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Abstract

Efficient macromodeling techniques used to model multi-port distributed systems using tabu-

lated data are presented. First a method to macromodel large multiport systems characterized

by noisy frequency domain data is shown. The proposed method is based on the vector fitting

algorithm and uses an instrumental variable approach and QR decomposition to formulate the

least squares equations. The instrumental variable method minimizes the biasing effect of the

least squares solution caused by the noise of the data samples while QR decomposition decou-

ples the least squares equations of multiport systems described by common set of poles. It is

illustrated, that the proposed approach can increase the accuracy of the pole-residue estimates

with less iteration when compared to the traditional QR decomposition vector fitting method.

Second, a method to obtain delay rational macromodels of electrically long interconnects from

tabulated frequency data, is presented. The proposed algorithm first extracts multiple propaga-

tion delays and splits the data into single delay regions using a time-frequency decomposition

transform. Then, the attenuation losses of each region is approximated using the Loewner Ma-

trix approach. The resulting macromodel is a combination of delay rational approximations.

Numerical examples are presented to illustrate efficiency of the proposed method compared to

traditional Loewner where the delays are not extracted beforehand.

Keywords: Delay extraction, High-speed interconnect, instrumental variable, macromodeling,

noise, Loewner Matrix, rational approximation, time-frequency decomposition, transmission

lines, vector fitting.
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Chapter 1

Introduction

1.1 Background and Motivation

As the operating frequencies of high-speed electrical networks continue to increase, the is-

sue of signal propagation has taken a more prominent role in the design cycle. This increase

in operating speed has made the analysis of interconnects a major part in the design cycle of

electronic systems since previously neglected effects (Fig. 1.1) such as delay, crosstalk and

attenuation can greatly affect the signal propagation on interconnects and the overall perfor-

mance of electronic systems [1, 3]. The process of analysis, design, and validation of the

interconnect necessary for the successful transmission of signals is called signal integrity [4].

Because, interconnects exist at various levels in the design of any electronic systems such as

on-chip, packaging structures, printed circuit boards (PCB) and backplanes, interconnects are

considered to be the cause of the majority of signal degradation in the high-speed electronic

systems [1, 3, 5].

Simulating interconnect with circuit elements can be done using circuit simulators such as

SPICE [6], however in order to use these simulators, electrical models of the interconnects

1



2 Chapter 1. Introduction

Figure 1.1: Interconnect effects [1]

need to be done. Depending on the physical interconnect structure, signal rise times, and

the operating frequency of the circuit, different models can be used [1]. Developing analyti-

cal interconnect models for the case when there are process variations, non-uniformities and

complex geometries is a challenging task, since analytical models require a full solution of

partial differential equations (PDE) which are hard to solve by circuit simulators. Analysis of

distributed transmission lines when nonlinear elements are present give rise to the so-called

mixed frequency/time problem [1]. This problem arises from the fact that circuit simulators

solve time-domain (transient) analysis using ordinary differential equations (ODE), while the

PDE are traditionally solved in the frequency-domain. To overcome this problem, macromod-

eling techniques are used to convert the interconnect models into ODE.

Under these conditions, the behavior of interconnects lumped with other electromagnetic mod-

ules such as vias, connectors, and packages is often characterized by tabulated data, obtained

by measurements or by electromagnetic simulations [1, 3, 7–9]. Using inverse fast Fourier

transform (IFFT) [10] to convert the frequency-domain data into time domain data, analysis

of port responses can be computed by using convolution [11, 12]. Using IFFT directly on

the frequency-domain data can lead to inaccurate transient simulation [13, 14]. Another ap-

proach seeks to approximate the tabulated frequency data as a set of ODE, which can then be

easily incorporated with circuit simulators directly or converted into equivalent circuit, using

techniques referred as macromodel synthesis [1], the process of building mathematical models

of dynamic systems from measured data is called system identification, and it represents an
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important issue for the analysis of high-speed circuits.

Macromodeling of distributed networks characterized by frequency-domain data, is usually

performed using rational curve fitting techniques [1,3,7–9,15,16]. Among these techniques, the

Vector Fitting (VF) algorithms [9,15–17] have emerged as a popular system identification tool

since the rational approximation is formulated as a linear least squares problem and relies on an

iterative pole relocation approach to improve the approximation. This leads to better numerical

stability and robustness when compared to non-iterative or polynomial approaches. In recent

years, Loewner Matrix (LM) [18, 19] has been proposed as an alternative to VF. Unlike, what

is done in VF, which relies on multiple different order approximations to determine the best

order to fit the data [20], LM provides a direct mechanism to identify the order based on the

magnitudes of a Singular Value Decomposition (SVD) [18]. Furthermore, for the case of multi-

port networks the time-domain macromodel can be realized with fewer state space equations

when compared to VF [18, 19].

1.2 Objectives

Interconnect models derived from tabulated data are often used to obtain macromodels and

interact with SPICE circuit solvers [1, 3, 7–9, 15, 16].

The objective of this thesis is to develop efficient macromodeling algorithms for high-speed

distributed networks by expanding on the known techniques. These algorithms do not make

any assumption about the underlying structure of the devices under study. Using only tabulated

frequency-data such as Y or S parameters obtained using measurements or by electromagnetic

simulations to characterize the networks. The methods developped in this work seek to address

specifically two issues: noisy tabulated data and tabulated data obtained from long distributed

interconnect.
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1.3 Contributions

The main contributions of this thesis are:

1. A method is proposed to efficiently macromodel large multiport networks characterized

by noisy frequency domain data. The method uses the concept of instrumental variable

[21,22] to minimize the biasing effect of the least squares caused by the noise present in

the data samples leading to more accurate solutions in fewer iterations.

2. Delayed rational approximations from tabulated frequency data are derived using the

LM method [18]. The method uses explicit delay extraction to extract propagation de-

lays estimates and partitions the data into single delay regions using a time-frequency

transform.

3. From the partitioned regions, a new approach to refine the delay estimates using the LM

method is performed.

4. The delay extraction LM algorithm is extended to multi-port networks. Numerical exam-

ples are presented to illustrate efficiency of the proposed method compared to traditional

Loewner where the delays of the transfer function are not extracted.

1.4 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 offers an overview of different macro-

modeling based on tabulated data, along with some of the issues related to these methods

and some of the state-of-art proposed solutions. Chapter 3 presents an efficient method to

macromodel large multiport systems characterized by noisy frequency domain data, using a

modified VF algorithm. It is illustrated, that the proposed approach can increase the accuracy
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of the pole-residue estimates with less iteration when compared to the traditional vector fit-

ting method. Chapter 4 presents a method to obtain delay rational macromodels of electrically

long interconnects from tabulated frequency data. Numerical examples are presented to illus-

trate efficiency of the proposed method compared to traditional Loewner where the delays are

not extracted beforehand. A summary of the work presented along with suggestions of future

related works are presented in the concluding Chapter 5.



Chapter 2

Literature Review

2.1 Overview

As mentioned in the previous chapter, due to system complexity, process variations and non-

uniformities of electrical circuits, rational macromodel approximations from tabulated mea-

sured data are often used to model high speed interconnects.

Among these techniques, the Vector Fitting (VF) algorithms [9,15–17] have emerged as a pop-

ular system identification tool since the rational approximation is formulated as a linear least

squares problem and relies on an iterative pole relocation approach to improve the approxima-

tion. This leads to better numerical stability and robustness when compared to non-iterative or

polynomial approaches.

Although the VF method works well in estimating rational transfer functions, this is not the

case when dealing with large multi-port networks or when data samples are contaminated by

noise. Over the years, several modifications have been proposed to improve computational effi-

ciency and accuracy of this method. To efficiently calculate the transfer functions of multi-port

6
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networks using a common set of poles, a QR decomposition method was proposed to decouple

least squares equations of each transfer function [17]. The QR decomposition approach was

also used to implement a parallel processing VF algorithm for large multi-port networks [2].

Another issue with VF is that it has difficulty estimating the poles of transfer functions when

data sample measurements are contaminated by noise. This is due to the fact that the noise of

the data causes the least squares solution to bias the location of the poles.

Various enhancements have been proposed to deal with noisy data, such as pole adding and

skimming method [23], least squares weighted functions [24] and instrumental variable VF

method [25], these method will be discussed in detail later in this chapter.

In recent years, Loewner Matrix (LM) [18, 19] has been proposed as an alternative to VF. Un-

like, what is done in VF, which relies on multiple different order approximations to determine

the best order to fit the data [20], LM provides a direct mechanism to identify the order based

on the magnitudes of a Singular Value Decomposition (SVD) [18]. Furthermore, for the case

of multi-port networks the time-domain macromodel can be realized with fewer state space

equations when compared to VF [18, 19].

