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Abstract 

Green roofs are gaining popularity worldwide as a low impact development tool to mitigate 

increasing stormwater runoff within dense urban areas. Evapotranspiration (ET) is the key 

hydrologic process governing the capacity of a green roof to retain rainfall as it regenerates 

available water storage space in the green roof substrate (soil) between rainfall events. To 

date, there are limited data on how the interaction between different climatological 

conditions and design parameters (e.g., vegetation type, substrate depth) affect ET rates. 

This currently limits the ability to optimize green roof design for stormwater management. 

In this field study, the impact of climatological conditions, vegetation type, and substrate 

depth on ET rates were evaluated from experimental, modular extensive green roofs 

installed in three climate regions in Canada: Calgary AB (Prairies), London ON (Great 

Lakes/ St. Lawrence), and Halifax NS (Atlantic/ Maritime). Daily ET rates and cumulative 

ET over the field season were calculated from daily (n = 40) and continuous (n = 2 to n = 

4) module weight data recorded from May to September in 2013 and 2014. The modular 

set-up of the green roof at all sites consisted of two module depth treatments (10 cm and 

15 cm substrate depth), substrate only treatments (no vegetation), and four vegetation 

treatments (monoculture treatments of Sedum spurium, Sporobolus heterolepis, and 

Aquilegia canadensis, and a mixed species treatment consisting of the three 

aforementioned species). The plant coverage and root mass distribution were characterized 

for all vegetation treatments. The percentage of cumulative rainfall returned to the 

atmosphere by ET over the 2013 and 2014 field seasons was greater for Calgary (73%) and 

London (67%) compared with Halifax (33%). ET rates in Calgary and London were found 

to be limited by the available moisture in the substrate, whereas the results suggested that 

the other climatological variables or atmospheric forcing rather than available moisture 

may have been the limiting factor controlling ET rates in Halifax. Data revealed that green 

roofs with only Sedum spurium or a mixture of Sedum spurium, Sporobolus heterolepis, 

and Aquielgia canadensis had higher ET rates, and thus will be able to restore the retention 

capacity of the green roof substrate faster than a green roof with no vegetation, Sporobolus 

heterolepis or Aquilegia canadensis. The optimum substrate depth differed among 

vegetation types and study site. To optimize the hydrologic performance of green roofs 



(i.e., retention capacity), this study found that plant characteristics, such as plant coverage 

and root mass distribution, should be considered when selecting vegetation type and 

substrate depth. This study provided valuable insight on the sensitivity of ET rates to 

climatological conditions and green roof design parameters (i.e., vegetation type and 

substrate depth), with the study findings needed to make informed decisions on the design 

and optimization of the hydrologic benefits for green roofs installed in different 

climatological conditions. 

Keywords 

Evapotranspiration, vegetation type, substrate depth, climatological conditions, water 

saturation, extensive green roof, drying period, retention capacity, hydrologic 

performance 
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Chapter 1 

1 Introduction 

1.1 Background 

Stormwater management solutions are needed to increase resiliency within urban areas and 

to decrease the adverse effects of urbanization on receiving waters within the watershed.  

Large impervious areas from urban development results in the loss of vegetated surfaces 

which leads to an increase in direct stormwater runoff (e.g., Paul & Meyer 2001). 

Stormwater management solutions are implemented by municipalities to remediate the 

adverse effects of altering the natural hydrologic cycle including flooding, erosion, and 

deterioration of downstream water quality (Ministry of the Environment 2003). Within the 

urban area, conventional roofs cover 40-50% of the impervious surfaces (Dunnett and 

Kingsbury 2004). Green roofs, also known as vegetated roofs, provide a non-intrusive 

solution to mitigate against excessive stormwater runoff (Stovin 2010), and as a result are 

becoming an increasingly popular low impact development (LID) tool.  In the late 1960s 

and early 1970s, Germany modernized the sod roof design by engineering the green roof 

substrate (soil) to be lightweight and highly porous decreasing the design structural load 

requirements of green roofs and improving their ability to retain rainfall (Osmundson 

1999). As a result, green roofs can be designed to have a relatively shallow substrate depth 

without losing their ability to retain rainfall, and therefore mitigate stormwater runoff. 

Green roofs with shallow substrate depth (< 150 mm) are commonly referred to as 

extensive green roofs (Oberndorfer et al. 2007). The modernized extensive green roof 

design allows for wider implementation when retrofitting existing infrastructures due to 

the lower structural load requirement (Stovin 2010).  

Green roofs are able to reduce the volume and attenuate roof stormwater runoff by re-

introducing vegetation onto urban rooftops (e.g., Mentens et al. 2006; Berghage et al. 2007;  

Fassman-Beck et al. 2013). Green roofs are also a rapidly growing sustainable solution for 

decreasing building energy consumption (e.g., Ouldboukhitine et al. 2011) and mitigating 

the urban heat island effect (e.g., Takebayashi & Moriyama 2007). Within the past decade, 
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an increasing amount of research has been conducted worldwide to quantify thermal green 

roof performance under varying climatological conditions and design configuration to 

assess their suitability for building energy conservation from a thermal performance 

perspective (e.g., Jaffal, Ouldboukhitine, and Belarbi 2012), and to assess their suitability 

as a low impact development tool from a hydrologic performance perspective (see Li & 

Babcock 2014 for a review). The hydrologic and thermal benefits of green roofs can be 

attributed to their enhancement of evapotranspiration (ET) in urban areas. ET from green 

roofs reduces stormwater runoff by returning captured rainfall to the atmosphere as water 

vapour. Through this hydrologic process, the capacity of the green roof substrate to retain 

rainfall is regenerated (e.g., Berretta et al. 2014). Concurrently, the transfer of latent heat 

from the evaporation of water from the substrate and the vegetated surface provides a 

cooling effect which reduces the ambient air temperature of the roof (Oke 1987; 

Takebayashi and Moriyama 2007).  Quantifying ET from green roofs is therefore critical 

to green roof design (e.g., vegetation type and substrate depth), and the optimization of 

green roof hydrologic and thermal performance. While many studies have now 

demonstrated the effectiveness of green roofs in reducing stormwater runoff (e.g., Roehr 

& Kong 2010; Mentens et al. 2006; Nagase & Dunnett 2012; Fassman-Beck et al. 2013), 

little field research has been done on directly quantifying ET and evaluating the effects of 

climatological conditions, substrate depth, and vegetation type on ET from green roofs 

(e.g., Wadzuk et al. 2013; Berretta et al. 2014; Marasco et al. 2014; Poe et al. 2015). More 

specifically, there is a lack of actual ET data from green roofs built under the Canadian 

climate, limiting the development of optimal green roof design under these types of 

climatological conditions.  

1.2 Research Objectives 

The aim of this research is to evaluate the sensitivity of ET rates to green roof design 

parameters when exposed to distinct climatological conditions at three sites across Canada 

(Calgary AB, London ON, and Halifax NS). More specifically, the two design parameters 

which will be assessed are the vegetation type and substrate depth. To date, no field 

research has examined these parameters using the same green roof design installed in three 

different climatological conditions. It should be noted that this research assesses ET from 
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extensive green roofs using a water balance approach; therefore, the objectives of this 

research are focused on stormwater management. The understanding developed from this 

research is critical to making informed decisions on the selection of vegetation and 

substrate depth during the design of green roofs in different climatological conditions. This 

improvement in the design process will allow for the optimization of ET, subsequently 

enhancing the rainfall retention performance of the green roof. The research questions that 

this study aims to answer are outlined below.  

1) Is there a difference in the ET rates measured at the three study sites? If there is a 

difference, what are the climatological factors that cause the difference in ET rates? 

2)  Is the cumulative moisture loss and daily average ET rate different:   

i. among the three single species vegetation treatments? 

ii. between the mixed species and single species treatments? 

iii. between the bare substrate (no vegetation) treatment and the vegetation 

treatments? 

3) Is there a difference in the cumulative moisture loss and daily average ET rate when 

the substrate depth is varied?  

1.3 Thesis Outline 

This thesis is written in “Integrate Article Format”. A brief description of each chapter is 

presented below. 

Chapter 1 introduces the research topic and corresponding knowledge gaps related to 

assessing climatological and design parameters which influence ET from green roofs. 

Chapter 2 reviews the findings reported from past research related to the influence of 

climatological conditions, substrate depth and type, and vegetation type on ET from green 

roofs. The knowledge gaps within this field of research are highlighted at the end of the 

chapter.  

Chapter 3 presents the methodology, field data analysis, and findings pertaining to the 

research objectives for this study.  

Chapter 4 summarizes the findings for the research objectives and outlines 

recommendations for future work.  
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Chapter 2  

2 Literature Review 

2.1 Introduction to Green Roofs 

2.1.1 Benefits of Green Roofs  

Green roofs or vegetated roofs are constructed ecosystems built within the urban 

environment to provide ecosystem services including: (1) the mitigation of the stormwater 

runoff quantity (e.g., Fassman-Beck et al. 2013; Schroll et al. 2011; Roehr & Kong 2010; 

Mentens et al. 2006; VanWoert et al. 2005) and quality (e.g., Morgan et al. 2013; 

Berndtsson et al. 2006; Beecham & Razzaghmanesh 2015); (2) reduction of building 

energy usage (e.g., Ouldboukhitine et al. 2011; Jaffal et al. 2011; Takakura et al. 2000); (3) 

mitigation of the urban heat island effect (e.g., Takebayashi & Moriyama 2007; 

Santamouris 2014); (4) reduction of air pollution and carbon sequestration (Getter et al. 

2009; Rowe 2011; Jim & Chen 2008); (5) extension of the life of the roof membrane (Getter 

& Rowe 2006); and (6) provision of an aesthetic environment (Getter & Rowe 2006). The 

key motivation for the installation of green roofs is often for the thermal and hydrologic 

benefits they provide (Banting et al. 2005; Toronto and Region Conservation 2007). 

Vegetation is the key design component that makes it possible for green roofs to provide 

these two benefits (Lundholm & Williams 2015). By re-introducing vegetation on the 

impermeable traditional roof surface, the evapotranspirative component of the hydrologic 

cycle is recovered, effectively decreasing the roof surface temperature (e.g., Wolf & 

Lundholm 2008) and roof stormwater runoff (e.g., Schroll et al. 2011). Evapotranspiration 

(ET) is the key process that governs both the thermal and hydrologic benefits of the green 

roof. From a stormwater management perspective, green roofs have been shown to 

significantly decrease roof stormwater runoff volumes and reduce peak flow rates 

(Fassman-Beck et al. 2013; Voyde et al. 2010). Green roofs are able to hold a finite amount 

of rainfall within their substrate (soil) and vegetation layer, with the water storage volume 

available for retaining stormwater dependent on the amount of water returned to the 

atmosphere by ET between rain events. Green roofs also provide considerable insulation 

with the presence of a green roof found to decrease the building’s energy consumption 
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through evaporative cooling providing energy savings for the building in warm and cooler 

climates (Castleton et al. 2010; Lundholm et al. 2010). At a larger scale, green roofs are 

thought to mitigate the urban heat island effect (e.g., Takebayashi & Moriyama 2007; 

Santamouris 2014), which is the increase in air temperature within urban areas relative to 

the adjacent rural areas. 

2.1.2 Green roof history 

Green roofs are not a new engineering concept. In fact, green roofs have slowly evolved 

throughout the years from the addition of plants and trees for aesthetic value in ancient 

Mesopotamia, to roofs covered with sod for insulation during the Middle Age and Viking 

eras, and to what is seen today as the modernized green roof (Osmundson 1999). In the late 

1960s and the early 1970s, Germany modernized the ancient vegetated roof design by 

engineering the green roof substrate to be lightweight and highly porous (Osmundson 

1999). Reinhard Bornkamm, a researcher at Berlin’s Free University is known 

internationally as the father of modern green roofs. He played an important role in building 

one of the earliest examples of a modern green roof in Stuttgart, Germany. In 1975, a green 

roof organization known as The German Landscape Research, Development & 

Construction Society, also known as Forschungsgesellschaft Landschaftsentwicklung 

Landschaftsbau e.V. (FLL), was founded by professional organizations (FLL 2002). FLL 

developed an influential green roof manual and guideline for green roof design and 

installation. To this day, the FLL manual and guideline continues to be cited as the basis 

for green roof design policy and standards for various municipalities across Canada and 

United States, and in other countries worldwide (Lawlor et al. 2006).  

