and range-free. Range-free schemes are defined as the situations where no direct mea-

surement of range or angle is taken. This scheme can be grouped into two parts: local tech-

niques, where the target is located by collecting information from neighbour anchors, and

hop-count, where the distance between two nodes in range-free algorithm is expressed to be

the sum of the smallest hops between a pair of nodes[5]. An earlier noticeable range-free posi-

tioning method called DV-Hop, which counts the hops from the target to the anchor in order to

estimate the distances is presented in [6]. The range-free technique does not require any extra

hardware. However, the range-free localization scheme is not accurate enough since it only

uses proximity information.

In range-based localization schemes for indoor environments, there are generally three sig-

nal parameters based on which location of a target node and distances are determined: Received

Signal Strength (RSS), Time of Arrival (ToA) or Time Difference of Arrival (TDoA), and An-

gle of Arrival (AoA)[15]. The RSS model works based on the fact that the transmitted signal is

attenuated as a function of the distance between the target node and the reference transmitter.

In ToA and TDoA, the signal propagation time between the pair of nodes (ToA) or the time

difference of receiving the same transmitted signal by different nodes (TDoA) is measured and

translated into distances. The AoA is based on the angular direction under which a signal is

received and the distances are obtained using geometrical relations between the target node and

reference nodes. RSS, AoA, and ToA/TDoA are the most common schemes in practical and

have been extensively used for different localization scenarios[16].

2.1.1 Signal Strength-Based Localization

The signal strength-based localization technique does not require additional hardware as it

utilizes a common feature found in most wireless devices. The path loss of signal while prop-
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agating is calculated in the signal strength-based localization[17].

Signal fading in wireless communications

In wireless signal propagation, signals experience attenuation as a result of distance following

the 1/d2 law in Line-of-Sight (LoS), where the receivers can be seen from the transmitter

side (i.e., there is no obstacles between them). In NLoS, the signal is affected a lot by the

surroundings. Three basic structures that affect signal propagation in NLoS are reflection,

diffraction, and scattering. Reflection and diffraction happen when the propagating signal is

obstructed by a smooth surface or a dense body, respectively. Scattering happens when the

signal faces a rough surface. These situations are illustrated below in Figure 2.1.

Figure 2.1: Illustration of reflection, diffraction and scattering.

Propagation path loss: This distance-dependent parameter is also called basic propagation

loss. It can be modeled to be proportional to the inverse of the distance from the base station

(i.e., 1/dn, where the exponent n is 2 in free space [18]). Free Space Path Loss (FSPL) is a

measurement of how much the signal power drops from the transmitter to the receiver in a LoS



10 Chapter 2. Localization Techniques and Algorithms

propagation which can be expressed as follows,

FS PL = (
4πd f

c
)2, (2.1)

where f is the signal frequency and c is the speed of light since propagation is always like

light in free space. As the path loss is commonly expressed in unit of dB, Equation 2.1 can be

written as

FS PL = −20log10 f (MHz) − 20log10d(m) + 27.56, (2.2)

FS PL = −20log10 f (MHz) − 20log10d(km) + 32.45, (2.3)

where FS PL is the free space path loss measured in dB, f is the signal frequency measured in

MHz and d are the distances measured in meters and kilometers respectively.

Shadowing: Shadowing is also called as slow fading or long-term fading. It is caused by the

complex environment[19] and is normally distributed across an average value, which is usually

assumed to follow a Gaussian distribution. Large-scale fading is shown in Figure 2.2. The path

loss alone varies over a very long distance, usually between 100 and 1000 meters, while the

variation due to shadowing happens when the distance is between 10 and 100 meters, which is

proportional to the dimension of obstructions. As path loss and shadowing happen when the

distance is relatively large, this kind of variation is usually called large-scale fading.

Multipath: Multipath fading is also called fast fading. The transmitted signal arrives at the

receiver after reflection, diffraction, and scattering results in the multipath, which is significant

in mobile communications as the mobile devices are usually at low heights and surrounded

by obstacles. This small-scale fading is referred to as Rayleigh fading since there are various

multipaths on at the receiver side with random amplitude and delay adding up to present a

Rayleigh probability density function as a total signal. The red line in Figure 2.3 shows the

fluctuations due to short-term fading.
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Received Signal Strength Indicator technologies

Even though there are multiple options for the location-relating measurements such as ToA,

TDoA, and AoA, RSS[20] is typically preferred for indoor Wireless Local Area Network

(WLAN) localization due to its low expense and broad availability without the need for ex-

tra hardware.

Direct measurement: RSS is the simplest method of distance measurement based on the

relation between the transmitted signal attenuation with distance; however, its accuracy is not

good due to the multipath fading effect of the environment. Also the positioning error is a

multiplicative factor of the range and increases proportional to the distance[21].

Received Signal Strength Indicator (RSSI) is a convenient and low-cost option for local-

ization systems as most transceiver hardware is equipped with it[22][23]. Plenty of research

has been done to investigate the relationship between the power and distance[40]. In many

experimental findings, the distance follows a power law. In free space propagation models, the

ratio between the transmitted signal power and the received signal power can be expressed as

Pr

Pt
=

GtGrλ
2

(4πd)2 , (2.4)

where Pr is the power of the received signal, Pt is the power of the transmitted signal, Gr is

the antenna gain of the receiver, Gt is the antenna gain of the transmitter, and d is the distance

between the receiver and transmitter.

But in reality, as a result of the influence from obstacles, the path loss tends to obey a

log-normal-shadowing model as below

P(d) = P(d0) − 10nlog(
d
d0

) + σ, (2.5)

where P(d0) is the reference path loss at the reference distance d0 from the receiver to the

transmitter. d0 is commonly defined as 1 meter and P(d0) is the corresponding path loss. P(d)
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is the path loss at the target point when it has a distance of d from the transmitter; n is the path

loss exponent, which is usually between 2 and 5; and σ is usually a Gaussian random variable

with zero mean, which reflects the attenuation due to fading.

In the embedded devices, the received signal strength is transferred to the RSS instead. The

definition is

RS S = 10 · log(
Pr

Pre f
), (2.6)

where Pre f is usually defined as 1mW and Pr is the received signal strength.

Fingerprinting: While the above localization technique is based on the real-time measure-

ment to derive the distance, the fingerprinting technology relies on observations attempting to

match real-time measurements. As it is well known that a lot of work should be done prior

to operation as well as repeated work if the environment changes, this RSS fingerprinting pro-

vides better accuracy than direct RSS estimation[41][42]. The Microsoft Research RADAR

location system is an application for the fingerprinting based on the Wireless Fidelity (WiFi)

signal strength for indoor environments[43]. In indoor localization, GSM signal strength can

also be used to build a RSS map[44]. The RSS values for one position are recorded from all of

the nearby anchors in its communication range.

This technology usually involves a two-step process.The first step is offline or the learning

phase, the RSS measurements at different positions are recorded. During this stage, the mobile

nodes are usually held by testers and the anchor nodes record the power level of the signal

strength from the mobile nodes to set up the RSS map. The second step is an online phase

and occurs after the database has been built in the previous stage. The signal strengths are

compared to find the best match between the observed signal strength and the recorded signal

strength.

The drawback of the fingerprinting technology is its high expense, which is generally due

to the build up labour as well as the large database.
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2.1.2 Time Based Localization

Various accurate localization systems make use of the measurements of signal travel time, as

this technology can reach centimeter-level accuracy.

Time of Arrival: The ToA technique is more complex than the RSS technique but the resulting

measurement errors are less multiplicative. Time measurement using ToA is usually more

accurate than signal strength-based localization technology, as RSS is significantly affected by

obstacles and walls.

ToA calculates the distance between the reference and target nodes by computing the trav-

eling time between them. The distance between two nodes is proportional to the travel time

of the signal from one node to another[30]. Let t denotes the time when the target point is at

(x, y) as tr denotes the time when the reference point position is (xr, yr). Since the speed of the

wireless signal in air is the same as the light c, the distance d between them can be computed

by[26]

d = (tr − t0)c. (2.7)

However, the transmitter and receiver in ToA systems must be synchronized, which is dif-

ficult to achieve[27].

Time Difference of Arrival: The above ToA technology requires complete synchronization

between the target point and the reference node, which is not possible in reality. As a result,

TDoA can be an alternative method used to lower the influence of non-synchronization.

Generally, the TDoA estimation method is used to measure the time difference of the signal

from the target arriving at different base stations, as illustrated in Figure 2.4. This method

utilizes the fact that the points in the hyperbola have different constant distances to two fixed

points in the plane[25]. As a result, the target must be on the hyperbola. Usually two or

more sets of hyperbolas or at least three base stations will be needed to locate the target. As

a result, the two base stations must be synchronized well. The advantage is that when the
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channel characteristics of the base stations are similar, the error caused by the multipath can be

reduced.

Figure 2.4: Estimated localization based on TDoA technology

TDoA achieves accurate results and is widely used in localization systems such as GPS[28]

and television[29]. However, this technique requires additional hardware to perform time mea-

surements.

2.1.3 Angle Based Localization

The AoA scheme is more complicated and is also affected by the multipath fading effect. AoA

technology requires at least two base stations[30] and locates the target at the intersection,

as shown in Figure 2.5. Directional antenna or antenna array are used to make the angular

measurements in AoA-based localization systems[31].

The advantage of AoA is that it does not require any synchronization between the antennas.