When dealing with long interconnects, attempting to approximate the tabulated data as rational

functions, will typically require many poles to accurately approximate the data [13, 29–31].

For distributed networks with long delays, methods based on delayed rational functions can

be used to provide accurate and efficient macromodels [13, 30, 31]. These techniques extract

the propagation delays from the tabulated data, while the remaining attenuation losses are

approximated using low order rational functions, leading to more compact macromodels with

fewer poles when compared to using only rational functions.

In the following sections an overview of two popular rational curve techniques, vector fitting

(VF) and Loewner matrix (LM) are presented, along with some of the issues that can be en-

countered when macromodeling networks characterized by tabulated data.
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2.2 Vector Fitting

Using an iterative approach, the vector fitting algorithm allows to obtain a rational function to

approximate a set of tabulated data obtained either by measurement or electromagnetic sim-

ulation. It was originally introduced in context of analysis of transmission lines and power

systems, but was later extended to many fields, with signal integrity being among them.

Using the vector fitting algorithm, the objective is to approximate a set of tabulated data

(sk,Y(sk))K
k=1 to get a rational function of the form

f (s) =

N∑
n=1

cn

s − pn
+ d + se (2.1)

where pn and cn correspond to poles and residues respectively, these quantities can either be

real or complex conjugates, while the real variables d and e are optional; s is the Laplace

variable and Y(sk) is the value of the data at the particular k frequency. N is the order the

rational function.

VF is an iterative method that seeks to solve for the unknowns pn, cn, d and e. This nonlinear

problem (because of the term pn that appears in the denominator) is solved by making into

a linear problem following a two stage process: 1) pole identification followed by 2) residue

identification.

Pole and Residues Identification

In the first stage, the goal is to obtain an approximation for the poles pn. This is done by

introducing an unknown function σ(s) and the following system.
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σ(s) f (s)

σ(s)

 =


∑N

n=1
cn

s− p̄n
+ d + se∑N

n=1
c̃n

s− p̄n
+ 1

 (2.2)

where the terms p̄n are starting values for the poles and the rest of the remaining terms are

unknown.

Multiplying the second row of (2.2) with f (s), the following relation is obtained

N∑
n=1

cn

s − p̄n
+ d + se = (

N∑
n=1

c̃n

s − p̄n
+ 1)Y(s) (2.3)

Doing so, results in a linear problem where the unknowns are cn, c̃n, d and e. Equation (2.3) for

a frequency point sk gives a system of equation of the form

Akx = bk

where

Ak =

Re(qk
1) . . . Re(qk

N) 1 0 Re(q̄k
1) . . . Re(q̄k

N)

Im(qk
1) . . . Im(qk

N) 1 0 Im(q̄k
1) . . . Im(q̄k

N)


x = [c1 . . . cN d e c̃1 . . . c̃N]T (2.4)

bk =

Re(Y(sk))

Im(Y(sk))
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Depending on whether the poles are real or complex, the terms of (2.4) will have different

forms, to make sure that the residues are either real or come in complex conjugate form. For

the case of real poles, the coefficients of (2.4) will be

qk
i =

1
sk − p̄i

q̄k
i =
−Y(sk)
sk − p̄i

And for the case of complex poles the coefficients of (2.4) will become

qk
i =

1
sk − p̄i

+
1

sk − p̄i+1

qk
i+1 =

j
sk − p̄i

−
j

sk − p̄i+1

q̄k
i =
−Y(sk)
sk − p̄i

+
−Y(sk)

sk − p̄i+1

q̄k
i+1 =

− jY(sk)
sk − p̄i

+
jY(sk)

sk − p̄i+1

ci = Re(ci) ci+1 = Re(ci)

c̃i = Re(c̃i) c̃i+1 = Re(c̃i)

Expanding equation (2.4) for K frequency points gives an overdetermined system of equations

Ax = b
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From there the solution for x can be obtained by doing

x = (ATA)−1(ATb) (2.5)

The least squares solution obtained from (2.5) can be used to get approximations for the σ(s)

and σ(s) f (s) functions written as

σ(s) f it =

N∏
n=1

(s − z̃n)
(s − p̄n)

(2.6)

(σY) f it(s) =

N∏
n=1

(s − zn)
(s − p̄n)

Finally from (2.6) an approximation for f (s) can be obtained as

f (s) =

N∏
n=1

(s − zn)
(s − z̃n)

(2.7)

It can be seen from equation (2.7), that the poles of f (s) become the zeros of σ(s) f it. Therefore,

by taking the newly calculated zeros of σ(s) f it as the new guess for the poles, this procedure

can be repeated until the poles converge.

In the procedure described above, it can be seen that only the zeros of the function σ(s) f it

are needed to first compute the poles. Once that is done, an additional least square solution,

corresponding to the second stage, is needed to obtain the residues and the terms d and e if they

are included in the model.
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2.2.1 Fast Vector Fitting

Although the VF method works well in estimating rational transfer functions, this is not the

case when dealing with large multi-port networks. Over the years, several modifications have

been proposed to improve computational efficiency and accuracy of this method. To efficiently

calculate the transfer functions of multi-port networks using a common set of poles, a QR

decomposition method can be used to decouple least squares equations of each transfer function

[17].

Assuming a set of data coming from a multiport system {sk,Y j(sk)}Kk=1, where j = 1 . . . J corre-

sponds to the number of transfer function in the transfer function matrix. For a system with P

number of ports, J = P2. The objective is to find the function

f j(s) =
(σH j)(s)
σ(s)

=

∑N
n=1

c j
n

s−pn
+ d + se∑N

n=1
c̃n

s−pn
+ 1

(2.8)

such that f(sk) ≈ Y(sk). The terms c j
n, d, e, c̃n are unknown coefficients and p̄n are chosen

heuristically in the first iteration. Using the same reasoning that was applied in the previ-

ous section, the solution for the J number of unknown equations (2.8) corresponds to solving

the following overdetermined set of equations
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X 0 0 0 −H1X

0 X 0 0 −H2X

. . . . . .

0 0 0 X −HJX





C1

C2

. . .

CJ

Cp


=



H11̂

H21̂

. . .

HJ1̂


(2.9)

where

H′ j
= [Y j(s1) . . . Y j(sK)],

H j = diag([Re(H′ j)Im(H′ j)]),

1̂ = (2Kx1) column vector of one,

X′ =


1

s1−p1
. . . 1

s1−pN

. . . . . . . . .

1
sK−p1

. . . 1
sK−pN

 ,

X =

Re(X′)

Im(X′)



and C j contains the residues c j
n and Cp contains the residues c̃n. The procedure is the same as

is done when dealing with a single transfer function, once the system is solved, the zeros of

σ(s) f it denoted z = {z1, . . . , zN} become the poles of f j(s). The process is repeated again by

making {p1, . . . , pN} = {z1, . . . , zN} until convergence.

It was noted in [17] that since the residues c j
n are discarded while convergence is not reached,

the algorithm could be made faster if there was a way to transform system of (2.9) in such a
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way that only the residues c̃n are solved for, thus making the overdetermined set of equations

smaller. This is done by using the QR decomposition as described next.

Each j-th transfer function can be expressed as

[X −H jX]

C j

Cp

 = Q j

R
j
11 R j

12

0 R j
22


C j

Cp


Where the right hand side of the equation is the QR decomposition. Then by combining the

the factorization of all the matrices, the reduced set of equations where only the coefficients Cp

are the unknowns


R1

22

. . .

RJ
22

 Cp =


(Q1)T H11̂

. . .

(QJ)T HJ1̂


Finally the solution is

Cp =
( J∑

j=1

[(R j
22)T R j

22]
)−1

J∑
j=1

(Q jR j
22)T H j1̂ (2.10)

Once the poles solution converges, the residues are solved by using what is done for the single

transfer function case. A visualization summary of the fast vector fitting algorithm can be seen

in the Fig. 2.1.
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Figure 2.1: Application of QR on Multiport Networks [2].

2.2.2 Vector Fitting with Noisy Tabulated Data

One issue with VF is that it has difficulty estimating the poles of transfer functions when data

sample measurements are contaminated by noise. This is due to the fact that the noise of the

data causes the least squares solution to bias the location of the poles. Various enhancements

have been proposed to deal with noisy data, such as relaxed vector fitting [15], pole adding

and skimming method [23], least squares weighted functions [24] and instrumental variable

VF method [25]. These techniques are briefly presented in the next sections.