Today, municipalities worldwide are implementing low impact development (LID) tools 

to mitigate the adverse effects of urbanization on water resources (e.g., City of Toronto 

2013; Lawlor et al. 2006). The implementation of LID tools serve to bring the present urban 

hydrologic cycle closer to the pre-development hydrologic cycle by increasing infiltration 

and ET, thereby decreasing stormwater runoff volume and peak stormwater flow rates 

(Ministry of the Environment 2003). With roof area accounting for close to 50% of the 

impervious surface area within developed areas (Dunnett & Kingsbury 2004), there is a 

potential for roofs to be a host for LID tools, such as green roofs (Mentens et al. 2006). 
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The motivation for the recent re-emergence in green roof research is to develop process 

level understanding of the impact of green roofs on the urban hydrologic cycle in order to 

optimize the green roof design process. 

2.1.3 Green roof design 

Within a city and among different geographic regions, green roofs can have different 

design configurations as the design considerations often differ based on environmental 

conditions, site conditions, and stakeholder preferences (Doshi et al. n.d.; Mentens et al. 

2006; Getter & Rowe 2006; FLL 2002). Within the same city, the environmental conditions 

at roof sites may vary due to different local microclimatic conditions (e.g., Doshi et al. n.d.; 

Peck et al. 1999). Among different geographic regions, the environmental conditions can 

differ in annual precipitation and other climatological conditions (i.e. average temperature 

and relative humidity) (Mentens et al. 2006). Site conditions which may vary include the 

building’s roof load capacity, roof shading due to adjacent buildings, roof slope, and wind 

tunneling due to adjacent buildings (Getter & Rowe 2006). Finally, different stakeholders 

have different reasons for installing the green roofs (e.g., preferred ecologic and economic 

benefits from a green roof); therefore, the stakeholder’s preferences can influence green 

roof design configuration (e.g., Doshi et al. n.d.; Peck et al. 1999).  

Green roofs fall under three main categories: extensive, semi-intensive, and intensive  

(Oberndorfer et al. 2007). The main difference among these green roof types is the substrate 

depth (Oberndorfer et al. 2007), which subsequently impacts the type of vegetation which 

can be planted on the green roof (Heim & Lundholm 2014b; Thuring et al. 2010). The 

different green roof design configurations ultimately result in differences in the structural 

load on a building (Oberndorfer et al. 2007). Intensive green roofs typically have greater 

than 150 mm of substrate depth, and host vegetables, shrubs, and trees since these 

vegetation types require a deeper root zone (Oberndorfer et al. 2007). With a large substrate 

depth and vegetation types which often require external irrigation, intensive green roofs 

have a larger structural load requirement (Oberndorfer et al. 2007). In contrast, extensive 

green roofs have a lower load requirement since these roofs have a shallower substrate 

depth (typically ranging from 50 to 150 mm) and host vegetation types which require 

negligible artificial irrigation (Getter & Rowe 2006). Extensive green roofs are the popular 
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choice when retrofitting an existing building with a green roof due to their low structural 

load and low maintenance requirements (Getter & Rowe 2006). This thesis, including the 

following sections in this Chapter, focuses primarily on extensive green roofs.  

The design configuration of extensive green roofs varies widely. The three well known 

types of extensive green roof set-ups include modular systems, pre-cultivated vegetation 

blanket systems, and complete systems (Oberndorfer et al. 2007). The modular system 

involves the use of square or rectangular containers (e.g., made of recycled polypropylene) 

which are filled with green roof substrate (e.g., LiveRoof 2012). The substrate filled 

modules are planted with vegetation plugs ex-situ prior to installation onto a roof surface 

covered with a root protection membrane. The green roof module design allows different 

substrate depths to be used. LiveRoof® is one of the green roof companies which has 

developed a modular type of extensive green roof set up (LiveRoof 2012). The pre-

cultivated system involves the use of pre-grown vegetated mats with varying substrate 

depth (e.g., Xero Flor America n.d.). The vegetated mat is rolled out onto the roof surface 

covered with root protection membrane (Oberndorfer et al. 2007).The complete system 

involves the installation of the green roof components, including the roof membrane, as 

the primary part of the roof (Oberndorfer et al. 2007). Despite the variations in the 

installation method and the design configuration, the main components of an extensive 

green roof are similar and mainly include the: root protection membrane, drainage layer, 

substrate layer, and vegetation layer. Together, these components function to provide the 

ecologic and economic benefits required from green roofs. Prior literature studies have 

examined the function and processes of the different green roof components in order to 

optimize the benefits of green roofs (Lundholm et al. 2015; Poe et al. 2015; Ouldboukhitine 

et al. 2012; Ouldboukhitine et al. 2011; VanWoert et al. 2005; Boivin et al. 2001). 

Researchers have varied different aspects of the green roof component (e.g., depth and type 

of substrate) and measured the associated impact on green roof benefits (e.g., stormwater 

retention) to better understand how to optimize the green roof design (Feitosa & Wilkinson 

2016; Poe et al. 2015; Fassman-Beck et al. 2013; VanWoert et al. 2005).  

The depth and type of substrate and the type of vegetation used on green roofs are major 

components of the design configuration which play a role in the thermal and hydrologic 
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performance of the green roof. These design parameters can be varied to optimize green 

roof performance. The main role of the substrate is to retain rainfall and provide support 

for plant life. The substrate used on green roofs generally adheres to the FLL guidelines 

which outline in detail the suggested granulometric distribution, organic content, frost 

resistivity, structural and bedding stability, water permeability, maximum water capacity 

(i.e. water available for vegetation), air content, pH value, carbonate content, salt content, 

and nutrient content (FLL 2002). The engineered green roof substrate consists mostly of 

inorganics, such as lightweight aggregates (e.g., pumice and expanded clay or slate), and a 

small content of organics (e.g., peat and humus). The substrate type and depth influences 

the type of vegetation which can be grown (Brown & Lundholm 2015; Berretta et al. 2014; 

Poë et al. 2015). One of the challenges for the implementation of green roofs is selecting 

suitable vegetation types which grow well with relatively shallow substrate depth that has 

low organic and nutrient content, and little to no external irrigation (Thuring et al. 2010). 

The main role of vegetation is to provide surface cooling and increase substrate stormwater 

retention by transpiring stored pore water back to the atmosphere, as well as improving the 

aesthetics of the roof environment. Succulents (e.g., various Sedum species) and 

graminoids (e.g., various grass species) are commonly used on green roofs as they are able 

to survive under the harsh microclimatic conditions on the roof. The other design 

parameters of the green roof which have not garnered as much attention within the green 

roof literature are the drainage layer and the root protection membrane. Among the green 

roof companies, the drainage layer can come in different designs. The main purpose of the 

drainage layer is to retain excess rainfall which has percolated through the substrate but 

could not be retained, and then direct this volume of stormwater towards outlets and roof 

drains. The root protection membrane is placed directly above the conventional roof 

membrane. This membrane acts as a root barrier to prevent roots from permeating through 

the building’s roof. The remainder of this Chapter focuses on the impact of substrate depth 

and type, and vegetation type on ET from green roofs.  
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2.2 Evapotranspiration from green roofs 

2.2.1 What is evapotranspiration? 

ET is the process through which solid and liquid water from the Earth’s surface is 

transformed into water vapour and returned back to the atmosphere (Jones 2014b). ET is 

the combination of two physical processes occurring simultaneously: evaporation of water 

from the substrate and leaf surface, and the transpiration of water through the stomatal 

cavities of the plant (Jones 2014b). Evaporation is a diffusive process which is controlled 

by the amount of moisture available in the substrate or on a leaf surface relative to the water 

vapour concentration in the atmosphere (Penman 1948). The vapour pressure difference 

between the substrate or leaf surface and the atmosphere is the driving force for evaporation 

(Dingman 2002). Transpiration is driven by the potential-energy gradients that originate in 

the movement of water vapour into the air through the stomatal openings of a plant in 

response to the vapour pressure difference (Monteith 1965; Meinzer 1993). A vapour 

pressure gradient between the leaf surface and the inner leaf environment, as well as a 

vapour pressure gradient between the inner leaf environment and the root zone is required 

for transpiration to occur (Dingman 2002). Transpiration has a physiological control over 

the size of the stomatal opening, regulating the amount of water loss from the inner leaf 

environment (Meinzer 1993). ET rate is typically expressed in millimeters (mm) per unit 

time. From a stormwater management perspective, ET is the fundamental hydrologic 

process for increasing rainfall retention and decreasing peak flow rates from green roofs, 

as the loss of water to the atmosphere between rainfall events provides available storage 

space in the green roof substrate for water storage during subsequent rainfall events 

(Berretta et al. 2014).  

2.2.2 Climatological factors influencing evapotranspiration 

Solar radiation, air temperature, relative humidity, and wind speed are the main 

climatological factors that influence ET (Dingman 2002). Solar radiation typically 

provides the energy required to enable the phase change of water molecules from liquid 

water (i.e. pore water) to water vapour (Allen et al. 1998; Jones 2014b). The driving force 

of the transfer of water from the vegetated and substrate surface to the atmosphere is a 
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function of the vapour pressure deficit (VPD) (Dingman 2002). The climatological factors 

which govern VPD are air temperature and relative humidity. VPD is a measure of the 

difference between the amount of moisture in the air and the amount of moisture the air 

can hold at a given temperature. As ET proceeds, the surrounding air gradually becomes 

saturated. The replacement of the saturated air with the drier air depends on the wind speed 

(Allen et al. 1998). Therefore, all four climatological factors (i.e. solar radiation, air 

temperature, relative humidity, and wind speed) interact with each other, and these 

interactions govern the overall ET rates from the vegetated surfaces (Allen et al. 1998). 

Past studies have quantified the interacting relationships between these climatological 

factors and developed predictive ET formulas indicating that ET is a function of all these 

aforementioned climatological factors (i.e. combination methods; e.g., Penman-Monteith; 

Penman 1948; Monteith 1965; Allen et al. 1998, ASCE; Walter et al. 2001) or only some 

of the climatological factors (e.g., temperature-based method; e.g., Hargreaves & Samani 

1985). Regardless of which factors are considered in the predictive ET equations, the 

relationships between ET and a climatological factor is the same among all predictive 

equations. Past green roof studies on ET have observed diurnal and seasonal fluctuations 

in ET in response to daily and seasonal changes in climatological conditions, respectively 

(Berretta et al. 2014; Marasco et al. 2014). A general observation made by these studies is 

that ET rates are higher during warmer (summer) conditions and lower during cooler 

(spring) conditions (Berretta et al. 2014; Marasco et al. 2014). For instance, Berretta et al. 

(2014) reported double the moisture loss (ET) during warmer drying periods with an 

average ET of 1.83 mm/ day compared to relatively cooler drying periods with an average 

ET of 0.76 mm/ day. Drying periods are defined as a duration during which there is no 

rainfall and drainage to or from the green roof.  

In addition to being governed by the climatological factors described above, ET rates are 

also influenced by the moisture content in the substrate (Berretta et al. 2014). As the 

moisture content in the substrate decreases during drying periods, the soil moisture that can 

be evapotranspired becomes limited. Under lab conditions where the climatological 

conditions (e.g., temperature and relative humidity) are kept constant, this drying and 

decrease in moisture content results in an exponentially decaying trend in ET (Voyde et al. 

2010). However, under field conditions the exponential decay in ET rate is often not as 
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apparent as it is generally masked by the varying climatological conditions (Berretta et al. 

2014). For predictive ET equations, such as the ASCE or Hargreaves methods, water 

saturated conditions are assumed and ET is estimated based solely on the climatological 

conditions. Despite favourable climatological conditions, the actual ET rate from a green 

roof may not equal the ET predicted from these equations due to available moisture 

limitations.  A recent study conducted by Berretta et al. (2014) concluded that a moisture 

content factor needs to be applied on the predictive ET equations in order to accurately 

capture the decrease in ET rates with the decrease in moisture content. Therefore, the 

synergistic effects of the variation in climatological conditions and the moisture content 

during drying periods influence the ET rate.  

2.3 Green roof design factors influencing evapotranspiration 

2.3.1 Influence of substrate characteristics and depth 

Particle size and void size distributions are substrate characteristics which influence the 

substrate’s porosity, thereby influencing the substrate’s field capacity (Beattie & Berghage 

2004). Field capacity is the point at which soil capillary pressure can no longer permanently 

store water in the soil, and drainage from the soil occurs (Dingman 2002). Consequently, 

these substrate characteristics influence the ability of a green roof to retain rainfall, and by 

extension determines the maximum amount of water which can be evaporated and 

transpired from a green roof (Poë et al. 2015). One of the commonly used engineered green 

roof substrate is brick-based with small particles and a well-graded grain size distribution. 

With these substrate characteristics, the substrate is engineered to have a high porosity 

(e.g., 0.39 to 0.41) and a low permeability (e.g., 2.41 to 14.8 mm/ min) (Poë et al. 2015). 