Also, AoA estimation can be determined with only two base stations for 2D localization or

three for 3D localization. However, it can cause more errors when obstacles increase due to
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the multipath. There are limitations, as AoA cannot reach long distances, which is a result of

large distance errors caused by angular resolution.

Figure 2.5: Estimated localization based on AoA technology

2.2 Localization Estimation Algorithms

The localization of an object in reality is estimated by requiring some physical measurements

based on its characteristics using localization technologies such as the ones discussed in the last

section. However, the localization information collected by above localization technologies is

not accurate on its own. Depending on the localization information from measurements, there

is a variety of algorithms which can be used to narrow the localization error.

2.2.1 Least square estimation

In wireless localization estimation systems, one of the most widely used methods is the Least

Square Estimation (LSE) method. It is published in [32] for the first time and after several
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developments[33] it is clearly and concisely written in [34]. LSE is to fit a line that has the

minimal sum of squared deviation compared to a collection of existing data.

Suppose we have a user whose position is denoted by (x, y) and a base station denoted by

(xi, yi), i = 1, 2, ...,N. In the first localization step, the real distance between the user and base

station di can be expressed as

di =
√

(x − xi)2 + (y − yi)2. (2.8)

However, in range measurement, the distances usually come with an ranging error:

d̂i = di + ei, (2.9)

where ei demonstrates the error caused by the RSS, ToA or AoA measurements. As a result,

the Equation 2.8 should be written as

(x − xi)2 + (y − yi)2 = d̂i
2
. (2.10)

Expanding Equation 2.10, we get

−2xix − 2yiy + x2 + y2 = d̂i
2
− x2

i − y2
i . (2.11)

Using the linear least squares method, if we present it in matrix form, we can get

AΛ = b, (2.12)

where A =



−2x1 −2y1 1

−2x2 −2y2 1
...

...
...

−2xN −2yN 1


,Λ =


x

y

x2 + y2

 and b =



d̂1
2
− x2

1 − y2
1

d̂2
2
− x2

2 − y2
2

...

d̂N
2
− x2

N − y2
N


.
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However, when N is large, the estimator is overdetermined and will have more than one

solution for AΛ = b. The solution of the least square problem is presented as follows:

(x, y) = arg min
(x,y)
‖AΛ − b‖2. (2.13)

Then, the solution AΛ ≈ b can be expressed as

AT AΛ = AT b, (2.14)

Λ = (AT A)−1AT b. (2.15)

Compared to Maximum Likelihood Estimation (MLE), which will be discussed in the fol-

lowing section, LSE is a sub-optimum localization algorithm. However, it is simpler than MLE

and provides a comparatively accurate output since it does not demand iterative calculations

and has a closed-form result.

2.2.2 Maximum likelihood estimation

MLE is a relatively simple method of estimating the parameters of a statistical model given

data. MLE can be applied to most problems and is one of the earliest techniques investigated

in the localization problems, since MLE technology is perhaps the most recognized estimation

method in statistics. It is widely recommended by Ronald Fisher[35] followed by several

developments from other authors. The aim of MLE technology is to maximize the probability

of the observed data that is independent under a certain distribution. If the sample is large

enough, this statistic method will act as an effective estimator.

Assume there is a set of random samples x1, x2, ..., xn of n independent and identical

distributions f (x1|θ), f (x2|θ), ..., f (xn|θ), which are probability density functions. Here, the

given symbol indicates that the distribution is dependent on a parameter θ, which could be a

real-valued unknown parameter or a vector of parameters. The joint density function for a set
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of independent and identically distributed random variables is

f (x1, x2, ..., xn|θ) = f (x1|θ) × f (x2|θ) × ... × f (xn|θ). (2.16)

We call f (x1, x2, ..., xn|θ) the likelihood function and it is always denoted as L(θ). MLE

attempts to maximize the likelihood function L(θ) with respect to the unknown parameter θ.

L(θ) is equivalent to logL(θ) as log is a monotonic increasing function. logL(θ) is called log

likelihood function and is denoted as l(θ) as follows:

l(θ) = logL(θ) = log
n∏

i=1
f (xi|θ) =

n∑
i=1

log f (xi|θ). (2.17)

In a localization problem, the distance measurement Di between the target T and the anchor

Ri is a random variable following Gaussian distribution N(µi, σ
2) where µi is the actual distance

between the unknown node T and the ith reference node Ri. σ2 is usually set to be a fixed

constant. Suppose the range measurements are independent from each other and let the sample

value be di, i = 1, 2, ...,N.

The probability density functions of Di are

fi(x) =
1
√

2πσ
e−

(x−µi)
2

2σ2 , (2.18)

where the real distance µi =
√

(xi − x)2 + (yi − y)2. In this way, the MLE likelihood function is

presented below:

L(x, y) =
N∏

i=1
fi(di) =

N∏
i=1

1
√

2πσ
e−(di − µi)2/2σ2

=

( 1
√

2πσ

)N

e
−1/2σ2

N∑
i=1

(ri − µi)2

.

(2.19)

In the MLE localization process, the aim is to maximize the likelihood function L(x, y),

which is equivalent to maximizing logL(x, y). As logL(x, y) is more simple and straightforward
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to solve, here we derive it as follows:

l(x, y) = logL(x, y) = Nlog(
1
√

2πσ
) −

1
2σ2

N∑
i=1

(ri − µi)2. (2.20)

Maximizing Equation 2.20 is to minimize u(x, y) =
N∑

i=1
(ri−µi)2/(2σ2), which is equal to figuring

out the equation set below:

∂u
∂x

=
N∑

i=1
(xi − x)µi − ri

µi
= 0,

∂u
∂y

=
N∑

i=1
(yi − y)µi − ri

µi
= 0.

(2.21)

By solving the localization problem using the MLE technology outlined above, the accu-

racy can be increased compared to when the multilateral range measurement information in

linear least square method is used. MLE attains the lower bound when the sample amount N

goes to infinity.

2.2.3 Cramér-Rao Lower Bound

Cramér-Rao Lower Bound (CRLB) provides a lower bound on the variance of the estimator

whose name is in honor of authors who derive it[36][37].

After obtaining the log likelihood function, we also have information about other parame-

ters related to the MLE technique. The score function is the one simply present in the gradient

of log likelihood:

s(θ) =
∂logL(θ)

∂θ
, (2.22)

where we set θ = (x, y) as the unknown parameter in the location estimation problem and L(θ)

is the likelihood function, which is also the joint density function f (X; θ), where X : (xi, yi), i =

1, 2, ...,N is the observable random variable.

The Fisher information (sometimes simply called the information), which is denoted as
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I(θ), is defined as the matrix of the second moments of the score function[50]:

I(θ) = E[s2(θ)] = E
(∂logL(θ)

∂θ

)2 . (2.23)

The Fisher information can also be expressed as

I(θ) = −E
[
∂2logL(θ)

∂2θ

]
(2.24)

since

E
[
∂2logL(θ)

∂2θ

]
= E

[
∂

∂θ

(
1

L(θ)
∂logL(θ)

∂θ

)]
= E

 1
L(θ)

·
∂2L(θ)
∂θ2 −

[
1

L(θ)
∂L(θ)
∂θ

]2
=

∫
1

L(θ)
·
∂2L(θ)
∂θ2 · L(θ)dθ − E

(∂logL(θ)
∂θ

)2
(2.25)

and the first moment of the score which is the expectation of the score is 0:

∫
1

L(θ)
·
∂2L(θ)
∂θ2 · L(θ)dθ =

∫
∂2L(θ)
∂θ2 dθ

=
∂2

∂θ2

∫
L(θ)dθ

=
∂2

∂θ2 · 1 = 0,

(2.26)

Thus, the Fisher information is also called the variance of the score.

Now, we know that X is a vector of random variables (xi, yi), i = 1, 2, ...,N and the joint

density function is f (X; θ) where θ is the target location (x, y) in the localization problem. The

CRLB indicates that the inverse of the Fisher information is a lower bound on the variance of
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any unbiased estimator of θ. The Cramér-Rao inequality is

Var[θ(X)] ≥
1

I(θ)
, (2.27)

where I(θ)−1 is the CRLB. This inequality tells us that in the localization problem the precision

to which we can estimate the target θ : (x, y) is basically limited by the Fisher information.

2.3 Sensor Measurements

Smartphones not only provide provide RADAR and GPS but also offer a variety of Inertial

Navigation System (INS) sensors, such as accelerometer, magnetometer, gyroscope, whose in-

formation can be used to locate the portable devices. These sensors present useful information

to locate and track users.

2.3.1 Accelerometer

In instances of acceleration of the device, the accelerometer can not only be used to locate a tar-

get, but also can be analyzed to detect the activities of the user. Almost all recent smartphones

have three-axial accelerometers, making them a good choice for pedestrian dead reckoning

and locating users. Accelerometers can help detect human activities such as going upstairs

or downstairs and walking which is ideal for patients detection in medical field. In addition,

accelerometer values can be used for calculating the velocity and location of a robot[39].

However, the accelerometer itself has measurement error. The direct evidence is that while

placing a smartphone on a desk or keeping it static in hand, the sensor will report the smart-

phone is moving. Although the readings from accelerometer along three axes are small, it can

accumulate to a large error with time. Efforts have been done due to this weakness. One of

them is to record the accelerations only when it is above a certain threshold.
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2.3.2 Magnetometer

Magnetometer measures the earth’s magnetic field strength. Magnetic field sensors’ directions

are determined with respect to the North Magnetic Pole on the surface of the Earth and the unit

used is microtesla (µT ). Compass is one of the application based on this feature which can

give orientation of the user. However, this sensor is very sensitive to the surroundings such as

electronic devices or buildings materials, which can be regarded as noise. It has been revealed

in [38] that disturbances of the magnetic field can be utilized to locate the users.

