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ABSTRACT 

In humans, affective states can influence cognitive processes, resulting in a 

phenomenon referred to as “cognitive bias”. Rodents exhibit similar biases during the 

interpretation of ambiguous cues. It has been shown that cognitive bias shifts towards the 

negative valence (pessimism) when animals are under chronic stress manipulations. However, 

the effects of acute stress on cognitive bias have not been well established in an animal model. 

Here, a non-operant appetitive task using fluid rewards and distinct visual/tactile cues was 

developed to examine cognitive bias in male rats. Corticosterone was used to mimic stress 

levels similar to acute restraint stress. It was shown that under basal conditions, rats exhibited 

a positive cognitive bias (optimism), and that acute corticosterone administration resulted in a 

shift towards negative cognitive bias (pessimism). In all, this thesis provides a novel animal 

model to examine cognitive bias and the effects of acute stress manipulations.  
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1 INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Affective Cognition 

Human emotional states have a major influence on cognitive processes, specifically 

in the way information is processed and decisions are made. For example, when we are 

feeling angry, we may lash out and act irrationally. Cognition can be understood as the way 

by which we process and act on the information from the environment (Paul, Harding, & 

Mendl, 2005). This process involves many neurobiological processes, ranging from 

sensory perception, associative learning, and cognition. Emotions, on the other hand, are 

associated with physiological and neural mechanisms that allows humans to consciously 

and subjectively experience the “feeling” of the emotion. In both human and non-human 

animals, emotions can: i) structure perception, ii) direct attention, iii) provide preferential 

attention to certain functions and meaning, and iv) alter judgements and decision making. 

“Affect” is a term commonly used interchangeably with emotion, and while some 

researchers will give the two terms distinct meanings, this thesis will be using them 

synonymously.  

Cognition and emotions are strongly linked. In particular, how information with 

ambiguous emotional overtones can be perceived by an individual is determined by their 

tendencies towards specific emotional valence (ie. positive or negative mood) during 

cognitive processing (Richter et al., 2012). Studies of perception and memory in humans 

showed that the processing of emotionally salient information has an integral role in the 

production of appropriate cognitive responses (Elliott, Zahn, Deakin, & Anderson, 2011; 

Schwarz, 2010). For example, individuals are likely to overestimate the likelihood of 

positive, and to underestimate the likelihood of negative outcomes if they are in a happy 

(or positive) mood, with the reverse occurring for individuals who are in a sad mood (see 

Nygren, Isen, Taylor, & Dulin, 1996). This propensity to base cognitive evaluations and 

decisions on the associated emotional tendency (e.g. “How did I feel about this?”) is 
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specifically termed “affective cognition”. It can be defined as the interface by which 

emotional and cognitive processes integrate to generate behavior (Elliott et al., 2011).  

 

1.1.1 Positive and Negative Cognitive Biases 

When mood valences (i.e. positive or negative mood) bias the way emotionally 

ambiguous information is cognitively interpreted and processed, the resultant changes in 

affective cognition are called “cognitive biases”. Under these emotional influences, 

affective cognition can lead to either positive or negative cognitive biases. As such, this 

fluid relationship between affect-influenced expectation and actual outcome is one of the 

defining features of cognitive bias. Positive and negative cognitive biases occur as the 

result of a difference between the expectation and the resultant outcome. If the expectation 

is more positive than the outcome, the bias is termed “positive cognitive bias”; the opposite 

is true if the expectation is more negative than the outcome.  

In positive cognitive bias, there is typically a significant overestimation of the 

likelihood for positive events and underestimation of negative events (Sharot, 2011). Such 

trends can be seen in novel situations requiring probability evaluation and choice making. 

Positive cognitive bias is one of the most prevalent biases documented and is typically used 

synonymously with the term “Optimism bias”. In general, healthy humans display an 

overall positive cognitive bias when facing an ambiguous situation. For example, we 

typically underestimate our chances of being in a car accident, or having a serious illness. 

At the same time, we might overestimate our likelihood of winning the lottery, or success 

in our respective career paths. It has been proposed that positive cognitive bias occurs 

because a positive affective state typically calls on positive memories in thinking and 

decision-making. An individual who is happy can retrieve thoughts about the positive 

aspects of a neutral situation more readily, leading to a more favorable evaluation and 

behavioral outcome (Isen, 2001; Nygren et al., 1996). As well, because having a positive 

cognitive bias is also associated with a motivation to maintain this positive state, 

individuals tend to be more conservative in choosing riskier options when there is a 

potential of loss (Arkes, Herren, & Isen, 1988). Therefore, positive emotions interact with 
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cognition during evaluations of emotionally ambiguous information to create and maintain 

a positive cognitive bias.  A positive cognitive bias has a highly beneficial effect on 

physical and mental health by decreasing stress and anxiety, reducing recovery time after 

major illness, as well as promoting a healthy lifestyle (Kivimäki et al., 2005; Sharot, 2011). 

It is widely accepted that positive cognitive bias is advantageous in comparison to an 

unbiased cognition.  

Results of studies on positive cognitive bias have shed light on the mechanisms and 

outcomes of its opponent, negative cognitive bias (used synonymously with the term 

“pessimism”). This is crucial in the healthcare field because of one large population of 

humans who do not show positive cognitive bias: those with stress related neuropsychiatric 

mood disorders (i.e. depression and anxiety disorders). Clinical depression and anxiety are 

common stress-related psychiatric disorders that are associated with impaired interpersonal 

abilities, extensive emotional distress, and significant psychological impairments (Ingram, 

Trenary, Odom, Berry, & Nelson, 2007). These are considered two of the most common 

affective disorders, and the disruption of affective processing constitutes a core aspect of 

these psychiatric disorders. While positive cognitive bias is a common trait in healthy 

humans, a negative cognitive bias seems to take over in these mood disorders. According 

to the Diagnostic and Statistical Manual of Mental Disorders (DSM V), negative cognitive 

bias (or “pessimism”) is one of the key symptoms of Major Depressive Disorder (MDD). 

A seminal study by Strunk et al. (2006) correlated individuals’ optimism and pessimism 

levels with their scores on the Beck Depression Inventory-II (BDI-II) test, a highly reliable 

and valid measure of depressive symptoms (Strunk, Lopez, & DeRubeis, 2006). A higher 

BDI-II score indicated a greater severity of depressive symptoms. It was found that healthy 

individuals, who scored low on the BDI-II, have a generally positive prediction of the 

future, or an “optimism bias”. On the other hand, individuals who scored in the middle of 

the BDI-II scale exhibited more of an unbiased cognition, and individuals who scored high 

on depressive symptoms exhibited a negative cognitive bias, or often referred to in 

literature as “pessimism bias” (Strunk et al., 2006).  

It has been well established that a negative affective state alters thinking processes 

in reaction to certain stimuli, and presents a major factor in the maintenance and etiology 
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of affective disorders. In fact, there is a strong correlation between negative affective state 

and a high risk of relapse/recurrence of depression (Beck, Rush, Shaw, & Emery, 1979; 

Bouhuys, Geerts, & Gordijn, 1999; Kloke et al., 2014). Depressed individuals display a 

high level of hopelessness and a distorted negative perception of self/others, the world, and 

their future (Beck et al., 1979; Beck, Weissman, Lester, & Trexler, 1974). They tend to 

have a more pessimistic outlook/attitude in comparison to healthy controls, in addition to 

superior efficiency and thoroughness when they process negative information (Beck, 

Riskind, Brown, & Steer, 1988; Dozois & Dobson, 2001). For example, these individuals 

displayed a faster response toward negative faces during emotional categorization tasks 

where the valence of affective stimuli, positive or negative facial expressions, were 

presented (Yoon, Joormann, & Gotlib, 2009). They would also interpret ambiguous 

statements (e.g. “That’s an interesting choice of outfit”) and ambiguous homophones (e.g. 

die/dye, pain/pane) in a more negative (“pessimistic”) manner than the controls (Eysenck, 

MacLeod, & Mathews, 1987). During interpretation of ambiguous scrambled sentences 

(e.g. “winner born I am a loser”), depressed individuals would perceive the more negative 

interpretation (as “I am a born loser”) rather than the positive (“I am a born winner”) (Amir, 

Beard, & Bower, 2005; Wells & Matthews, 1996).  

While positive/negative affective state and optimism/pessimism, respectively, are 

often used interchangeably in literature, it is understood that they are independent and are 

sometimes used specifically. Optimism/pessimism are key indicators of positive and 

negative affective states respectively, but these affective states does not exclusively lead to 

optimism or pessimism. However, since the purpose of this thesis is to examine affective 

state in terms of affective cognition, these two terms will be used interchangeably here. 
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1.2 Evaluating Affective States in Non-Human Animals 

Evaluations of affective states in humans relies mostly on subjective language-

based measures, such as self-reporting or verbal communication. However, such direct 

measurements of these subjective experiences are not applicable in animals. Currently 

methodologies for evaluating affective states in animals, specifically rodents, have largely 

been based on extrapolations of behavioral and physiological measures. By utilizing 

specific “indicators” of stress and anxiety, these methods have been effective in evaluating 

the intensity of emotion, and the level of arousal in the animals. Common evaluations have 

included observations of approach/avoidance behaviors (considered to be indicative of 

anxiety-like behaviors and basic emotions) and measurements of stress markers associated 

with hypothalamic-pituitary adrenal (HPA) axis activity (Paul et al., 2005). 

Based on the widely-accepted belief that animals do experience sufferings or 

pleasure, these indicators are important in animal welfare research, as affective states are 

typically used as representations of animals’ well-being (Mendl, 2008). For instance, 

animals can grow in what appears to be perfect physical health, yet still subjectively 

“suffer” from the lack of mobile space or stable housing. Thus, due to the nature of the 

field, most of the animal welfare studies have focused on examining improved animal 

welfare by studying indicators of a positive affective state. Environmental enrichment is a 

widely accepted method to enhance positive affect states in laboratory animals. Some 

commonly used environmental enrichment manipulations typically included adding 

physical resources (e.g. play wheels, chewing wood blocks) or cognitive stimulations (e.g. 

introducing cage-mates to increase social interactions; Simpson & Kelly, 2011). 

Behaviorally, it has been found that animals (specifically rodents) demonstrate superior 

ability to perform and learn tasks, and show a decrease in poor welfare behaviors (i.e. 

aggression). These results can be attributed to either the positive stimulations or the 

prevention of the development of negative emotions (for review see Boissy et al., 2007).  

However, the use and interpretation of these measures is limited and difficult in 

animals, as they cannot always give an accurate depiction of emotional valence (i.e. 

whether the animal is in a positive or negative affective state). For instance, HPA axis 

activity is often measured by examining the level of plasma corticosteroids and other 
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markers as an index of stress, where higher levels of these markers indicate elevated stress. 

However, these markers tend to represent fleeting changes or symptoms, and thus 

incorrectly indicate long term sufferings when they are actually in a temporary state of 

distress (Rushen, 1986). Another drawback to this method is the fact that HPA axis activity 

can increase in either positive (e.g. sexual reproduction) or negative (e.g. confronting a 

predator) situations, making an accurate assessment of the emotional valences difficult 

(Michael Mendl, Burman, Parker, & Paul, 2009). Therefore, since the relationship between 

emotional states and physiological/behavioral measures are not always clear, the 

extrapolation and interpretation of these measures to infer an emotional state is typically 

limited and unreliable. Considerations must be given to alternative methods to measure 

affective states in animals. A more objective and standardized method is needed in order 

to examine emotional processes and to clearly elucidate specific changes in animals’ 

affective states.  

 

1.2.1 Applications of Cognitive Bias in Non-Human Animals 

With the increasing understanding of cognitive bias through human studies, animal 

welfare research found that it can be used in non-human animals as well. From human 

studies, it has been well established that as an indicator for affective states, cognitive bias 

allows for discrimination between emotional valences (i.e. positive and negative moods). 

This presents a valuable and clear evaluation of how specific emotion can affect cognition 

and behavior. Thus, cognitive bias can be assessed by utilizing the anatomical, 

physiological, and behavioral similarities in cognitive and affective processes between 

humans and common laboratory animals. As part of animal welfare research, changes in 

cognitive bias have been examined on chronic scales as an index of affective states in 

animals (such as Brilot et al., 2010; Burman et al., 2009; Harding et al., 2004; Salmeto et 

al., 2011). Cognitive bias has been studied in a wide range of species, such as in honeybees 

(Bateson, Desire, Gartside, & Wright, 2011), chicks (Salmeto et al., 2011), starlings (Brilot 

et al., 2010), dogs (Kis, Hernadi, Kanizsar, Gacsi, & Topal, 2015; Michael Mendl et al., 

2010), rhesus macaques (Bethell, Holmes, MacLarnon, & Semple, 2012), and rodents 

(Burman et al., 2009). A common method used to establish cognitive bias is to first train 
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the animals to distinguish between two reference conditions, a “positive condition” and a 

“negative condition”. These two reference conditions are typically represented by distinct 

and opposite cues (e.g. color, sound, tactile) that are reinforced with specific positive or 

negative outcomes (e.g. highly rewarding chocolate versus aversive quinine-soaked food 

pellets, etc). Once the animals have learned the two distinct conditions, they are then 

subjected to different affective manipulations, such as environmental enrichment or 

unstable housing. These conditions are designed to elicit either positive or negative mood 

in the animals. Animals are then exposed to a third “ambiguous” condition where the cues 

are intermediate to the trained reference conditions. The animals’ responses to these cues 

are taken as indicators of their mood. Operationally, a negative (or “pessimistic”) response 

would show an increased likelihood of responding to the ambiguous cues with a prediction 

of a negative outcome, and a positive (or “optimistic”) response would be opposite. It has 

been proposed that a further breakdown of a response indicative of a negative affective 

state may entail an increased anticipation of the negative outcome, and/or a decreased 

anticipation of the positive outcome (Bateson et al., 2011; Matheson, Asher, & Bateson, 

2008).  

These studies have shown that while the baseline affective state is represented by a 

positive cognitive bias, negative affective states tend to shift it to a negative cognitive bias 

(Chaby et al., 2013; Papciak, Popik, Fuchs, & Rygula, 2013). Animals undergoing chronic 

mild stress related manipulations have shown a shift in their interpretation of ambiguous 

stimuli towards a more negative manner. These manipulations have included events such 

as unstable housing (i.e. Unpredictable light/dark cycles, sudden noises, irregular food and 

water delivery, etc.) and the absence of environmental enrichment (i.e. isolation). For 

example, rats chronically housed in unstable housing have shown a decreased response to 

an ambiguous stimulus that signaled a positive outcome (Harding et al., 2004). As well, 

rats subjected to social isolation showed a decrease in anticipation for a highly palatable 

sucrose reward that persisted up to 3 months after the cessation of the social isolation (Von 

Frijtag et al., 2000). Taken together, these results suggest that chronically stressed rats 

show a shift towards a negative cognitive bias by exhibiting increased expectation of a 

negative outcome, or a decreased expectation of a positive outcome. This further confirms 

the application of cognitive biases as indices of affect state in animals.  



8 

 

1.2.2 Development of a Cognitive Bias Model in Rodents 

The development of an animal model that could effectively elucidate theses 

subjective changes in cognitive bias is still in its infancy. Harding et al. (2004) were the 

first to examine how affective state influences cognitive bias in rodents. Chronic mild stress 

was used to induce a negative affective state, and the manner in which it changed rats’ 

responses to ambiguous stimuli was examined. They adopted a go/no-go task format, 

where rats either had to make an active choice in response to one stimuli, or to refrain from 

taking an action in response to a different stimulus. Specifically, rats were trained to press 

a lever when they heard a tone associated with a positive event (receive a food pellet), 

which represented the positive condition. In contrast, during the negative condition, the 

rats had to ignore the lever to avoid a negative event (white noise) when they heard a 

different tone. Once the appropriate responses were learned, the rats were placed in 

unpredictable housing environments for a prolonged period of time to elicit a mild 

“depression”-like state. This included random daily interventions that were aversive to rats, 

such as damp bedding and reversal of light/dark cycles. The rats were then exposed to 

unfamiliar (“ambiguous”) tones that had frequencies intermediate to the two training tones. 