A well-graded distribution is desirable because it increases the tortuosity of the path 

through which water flows through the substrate prior to becoming roof runoff – this may 

increase the stormwater detention time within the green roof (Poë & Stovin 2011; Poë et 

al. 2015). Berretta et al. (2014) compared the cumulative moisture loss (ET) of three 

vegetated extensive green roof treatments, where two treatments used brick-based substrate 

and one used a volcanic-based (or LECA-based) substrate over the same drying duration 

(~ 10 days). Compared to the brick-based substrate, the LECA-based substrate had larger 

particles and a poorly graded distribution (Berretta et al. 2014). From this study, both brick-
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based substrate treatments were found to have greater cumulative moisture loss over the a 

ten day drying period compared to the LECA-based substrate treatment (Berretta et al. 

2014). This difference in retention performance between the substrate types was attributed 

to the differences in the substrate’s characteristics (Berretta et al. 2014). This study 

highlighted that substrate characteristics can influence both the rainfall retention capacity 

of the substrate and the rate of moisture loss via ET (Berretta et al. 2014).  

From an ecological perspective, optimizing the field capacity of the substrate is important 

for the plants since this storage capacity determines the upper water content limit from 

which water can be made available to plants (Cassel & Nielsen 1986). The total available 

water to the plants is the amount of water released between the field capacity and 

permanent wilting point of the substrate (Cassel & Nielsen 1986). To date, there is a limited 

understanding on the viability and growth of plants in various green roof substrates. A 

previous study found that for particular herbaceous species (Dianthus deltoids and 

Petrorhagia saxifrage, and a succulent species (e.g., Sedum sexangulare)), plant growth 

was significantly higher in the expanded clay substrate treatments compared to the 

expanded shale substrate treatments (Thuring et al. 2010). The higher plant performance 

in the expanded clay treatment was attributed to the higher field capacity of clay aggregates 

(31.7%) compared to the shale aggregates (27.5%) (Thuring et al. 2010). 

The rainfall retention performance of green roofs with different substrate depths has been 

assessed in previous studies (VanWoert et al. 2005; Yilmaz et al. 2016). These studies 

found that rainfall retention improved as substrate depth increased (VanWoert et al. 2005; 

Yilmaz et al. 2016). For example, Yilmaz et al. (2016) recently reported a 10% increase in 

retention for a substrate depth of 12 cm compared with 8 cm. While these prior studies 

have quantified the impact of substrate depth on rainfall retention amounts, no study to 

date has explicitly assessed the impact of varying substrate depths on ET rates. The 

substrate depth is typically kept constant within a single green roof ET study, ranging from 

shallow depths of 6.5 cm (East North America, Maritime climate; MacIvor & Lundholm 

2011; Lundholm et al. 2010; Lundholm et al. 2014) to greater depths of 19 cm (Australia, 

Mediterranean climate; Farrell et al. 2013). It is difficult to compare the ET rates among 
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these past studies due to differences in climatological conditions and green roof 

configuration (e.g., substrate type, substrate depth, plant type, etc.) among the studies.  

From a plant health perspective, previous green roof studies have reported that substrate 

depth can influence the growth, drought stress, and drought tolerance of green roof 

vegetation. These past studies have similar recommendations in that greater substrate depth 

can increase the chances of survival for different plant types, including various Sedum 

species (e.g., Van Mechelen et al. 2015; Thuring et al. 2010; Boivin et al. 2001). For 

example, Van Mechelen et al. (2015) reported that deepest substrate of 10 cm resulted in 

the highest plant cover, abundance values, and species richness. For semi-arid climates, 

other studies have also recommended deeper substrate depth ranging from 6 cm to 20 cm 

(Benvenuti & Bacci 2010; Thuring et al. 2010). In Quebec, Boivin et al. (2001) found that 

substrate depth can influence freezing injury for certain herbaceous perrennials and 

recommended a minimum substrate depth of 10 cm should be used for green roofs installed 

in northern latitudes (e.g. Canada). Additional data from green roofs which have a substrate 

depth greater than 10 cm is required as a substrate depth greater than 10 cm is 

recommended for green roofs in Canada to prevent the green roof plants from experiencing 

freezing injury during the winter months when temperatures reach below 0°C (Boivin et 

al. 2001).  

2.3.2 Influence of vegetation type on green roof performance 

Plant species which have been used on green roofs can be categorized into the life-form 

groups: succulents, graminoids, and forbs (Lundholm & Williams 2015). Each life-form 

group consists of species with similar ecological strategies which are reflected by their 

morphological, anatomical, physiological, and phenology features (Lundholm & Williams 

2015). Plant species from the succulent life-form group have been widely used in green 

roofs in North America since they are known to survive and thrive on green roofs 

(Berghage et al. 2007; Villarreal & Bengtsson 2005; Lu et al. 2014). Although Sedum 

species are widely used on green roofs and are known to be suitable for the harsh roof 

environment, recent research has focused on optimizing the ecosystem services provided 

by green roofs by selecting plants on a plant-trait based approach (Farrell et al. 2013; Farrell 

et al. 2015; Lundholm et al. 2014; Lundholm et al. 2015; Van Mechelen, Van Meerbeek, 
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et al. 2015). A plant-trait based approach selects plants based on their physiological, 

anatomical, and morphological traits (Van Mechelen, Van Meerbeek, et al. 2015; Farrell 

et al. 2013; Farrell et al. 2015; Lundholm et al. 2015). These plants traits include, but are 

not limited to: stomatal conductance, specific leaf area, plant height, leaf area index, plant 

coverage, and high root biomass (Lundholm & Williams 2015). Researchers suggest that 

green roof performance, including the thermal and hydrologic performance, can be 

optimized by understanding how plant traits optimize specific functions of the green roof 

(Ouldboukhitine et al. 2011; Ouldboukhitine et al. 2014; Tabares-Velasco & Srebric 2012; 

Lundholm et al. 2010; Lundholm et al. 2015). Knowledge of these traits allows the 

stakeholder to make informed decisions on selecting plants which can optimize the key 

benefits desired from a green roof. Knowledge of the appropriate plant traits allows the 

stakeholder to choose plants available in specific regions and climates where the green roof 

is being installed that fit the plant-trait criteria required to perform a given green roof 

function (Farrell et al. 2015). Key plant traits that affect ET rates, and thus the hydrologic 

performance of green roofs, are leaf and canopy structure, and root distribution (Lundholm 

& Williams 2015).  

The water vapour and CO2 exchange occurs through the pores on plant leaves which are 

known as stomata. The anatomical, morphological, and physiological features of stomata 

vary among different life-form groups and among plant species within the same life-form 

groups. The stomatal structure and density differ for different plant species. Plants which 

have stomata restricted to the lower epidermis are referred to as hypostomatous, whereas 

plants which have stomata on both sides are called amphistomatous (Jones 2014a). The 

two main types of stomata found in higher plants are the elliptical type and the 

graminaceous type (Jones 2014a). The differences in stomatal patterns and behaviour are 

important to understand because it provides insight on the plant’s water use strategy under 

different physiological and environmental conditions. In the case of green roofs, this is 

important information because it gives us insight into the water use strategies the species 

will use when water is available and when water is limited. To improve the hydrologic 

performance of green roofs, species which effectively use the water when it is available 

and conserve water when it is not available are the ideal types of species to use because 
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they are able to survive drought conditions that can occur on extensive green roof 

conditions, where external irrigation is not typically provided (Farrell et al. 2013).  

The characteristics of the aboveground structure of a plant species, such as the leaf and 

canopy area, are important parameters to quantify as they provide an indication of the total 

area through which gas exchange can occur. For predictive ET equations, such as Penman-

Monteith, the measurement for the total canopy area which actively receives 

photosynthetically active radiation over the measured ground area (commonly referred to 

as the leaf area index) is required to empirically derive the stomatal resistance for a plant 

type under varying climatological conditions (Monteith 1965). Given this relationship 

between canopy area and transpiration, it can be expected that species with a greater canopy 

area will have greater transpiration rates, assuming that the climatological conditions 

remain constant and soil moisture is not limited. In past green roof studies, the canopy area 

can be described as aboveground biomass or plant coverage (Lundholm et al. 2010; 

Berretta et al. 2014). For the remainder of this thesis, the term plant coverage will be used 

to describe canopy area. The presence of low growing mat-like plants, such as Sedum 

species, has been suggested to decrease evaporation rates, which can hinder the 

regeneration of the retention capacity for subsequent rain events (Berretta et al. 2014); 

however, water loss through transpiration was suggested to likely cancel out this effect 

(Lundholm et al. 2010). From a biodiversity perspective, the addition of Sedum species in 

mixed species treatments was found to positively influence the survival of other plant 

species which did not have high plant coverage due to the lower evaporation rates 

maintaining a wetter moisture content throughout the drying period (Wolf & Lundholm 

2008). In addition to spatial plant coverage, temporal stability in plant coverage was found 

to positively influence water capture (Lundholm et al. 2010). Greater plant coverage has 

also been found to improve the thermal functioning of the green roof, especially when the 

plant species has leaves with high reflectivity (Lundholm et al. 2010) and low stomatal 

resistance (Tabares-Velasco & Srebric 2012). Therefore, plant coverage is an important 

parameter for optimizing the hydrologic and thermal functioning of green roofs.  

Plant physiology is the study of the functions and processes occurring within the plant. 

This includes various aspects such as the plant’s metabolism and water transport processes. 
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Plant metabolic process affects how these anatomical features respond to external 

environmental conditions (e.g., climatological conditions). Plant species can be classified 

to have one or two of the three metabolic processes: C3, C4, and crassulacean acid 

metabolism (CAM) (Starry et al. 2014). Plants with a C3 and C4 metabolism open their 

stomata in response to the light during the day and close in the dark. The stomata for plants 

with the CAM pathway do the reverse, and open during the dark when the temperature is 

cooler and close during the day (Jones 2014c). CAM pathway allows plants to reduce the 

amount of moisture loss, and to conserve water use when it is limited (Starry et al. 2014). 

When selecting plant types for green roofs, it is beneficial to choose plants which utilize 

water when it is available and conserve water when it is limited (Berghage et al. 2007; 

Farrell et al. 2012).  

The spatial distribution of the roots, including the root length and mass, influences the 

root’s water uptake which can in turn influence transpiration rates. It has been shown that 

when plants are placed under water stress, they increase their root to shoot biomass to 

increase their water uptake preventing the plant from experiencing water deficiencies (Lu 

et al. 2014). As an example, plants exposed to irrigation deficit during the development 

phase were found to better adapt to drought stress at the maturation stage due the 

development of specific root characteristics (i.e., increase in root to shoot biomass) 

compared to plants which had sufficient water irrigation throughout their development 

phase (Lu et al. 2014). The root characteristics among different species vary, some plants 

have high root biomass with great length (e.g. grass species), whereas other roots are made 

to be fibrous and short (e.g. Sedum species) (Nagase & Dunnett 2012). Within the green 

roof literature, the root distribution of different plant types and how this distribution 

interacts with the substrate depth to influence the ET rate has not been examined. Given 

the importance of water uptake by roots, better understanding of the influence of roots on 

the ET rate from green roofs is required. This knowledge can also help improve the plant 

selection process to better match the substrate configuration by including substrate depth 

in the green roof design process. Within green roof design policy, there is currently no 

mention of ensuring that the root distribution of the plant should match the substrate depth 

chosen for the green roof. 
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To maximize the number of benefits provided by green roofs, past studies have 

recommended the installation of a mixture of species with different and yet complementary 

plant traits (Lundholm 2015; Lundholm et al. 2015; Lundholm et al. 2010; Nagase & 

Dunnett 2012; Heim & Lundholm 2014a). Some of these past studies have examined the 

effect of green roofs designed with a mixture of species and those with only one species 

(monoculture) on stormwater retention from green roofs (Lundholm et al. 2015; Lundholm 

et al. 2010; Nagase & Dunnett 2012; Dunnett et al. 2008; MacIvor & Lundholm 2011). 