Relaxed Vector Fitting

In [15], a change is made the original vector fitting algorithm, where the weight function σ(s)

is changed to
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σ(s) =

N∑
n=1

c̃n

s − p̄n
+ c̃0 (2.11)

using this new σ(s), equation (2.2) becomes

N∑
n=1

cn

s − p̄n
+ d + se = (

N∑
n=1

c̃n

s − p̄n
+ c̃0)Y(s) (2.12)

Using this new form, (2.4) is now expressed at each frequency sample sk as

Ak =

Re(qk
1) . . . Re(qk

N) 1 0 Re(q̄k
1) . . . Re(q̄k

N)

Im(qk
1) . . . Im(qk

N) 1 0 Im(q̄k
1) . . . Im(q̄k

N)


x = [c1 . . . cN d e c̃0 c̃1 . . . c̃N]T (2.13)

bk =

00


where the terms are similar to what they were in the original form the vector fitting algorithm,

however since now bk is now equal, in order to avoid the trivial null solution, the following

equation is added

Re{
K∑

k=1

(
N∑

n=1

c̃n

s − p̄n
+ c̃0)} = K (2.14)
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Using a similar approach as the previous section an overdetermined system of equation is

obtained and the rest of the algorithm is the same as the original vector fitting. This new

approach is often called relaxed vector fitting, and has been shown to have better properties

when the tabulated data is contaminated by noise, since it can improve the reallocation of the

poles [15]

Pole Adding and Skimming Method

In [20], another way to deal with rational approximation of data contaminated by noise using

vector fitting is presented. The method identifies so-called spurious poles which are said to

be responsible for the possible non-convergence of the standard vector fitting with noisy data.

These spurious poles are dealt with in a two step process, first they are identified and then

removed. In addition to dealing with noise, the method also presents a way to estimate the

order of the underlying system by incrementally increasing the number of poles and applying

relocation whenever it is necessary. The called is referred to in the paper as vector fitting

with adding and skimming (VF-AS) by the authors. The spurious poles are said affect the

convergence of the vector fitting method, since they will tend be stuck at a specific location

and thus will never go to a better value at each subsequent iteration, indeed rather than trying

to fit true data, these spurious poles try to fit the noise instead. Another way of looking at

it, would be to consider that the constraint condition of (2.12) is not strong enough to for the

spurious poles to converge to their expected location.

In order to address this issue and enhance the convergence of the poles, a hard relocation is

proposed. This is a process through which an automatic detection of the spurious poles is

done. Then, the poles are placed in a location of the complex plane that is closer to the true

poles. Since VF is sensitive to the initial guess of the solution, it is expected that a better guess

for the poles will also improve the behavior of VF in the presence of noise.
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Least Squares Weighted Functions

In [24], another modification to the standard vector fitting algorithm, when fitting data con-

taminated by noise, is proposed. In this method, the noise is assumed to be colored additive

with a zero-mean circular complex Gaussian distribution. The proposed method, uses infor-

mation about the variance of the data samples obtained with the use of least-squares weighting

functions. Estimation of the variance is done by performing measurements on a point-by-point

basis and is incorporated in the weighting function of vector fitting algorithm as

w(s) =
1

σ2(s)
(2.15)

Quality information of the data samples is then given to the least-squares estimator using the

weighting functions (2.15). This helps reduce the effect of the noise by improving the retrieval

of the real behavior of system under study [24]

Instrumental Variable Vector Fitting

This section presents another modification to the vector fitting algorithm, when the tabulated

data is contaminated by noise. First, a more detailed look at how the nosy data samples can

bias the solution of the poles.

Consider the noisy tabulated data set defined as [25]

Ŷ(s) = Y(s) + ε (2.16)
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where Y(s) is the exact transfer function and ε is a zero-mean complex noise. In the presence

of noise, the system to be solved is modified and new terms are introduced due to the noise, Ak

and bk are replaced by

Âk = Ak + HA
k

b̂k = bk + Hb
k (2.17)

where the extra terms HA
k and HB

k are due to ε and are defined as follows [25]:

HA
k =

0 · · · 0 Re(ẽk
1) · · · Re(ẽk

N)

0 · · · 0 Im(ẽk
1) · · · Im(ẽk

N)


Hb

k =

Re(εk)

Im(εk)

 (2.18)

In the presence of noise the least square solution of (2.5) becomes:

x =

[∑
k

ÂT
k Âk

]−1[∑
k

ÂT
k b̂k

]
(2.19)

where
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ÂT
k Âk = AT

k Ak + AT
k HA

k + (HA
k )T Ak + (HA

k )T HA
k

ÂT
k b̂k = AT

k bk + AT
k Hb

k + (HA
k )T bk + (HA

k )T Hb
k (2.20)

the first terms AT
k Ak and AT

k bk of (2.20) would be the terms found if there was no noise. Since,

as it was stated previously it is assumed that the disturbance ε is a zero-mean complex random

noise (meaning the expected mean value E[ε] is zero), the expected values of the second and

third terms in (2.20) are

E[AT
k HA

k ] = E[(HA
k )T Ak] = 0

E[AT
k Hb

k ] = E[(HA
k )T bk] = 0 (2.21)

the results in (2.21) mean that the second and third terms do not statistically bias the results of

(2.19). The fourth terms are defined as [25]

(HA
k )T HA

k = [ha
m,n]

(HA
k )T Hb

k = [hb
m] (2.22)

where
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ha
m,n =



Re(ẽk
m′) ∗ Re(ẽk

n′) + Im(ẽk
m′) ∗ Im(ẽk

n′),

m, n > N + 2

0, otherwise

hb
m =



Re(ẽk
m′) ∗ Re(εk) + Im(ẽk

m′) ∗ Im(εk)

m > N + 2

0, otherwise

(2.23)

with m′ = m − (N + 2) and n′ = n − (N + 2). Since the expected mean values of E[Re(ε)2] and

E[Im(ε)2] are not equal to zero, we get the following

E[(HA
k )T HA

k ] , 0

E[(HA
k )T Hb

k ] , 0 (2.24)

this means that the nonzero ha
m,n terms will bias the ÂT

k Âk matrices, thus affecting the solution

of all unknown variables in (2.19). The nonzero hb
m terms bias the residues which are used

to determine the poles of H(s). This biasing effect of hb
m is the main reason for the failure

of vector fitting to capture the actual poles of the system in the presence of zero-mean noise.

Next a technique to deal with least squares bias using the concept of instrumental variables is

presented.

The least square solution using the instrumental variable is defined as
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X =

[∑
k

ΨT
k Âk

]−1[∑
k

ΨT
k b̂k

]
(2.25)

where Ψk is called the instrumental variable, just as Âk was defined from the noisy data Ŷ(s) =

Y(s)+ε, Ψk = Ak +HΨ
k is also obtained from a set of data Ŷ(s) = Y(s)+ρ. Note that in both sets,

Y(s) is the same theoretical noise free transfer function and ε and ρ are uncorrelated Gaussian

noise.

Using the definition of Ψ, the terms in (2.19) become:

ΨT
k Âk = AT

k Ak + AT
k HA

k + (HΨ
k )T Ak + (HΨ

k )T HA
k

ΨT
k b̂k = AT

k bk + AT
k Hb

k + (HΨ
k )T bk + (HΨ

k )T Hb
k (2.26)

The first three terms of (2.26) have the same values as those in (2.20), the only difference is in

the fourth term. Since the values of the Hk terms come from the noise in the data sets and we

are dealing with uncorrelated noise, the expected value of the fourth term also becomes zero

when using the instrumental variable approach, leaving the least square solution with only the

no-noise terms [21, 22, 26–28].

E[(HΨ
k )T HA

k ] = 0

E[(HΨ
k )T Hb

k ] = 0 (2.27)
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2.3 Loewner Matrix

The Loewner Matrix method [18] seeks to macromodel the transfer function Y(s) as

Y(s) = C(sE − A)−1B + D + sY∞ (2.28)

where A,E ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n,D ∈ R,Y∞ ∈ R describe the system of order n. The

descriptor state space matrices A,B,C, and E are obtained as follows.

First the given data is split into two groups, usually referred to right and left interpolation data

points as

[s1 . . . sK] = [µ1 . . . µk] ∪ [λ1 . . . λk]

[Y(s1) . . . Y(sK)] =

[Y(µ1) . . . Y(µk)] ∪ [Y(λ1) . . . Y(λk)]

where k + k = K and


k = k = K/2 if K is even

k = k + 1 = (K + 1)/2 if K is odd

There are many ways that the data could be split. In this work, the alternating splitting of

the data is used since this will lead to better conditioning of the Loewner matrix as illustrated
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in [18, 19].

V =


v1

...

vk

 =


Y(µ1)
...