2.3.3 Gyroscope

Gyroscopes are used to assist the magnetometer as well as the accelerometer to increase the

precision of localization. Radians per second (rad/s) are measured using the gyroscope sensor,

which shows the difference of the smartphones’ rotation, namely, the angular velocity. Even

though the magnetic field sensor is slower than the gyroscope, the gyroscope can only be

utilized to assist with the magnetometer for higher precision since, unlike the magnetometer,

the gyroscope cannot determine the orientation of the phone. Thus, a combination of these

motion sensors can provide an overall good performance since the magnetic field sensor offers

long-term information while the gyroscope provides quick adjustments to the short-term data.

2.4 Chapter Summary

In this chapter, we review the techniques and algorithms used in localization system. Po-

sitioning techniques are classified into two categories, range-based and range-free schemes.

Range-based localization technologies, including signal-based, time-based and angle-based

technologies, are discussed first. LSE and MLE are both regression estimation methods used

to minimize the error of localization and maximize the probability of measurements respec-

tively; they are also analyzed in details. Estimator based on CRLB is another algorithm that

can be used to provide the lower bound of variance. Smartphone sensors are investigated in the
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end to give a general view on INS sensors which can provide additional assistance to localiza-

tion techniques and algorithms.



Chapter 3

Optimum Reference Node Deployment for

Indoor Localization Based on the Average

Mean Square Error Minimization

Considering all the localization systems, a critical common issue needs to be tackled is to deter-

mine the physical positions of reference nodes. In [24], it shows that the placement of reference

nodes has substantial impact on the positioning accuracy. Therefore, finding the optimum lo-

cations for reference nodes are vital in nearly every localization systems and reference nodes

placement strongly affects the quality of localization. In this chapter, average mean square

error is minimized to obtain best average localization performance over certain regions.

3.1 Introduction

Many localization methods proposed have been proposed recently to find the optimum refer-

ence nodes to reduce the localization estimation error. In [45], reference anchors are optimized

to improve the performance of linear least squares and weighted least squares algorithm in

RSS-based localization.

25
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Using the GPS for indoor localization is challenging as the GPS signal is significantly at-

tenuated or completely blocked by the building. In achieving indoor localization, a set of trans-

mitters from wireless communication networks are often used as reference nodes to localize

target nodes with unknown locations. The accuracy of such localization process is consider-

ably affected by the spatial distribution of the reference nodes with respect to the target node

to be localized. Hence, deploying the reference nodes at best locations will notably increase

the localization precision. In this chapter, a novel reference nodes deployment scheme is in-

troduced which minimizes the average Mean Square Error (MSE) of the localization over the

area of interest with certain shape. The proposed scheme is evaluated for deploying the refer-

ence nodes in the circular, square, and hexagonal localization regions. The proposed scheme is

validated and illustrated by numerical simulations.

In wireless networks, CRLB is usually defined as a benchmark so that we can know how

good an estimator will possibly do[13]. It also helps us compare the performances between dif-

ferent localization estimations[46]. Average CRB is derived in [21] based on RSS localization

to study the nonlinear least square solution presented. Another ToA-based average CRLB in

NLoS environment can be found in [47]. According to [47] and [48], CRLB provides a lower

bound on the MSE of a position estimate. In some cases, average MSE is used to evaluate

practical estimators’ performance in positioning systems. A reference node selection strategy

is proposed in [49] which minimizes the average MSE in the TDoA based position system. In

this paper, we are interested in the first two diagonal terms of the CRLB which provide the

Minimum Mean Square Error (MMSE) of the position estimation. We propose a reference

nodes deployment scheme which determines the optimum locations by minimizing MMSE

over selected areas which can be circle, hexagon or square. Besides, our scheme can also be

used as the guidance for deploying reference nodes in localization system.
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3.2 Minimum Mean Square Error Scheme

As mentioned above, ToA is based on the signal propagation time measurement between nodes.

If (xT, yT) is the location of a target node T being localized and (xi, yi) is the location of the i-th

reference node localizing T,

di(x, y) =
√

(xT − xi)2 + (yT − yi)2 (3.1)

is the distance between T and the i-th reference node. In this case, the signal propagation time

is measured as

ti =
di

c
+ ζi, i = 1, ...,N, (3.2)

where constant c is the signal propagation speed, and ζi is the measurement noise which is

usually modeled as a zero-mean Gaussian random variable with a constant variance σ2
i [13],

and N is the number of reference nodes. In this case, the location of T is obtained based on the

measured time values (t1, t2, . . . , tN). In addition, if (x̂T, ŷT) is the estimated location of T, then

the localization error is obtained as

e =
√

(x̂T − xT)2 + (ŷT − yT)2, (3.3)

which can be used to compare the accuracy between different localization estimators.

In addition to the accurate estimation of the distances between the target node and any of

the reference nodes, the topology of the reference nodes with respect to the target node can also

significantly affect the performance of the target node localization. Hence, in order to get the

best estimation of the target node, it is more efficient to use the reference nodes with optimum

locations for locating the target node.

The average mean square error of e derived in (3.3) is a good figure of merit to select the

best set of the reference nodes for the localization. Using a CRLB approach, it has been shown
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in [47] and [48] that the MMSE of the ToA localization scheme is given by

MMS EToA =
c2Σ

NL
i=1σ

−2
i

Σ
NL
i=1Σ

i−1
j=1σ

−2
i σ

−2
j sin2(θi − θ j)

, (3.4)

where c is the speed of the light, σi and σ j represent the ith and jth ToA measurement errors

respectively, NL is the number of reference nodes. θi = tan−1( y−yi
x−xi

) and it denotes the angle

between the ith reference node and the target node. (x, y) and (xi, yi) are the positions of the

target node and the ith reference node, respectively.

In order to get the average MMSE within a certain range, we have to get the average MMSE

expression. The ToA-based average MMSE result can be expressed as

MMS E(x, y) =
c2σ2N∑N−1

i=1
∑N

j=i+1(sin θi j)2
, (3.5)

where θi j = θi − θ j and N is the number of reference nodes. σ2 denotes the ToA measurement

error.

In the usual situation where has 3 reference nodes , we can simplify the average MMSE

expression from (3.5) to

MMS E(r, θ) =
3c2σ2

sin2 θ12 + sin2 θ23 + sin2 θ13
, (3.6)

where θ12, θ23 and θ13 denote the angular distances between every two reference nodes as

shown in Figure 3.1. The target node is in the center of the figure presented as triangle and the

3 reference nodes are randomly distributed which are circles in Figure 3.1. In this paper, we set

cσ equal to 1. Also, sin2 θ12, sin2 θ23, sin2 θ13 can be derived by the vector product expression

a × b =‖ a ‖ · ‖ b ‖ sin θ, (3.7)

where a and b are the vectors of segments connect the target node and the reference node.
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Figure 3.1: Illustration of 3 Reference Nodes in the Mean Square Error Minimization Problem

3.3 Average Scheme In Certain Localization Regions

We consider a three-reference-node localization scenario to localize a target node T located in

a determined localization region. We analyze three different cases separately. In the first case,

one reference node is assumed to be fixed at the center of the localization region, which with

refer to it as the base station, whereas the other two nodes are deployed to help the base station

to localize T which minimize the localization error over this region.

At first, we assume the nodes are in an unit circle. In this circular region, there are one ref-

erence node O with known location in the center and two reference nodes A, B with unknown

location within the circle, then the parameters in average MMSE expression from (3.6) can be

calculated out as

sin2 θ12 =
r2

A sin2 θ

r2
A + r2 − 2rrA cos θ

, (3.8)

sin2θ23 =
(rrB sin(θ − θ0) − rrA sin θ + rArB sin θ0)2

(r2 + r2
B − 2rrB cos(θ − θ0))(r2

A + r2 − 2rrA cos θ)
(3.9)
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and

sin2 θ13 =
r2

B sin2(θ − θ0)
r2 + r2

B − 2rrB cos(θ − θ0)
. (3.10)

Here, rA and rB are the distances between O and A, B respectively. r is the distance between

T and O. θ is the angular distance between the segments which connect A, T with O. θ0 denotes

the angular distance between the segments which connect A, B with O.

The average MMSE result within this unit circle is considered as

MMS E =
1
π

∫ 2π

0

∫ 1

0
MMS E(r, θ|rA, rB, θ0)rdrdθ. (3.11)

In this way, the optimum locations of reference nodes A, B can be obtained by minimizing

the average MMSE expression.