Until recently, it was unclear whether a mixed species design would outperform a 

monoculture design, or vice versa, in the amount of stormwater capture due to 

discrepancies in the results reported in past studies (Dunnett er al., 2008a, MacIvor er al., 

2011, Lundholm et al., 2010, Nagase and Dunnett, 2012). Some studies reported no 

additional benefits from having a mixture of species (Dunnett et al. 2008; Nagase & 

Dunnett 2012), whereas other studies found some positive benefits on stormwater retention 

(Lundholm et al. 2010) and substrate cooling (MacIvor & Lundholm 2011). To optimize 

green roof performance and its provision of economically valuable benefits, it is best to 

have a mixture of high performing species with complementing functional traits compared 

to mixing poor performing species with non-complementing traits (Lundholm 2015). For 

example, Lundholm et al. (2010) recommended a mixture of species from the life-form 

groups succulents, grasses, and tall forbs to optimize two green roof benefits, surface 

temperature cooling and stormwater capture. The aboveground and belowground traits 

from each species optimized the water uptake, surface reflectivity, and surface cooling 

(Lundholm et al. 2010). Sedum species provided temporal stability in the aboveground 

biomass (i.e. plant coverage), the grass species maximized the aboveground biomass and 

belowground biomass (i.e. root mass distribution), and one of the tall forbs species 

(Solidago bicolor) was characterized to have large, flat leaves which also contributed to 

the aboveground biomass (Lundholm et al. 2010). The large biomass aboveground 

increased the total area for gas exchange, thereby maximizing water loss through 

evapotranspiration and by extension surface cooling (Lundholm et al. 2010). The mixture 

of the spatial root distribution belowground from the mixed species was not quantified in 

this study, but past researchers suggested that belowground spatial complementarity can 

maximize water uptake (Wolf & Lundholm 2008; Lundholm et al. 2010).  
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2.4 Knowledge gaps  

While the depth and type of the green roof substrate determines the finite capacity of 

rainfall which can be retained, the ET rate between rainfall events determines the amount 

of water storage space replenished.  The ET rate depends on various factors including the 

physical traits of the vegetation type and vegetation’s physiological response to varying 

climatological and moisture conditions. The relationships between key climatological 

factors and ET have long been established by past studies (e.g., Penman 1948; Monteith 

1965; Hargreaves & Samani 1985). Solar radiation, air temperature, relative humidity, and 

wind speed are the main interacting climatological factors which drive the phase change 

and transfer of stored pore water into water vapour from within the green roof substrate 

and into the overlying urban atmosphere. For an extensive green roof setting, ET rates are 

more limited by moisture content due to the shallow substrate depth in comparison to other 

vegetated systems which have greater substrate depths (Stovin et al. 2013; Berretta et al. 

2014).  

Over the past decade, there has been a growing database of ET rates from varying green 

roof configurations under different climatological conditions (Poe et al. 2015; Berretta et 

al. 2014; Marasco et al. 2014; Wadzuk et al. 2013; Voyde et al. 2010; Lundholm et al. 

2010; Berghage et al. 2007). However, it is difficult to compare different green roof studies 

to quantify the impact of green roof vegetation types and substrate (type and depth) on ET 

because studies differ in green roof design parameters and climatological conditions. As a 

result of these differences, ET rates from one study may not be easily be compared with 

ET rates at a different site with the same design configuration and different climatological 

conditions, or vice versa. To date, no study has evaluated the sensitivity of ET rates under 

different climatological conditions from the same green roof design. By maintaining a 

constant green roof design and varying only the climatological factors, a more detailed 

understanding of the effects of various climatological factors and moisture content on 

hydrologic and thermal performance is gained. This knowledge gap needs to be addressed 

to provide insight on how climatological factors impact the hydrologic and thermal 

performance of similar green roofs installed in different climates (e.g., differ in annual 

rainfall, and seasonal average temperature and relative humidity).  
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Furthermore, optimizing green roof design requires detailed understanding of the impacts 

of various parameters on ET. Prior green roof studies, both those which assessed the 

thermal and hydrologic performance of green roofs, focused on using plants which were 

known to survive and thrive under the harsh roof conditions, which were namely succulents 

(e.g., Monterusso et al. 2005; VanWoert et al. 2005; Wolf & Lundholm 2008). However, 

recent green roof plant studies have shown that it is important to consider the benefits that 

other plant species can provide (MacIvor & Lundholm 2011; Monterusso et al. 2005). New 

plant species include those that are native or plant species with known adaptive strategies 

that may be beneficial under a roof environment (e.g., Thuring et al. 2010). The benefits 

that these other plants can provide in terms of the hydrologic and thermal performance of 

green roofs requires further investigation as there are only a limited number of studies 

which have assessed the characteristics of green roof plants and measured ET within the 

same study (Farrell et al. 2013; Lundholm et al. 2010; Lundholm et al. 2015; Tabares-

Velasco & Srebric 2012; Ouldboukhitine et al. 2014). Quantifying plant characteristics can 

help make the plant selection process more quantifiable instead of it being based on the 

plant’s species and its aesthetics. A combined understanding of the plant functional traits 

and how they influence ET rates is currently lacking within the green roof literature. This 

knowledge gap needs to be addressed in order to optimize the hydrologic performance of 

green roofs in terms of how plants can help in regenerating the retention capacity of the 

green roof substrate.  
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Chapter 3 

3 Evapotranspiration from extensive green roofs: 
influence of climatological conditions, vegetation type, 
and substrate depth 

3.1 Introduction 

With urbanization comes the need to mitigate increasing stormwater runoff volumes. Given 

the limited ground space within dense urban areas, retrofitting the available roof space of 

existing buildings with extensive green roofs provides a non-intrusive solution to mitigate 

against the impact of excessive stormwater runoff (Stovin 2010). Literature studies to date 

have primarily focused on the extent to which green roofs can retain precipitation (e.g., 

VanWoert et al. 2005; Roehr & Kong 2010; Villarreal & Bengtsson 2005; Carter & Jackson 

2007; Mentens et al. 2006). The extent to which green roofs retain precipitation, however, 

is governed by evapotranspiration (ET) as it frees up water storage space for precipitation 

retention in green roof substrate (soil). The enhancement of ET from green roofs also 

provides thermal benefits through the decrease in the building’s roof surface temperature, 

as a result of evaporative cooling (e.g., Tabares-Velasco & Srebric 2012; Lundholm et al. 

2010). To date, the impact of different green roof design parameters including vegetation 

type on ET rates has received limited attention.  

ET is the process through which soil moisture held within the plant and green roof substrate 

is transferred as water vapour to the atmosphere (Dingman 2002). ET is the combination 

of two physical processes occurring simultaneously: evaporation of water from the 

substrate and leaf surface, and transpiration of water through the stomatal cavities of the 

plant (Jones 2014). Evaporation is regulated by the ambient weather conditions, such as 

the vapor pressure gradient between the atmosphere and the substrate, as well as the 

available moisture content in the substrate (Penman 1948). Transpiration is regulated by 

the plant’s metabolic process and adaptive strategies, available moisture content, in 

addition to the vapour pressure gradient between the leaf surface and the overlying 

atmosphere (Monteith 1965). During transpiration, water travels from the deep root zone 
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to the shallow root zone due to hydraulic lift where it then travels through the xylem and 

into the plant’s stomatal cavity (Norton & Hart 1998).  

Studies examining ET from green roofs have been completed around the world, including 

Europe (e.g., Sheffield, UK; Stovin et al. 2013; Poe & Stovin 2011; Poe et al. 2015; Berretta 

et al. 2014), USA (e.g., New York City, NY; Marasco et al. 2014; Marasco et al. 2015), 

and Canada (e.g., Halifax, NS; Lundholm et al. 2015). Prior studies were either conducted 

under controlled conditions, such as those conducted in a laboratory or green house setting 

(e.g., Poe et al. 2015), or under field conditions where climatological conditions and 

rainfall are not controlled (e.g., Berretta et al. 2014). Under controlled conditions, the initial 

moisture content, ambient weather conditions, and duration of a drying period (defined as 

a period with no rainfall and no drainage) can easily be manipulated. Under field 

conditions, the moisture content at the start of a drying period (referred to as initial moisture 

content) depends on the amount of rainfall immediately preceding the drying period and 

the antecedent moisture content before the rainfall occurred. The antecedent moisture 

content is defined as the soil moisture within the substrate at the end of a drying period 

(i.e., before a rainfall event begins). Comparison of ET results between prior studies is 

difficult because both the climatological conditions (i.e., temperature, relative humidity, 

precipitation) and green roof design (i.e., substrate type and depth, plant type) differ. No 

green roof study has investigated the impact of climatological conditions on ET using the 

same green roof design under field conditions. The impact of climatological variables on 

ET has only previously been shown by investigating the seasonal effects on ET at the same 

site (Metselaar 2012; Berretta et al. 2014; Marasco et al. 2014; Poë et al. 2015). For 

instance, under conditions when water was not limited, Berretta et al. (2014) found that ET 

rates were higher during the summer months when there was more available energy for 

ET. In contrast, ET rates in the spring, under well-watered conditions were found to be 

lower due to lower available energy for ET and relatively cooler conditions (Berretta et al. 

2014). 

A series of green roof studies at the University of Sheffield assessed the impact of substrate 

and vegetation type on the hydrologic performance of green roofs (Berretta et al. 2014; Poe 

et al. 2015). They reported ET rates ranging from 0.52 mm/ day to 2.7 mm/ day for green 
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roof treatments with 8 cm substrate depth and conducted under similar climatological 

conditions (i.e., spring and summer conditions in Sheffield, UK) (Berretta et al. 2014; Poë 

et al. 2015). ET rates from another study at The Pennsylvania State University, which used 

a substrate depth of 8.9 cm and conducted under a different climatological conditions (i.e., 

greenhouse conditions), varied from 0.84 mm/ day and 2.2 mm/ day (Berghage et al. 2007). 

The University of Sheffield group also found that green roof substrate with a field capacity 

between 0.39 to 0.41 and a permeability between 2.41 to 14.8 mm/ min had higher 

cumulative moisture loss (ET), and therefore greater rainfall retention capacity (Poë et al. 

2015). The depth of substrate is another important green roof design parameter that may 

considerably affect ET rates. While prior studies have shown that substrate depth affects 

rainfall retention (e.g., VanWoert et al. 2005; Feitosa & Wilkinson 2016), to our knowledge 

no studies have explicitly examined the effect of varying substrate depth on ET rates under 

the same climatological conditions. The individual green roof ET studies which were 

conducted under varying climatological conditions and with different vegetation types 

typically keep the substrate depth constant. The substrate depth among these past green 

roof ET studies ranges from 6.5 cm (East North America, Maritime climate; MacIvor & 

Lundholm 2011; Lundholm et al. 2010; Lundholm et al. 2014) to 19 cm (Australia, 

Mediterranean climate; Farrell et al. 2013).  

Plant selection is an important design consideration when optimizing ET and subsequently 

the green roof rainfall retention capacity. In past green roof studies, Sedum species 

(succulents) were typically selected based on their ability to survive and grow under harsh 

roof microclimatic conditions (VanWoert et al. 2005). However, most Sedum species are 

non-native to North America, as such there is an interest in adopting native species in green 

roof installations (Monterusso et al. 200; Wolf & Lundholm 2008; MacIvor & Lundholm 

2011; Whittinghill et al. 2014). Recent research conducted in a Canadian Atlantic/ 

Maritime climate found that certain grass species (e.g., Poa compressa) outperformed non-

native species, such as Sedum acre and Sedum x rubrotinctum, by having a greater 

cumulative ET during an experimental “dry treatment” where vegetated treatments only 

received irrigation every 24 days (Wolf & Lundholm 2008). Furthermore, in the past 

decade, green roof research has moved towards selecting plants based on their functional 

traits to optimize the ecologic and economic benefits provided by green roofs (Farrell et al. 
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2013; Farrell et al. 2015; Van Mechelen et al. 2015; Heim & Lundholm 2014; Lundholm 

et al. 2015; Lundholm & Williams 2015; J. Lundholm et al. 2014). These traits can include 

morphological (e.g., leaf shape), anatomical (e.g., stomata density, stomata aperture), 

physiological (e.g., metabolic process), and phenological (e.g., seasonal flowering stage) 

features (Lundholm & Williams 2015). Plants with high root biomass (Nagase & Dunnett 

2012), high specific leaf area (SLA) (Lundholm et al. 2015), and low stomatal resistance 

(Tabares-Velasco & Srebric 2012; Sendo 2010) have been shown to influence the rainfall 

retention and the cooling performance of green roofs. Previous research found that grass 

species (e.g., Anthoxanthum odoratum and Trisetum flavescens) improved green roof 

retention performance better than the forbs and Sedum species due to greater root growth 

(and greater plant diameter and height) resulting in greater water capture in the substrate 

(and interception) (Nagase & Dunnett 2012). SLA was found to be positively correlated to 

canopy density which indirectly influenced the thermal benefits of the green roof, whereby 

species with high SLA corresponded to lower summer substrate temperatures (Lundholm 

et al. 2015). Differences in the stomatal resistance between grass species (50 s/ m) and 

Sedum species (350 – 700 s/ m) was found to influence the predicted ET from a green roof 

in a modelling study, whereby grass species had ET rates 3-4 times greater than Sedum 

species (Tabares-Velasco & Srebric 2012).  