Y(µk)

 ,

W =

[
w1 . . .wk

]
=

[
Y(λ1) . . . Y(λk)

]

With the left data set (µi, vi) and right data set (λi,wi), the k × k Loewner and Shifted Loewner

matrices are computed as follows

L =


v1−w1
µ1−λ1

. . .
v1−wk
µ1−λk

...
. . .

...

vk−w1

µk−λ1
. . .

vk−wk
µk−λk

 (2.29)

σL =


µ1v1−λ1w1
µ1−λ1

. . .
µ1v1−λkwk
µ1−λk

...
. . .

...

µkvk−λ1w1

µk−λ1
. . .

µkvk−λkwk
µk−λk

 (2.30)

Once the Loewner and shifted Loewner are computed, the next step is to determine the order

of the approximation. In order to do that, a singular value decomposition (SVD) is performed

on (sL − σL). Any value of s can be chosen as long as it is not the eigenvalue of the (σL,L)

matrix pencil [18], resulting in the following expression
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SVD(sL − σL) = [Y,Σ,X] (2.31)

whereΣ is a diagonal matrix containing the singular values. The order n of the approximation is

chosen as the location where a large drop of the normalized singular value happens as described

in [18, 19]. The descriptor system matrices are constructed as

A = −Yn
∗σLXn, B = Yn

∗V, (2.32)

C = WXn, E = −Yn
∗LXn

where Xn ∈ R
k×n and Yn ∈ R

k×n are constructed from the first n columns of X and Y of (2.31)

respectively [18, 19].

The method presented above leads to strictly proper rational approximations (i.e. D and Y∞ is

equal to zero). However, for the case when it is required to use D and Y∞, setting these terms

to zero may lead to unstable and inaccurate macromodels as illustrated in [19]. In this work,

if the LM approximation produces unstable poles, the D and Y∞ terms are extracted by first

extracting the stable poles of the system, these will constitute the A,E,B,C matrices. As for

the D and Y∞ terms, they are obtained by fitting the remaining unstable poles using a first order

polynomial.
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2.4 Macromodeling Data from Long Interconnects

Depending on the type of structure under study, different approach exists for developing macro-

models of distributed networks. When dealing with long interconnects, attempting to ap-

proximate the tabulated data as rational functions, will typically require many poles to ac-

curately approximate the data [13,29–31]. For distributed networks with long delays, methods

based on delayed rational functions can be used to provide accurate and efficient macromod-

els [13,30,31]. These techniques extract the propagation delays from the tabulated data, while

the remaining attenuation losses are approximated using low order rational functions, leading

to more compact macromodels with fewer poles when compared to using only rational func-

tions. The next sections presents a summary of the different techniques that have been proposed

to deal with tabulated data that describe the behavior of distributed networks with long delays.

2.4.1 Delay-Extraction Macromodeling using Hilbert Transforms

In [13, 14], a delay extraction based techniques using the Hilbert transform is presented. The

method uses the concept of minimum phase functions for passive structures to obtain a delay

estimate of the distributed networks. A function that has all its poles and zeros in the left-half

plane is called a minimum phase function [32], in multi-port stable networks, this property is

only present in diagonal elements. Considering a network of the following form

Y(s) = [Yi j(s)] (i, j ∈ 1, . . . , P) (2.33)

where the P is the number of ports. Unlike the diagonal elements, the off-diagonal elements i ,

j are not minimum phase functions. Using the fact that any function from a stable distributed
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system can be written as product of a minimum phase function and an all-pass function as

Yi j(s) = Ymin
i j (s)YAP

i j (s) (2.34)

where Ymin
i j (s) is the minimum phase function part and YAP

i j (s) is the all-pass portion, the Hilbert

transform can be used to extract the delay and the attenuation losses part (function correspond-

ing to the delay-free part of the function) as follows.

Equation (2.22) can be rewritten in following form

Yi j(s) = Ŷi j(s)e−sτ (2.35)

where Ŷi j(s) is the delay-free portion and e−sτ is the delay part portion corresponding to the

extracted delay τ. The equivalence of (2.22) and (2.23) stems from the fact that e−sτ acts as an

all pass function since |e−sτ| = 1 (|.| corresponding to magnitude), leaving the delay-free term

Ŷi j(s) correspond to the minimum phase function. The first step of the delay-extraction based

on Hilbert transform is to get an estimate for the delay term τ. This can be done by rearranging

(2.23) to obtain an expression for the unknown τ term as follows [13, 14, 32]

τ = −Average Slope
(
arg

[
Yi j(s)

Ŷi j(s)

])
(2.36)

where arg(z) refers to the principal argument of a complex number z. In order to compute τ,

the attenuation losses needs to be known first. This is done using
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|Ŷi j(s)| = |Yi j(s)| (2.37)

arg[Ŷi j(s)] = −HT {ln|Yi j(s)|} (2.38)

In (2.26) HT {.} stands for the Hilbert transform [32], using the discrete Hilbert transform [32],

(2.26) can be rewritten as [13, 14]

arg[Ŷi j(s)] = −
1

2π
P

∫ π

θ=−π

ln|Yi j(θ)| cot
(
ω − θ

2

)
dθ (2.39)

where P denotes the Cauchy principal value of the integral that follows. Once (2.39) is solved,

τ is obtained from (2.36). This allows to get all the off-diagonal terms as a product of minimum

phase functions and an all-pass functions.

2.4.2 Compact Macromodeling of Electrically Long Interconnects

In [33], a method for macromodeling long interconnects is introduced. Starting from frequency-

domain scattering data, the technique produces compact macromodels based on multiple delay

extraction and rational approximations.

Using a set of measured frequency samples denoted as

Hk = H(sk)
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for k = 1, . . . ,K, the goal is to find a rational approximation of the form

H(s) =
∑

m

Qm(s)e−sTm (2.40)

where Tm represents the signal propagation delays and Qm(s) represent effects such as attenu-

ation losses and dispersion. Using the technique, first the number of delays is truncated to a

finite number m̃ and second a rational approximation is applied to each Qm(s). The resulting

delayed rational model is

H(s) '
m̃∑

m=1

Rm0 +
∑n̄

n=1
Rmn
s−an

r0 +
∑n̄

n=1
rn

s−an

e−sτm (2.41)

where τm ' Tm are suitable estimates of the dominant propagation delays, and an is a set of

poles. It can be seen that when m̃ = 1,Tm̃ = 0, (4.21) becomes a normal rational approximation

modeled like the regular vector fitting. The first stage of the identification of (2.41) is to

identify estimates of dominant delay terms τm for the tabulated data. This is done with a Time-

Frequency transform called the Gabor transform [34]. Details of how it is used to identify the

delays will be presented in chapter 3. Once the set of dominant delays is known, what is left is

the estimation of the coefficients Rmn, rn of (2.41). This can be done in the same as the normal

vector fitting is done, except in this case all the rational functions are fitted at once.
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Modeling Noisy Multiport Networks

In this chapter, the Instrumental Variable Vector Fitting method covered in section 2.1.2 is com-

bined with the QR Decomposition technique of section 2.1.1 to efficiently macromodel large

multiport networks characterized by noisy frequency domain data. The instrumental variable

method is used to minimize the biasing effect of the least squares caused by the noise present

in the data samples leading to more accurate solutions in fewer iterations. Furthermore, for

the case of multiport networks described by common poles, the QR decomposition proposed

in section 2.1.1 is used to decouple the equations which reduces the overall computation time

and memory requirements for calculating the transfer functions. It is illustrated that the com-

bination of the Instrumental Variable approach with QR decomposition leads to a lower errors

and faster convergence of the overall macromodel when compared to using vector fitting with

QR decomposition only (Fast vector fitting).

30
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3.1 Problem formulation and review

As with it was done in section 2.1.2, consider tabulated frequency data from measurements

Ŷ j
k = Y j

k + ε
j
k

where Y j
k is the k-th data sample of the j-th transfer function in the absence of noise and ε j

k

is the zero-mean complex random noise perturbing the k-th data sample of the j-th transfer

function. The system of equations for the j-th transfer function can be expressed as

[X − Ĥ jX]

C j

Cp

 = Ĥ j1̂ (3.1)

where C j corresponds to the unknown residues for the j-th transfer function, while Cp corre-

sponds to the coefficients used to compute the unknown common poles shared among all the

transfer functions describing the multiport network. A detailed description of the terms X, Ĥ j

and 1̂ can be found in section 2.1.1 of the second chapter.

When trying to fit a multiport network with M transfer functions (i.e j = 1, . . . ,M) using

common poles for all the transfer functions, the system of equations using (3.1) are coupled

due to the shared coefficients of Cp. To improve the efficiency of VF, a QR decomposition

method is used to decouple the system of equations, which lead to simplified set of equations

that depend only on Cp [17]. For this purpose, QR decomposition is applied to the left half

side of (3.1) for each j-th transfer function

[X − Ĥ jX] = Q̂ j

R̂
j
11 R̂ j

12

0 R̂ j
22

 (3.2)
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Next by combining the factorization of all the matrices, the following reduced set of equations

is obtained, where only the coefficients Cp are the unknowns


R̂1

22

. . .