(r̂A, r̂B, θ̂0) = argmin MMS E (3.12)

In this case, we also consider the square region as well as the hexagonal region to prove the

flexibility of our scheme. For these two regions, the parameters of average MMSE expression

in (3.6) are (3.13), (3.14) and (3.15).

sin2 θ12 =
(xAyC − xCyA)2

(x2
C + y2

C)(x2
A + x2

C − 2xAxC + y2
C + y2

A − 2yAyC)
, (3.13)

sin2 θ23 =
(xByC + xAyB + xCyA − xByA − xAyC − xCyB)2

(x2
B + x2

C − 2xBxC + y2
C + y2

B − 2yByC)(x2
A + x2

C − 2xAxC + y2
C + y2

A − 2yAyC)
, (3.14)

sin2 θ13 =
(xByC − xCyB)2

(x2
C + y2

C)(x2
B + x2

C − 2xBxC + y2
B + y2

C − 2yByC)
. (3.15)

The average MMSE expression within a square whose side is 1 is as follow:

MMS E =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

MMS E(xC, yC|xA, yA, xB, yB)dxdy. (3.19)
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Similarly, the average MMSE expression within a hexagon whose side is 1 is as follow:

MMSE =
2
√

3
9

∫ √
3

2

−

√
3

2

∫ 1

−1
MMSE(xC, yC|xA, yA, xB, yB)dxdy

−4
∫ 0

−

√
3

2

∫ −

√
3

3 x−1

−

√
3

2

MMS E(xC, yC|xA, yA, xB, yB)dxdy.

(3.20)

By minimizing the average MMSE result, we can get the positions of optimum reference

nodes by

(x̂A, ŷA, x̂B, ŷB) = argmin MMS E (3.21)

in square region or in hexagonal region.

In the second case, we consider a situation where there are two reference nodes A and B

with known location at central axis of a region. In circular region, we set A to (1,0) or ( 1
3 ,0)

and B to (-1,0) or (-1
3 ,0) respectively. C is the reference node with unknown location within the

region that we want to obtain. In this assumption, the parameters in (3.6) are

sin2 θ12 =
(rrB sin θ − rrA sin θ)2

(r2
A + r2 − 2rrA cos θ)(r2

B + r2 − 2rrB cos θ)
, (3.22)

sin2 θ23 =
(rArC sin θ0 − rrA sin θ + rrC sin(θ − θ0))2

(r2+ r2
C− 2rrC cos(θ− θ0))(r2

A+ r2− 2rrA cos θ)
, (3.23)

and

sin2 θ13 =
(rBrC sin θ0 − rrB sin θ + rrC sin(θ − θ0))2

(r2
B+ r2− 2rrB cos θ)(r2+ r2

C− 2rrC cos(θ− θ0))
. (3.24)

Similarly, in square and hexagonal region, the parameters in (3.6) are

sin2 θ12 =
(xByC − xBy − xyC + xCy)2

[(xB − x)2 + y2][(xC − x)2 + (yC − y)2]
, (3.25)

sin2 θ23 =
(xAyC − xAy − xyC + xCy)2

[(xA − x)2 + y2][(xC − x)2 + (yC − y)2]
(3.26)
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and

sin2 θ13 =
(xAy − xBy)2

(x2
B + x2 − 2xxB + y2)(x2

A + x2 − 2xxA + y2)
. (3.27)

But in hexagonal region, A and B are set to be (
√

3
6 , 0) and (-

√
3

6 , 0) or (
√

3
2 , 0) and (-

√
3

2 , 0).

Actually in reality, there is no reference node with known location in advance for many

cases. So at last, we consider the third case where we want to obtain three reference nodes

A, B and C without prior location information. We present the parameters in (3.6) as (3.28),

(3.29) and (3.30) in circular region where θA, θB, θC, θT denote the angle between the x-axis

through the center of the circle and segment which connects A, B, C, T with the center of the

circle, respectively.

sin2 θ12 =
((rB cos θB−rT cos θT)(rC sin θC−rT sin θT)−(rB sin θB−rT sin θT)(rC cos θC−rT cos θT))2

(r2
B + r2

T − 2rBrT cos(θB − θT))(r2
C + r2

T − 2rCrT cos(θC − θT))
(3.28)

sin2 θ23 =
((rB cos θB − rT cos θT)(−rT sin θT) − (rB sin θB − rT sin θT)(rA − rT cos θT))2

(r2
B + r2

T − 2rBrT cos(θB − θT))(r2
A + r2

T − 2rArT cos(θA − θT))
(3.29)

sin2 θ13 =
((rA cos θA−rT cos θT)(rC sin θC−rT sin θT)−(rA sin θA−rT sin θT)(rC cos θC − rT cos θT))2

(r2
A + r2

T − 2rArT cos(θA − θT))(r2
C + r2

T − 2rCrT cos(θC − θT))
(3.30)

In square and hexagonal region, the parameters in (3.6) are

sin2θ12 =
[(xB−xT)(yC−yT) − (yB−yT)(xC−xT)]2

[(xB−xT )2 + (yB−yT )2][(xC−xT)2 + (yC−yT)2]
, (3.31)

sin2 θ23 =
[(xB − xT)(yA − yT) − (yB − yT)(xA − xT)]2

[(xB− xT)2+(yB− yT)2][(xA− xT)2 + (yA− yT)2]
(3.32)

and

sin2 θ13 =
[(xA − xT)(yC − yT) − (yA − yT)(xC − xT)]2

[(xA− xT)2+(yA− yT)2][(xC− xT)2+ (yC− yT)2]
. (3.33)

Because we have three reference nodes with unknown location in this assumed scenario,
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the optimum position information can be obtained by minimizing

(x̂A, ŷA, x̂B, ŷB, x̂C, ŷC) = argmin MMS E. (3.34)

All the implements above will be simulated at one time and we will get the results at the

same time.

Until now, we provide three common designs in three different shapes of region. This not

only proves that our scheme is flexible but also gives a guidance for starting to set a localization

system and obtain the optimum reference nodes placement.

3.4 Simulation Results

In this section, we present the numerical optimization results for the three reference nodes po-

sitioning in different scenarios, based on the deployment region of the target node as following.

3.4.1 Circular Region

In Figure 3.2, the optimum deployment topologies are shown when the location of the reference

nodes are unknown (Figure 3.2-(a)), one reference node is fixed at the center of the region

(Figure 3.2-(b)), two reference nodes are fixed in the region (Figure 3.2-(c) and -(d)).

As shown in Figure 3.2-(a), assuming three reference nodes can be deployed anywhere in

the circular region, the best structure is when the reference nodes have equiangular distances,

i.e., equal to 120◦, around the center of the region. Also, their distances to the center are equal,

which is 0.901 times the radius of the region. Figure 3.2-(b) shows the optimum case when a

reference node, i.e., one base station, is located at the center of the circular region and two other

reference nodes, e.g., two access points or mobile users, cooperate with this base station for
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Figure 3.2: Optimum RNs Placement Scheme Within Circular Region
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localization. As the figure depicts, the optimum positions for the two reference nodes are on the

circumference of the circle with angular distance 99.0◦ with respect to the center of the region.

Figure 3.2-(c) and -(d) show the cases where two base stations are located on the diameter

of the region symmetrically on two sides of the center, within and on the circumference of

the circle, respectively. As seen, in both cases, the best position of the third reference node

cooperating with the two base stations is on the intersection of the circumference of the circle

and the perpendicular bisector of the base stations crossing line.

3.4.2 Hexagonal Region

Similar to the circular region case, the reference nodes placements shown in Figure 3.3 present

three optimum localization conditions when no reference node is fixed (Figure 3.3-(a)), one

reference node is fixed (Figure 3.3-(b)), and two reference nodes are fixed (Figure 3.3-(c) and

-(d)).

For the first case where no reference node is fixed, the optimum locations of the three ref-

erence nodes are shown in Figure 3.3-(a). In this case, the reference nodes form an equilateral

triangle within the hexagon which means they have equal angular distances 120◦ around the

center of the region. In addition, the distances between the reference nodes and the center point

are 0.804 times the side of the hexagonal region. In Figure 3.3-(b), a reference node as a base

station is fixed at the center of hexagonal region and the other two reference nodes assist the

base station to locate the target node in this region. From the result, we can find that the best

positioning for the two reference nodes are at the boundary of the region with angular distance

105.0◦ with respect to the center point. In Figure 3.3-(c) and -(d), two base stations are locate

on the central axis of the hexagonal region, symmetrically on two sides of the center point

and separated one third of the diameter. The figures show that they have the same optimum

reference node location which is at the middle of the region side which has equal distance to
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Figure 3.3: Optimum RNs Placement Scheme Within Hexagonal Region
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the base stations.

3.4.3 Square Region

In Figure 3.4, the optimum deployment topologies are shown for the square region, when the

location of the three reference nodes are unknown (Figure 3.4-(a)), one reference node is fixed

at the center of the region (Figure 3.4-(b)), and two reference nodes are fixed in the region

(Figure 3.4-(c) and -(d)).

As depicted by Figure 3.4-(a), the optimum case when the the reference nodes can be

located anywhere on the square region is similar to circular and hexagonal region cases, i.e.,

the angular separation between any two reference nodes is close to 120◦ and they maximally

spread on the region. In addition, for the case where one reference node is fixed in the center

of the region as a base station, the optimum location of the other two reference nodes are

on the boundary of the square region with angular separation around 100◦, which is close to

what have been obtained for the circular and hexagonal regions. Furthermore, for the two base

station case where two reference nodes are fixed in the region or on the boundary, as shown

by Figure 3.4-(a) and Figure 3.4-(b), respectively, the optimum location of the third reference

node is similar to those of the circular and hexagonal regions, i.e., on the boundary and on the

perpendicular bisector of the base stations crossing line.

In fact, our proposed scheme can be used in any shape of region and the number of the base

stations or the reference nodes with no prior localization can also be different. Besides, when

our scheme is applied to the situation where there are 3 unknown base stations, it can in fact be

used to establish a localization system in any wireless network.