The animals demonstrated negative or positive cognitive biases that gave indications to 

their affective states. Chronically stressed rats showed slower response times, as well as 

lower responses to tones that were closer to the positively reinforced (food related) tone, 

indicating a negative cognitive bias, or “pessimism” (Harding et al., 2004). On the other 

hand, control rats that did not receive the stress manipulations displayed a positive 

cognitive bias. This paradigm was able to successfully show how pessimistic rats tend to 

have a negative interpretation of ambiguous events, which was partly consistent with that 

of depressed or anxious humans. Therefore, it demonstrated the potential to be adapted for 

assessing both the positive and the negative affective states in animal welfare. In order to 

further understand the underlying neurobiological basis of cognitive bias in affective 

neuropsychiatric disorders, there is a need to develop a reliable and objective non-human 

animal test. 

Although this work by Harding et al. (2004) in the development of a cognitive bias 

task allowed for the interpretation of non-human animals’ affective states, there was no 
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evidence for an enhanced anticipation of the negative event, which is another key indicator 

of a negative affective state. Further, the nature of this original go/no-go task presents a 

problem in the interpretation of the results, where it is difficult to distinguish go or no-go 

as an active response or an active omission. A go-go task was suggested to resolve these 

problems, as it requires an active response from the animals to both the positive and 

negative stimuli. This would give clear indications of specific responses that correspond to 

either a positive or negative cognitive bias. Subsequent studies have built upon the initial 

Harding et al (2004) study and used variants of food-reward paradigms to further develop 

animal models of cognitive bias. For example, Matheson, Asher, & Bateson (2008) 

developed a choice procedure in the form of a go-go task. European starlings were first 

trained to discriminate between 2 different lengths of light cues as the positive (2 seconds) 

and negative (10 seconds) conditions. Two distinct colors were used at two separate choice 

buttons that birds could peck to receive reinforcements. During the positive condition, 

instant food delivery was given if the bird pecked at one choice button, and delayed food 

delivery was given if the bird pecked at the other choice button during the negative 

condition. Then, the birds were placed into enriched and unenriched housing environments 

for 2 weeks, followed by the evaluation of their affective states. During the evaluation, they 

were exposed to light cues ranging between 2 and 10 seconds as the intermediate 

“ambiguous” stimuli (e.g. 5 seconds). A positive cognitive bias was indicated by the bird 

choosing to peck at the colored button associated with the positive condition (instant food 

delivery) following the ambiguous light cue. Results showed that non-enriched birds had a 

lower association of the intermediate light duration to the positive outcome (instant food 

delivery). In comparison, the enriched birds showed a higher expectation of the positive 

condition when the ambiguous cue was given. These results demonstrated a shift in 

cognitive bias following affective manipulations towards the positive valence. Further, 

because animals had to respond actively to both the positive and negative stimuli to receive 

food rewards, the ambiguity of whether there were any reductions in motivation and 

general activity was eliminated (Matheson et al., 2008). These results, along with a number 

of ensuing studies (Chaby et al., 2013; Kloke et al., 2014; Mendl et al., 2010; Salmeto et 

al., 2011, etc), not only established the effectiveness in using cognitive bias, but also 

confirmed the value of a go-go task format to discriminate distinct emotional valences. 
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Although the use of cognitive bias in animal welfare has provided a valuable and 

objective measure of animals’ affective states, they’ve primarily been used with chronic 

manipulations to mimic welfare-related issues for animals in captivity. In comparison, very 

little research has been done on short-term mood manipulations, such as acute stress 

challenge. Burman and colleagues (2009) used a food reward choice procedure and spatial 

location cues in an eight-arm radial maze to examine the effect of short-term emotional 

state manipulation on rats. Only five arms were used, where two reference arms contained 

the positive and negative goals, flanked by 3 ambiguous locations. The reward location 

(black circle) contained highly palatable food pellet, whereas the aversive location (white 

circle) contained a pellet soaked in quinine (aversive to rats). The locations were paired 

with high or low light levels. After the rats learned to differentiate between the two 

reference locations, they were allowed access to only the three middle locations. Light 

intensity was used to induce short-term stress during this stage, where brighter light 

intensities generated more anxiety than darkness. This led to differential reactions towards 

the ambiguous stimuli. It was found that increased anxiety (brighter lights) led to negative 

cognitive bias, and a decrease in the speed by which the rats reach the goal. However, it 

was also found that, while the rats demonstrated clear differences in their cognitive bias 

under different anxiety levels (ie. brighter light inducing higher stress levels), the locations 

in the open arms maze were too easily distinguishable by the rats. Specifically, the angles 

by which the arms were placed in relation to each other may have presented the three 

middle locations similarly as containing unknown outcomes rather than distinct ambiguous 

locations (Burman et al., 2009). It has been suggested that an open-arena may resolve this 

issue (Burman et al., 2009; Richter et al., 2012). This study confirmed the use of cognitive 

bias in evaluating changes in affective states following acute manipulations, in addition to 

chronic manipulations typically seen before. 

In response to this development, Brydges and colleagues (2011) were the first to 

adopt a semi-open arena paradigm containing olfactory cues to model a shift toward an 

increase in optimism as result of environmental enrichment in rats. Rats were first trained 

to associate a specific coarseness of sandpaper with specific olfactory and visual cues on 

positive and negative trials. In the positive trial, coarse sandpaper was paired with a 

chocolate reward (high reward value) in a cinnamon-scented bowl on the left side of the 
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open arena. On the other hand, in the negative trial, fine sandpaper was paired with a less-

rewarding cheerio in a coriander-scented bowl on the opposite side of the open arena. When 

the rats learned to distinguish between the positive and the negative trials, their responses 

toward an intermediate sandpaper coarseness (ambiguous stimuli) were assessed before 

and after one week of environmental enrichment. While the unenriched rats stayed in the 

original cages, the enriched rats were moved to larger cages that had deep wood shavings 

and a slew of physical enrichment tools (e.g. cardboard tubes, cardboard houses, and 

wooden blocks). It was found that both enriched and the unenriched rats showed similar 

levels of optimism (choosing the location previously paired with the chocolate) pre-

treatment. However, the enriched rats showed significantly more optimistic responses after 

environmental enrichment. In comparison, the control rats (no environmental enrichment) 

maintained a baseline level of optimism throughout the experiment. These results 

demonstrated that chronic positive manipulations can induce a shift towards a more 

positive affective state, further confirming the advantage of using cognitive bias to tease 

out emotional valences. More importantly, these results also suggested the effectiveness of 

developing a task in an open arena to evaluate cognitive bias (Brydges, Leach, Nicol, 

Wright, & Bateson, 2011).   

In all, because animal welfare issues tend to exist on a long term scale with 

consistent mild negative experiences, animal models of cognitive bias have been based on 

a chronic time scale. To date, there is still very little research on the effect of acute stress 

in cognitive bias, but it needs to be examined in order to further our understanding of the 

neurobiological basis for cognitive bias (Chaby et al., 2013; Papciak et al., 2013). An open 

arena, when combined with ambiguous cues, has shown to be effective in portraying 

positive cognitive bias in rats following chronic manipulations. Thus, it would be 

worthwhile to examine the effects of acute stress manipulation on cognitive bias with an 

ambiguous cue go/go task in an open arena.  
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1.3 Rationale, Hypothesis, and Objectives 

Therefore, the rationale for this thesis was founded upon three major premises:  

1. Stress and anxiety have a negative effect on cognitive bias, leading to 

pessimistic behavioural outcomes in chronic stress studies.  

2. There is currently very little research on the effects of acute stress on cognitive 

bias 

3. The development of the cognitive bias animal model is still in its infancy.  

The present paradigm used highly salient spatial location cues to model cognitive 

bias in adult rats. These stimuli (texture and visual information) greatly increased the ease 

by which rats learned to discriminate between the positive and negative contextual 

visual/tactile cues (see Brydges N. M., 2011 for a similar group approach). This paradigm 

also overcame a key limitation from previous cognitive bias models by using an open 

testing arena to ensure that the rats avoid viewing all the ambiguous choice spouts 

similarly, as one collective “ambiguous outcome”, but instead viewing them as distinct 

ambiguous choice locations (Burman et al., 2009). More importantly, unlike the initial 

go/no-go tasks, this paradigm required active responses to the ambiguous contextual 

visual/tactile cues, eliminating the difficulty of interpreting no-go responses. Therefore, in 

view of the limitations of prior investigations of cognitive bias, a new animal model that 

could be rapidly utilized was developed using rats. This first involved the establishment of 

a task that can be used to show changes in cognitive bias in response to ambiguous cues. 

In addition, the effects of an acute stress challenge by the administration of a 

physiologically relevant level of corticosterone, was examined. We hypothesized that an 

acute stress challenge will lead to a shift in baseline positive cognitive bias to a 

negative cognitive bias.  

Specifically, the cognitive bias paradigm was adapted from that of Brydges et al 

(2011) to model changes in affective states following acute manipulations. The first 

objective (chapter 2) was to develop a cognitive bias paradigm using visual and tactile cues 

paired with an appetitive/ingestion task. This task was designed in an open arena apparatus 

to examine changes in the rats’ behaviors following exposure to ambiguous visual/tactile 
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cues, and to establish the validity of such a task in evaluating cognitive bias. Rats learned 

to associate specific visual and tactile cues with either reward/neutral or neutral/aversive 

outcomes presented in lickometer spouts. Rewarding and neutral reinforcements was used 

because they have been found to be the most ideal for detecting positive affect (Mendl et 

al., 2009). Cognitive bias was measured by the response of the rats during ambiguous trials, 

which consisted of the presentation of intermediate visual and tactile cues. The proximity 

association between the ambiguous choice spouts to the previously paired reference 

locations (higher or lower reward value outcomes) allowed the generalized interpretation 

of the choices to be that of “optimistic” or “pessimistic”. The second objective (chapter 3) 

was to demonstrate that similarly valenced, but distinct, emotional states may be 

differentiated through this paradigm. Here, the rats’ responses to the environmental cues 

following an acute stress challenge was evaluated using the intraperitoneal administration 

of a physiologically relevant level of corticosterone. In chapter 4, the two components of 

the ambiguous condition, ambiguous environmental cues versus ambiguous choice 

location cues, were separated to examine whether they work together or independently 

during the evaluation of cognitive bias shifts. It was predicted that under ambiguous 

conditions, rats without any affect manipulations would display a tendency towards 

positive cognitive bias in our apparatus. As well, with an acute “stress” manipulation 

(corticosterone injection), the baseline optimism would shift towards pessimism.  
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2 DEVELOPMENT OF A COGNITIVE BIAS TASK 

 

2.1 Introduction 

There is a close relationship between cognition and emotions of affective states. 

The way information is perceived by an individual is determined by their underlying 

tendencies towards specific emotional valence (i.e. whether individual is in a positive or 

negative mood) during cognitive processing (Richter et al., 2012). When underlying 

emotional valences bias the way ambiguous information is interpreted and processed, the 

resultant changes in affective cognition is termed “cognitive bias” (Hales, Stuart, 

Anderson, & Robinson, 2014). If the expectation is more positive than the outcome, the 

bias is a positive cognitive bias; conversely, it is a negative cognitive bias if the expectation 

is negative. In humans, the evaluation of affective cognition and cognitive bias is largely 

based on verbal self-reporting, with such information being generally accepted as an 

accurate indicator of affective states. In general, healthy humans display an overall positive 

(optimistic) cognitive bias when facing an ambiguous situation, where the likelihood of 

positive events are overestimated and the likelihood of negative events underestimated 

(Sharot, 2011). This baseline positive cognitive bias has also been widely established in 

animal models as part of animal welfare research. By utilizing the anatomical, 

physiological, and behavioral similarities in cognitive and affective processes between 

humans and common laboratory animals, one can assess the underlying processes in 

cognitive bias using non-human animals (for discussion see section 1.1.3). However, the 

development of animal models to examine changes in affective states are still in its infancy. 

So, in order to further understand the underlying neurobiological basis of cognitive bias in 

affective neuropsychiatric disorders, there is a need to develop a reliable and objective non-

human animal test.  

The examination of affective states in animals has been established since the 

pioneering work by Harding, et al, 2004, mostly as part of animal welfare research by using 

chronic stress manipulations. Typically, a task used to evaluate cognitive bias first 

establishes two distinct reference conditions, a “positive condition” and a “negative 
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condition”. These two reference conditions are typically indicated by distinct and opposite 

cues (e.g. color, sound, tactile) and specific positive or negative reinforcements (e.g. highly 

rewarding chocolate versus aversive quinine-soaked food pellets, etc). Once the animals 

have learned to distinguish between the two reference conditions, they are then subjected 

to different affective manipulations, such as environmental enrichment or unstable 

housing. These conditions are designed to elicit either positive or negative mood in the 

animals. Animals are then exposed to an “ambiguous” condition where the cues are 

intermediate to the trained reference conditions. The animals’ responses to these cues are 

taken as indicators of their mood. A negative (or “pessimistic”) response will show an 

increased likelihood of responding to the ambiguous cues with a prediction of a negative 

outcome, and a positive (or “optimistic”) response would be the opposite. It has been 

proposed that a response indicative of a negative affective state may entail an increased 

anticipation of the negative outcome or punishment, and/or a decreased anticipation of the 

positive outcome (Bateson et al., 2011; Matheson et al., 2008).  

Using this general framework, studies have shown that while the animals’ baseline 

affective state is represented by a positive cognitive bias, negative affective states tend to 

shift cognitive bias to a negative valence in response to ambiguous stimuli (Burman et al., 

2009; Hales et al., 2014; Harding et al., 2004; etc). For example, Harding et al (2004) 

developed a cognitive bias task that allowed for the interpretation of rodents’ affective 

states following chronic stress manipulations. However, the nature of this original go/no-

go task presents a problem in the interpretation of the results. Such a task creates difficulties 

in distinguishing go/no-go as an active response or an active omission. A go-go task would 

resolve this problem, as it requires an active response from the animals to both the positive 

and negative stimuli. As well, by requiring active responses for both stimuli, potential 

problems like motivation and general activity reductions could also be minimized 

(Matheson et al., 2008).  

Ensuing studies have improved upon this pioneering work to further develop tasks 

of cognitive bias that can objectively elucidate animals’ affective state. Through these 

studies, it has been shown that cognitive bias can accurately show specific shifts in 

emotional valences (positive or negative affective states) from the baseline “optimism” that 
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is typically seen in humans. For example, environmental enrichment (i.e. adding physical 

play toys or social cage mates) shifts cognitive bias to a more positive valence than in the 

baseline. In contrast, unstable housing (i.e. irregular lighting schedule, damp bedding, etc) 

leads to a shift in cognitive bias towards the negative valence. Despite these advances, there 

are still a number of limitations for using cognitive bias to accurately measure affective 

states in non-human animals. One important issue is that animal welfare research typically 

studied changes in mood on a chronic scale, where affective manipulations (e.g. 

environmental enrichment or stressful housing) occur on the scale of weeks to months 

(Burman, Parker, Paul, & Mendl, 2008). In contrast, there is relatively little research on the 

effects of acute stress on shifts in affective states. One such study was done by Burman and 

colleagues (2009), where a go-go task in an eight-arm radial maze was used to examine the 

effect of short-term emotional state manipulation. Ambiguous cues at specific locations 

were used to test changes in cognitive bias. While rats did demonstrate shifts in affective 

states under different anxiety levels (ie. brighter light inducing higher stress levels), it was 

found that the locations in the open arms maze were too easily distinguished by the rats. 

Thus, it was suggested that an open arena might be used for testing (Burman et al., 2009; 

Richter et al., 2012).  