R̂M
22

 Cp =


(Q̂1)T Ĥ11̂

. . .

(Q̂M)T ĤM1̂

 (3.3)

Since (3.3) is an overdetermined system, its least squares solution for Cp is expressed as

( M∑
j=1

[(R̂ j
22)T R̂ j

22]
)
Cp =

M∑
j=1

(Q̂ jR̂ j
22)T Ĥ j1̂ (3.4)

In order to examine how the noise biases the least squares solution of (3.4), the terms Ĥ j, R̂ j
22

and Q̂ jR̂ j
22, are written as

Ĥ j = H j + N j
h

R̂ j
22 = R j

22 + N j
rε

Q̂ jR̂ j
22 = Q jR j

22 + N j
qε (3.5)

where H j, R j
22 and Q j terms are derived from Y j

k , if the data samples had no noise, and N j
h, N j

rε

and N j
qε are due to the error ε j

k in the data samples. Since, the noisy terms N j
h, N j

rε and N j
qε are

from the same data values, the coefficients for the k-th data element are correlated. Using (3.5),

the products of the least squares solutions for the j-th transfer function become
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(Q̂ jR̂ j
22)T Ĥ j = (Q jR j

22)T H j + (Q jR j
22)T N j

h

+ (N j
qε)

T H j + (N j
qε)

T N j
h

(R̂ j
22)T R̂ j

22 = (R j
22)T R j

22 + (R j
22)T N j

rε

+ (N j
rε)

T R j
22 + (N j

rε)
T N j

rε (3.6)

Note that (Q jR j
22)T H j and (R j

22)T R j
22 of (3.6) are the matrices obtained in the absence of noise.

Since it is assumed that the biasing of the noise is zero (i.e. expected mean value, E[ε] = 0),

the expected values of the second and third terms on the right-hand side of (3.6) are also zero.

Thus, these terms do not statistically bias the results of the least squares approximation. For

the fourth terms on the right hand side of (3.6), their expected values do not equal to zero,

since they are the product of two correlated matrices. Therefore, it is due to the biasing effect

of (N j
qε)T N j

h and (N j
rε)T N j

rε, that (3.4) fails to capture actual poles of the system in the presence

of zero-mean noise.

For the implementation of the relaxed VF algorithm (RVF) [15], it can be shown that the noise

also bias the least squares solution [25]. However, because the right hand side of (3.3) does

not include (Q̂ j)T Ĥ j1̂ when implementing RVF, only the (R̂ j
22)T R̂ j

22 terms end up biasing the

solution. This contributes to RVF being able to obtain more accurate results when compared

to VF.

3.2 Proposed Algorithm

In order to minimize the biasing effect of the noise, the instrumental variable [22] method

formulates the least squares solution as
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( M∑
j=1

[(R̃ j
IV22)T R̂ j

22]
)
Cp =

M∑
j=1

(Q̃ j
IVR̃ j

IV22)T Ĥ j1̂ (3.7)

where the terms Q̃ j
IV and R̃ j

IV22 come from a QR decomposition performed on the j-th transfer

function of the system X − Ψ̂ jX. The term Ψ̂ j is constructed from different data estimates,

Ŷ j
IVk = Y j

k + η
j
k, where η j

k is the error of approximation of Y j
k and is assumed to be a zero mean

noise uncorrelated with ε j
k. Since the terms R̃ j

IV22 and Q̃ j
IVR̃ j

IV22 are formulated from a different

set of noisy data samples, they can be expressed similar to (3.5), with N j
rη and N j

qη due to the

error η j
k in the data samples.

Next, to investigate the biasing effect of the noise, the product terms of (3.7) for the j-th transfer

function are expressed as

(Q̃ j
IVR̃ j

IV22)T Ĥ j = (Q jR j
22)T H j + (Q jR j

22)T N j
h

+ (N j
qη)

T H j + (N j
qη)

T N j
h

(R̃ j
IV22)T R̂ j

22 = (R j
22)T R j

22 + (R j
22)T N j

rε

+ (N j
rη)

T R j
22 + (N j

rη)
T N j

rε (3.8)

Since it is assumed that the biasing effect of ε and η are zero, the expected mean values of the

second and third terms of the right hand side of (3.8) are zero. Furthermore, since it is assumed

that ε and η are uncorrelated to each other (i.e. E[η j
kε

j
k] = 0), the expected mean values of

the fourth terms are also zero. As a result, by using a different approximation uncorrelated to

the original data, the instrumental variable provides a statistically unbiased result to the least

squares solution of (3.7).
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In this work, the previous rational approximation of the VF method is used to create the data

samples of Ŷ j
IVk = Y j

k + η
j
k, similar to the approach described in [25]. Since the errors of

the previous rational approximation is less correlated to the errors of the original data, it is

demonstrated in Section IV that this yields better rational approximations without significantly

increasing the complexity of the VF method.

3.3 Numerical Example

3.3.1 Synthetic Transfer Function

As a proof of concept, a transfer function (TF) with known poles and residues described in

Table 3.1 with added noise is approximated. The TF is contaminated with a white gaussian

noise with a signal to noise ration (SNR) of 35 dB. the TF is sampled using 2000 evenly

spaced point that range from 0 to 10 GHz. A rational approximation is performed using the

classic VF algorithm and the proposed method, the resulting approximations are compared

with the original noiseless TF in Fig. 3.1. It can be seen that contrary to the VF algorithm,

which cannot capture all the poles, the VF-IVQR method captures all 16 poles of the original

TF. A second rational approximation is also performed with a SNR of 25 dB. Instead of using

the classic VF, the algorithms are performed using the relaxed version of VF [15]. Once again,

as it can be seen in Fig. 3.4, the RVF-QR fails to capture all the poles as accurately as RVF-

IVQR. Along with the TF approximations, RMS Error versus the number of iterations plots

are also provided for VF and RVF in Fig. 3.2 and Fig. 3.3 respectively. Table 3.2 provides

a comparison between the RVF-QR and the RVF-QRIV poles, the proposed method has very

low error when compared to the original poles of the TF, compared to the RVF-QR which has

a relatively high percentage error in one of the pole, this error gets even greater when using the

VF without the relaxed constraint.
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Figure 3.1: Rational approximations of the 35 dB SNR data.
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Figure 3.2: RMS Error versus iteration count for SNR = 35dB.
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Figure 3.3: RMS Error versus iteration count for SNR = 25dB.
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Figure 3.4: Rational approximations of the 25 dB SNR data.
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Table 3.1: Poles and Residues of the TF for Example 1

Poles (GHz) Residues (GHz)

d = 0.98

−0.6132 ± j3.4551 −0.9877 ∓ j0.0809

−0.3940 ± j7.3758 −0.2067 ∓ j0.0131

−0.0880 ± j14.3024 −0.1382 ∓ j0.0145

−0.4097 ± j17.7864 −0.1182 ∓ j0.0166

−0.2991 ± j24.4622 −0.2426 ∓ j0.0145

−0.6447 ± j35.2669 −0.4043 ∓ j0.0297

−1.0135 ± j37.9655 −0.6787 ∓ j0.1465

−0.5711 ± j57.4748 −0.2626 ∓ j0.1037

Table 3.2: Comparison of poles RVF versus RVF-QRIV after the twentieth iteration

RVF-QR RVF-QRIV

Poles (GHz) Error % Poles (GHz) Error %

−0.6203 ± j3.4514 0.067 −0.6143 ± j3.4484 0.18

−0.4017 ± j7.3789 0.05 −0.3916 ± j7.3798 0.05

−0.0821 ± j14.301 0.01 −0.08679 ± j14.300 0.02

−2.8962 ± j16.175 7.65 −0.4412 ± j17.771 0.08

−0.2862 ± j24.468 0.02 −0.2932 ± j24.469 0.03

−0.6718 ± j35.256 0.03 −0.6609 ± j35.265 0.003

−1.0025 ± j37.798 0.03 −1.0131 ± j37.798 0.03

−0.6130 ± j57.473 0.002 −0.6080 ± j57.472 0.005

3.3.2 Four Port Network

A four port network of a two differential pairs of Strada-Whisper connectors is characterized

in terms of the S-parameters measured using a vector network analyzer. A circuit description

of the four port network is provided in example 3 of [25]. Since this is a four port symmet-

ric network, ten transfer functions are fitted simultaneously using 100 common poles. The

data is fitted using VF [9], instrumental variable VF (VF-IV), relaxed VF (RVF) [15] and in-

strumental variable relaxed VF (RVF-IV), where all these methods are implemented using the
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QR decomposition algorithm. The initial guess of the poles is distributed evenly among the

imaginary axis as complex conjugate poles between 0 to 12 GHz. Fig. 3.5 shows normalized

H2-norm [18] for 10 iterations which measures the error in the magnitude of all the entries of

the S-parameter matrix. The instrumental variable was created after the first iteration for the

IV algorithms. A sample of the rational approximation for S 13 for RVF and RVF-IV, is shown

in Fig. 2.