Figure 3.5 shows the 50-iteration simulation results which compare the situations when we

use the selected optimum reference nodes according to our proposed scheme with the reference
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nodes randomly selected where we change location of one reference node among the optimum

locations. In the simulation, we select four nodes which are in the center from four different

quadrants as the target nodes and the distance between them and the central point is 0.5 in

circular scenario. With iterations increasing, the variance of noise is increasing as well. As

we can see in Figure 3.5, the accuracy can be increased by using our proposed reference nodes

selection scheme.
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Figure 3.5: Mean Square Error Comparison Between Optimum RNs and Arbitrary RNs in
Circular Region

3.5 Chapter Summary

In this chapter, we propose a general scheme in determining the optimum reference nodes de-

ployment scheme. For illustration and demonstration for the flexibility of the scheme, we sim-

ulate our scheme in circular, hexagonal and square positioning regions. The proposed method

can be applied in arbitrary region in realistic localization system. Besides, this scheme can
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be practical when extending an existed localization system. As the average positioning per-

formance was carried out, the best locationing performance of the reference node deployment

could be determined as the lowest MSE average value within a certain area. It is shown from

the simulation results that the proposed scheme improves the accuracy of location.



Chapter 4

Joint Localization Algorithm Combining

Information from Accelerometer and

Available Reference Nodes

In conventional wireless localization techniques, the performance is generally constrained by

the number of reference nodes available in the communication range. Recently, alternative

localization schemes have been proposed to utilize the internal sensors embedded in wireless

devices to acquire additional useful location dependent parameters. The accelerometer based

localization has attracted much attention because of the widely usage of accelerometer sensors

in today’s smart phones. However, the accumulated error from the sensors can decrease the lo-

calization accuracy significantly as time goes by. In this chapter, we propose a novel algorithm

which combines the signal measurements from available reference nodes and the data output

from accelerometer sensor to overcome the error accumulation. The simulation results shows

that our proposed algorithm can achieve outstanding localization performance with only few

reference nodes.

41
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4.1 Introduction

With the growing demand for LBSs in recent years, location estimation has already become an

essential enabling technology in many emerging wireless applications [51], such as health care

[52], smart homes [53], social network [54], monitoring [55], tracking and navigation [56].

In cellular network, the Enhanced 911 (E-911) service is mandated by the Federal Communi-

cations Commission to locate the positions of mobile users who call the emergency number

[57]. In Wireless Sensor Networks (WSNs), the geographical location information of the sen-

sor nodes is essential for the sensed data to be useful [58]. As a result of these increasing

demand for LBSs, accurate localization for a certain target has been highlighted.

The target location is generally estimated through some location dependent parameters

measured from a set of reference nodes whose positions are known as priori in traditional

wireless localization schemes. Therefore, the localization performance is constrained by the

number of reference nodes available within the communication range of the target node. In

addition, the usual localization methods which measure location dependent parameters, such

as ToA [59], AoA [60] and RSS [61], are highly sensitive to the communication environment

and the system calibration. The multipath effect and addictive noise are two major sources

which degrade the localization accuracy in complex environment. In ToA and AoA based

localization schemes, system calibration and synchronization also have significant impact on

the localization performance. RSS based localization systems are more easy to implement as

it does not require any additional hardware. The reference nodes in RSS based position system

can provide relatively reliable localization information.

Due to the exponential growth of the smartphone market in recent years, alternative local-

ization schemes have been proposed to utilize the internal sensors embedded in smartphones

to obtain additional location dependent parameters and improve localization performance [62].

Most of today’s smartphones are equipped with various built-in sensors, providing extremely
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useful information which can not only be used in today’s mobile applications for entertainment

and user interaction purposes, but also in many emerging wireless applications. Accelerometer

is one of the internal sensors which can output the accelerations from different directions of the

device. In this way, the moving distance of a user can be calculated through the acceleration

information for position estimation. However, the accuracy of localization based on accelerom-

eter is highly sensitive to the sensor measurement error. In addition, the sensor error can be

accumulated along with the time increase, which will degrade the localization performance

significantly.

Considering the existing problems in above discussed localization schemes, we consider to

combine two different types of location dependent parameters measured from available refer-

ence nodes and internal accelerometer sensor altogether in order to overcome the drawbacks

and improve the localization performance. A noticeable work has been presented in [58],

where the authors combine the accelerometer information with the RSS fingerprinting based

on interval analysis. However, the RSS fingerprinting map generation is labor-intensive and

time-consuming. In addition, the map needs to be updated when the environment in the local-

ization system changes. In this paper, we propose a novel algorithm to combine the information

from accelerometer and available reference nodes through weighted least square error (WLSE)

of the two different types of information to minimize the localization error. As shown in our

simulation results, by use of the proposed combined localization method, the error accumu-

lation from the accelerometer can be eliminated with the help of very few reference nodes

involved, and the localization accuracy can be improved significantly.

The rest of the paper are organized as follows: In Section II, we present the accelerom-

eter based localization method and do experiment to show the error accumulation, while the

combined algorithm is proposed in Section III. Simulation results are given in Section IV.
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4.2 System Model

4.2.1 Accelerometer based localization

Accelerometer sensor is one of the most important features in smartphones. The data output

from the accelerometer sensor in most of today’s smartphones is according to the coordinate

system as shown in Figure 4.1. The positive x axis points to the right of the screen, the positive

y axis points to the up of the screen, and the positive z axis points towards the outside of the

front face of the screen. The accelerometer measures the portable device’s acceleration along

three axes.

Figure 4.1: Coordinate system of data output from accelerometer in smartphones.

In accelerometer based localization scheme, the acceleration data along the three orthog-

onal axes obtained from the embedded accelerometer sensor is used to calculate the moving

distance of the target device for localization purpose. Assume the target starts moving from

time slot t0, and the initial acceleration at t0 is 0 m/s2. Let a(t) denote the acceleration at time
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slot t, the moving velocity along the acceleration direction at time slot t can be obtained as

v(t) =

∫ t

t0
a(x)dx. (4.1)

Then the moving distance of the user at time slot t can be calculated by

d(t) =

∫ t

t0
v(x)dx =

∫ t

t0

∫ y

t0
a(x)dxdy. (4.2)

In practical, the sampling data from the accelerometer sensor is in discrete time. Let 4t de-

note the sampling period of the accelerometer sensor and assume the acceleration of the target

remains unchanged during the very short sampling period, then the moving velocity along the

acceleration direction at the nth sampling point can be expressed as

v(tn) =

n∑
k=1

a(tk)4t, (4.3)

where tk = t0 + k4t is the time slot of the kth sampling point. Alternatively, we can calculate

the target moving velocity at current sampling time based on the velocity at previous sampling

time, which can be expressed as

v(tn) = v(tn−1) + a(tn)4t, (4.4)

where a(tn) is the acceleration during the sampling period (4t) from tn−1 to tn. Then the moving

distance from time slot t0 which is the starting point to time slot tn can be calculated as

d(tn) = d(tn−1) +
1
2

[v(tn−1) + v(tn)]4t

= d(tn−1) + v(tn−1)4t +
1
2

a(tn)4t2.

(4.5)

Let en denotes the error of the acceleration measurement data atn , then the velocity at the nth
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sampling point v(tn) in (4.4) becomes

v(tn) = v(tn−1) + [a(tn) + en]4t

= v(tn−1) + a(tn)4t + en4t.
(4.6)

Therefore, the moving distance at the nth sampling point d(tn) in (4.5) can be calculated as

d(tn) = d(tn−1) +
1
2

[v(tn−1) + v(tn)]4t

= d(tn−1)+v(tn−1)4t +
1
2

a(tn)4t2 +
1
2

en4t2.

(4.7)

As shown in (4.7), the error of distance calculation in the previous sampling time will be accu-

mulated to the distance estimation in the current sampling time because of the accelerometer

measurement error. Therefore, the measurement error will increase significantly when the

sampling time gets longer.

4.2.2 Accelerometer and available reference node combined localization

algorithm

In this section, we combine the location dependent parameters measured from available refer-

ence nodes and accelerometer sensor altogether through Weighted Least Square Error (WLSE).

With involving the available reference nodes, the combined localization algorithm will be able

to eliminate the error accumulation from the accelerometer while overcoming the limitation of

conventional localization schemes.

Consider a user holding a device equipped with both accelerometer sensor and wireless

communication module which enables the device to measure the signal strength from available

reference nodes in its communication range, the location dependent parameters obtained from

the sensor and the received wireless signals can be combined together to improve the localiza-
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tion performance. Assume there are N reference nodes available within the user’s communi-

cation range, the distance measurement error between the target and the ith reference node can

be expressed as

er,i(x, y) = dm,i(mi) − dr,i(x, y), (4.8)

where (x, y) is the true position of the user, mi is the measured location related parameter from

the ith reference node, and dm,i(mi), dr,i(x, y) are the measured distance and the real distance

between the target and the ith reference node, respectively. Let (xi, yi) denotes the position of

the ith reference node, the real distance can be calculated as

dr,i(x, y) =
√

(x − xi)2 + (y − yi)2. (4.9)

The measured distance dm,i(x, y) can be measured through conventional localization methods ,

such as RSS and ToA, based on corresponding signal propagation models.