Therefore, in order to examine the effect of acute stress challenge on cognitive bias 

shift, a novel rat model of cognitive bias using visual and tactile cues in an open arena 

apparatus was first developed. Ambiguous visual/tactile cues were used to test shifts in 

cognitive bias. In groups, rats first learned to associate specific visual and tactile cues with 

either a positive or a negative condition. Rewarding and neutral enforcements were used 

because they have been found to be the most ideal to elicit positive affect (Michael Mendl 

et al., 2009). Cognitive bias was then measured by the response of the rats during 

ambiguous trials, which consisted of the presentation of intermediate visual and tactile 

cues. It was hypothesized that without any affect manipulations, rats would display a 

positive cognitive bias in the ambiguous testing cue task. 
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2.2 Materials and Methods 

 

2.2.1 Animals 

Twelve adult male Long-Evans rats (Charles River, Quebec, Canada), weighing 

between 300 - 450g at the start of the experiment were used. The rats were pair housed in 

standard polypropylene cages (45cm × 22cm × 20cm), in a colony room with ad libitum 

access to both food (ProLab RMH3000 rat chow) and tap water when applicable. The 

colony room was maintained at 21± 2°C, on a 12:12 hour light/dark cycle with the lights 

on from 07:00 to 19:00 h. All experiments were carried out during the light phase. For the 

entire duration of the experiment, each rat was water deprived for 15 hours starting at the 

beginning of their dark cycle (starting at 19:00h), and then given one-and-a-half-minute 

access to tap water at the end of the water deprivation period. The rats were observed during 

the one-and-a-half-minute water access to ensure that each rat drank from the water bottle. 

This method was used so that rats would be motivated to explore and drink from the liquid 

reinforcements that were used to indicate differences between positive and negative 

conditions. Each rat was given identification markings on their tails using a permanent 

marker (Black Sharpie pen). All procedures were performed according to the Canadian 

Council on Animal Care guidelines and were approved by the Western University Animal 

Care Committee.  

 

2.2.2 Cognitive Bias Apparatus 

The apparatus consisted of a rectangular start box (20cm x 20cm) attached to a 

rectangular arena (100cm long, 90cm wide, 25cm height) made of clear Plexiglas with a 

transparent lid, set on top of a white board (fig. 2.1). A manually operated transparent 

guillotine door opened into the arena from the start box. This apparatus was set up in a 

designated testing room, on a table 1m above floor level. The wall colors of the open arena 

were created using white or black cardboards, attached to the outside of the clear Plexiglas. 

Plastic lighting sheets (2’×2’ Replacement lens for Metalux Recessed Troffer, Cooper 
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Lighting, GA, USA) were used to line the floor of the arena to create rough floors, and the 

smooth back of the sheets were used to create smooth floors. All behaviours were 

videotaped with a video camera positioned approximately 1.5 m directly above the 

apparatus on the ceiling.  

Five automated lickometers, each consisting of a stainless steel spout attached to a 

glass graduated drinking tube, were used (Contact 108 lick analysis system, Dilog 

Instruments, Tallahassee, Fl). The ends of the drinking spouts were mounted 5cm above 

the arena floor. The 5 spouts were evenly spaced 15cm apart from each other, as well as 

from the sides of the apparatus, on the opposite side to the start box (Fig. 2.1 and 2.2). The 

two outer spouts were designated “reference locations”, and were used during the training 

stage (described in section 2.2.3). Each spout was centered on a specific colored cue card 

that could be changed to give different visual cues. The spouts were accessible through an 

oval opening, only big enough for the rats’ tongues without altering the natural facial 

movements of drinking. To monitor the licks, a computer-controlled lickometer (DiLog 

instruments, Tallahassee, FL) passed a low, non-detectable current (~60nA) through the 

spouts. The electric circuit was completed each time the rat’s tongue came into contact 

with the spout, and the signals were amplified before being recorded for licking measures 

(QLick, version 4.0). These recordings allowed for the analysis of the rats’ licking 

frequency. The volume of solutions consumed was also quantified by manually reading the 

changes in fluid amounts of the graduated drinking tubes.  



23 

 

 

 

Figure 2.1. Photograph of the cognitive bias apparatus, five lickometer spouts (top) 

are evenly space apart on the far wall of the apparatus, each centered on a visual cue card.  

 

Figure 2.2. Diagram of the cognitive bias apparatus, showing the dimensions of the 

start box (20cm x 20cm) and the open testing arena (100cm long, 90cm wide, 25cm 

height). The light grey lines at the right side of the diagram indicate the locations of the 

lickometer drinking spouts.  
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2.2.3 Experimental Procedure 

All of the procedures are summarized in figure 2.3. Details of each stage are provided 

below.  

 

Figure 2.3. Outline of procedures for experiment 1. 

Cognitive Bias 
Test with 
Ambiguous Cue  

Time: 3 days 
Same procedure as 
stage 2, with an 
additional 
“Ambiguous” trial 
using intermediate 
contextual cues: 
 Grey walls and an 

insert sheet 
(intermediate 
grain) 

 Only middle 3 
“ambiguous” 
locations exposed 
with water spouts. 

 Positive affective 
state (“Optimistic”) 
if chose location 
closest to the 
reward location. 

 Negative affective 
state 
(“Pessimistic”) if 
chose location 
closest to the 
aversive location.  

 

Training for Cognitive Bias 

Establish 
Reference 
Conditions 

Handling 
and 
Training  

Handle: 10min/day, 
5days 
Training  
(In randomized and 
counterbalanced 
groups): 
30 min alternations (2 
hrs total; 5days) 
between:  
 
Negative conditions 
 white walls, smooth 

flooring 
 stripe cue card: higher 

reward reference 
location (water) 

 white cue card: 
aversive reference 
location (0.00005M 
Quinine solution) 

 
Positive Conditions 
 black walls, rough 

flooring 
 Stripe cue card: 

higher reward 
reference location 
(sucrose/saccharin 
solution) 

 white cue card: lower 
reward value 
reference location 
(water)  

Time: 5 days 
Tested 
Individually 

 
4 randomized 
trials (2 reward 
and 2 aversive 
conditions) 
 
Recorded: 
 Latency to 

make a 
choice 

 Choices 
made 

 
Move on to 
testing stage if 
successful on 3 
out of 4 trials 
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2.2.4 Stage 1 – Handling and Training 

During the first 5 days of the experiment, each rat was handled daily for 10 minutes 

during the light phase. 24 hours after the final handling day and for the subsequent 5 days, 

all of the rats were placed into the open arena in groups of 6 for training. Group learning 

facilitates the acquisition of cognitive tasks more effectively and efficiently than individual 

training (Krasheninnikova & Schneider, 2014). During this time, visual (black or white 

walls) and tactile (smooth or rough flooring) cues were placed in the arena to indicate the 

positive or negative condition. As well, visual cue cards (black-and-white stripe or white) 

were used to indicate the higher/lower reference location spouts, respectively. These two 

reference locations were located at the outermost 2 locations out of the 5 possible locations; 

they were 15cm from the sides of the goal box, and 60cm apart from each other.  

The rats alternated between a “positive” condition and a “negative” condition for 

30 minutes each, for a total of 2 hours a day in groups. The positive condition was 

represented by environmental cues consisting of black walls and a rough floor. Here, a 

highly palatable sucrose/saccharin solution (3% sucrose with 0.125% saccharin dissolved 

in distilled water) represented the higher reward-value choice location (associated with the 

black-and-white stripe visual cue card), whereas tap water represented the lower reward 

value choice location (associated with the white visual cue card; figure 2.4a). In contrast, 

the negative condition was represented by environmental cues consisting of white walls 

and a smooth floor. Here, a quinine solution (0.00005M) represented an aversive reference 

location (associated with the white visual cue card), whereas tap water represented a 

comparably higher value reference location (associated with a black-and-white visual cue 

card; Figure 2.4b). The concentration of quinine used in this task was a very low 

concentration, so that rats would find it aversive but not so much as to cause stress or major 

changes in appetitive behaviour. The reward and aversive reference locations were 

counterbalanced between rats to eliminate side-bias. The specific reference locations paired 

with a particular visual and tactile condition environment were consistent for each rat 

throughout the experiment (ie. sucrose/saccharin solution were always at the right side of 

the goal box).  
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On the other hand, the 3 middle locations (figure 2.4) were blocked off by a smooth 

board with a color that was the same as the walls, thus leaving only the 2 reference location 

spouts exposed. All rats in the group had free access to explore both reference locations 

(and the accompanying lickometer spouts) in the arena during this stage (figure 2.4). Since 

all rats were identified by an ID marking on their tails, their exploration and consumption 

of the various reference fluids were verified by video recording. 

 

Figure 2.4. Diagram of training apparatuses in either positive (a) or negative (b) 

condition. a) The rough floor and black walls (positive) environment was reinforced with 

the higher value sucrose/saccharin solution (3% sucrose and 0.125% saccharin dissolved 

in distilled water) at the left side of the goal box (stripe cue card) and tap water on the 

right side (white cue card). b) The smooth floor and white walls (negative) environment 

was associated with the lower value water at the left side of the goal box (stripe cue card) 

and 0.00005M quinine at the right side (white cue card). The middle 3 locations (light 

grey lines) were blocked off by a card with the same color as the walls. 

a) 

b) 
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2.2.5 Stage 2 – Establishing reference conditions: Discrimination 

between positive and negative conditions 

 

In order to determine whether the rats had acquired the task, 24 hours after the last 

training day, the rats were tested individually to see if they were able to determine the more 

rewarding location in the positive and negative conditions. In this stage, each rat 

individually received 4 consecutive trials in a randomized order (2 trials in the positive 

condition and 2 trials in the negative condition) each day for five days. Between each trial, 

the apparatus was cleaned thoroughly with 20% alcohol solution. The time taken (in 

seconds) for the rat to exit the start box and choose one of two reference locations was 

recorded. The specific reference location spouts that the rat chose and drank from was 

recorded as well. The rat was considered to have made a correct choice if it chose to drink 

from the reference location spout associated with the higher reward value outcome 

immediately after exiting the start box. For the positive condition, the correct choice was 

the sucrose/saccharin solution, whereas in the negative condition, the correct choice was 

the water. A rat was considered to be successfully trained and could advance to the next 

stage if it consistently made the correct choice at least 3 times out of the 4 trials over the 5 

testing days. 
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2.2.6 Stage 3 – Cognitive Bias Testing with Ambiguous Cue 

 

24 hours following the trials to test the establishment of cognitive bias, each rat 

individually received three consecutive days of cognitive bias testing with ambiguous cues. 

In this stage, the trials proceeded in the same method as the previous trials, but with one 

additional “ambiguous” trial included. During the ambiguous condition, an insert sheet, 

intermediate in texture to the two conditioned floor textures, was used as the flooring 

(Acrylic Lighting Panels Cracked Ice Clear, Plaskolite Inc., Ohio, USA). In addition, grey 

cardboard was attached to the walls of the apparatus to give an intermediate wall color 

(figure 2.5). These two conditions created an environment where the visual and tactile cues 

were intermediate to the ones used for the training trials (i.e. black walls/rough flooring for 

positive condition, white walls/smooth flooring for the negative condition).  

During these trials, the individual rats were exposed to only the 3 middle 

“ambiguous” locations. The two reference location spouts (for the positive and negative 

context conditions) were blocked off by a card in the same shade of grey as the walls. The 

graduated drinking tubes contained water, and were placed in each of the three middle 

ambiguous locations (figure 2.5). Ambiguous position 1 (O1) was located 15cm to the right 

of the reward reference location, while the ambiguous position 3 (P3) was located 15cm to 

the left of the aversive reference location. Ambiguous location 2 (M) was in the middle, 

30cm to either of the two reference locations. Measurements were made and recorded for 

the: i) time taken for the rat to exit the start box, ii) first choice from the three middle 

lickometer spouts. If the rat selected the O1 location, it was recorded as making a choice 

reflective of a positive cognitive bias; if the P3 location was chosen, it was recorded as a 

choice reflective of a negative cognitive bias (figure 2.5). 30 seconds after the rat cease to 

drink from their initial choice spout, they were removed from the apparatus. During this 

stage, each rat received 1 trial in the ambiguous cue condition plus 2 trials each of the 

previously trained positive and the negative conditions. 
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Figure 2.5. Diagram of experimental apparatuses in the ambiguous task. The 

smoothness/roughness of the flooring was in between the smooth and rough flooring of 

the training trials. The walls were a solid grey color. The two reference locations were 

blocked off and inaccessible using a smooth board with the same grey color as the walls. 

The drinking tubes of the ambiguous locations (dark grey lines) contained tap water. The 

O1 ambiguous location was located closest to the previously trained more rewarding 

location, whereas the P3 ambiguous location was located closest to the previously trained 

less rewarding/aversive location. The M ambiguous location was in the middle between 

the O1 and P3 ambiguous locations.  
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2.2.7 Statistical Analysis 

  

In this experiment, all data generated were analyzed using SPSS (Version 21, SPSS 

Inc., Chicago, IL, USA). The treatment groups were equally counterbalanced across the 

conditions. For the training stage, the data for correctly and incorrectly choosing the higher 

reward value outcome for each condition were compared separately using the chi-square 

test, as this was needed to determine when the rats were ready to proceed to the next stage. 

The positive or negative choices across all three testing days during the ambiguous 

condition testing were also analyzed with the chi-square test of independence. The latency 

to approach choice spouts during the cognitive bias testing with ambiguous conditions were 

analyzed using one-way Analysis of Variance (ANOVA). Specifically, this measure 

compared the three ambiguous locations (O1, M, and P3). All significant effects and 

interactions were further examined using Tukey’s HSD. A significance level of p < 0.05 

was used throughout the experiment. 
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2.3 Results 

 

2.3.1 Establish Reference Conditions 

Performances during the individual trials to evaluate whether rats have learned to 

choose the more rewarding location in either positive or negative conditions, were 

combined across all training days for analysis (refer to section 2.2.5; figure 2.6). In the 

positive condition (sucrose saccharin solution/water and black walls/rough floor), the 

correct response was choosing to drink from the sucrose (more rewarding) location when 

the rat exited the start box. In the negative condition (water/quinine with white 

walls/smooth floor), the correct response was choosing to drink from the water (more 

rewarding) location first when the rat exited the start box. Chi-square test revealed 

significance between correct choices and incorrect choices, where rats made significantly 

more correct choices than incorrect choices in both the positive and the negative conditions 

(X2(1, n=12) = 81, p < 0.001) (Figure 2.6).  

 

Figure 2.6. Comparison of choices that were correct vs. non-correct during the 

establishment of cognitive bias trials (described in section 2.2.5). “Number of 

Criterion trials” represent accumulation of all training trial results for all rats. Rats were 

able to successfully make the distinction between the choices locations by choosing the 

higher reward choice location in both positive (sucrose/saccharin vs. water) and negative 

(water vs. quinine) conditions across all five training days. *p < 0.05 
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2.3.2 Cognitive Bias Testing with Ambiguous Cues 

 

In the ambiguous condition, there was significance between the choice for the 

optimistic location (O1) to the middle (M, p < 0.01) and the pessimistic location (P3, p < 

0.01). Rats chose the O1 location significantly more than the P3 location (O1, p < 0.01, 

figure 2.7).  

The mean latency from the time that the rat exited the start box until it made a 

choice was compared among the positive, negative, and ambiguous conditions across all 

three testing days (Figure 2.8). ANOVA analysis yielded a significant interaction between 

the latency and the condition. Further analysis revealed a significant difference for latency 

during ambiguous trials versus positive conditions (F(2, 201) = 7.265, p < 0.01), as well 

as with the negative condition (F(2, 201) = 7.265, p < 0.05). Rats took significantly longer 

time to make a choice in the ambiguous condition in comparison to the trained positive or 

negative conditions. There was no significant difference between time spent making a 

choice when the rat was exposed to the trained positive and negative conditions (p > 0.05). 

The ambiguous environmental and choice location cues presented in the ambiguous 

condition did have an effect on the choices made by the rat in the present paradigm.  
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Figure 2.7. Choices in response to the ambiguous contextual (visual/tactile) cues. 

“Number of Criterion trials” represent accumulation of all training trial results for all rats. 