It should be noted that the difference between the macromodels obtained from VF, VF-IV, RVF

and RVF-IV is dependent on the level of noise in the data. For high signal-to-noise ratio (SNR),

all methods will give similar results. In the proposed VF-IV and RVF-IV, the biasing effect due

to (8) is reduced since the noise matrices (using the instrumental variable approach) are less

correlated. For this example, RVF, VF-IV and RVF-IV were able to get capture the transfer

functions. Nonetheless, VF-IV and RVF-IV converged faster and achieved lower error (Fig.

3.5). As the noise of data sample increases, the instrumental variable will tend to outperform

the VF and RVF due to the reduced biasing of the least squares solution. To illustrate this point,

the noise obtained by S i j−S ji is multiplied by five and ten and added to S i j. Table 3.3 compares

the error after the tenth iteration for original and modified data. In addition, zoomed regions of

S 13 (for noise multiplied by ten) are shown in Fig. 3 to show that the RVF-IV performs better

than RVF. Since all four methods rely on QR decomposition to decouple the least squares

equations, their CPU times were close to 9 seconds using an Intel Xeon dual-processor (3.16

GHz) and 4 GB of RAM. In comparison to [25], which does not decouple the equations of

multiport network due to the common poles, the CPU time was 311 seconds.
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Table 3.3: Error comparisons for original and modified data

H2-norm

Method Original 5x 10x

VF 0.108 0.120 0.134

RVF 0.091 0.095 0.100

VF-IV 0.086 0.086 0.086

RVF-IV 0.086 0.086 0.086
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Figure 3.7: Rational approximation of S 13 (added noise) using RVF and RVF-IV.



Chapter 4

Delay Extraction Loewner Method

4.1 Introduction

Methodologies to obtain delayed rational functions have been proposed in [30, 35] using the

VF approach for the attenuation losses approximations. However, these delayed rational func-

tion techniques have not been extended to the LM approach. In this chapter, delayed rational

approximations from tabulated frequency data are derived using the LM method, based on the

concepts developed in [36]. The method uses explicit delay extraction to extract propagation

delays estimates and partitions the data into single delay regions using a time-frequency trans-

form. A new approach to refine the delay estimates for each partitioned region is also proposed

using the LM method. Once the best delay estimates are identified, the LM method is used

to obtain rational approximations for each region. The developed delay extraction LM algo-

rithm is also applied to multi-port networks. Numerical examples are presented to illustrate

efficiency of the proposed method compared to traditional Loewner where the delays of the

transfer function are not extracted.

42
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4.2 Macormodels with Delays and Review of General Time-

Frequency Decomposition

4.2.1 Theoretical Motivation

The main objective of the proposed method is to produce a delayed rational function of the

following form:

Hi j(s) =

M∑
m=1

H(m)
i j (s)e−sTm (4.1)

where Tm is the mth propagation delay and H(m)
i j (s) is the delay free rational approximation cor-

responding to mth delay. In practice, it is possible to approximate a long interconnect without

the extraction of the delay terms, however this generally results in a very high number of poles,

which makes the transient analysis computationally intensive. By extracting the delay, the at-

tenuation losses can be approximated by low order rational function [13,14,29–31,35,37]. The

next section presents an overview of estimating the delays when dealing with electrically long

distributed networks characterized by measured or simulated data.

4.2.2 Time-Frequency Decomposition

The delay extraction is done using the concept of the time-frequency decomposition trans-

forms. A time-frequency transform relates Hi j(s) to Fi j(ω, τ) with the following relation:

Fi j(ω, τ) =

∞∫
−∞

Hi j(ζ)W(ζ − ω)e jζτdζ (4.2)
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where W(ζ − ω) is a window centred at ζ = ω of specific width L [34, 38] It is observed from

(4.2) that if W = 1, then the equation becomes the standard definition of the Inverse Fourier

Transform (IFT). Therefore the time-frequency transform can be thought of as an IFT of Hi j(s),

that only retains the frequency components in the frequency band of the filtering window W.

In this work, the Gabor transform [34,38] is used, since it provides optimal support in both the

time and frequency domain. The energy contents of Fi j(ω, τ) over time is obtained by,

ηi j(t) =

∞∫
−∞

|Fi j(ω, τ)|2dω (4.3)

where the propagation delays can be identified as the local maxima of the ηi j(t) function [30].

The inverse of (4.2) is defined as [34, 38]:

Hi j(ζ) =
1

2π

∞"
−∞

Fi j(ω, τ)W(ζ − ω)e− jωτdωdτ (4.4)

Using (4.3), the reconstruction of Hi j(ζ) can be done by splitting the time-frequency plane into

separate regions Ωm and performing the integral (4.4) over each region as follows [29, 30]

Hi j(ζ) =
∑

k

H̃(m)
i j (ζ)

H̃(m)
i j (ζ) =

1
2π

"
Ωm

Fi j(ω, τ)W(ζ − ω)e− jωτdωdτ (4.5)⋃
m

Ωm = R2

The summation of each integral of (4.5) leads to the reconstruction of Hi j(ζ). The time-

frequency transform discussed above, provides a way to extract delays from electrically long
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distributed networks characterized by measured or simulated data.

4.3 Proposed Algorithm

Once the delays are determined from the measured data, the proposed work approximates

the attenuation losses corresponding to each delay using a Loewner matrix approach. The

steps involved are identifying of most significant propagation delays, partitioning of the time-

frequency plane in regions and performing rational approximation of the attenuation losses

using Loewner matrix.

4.3.1 Estimation of Propagation Delays and Partitioning Regions

The first step of the proposed algorithm is to estimate the propagation delays, given the tab-

ulated data Hi j. The time-frequency representation Fi j(ω, τ) is computed using (4.2). Once

the time-frequency plane is obtained, evaluating the energy content over time ηi j(t) using (4.3)

provides estimates of the propagation delays, as the time values of the local maxima [30].

In order to extract the most relevant delays, all delay terms with relative energy contributions

below a user-chosen tolerance ε are not taken into account

n̂(k)
i j∑

k

n̂(k)
i j

< ε (4.6)
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where n̂(k)
i j is the energy content of a local delay evaluated as [30]

n̂(k)
i j =

1
2π

∫ τk

τk−1
ηi j(τ)dτ (4.7)

where τk−1 and τk correspond to local minimums between the kth local maximum of the func-

tion ηi j(τ). The value of ε is problem dependent and is chosen such that the energy contribution

of the neglected delays does not significantly affect the accuracy of the model [30, 31].

Once the estimated delays are identified, the next step is to split the time-frequency plane in

such a way as to get delay regions. The method used to split the plane is the same as the one

proposed in [30, 31]. The partitioning for the (ω, τ) plane into Ωm is done by choosing a point

tk between adjacent delays Tk and Tk+1, where the value of the energy content at that point is

lower than a predefined value δ

ηi j(τ = tk) < δ (4.8)

Using (4.7), regions Ωm are defined to be regions between two adjacent minima tk and tk+1,

expressed as follows:

Ωm ∈ {(ω, τ) : 0 ≤ ω ≤ 2πFmax, tk ≤ τ ≤ tk+1} (4.9)

Depending on the value of the estimated delay computed using the time-frequency transform,

the order of the rational approximation that is chosen is not always optimal, therefore an extra

step is also needed to optimize the delay. This step is important since an optimized delay can
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reduce the order of the rational function of each region Ωi. In this work, the delay optimization

is performed using a similar method to what is done in [37], however, instead of using the error

of the rational approximation for different delay values, the optimized delay is determined by

considering the normalized singular values drop obtained from the SVD of the Loewner matrix.

Details of how to select the optimized delay which leads to a low order rational approximation

will be provided once LM method is presented.

4.3.2 Estimating Attenuation Losses H(m)
i j (s)

Once the Ωm regions are determined, the last step involves computing the attenuation losses

rational function corresponding to each region. There are two cases that can arise when es-

timating attenuation losses; regions where there is only one identified delay peak in Ωm and

regions where there are more than one identified delay peak present in Ωm.