In RSS-based localization, the relationship between the received signal strength from the

ith reference node and the distance can be modeled as

dm,i(rssi) = d0 · 10(P0−rssi)/10α, (4.10)

where P0 is the signal power in decibel at the reference distance d0 away from the transmitter,

rssi is the measured signal strength from the ith reference node, and α is the path loss exponent

which is an environment dependent parameter. The reference distance d0 is typically set to be

1m.

In ToA-based localization, the measured time of arrival is related to the distance between

the target and the ith reference node by

dm,i(ti) = c · ti, (4.11)
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where c is the parameter of signal propagation speed, and ti is the measured signal propagation

time from the ith reference node.

In combined localization algorithm, we minimize the weighted square error of the distance

estimation from reference nodes and accelerometer in order to eliminate the error accumulation

and improve the localization accuracy. Assume (xn−1, yn−1) is the estimated target location at

the (n − 1)th sampling point, we first calculate the moving distances along x and y axis at the

nth sampling point by 
x′n = xn−1 +

1
2

(2vx,n−1 + ax,nt)t,

y′n = yn−1 +
1
2

(2vy,n−1 + ay,nt)t,
(4.12)

where (vx,n−1, vy,n−1) is the target moving velocity at the (n − 1)th sampling point, and t is the

time duration between the previous and the current sampling point. Let (vx,0, vy,0) denote the

initial velocity, then (4.12) can be expressed as


x′n = xn−1 +

1
2

(2vx,0 + 2
n−1∑
k=1

ax,kt + ax,nt)t,

y′n = yn−1 +
1
2

(2vy,0 + 2
n−1∑
k=1

ay,kt + ay,nt)t.

(4.13)

Let ∆ak,x and ∆ak,y denote the accelerometer measurement error at the kth sampling point

along x and y axis, respectively, then the accumulated error at the nth sampling point can be

calculated as 
en,x =

n−1∑
k=1

∆ak,xt2 +
1
2

∆an,xt2,

en,y =

n−1∑
k=1

∆ak,yt2 +
1
2

∆an,yt2.

(4.14)

In this way we can combine the distance estimation from accelerometer and reference nodes
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together, based on WLSE algorithm. The combined weighted square error can be expressed as

S (xn, yn) =

N∑
i=1

wr,i · e2
r,i(xn, yn)

+ wa · (xn − x′n)2 + wa · (yn − y′n)2,

(4.15)

where er,i is the distance measurement error from the ith reference node in (4.9), wr,i and wa

are the weights from the ith reference node and from the accelerometer at nth sampling point,

respectively. We assign the weights to the square errors based on the corresponding variances.

The variance of distance estimation error from the ith reference node can be obtained as a

known parameter according to the signal propagation model, denoted as σ2
r,i, while the variance

of the random error from the accelerometer can be also known as a priori, denoted as σ2
a.

4.2.3 Weighted assignments for accelerometer and reference nodes

For most data sets, appropriate weights specifications are recommended since they output better

performance. Generally, the best weight of a data is reciprocal of data point’s variance. The

weighting assignments of localization information from accelerometer sensor and reference

nodes we use here is a very common scheme whose weights are proportional to the inverse of

the variance values as presented below:

w1 : w2 : ... : wn =
1
σ2

1

:
1
σ2

2

: ... :
1
σ2

n
, (4.16)

where w1,w2, ...,wn indicate the weight of every data in a data set and σ1, σ2, ..., σn are corre-

sponding standard deviations. Based on the calculated total error from accelerometer sensor

and avaliable reference nodes in (4.15) and the weight scheme presented in (4.16), we assign
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the weights to localization information collected from reference nodes and accelerometer by


wr,i =

1
σ2

r,i∑N
i=1

1
σ2

r,i
+ 2

σ2
d

,

wa =

1
nσ2

d∑N
i=1

1
σ2

r,i
+ 2

σ2
d

,

(4.17)

where σ2
d = ( 1

2σat2)2. Therefore, the location estimation result at the nth sampling point using

combined localization scheme can be expressed as

(xn, yn) = arg min
xn,yn

S (xn, yn). (4.18)

By using the combined localization scheme, we can minimize the measurement error accumu-

lated from accelerometer with the help of a few reference nodes in its communication range.

Moreover, the localization performance can become more stable in harsh environment since

the data output from internal accelerometer sensor is not affected by the environment change.

4.3 Simulation Results

The simulation process includes two parts. The first step is to collect the real data from the

smartphone which will present the existence of accelerometer measurement error. Then the

performance of the situations only use acceleration information and combined algorithm uti-

lizing both sensor data and anchor node knowledge are compared.
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4.3.1 IOS based platform

To show the error accumulation of the accelerometer based localization method, we do experi-

ment on iOS smartphone (Iphone 5c). An iOS application has been developed using the newest

Apple’s language called Swift. Apple developer used to use Objective-C code to design the ap-

plication, however, Objective-C is difficult for new developers who are not familiar with C. As

a result of it, other language like Java, Javascript and Python are becoming more popular and

lots of developer write codes using these programming languages. Since less developers use

Objective-C, the applications for iOS and OS X are increasing slowly. Due to all the reasons

above, Apple published a new programming language called Swift for developing iOS and OS

X applications. Swift continuously support Objective-C code but is faster than it. Besides,

Swift has all the features other modern programming languages have and is extremely safe to

use since it eliminate lots classes of unsafe codes. We use Swift also because it turns out to be

easy to learn and use.

We use Swift to develop an application called “acceleration measurement” based on iOS

9.21 to utilize the linear accelerometer sensor embedded in the smartphone which can output

the acceleration data excluding the force of gravity.

4.3.2 Smartphone-based measurement

After running acceleration measurement application, we get the real sensor data as presented

in Figure 4.3. It shows the measured acceleration data along x and y axis when the phone is put

stationary on the table. We can see the existing non-zero acceleration error, which is caused by

the sensor measurement error.

Then we calculate the moving distance along x and y axis based on the measured acceler-

1 Available in App store: https://appsto.re/ca/VW9vbb.i.
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Figure 4.2: Interface of running Acceleration Measurement application.

ation error by use of (4.4) and (4.5). As shown in Figure 4.4, the sensor measurement error is

accumulated on the distance estimation when time increases, which will degrade the localiza-

tion accuracy significantly.
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Figure 4.3: Measured acceleration along x and y axis from linear accelerometer when the
phone is put stationary on the table.
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Figure 4.4: Moving distance caused by sensor measurement error.
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4.3.3 User trajectory simulation

In the simulations, we first generate a random target moving trajectory and localize the target by

using only accelerometer data. We set a random acceleration between each two sampling point

from −2m/s2 to 2m/s2, and set the sampling period to 0.05s. The standard deviation of error

from accelerometer is set to 0.2m/s2. Figure 4.5 shows the generated real target trajectory and

the estimated trajectory using accelerometer with 1000 sampling points. From the trajectory in

Figure 4.5 we can simply observe that the error is becoming larger because of the accumulated

accelerometer error which is undesirable in localization system.

Figure 4.5: Real trajectory and estimated trajectory using accelerometer.

In order to compare the localization results between with and without information from

reference nodes, we set one reference node at the starting point of the moving target which is

the black point at (0, 0) in Figure 4.6.

To show and compare the multiple reference nodes combined scheme, we move the target

in another scenario whose trajectory is fixed and anticlockwise on a circle with radius of 10m,
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Figure 4.6: Real trajectory and estimated trajectory using accelerometer and avialible reference
node.

starting from coordinate (10, 0) and ending at the same position. The velocity of the target

is set to 0.2π m/s, and we set the sampling time to 1s. The standard deviation of error from

accelerometer and the distance measurement based on reference nodes are set to 0.2m/s2 and

0.5m respectively. The localization results of the target using only acceleration information is

shown in Figure 4.7. With the time increasing, we can see the error is accumulated and the

difference between the localization result and the true target location can become very large.

Then, we combine data from reference nodes and acceleration information to minimize the

entire error. We deploy the reference nodes inside the circle. In Figure 4.8 (a) and (b), we set

the amount of reference nodes from 2 to 3 which gives us desirable results. The simulation

results also reveal that with the help of more reference nodes, the error become smaller.

In Figure 4.9, it compares the localization error between the scheme which is only using ac-

celerometer and the solution we provide which includes the information from reference nodes.
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Figure 4.7: Real and estimated locations with only accelerometer.
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Figure 4.8: Real and estimated locations with both accelerometer and reference nodes.

We increase the sampling point from 100 to 500 in order to have a more clear view in this

simulation result. From the result we can simply conclude that the localization error decrease

a lot when we use the combined algorithm which will definitely give better positioning output.
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Figure 4.9: Localization error comparison between with and without reference nodes.

4.4 Chapter Conclusion

In this chapter, we analyze the error from accelerometer and reference node to combine these

two different types of localization error together in order to eliminate the entire error. The

proposed novel algorithm can be applied to any situation where we use devices equipped with

accelerometer. This algorithm minimize the measurement error from the reference nodes as

well as the internal error form the accelerometer which is accumulated as time goes by. As

the simulation results carried out, we can obtain that our solution achieve good localization

performance.