Choices made over three days of ambiguous cue testing are shown. There was a 

significant difference between the positive choices (choosing the O1 location first) and 

the negative choices (choosing the P3 location first). Rats chose the O1 location 

significantly more. *p < 0.05 

 

 
 

Figure 2.8. Latency of making a choice during the Ambiguous condition trials as 

compared to during cognitive bias training in positive/negative conditions (in 

seconds). In the trained conditions, higher reward locations consisted of sucrose and 

water as the enforcements, while lower reward value locations consisted of water and 

quinine instead. Error bars indicate S.E.M. *p < 0.05 (males: n=12).   
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2.4 Discussion 

 

The aim of this experiment was to establish a relatively rapid task to examine 

cognitive bias in rats that offers advantages over previously established tasks. Here, 

solutions of different reward values were used in conjunction with different visual and 

tactile cues to provide indices of positive and negative cognitive biases. The results of using 

this task showed that adult male rats displayed a positive cognitive bias (optimism bias) 

when facing ambiguous cues under basal conditions.  

Rats were first trained to discriminate between a positive and a negative condition 

(using wall color and textured flooring) that were reinforced with either higher reward 

value (water or sucrose/saccharin solution), or lower reward value outcomes (quinine 

solution or water) choice outcomes, respectively. After the rats demonstrated a clear ability 

to distinguish between the positive and the negative conditions, ambiguous cues were used 

to determine whether there were any changes in the underlying cognitive bias. Both 

environmental cues (grey walls and intermediate grain flooring), as well as choice location 

cues (grey visual cue cards) were used to create the ambiguous condition. The results of 

the present experiment showed that rats were able to accurately acquire the task under the 

absence of any significant behavioral manipulations (i.e. stress induction). They were able 

to correctly discriminate between the different environmental visual/tactile cues in the 

positive and the negative conditions by consistently choosing the higher reward choice 

spout to drink from. Upon further testing and analysis with the presentation of ambiguous 

cues (intermediate textured flooring and wall color), it was found that the rats preferentially 

chose the ambiguous location more closely associated with the rewarding reference 

location. This suggested that rats anticipated positive outcomes when they were exposed 

to affectively ambiguous cues, indicative of a positive (or “optimistic”) affective state. 

Such results are consistent with previous studies that used other tasks of cognitive bias in 

adult male rats and starlings, where it was found that an optimistic baseline typically exists 

in animals without any mood manipulations (Brydges et al., 2011; Matheson et al., 2008).  

These results suggested that the current cognitive bias model can be a highly 

effective and valuable tool in the assessment of altered affective processing and emotional 
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valences (i.e. positive or negative mood). This paradigm has a number of advantages over 

previously established tasks. First, an open arena apparatus was adopted to overcome the 

limitations presented by previous studies. This ensured that the rats avoided viewing all the 

ambiguous choice locations similarly, as one collective “ambiguous outcome”, but instead 

viewed them as distinct ambiguous choice locations (Burman et al., 2009). Thus, when 

paired with fluid outcomes that have discrete reward values (sucrose/saccharin solution is 

highly palatable, water is neutral, and quinine solution is aversive), allowed the different 

locations to represent distinct significances to the rats. The proximity association between 

the ambiguous choice spouts to the previously paired reference locations (higher or lower 

reward value outcomes), allowed the generalized interpretation of the choices to be that of 

“optimistic” or “pessimistic”. Further, unlike the initial go/no-go tasks (such as the one 

presented by Harding, et al, 2004), this paradigm required active responses to the 

ambiguous contextual visual/tactile cues, eliminating the difficulty of interpreting no-go 

responses. As well, by requiring active responses to different conditions, problems such as 

motivation or locomotor reductions could be minimized (Matheson et al., 2008). In the 

Harding et al.’s task, if one result of the chronic stress manipulation was a decline in 

activity level or a decreased motivation to press the lever, the observed reduction in 

responses during the ambiguous condition could be confounded and inaccurate. This was 

improved upon by using a go-go task format in the current model.   

Another advantage of the present task was that it allowed for quick cognitive bias 

testing in non-human animals without the requirement of complex processing and skills. 

Specifically, it used highly salient spatial location cues (tactile and visual information) to 

model cognitive bias in adult rats. These stimuli greatly increased the ease for rats to learn 

to discriminate between the positive and negative contextual visual/tactile cues (see 

Brydges N. M., 2011 for a similar approach). In addition, the cues and reinforcements used 

allowed for the potential to titrate changes in cognitive bias with different strengths of 

aversive (i.e. quinine concentration) and positive (i.e. sucrose/saccharin solution 

concentration) reinforcements. Variations in these parameters can help to tease out putative 

underlying mechanisms associated with the establishment of cognitive bias. Thus, the 

results of the present study demonstrated that similarly valenced, but distinct, emotional 

states may be differentiated through this paradigm.  
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It is important to note that while the majority of rats chose the O1 location, 

demonstrating a positive cognitive bias that is indicative of a positive affective state, there 

were some rats that chose to drink from the P3 location. This can be attributed to a number 

of variable factors. First, individual differences in responding to the task over the course of 

the experiment could have affected the acquisition and performance in the cognitive bias 

task. The rats were allowed to explore the apparatus for 30 seconds following the cessation 

of drinking from the choice spout to avoid potential conditioned pairing of specific spouts 

with handling. Since the ambiguous locations were all reinforced with water, the rats that 

went on to explore the other ambiguous choices would have found that all spouts gave 

equal outcomes, which may then potentially interfere with their responses in succeeding 

trials. However, the presentation of water as an outcome in the ambiguous choices could 

also have been a potential confounder in the ambiguous cue testing trial, depending on 

whether a positive or negative condition was proceeding it (Trials with ambiguous cues 

were administered in addition to a randomized order of positive and negative conditions). 

Thus, because the water was trained as either the higher reward value outcome in the 

negative condition or lower reward value in the positive condition, receiving water in the 

ambiguous condition could have led to a biased recall of conditioned choices in the 

ambiguous condition.  

The differences in rats’ performances in the ambiguous cue testing could also be 

attributed to the differences in acquisition of the task during the establishment of cognitive 

bias stage. Although all rats were observed to ensure drinking from the water spout 

following water deprivation, as well as drinking and exploring the lickometer locations 

during training, individual differences could have affected how well they acquire the task 

during these two stages. Further, although the use of group learning was adopted to enhance 

the acquisition of the task, the hierarchal social nature of rats allows for the possibility of 

stress associated with dominate versus subordinate roles. In all, the saliency and time-

effective nature of the current task presented a promising method to further elucidate 

changes in cognitive bias in rats.  
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3 THE EFFECT OF CORTICOSTERONE ON 

COGNITIVE BIAS 

 

3.1 Introduction 

Affective disorders such as depression and anxiety are serious wide-spread medical 

conditions that are complex and multi-dimensional, involving both genetic and 

environmental factors. At the same time, depression and anxiety are comorbid conditions, 

where symptoms of depression are often made worse by co-existing symptoms of anxiety. 

These symptoms include anhedonia (decreased reward value of highly palatable foods), 

irritability, sleep disturbances, nervous dread of the future, and psychomotor agitation 

(Gregus, Wintink, Davis, & Kalynchuk, 2005). In fact, pure depression without symptoms 

of anxiety occur infrequently, and have been widely shown to be related to stress. Stress is 

a physiological response to threatening or novel stimuli, characterized by the activation of 

the hypothalamic-pituitary-adrenal (HPA) axis. When the HPA axis is activated, it elicits 

a cascade of events leading to the elevation of adrenal glucocorticoids (Dinan, 1994). In 

humans, cortisol is the circulating glucocorticoid, while corticosterone (CORT) is the 

equivalence in other species, notably rats. A normal HPA response is necessary for survival 

as it maintains physiological homeostasis in the body. However, when the HPA axis is 

repeatedly activated, problems can arise in the body and the brain. For example, repeated 

glucocorticoid exposure can lead to downregulation of hippocampal regulatory pathways, 

leading to abnormal secretion of the hormone to the rest of the body (for review see Dinan, 

1994). Thus, it is not surprising that depression and anxiety has been strongly associated 

with elevated stress responses, in particular an increase in HPA axis activation and cortisol 

levels. 

One aspect of cognition that seems to be disrupted by this abnormal stress response 

takes shape behaviorally as cognitive bias. In fact, it has been well established that negative 

cognitive bias (or “pessimism”) is a key characteristic typically exhibited by stressed 

individuals  (Beck et al., 1988; Strunk et al., 2006). There is a strong correlation between 

negative affective state and a high risk of relapse/recurrence of depression (Bouhuys et al., 
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1999). These individuals tend to have negative views of self and others, as well as increased 

hopelessness and more negative thoughts/attitudes in comparison to healthy controls (Beck 

et al., 1988). For example, these individuals would interpret ambiguous statements (e.g. 

“That’s an interesting choice of outfit”) in a more negative (“pessimistic”) manner than the 

controls (Eysenck et al., 1987). As well, during emotional categorization tasks where the 

valence of affective stimuli (positive or negative facial expressions) were to be categorized, 

these individuals showed faster responses toward negative faces (Yoon et al., 2009). Such 

negative cognitive bias is not limited to humans. In fact, non-human animals, under chronic 

stress manipulations, have been shown to exhibit similar tendencies when facing 

ambiguous situations (Brydges, Hall, Nicolson, Holmes, & Hall, 2012; Burman et al., 

2009; Harding et al., 2004). Therefore, there is great value in examining how negative 

affective state can affect behavior in animal models to further our understanding of the 

underlying neurobiological mechanisms of affective disorders. In the previous (chapter 2), 

a novel task was developed using an open arena with tactile and visual cues in an attempt 

to overcome some of the limitations presented by existing animal models. It was shown 

that healthy rats with no significant stress influences exhibited a positive cognitive bias, 

consistent with existing research. In the current study, we built upon this cognitive bias 

framework by adding an acute stress manipulation to examine whether it would lead to a 

similar shift to negative cognitive bias as that found in chronic stress studies.  

There are a wide range of manipulations used in chronic mild stress studies that can 

elicit abnormal stress responses to shift cognitive bias. The most common methods in 

animal welfare research are the lack of environmental enrichment and restraint stress 

(Burman et al., 2009). However, while these methods do mimic the repeated stress 

exposure, they have not been able to produce consistent and robust changes in depression 

symptomatology (for review, see Zhao et al., 2008). This may be attributed to procedural 

differences between experiments and lack of control over individual differences in 

response to manipulations (Zhao et al., 2008). As a result, there may be variable 

corticosterone levels between animals when exposed to the same stressor, leading to the 

inconsistency of studies on stress. As well, chronically repeated restraint stress may allow 

for habituation to the adverse effects. For example, it has been shown that corticosterone 

levels in male rats declined over the course of 21 days following physical restraint, where 
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the levels are significantly lower on day 14 when compared to day 1 and 7 (Galea et al., 

1997). One way to avoid these problem in traditional rat stress models is by using 

exogenous corticosterone administration to study the effect of elevated corticosterone 

levels. In the current study, in order to examine the effect of acute stress challenge on 

changes in cognitive bias, daily injections of exogenous corticosterone were administered 

for three days. The dose of corticosterone was chosen because it was shown to approximate 

physiological stress levels associated with aversive responses following physical restraint 

(Ossenkopp et al., 2011).  

Thus, the present study examined the effects of physiologically relevant levels of 

corticosterone on cognitive bias. It was hypothesized that corticosterone administration 

would lead to a negative (pessimistic) cognitive bias when rats face ambiguous conditions. 

The ambiguous cues consisted of grey walls and intermediate grain flooring, with the 3 

middle (“novel”) choice spouts open (previously inaccessible to rats). Whether the rats 

chose to drink from the spout that was more closely associated with the previously paired 

higher reward value outcome location, or vice versa for the lower reward value outcome 

location, would give insight on how an acute stress challenge could affect cognitive bias.  
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3.2 Materials and Methods 

3.2.1 Experimental Procedure  

Figure 3.1. Outline of procedures for experiment 2. Procedural differences from 

experiment 1 are highlighted.   

Cognitive Bias 
Test with 
Ambiguous Cue  

Time: 3 days 
Same procedure as 
stage 2, with an 
additional 
“Ambiguous” trial 
using intermediate 
contextual cues: 
 Grey walls and an 

insert sheet 
(intermediate grain) 

 Only middle 3 
“ambiguous” 
locations exposed 
with water tubes. 

 i.p. injection of 
Corticosterone 
(5mg/kg) or vehicle 
(1ml/kg) given to 
each rat 15 min 
before testing. 

 Positive affective 
state (“Optimistic”) 
if chose location 
closest to the 
reward location. 

 Negative affective 
state if 
(“Pessimistic”) if 
chose location 
closest to the 
aversive location.  

 

Training for Cognitive Bias 

Establish 
Reference 
Conditions 

Handling 
and 
Training  

Handle: 10min/day, 
5days 
Training (5 days) 
(In randomized and 
counterbalanced 
groups) 
30 min alternations (2 
hrs total) between:  
 
Negative conditions 
 white walls, smooth 

flooring 

 stripe cue card: higher 
reward reference 
location (water) 

 white cue card: 
aversive reference 
location (0.00005M 
Quinine solution) 

 
Positive Conditions 
 black walls, rough 

flooring 

 Stripe cue card: 
higher reward 
reference location 
(sucrose/saccharin 
solution) 

 white cue card: lower 
reward value 
reference location 
(water)  

Time: 5 days 
Tested 
Individually 
 
4 randomized 
trials (2 reward 
and 2 aversive 
conditions) 
 
Recorded: 
 Latency to 

make a choice 
 Pathlength 

travelled to 
choice 

 Number of 
licks taken at 
the choice 
spout 

 Choices made 

 
Move on to 
testing stage if 
successful on 3 
out of 4 trials 
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3.2.2 Animals  

Twenty-three adult male Long-Evans rats (Charles River, Quebec, Canada), 

weighing between 300 - 450g at the start of the experiment were used. The rats were pair 

housed in standard polypropylene cages (45cm × 22cm × 20cm), in a colony room with ad 

libitum access to both food (ProLab RMH3000 rat chow) and tap water when applicable. 

The colony room was maintained at 21± 2°C, on a 12:12 hour light/dark cycle with the 

lights on from 07:00 to 19:00 h. All experiments were carried out during the light phase. 

For the entire duration of the experiment, each rat was water deprived for 15 hours starting 

at the beginning of their dark cycle (starting at 19:00h), and then given one-and-a-half-

minute access to tap water at the end of the water deprivation period. The rats were 

observed during the one-and-a-half-minute water access to ensure that each rat drinks from 

the water bottle. This method was used so that rats would be motivated to explore and drink 

from the liquid reinforcements that were used to indicate differences between positive and 

negative conditions. Each rat was given identification markings on their tails using a 

permanent marker (Black Sharpie pen). All procedures were performed according to the 

Canadian Council on Animal Care guidelines and were approved by the Western 

University Animal Care Committee.  

 

3.2.3 Drugs 

Corticosterone (Cort; Sigma, Toronto, ON) was used as the acute stress challenge, 

as it is typically released internally by the rat as part of the hypothalamic-pituitary-adrenal 

(HPA) axis’s adaptive response to stress (I. Z. Mathews, Wilton, Styles, & McCormick, 

2008). CORT was dissolved in 45% hydroxypropyl-β-cyclodextrin to a dose of 5mg/mL. 

The vehicle (VEH) used in the control group was 45% hydroxypropyl-β-cyclodextrin. 

Corticosterone and vehicle were administered via intraperitoneal (i.p.) treatment at a 

volume of 1.0 mL/kg, 15 minutes before the start of the test. This Corticosterone 

administration procedure was used based on previous studies where it mimicked 

physiological levels of acute stress 15 minutes following the injection (Kent, Cross-Mellor, 

Kavaliers, & Ossenkopp, 2000).  
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3.2.4 Cognitive Bias Apparatus 

 

The apparatus consisted of a rectangular start box (20cm x 20cm) attached to a 

rectangular arena (100cm long, 90cm wide, 25cm height) made of clear Plexiglas with a 

transparent lid, set on top of a white board (fig. 3.2). A manually operated transparent 

guillotine door opened into the arena from the start box. This apparatus was set up in a 

designated testing room, on a table 1m above floor level. The wall colors of the open arena 

were created using white or black cardboards, attached to the outside of the clear Plexiglas. 