A plant’s ability to readily transpire water following a rainfall event is a desirable 

functional trait as it allows for faster regeneration of water storage within the green roof 

substrate (Farrell et al. 2013). Sedum species have traditionally been classified to have a 

carbon fixation pathway known as crassulacean acid metabolism (CAM); however, recent 

research has found that some Sedum species may be classified under two carbon fixation 

pathways, C3 and CAM (Starry et al. 2014). While differences in water use (i.e., water lost 

through evaporation and transpiration), and thus ET rates, from individual green roof plant 

species have been examined by previous studies (Farrell et al. 2013; Starry et al. 2014), 

there is limited understanding of the impact of plant traits, and thus green roof vegetation 

type, on ET rates under different climatological conditions (Lundholm et al. 2015; 

Lundholm et al. 2010; Van Mechelen et al. 2015; Wolf & Lundholm 2008; MacIvor & 

Lundholm 2011). Furthermore, there is currently no consensus on whether increasing the 

number of plant species and plant traits can increase green roof performance, or specifically 
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rainfall retention (Lundholm & Williams 2015; Dunnett et al. 2008; MacIvor & Lundholm 

2011; Lundholm et al. 2010). One study has indicated that on average the thermal and 

hydrologic green roof performance (measured based on surface temperature cooling and 

stormwater capture, respectively) was higher from treatments with a mixture of species 

from three to five life-form groups compared to treatments with lower diversity (Lundholm 

et al. 2010). This past study recommended a mixture of succulents, grasses, and tall forbs 

as these mixtures were found to optimize both surface temperature cooling and rainfall 

retention (Lundholm et al. 2010). In continuation of this former study, a more recent study 

found that species within life-form groupings vary in their functional traits resulting in 

differences in the species’ ability to provide thermal and hydrologic benefits (Lundholm 

2015). Of the mixed species treatments, a mixture of high performing species with 

complementary functional traits were found to enhance the effectiveness at which green 

roofs provided ecosystem services compared to a mixture of poor performing species with 

non-complementary traits (Lundholm 2015). Therefore, selecting plants based on their 

functional traits is still an important consideration when increasing the species diversity 

within a green roof (Lundholm 2015). For example, installing three plant species which 

have different water use strategies allows for the green roof to regenerate the water storage 

space available in the substrate during drying periods by having plants which effectively 

transpire water in the substrate when it is abundant (e.g., C3 species) and when it is limited 

(e.g., C4 and CAM species).  

The climatological and design parameters synergistically affect ET rates in that various 

vegetation types respond to ambient weather conditions differently, and various plant root 

structures can also interact with substrate depths differently. To date, there is limited 

knowledge on the rate at which the retention capacity is regenerated (i.e., ET rate) for green 

roofs with different vegetation types planted in varying substrate depths. This is hindering 

the design process in optimizing the hydrologic performance of green roofs. The novel 

experimental design of this study makes it one of the first studies to quantitatively 

investigate the influence of different green roof plants and substrate depths on ET rates 

from extensive modular green roofs in different climate regions. The aim of this study is 

to evaluate how green roof ET varies in response to different green roof design 

configurations (i.e., substrate depth and vegetation type) in different climatological 
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conditions. This understanding is needed to inform green roof design aimed at enhancing 

stormwater retention performance of this increasingly popular low impact development 

option for urban areas.  

3.2 Materials and Methodology 

3.2.1 Site description 

Three experimental green roofs with identical extensive modular design were built in 

London ON, Calgary AB, and Halifax NS in July 2012 (Figure 1; Table 1). In London ON, 

the green roof was installed on the 4th floor of Talbot College at the University of Western 

Ontario campus. In Calgary AB, the green roof was installed on the 3rd floor of the Earth 

Sciences building at the University of Calgary campus. In Halifax NS, the green roof was 

located on an office building in a business park. The extensive modular design consisted 

of square module casings at 30 cm x 30 cm with a substrate depth of 10 cm or 15 cm. All 

green roof modules and substrate used at each site were supplied by LiveRoof® (Nunica, 

MI). These green roof modules included built-in drainage flow paths at the base of the 

module to facilitate drainage. The green roof substrate was a mixture of fine and coarse 

hadite, crushed dolostone, bark, peat moss, and some fertilizer (LiveRoof®, Nunica, MI). 

The substrate satisfied the requirements set out by the German FLL for green roofs 

(Agricultural Analytical Services Laboratory 2008). The center of the experimental green 

roof array was elevated at a height of 0.2 m. Surrounding the elevated array were modules 

sloped at 12°, which were then bordered by other modules lying flat on the building’s roof 

surface.  

 

Figure 1: Site layout of the experimental modular extensive green roof at the three 

study sites. 
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Table 1: Site and climate characteristics for each green roof. 

 Calgary, AB London, ON Halifax, NS 

Latitude, Longitude 51.08, -114.13 43.01, -81.27 44.70, -63.58 

Rooftop surface Gravel ballast Conventional asphalt White 

Green roof area (m2) 65 52 55 

Plant hardiness rating* 3a 5b - 6a 6a 

Climate region** 
Prairie 

Great Lakes/ St. 

Lawrence 
Atlantic/ Maritime 

Climate type** Cool, arid; extreme 

temperatures year 

round 

Warm summers, cool 

winters 

Warm winters, cool 

summers 

* (Agriculture and Agri-Food Canada 2015)  

** (Environment Canada 2014) 

 

 

Figure 2: Plan view single species treatments (S. spurium (top left), A. canadensis 

(top right), S. heterolepis (bottom left), and the mixed species treatment (bottom 

right). 

The green roof array consists of four different vegetated module treatments and two 

substrate depth treatments. The vegetated module treatments include three single species 

treatments of Sedum spurium ‘John Creech’ (S. spurium), Aquilegia canadensis (A. 
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canadensis), and Sporobolus heterolepis (S. heterolepis), and one mixed species treatment 

which has a combination of all aforementioned species (Figure 2). For all vegetated 

treatments, there are modules with substrate depths of 10 cm and 15 cm. The number of 

replicates for each treatment is summarized in Table 3. It should be noted that all plants 

were grown in the nursery as plant plugs prior to being transplanted into the green roof 

modules.  

3.2.2 Evapotranspiration measurements 

ET rates were determined by continuously weighing a number of modules at each site as 

well as daily manual weighing of select additional modules. ET rates were quantified based 

on the change in weight of a module over a given time period (∆𝑡) (Eq. 1): 

𝐸𝑇 =  
𝑤𝑖 − 𝑤𝑖+1

𝜌𝑤𝐴𝑐∆𝑡
 [1] 

where wi and wi+1 are the module weights at the start and end of the time period, 𝜌𝑤 is the 

density of water, and Ac is the surface area of a module. ET rates were only calculated for 

drying periods which are defined as periods during which there is a decrease in module 

weight as a result of moisture loss from ET, and as periods during which there is no 

precipitation or drainage. Individual drying periods are separated by precipitation events 

and associated periods where water continued to be lost by drainage from the module.  

Two to four individual S. spurium module treatments were weighed continuously at each 

site during the 2013 and 2014 field season which extended from May to September. The 

duration of the data collection varied slightly between the sites due to instrument 

malfunction and availability of site personnel (Table 2). Module weights were continuously 

measured by placing individual modules on custom made weighing lysimeters that were 

connected to the CR3000 datalogger (Campbell Scientific, Edmonton AB). The sampling 

interval for the lysimeter was one second which was then averaged for every one-minute 

interval. The lysimeters were built with one metal plate (30 cm x 30 cm) centered on the 

top of one load cell (Interface SPI-25 or Interface SPI-50; Durham Instruments, Pickering 

ON) and another metal plate (30 cm x 30 cm) centered below the load cell.  
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Table 2: Duration of the continuous lysimeter measurements and daily module 

weighing measurements in 2013 and 2014 at each site for the vegetated and bare 

module treatments. The number of days with measurement considers days during 

drying periods only (i.e., when there was no precipitation or drainage from the 

modules).  

Site Year Treatment 
Duration Days with 

continuous 

measurement 

Days with 

manual 

measurement From To 

Calgary 

2013 Vegetated 16-May 1-Oct 123 79 

2014 
Vegetated 

1-May 1-Oct 
148 64 

Bare - 48 

London 

2013 Vegetated 1-May 1-Oct 130 98 

2014 
Vegetated 

1-May 1-Oct 
136 134 

Bare - 134 

Halifax 
2013 Vegetated 10-May 1-Oct 122 27 

2014 
Vegetated 

22-May 1-Oct 
119 59 

 Bare - 59 

Approximately 40 vegetated treatments modules in London, Halifax, and Calgary were 

weighed manually each day during the 2013 and 2014 field season using a portable 

electronic scale (Lee Valley Tools Ltd. and Veritas Tools Inc., London ON). In 2014, two 

to four bare module treatments (i.e., substrate only with no vegetation) were added to the 

green roof array and manual daily weight measurements were also taken for these modules. 

Daily weight measurements were taken between 9 am to 10 am to ensure that module 

weights were recorded prior to solar noon, which is when the ET rate would be expected 

to peak. Consistently measuring the weight of the module treatments at the same time prior 

to solar noon allowed for unbiased calculation of the daily ET rates during drying periods. 

3.2.3 Climatological measurements: precipitation, temperature, and 
relative humidity  

At each site, precipitation was continuously measured using two rain gauges (TE525WS; 

Texas Electronics Inc., Dallas TX) installed at the height of the vegetation within the 

elevated green roof array. Another rain gauge was installed adjacent to the green roof array 

to quantify any spatial variability in precipitation. A weather station with a relative 

humidity and temperature probe (HC2-S3; Campbell Scientific, Edmonton AB) was also 
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deployed on each roof to collect microclimate data at five-minute intervals. Instruments 

on-site were connected to a CR3000 data logger for continuous data collection. 

3.2.4 Plant trait measurements  

The plant coverage and the root mass distribution were two plant traits which were 

quantitatively measured in this study. The pin frame method was used to quantitatively 

assess the plant coverage for individual modules for all vegetated treatments monthly over 

the 2013 field season and biweekly over the 2014 field season. The pin frame method has 

been previously used by Lundholm et al. (2010). The pin frame sampling area (30 cm x 30 

cm) was divided evenly into 16 sampling points, and the total number of leaves touched 

from each point was used to estimate the plant coverage for each module treatment. 

Destructive root mass analysis was conducted at the end of the 2014 field season in London 

ON using one 15 cm substrate depth module of each vegetation type. The method used was 

similar to Kabganian et al. (2002). Here, each module was sectioned into four quadrants 

which was then sectioned into four depth intervals: 0-5 cm, 5-10 cm, 10-13 cm, and 13-15 

cm. For each depth interval, the substrate was rinsed off the roots, and then oven-dried at 

70°C until the root mass remained constant. The dry weights from each depth interval were 

used for the root mass analysis.   

3.3 Results and Discussion 

3.3.1 Influence of climatological conditions on evapotranspiration 
rates 

Cumulative moisture loss through ET provided a means to compare the total ET over the 

field seasons (May to September) for each city and, as such, assess the impact of 

climatological conditions on ET. Monthly climatological data for the three cities over the 

field seasons are provided in Appendix A (Figure A 1).  In this analysis, continuous data 

from the weighing lysimeters placed under 15 cm depth S. spurium treatments were used 

as the dataset provides nearly continuous quantification of ET over the field seasons. For 

this analysis, moisture gain due to precipitation and moisture loss due to drainage was 

filtered out. Cumulative ET from May to September averaged over the two years (i.e., 2013 

and 2014) were similar in Calgary and Halifax, at approximately 250 mm (Figure 3a). Due 
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to instrument issues in Halifax, data for May 2014 as well as June and July 2013 were 

unavailable. For months when data were not available, ET in the year with data available 

was assumed to be representative of both years. Average cumulative ET for London from 

the 2013 and 2014 field seasons was notably larger (average 360 mm) than Halifax 

(average 246 mm) and Calgary (average 251 mm) (Figure 3a). Averaged over the two field 

seasons, this represents an ET rate of ~ 2.4 mm/ day for London and ~ 1.6 mm/ day for 

Halifax and Calgary. These ranges in ET rates are comparable to Wadzuk et al. (2013) who 

reported monthly average ET rates of 1 to 7 mm/ day from a green roof in Philadelphia, 

PA based on weighing lysimeter data. As discussed earlier, ET frees up storage space in 

the substrate for rainfall retention as well as provides evaporative cooling. As such, the 

proportion of ET relative to precipitation is important. Over May to September 2013 and 

2014, London had a cumulative ET of 720 mm and received 1081 mm rainfall, as such ET 

represents 67% of the rainfall received. Similarly, cumulative ET in Calgary from both 

field seasons (501 mm) represented 73% of the 682 mm rainfall received. Finally, from the 

available rainfall and ET data, Halifax received 1102 mm rainfall with cumulative ET from 

both field seasons (364 mm) representing 33% of the rainfall. Halifax experienced differing 

rainfall amounts in both years in addition to instrument issues, resulting in notable 

differences in the ratio of ET relative to rainfall between 2013 and 2014. For example, for 

May, June, and September 2013, ET represented 22% of the 765 mm rainfall received in 

Halifax. In June through September 2014, ET represented 57% of the 337 mm rainfall. 