Chapter 5

Improving Log-distance Path Loss

Localization Model by Utilizing

Frequency Diversity

As the need for portable devices is increasing quickly these years, the ability to determine

the position of portable device is a key feature. Among all the techniques which can be used

to measure the distance between two nodes, RSSI based localization method is a simple and

cost efficient technique as it uses the radio chip inside the portable devices itself (Bluetooth,

Wi-Fi). Path loss is an essential characteristic of signal propagation, which can be used to

predict the expected received power. A noticeable aspect of path loss is that it is frequency

dependent which causes variations typically within a few MHz. As a result of it, RSSI can be

influenced heavily due to external interference such as the carrier frequency and causes high

variability in RSSI measurement. In this chapter we analyze the impact of different frequency

on path loss and utilize the frequency diversity to get better localization results. We also present

experimental results which is carried out on Software Defined Radio (SDR).

58
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5.1 Introduction

Localization is a process of estimating the locations of specific targets by some detectable

environmental parameters. GPS technology is popular in outdoor localization as it is available

to anything with a GPS receiver to locate itself. Since signal from the GPS is in relatively

high frequency, the microwave signals from GPS are scattered and attenuated by walls and

other obstacles. These large attenuation indicates that the GPS is not suitable to be used in

indoor localization. Thus, the indoor localization field remains a large research field and lots

of techniques have been proposed to solve this urgent problem.

In indoor localization, the target indicates the object to be located while the anchor indicates

the transceivers at a known fixed position. Five proposed localization technologies for indoor

environment are radio frequency including ToA and RSSI techniques, photonic methods like

image processing, sonic waves, mechanical measurements including inertial sensor data and

other measured technologies such as magnetics and atmospheric pressure [63].

During the recent decades, people have proposed a large variety of RSSI-based localization

methods to estimate the distance between the target and the anchors. RSSI-based localization

technology is a simple method to estimate the location of the target as this technique only need

hardware components to measure the signal strength. The authors present a simple method

in [64] where the target only request for a few location information from anchors within its

communication rage called centroid localization. The fundamental idea of centroid localiza-

tion is to consider the centroid point of the surrounding anchors as the estimated target and it is

first presented in [65]. However, this method can exist large error on the signal strength mea-

surements due to a few factors such as obstacles, antenna characteristics and interferences. To

improve this algorithm, a weighted centroid localization is presented in [66] which is relying

on the distance of the anchors to the target. When the anchor is further, the weight is assigned

small in this algorithm since the shadowing and other interferences can occupy large portion
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of the fading when the anchor is further. Because of the variance caused by the enviroment,

the accuracy of path loss measurements can vary in a relatively large scale which is vital in the

localization system. Thus, a diversity concept come up to be a solution to decrease the fluctua-

tion. The diversity of frequency is one of them which can be utilized to narrow the fluctuation

of shadowing effect.

As the signal fading characteristics are depending on frequency and other interferences

from the environment, the accuracy could be improved by adding multiple frequency estima-

tions. In [67], the authors present a method for the target to make use of information from

multiple channels using the weighted centroid localization algorithm. The target has two an-

tennas receiving two different frequencies on the board of the platform while the bacons have

four antennas to transmit and receive the signal at these frequencies seperately. To employ this

frequency diversity method, an adaptive weighted centroid localization algorithm is proposed

to improve the accuracy. The author later on introduces a modified scheme in [68] where a

sensor data fusion is added. A Kalman filter is used to estimate the error from the inertial

measurement such as acceleration and angular rate in this improved algorithm.

5.2 System Model

In RSSI method, the fingerprinting technique uses radio map database to localize a target but

it is expensive and time consuming as its offline stage has to be done manually and needs to

update frequently. However, the propagation model can help to give another solution where the

emitted signal’s intensity decreases while distance increases[69]. It is commonly considered to

be implemented under trilateration scenario.
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5.2.1 Trilateration

Trilateration is one of the most commonly used localization scheme[70][71][72]. As shown

in Figure 5.1, T1, T2 and T3 are transmitters (usually WiFi access points or signal stations),

which can send multiple carrier frequencies of carrier waves. R is the receiver (usually a mobile

device), which has measurable distances from transmitters.

Figure 5.1: Trilateration, a general localization scheme.

If we set the position of R, T1, T2 and T3 to (x0, y0), (x1, y1), (x2, y2), (x3, y3) separately,

according to Pythagorean theorem, we can get

(x1 − x0)2 + (y1 − y0)2 = d2
1 (5.1)

(x2 − x0)2 + (y2 − y0)2 = d2
2 (5.2)

(x3 − x0)2 + (y3 − y0)2 = d2
3 (5.3)
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Trilateration scheme demands prior knowledge of transmitters’ positions and distances be-

tween them and the receiver, which can be measured by RSS, ToA and AoA techniques. How-

ever, the trilateration has only one internal check, which may cause large error. To reinforce

the trilateration, we modified observational technique to offer larger number of measurements

in order to narrow the localization error.
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Figure 5.2: Path loss under different signal frequency.

5.2.2 System model

Frequency based path loss model

According to the log-distance path loss model based on the frequency, we can get

PL = 10nlog10(d) + 20log10( f ) + 20log10(
4π
c

) −Gt −Gr, (5.4)
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where PL is the path loss at distance d from the transmitter to the receiver, n is the path loss

exponent, f is the signal frequency in, c is the speed of light. Gt and Gr is the antenna gain of

transmitter and receiver separately. Usually when frequency changes, the path loss exponent

and path loss will change. If we set the scenario to free space, we can have different path loss

at different frequency as shown in Figure 5.2.

As shown in Figure 5.3, in reality, we usually only have prior knowledge to the positions

of T1, T2 and T3 which can be used to get the distances r12, r23 and r13 between them. In this

case, we can get the angular information as follows

cos∠T1T2R =
d2

1 − r2
12 − d2

2

2r12d2
, (5.5)

cos∠RT2T3 =
d2

3 − r2
23 − d2

2

2r23d2
, (5.6)

∠T1T2R + ∠RT2T3 = ∠T1T2T3, (5.7)

where d1, d2 and d3 denote the distances between the transmitters and the target separately.

Integrated the above equations with the frequency based propagation models at T1, T2 and

T3:

PL1 = 10nlog10(d1) + 20log10 f + 20log10(
4π
c

) −Gt −Gr, (5.8)

PL2 = 10nlog10(d2) + 20log10 f + 20log10(
4π
c

) −Gt −Gr, (5.9)

PL3 = 10nlog10(d3) + 20log10 f + 20log10(
4π
c

) −Gt −Gr, (5.10)

where the path loss from the transmitters to the receivers PL1, PL2, PL3 can be measured by

the wireless signal module and the signal frequency f , Gt, Gr is a prior knowledge to us, the

distances can be derived for the localization of the target. Also, different frequencies give out

different localization estimations which can help narrowing the error.
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Figure 5.3: Illustration of frequency joint localization scheme.

Weighted algorithm

In the frequency diversity localization algorithm, there are multiple measurements estimating

the position of the target. However, during the implementation, signal strength measurements

experience fluctuation due to shadowing and fading caused by surrounding objectives.

The localization error e(x, y) is defined as distance between the exact location T (x, y) and

the estimated location T ′(x′, y′) which can be presented as

e(x, y) =
√

(x′ − x)2 + (y′ − y)2. (5.11)

If we simply take the average of the estimated locations from different frequencies, the
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estimated position of the target is

T ′(x′, y′) =
1
N

N∑
i=1

Ti(x, y). (5.12)

While this method only provides the final result by averaging the coordinates estimated

by different frequencies, weighted based localization uses weights to improve the localization

performance. Expressing the parameter N as adding all the ones, the Equation 5.12 can be

expanded to

T ′(x′, y′) =
1

N∑
i=1

1

N∑
i=1

1 · Ti(x, y). (5.13)

Since multiple frequencies are utilized in order to minimize the localization error, we will

get several sets of measurements where we proposed a weighted scheme.

T (x, y) =

N∑
i=1

wi · Ti(x, y)

N∑
i=1

wi

, (5.14)

where Ti(x, y) indicates the target location estimation by different frequencies, wi is the corre-

sponding weights at different frequencies.

Assume the path loss measurements at time t0 is PL0, however, due to the shadowing effect

and other environment noise, the path loss fluctuates to PLt at time t. Thus, with the same

frequency, there exists a change of the path loss measurement ∆PL. As a result of it, the

weight is equivalent to the function 1/∆PL. The more fluctuation the signal is, the less weight

is assigned to the localization information with the corresponding frequency. The weight is

dependent on the deviation of the path loss:

w =
1

(∆PL)g , (5.15)
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where g is the degree parameter.

The degree parameter g here is to make sure that the signal which fluctuated a lot is still

making affect on the localization estimation. When g is very high, the approximated position

only receives the information from the most steady frequency signal which may increase the

error e(x, y). Thus, there exists a optimal g when the localization error e(x, y) is minimum.

To define the parameter g, we collect the localization estimation results when frequency

fluctuation varies. Firstly, we set the degree g from 0 to 8 as shown in Figure 5.4. The simple

averaging scheme is the red line when g is equal to 0. From the simulation results we find that

when g is between 1 and 2, the position determination error is relatively low. Thus, for the

second step, we do the simulation while degree g is set from 1 to 2.1 as shown in Figure 5.5.
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Figure 5.4: Localization error versus path loss fluctuation with different weight function while
g is from 0 to 8.

According to the result presented in Figure 5.5, there are several minimum localization

error depending on the frequency fluctuation range. It suggests put the degree to 1.5 if the
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Figure 5.5: Localization error versus path loss fluctuation with different weight function while
g is from 1 to 2.1.

fluctuation range is large or put the degree to 1 otherwise.