Plastic lighting sheets (2’×2’ Replacement lens for Metalux Recessed Troffer, Cooper 

Lighting, GA, USA) were used to line the floor of the arena to create rough floors, and the 

smooth back of the sheets were used to create smooth floors. All behaviours were 

videotaped with a video camera positioned approximately 1.5 m directly above the 

apparatus on the ceiling.  

Five automated lickometers, each consisting of a stainless steel spout attached to a 

glass graduated drinking tube, were used (Contact 108 lick analysis system, Dilog 

Instruments, Tallahassee, Fl). The ends of the drinking spouts were mounted 5cm above 

the arena floor. The 5 spouts were evenly spaced 15cm apart from each other, as well as 

from the sides of the apparatus, on the opposite side to the start box (Fig. 3.2 and 3.3). The 

two outer spouts were designated “reference locations”, and were used during the training 

stage. Each spout was centered on a specific colored cue card that could be changed to give 

different visual cues. The spouts were accessible through an oval opening, only big enough 

for the rats’ tongues without altering the natural facial movements of drinking. To monitor 

the licks, a computer-controlled lickometer (DiLog instruments, Tallahassee, FL) passed a 

low, non-detectable current (~60nA) through the spouts. The electric circuit was completed 

each time the rat’s tongue came into contact with the spout, and the signals were amplified 

before being recorded for licking measures (QLick, version 4.0). These recordings allowed 

for the analysis of the rats’ licking frequency. The volume of solutions consumed was also 

quantified by manually reading the changes in fluid amounts of the graduated drinking 

tubes.  



45 

 

 

 

Figure 3.2. Photograph of the cognitive bias apparatus, five lickometer spouts (top) 

are evenly space apart on the far wall of the apparatus, each centered on a visual cue card.  

 

Figure 3.3. Diagram of the cognitive bias apparatus, showing the dimensions of the 

start box (20cm x 20cm) and the open testing arena (100cm long, 90cm wide, 25cm 

height). The light grey lines at the right side of the diagram indicate the locations of the 

lickometer drinking spouts.  
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3.2.5 Training and the establishment of reference conditions  

 

During the first 5 days of the experiment, each rat was handled daily for 10 minutes 

during the light phase. 24 hours after the final handling day and for the subsequent 5 days, 

all of the rats were placed into the open arena in groups of 6 for training. Group learning 

facilitates the acquisition of cognitive tasks more effectively and efficiently than individual 

training (Krasheninnikova & Schneider, 2014). During this time, visual (black or white 

walls) and tactile (smooth or rough flooring) cues were placed in the arena to indicate the 

positive or negative condition. As well, visual cue cards (black-and-white stripe or white) 

were used to indicate the higher/lower reference location spouts, respectively. These two 

reference locations were located at the outermost 2 locations out of the 5 possible locations; 

they were 15cm from the sides of the goal box, and 60cm apart from each other.  

The rats alternated between a “positive” condition and a “negative” condition for 

30 minutes each, for a total of 2 hours a day in groups. The positive condition was 

represented by environmental cues consisting of black walls and a rough floor. Here, a 

sucrose/saccharin solution (3% sucrose with 0.125% saccharin dissolved in distilled water) 

represented the higher reward-value location (associated with the black-and-white stripe 

visual cue card), whereas tap water represented the lower reward value location (associated 

with the white visual cue card; figure 3.4a). In contrast, the negative condition was 

represented by environmental cues consisting of white walls and a smooth floor. Here, a 

quinine solution (0.00005M) represented an aversive reference location (associated with 

the white visual cue card), whereas tap water represented a comparably higher value 

reference location (associated with a black-and-white visual cue card; Figure 3.4b). The 

concentration of quinine used in this task was a very low concentration, so that rats would 

find it aversive but not so much as to cause stress or major changes in appetitive behaviour. 

The reward and aversive reference locations were counterbalanced between rats to 

eliminate side-bias. The specific reference locations paired with a particular visual and 

tactile condition environment were consistent for each rat throughout the experiment (ie. 

sucrose/saccharin solution were always at the right side of the goal box).  
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On the other hand, the 3 middle locations (figure 3.4) were blocked off by a smooth 

board with a color that was the same as the walls, thus leaving only the 2 reference location 

spouts exposed. All rats in the group had free access to explore both reference locations 

(and the accompanying lickometer spouts) in the arena during this stage (figure 3.4). Since 

all rats were identified by an ID marking on their tails, their exploration and consumption 

of the various reference fluids were verified by video recording. 

In order to determine whether the rats had acquired the task, 24 hours after the last 

training day, the rats were tested individually to see if they were able to determine the more 

rewarding location in the positive and negative conditions. In this stage, each rat 

individually received 4 consecutive trials in a randomized order (2 trials in the positive 

condition and 2 trials in the negative condition) each day for five days. Between each trial, 

the apparatus was cleaned thoroughly with 20% alcohol solution. The time taken (in 

seconds) for the rat to exit the start box and choose one of two reference locations was 

recorded. The specific reference location spouts that the rat chose and drank from was 

recorded as well. The rat was considered to have made a correct choice if it chose to drink 

from the reference location spout associated with the higher reward value outcome 

immediately after exiting the start box. For the positive condition, the correct choice was 

the sucrose/saccharin solution, whereas in the negative condition, the correct choice was 

the water. A rat was considered to be successfully trained  and could advance to the next 

stage if it consistently made the correct choice at least 3 times out of the 4 trials over the 5 

testing days. 
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Figure 3.4. Diagram of training apparatuses in either positive (a) or negative (b) 

condition. A white intra-maze visual cue was presented in the start box. a) The rough 

floor and black walls (positive) environment was associated with the higher value 

sucrose/saccharin solution (3% sucrose and 0.125% saccharin dissolved in distilled 

water) at the left side of the goal box (stripe cue card) and tap water on the right side 

(white cue card). b) The smooth floor and white walls (negative) environment was 

associated with the lower value water at the left side of the goal box (stripe cue card) and 

0.00005M quinine at the right side (white cue card). The middle 3 locations (light grey 

lines) were blocked off by a card with the same color as the walls. 

 

b) 

a) 
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3.2.6 Cognitive bias test with ambiguous cues under acute stress 

challenge 

 

24 hours after the trials for establishing cognitive bias, each rat received three 

consecutive days of individual cognitive bias testing with ambiguous cues. In this stage, 

the trials proceeded in the same method as the previous trials, but with one additional 

“ambiguous” trial included where the testing was done with an acute stress challenge using 

Corticosterone. Thus, the trials were in a randomized order across animals, where each rat 

received 1 trial of ambiguous cue condition plus 2 trials each of the positive and the 

negative conditions. During the ambiguous condition, an insert sheet, intermediate in 

texture to the two conditioned floor textures, was used as the flooring (Acrylic Lighting 

Panels Cracked Ice Clear, Plaskolite Inc., Ohio, USA). In addition, grey cardboard was 

attached to the walls of the apparatus to give an intermediate wall color (figure 3.5). These 

two conditions created an environment where the visual and tactile cues were intermediate 

to the ones used for the training trials (i.e. black walls/rough flooring for positive condition, 

white walls/smooth flooring for the negative condition).  

At the start of this stage, each pair of rats from the same cage were randomly 

allocated to two groups, acute stress group and control. Corticosterone was used to elicit 

the acute stress challenge. During the ambiguous cue test, either CORT (n=12), or VEH 

(n=11) were injected intraperitoneally 15 minutes before testing each day in the ambiguous 

cue context (refer to figure 3.1 for procedural outline). During these 15 minutes, the rats 

were placed back into their home cages. This 15 minutes waiting period was necessary for 

Corticosterone to reach peak physiological effect in the rat (Kent et al., 2000).  

During the ambiguous cue trials, rats were individually tested by being exposed to 

only the 3 middle “ambiguous” locations. The two reference location spouts (for the 

positive and negative context conditions) were blocked off by a card in the same shade of 

grey as the walls. Graduated drinking tubes containing water were placed in each of the 

three middle ambiguous locations (figure 3.5). Measurements were made and recorded for 

the: i) time taken for the rat to exit the start box, ii) first choice from the three lickometer 
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spouts to drink from. iii) the number of licks made. If the rat selected the O1 location, it 

was recorded as making a choice reflective of a positive cognitive bias; if the P3 location 

was chosen, it was recorded as a choice reflective of a negative cognitive bias (figure 3.5). 

30 seconds after the rat cease to drink from their initial choice spout, they were removed 

from the apparatus.  

 

 

 

Figure 3.5. Diagram of experimental apparatuses in the ambiguous task. The 

smoothness/roughness of the flooring was in between the smooth and rough flooring of 

the training trials. The walls were a solid grey color. The two reference locations were 

blocked off and inaccessible using a smooth board with the same grey color as the walls. 

The drinking tubes of the ambiguous locations (dark grey lines) contained tap water. The 

O1 ambiguous location was located closest to the previously trained more rewarding 

location, whereas the P3 ambiguous location was located closest to the previously trained 

less rewarding/aversive location. The M ambiguous location was in the middle between 

the O1 and P3 ambiguous locations.  
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3.2.7 Statistical Analysis  

 

 In this experiment, all data generated were analyzed using SPSS (Version 21, SPSS 

Inc., Chicago, IL, USA). The replicates in this experiment and the treatment groups were 

equally counterbalanced across the conditions. The positive or negative choices across all 

three testing days during the ambiguous condition testing were analyzed with the chi-

square test of independence. The behavioural measures (e.g. licking patterns, latency to 

approach choice spouts, and pathlengths to approach the choice spouts) during the 

cognitive bias testing with ambiguous conditions were analyzed using one-way Analysis 

of Variance (ANOVA). A significance level of p < 0.05 was used throughout the 

experiment. 
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3.3 Results 

 

The total number of choices for the two treatment groups (VEH vs CORT) at each 

of the ambiguous test locations (O1/optimistic, M/Middle, P3/Pessimistic) across the three 

days of ambiguous cue testing is shown in figure 3.6. O1 represents the optimistic choice 

(choosing the location closest to the rewarding reference location), P3 represents the 

pessimistic choices (choosing the location closest to the aversive reference location). chi-

square test for the number of choices made in the ambiguous cue test revealed significance 

between the locations chosen (i.e. Optimistic choices location (O1) and Pessimistic choice 

location (P3)) and treatment group (χ2(2, n=23) = 13.746, p < 0.001). Specifically, CORT 

treated rats chose the pessimistic location significantly more than then VEH treated rats. 

As well, VEH treated rats chose the optimistic location significantly more than the CORT 

treated rats. There was no significance found between the two treatment groups for 

choosing the middle location. 

 

Figure 3.6. Comparison of choices made during the ambiguous cue testing (total) 

over 3 days. There was a significant association between the locations chosen (i.e. 

Optimistic choices location (O1) and Pessimistic choice location (P3)) and treatment 

group. Specifically, CORT treated rats chose the pessimistic location significantly more 

than then VEH treated rats, and the VEH rats chose the optimistic location significantly 

more than the CORT treated rats. There was no significant difference between the two 

treatment groups for the middle location. *p < 0.001 
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 The ambiguous choices across 3 days of ambiguous cue testing was also broken 

down to be analyzed by day, shown in figure 3.7-3.9. Overall, the chi-square test revealed 

that there were no statistical significances between the choices made by the two treatment 

groups on days 1 and 3, but there was a significant interaction between the treatment groups 

and the ambiguous location choices on day 2. 

Specifically, on day 1, Chi-Square test revealed that no statistical significance 

between the two treatment groups for the choice locations (χ2 (2, n=23) = 3.893, p > 0.05). 

Control rats did not differ from the acute stress animals in their choices of the three 

ambiguous locations. However, the VEH group exhibited a significant difference between 

the O1 location to the M (χ2 (1, n=23) = 4.278, p < 0.05) and the P3 location (χ2 (1, n=23) 

= 4.278, p < 0.05). The control rats chose the optimistic location significantly more than 

the pessimistic location.  

On day 2, Chi-Square test revealed statistical significances between the two 

treatment groups for the choice locations (χ2 (2, n=23) = 7.987, p < 0.05). Specifically, the 

control rats preferentially chose the optimistic location over the pessimistic location (χ2 (1, 

n=23) = 11.000, p = 0.001). On the other hand, the acute stressed rats preferentially chose 

the pessimistic location (χ2 (1, n=23) = 12.000, p = 0.001). No animals chose to drink from 

the middle (M) location.  

On day 3, chi-square test revealed no statistical significance between the two 

treatment groups in terms of the location choices that the rats made (χ2 (2, n=23) = 2.500, 

p > 0.05). No animals chose to drink from the middle (M) location.  
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Figure 3.7. Comparison of 

choices in the ambiguous 

cue conditions between 

the two treatment groups 

on day 1. *p<0.05 

 

 

 

 

Figure 3.8. Comparison of 

choices in the ambiguous 

cue conditions between the 

two treatment groups on 

day 2. No animals chose to 

drink from the middle (M) 

location. *p<0.05 

 

 

 

Figure 3.9. Comparison of 

choices in the ambiguous 

cue conditions between the 

two treatment groups on 

day 3. No animals chose to 

drink from the middle (M) 

location. 
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The mean path length taken to reach the choice spout and drink from it, as well as 

the number of licks taken, and latency to approach the choice spouts for the VEH and 

CORT groups are shown in Figure 3.10 – 3.12. One-way ANOVA analysis comparing 

VEH and CORT treated groups revealed no significance among any of the three locations 

with regards to the path length taken to reach the choice spout (F(1,55) = 0.044, p > 0.05) 

and the number of licks taken at the choice spout (F(1,55) = 0.963, p > 0.05). Both the 

control rats and the acute stressed rats took similar distance to reach their choice and took 

similar number of licks at their choices. However, there was a significant difference 

between the treatment groups in terms of latency to approach the choice spout. Specifically, 

ANOVA analysis revealed that the corticosterone treated groups displayed a significant 

increase in latency to make a choice in comparison to the control group ((F(1,32) = 4.114, 

p <0.05). However, no significance was found when comparing the VEH and CORT 

treated groups (F(1,55) = 2.875, p > 0.05) for the middle and pessimistic locations.  

 

 

Figure 3.10. Path lengths taken to reach choice spout and drink from it during 

ambiguous cue testing trials. There were no significances between any of the three 

locations when comparing between VEH vs. CORT rats’ performances (p > 0.05). No 

standard errors were generated (n=1) for the results from CORT rats at the M location. 
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Figure 3.11. Number of licks taken at the choice spout during the ambiguous cue 

testing trials. There was no significance found between the VEH and CORT groups for 

the licking frequency (p > 0.05). No standard errors were generated (n=1) for the results 

from CORT rats at the M location. 

 

 

Figure 3.12. Latency to approach the choice spout in the ambiguous cue testing 

trials. No significance was found when comparing between the VEH and CORT treated 

groups (p > 0.05) for the middle and negative cognitive bias locations, but there was a 

significant difference between the CORT and the VEH groups when the rats approached 

the positive cognitive bias (O1) location, with the CORT treated rats taking significantly 

longer time to approach the location (F(1,32) = 4.114, p <0.05). No standard errors were 

generated (n=1) for the results from CORT rats at the M location. 
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3.4 Discussion 

 

The current study was able to build upon the previously established cognitive bias 

task by first demonstrating a positive cognitive bias at the basal level in rats, even with 

possible mild stress from injection. More importantly, this experiment demonstrated a shift 

to negative cognitive bias from the baseline positive cognitive bias following acute stress 

challenge using corticosterone. 