These data suggest that for all cities, ET returned a large amount of rainfall to the urban 

atmosphere, reducing the volume of water that may have been discharged to storm sewers 

and providing evaporative cooling. It further suggests that climatological conditions may 

have had a strong impact on ET rates, with ET in London 50% greater than Calgary and 

Halifax. 
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Figure 3: a) Cumulative monthly ET and b) water saturation in the three cities for 

2013 and 2014 field seasons. Data not available in Halifax for May 2014 as well as 

July and August 2013. 

As expected, ET was not constant during the field seasons due to changes in climatological 

conditions (e.g., average air temperature, relative humidity, rainfall volume, and rainfall 

frequency) and available soil moisture. Cumulative monthly ET, averaged over the three 

cities, decreased from 83 mm  11 mm in June to 42 mm  11 mm in September 

(Figure 3a). The extent to which cumulative monthly ET decreased through the field 



 

43 

 

seasons differed in each city. For example, average cumulative ET decreased from 86 mm 

in June to 60 mm in September in London. Decreases in Halifax (i.e., from 81 mm to 28 

mm) and Calgary (i.e., from 81 mm to 37 mm) were larger (Figure 3a). Daily ET rates were 

ranked to quantify the distribution of ET rates during the observation periods (Figure 4a). 

This analysis suggests that daily ET rates are generally similar for Calgary and Halifax, as 

would be expected given similar cumulative ET. For example, daily ET rates were less 

than 2.0 mm/ day 70% and 64% of the time in Calgary and Halifax, respectively (Figure 

4a). Daily ET rates were consistently larger in London with daily ET rates less than 2.0 

mm/ day in London for only 46% of the reporting days (Figure 4a). The difference in the 

proportion of high daily ET rates (e.g., greater than 2.0 mm/ day) and low daily ET rates 

(e.g., less than 2.0 mm/ day) among the sites was likely due to variability in rainfall volume 

and antecedent soil moisture. Rainfall volume influences the amount of rainfall retained in 

the substrate and the moisture content at the start of a drying period. The antecedent soil 

moisture is defined as the soil moisture within the substrate pores at the end of a drying 

period (i.e., before a rainfall event begins). If a rain event is large enough to bring the 

moisture level back up in the substrate, then the ET rates at the start of a drying period were 

typically high. However, small rain events did not typically result in high ET rates at the 

start of a drying period. For relatively small rain events (e.g., < 2mm), it is possible that 

most of the rainfall was intercepted by the plant canopy and evaporated back to the 

atmosphere directly off the leaf surface (Berretta et al. 2014). A previous study found that 

wetting of the underlying soil was not detected during minor rainfall events for vegetated 

green roofs with > 85% of plant coverage (Berretta et al. 2014).  

Water saturation provides a quantitative means to determine the amount of water available 

in the substrate for ET. In this study water saturation is defined as: 

𝑊𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
ℎ − ℎ𝑤𝑝

ℎ𝑓𝑐 − ℎ𝑤𝑝
 

[2] 

where h is the moisture available in the green roof module, hwp is wilting point, and hfc is 

the field capacity. Wilting point and field capacity were determined from field data. 

Average water saturation, for the three cities, decreased from 0.57 in May to 0.41 in August 
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but increased in September to 0.58 (Figure 3b). Similar to ET, water saturation differed in 

each city, with Calgary systematically exhibiting the driest conditions (Figure 3b, 4b). For 

example, 78% of measured water saturations were less than 0.5 in Calgary, in comparison 

to 45% of measured water saturations in London, and 43% of measured water saturations 

in Halifax (Figure 4b). A regression analysis, conducted through Minitab® 17.1.0, was used 

to determine the extent to which water saturation impacted daily ET rates for the three 

cities. Assuming that ET is a linear function of water saturation, water saturation was found 

to have a significant effect on daily ET rates in Calgary and London (P < 0.005), but not 

Halifax (P = 0.358). ET rates were moderately and positively correlated to water saturation 

in Calgary (r = 0.572); however, in London, water saturation impacted ET rates to a lesser 

extent (r = 0.302). The largest range of antecedent soil moisture was observed in Calgary 

due to the large range of rainfall event size and rainfall frequency. In 2013 and 2014, from 

the end of June to the end of August, the green roof in Calgary experienced long duration 

drying periods, with greater than 50% of the 6 drying periods lasting longer than nine days. 

In July and August, when the long drying periods occurred, soil moisture did not reach 

field capacity after rainfall events as the size of the rainfall events were relatively small 

and preceded by low antecedent soil moisture. Each city is located in distinct climate 

regions with Calgary located within the Prairie climate region, London the Great Lakes/ 

St. Lawrence climate region, and Halifax the Atlantic/ Maritime climate region 

(Environment Canada 2014). As such, Halifax is characterized by a cool and humid climate 

resulting in relatively high water saturation. Given that ET was not correlated with water 

saturation in Halifax but was correlated to water saturation in Calgary, and that both cities 

exhibited similar ET rates, suggests that other climatological variables (e.g., atmospheric 

forcing) likely influenced the ET rates in Halifax. However, further investigation is 

required to determine the role of other climatological variables and atmospheric forcing in 

the variability of ET rates in Halifax. Also of note is that average water saturation across 

all cities in September (0.58) was relatively large (Figure 3b), yet average cumulative 

monthly ET in September was relatively small (42 mm) (Figure 3a). These results suggest 

the importance of climatological variables and substrate water saturation in governing ET 

rates. 
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Figure 4: Distribution of a) daily ET rate and b) water saturation for Calgary, London 

and Halifax for the 2013 and 2014 field seasons when measurements were available 

in all three cities.  
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3.3.2 Influence of vegetation and substrate depth treatments on 
evapotranspiration rates 

Leaf morphology, plant coverage, and the root structure differ among the plant species 

used in this study: S. spurium, S. heterolepis, and A. canadensis. S. spurium is a succulent, 

low lying species with an upright branch structure and relatively small, broad leaves. A. 

canadensis is an herbaceous species with upright branches and has relatively larger leaves 

which spans over a smaller total leaf area compared to S. spurium. S. heterolepis is a 

densely tufted graminoid species with a mixture of short upright thin leaves and longer 

drooping leaves. Although the leaf angular distribution (LAD) was not quantified in this 

study, visual observations suggest that S. spurium and A. canadensis on average have 

leaves which are relatively parallel to the ground (planophile LAD) and S. heterolepis has 

vertically angled leaves (erectophile LAD).  

Quantification of plant coverage is an important aboveground feature because this is one 

of the primary plant parameters which influences the fraction of evaporation and 

transpiration within the total ET process (Allen et al. 1998). In this study, plant coverage, 

quantified through pin frame measurements, was compared among vegetation treatments 

within the individual sites. This method allowed for quantitative comparisons of the canopy 

structure between vegetation treatments. The plant coverage was generally similar for the 

monoculture S. spurium treatment and the mixed species treatment since the foliage in the 

mixed treatment was predominantly S. spurium (Appendix B). It is noted that plant 

coverage was denser for the mixed species treatments (e.g. peak of 125 leaf points in 2014) 

in London in comparison to S. spurium treatments (e.g. peak of 76 leaf points in 2014) for 

the 15 cm depth treatments (Appendix B: Figure B 1c, B 1d). In comparison, plant coverage 

for A. canadensis and S. heterolepis 15 cm depth treatments in London were sparser (e.g. 

peak of 50 and 62 leaf points in 2014, respectively) than the S. spurium and mixed species 

treatments, indicating less canopy coverage (Appendix B). Similar plant coverage trends 

were noted among the vegetation treatments planted in both depth treatments in Halifax 

and Calgary. The plant coverage data indicated that the peak values in plant coverage at 

each site generally occurs between June to July in 2013 and 2014 (Appendix B), with the 

exception of London in 2013 (Appendix B: Figure B 1c). The variation in plant coverage 
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for the vegetation treatments in London ON over the 2014 field season is qualitatively 

shown in Figure 5.   

 May June July August September 

Mixed species 

  
 

  

S. spurium 

  
 

 

 

S. heterolepis 

  

 
 

 

A. canadensis 

  
 

 

 

Figure 5: Plan view of the plant growth stages of the vegetation treatments from 

May to September capturing the changes in plant coverage throughout the 2014 

field season in London ON. 

The difference in root structure belowground can affect the distribution of pore water from 

the roots and up the plant’s xylem, and subsequently the transpiration rates. As expected, 

root mass decreased with depth for all vegetation treatments (Figure 6). While the S. 

spurium and the mixed species treatments were found to have a similar aboveground 

structure (i.e. plant coverage), their belowground structure, specifically their root structure 

(Figure 6), differed. For the monoculture S. spurium treatment, the majority of the roots 
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were within the top 10 cm of the substrate as it has shallow, fibrous roots (Figure 6). These 

root characteristics have been previously been noted for Sedum species (Nagase & Dunnett 

2012; Lu et al. 2014). In comparison, the root mass distribution for the mixed species 

treatment indicated that roots are present from the substrate surface to the 15 cm depth 

(Figure 6). The root mass for the monoculture S. heterolepis treatment had a similar profile 

trend to the mixed species treatment from the 5 cm to 15 cm depth (Figure 6). Within the 

first 5 cm depth of substrate, the S. heterolepis treatment (10.29 ± 3.01 g) had a lower root 

mass compared to the mixed species treatment due to the lack of S. spurium which was 

found to have a root mass of 25.78 ± 3.15 g within this depth (Figure 6). At a substrate 

depth deeper than 5 cm, the presence of S. heterolepis in the mixed species treatment 

resulted in an increase in root biomass due to the deep, dense root biomass of S. heterolepis 

(Figure 6). 

 

Figure 6: Distribution of the oven-dried root mass from four depth intervals, within 

a 15 cm substrate depth module, among the vegetation treatments: S. spurium, A. 

canadensis, S. heterolepis, and mixed species. The error bars represent the standard 

error of the mean. 
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Table 3: Mean cumulative moisture loss (in mm) for the different vegetation treatments and substrate depth treatments at 

each site in 2013 and 2014. Uncertainty values are the standard error of the mean, and the number of replications is provided 

in the brackets below each result.  

 

Site 

 

Year 

 

Measurement 

Period 

Mixed (3 species) S. spurium S. heterolepis A. canadensis Bare (Control) 

10 cm 15 cm 10 cm 15 cm 10 cm 15 cm 10 cm 15 cm 10 cm 15 cm 

Calgary  

2013 
7 Jun –  

16 Sep 

89 ± 1.9 

(3) 

105 ± 1.9 

(4) 

82 ± 1.5 

(3) 

89 ± 1.5 

(12) 

72 ± 0.3 

(3) 

86 ± 1.2 

(4) 
 81 ± 2.9 

(2) 

  

2014 

20 Jun –  

7 Sep 

95 ± 0.8 

(3) 

110 ± 1.0 

(4) 

91 ± 1.6 

(3) 

97 ± 1.2 

(12) 
 92 

(1) 
 85 

(1) 

  

18 Jul – 

17 Sep 

55 ± 1.3 

(3) 

56 ± 0.3 

(4) 

51 ± 0.5 

(3) 

48 ± 0.6 

(12) 
 55 

(1) 
 48 

(1) 

55 ± 1.3 

(3) 

53 ± 2.3 

(4) 

London 

2013 
21 May –  

3 Oct 

215 ± 3.4 

(4) 

241 ± 4.8 

(3) 

233 ± 7.6 

(3) 

202 ± 3.1 

(12) 

179 ± 5.2 

(4) 

186 ± 8.4 

(3) 

172 ± 3.0 

(4) 

193 ± 4.8 

(7) 

  

2014 
5 Apr –  

3 Sep 

209 ± 4.5 

(4) 

224 ± 3.4 

(3) 

201 ± 1.9 

(3) 

187 ± 3.0 

(12) 

177 ± 4.4 

(4) 

197 ± 2.0 

(3) 

175 ± 2.6 

(4) 

182 ± 10.1 

(7) 

154 ± 6.7 

(2) 

177 ± 4.2 

(2) 

Halifax 

2013 
5 May –  

15 Aug 

104 ± 4.4 

(3) 

119 ± 3.9 

(4) 

94 ± 4.3 

(3) 

108 ± 2.9 

(14) 

78 ± 2.1 

(3) 

92 ± 0.4 

(4) 

91 ± 5.8 

(3) 

106 ± 4.8 

(4) 

  

2014 
20 May –  

27 Aug 

124 ± 1.2 

(3) 

144 ± 1.2 

(4) 

116 ± 1.7 

(3) 

133 ± 1.8 

(14) 

94 ± 3.0 

(3) 

111 ± 1.6 

(4) 

96 ± 1.9 

(3) 

119 ± 2.3 

(4) 

 98 ± 2.2 

(2) 
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Manually weighed modules were used to evaluate the impact of vegetation type on ET as 

only select S. spurium modules were continually weighed on lysimeters at each site. 