5.3 Software Defined Radio Platform

We obtain the path loss from the transmitter to the receiver on the SDR platform while changing

the carrier frequency. SDR is a radio communication system, but instead of implementing

components in hardware typically, it is implemented on a personal computer or embedded

system by means of software. SDR implements some or all of the operating functions through

modifiable software or firmware on programmable processing technologies. These devices

include Field Programmable Gate Arrays (FPGAs), digital signal processors, general purpose

processors, programmable System on Chip (SoC) or other application specific programmable

processors. SDR technology brings flexibility, cost efficiency, it allows new wireless features

and capabilities to be added to existing radio systems without requiring new hardware.



68Chapter 5. Improving Log-distance Path Loss LocalizationModel byUtilizing FrequencyDiversity

Figure 5.6: SDR platform.

PicoSDR is a table top SDR solution provided by Nutaq which is shown in Figure 5.6 and

its radio section which is based on the Nutaq Radio420x FPGA Mezzanine Card (FMC). Its

multi-band Radio Frequency (RF) transceivers support operation anywhere between 0.3 GHz

and 3.8GHz, frequency division duplex and time division duplex which can be implemented in

our multi-frequency localization scheme.

5.3.1 Gain control

Inside the SDR, there are various components having the capability to adjust the gain includ-

ing the automatic gain control which must be figured out before the experiment. Generally,
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the Radio420 FMC embedded in the PicoSDR can be considered as a module which is de-

signed around a multi-band transceiver LMS6002D with a analog RF path on top of the in-

tegrated LMS6002D’s Variable Gain Amplifiers (VGA) which gives the transmit gain and re-

ceive gain between -13.5dB to 18dB.Gain control divides into two parts: transmit(TX) gain

and receive(RX) gain.

Transmit gain

Transmit gain is divided into three parts: TX VGA1 gain, TX VGA2 gain and TX gain 3. TX

VGA1 gain is a transmit amplifier which can be set from -35dB to -4dB. TX VGA2 gain is a

transmit amplifier which can be set from 0 to 25dB. TX gain 3 is a transmit amplifier which

can be set from -13 dB to 18dB. TX gain 3 can be controlled by both CLI command and yellow

box under Simulink.

Receive gain

The receive gain is divided into four parts: RX LNA gain, RX VGA1 gain, RX gain 2 and RX

gain 3. The RX LNA gain can be set to bypass which means 0dB. RX LNA gain can also be

set to medium gain and maximum gain by this receive low noise amplifier. RX VGA1 gain can

be set to 5dB, 19dB or 30dB where 19dB is the default setting.. RX gain 2 can be set from 0 to

30dB and it has a gain step size of 3dB. RX gain 3 can be set from -13dB to 18dB which can

be controlled by both CLI command and yellow box under Simulink.

5.3.2 Implement procedure

We utilize Nutaq’s PicoSDR 2×2 to collect the measurements data in different frequencies.
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Matlab Simulink diagram: Firstly, we use the blocks provided by Nutaq’s Model-Based

Design Kit (MBDK) and Simulink to design the system diagram. Then we test and simulate

the design to generate the bitstream file which contains configuration information in binary

format as well as CDC file for later use in the Microscope. The PicoSDR’s FPGAs receive data

from the Analog to Digital Converters (ADCs) and send data to the Digital to Analog Converter

(DAC) which are demonstrated as the green blocks as shown in Figure 5.7 below.

Figure 5.7: Diagram of designed system blocks in Simulink.

iMPACT: Xilinx provides iMPACT to initialize the JTAG (Joint Test Action Group) chain as

well as to program the devices. After powering up the SDR and attaching SDR JTAG cable to

the parallel port, iMPACT detects the FPGA chips in the SDR by right-clicking on the empty

space in the iMPACT window to select “Initialize Chain”. After initializing the chain and the

devices, we assign the generated Bitstream file (*.bit) to program the device. In this project,

since we use PicoSDR 2×2 which is based on a Virtex-6 xc6vsx315t FPGA, we program our

generated Bitstream on it as shown in Figure 5.8. When operation is done successfully, the

iMPACT window shows the “Programming Succeeded” sign.
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Figure 5.8: Interface of iMPACT software.

Chipscope analyzer: In order to debug our design and observe the input/output data, we make

use of the ChipScope block provided by the Xilinx System Generator library. As a result of it,

the CDC file is automatically created by the system generator. Open the ChipScope analyzer

tool from Xilinx software suite and click the chain square to connect to the platform’s FPGA

JTAG chain. After importing the CDC file in ChipScope, we can see the waveforms we select

by triggering the signal as shown in Figure 5.9. By changing the signal to Signed Decimal, we

get the signal amplitudes information.

Command line interface: The Board Software Development Kit (BSDK) provided by Nutaq

Perseus-based system contains a feature called the Command Line Interface (CLI). It allows

easy access to control the Perseus advanced mezzanine card through application programming

interface. We mainly use this feature to control the gain of the transmitter and receiver by

sending control commands and streaming data between the host PC and the SDR.

Simulink control: Besides using CLI to control the SDR, Nutaq Co-Simulation tools also pro-
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Figure 5.9: Waveforms of selected signals in ChipScope interface.

vides a user defined control register blocksets. The yellow blocks illustrated in Figure 5.10 are

kept in the Simulink environment. They hold the System Generator block set implementation

of the control algorithm and enable the sending and receiving of data to the system in real time

over Gigabit Ethernet.

5.4 Experimental Results

To set up the scenario, we put three transmitters 3 meters away from the target which have

the ability to measure the signal strength under different frequencies in a LoS environment.

The frequency is a prior knowledge to us instead of having the distance information between

the transmitters and receive, we get the localization results not only including the distance

information d1, d2, d3 from three transmitters separately but also the path loss exponent n as

indicated in Table 5.1.
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Figure 5.10: Diagram of control blocks in Simulink.

We utilize SDR to imitate WiFi environment which is based on IEEE 802.11 standard

and mostly deployed for WLAN applications. As shown in Figure 5.11, with the frequency

resolution increasing, the error increases as well. It suggests we can measure multiple different

Frequency(GHz) Path Loss Exponent n Distance d1(m) Distance d2(m) Distance d3(m)
2.412 3.3312 3.0007 2.6429 3.4069
2.417 3.6728 3 2.96 3.0406
2.422 4.3805 3.0001 2.8023 3.2117
2.427 2.1986 3 3.1961 2.816
2.432 2.2446 3.0002 2.7374 3.2882
2.437 3.2532 3.0001 2.7863 3.2302
2.442 2.277 3.0004 2.6956 3.3395
2.447 2.2284 3.0022 2.5396 3.5491
2.452 2.6842 3.0042 2.4715 3.6517
2.457 2.8658 3 3.1297 2.8757
2.462 2.0061 3 2.8955 3.1082
2.467 2.1391 1.9277 3.6056 3.7091
2.472 2.8813 3.2682 1.9532 4.3027
2.484 2.5978 3.8284 3.47 1.9598

Table 5.1: Measurements under different frequencies
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frequencies within a narrow band to increase the localization accuracy.
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Figure 5.11: Localization error under different frequency resolution.

5.5 Chapter Summary

Instead of having the knowledge of every reference nodes’ location and distances to the target,

we present how to utilize the carrier frequency information to locate the target. We also present

the weighted algorithm to combine path losses under the same frequency but different time in

case of the interferences to minimize the localization error. We take experiment on the SDR to

collect the real data and it shows lower frequency resolution leads to better performance.



Chapter 6

Conclusion and Future Work

In this thesis, the topic is in the field of localization from three different aspects which are

transmitter side, receiver side and signal propagation side. Since reference nodes’ location

and information are vital and will have large influence on the localization results, the accurate

placement of reference nodes is our first research topic. Multiple sensors equipped in smart-

phone can be utilized for tracking and positioning the user. How to make use of the joint

messages is our second topic. Diversed carrier frequencies have impact on RSS measurement

which can be used to minimize the positioning error. Proposed algorithms are designed to

improve localization accuracy by lowering the average MMSE, combining information from

smartphone with RSS measurements and making use of carrier frequency.

The first research topic looks into the MMSE to improves the accuracy of localization.

We focus on getting the best placement of RNs as it will greatly influence the performance of

position estimation results. An average MMSE within the area of interest has been derived in

oder to find the positions of optimum RNs. For further clarifying the algorithm, we present

examples in circular, square and hexagonal regions how to place optimum RNs. This scheme

can be carried out within any shape of interest and under any measuring technology. For future
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possibilities, this reference node placement scheme based on minimizing average error can be

further developed to extend the localization range.

Our second proposed algorithm improves the performance by acquiring data from sensors

embedded in the smartphone. We also do experiment on iOS platform to show how the accel-

eration can accumulate as time goes by. Merging accelerometer information with traditional

localization technologies can give users insights to tracking them as well as correcting the po-

sitioning results. The data from sensors can also be extended to other built-in sensors such as

gyroscope and magnetometer in the future.

The third topic is around frequency diversity localization presents how error is being nar-

rowed by utilizing multiple frequencies. Based on the log-distance path loss model in trilat-

eration scenario, instead of providing RNs’ locations and path loss exponent information, our

scheme only needs frequency information. Weighted scheme based on path loss fluctuation

has been presented for better performance. Experiments have been conducted on SDR plat-

form to present path loss on different frequencies. This technique can be combined with power

diversity for future research.
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