Specifically, the baseline optimism that was observed in experiment 1 was shifted 

towards pessimism when rats were subjected to acute stress challenge from corticosterone 

treatment. Such pessimism is an indication of a shift towards negative cognitive bias, which 

is a key component of neuropsychiatric affective disorders such as depression. In this 

experiment, control rats that received the vehicle injection displayed an overall optimism 

in the ambiguous condition, similar to the findings from chapter 2, where rats demonstrated 

positive cognitive bias without any stress manipulations (i.e. injections). This showed that 

the injection procedure itself was not enough of a stressor to cause shifts in cognitive bias. 

As well, rats preferentially avoided the middle location across 3 days. In contrast, rats 

treated with Corticosterone displayed significant shift in cognitive bias to negative when 

presented with ambiguous stimuli. These rats preferentially chose to drink from the 

ambiguous choice location associated with the less-rewarding/aversive reference location 

(P3 location). Thus, the current study is consistent with previous research on chronic mild 

stress, and showed that negative emotional states will shift baseline optimism towards 

“pessimism” (negative cognitive bias) under ambiguous conditions.  

However, the CORT treated rats exhibited a shift in their preferences across 3 days. 

This is shown by the comparison of the results from day 3 to those from days 1 and 2. 

Specifically, there was no significant interactions between the CORT treatment with the 

location choices on days 1 and 3. In contrast, the same CORT treated group demonstrated 

strong preference for the pessimistic (P3) location on day 2. This effect may be due to the 

acclimation of animals to the ambiguous condition through 3 days of testing. The animals 

were allowed a small window of time (30seconds) after making a choice to remain in the 
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open arena. This was done to reduce the possibility of conditioned pairing between specific 

spouts and handling stress. However, this did allow some of the rats to have extra time to 

further explore the other choices. Since the ambiguous locations were all reinforced with 

water, the rats that did go on to explore the other ambiguous choices would have found that 

all spouts gave equal outcomes, which may potentially have interfered with their responses 

in the succeeding trials.  

Overall, the rats were generally not affected by locomotor confounders, as indicated 

by the lack of differences in latency, licking, and path length measures between the VEH 

and CORT groups. There was one exception, where acute-stressed rats took longer time 

(not path) to approach the O1 location (indicative of positive cognitive bias). This suggests 

that the acute stress rats showed a lack of an expectation of a positive outcome at that 

specific ambiguous condition. This increase in latency, when paired with the results 

showing significant difference in optimism and pessimism, suggested altered response to 

the reward value of the outcome. The rats showed an increased expectation of a negative 

outcome (indicative of anxiety), or a decreased expectation of a positive outcome 

(indicative of depression). While it may be difficult to understand why these animals are 

preferentially choosing the less rewarding outcome, it is important to note that these 

behaviors (anhedonia and behavioral despair) are indicators of a negative affective state 

for both humans and animal models. Specifically, anhedonia (i.e. reduced preference for 

sweet sucrose solution because of a decrease in its rewarding value) and behavioral despair 

have been well established in the human population as key characteristics of mood 

disorders (JP et al., 1972). As well. they are also well established in rodent models of 

depression (Harkin, Houlihan, & Kelly, 2002; Rygula et al., 2005; Willner, 1997). Such 

maladaptive, or “irrational”, behavior responses do reflect results from animal welfare 

research with chronic mild stress. The lack of environmental enrichment can elicit robust 

maladaptive behaviors, abnormal brain development, and impaired higher-order cognitive 

functioning (Simpson & Kelly, 2011; Würbel, 2001). In addition, acute administrations of 

corticosterone in rats have been shown to decrease fear in threatening situations, a 

maladaptive behavior (Skórzewska et al., 2007).  
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The present cognitive bias task also presents important advantages over previously 

established chronic stress paradigms. First, since acute corticosterone was administered 

only before undergoing ambiguous cue test (not throughout the whole experiment), 

differences in the task acquisition versus testing stages can be teased out. This differs from 

a number of animal welfare research, where chronic stress treatment was applied before 

the onset of training and testing, making it difficult to examine only the effect of ambiguous 

cues on affective cognition (Marks, Fournier, & Kalynchuk, 2009; Olausson, Kiraly, 

Gourley, & Taylor, 2013; Skórzewska et al., 2006). Another advantage of the current acute 

stress task is the potential to use it to study the effect of different levels of stress. Although 

only a physiological level of acute stress was used in this study, a number of variations 

could be used to examine the effect of low to high stress on cognitive bias by varying the 

concentration of corticosterone.   

On the other hand, it is important to keep in mind that the ambiguous cues used in 

the current task were composed of two components. The environmental visual/tactile cues 

(grey walls and intermediate grain flooring) and the choice location cues (grey cue cards 

indicating the middle choice locations) were combined in this task to evaluate shifts in 

cognitive bias. However, whether each ambiguous component (i.e. ambiguous 

environment versus ambiguous choices) have a separate effect on cognitive bias is unclear. 

This is important to examine, and is the focus of the next chapter, in order to further tease 

out the mechanisms underlying cognitive bias.  
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4 EFFECTS OF AMBIGUOUS ENVIRONMENTAL AND 

CHOICE CUES ON COGNITVE BIAS 

 

4.1 Introduction 

In humans, cognitive bias has been well established as the result of an interplay 

between cognition and affect. The way information with ambiguous or unclear meanings 

is cognitively processed tends to be biased by the positive or negative mood (or “affective 

valence”) of the subject. As a result, decisional and behavioral outcomes are altered to 

reflect the propensity of the subject towards a specific affective valence. Specifically, a 

negative cognitive bias, characterized by indicators such as an increased anticipation of 

negative events or decreased anticipation of positive events, plays a key role in affective 

disorders such as depression and anxiety (e.g. Beck et al., 1979; A. Mathews & MacLeod, 

2005;  a Mathews & MacLeod, 1994; Mineka  Sutton,Steven K., 1992; Rude, Valdez, 

Odom, & Ebrahimi, 2003).  

When translated to animal models, such traits have also been found. Although tests 

of cognitive bias cannot unequivocally show whether animals consciously experience 

subjective affect changes, these do provide objective indicators for animals’ affective 

valences. This is commonly seen as an anticipation of either positive or negative outcomes 

in response to affectively ambiguous situations. The development of an objective cognitive 

bias model using non-human animals have generally adopted a similar framework. The 

animal is first trained to distinguish between a positive condition and a negative condition 

based on distinct contextual stimuli and outcome reinforcement (e.g. high-value reward or 

aversive outcome). Then, the animal is subjected to some affective manipulations designed 

to generate positive or negative affective states, followed by exposures to a new condition 

where the stimuli are ambiguous (i.e. intermediate to the trained conditions). The responses 

of the animals in this ambiguous condition would then be scored to show any shifts in 

cognitive bias by an increased anticipation for the positive or negative outcomes. A 

negative (or “pessimistic”) response would be accompanied by an increased likelihood of 

responding to the ambiguous cues with a prediction of a negative outcome, and a positive 
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(or “optimistic”) response would be opposite. In studies of negative cognitive bias, chronic 

mild stress has been extensively shown to cause an increased expectation of the negative 

event and/or decreased expectation of the positive event in a wide range of non-human 

animals such as dogs, bees, starlings, and rodents (Bateson et al., 2011; Burman et al., 

2009; Matheson et al., 2008; Michael Mendl et al., 2010, 2009).  

The development of an objective rodent model of cognitive bias is still in its 

infancy. Since the pioneering study by Harding et al (2004), various models have been 

developed in an attempt to improve upon the test specificity to better elucidate a clearer 

understanding of the mechanisms underlying cognitive bias. One major discovery based 

on the original Harding et al study revealed the advantages of using a go-go task format 

over a go/no-go format. By requiring active responses to the condition stimuli, the analysis 

of the animals’ responses in the ambiguous condition can eliminate confounders such as 

stimulus-related motivation and behavior changes, as well as give clearer indications of 

active responses versus active omission (Brydges et al., 2011; Harding et al., 2004). In 

addition, proceeding studies revealed disadvantages of using a testing apparatus with 

unclear distribution of condition stimuli. For example, a study by Burman et al (2009) using 

an adapted radial arm maze revealed that the specific locations of the arms prompted the 

rats to view all ambiguous choices together as a general “ambiguous outcome” rather than 

specific “ambiguous locations” with distinct values (Burman et al., 2009).  

In the preceding studies, a cognitive bias model that could be used to evaluate the 

changes in affective state, such as that elicited by corticosterone inducted acute stress, was 

developed. It was shown that male rats under acute stress displayed a negative cognitive 

bias when facing completely ambiguous (novel) condition cues. This was characterized by 

stressed rats making a slower response to the ambiguous condition and making more 

negative choices, indicating a reduced anticipation of reward (anhedonia). However, in 

order to further our understanding of this shift in cognitive bias in response to ambiguous 

cues, there is a need to refine the distinction between the ambiguous environmental/choice 

location cues. In particular, the ambiguous condition had 2 separate components. The first 

component was the background environmental cue, which consisted of intermediate grain 

flooring and grey walls (intermediate to the black wall of positive training condition, and 
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the white wall of the negative training condition). The second component was the 

ambiguous visual cues associated with the actual choice locations (hereafter referred to as 

“ambiguous choice location cues”). Thus far, in the present cognitive bias task developed 

in experiments 1 and 2, these two components of the ambiguous condition have been 

grouped together during the evaluation of cognitive bias.  

Specifically, during the cognitive bias testing with ambiguous cues, the previously 

trained reference locations were blocked off, leaving only the three middle “novel” 

locations available to choose from. Each of these locations were centered on a grey visual 

cue card (ambiguous choice location cue), within an environment that was also 

intermediate to the previously trained backgrounds (grey walls and intermediate flooring). 

It was shown that when both environmental and choice location components were 

ambiguous, rats exhibited very distinct cognitive biases. The control rats displayed a 

positive (optimistic) cognitive bias, and acute stress treated rats displayed a negative 

(pessimistic) cognitive bias. However, whether these two components (environment vs 

choice location cues) interact with each other or act independently to influence affective 

states are still unknown. For example, if an ambiguous choice is offered in a positive 

environment, would the resultant behavior become more positive? Therefore, in order to 

further elucidate the mechanisms underlying cognitive bias, it is necessary to examine each 

separate component to see whether they have distinct effects on cognitive bias shifts. 

In experiment 3, the mechanisms underlying shifts in cognitive bias as result of 

affective state changes were further examined. Specifically, the present study examined 

whether or not ambiguous environmental and ambiguous choice location cues interact with 

each other to influence behavioral outcomes of cognitive bias. This was achieved by 

creating two new conditions in the testing stage, where the presence of positive or negative 

environmental factors were coupled with ambiguous choice location cues (grey visual cue 

card at the choice spouts). The first condition, where positive environmental cues (black 

walls/rough flooring) were coupled with ambiguous choice location cues (grey visual cue 

card), will be referred to as the “positive ambiguous condition”.  The second condition, 

where the negative environmental cues (white walls/smooth flooring) were coupled with 

the same ambiguous choice location cues, will be referred to as the “negative ambiguous 
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condition”. The purpose of using these two new conditions was to separate the two 

components of the ambiguous condition and evaluate whether or not they have different 

effects on cognitive bias. In order to properly evaluate this, responses were compared to 

the previously established, “original” ambiguous condition where the two ambiguous 

components were added together (grey walls, intermediate grain flooring, and grey 

ambiguous location visual cue cards). Thus, rats were also tested under the original 

ambiguous conditions without any stress manipulations (same as experiment 1), and with 

acute stress challenge using corticosterone (same as experiment 2).  

It was hypothesized that the two components of the ambiguous condition work 

independently to generate cognitive bias. Specifically, environmental cues would have an 

effect on the choices made at the three ambiguous choice locations. After the establishment 

of the positive and the negative conditions during training, the associated environmental 

cues (wall colors and floor texture) would affect rats’ choices in response to the three 

middle novel “ambiguous” locations. Specifically, in the positive ambiguous condition 

(positive environmental cues with ambiguous choice location visual cue), rats would 

display a preference for the more positive location (O1), similar to that of the original 

ambiguous condition. Similarly, rats would respond in the same manner in the negative 

ambiguous condition (negative environmental cues with ambiguous choice location visual 

cue) as the previously trained negative conditions.  
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4.2 Materials and Methods 

4.2.1 Experimental procedure 

 

Figure 4.1. Outline of procedures for experiment 3.  

Cognitive Bias 
Test with 
Ambiguous Cue  

Time: 5 days 

 Day 1: Positive 
Ambiguous Condition 
(Positive 
environmental cues 
with middle 
ambiguous choices) 

 Day 2: Negative 
Ambiguous Condition 
(Negative 
environmental cues 
with middle 
ambiguous choices) 

 Day 3: Original 
ambiguous condition 
(ambiguous 
environmental cues 
and choice locations) 

 Day 4&5: Same as 
day 3, but with i.p. 
injection of either 
CORT (5mg/kg) or 
VEH (1ml/kg) given 15 
min before testing 

 Positive affective 
state (“Optimistic”) if 
chose O1 location 
closest to trained 
positive location 

 Negative affective 
state (“pessimistic”) if 
chose P3 location 
closest to trained 
negative location 

Training for Cognitive Bias 

Establish 
Reference 
Conditions 

Handling 
and 
Training  
Handle: 10min/day, 
5days 
Training (5 days) 
(In randomized and 
counterbalanced 
groups): 
30 min alternations (2 
hrs total) between:  
 
Negative conditions 
 white walls, smooth 

flooring 

 stripe cue card: higher 
reward reference 
location (water) 

 white cue card: 
aversive reference 
location (0.00005M 
Quinine solution) 

 
Positive Conditions 
 black walls, rough 

flooring 

 Stripe cue card: higher 
reward reference 
location 
(sucrose/saccharin 
solution) 

 white cue card: lower 
reward value reference 
location (water)  

Time: 5 days 
Tested 
Individually 
 
4 randomized 
trials (2 reward 
and 2 aversive 
conditions) 
 
Recorded: 
 Latency to 

make a choice 
 Pathlengths 

travelled to 
the choice 
location 

 Choices made 

 
Move on to 
testing stage if 
successful on 3 
out of 4 trials 
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4.2.2 Animals  

Twelve adult male Long-Evans rats (Charles River, Quebec, Canada), weighing 

between 300 - 450g at the start of the experiment were used. The rats were pair housed in 

standard polypropylene cages (45cm × 22cm × 20cm), in a colony room with ad libitum 

access to both food (ProLab RMH3000 rat chow) and tap water when applicable. The 

colony room was maintained at 21± 2°C, on a 12:12 hour light/dark cycle with the lights 

on from 07:00 to 19:00 h. All experiments were carried out during the light phase. For the 

entire duration of the experiment, each rat was water deprived for 15 hours starting at the 

beginning of their dark cycle (starting at 19:00h), and then given one-and-a-half-minute 

access to tap water at the end of the water deprivation period. This method was used so that 

rats would be motivated to explore and drink from the liquid reinforcements that were used 

to indicate differences between positive and negative conditions. The rats were observed 

during the one-and-a-half-minute water access to ensure that each rat drank from the water 

bottle. Each rat was given identification markings on their tails using a permanent marker 

(Black Sharpie pen). All procedures were performed according to the Canadian Council on 

Animal Care guidelines and were approved by the Western University Animal Care 

Committee.  

 

4.2.3 Drugs 

Corticosterone (Cort; Sigma, Toronto, ON) was used to mimic the effect of acute 

stress challenge on days 4 and 5. CORT was dissolved in 45% hydroxypropyl-β-

cyclodextrin to a dose of 5mg/mL. The vehicle (VEH) used in the control group was 45% 

hydroxypropyl-β-cyclodextrin. Corticosterone and vehicle were administered via 

intraperitoneal (i.p.) treatment at a volume of 1.0 mL/kg, 15 minutes before the start of the 

test. This Corticosterone administration procedure was used based on previous studies 

where it mimicked physiological levels of acute stress 15 minutes following the injection 

(Kent et al., 2000).  
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4.2.4 Training and the establishment of reference conditions  

 

During the first 5 days of the experiment, each rat was handled daily for 10 minutes 

during the light phase. 24 hours after the final handling day and for the subsequent 5 days, 

all of the rats were placed into the open arena in groups of 6 for training. Group learning 

facilitates the acquisition of cognitive tasks more effectively and efficiently than individual 

training (Krasheninnikova & Schneider, 2014). During this time, visual (black or white 

walls) and tactile (smooth or rough flooring) cues were placed in the arena to indicate the 

positive or negative condition. As well, visual cue cards (black-and-white stripe or white) 

were used to indicate the higher/lower reference location spouts, respectively. These two 

reference locations were located at the outermost 2 locations out of the 5 possible locations; 

they were 15cm from the sides of the goal box, and 60cm apart from each other.  