Manual weighing was not consistently conducted on a daily basis, and in some cases drying 

periods were missed. As such cumulative moisture loss quantified from the lysimeter 

measurements cannot be directly compared to manually weighed data, however, manual 

weighing data were ideal for comparison of ET from different vegetation types in a given 

city. There were notable differences in cumulative ET among the vegetation and substrate 

depth treatments (Table 3). For the 15 cm substrate depth, the mixed species treatments 

consistently had the highest cumulative ET (e.g., ~ 224 mm in London 2014) compared to 

the monoculture species (e.g., ~ 182-197 mm in London 2014) (Table 3). S. spurium (e.g., 

187 ± 3.0 mm in London 2014) consistently had the second highest cumulative ET, with 

the exception of London 2014 15 cm depth treatments, where cumulative ET was slightly 

larger for S. heterolepis (197 ± 2.0 mm), and A. canadensis (182 ± 10.1 mm) (Table 3). 

With the exception of London 2014 15 cm depth treatments, the monoculture treatments 

of S. heterolepis and A. canadensis generally had the lowest seasonal cumulative ET (Table 

3). Trends in cumulative ET between the different vegetation types for the 10 cm depths 

were similar to that of the 15 cm treatments, with the exception of cumulative ET from the 

S. spurium treatment (233 ± 7.6 mm) in London 2013, which was larger than the mixed 

species treatment (215 ± 3.4 mm) (Table 3). 

Cumulative ET from the 15 cm depth treatments were consistently larger than that 

quantified from the 10 cm treatments with the exception of S. spurium treatment in London 

2013 and London 2014 (Table 3). The enhancement of ET for the deeper treatment depth 

was consistently greater for the mixed species treatment (e.g., ~ 144 mm cumulative ET in 

Halifax 2014) in comparison to S. spurium (e.g., ~ 133 mm cumulative ET in Halifax 

2014), irrespective of the city or year (Table 3). Interestingly the ET enhancement for the 

15 cm depth treatments was greater for three cases (i.e., London 2013 and 2014; Halifax 

2014) out of the four cases for A. canadensis treatments in comparison to the mixed species 

treatments (Table 3). For the fourth case (i.e., Halifax 2013), ET enhancement due to 

deeper depth for mixed species and A. canadensis treatments were similar (Table 3). 

Increased water stress conditions in Calgary resulted in permanent wilting of A. canadensis 
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and S. heterolepis. For both plant species, no 10 cm treatments survived both field seasons. 

Freezing during the winter months may have also played a role in decreasing the viability 

of both species. It should be noted that both A. canadensis and S. heterolepis survived in 

the mixed treatments for a longer duration than in the monoculture treatments. These 

observations suggest that A. canadensis and S. heterolepis are not suitable for installation 

on green roofs in Calgary with shallow substrate depth due to its harsh climatological 

conditions. 

The Wilcoxon signed rank test, conducted through Minitab® 17.1.0, was used to determine 

if daily ET rates were statistically different between vegetation treatments (Appendix C). 

Daily ET rates for each vegetation treatments for both years were analyzed together as one 

dataset (Appendix C). Significant differences between mixed species and S. spurium 

treatments were observed in all cities for the 15 cm substrate depth, with daily ET rates 

higher for the mixed species treatments (Appendix C). For example, for the 15 cm depth 

treatments in London, the median difference in daily ET rate between the mixed species 

treatment and the S. spurium treatment over both field seasons was 0.36 mm/day. Daily ET 

rates for S. heterolepis and A. canadensis treatments were significantly lower than the 

mixed treatments for the 15 cm treatments (Appendix C: Table C 1b). For example, for the 

15 cm depth treatments in London, the median difference in daily ET rate between the 

mixed species treatment and the S. heterolepis and A. canadensis treatments over both field 

seasons were 0.47 mm/day and 0.50 mm/day, respectively. For the 15 cm depth treatments 

in Halifax, the daily ET rates for S. spurium treatments were significantly greater than S. 

heterolepis treatment rates (0.25 mm/ day median difference; P = 0.003), however, the 

daily ET rates were not significantly different between these two treatments in London and 

Calgary (Appendix C: Table C 1b). With regards to A. canadensis 15 cm depth treatments, 

S. spurium (15 cm depth) daily ET rates were significantly greater for London (0.19 mm/ 

day median difference; P = 0.001) and Calgary (0.10 mm/ day median difference; P = 

0.03); however, ET rates were not significantly different between these two treatments in 

Halifax (Appendix C: Table C 1b). S. heterolepis and A. canadensis 15 cm depth treatments 

only exhibited significantly different daily ET rates in Halifax, with A. canadensis having 

greater ET rates (0.18 mm/ day median difference; P = 0.003) (Appendix C: Table C 1b). 
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It is noted that these two treatments (i.e., S. heterolepis and A. canadensis 15 cm treatment 

depths) could not be statistically compared in Calgary for the 2014 field season since only 

one replicate from each treatment survived the field season. For the 10 cm depth treatments 

in Calgary and Halifax, the daily ET rate was significantly greater for the mixed species 

treatment in comparison to the S. spurium treatment with a median difference of 0.11 mm/ 

day between the two treatments at both sites (P < 0.005) (Appendix C: Table C 1a); 

however, in London there was no significant difference between these two treatments 

(Appendix C: Table C 1a). S. heterolepis and A. canadensis 10 cm depth treatments 

exhibited statistically significant lower daily ET rates in comparison to the mixed species 

and S. spurium treatments with the exception of A. canadensis in Halifax (Appendix C: 

Table C 1a). Among the 10 cm depth treatments which exhibited lower daily ET rates, A. 

canadensis had significantly larger daily ET rates in comparison to S. heterolepis in Halifax 

(0.13 mm/ day median difference; P = 0.01), but not in London (Appendix C: Table C 1a). 

These data suggest that in Halifax, which had less moisture limitations, A. canadensis 

outperformed S. heterolepis in terms of ET. Differences in daily ET rates and cumulative 

ET among the vegetation treatments may be attributed to differences in plant coverage and 

root mass distribution. 

Given that the ET governs antecedent moisture condition and subsequently rainfall 

retention, trends observed in prior studies focused on rainfall retention can be compared to 

our observed ET trends. A previous study showed that plant species with extremely dense 

fibrous roots retained less water (MacIvor & Lundholm 2011), however, other studies have 

found that the addition of roots results in higher porosity, enhancing retention (Dunnett et 

al. 2008; Nagase & Dunnett 2012) and detention (Poë et al. 2015). In this study, the mixed 

species treatments had the greatest root biomass as well as the greatest ET (Figure 6; Table 

3). S. spurium had the largest root biomass at the surface, but S. heterolepis had greater 

root biomass with depth (Figure 6). Given that S. spurium had significantly greater ET rates 

but had a root mass distribution similar to that of A. canadensis suggests that root mass 

distribution alone is not a good predictor of ET rates. This is further supported by the fact 

that S. heterolepis and A. canadensis generally had similar ET rates, but A. canadensis had 

a relatively lower root mass. As indicated from the pin frame results, plant coverage was 
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greater for the mixed species and S. spurium treatments in comparison to the S. heterolepis 

and A. canadensis, which is consistent with higher observed cumulative ET (Table 3) and 

daily ET rates for these treatments (Appendix C: Table C 1). Due to their higher plant 

coverage, S. spurium and the mixed species treatments may continue to lose moisture 

through transpiration once the substrate water saturation decreases. In comparison, A. 

canadensis and S. heterolepis may generally have lower cumulative ET because the 

evaporation rates decrease as the substrate water content decreases and the transpiration 

rates were low to begin with due to the low canopy coverage. Quantifying the extent to 

which the greater plant coverage enhanced ET due to higher transpiration rates is difficult 

as the modules with less plant coverage would have a greater proportion of bare media 

exposed at the surface, potentially enhancing evaporation. 

Further work needs to be completed to explore the cause of the higher ET observed for the 

mixed species treatment modules compared to the monoculture treatments. The movement 

of water from different depths of substrate to the surface was not quantified in this study. 

Greater ET rates for the mixed species treatment could be due to the greater canopy 

coverage for the mixed species, particularly in London, as well as pore water from deeper 

substrate layers being distributed to the shallower layers by the deep S. heterolepis roots 

during prolonged drying periods. Through hydraulic lift, the deep S. heterolepis roots 

would provide water to shallow S. spurium roots for subsequent transpiration after shallow 

pore water from a rainfall event was transpired. The combination of shallow and deep roots 

in the mixed species treatment provides additional insight to the importance of selecting 

green roof plants with complementary functional traits to optimize the regeneration of the 

substrate’s retention capacity during drying periods through ET.  

3.3.3 Comparing evapotranspiration between bare (no vegetation) 
and vegetated treatments 

The extent to which plants enhance ET was quantified through comparison of cumulative 

ET (Table 3) and daily ET rates (Appendix C: Table C 2) for vegetated treatments and bare 

modules (i.e., no plants) for the 2014 field season. For London and Halifax, cumulative ET 

was greater for vegetated treatments than for bare modules for both 10 cm and 15 cm 

treatment depths (Table 3). In London and Halifax, daily ET rates were significantly larger 
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for all vegetated treatments in comparison to the bare modules (P < 0.02), with the 

exception of the 15 cm A. canadensis in London (P = 0.10) (Appendix C: Table C 2). In 

Calgary, cumulative ET and daily ET rates were similar for both vegetated and bare 

modules (Table 3). In the case of A. canadensis and S. heterolepis, the vegetated treatments 

were similar to a bare treatment due to the decrease in plant coverage from plant stress in 

Calgary. In Calgary, a region with limited water availability for green roofs (in the absence 

of additional irrigation), the lack of significant difference in ET between the vegetation and 

the bare treatments was likely due to the moisture limited conditions resulting in decreased 

plant health and therefore transpiration rates. Given this dataset, it is difficult to definitively 

determine the rate limiting process. For example, the bare modules do not have a canopy 

shading the substrate surface, so it is in direct contact with the incoming radiation energy 

and the overlying atmospheric conditions. As such, it is likely that evaporation is greater 

for the bare modules. For the vegetated modules, a combination of evaporation and 

transpiration contributes to the observed ET. Given the enhanced ET from the vegetated 

treatments compared with the bare modules in London and Halifax, it can be concluded 

that plants provide significant benefits in regenerating the retention capacity of the 

substrate, particularly through prolonged drying periods when the moisture conditions 

become limited. These findings are similar to those observed in a previous field study 

which also found that the effects of vegetation in decreasing substrate moisture are most 

prominent under decreased moisture conditions and not under well-watered conditions 

(Berretta et al. 2014)  

3.4 Conclusions 

With 11 distinct climate regions in Canada (Environment Canada 2014), it is important to 

choose vegetation types which are suitable for the climate region and the harsh 

microclimatic conditions on the urban roof environment. The three Canadian cities chosen 

for this study, Calgary AB, London ON, and Halifax NS, are found in three different 

climate regions: Prairies, Great Lakes/ St. Lawrence, and Atlantic/ Maritime, respectively. 

This research has provided insight on how climatological conditions influence cumulative 

ET and daily ET rates from extensive green roofs in the specified regions. Cumulative ET, 

calculated from the continuous lysimeter data for the 15 cm depth S. spurium treatments, 
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was found to be greater in London over the 2013 and 2014 field seasons compared to 

Calgary and Halifax which experienced similar cumulative moisture loss. The percentage 

of cumulative rainfall that was returned to the atmosphere by ET, however, was greater for 

Calgary (73%) and London (67%) compared with Halifax (33%). Available moisture in 

the green roof substrate was found to limit ET rates in Calgary and London, whereas results 

suggest that other climatological variables (e.g., atmospheric forcing) rather than moisture 

content may have potentially influenced the ET rates in Halifax where the climate is wet 

and humid. 