For the case where there is only one identified delay peak, the goal is to evaluate

H̃(m)
i j (s) ≈ H(m)

i j (s)e−sTm (4.10)

where Tm is the known extracted delay and H̃(m)
i j (s) is obtained using (4.5).

To get the rational approximation H(m)
i j (s) for each region, the frequency domain data is ex-

pressed as

{sk, H̃
(m)
i j (sk)e+skTm} (4.11)
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where k = 1, . . . ,K, and K is the number of data points.

The Loewner Matrix method [18] seeks to macromodel the attenuation losses H(m)
i j (s) ≈ H̃(m)

i j (s)e+sTm

as

H(m)
i j (s) = C(sE − A)−1B + D + sY∞ (4.12)

where A,E ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n,D ∈ R,Y∞ ∈ R describe the system of order n. The

descriptor state space matrices A,B,C, and E are obtain as follows.

The method to obtain these state space matrices are done using what is described in section 2.2

of the second chapter.

As mentioned in Section III.A, to get a low order n for each delay region Ωm, an optimization

step is performed. Different delay estimates over a small range centered around the estimated

value Tm are used in (4.10). The optimized delay is determined by considering the normalized

singular values Σ drop obtained from (2.31) that gives the lowest order n.

For the case when more than one identified delay exist in the region Ωm, the goal is to evaluate

H̃(m)
i j (s) ≈ H(m)

i j (s)e−sTm (4.13)

H(m)
i j (s) =

N∑
n=1

H(n,m)
i j (s)e−s(Tn,m−Tm)

where N is the number of delays clustered together within a single region Ωm. Due to the close

proximity of the delays Tn,m, the attenuation losses H(n,m)
i j (s) cannot be evaluated individually,
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however since the delays within the same region lie very close to each other, each e−s(Tn,m−Tm)

will have a very small contribution to the approximation H(m)
i j (s). Therefore, by choosing the

first value of the delay as Tm = T1,m, H(m)
i j (s) can still be approximated with a low order rational

function using the LM method. A summary of the steps of the overall proposed method can be

found in algorithm 1.

Step 1: Obtain Hi j(s) frequency tabulated data from EM simulation or measurements, for
frequency points s = {s1, . . . , sK}.

Step 2: Compute the Time-Frequency transform Fi j using (4.2).
Step 3: Compute energy function ηi j using Fi j from step 2, and identify propagation delays

as local maxima. Select only the delay terms that satisfy the conditions of (4.6), (4.7), and ε
to discard the delay terms that don’t significantly affect the accuracy of the model.

Step 4: Partition the Time-Frequency plane, using (4.8),(4.9), and δ.
Step 5: Refine the delay value obtained from (3) for each region using (4.10) with different

delays over a small range centered around the estimated value Tm. The optimized delay is
determined by considering the normalized singular values drop that gives the lowest order
n.

Step 6: Apply the LM algorithm on each delay-free data computed as

H(m)
Di j(s) = H(m)

i j (s)e+sTm

for m = 0, . . . ,M − 1 regions.
Step 7: Obtain the final low-order model (4.1) as a sum of the M terms computed in step 6.

Algorithm 1: Proposed Delay Extraction LM method

4.4 Numerical Examples

In this section, three examples are presented to validate the proposed method. The work was

done using MATLAB [39] The order of the macromodels are shown with and without delay

extraction.
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4.4.1 Synthetic Transfer Function

To validate the proposed method, a transfer function (TF) with known poles, residues and

delays (described in Table 4.1) is approximated. The delay extraction is performed using a

tolerance value of ε = 1e − 4 in (4.6). The original estimates for the delays were {20.0, 70.3}

ns. Then, following the procedure of step 5 in algorithm 1, the estimates were refined to

obtain values of {20.0, 70.0} ns for delay region one and two respectively. An illustration of the

normalized singular values of the second region using the original and optimized delays can

be seen in Fig 4.1. The optimization chose 70 ns for the delay of the second region since it

resulted in the lowest number of singular values above the selected threshold. Fig 4.2, shows

the plot of the normalized singular values for the regions of the delayed rational approximations

and for the LM without delay extraction. Since the most significant drop for the delayed

rational function happens at the beginning, an order of 4 to 5 poles is enough to accurately

approximate each region. For the LM without the delay, the significant drop in the singular

values occurs in the 1400 poles range. Fig 4.3 shows the real part of the TF and is compared

with the proposed method (4 poles for each region), LM with 1410 poles (corresponding to

a threshold value of 1e-5 (the red dashed line in Fig 4.2(b))). In addition, an extra LM with

600 poles (corresponding to a threshold value of 1e-1 (the black dashed line in Fig 4.2(b)))

with the same threshold as the one used for the proposed method was also computed. Both

the proposed and the LM with 1410 poles show accurate results, as opposed to LM with 600

poles where it is less accurate. Using the proposed approach resulted in a macromodel with 8

poles, a significant improvement compared to LM without delay extraction. Table 4.2 shows

the poles and residues calculated and the percentage error with respect to the real and imaginary

parts. It should be noted, that VF can also approximate each delay region with the same order

as the proposed method. However, with VF there is no direct way to determine the order

of each region beforehand and requires fitting the data with varying order to obtain the best

approximation.
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Table 4.1: Poles, Residues and Delays of the TF

Poles (GHz) Residues (GHz)

Delay = 20ns

−0.6132 ± j3.4551 −0.9877 ∓ j0.0809

−0.3940 ± j7.3758 −0.2067 ∓ j0.0131

Delay = 70ns

−1.0135 ± j37.9655 −0.6787 ∓ j0.1465

−0.5711 ± j57.4748 −0.2626 ∓ j0.1037

Table 4.2: Calculated poles and residues compared with theoretical values

Theoretical Calculated Error

Poles (GHz)

−0.6132 ± j3.4551 −0.6133 ± j3.4534 0.05%

−0.3940 ± j7.3758 −0.3929 ± j7.3748 0.01%

−1.0135 ± j37.9655 −1.0131 ± j37.9660 0.00%

−0.5711 ± j57.4748 −0.5704 ± j57.4760 0.00%

Residues (GHz)

−0.9877 ∓ j0.0809 −0.9880 ∓ j0.0838 0.06%

−0.2067 ∓ j0.0131 −0.2060 ∓ j0.0136 0.33%

−0.6787 ∓ j0.1465 −0.6783 ∓ j0.1465 0.05%

−0.2626 ∓ j0.1037 −0.2620 ∓ j0.1035 0.21%

4.4.2 PCB board interconnect data

The second example corresponds to a four-port network of an 8 inch PCB interconnect (cour-

tesy of Broadcom). The network is characterized by actual measurements up to 20 GHz of the

S-parameters using a vector network analyzer.

The time-frequency transform and the energy functions of all the S-parameters are evaluated

Table 4.3: Time Axis Partitioning of (ω, τ) Plane of Example 2

Regions S11 S12 S13 S14 S22 S23 S24 S33 S34 S44

Ω1 [0.00 2.90] [0.00 41.50] [0.00 2.1] [0.00 2.45] [0.00 11.00] [0.00 2.40] [0.00 1.65] — [0.00 6.45] —
Ω2 [2.90 4.95] — [2.1 5.00] — [2.40 5.55] — [1.65 4.80] [2.10 6.00] — [2.30 5.30]
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Figure 4.1: Normalized singular values of region 2.

Table 4.4: Estimated delays versus optimized delays for Example 2 (Times in ns)

Regions S11 S12 S13 S14 S22 S23 S24 S33 S34 S44

Ω1 Est. — 1.35 0.220 3.386 — 1.350 0.200 — 1.300 —
Opt. — 1.285 0.198 3.029 — 1.264 0.184 — 1.284 —

Ω2 Est. 2.403 — 2.508 — 2.403 — 2.550 2.560 — 2.545
Opt. 2.225 — 2.390 — 2.225 — 2.315 2.230 — 2.220
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Figure 4.3: Frequency Response.

using (4.2) and (4.3). The results of the of energy spectra η11(τ) and η13(τ) for S 11 and S 13

respectively, are shown in Fig 4.4. Once the energy functions are determined, the delays of the

systems are determined using (4.6) and (4.7) with a a threshold of ε = 1e − 5. The partitioning

of the time-frequency plane is done using (4.8) and (4.9), using a threshold of δ = 1e − 6 to

identify the suitable partition points. Table 4.3 presents a summary of the identified partition

points for all the transfer functions. Once, the regions are well defined, Ỹ (m)
i j (s) are evaluated

using (5). In order to ensure that the data for each region is fitted with low order rational

functions, the delays are refined using step 5 of algorithm 1. Table 4.4 shows the original

delays computed as well as the optimized ones. Fig. 4.5 shows the normalized singular values

plots of S 13 for the computed delay regions of the proposed method and LM method without

delay extraction. Based on these plots, an order of {10, 21} poles for regions one and two,

respectively, were selected, while LM without delay extraction required 80 poles for similar

accuracy. A summary of the selected order for each region for all the transfer functions along
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Table 4.5: Results of the Rational Approximations of Example 2

LM Proposed
Ω1 Ω2 Total

S11 70 20 24 44

S12 60 8 — 8

S13 80 10 21 31

S14 50 10 — 10

S22 75 20 26 46

S23 48 9 — 9

S24 88 24 14 38

S33 70 22 25 47

S34 55 10 — 10

S44 72 24 20 44

with the order of the LM without delay extraction is presented in Table 4.5. The attenuation

losses S (m)
i j (s) are evaluated as rational functions using the LM method on the data set of (10)

for each region.