The rats alternated between a “positive” condition and a “negative” condition for 

30 minutes each, for a total of 2 hours a day in groups. The positive condition was 

represented by environmental cues consisting of black walls and a rough floor. Here, a 

sucrose/saccharin solution (3% sucrose with 0.125% saccharin dissolved in distilled water) 

represented the higher reward-value location (associated with the black-and-white stripe 

visual cue card), whereas tap water represented the lower reward value location (associated 

with the white visual cue card; figure 4.2a). In contrast, the negative condition was 

represented by environmental cues consisting of white walls and a smooth floor. Here, a 

quinine solution (0.00005M) represented an aversive reference location (associated with 

the white visual cue card), whereas tap water represented a comparably higher value 

reference location (associated with a black-and-white visual cue card; Figure 4.2b). The 

concentration of quinine used in this task was a very low concentration, so that rats would 

find it aversive but not so much as to cause stress or major changes in appetitive behaviour. 

The reward and aversive reference locations were counterbalanced between rats to 

eliminate side-bias. The specific reference locations paired with a particular visual and 

tactile condition environment were consistent for each rat throughout the experiment (ie. 

sucrose/saccharin solution were always at the right side of the goal box).  
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On the other hand, the 3 middle locations (figure 4.2) were blocked off by a smooth 

board with a color that was the same as the walls, thus leaving only the 2 reference location 

spouts exposed. All rats in the group had free access to explore both reference locations 

(and the accompanying lickometer spouts) in the arena during this stage (figure 4.2). Since 

all rats were identified by an ID marking on their tails, their exploration and consumption 

of the various reference fluids were verified by video recording. 

In order to determine whether the rats had acquired the task, the rats were tested 

individually 24 hours after the last training day to see if they were able to determine the 

more rewarding location in the positive and negative conditions. In this stage, each rat 

individually received 4 consecutive trials in a randomized order (2 trials in the positive 

condition and 2 trials in the negative condition) each day for five days. Between each trial, 

the apparatus was cleaned thoroughly with 20% alcohol solution. The time taken (in 

seconds) for the rat to exit the start box and choose one of two reference locations was 

recorded. The specific reference location spouts that the rat chose and drank from was 

recorded as well. The rat was considered to have made a correct choice if it chose to drink 

from the reference location spout associated with the higher reward value outcome 

immediately after exiting the start box. For the positive condition, the correct choice was 

the sucrose/saccharin solution, whereas in the negative condition, the correct choice was 

the water. A rat was considered to be successfully trained and could advance to the next 

stage if it consistently made the correct choice at least 3 times out of the 4 trials over the 5 

testing days. 
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Figure 4.2. Diagram of training apparatuses in either positive (a) or negative (b) 

condition. A white intra-maze visual cue was presented in the start box. a) The rough 

floor and black walls (positive) environment was associated with the higher value 

sucrose/saccharin solution (3% sucrose and 0.125% saccharin dissolved in distilled 

water) at the left side of the goal box (stripe cue card) and tap water on the right side 

(white cue card). b) The smooth floor and white walls (negative) environment was 

associated with the lower value water at the left side of the goal box (stripe cue card) and 

0.00005M quinine at the right side (white cue card). The middle 3 locations (light grey 

lines) were blocked off by a card with the same color as the walls. 

 

a) 

b) 
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4.2.5 Cognitive bias testing with ambiguous cues and previously trained 

environmental conditions 

 

24 hours following the last stage, rats moved onto the cognitive bias testing with 

ambiguous cue condition, which lasted for five days. During this stage, the previously 

trained reference locations were now blocked off, leaving only the three middle 

“ambiguous” locations exposed (Figure 4.3 – 4.4). The lickometer drinking tubes contained 

water, and were placed in each of the three middle ambiguous locations. Ambiguous 

position 1 (O1) was located 15cm to the right of the reward location, and indicated a 

positive cognitive bias (optimistic choice) due to its close proximity to the previously 

trained positive reference location. The ambiguous position 3 (P3) was located 15cm to the 

left of the aversive location, and indicated a negative cognitive bias (pessimistic choice) 

due to its close proximity to the previously trained negative reference location. Ambiguous 

location 2 (M) was in the middle, 30cm to either of the two reference locations. The time 

was recorded for when the rat exited the start box and drank from one of the three 

lickometer spouts; the choice the rats made, as well as the number of licks taken were also 

recorded. If the rat selected the O1 location, it was recorded as making an optimistic choice; 

if the P3 location was chosen, it was recorded as a pessimistic choice. This was true for all 

five days of testing with ambiguous cues.  

Day 1 and 2 

On the first day of this testing stage, each rat was allowed access to only the 3 

middle ambiguous locations, paired with a grey cue card at the lickometer spouts, in two 

separate trials each day for three days. The arena presented a positive condition (black 

walls and rough floor), with the two reference locations blocked off using black cardboard 

(Figure 4.3a). The ambiguous lickometer drinking spouts contained water as the outcome. 

This was referred to as the “positive ambiguous condition”. The second day followed the 

same procedure as the day one, except the arena was changed to show the negative 

condition (white walls and smooth floor), and the two reference locations blocked off using 

white cardboard (Figure 4.3b). This was referred to as the “negative ambiguous condition”. 
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Figure 4.3. Diagram of the environmental conditions given on days 1 and 2. A) 

Positive Ambiguous Condition was used on day 1, where positive environmental cues 

were paired with ambiguous choice location cues (indicated by grey visual cue cards). B) 

Negative Ambiguous Condition was used on day 2, where negative environmental cues 

were also paired with the same ambiguous choice location cues. The reference locations 

from the training stage were now blocked off, but are shown in grey to indicate their 

locations for reference. The O1 ambiguous location was located closest to the previously 

trained more rewarding location, whereas the P3 ambiguous location was located closest 

to the previously trained less rewarding/aversive location. The M ambiguous location was 

in the middle between the O1 and P3 ambiguous locations. 
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Day 3 

On day three, the arena showed a completely ambiguous condition, same as that 

used in chapters 1 and 2. Here, an “ambiguous” insert sheet, intermediate in texture to the 

two conditioned floor textures, was used as the flooring (Acrylic Lighting Panels Cracked 

Ice Clear, Plaskolite Inc., Ohio, USA). In addition, grey cardboard was used for the walls 

to give an intermediate wall color (Figure 4.4). Here, the rats were exposed to only the 3 

middle “ambiguous” locations with the two reference locations blocked off by a smooth 

card (same shade of grey as the walls).  

Day 4 and 5 

 In order to examine whether rats displayed shifts in cognitive bias during the 

positive and negative ambiguous conditions (days 1 and 2), they were then subjected to 

previously established ambiguous environmental/choice location cues with corticosterone-

induced acute stress (figure 4.4). Here, on days four and five, the procedure (including the 

ambiguous condition) followed that of day three, except the rats were randomly divided 

into vehicle and CORT groups prior to receiving their respective injections 15 minutes 

before each rat underwent testing.  

 

Figure 4.4. Diagram of experimental apparatuses in the ambiguous task for day 3. 

The drinking tubes of the ambiguous locations (dark grey lines) contained tap water. 

Choosing to drink from the O1 location indicated optimism while drinking from the P3 

location indicated pessimism.  
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4.2.6 Statistical Analysis 

 

All data generated in this experiment were analyzed using SPSS (Version 21, SPSS 

Inc., Chicago, IL, USA). The replicates in this experiment and the treatment groups were 

equally counterbalanced across the conditions. For the training stage, the data for correctly 

and incorrectly choosing the higher reward value outcome for each condition were 

compared separately using the chi-square test, as this was needed to determine when the 

rats were ready to proceed to the next stage.  The behavioural measures during the cognitive 

bias testing with ambiguous cue conditions (Licking pattern and latency to approach choice 

spouts) were analyzed using one-way Analysis of Variance (ANOVA). The specific 

choices that the animals made, the O1 (positive cognitive bias), P3 (negative cognitive 

bias), or the middle location was analyzed using chi-square test of independence to find 

whether the choices made at the three ambiguous locations were significantly different 

between the two treatment groups. A significance level of p < 0.05 was used throughout 

the experiment.  
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4.3 Results 

 

4.3.1 Training and the establishment of Cognitive Bias 

All rats were observed through live video-recording to have explored and drunk 

from each of the reference locations. Then, during the establishment of cognitive bias 

phase, each rat’s performance was evaluated on whether they had successfully acquired the 

task in the positive and the negative training conditions. Correct choice on the positive and 

negative conditions required the rats to choose the more rewarding locations three out of 

four times (i.e. sucrose/saccharin for the positive condition, water for the negative 

condition). Chi-Square analysis did not reveal a significant difference between the choice 

(always choosing the higher reward value outcome) and the condition (positive or negative 

condition) (χ2 (1, n=12) = 1.778, p > 0.05). Where rats always chose the higher reward 

value outcome regardless of whether the condition was positive or negative. As well, Chi-

Square test revealed a significance between the correct choices (drinking from the more 

reward location) and incorrect choices (drinking from the less rewarding/aversive 

location), where rats made the correct choices significantly more (figure 4.5). 

 

Figure 4.5. Comparison of correct and incorrect choices (accumulation of all trials for 

all rats) made during the establishment of cognitive bias trials. There were no 

interaction between accuracy of choice and the condition presented (p > 0.05), but rats 

made significantly more correct choices (more rewarding location). *p<0.05 



77 

 

4.3.2 Cognitive bias testing with Ambiguous Cue  

 

Choices made in the positive and the negative ambiguous conditions 

 Chi-Square analysis revealed no significance between the “optimistic” location 

(O1) and the “pessimistic” location (P3) in the positive ambiguous condition (day 1), the 

negative ambiguous condition (day 2), and with stress treatment (VEH and CORT) in the 

original ambiguous treatment (both ambiguous environmental cues and choice location 

cues) (χ2 (4, n=12) = 3.145, p > 0.05; figure 4.6). Rats did not differ in their positive and 

negative choices of the three ambiguous locations when the environmental cues were the 

same as the previously trained positive and negative conditions. As well, following 

treatments with acute stress challenge, rats also did not preferentially choose positively or 

negatively when facing both the ambiguous environmental and choice location cues.  

However, rats’ performances in the original ambiguous condition (both ambiguous 

environmental and choice location cues) without injection treatments showed a significant 

difference in the number of optimistic choices made (figure 4.6). Rats who did not receive 

any injections preferentially chose to drink from the O1 location (χ2 (1, n=12) = 6.494, p < 

0.05).  
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Figure 4.6. A) Choices made by rats in the positive ambiguous condition (day 1), 

negative ambiguous condition (day 2), and original ambiguous conditions (no 

injections). No significant differences were found between choices made in the positive 

and negative ambiguous conditions (p > 0.05). Only the original ambiguous without any 

treatment injections showed a significant difference in the positive and negative choices, 

with a strong preference for the positive (O1) location (p < 0.05). B) Choices made with 

VEH and CORT treatments for comparison. 
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Latency, licking, and path length measures  

First, the latency for the animals to make a choice only in the original ambiguous 

conditions (grey walls and intermediate flooring), with and without stress treatment during 

days 1-3, was analyzed and compared. ANOVA analysis revealed no significant 

differences between the latencies of rats treated with a vehicle injection and rats that did 

not receive any injection treatments (p > 0.05; figure 4.7). The injection itself did not cause 

significant psychological changes to shift rats’ positive or negative choices in the 

completely ambiguous condition. As well, no significance was found between the latencies 

of vehicle rats versus acute stressed rats in making a choice (p > 0.05; figure 4.7).  

However, there was a significant difference between the latency to make a choice between 

the rats that did not receive any injection treatments versus receiving corticosterone 

treatment (F(4, 57) = 3.764, p < 0.05). Rats that did not receive any treatments took 

significantly longer time to make a choice when compared with rats that were under acute 

stress.  

 

Figure 4.7. The latency for the animals to make a choice in the original ambiguous 

condition (grey walls, intermediate floor, grey visual cue indicating the choice spouts 

in the middle, see figure 25), with and without any acute stress treatment. One-way 

ANOVA revealed a significant difference between the latency to approach the choice 

between the acute-stress treated rats and rats that did not receive any injection treatments. 

There was no significant difference between rats’ latency to approach choice between the 

vehicle control rats and rats that did not receive any injection treatments. 
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These results were then compared to the latencies of rats making a choice in the 

positive and negative ambiguous conditions on days 1 and 2 (refer to figure 4.3). The mean 

latency from the time that the rat exited the start box to the time it made a choice during 

the ambiguous cue test was compared between the positive ambiguous condition (positive 

environmental cues with ambiguous choice location cues), negative ambiguous condition 

(negative environmental cues with ambiguous choice location cues), original ambiguous 

conditions without injections (refer to figure 4.4). It was found that overall, there was a 

significant interaction between conditions and the latency for the rats to make a choice 

(Figure 4.8). Specifically, rats took a significantly shorter amount of time to make a choice 

in the positive ambiguous condition (black walls and rough flooring), than the negative 

ambiguous conditions (white walls and smooth flooring) (F(1,22) = 17.117, p < 0.001). 

When the choices in the positive ambiguous condition was compared to the original 

ambiguous condition without any treatment (ambiguous environmental and choice location 

cues), it was found that rats took significantly less time to make a choice in the positive 

ambiguous condition (F(1,22) = 5.860, p < 0.05). However, when comparing the negative 

ambiguous conditions with the original ambiguous conditions, ANOVA analysis revealed 

no significant differences in the latency to make a choice (F(1,22) = 0.634, p > 0.05).   

ANOVA analysis did not reveal a significant interaction between the condition and 

the latency measures in the original ambiguous condition when rats were subjected to acute 

stress challenge (VEH or CORT) (F(4,57) = 3.764, p > 0.05) (figure 4.8).  
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Figure 4.8. The latency for the animals to make a choice in the positive 

environmental condition with ambiguous choices, the negative environmental 

condition with ambiguous choices, and the original completely ambiguous condition. 

Rats took longer to make a choice in the positive ambiguous condition when compared to 

the negative ambiguous condition (F(1,22) = 17.117, p = 0.000), and the original 

condition with no stress manipulations (F(1,22) = 5.860, p < 0.05). As well, acute 

stressed rats took significantly shorter time to make a choice in the original ambiguous 

condition than rats without any stress manipulations in the same condition (F(4, 57) = 

3.764, p < 0.05). No differences in latency to make a choice was found between all other 

conditions.  
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 When the number of licks that the rats took in each of the testing conditions were 

compared, ANOVA analysis revealed a significant difference among the rats when they 

were in the positive and negative environmental conditions with ambiguous choice cues 

(Refer to figure 4.3; F(4,57) = 3.450, p < 0.05). Rats took significantly more licks in the 

negative ambiguous condition when compared to the positive ambiguous condition (figure 

4.9). As well, we compared the rats’ performance in the original ambiguous conditions (see 

figure 4.4) with the positive/negative environmental conditions with ambiguous choice 

cues (see figure 4.3). There was a significant difference between the number of licks taken 

while in the positive environmental conditions when compared with acute-stressed rats in 

the original ambiguous condition, where stressed rats took significantly more licks at their 

choices (F(4,57) = 3.450, p < 0.05). Similarly, the licking patterns in the positive 

environmental conditions were not significantly different from the rats with no treatment 

injection in the original ambiguous condition (F(4,57) = 3.450, p > 0.05) (Figure 4.9).  

Figure 4.9. The number of licks that the animals took at the ambiguous cue tests. 