This study also illustrated the importance of selecting suitable vegetation types to optimize 

ET, and subsequently the hydrologic performance of green roofs. Of the vegetation 

treatments used in this study, S. spurium and the mixed species treatment are recommended 

for use in all three Canadian sites. At each site and for both depth treatments, both of these 

aforementioned vegetation treatments generally had higher ET rates than A. canadensis 

and S. heterolepis throughout the field season. Therefore, green roofs with a monoculture 

of S. spurium or mixture of S. spurium, S. heterolepis, and A. canadensis will be able to 

restore the retention capacity of the green roof substrate faster than a green roof with only 

S. heterolepis and A. canadensis. These results suggest that to optimize the hydrologic 

performance of green roofs (i.e., retention capacity), it is important to consider plant 

characteristics, such as plant coverage and root mass distribution. The study findings 

indicate that the ET from a green roof, and thus retention performance of a green roof, 

varies depending on the vegetation type and substrate depth. In London, it is recommended 

that a green roof is planted with S. spurium in 10 cm substrate depth, and a mixed species 

treatment in 15 cm substrate depth to optimize retention performance. In order to decrease 

the total cost associated with the green roof substrate, as well as reduce the structural load 

associated with the green roof, this finding indicates that it may be best to limit the substrate 

depth to 10 cm when S. spurium is used on a green roof in London. In Calgary and Halifax, 

it is recommended that a green roof is planted with mixed species treatments in 15 cm 

substrate depth to optimize retention performance. Finally, this study indicates the need to 

consider plant health and survivability in different climates as decreasing plant health, such 
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as that observed in Calgary, decreases the effectiveness of vegetation in enhancing ET, and 

subsequently improving the hydrologic performance of the green roof system.  
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Chapter 4 

4 Summary and Recommendations 

4.1 Summary  

Evapotranspiration (ET) plays a key role in the hydrologic and thermal benefits provided 

by green roofs. For instance, the capacity of a green roof to retain rainfall is largely 

governed by the rate at which moisture within the pores of the substrate is evapotranspired 

back to the urban atmosphere. While climatological conditions and green roof design 

parameters (e.g., vegetation and substrate type) have been shown to impact ET rates (e.g., 

Lundholm et al. 2010; Lundholm et al. 2015; Dunnett et al. 2008; Marasco et al. 2014; 

Berretta et al. 2014; Poe et al. 2015), to date the impact of these factors (i.e., climatological 

conditions, vegetation type, and substrate depth) have not been studied from three replicate 

extensive green roof design installed in distinct climatological conditions. The aim of this 

research was to develop a better understanding of how climatological conditions, 

vegetation type, and substrate depth impact ET to inform decisions on the design of green 

roofs installed in different Canadian climatological conditions.  

The first research question focused on evaluating the impact of climatological conditions 

on ET from green roofs. Identical experimental green roofs were installed and monitored 

in three Canadian cities, Calgary AB, London ON, and Halifax NS. These cities are located 

in three different climate regions: Prairies, Great Lakes/ St. Lawrence, and Atlantic/ 

Maritime, respectively. Using weighing lysimeters, daily ET was calculated from 

continuous weight measurements of 15 cm depth S. spurium module replicates at each site. 

From calculated daily ET rates, the cumulative moisture loss for two field seasons (May to 

September in 2013 and 2014) were calculated and averaged at each site. In Calgary and 

Halifax, the average ET rate were similar (~ 1.6 mm/ day) whereas it was found to be 

higher in London (~ 2.4 mm/ day). While Calgary and Halifax had similar average ET 

rates, it was found that ET was significantly (P < 0.005) influenced by water saturation in 

Calgary, but not in Halifax (P = 0.358). This finding suggests that ET rates in Halifax were 

not limited by water saturation but may have been influenced by other climatological 
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variables (e.g., atmospheric forcing) which were not evaluated in this study. Of note, the 

ET rates in London were also found to be significantly influenced by water saturation (P < 

0.005). Additionally, the findings from this study support previous findings that green roofs 

are able to mitigate stormwater runoff. Through ET, 73%, 67%, and 33% of the total 

rainfall received in Calgary, London, and Halifax, respectively, over the field seasons were 

returned back to the atmosphere. The novelty of the findings from this section of the study 

stems from the fact that this was the first study in North America to evaluate ET from 

extensive green roofs across three climatological conditions under a field setting.  

With 11 distinct climate regions in Canada (Environment Canada 2014), it is important to 

select vegetation types which are suitable for the climate region and the harsh microclimate 

conditions on the urban roof environment, as well as optimize the desired benefits of the 

green roof installation (e.g., hydrologic, thermal, and/ or aesthetic benefits). The second 

research question focused on investigating the impact of four vegetation treatments on ET 

(single species S. spurium, A. canadensis, and S. heterolepis, and a mixture of all three 

species), and the third question focused on the impact of varying the substrate depths on 

ET. Species of Sedum and grass are commonly used on green roofs, however, due to the 

variability in the plant functional traits (e.g., metabolic process) among species within these 

two life form groups, the ET rates measured for one species from one study may not 

necessarily be transferrable to a different species, regardless of the species originating from 

the same life-form group. Of the three species, S. spurium is the most commonly used 

vegetation type on green roofs, and therefore it is the most commonly studied species 

within the green roof literature (e.g., Wolf & Lundholm 2008; VanWoert et al. 2005). This 

current work was the first to investigate the impact of all four vegetation treatments on ET, 

under similar green roof design (i.e. substrate depth), and in three different climatological 

conditions. This research provided insight on which of the four vegetation types were best 

suited for extensive green roofs installed in the three selected study sites. This study found 

that plant coverage and root structure are two plant traits which should be considered 

during the vegetation and substrate depth selection process. The vegetation treatment (i.e. 

S. spurium and the mixed species treatment) with a dense plant coverage had higher ET 

rates compared to sparsely covered vegetation treatments (i.e. A. canadensis and S. 

heterolepis). In London, all four vegetation treatments were suitable; however, S. spurium 
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planted in 10 cm substrate depth and the mixed species treatments planted in 15 cm 

substrate depth were the two treatments which had the highest ET rates. In Calgary and 

Halifax, S. heterolepis and A. canadensis were not suitable for the climatological 

conditions or the roof conditions. Of the vegetation type and substrate depth treatments 

evaluated in this study, the mixed species treatment planted in 15 cm substrate depth is 

recommended for extensive green roofs in Calgary and Halifax. The notable finding from 

this study was the role of root structure in influencing the ET rates when the substrate depth 

was varied between 10 cm and 15 cm. In London, data indicated that the vegetation type 

with a dense plant coverage and a root depth which was similar to the substrate depth 

selected had the highest cumulative ET. This effect was notable when comparing the 

cumulative ET between the 10 cm and 15 cm depth treatments of S. spurium, which has 

shallow, fibrous roots that reached a maximum depth of 10 cm or less in London. For the 

2013 and 2014 field seasons, the average cumulative ET was greater for the 10 cm depth 

(average of 217 mm) compared to the 15 cm depth (average of 195 mm) treatment. This 

finding suggests that the retention capacity for the 15 cm depth may not necessarily be 

larger than the 10 cm depth following a drying period since the ET rates in the shallower 

substrate are higher. Therefore, it is important to ensure that the root structure (i.e., mass 

and depth profile) of the vegetation type matches the substrate depth to maximize the 

substrate area from which water uptake occurs. This design can be achieved by mixing 

plant species with different root structures (i.e. mixed species treatment). This was one of 

the first studies known to investigate the impact of substrate depth on ET and to quantify 

the root structure of three green roof vegetation species.  

4.2 Recommendations  

This thesis has shown the impact of climatological conditions, vegetation type, and 

substrate depth on ET rates from green roofs.  Recommendations for future work include: 

 Compare measured ET rates at the three green roof sites with ET predictions made using 

the ASCE, Hargreaves, and Penman-Monteith models with the moisture content correction 

factor. The measured data could be used to calibrate and validate these predictive ET 

models. Validated models should be applied to provide insight into the potential ET at all 

sites and the importance of soil moisture limitations.   
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 Quantify additional plant traits that influence transpiration rates including stomatal 

conductance and leaf area index (LAI) values for each plant type used in this study: S. 

spurium, A. canadensis, and S. heterolepis. These measurements are required as input 

parameters for predictive ET models including the Penman-Monteith method, and would 

also provide additional understanding of the ET differences observed. 

 The development of predictive ET models for each site and plant type would provide 

valuable information on how each plant species would perform under varying 

climatological conditions – this may not have been fully captured with data from two field 

seasons only. Insight into plant suitability for different climatological conditions would 

inform decisions on plant selection and substrate depth selection to optimize the ET and 

thus the stormwater benefits provided by green roofs. 

 Apply validated ET models for the three sites to compare predicted ET for the 10 cm and 

15 cm substrate depth to provide additional insight on the impact of substrate depth on ET 

under vary climate conditions. The impact of substrate depth on ET was not consistent 

between years in Halifax and this may have been due to the limited number of measurement 

days as well as the different precipitation amounts in Halifax between 2013 and 2014.  

 ET rates affect both the water and energy balance on green roofs.  Additional work is 

required to determine how the ET rates for different plant types affect the energy balance 

on the green roof.  For instance, reflective properties (albedo) and heat flux below the 

different plant types should be measured at the three sites through the growing season.  

 The transport of water through the roots and within the substrate depth during a drying 

period was not examined. A better understanding of the root and substrate depth interaction 

would improve the plant selection process as it would provide more informed decision on 

which plants are better suited for certain substrate depths.  
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Appendices 

Appendix A: Monthly climatological data for the 2013 and 2014 field season  
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Figure A 1: Monthly climatological data (i.e., maximum temperature, minimum 

temperature, and relative humidity) from May to September for the 2013 and 2014 

field season in (a) Calgary AB, (b) London ON, and (c) Halifax NS. 
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Appendix B: Pin frame data for 2013 and 2014 field season 
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Figure B 1: Seasonal trends of the plant coverage (measured using the pin frame 

method) for vegetation treatments for the 2013 and 2014 field seasons in: Calgary AB 

[a) 15 cm depth and b) 10 cm depth], London ON [c) 15 cm depth and d) 10 cm depth], 

and Halifax NS [e) 15 cm depth and f) 10 cm depth]. The x-axis indicates the month 

and year the data were collected. The error bars represent the standard error of the 

mean. 
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Appendix C: Comparing daily ET rates between vegetation type and substrate depth treatments using the Wilcoxon signed 

rank test  

Table C 1: Comparing the daily ET rates between the vegetation treatments planted in: (a) 10 cm vs. 10 cm substrate depth, 

(b) 15 cm vs. 15 cm substrate depth, and (c) 10 cm vs. 15 cm substrate depth for all three sites in 2013 and 2014 using the 

Wilcoxon signed rank test (P < 0.05). The significant P values and not significant P values calculated for the individual 

vegetation treatment comparisons are coloured as green boxes and red boxes, respectively. 

a) 

 10 cm Treatment 

vs. S. spurium A. canadensis S. heterolepis 

10 cm Treatment Calgary London Halifax Calgary London Halifax Calgary London Halifax 

A. canadensis - 0.001 0.110       

S. heterolepis - 0.001 0.001 - 0.875 0.014    

Mixed species 0.001 0.120 0.005 - 0.001 0.007 - 0.001 0.001 

 

b)  
 15 cm Treatment 

vs. S. spurium A. canadensis S. heterolepis 

15 cm Treatment Calgary London Halifax Calgary London Halifax Calgary London Halifax 

A. canadensis 0.025 0.001 0.218       

S. heterolepis 0.138 0.063 0.003 0.311 0.43 0.003    

Mixed species 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 
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c)  

 10 cm Treatment 

vs. S. spurium A. canadensis S. heterolepis Mixed species 

15 cm Treatment Calgary London Halifax Calgary London Halifax Calgary London Halifax Calgary London Halifax 

S. spurium 0.001 0.022 0.001          

A. canadensis    - 0.013 0.001       

S. heterolepis       - 0.001 0.001    

Mixed species                   0.001 0.002 0.001 

 

Table C 2: Comparing the daily ET rates calculated between the vegetation and bare (no vegetation) treatments planted in a) 

10 cm vs. 10 cm substrate depth, b) 15 cm vs. 15 cm substrate depth, and c) 10 cm vs. 15 cm substrate depth for all three sites 

in 2014 using the Wilcoxon signed rank test (P < 0.05). The significant P values and not significant P values calculated for the 

individual vegetation treatment comparisons are coloured as green boxes and red boxes, respectively. 

 a) 10 cm Bare b) 15 cm Bare c) 10 cm Bare 
 vs. 10 cm Treatment vs. 15 cm Treatment vs. 15 cm Treatment 

Treatment Calgary London Halifax Calgary London Halifax Calgary London Halifax 

S. spurium 0.55 0.005 - 0.21 0.02 0.007    

A. canadensis - 0.01 - 0.57 0.10 0.005    

S. heterolepis - 0.01 - 0.42 0.005 0.009    

Mixed species 0.77 0.005 - 0.19 0.005 0.005    

Bare             0.44 0.47 - 
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