Fig 4.6 and 4.7 shows the frequency-response of S 11 and S 13 fitted using proposed method and

the LM method without delay extraction. For this example, the proposed method resulted on

on values ranging from 2 to 7 times fewer poles than LM without delay extraction.

4.4.3 Three port distributed network

A three-port distributed network is considered (as shown in Fig. 4.8) in this example. It

consists of three subnetworks, containing two coupled transmission-lines. The per-unit-length

parameters for subnetwork 1 are:
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Figure 4.4: Energy functions of (top) S 11 and (bottom) S 13
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Figure 4.5: Normalized singular values (top) Proposed method (bottom) LM without delay
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Figure 4.7: Comparaison of Proposed method and LM with the Data for S 13.
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Figure 4.8: Three-port circuit of example 3

R =

0.742 0

0 0.742

 Ω/cm

L =

 3.36 0.865

0.865 3.36

 nH/cm

C =

 1.29 −0.197

−0.197 1.29

 pF/cm

G =

[
0
]

mho/cm

and the per-unit-length parameters for subnetwork 2 and 3 are:
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Table 4.6: Time Axis Partitioning of (ω, τ) Plane of Example 3 (Times in ns)

Regions Y11 Y12 Y13 Y22 Y23 Y33

Ω1 [0.00 5.30] [0.00 7.50] [0.00 8.00] [0.00 4.50] [0.00 11.00] [0.00 4.50]

Ω2 [5.30 11.30] [7.50 14.75] [8.00 14.8] [4.5 10.30] [11.00 17.50] [4.50 10.80]

Ω3 [11.30 18.80] [14.75 21.25] [14.8 21.8] [10.30 18.00] [17.5 24.5] [10.80 18.00]

R =

0.803 0

0 0.803

 Ω/cm

L =

4.76 1.1

1.1 4.76

 nH/cm

C =

 2 −0.58

−0.58 2

 pF/cm

G =

[
0
]

mho/cm

The lines are of length l1 = 5cm and l2 = 35cm for the subnetwork one and subnetworks two

and three, respectively. The three-port network is characterized by its Y-parameters response as

tabulated data over a bandwidth of 0 to 3.5 GHz, generated using HSPICE. The time-frequency

transform and the energy functions of all the Y-parameters are evaluated using (4.2) and (4.3).

The results of the of energy spectra η11(τ) and η12(τ) for Y11 and Y23 respectively, are shown in

Fig 4.9.

Once the energy functions are determined, the delays of the systems are determined using (4.6)

and (4.7) with a a threshold of ε = 1e− 5. The partitioning of the time-frequency plane is done

using (4.8) and (4.9), using a threshold of δ = 1e − 6 to identify the suitable partition points,

Table 4.6 presents a summary of the identified partition points for all the transfer functions.

Once, the regions are well defined, Ỹ (m)
i j (s) are evaluated using (4.5). In order to ensure that the

data for each region is fitted with low order rational functions, the delays are refined using step
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Figure 4.9: Energy functions of (top) Y11 and (bottom) Y23
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Figure 4.10: Normalized singular values (top) Proposed method (bottom) LM without delay
extraction.
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Table 4.7: Estimated delays versus optimized delays for Example 3 (Times in ns)

Regions Y11 Y12 Y13 Y22 Y23 Y33

Ω1 Est. — 3.297 3.386 — 6.077 —

Opt. — 3.297 3.029 — 6.348 —

Ω2 Est. 6.738 9.518 9.685 6.547 12.880 6.253

Opt. 6.775 9.000 9.260 6.143 12.562 6.239

Ω3 Est. 13.130 16.551 16.470 12.820 19.176 13.060

Opt. 12.891 15.811 14.847 12.087 18.378 12.469

Table 4.8: Results of the Rational Approximations of Example 3

LM Proposed
Ω1 Ω2 Ω3 Total

Y11 100 20 14 24 58

Y12 115 8 15 20 43

Y13 180 12 14 15 41

Y22 115 20 20 20 60

Y23 120 14 20 30 64

Y33 120 20 16 20 56
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Figure 4.11: Comparaison of Proposed method and LM with the Data for Y11 (a) and (b); and
Y23 (c) and (d)
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5 of algorithm 1. Table 4.7 shows the original delays computed as well as the optimized ones.

Fig. 4.10 shows the normalized singular values plots of Y23 for the computed delay regions of

the proposed method and LM method without delay extraction. Based on these plots, an order

of {14, 20, 30} poles for regions one to three respectively was selected, while LM without delay

extraction required 120 poles for similar accuracy. A summary of the selected order for each

region for all the transfer functions along with the order of the LM without delay extraction

is presented in Table 4.8. The attenuation losses Y (m)
i j (s) are evaluated as rational functions

using the LM method on the data set of (4.10) for each region. Fig 4.11 and 4.12 shows the

frequency-response of Y11 and Y23 fitted using proposed method and the LM method without

delay extraction. For this example, the proposed method resulted on an average of 2.4 times

fewer poles than LM without delay extraction.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work, two efficient method to deal with tabulated data are presented, they seek to address

two common problems when using curve fitting techniques to macromodel: data contaminated

by noise and data that arise from long interconnect circuits. The first problem can cause the

rational approximations to be inaccurate, while the second problem tends to produce rational

approximations with higher order which can cause problems when using the models during

transient analysis.

In chapter 2, an overview of the methods for the case when an analytic model is not easy to

obtain is done. The methods presented fall under the rational curve fitting techniques category.

The chapter focuses on two popular rational curve techniques, vector fitting (VF) and Loewner

matrix (LM), along with some of the issues that can be encountered when macromodeling

networks characterized by tabulated data.

In chapter 3, an instrumental variable QR decomposition approach is presented for vector fit-

68
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ting and relaxed vector fitting to model multiport networks characterized by noisy frequency

domain data. Using the concept of instrumental variables, wherein another set of tabulated is

obtained, assuming that the noise of the two sets of noisy data are not very correlated, the bias

due to the noise can be diminished.

In the proposed technique, it was shown that by taking the rational approximation of the previ-

ous iteration to create the instrumental variable, the biasing effect of the least squares solution

caused by the noise of the data sample is minimized. This leads to an improved accuracy of

the rational approximations.

In chapter 4, a modified version of the Loewner Method has been presented to obtain delay

rational macromodel of distributed networks with electrically long interconnects characterized

by frequency-domain tabulated data. Using a time-frequency transform, the propagation delays

of the network are extracted and used to partition the time-frequency plane to create single

atom, each containing a single delay. Then, the Loewner method is used to create low order

rational approximations of each attenuation losses associated with the delay regions. Once all

the region have been approximated, the final model is the combination of the delay rational

approximations. Numerical examples were presented to validate the method and have shown

that the method can be used to produced efficient and accurate methods that can be further used

during transient analysis.

5.2 Suggestion for Future Research

There are many areas that can be explored further using the work presented in this thesis, some

suggestions are presented in this section.

1. One area that could be pursed would to apply the Instrumental variable concept with the

Loewner matrix method, indeed preliminary work done on the Loewner matrix frame-
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work when dealing with noisy data shows that the method has trouble fitting the data.

One way to deal with this problem would be to apply what was done with the instrumen-

tal variable vector fitting to the Loewner method. However, since the Loewner method

is not iterative like vector fitting, a new instrumental varible data would need to be done.

An early suggestion could be to mix and match the resulting matrices from two differ-

ent Loewner matrices obtained from two different data sets. This would create a new

descriptor state space system.

2. Another are to explore would be to expand on the method of delay macromodels using

Loewner. However, instead of fitting the regions one by one and that combining them. A

more efficient way would be to fit them globally, that way some errors introduce by the fit

of each individual region would be reduced. This proposed method would be equivalent

to what is done in the compact macromodeling technique described in chapter 2.
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