Rats took more licks in the negative environmental conditions with ambiguous choice 

cues rather than the positive environmental condition (F(4,57) = 3.450, p < 0.05). Rats 

also drank more when they were in the original ambiguous condition than when they 

were in the positive ambiguous condition. In contrast, the licking frequency of the rats 

was significantly lower in the positive ambiguous condition than the acute stressed rats 

(F(4,57) = 3.450, p < 0.05), but did not differ from the licking frequency of the un-treated 

or vehicle rats (p > 0.05). 
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4.4 Discussion  

 

The aim of the present experiment was to determine whether the two ambiguous 

components, environmental (visual and tactile cues) and choice location cues, interact with 

each other to influence cognitive bias. Contrary to the hypothesis, the two components of 

the ambiguous condition (environmental cues versus choice location cues) did not work 

independently to produce changes in cognitive bias. That is, rats did not preferentially 

choose an ambiguous location depending on the environmental condition (positive 

condition or negative condition, respectively). In fact, rats demonstrated no differences in 

their choices of three ambiguous locations when the environmental cues were that of 

previously trained positive or negative visual/tactile cues. In other words, when the two 

components of the ambiguous condition were separated, there were no differences in 

optimistic vs pessimistic responses to the ambiguous location choices. In addition, the 

licking and latency measures both indicated an increased expectation of a lower reward 

value outcome for the positive and the negative ambiguous conditions. Rats preferentially 

took longer to approach and drank from the choice spouts in the negative ambiguous 

condition in comparison to the positive.  

Specifically, when the positive ambiguous condition was presented (black 

walls/rough flooring with grey choice location cue at the middle 3 locations), the rats did 

not differ in their choices between the O1 location and the P3 location. The same trend was 

observed in the negative ambiguous condition (white walls/smooth flooring with only the 

3 middle ambiguous choices to drink from). However, when the condition completely 

changed to one that was ambiguous (grey walls/intermediate grain flooring with 3 middle 

ambiguous choices) on day 3, the rats preferentially chose to drink from the O1 location, 

indicative of positive cognitive bias. With the same ambiguous conditions but under a 

treatment of either the VEH injection or the CORT acute stress challenge, their responses 

changed again. While the acute stressed rats did show a decrease in the number of 

optimistic choices made, the pessimistic choices did not differ from that of the VEH rats. 

The only similarity was that the control rats did not preferentially choose the middle 

location, which was also the same trend seen while in the positive ambiguous condition 
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and the original ambiguous condition without treatment injection. Both the negative 

ambiguous condition and the acute stressed rats demonstrated no significant preference 

between any of the three ambiguous locations (i.e. no negative cognitive bias was 

observed). These results differed from that of experiment 2, where it was found that CORT 

treatment induced a preferential choice at the pessimistic location (P3), indicative of a 

negative cognitive bias.  

Such differences are unlikely to be due to chance or individual differences, as we 

do see a very clear positive cognitive bias as soon as the condition changed from partially 

ambiguous to completely ambiguous. This potentially indicates that both components of 

the ambiguous condition, environmental and choice location cues, must be “ambiguous” 

at the same time in order to accurately test cognitive bias. The lack of difference in positive 

and negative choices in the positive and negative ambiguous conditions could have been 

due to the novelty of the condition itself. The environmental visual and tactile cues were 

very salient to rats, and rats may therefore have been habituated to the environment enough 

to see it as a new “novel” condition to explore.  Another interesting result to note is 

the subtle shift of cognitive bias from no treatment injection to the VEH treatment. There 

was a slight shift towards less positive choices and more negative choices. Although the 

differences were not statistically significant, this shift is still worth noting, as it may 

indicate the potential adverse effect of the act of injection on stress levels in the rat.  

When the choices of the acute stressed rats were compared to that of the vehicle 

rats on days 4 and 5, the results showed a difference from that of chapter 2. In the previous 

study, acute corticosterone challenge elicited a negative response to the ambiguous stimuli 

in comparison to the control rats. In the present study, this interaction was not seen. 

Following exposures to a variety of ambiguous stimuli combinations, the administration of 

acute stress did not alter rat’s responses towards a negative cognitive bias. A possible 

explanation may be that the sequence of the ambiguous stimuli presented somehow 

changed the value and the ambiguity of the novel environmental to the rats. The rats were 

repeatedly exposed to the various ambiguous components before the onset of acute stress, 

first only the choice locations in days 1 and 2, then both environmental and choice location 

cues on day 3. This was different from the previous study, where the onset of acute stress 
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challenge was accompanied by the first exposures to the ambiguous condition. Here, as the 

primary objective was to elucidate any changes in rats’ responses to only one component 

of the ambiguous condition, it was appropriate to expose them to the positive and negative 

ambiguous conditions first. As such, it is unclear whether rats’ responses would change to 

reflect the pattern observed in the preceding study if the order of the ambiguous conditions 

presentation was altered.  

 The current experiment confirmed the importance of ambiguous cues by showing 

the necessity of combining both ambiguous environmental cues and choice location cues 

in the evaluation of cognitive bias. Previous studies that have established various rodent 

models of cognitive bias used both components to create the ambiguous condition. For 

example, Brydges et al (2011) used different coarseness of sandpaper and olfactory cues 

(cinnamon versus coriander) in conjunction with chocolate or cheerio reinforcements to 

create the different testing/training conditions. Thus, it was of interest to examine how 

different components of the ambiguous stimuli affect cognitive bias responses. In all, the 

current task demonstrated great potentials in evaluating and elucidating the mechanisms 

underlying cognitive bias in rats.  
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5 GENERAL DISCUSSIONS 

  

The aim of this thesis was to first develop a reliable model of cognitive bias. A task 

using a non-operant approach was successfully developed to model cognitive bias in rats, 

using visual and tactile cues in conjunction with higher/lower reward enforcements. This 

was developed so that changes in cognitive bias, such as that from an acute stress challenge, 

can be examined using this task. In experiment 1, an appetitive task was created using 

highly salient visual/tactile cues to evaluate cognitive bias. It was found that under normal, 

unaltered conditions, healthy male rats displayed a positive cognitive bias (“optimism”) in 

response to ambiguous conditions. Then, in experiment 2, the same task was used to 

evaluate the effect of acute stress challenge on cognitive bias. It was found that the baseline 

optimism was shifted towards pessimism (negative cognitive bias) in response to the 

ambiguous condition when a (physiologically relevant level of) corticosterone was 

administered. Lastly, in experiment 3, the ambiguous condition was dissected to further 

examine the mechanisms underlying cognitive bias. When the two components of the 

ambiguous condition (environmental visual/tactile cues and the choice location visual 

cues) were separated, there were no differences in optimistic and pessimistic responses. 

This indicated that both components of the ambiguous condition should be present in order 

to accurately evaluate cognitive bias.  

The current model presents an improved task for the evaluation of cognitive bias in 

non-human animals. It overcomes a number of barriers presented by previously established 

tasks. For example, by using a go/go tasks, which requires the rats to respond actively to 

both the positive and negative stimuli, reduces possible confounds in the performance and 

interpretation of results (Enkel et al., 2010). In addition, adopting the use of an open arena 

enhances the acquisition and interpretation of the task by giving the different locations 

clearly distinct values (Brydges et al., 2011; Burman et al., 2009). As a result, the present 

model was successful in the evaluation of cognitive bias under acute stress, specifically in 

demonstrating a pessimistic shift in cognitive bias from a baseline optimism to reflect a 

negative affective state. Specifically, a key difference from previously establish tasks was 
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the use of acute stress challenge instead of chronic stress exposure to examine the shift to 

pessimism. The maladaptive effect of chronic stress manipulations on affective states have 

been repeatedly shown in non-human animals to model human neuropsychiatric affective 

disorders (e.g. Erickson, Drevets, & Schulkin, 2003). To date, few studies have examined 

cognitive bias and related acute affective disturbances with visual and tactile cues in animal 

models. Examining the changes in an animal’s interpretation of ambiguous stimuli during 

a cognitive bias task can provide valuable information about their affective state, leading 

to the development and examination of cognitive bias in a variety of species and tasks. But 

despite the importance of cognitive bias in the understanding of affective changes, non-

human studies of cognitive biases have been largely focused on the effects of chronic stress 

manipulations. Studying the shifts in cognitive bias as result chronic stress manipulations 

have high implications in the animal welfare field, as it allows the objective evaluation of 

“affect” in captive animals. As such, the acute or single exposure of stress on behavior by 

corticosterone administration have not been studied extensively. It has been shown that 

acute corticosterone treatments in rats resulted in behaviours that were indicative of 

anxiety, with behavioural and physiological effects that can last well after the acute stress 

exposure (Mitra & Sapolsky, 2008; Skórzewska et al., 2007). This, along with the lack of 

sufficient research on the shifts in cognitive bias as result of acute stress manipulations, 

makes it important to examine in order to further our understanding of this complex group 

of affective disorders. Thus, the current model improves upon and extends established 

studies on cognitive bias by providing a method of evaluating negative cognitive bias 

following acute stress challenge.  

However, despite the advantages associated with the current study, a few important 

limitations still exist.  First, whether the animals’ responses to the ambiguous contextual 

cues would change due to the repeated corticosterone injections over three days was not 

accounted for. Although the novelty of the ambiguous environment was very clear on the 

first testing day, it was uncertain whether this ambiguity would diminish over the course 

of three testing days. As well, the repeated injections of corticosterone during the testing 

stage could have also impacted the animals’ responses to the ambiguous contextual cues 

either physiologically or emotionally. Adding an extinction stage to the end of testing may 

help in a more accurate understanding of how an acute stress challenge can impact 
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cognitive bias. Another important limitation to examine is the possibility of a changed 

motivation state as result of the manipulations, for example as result of water deprivation. 

Existing research have shown that 15 hours of water deprivation do not produce sufficient 

stress on the animals to interfere with their performance, and that the one and a half minute 

free-access to water should be sufficient to decrease any remaining stress from water 

deprivation. To further reduce stress and facilitate learning, the rats were pair housed and 

group trained. However, it is still unclear whether sustained daily water deprivation over 

approximately three weeks may have an aversive effect on animals’ responses.  

It is clear that the investigation of cognitive bias in animal models would be 

conceptually and translationally beneficial to the study of affective disorders. Specifically, 

negative cognitive biases have been well established as a key characteristic in depression 

and other psychiatric affective disorders (Clark, Chamberlain, & Sahakian, 2009; Richter 

et al., 2012). In fact, negative cognitive bias has been shown to play a key role in the 

etiology, maintenance, and recurrence of depression and anxiety disorders (Beck et al., 

1979; Kloke et al., 2014). For example, when anxious individuals enter a social setting, 

they tend to perceive the environment in a more negative manner, with a correspondingly 

negative affective state. Such negative affect is often associated with decreased social 

attention, heightened anxiety levels, poor performance in cognitive and affective tasks, and 

negative ruminative thinking (Rapee & Heimberg, 1997; Vassilopoulos & Moberly, 2013). 

Therefore, due to this prominent role of negative cognitive bias in neuropsychiatric 

disorders, it can be used as a predictor of negative emotional states for the evaluation of 

these disorders (Brydges et al., 2012). The availability of appropriate animal models for 

examining emotional disorder interventions has great value in furthering our understanding 

of human affective disorders. This is not only important on a pathophysiological level, but 

also for treatments and preventions. However, due to the lack of a comprehensive 

translational non-human assay for these disorders, the development of innovative 

therapeutic treatments has been severely limited (Berton, Hahn, & Thase, 2012). This is 

especially the case for the aforementioned depression and other affective disorders, of 

which identifying novel drug targets and the evaluation of new treatments are limited by 

the current availability of animal models (Stuart, Butler, Munafò, Nutt, & Robinson, 2013).  
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Furthermore, specific neurological systems that have been implicated in negative 

cognitive bias (i.e. endocannabinoid system and the dopaminergic system) can be explored 

using this paradigm to further our understanding of affective processing (Boyer, Lecrubier, 

Peuch, Dewailly, & Aubin, 1995; Che et al., 2013; Kregiel, Malek, Popik, Starowicz, & 

Rygula, 2016; Schoemaker et al., 1997). Changes in endogenous neuromodulator 

mechanisms were found to play a role in depression pathology (de Kloet, Joëls, & 

Holsboer, 2005). For example, Kukolja et al. (2008) found that with noradrenergic-

glucocorticoid induced stress, the amygdala activation resulted in the shifting of cognitive 

processing toward negative stimuli (Kukolja, Klingmüller, Maier, Fink, & Hurlemann, 

2011). Similar results were found in an ensuing study that used pharmacologically induced 

acute stress. Reboxetine (noradrenaline reuptake inhibitor) and Corticosterone 

manipulations shifted rats’ responses away from optimism in a tone interpretation task that 

also used reward and aversive enforcements (Enkel et al., 2010). Using c-Fos 

immunoreactivity quantification, it was found that such behavioral variations in cognitive 

bias were accompanied by changes in the amygdala and dentate gyrus (Enkel et al., 2010). 

Therefore, these pharmacological challenges that mimic acute stress-like conditions can be 

applied to the present paradigm to further investigate the underlying neuronal mechanisms 

of cognitive bias. Future investigations can examine changes in behavioral outputs 

accompanying acute or chronic pharmacologically elicited stress for a more accurate and 

specific investigation of cognitive bias in targeted affective disorders. As well, the effect 

of anti-depressants or other affective state treatments can be applied to the present model 

to examine their efficacy and effectiveness.  

Recent investigations have also been examining positive cognitive bias, specifically 

looking at positive expectation bias, in an attempt to further understand the mechanisms 

underlying affective cognition. Utilizing the link between neurohormonal regulatory 

mechanisms and human/non-human social cognition, it has been found that oxytocin 

administration induced positive judgement bias in dogs (Kis et al., 2015; Saphire-

Bernstein, Way, Kim, Sherman, & Taylor, 2011; Yamasue et al., 2012). It would be 

beneficial to investigate whether similar effect can be seen in rodent models. These results 

suggest that the mechanisms underlying biased affective cognition may not be limited to 

one neurological process, such as neuromodulators. Instead, it may be a close interplay 
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between different modalities that collectively portrays affective cognition as a more 

complex process than what we know thus far. Therefore, it would be advantageous for the 

present paradigm to explore the effect of combining manipulations that elicit either positive 

or negative cognitive bias, and then measuring whether such interplay would diminish or 

increase symptoms of biased affective cognition.  

Humans widely vary in how they interpret ambiguous events, as well as the extent 

to which they attend to negative or positive information (Hertel & Mathews, 2011). This 

phenomenon of positive and negative cognitive bias is the result of the interplay between 

our emotional states and cognition. Specifically, “pessimistic” behaviours, or a negative 

cognitive bias, has been found to be related to a negative emotional state. This is a core 

characteristic of depression and related affective psychiatric disorders. Although cognitive 

bias is well established in humans, research in translational animal model of cognitive bias 

is still in its infancy, limiting the development and innovation of therapeutic treatments. 

Much of the existing cognitive bias animal models studies animal welfare by using chronic 

stress (e.g. unstable housing) to induce changes in animals’ affective states. Therefore, the 

effect of acute stress have largely been left unexplored, but remains an important area to 

study to further understand the etiology of mood disorders. The present study overcomes 

this barrier by expanding the findings from previous cognitive bias animal models that 

were established to assess animal affective states (Brydges et al., 2012; Burman et al., 

2009; Harding et al., 2004). These findings will be key in furthering our current 

understanding of the mechanisms underlying cognitive bias. Specifically, it allows for the 

examination of how a single or repeated acute stressors can impact psychological wellbeing 

in nonhumans. On the other hand, it also allows for new pharmacological advancements, 

as current methods to investigate depression-related behaviours (ex. Forced swim test) are 

limited to assessing only existing drugs (Berton et al., 2012). Overall, the study of affective 

cognition in animal models are still in its infancy. Therefore, the investigation of a novel 

behavioural approach to cognitive bias, specifically examining the effect of acute stress, 

would be beneficial both in the assessment of underlying mechanisms and the development 

of potential innovative therapeutic treatments.  
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