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Abstract 

Escherichia coli O157 is a persistent pathogen linked to food and waterborne infectious 

outbreaks with severe health consequences such as hemorrhagic colitis and hemolytic-

uremic syndrome (HUS). Because it is considered one of the major pathogens that 

contributes to the global burden of foodborne disease, its early detection within the food 

chain is an important milestone towards reducing foodborne diseases and economic losses 

due to contaminated food. Herein, the development and validation of a lateral flow 

immunoassay (LFIA) point-of-care (POC) device is described. Application of the LFIA 

test kit was focused on detection of E. coli O157 in raw meat products due to the fact that 

ground beef has been one of the major food items implicated in E. coli outbreaks and recalls 

within Canada. Moreover, the LFIA Test Kit was subjected to an independent validation 

study based upon Health Canada’s guidelines for the validation of alternative 

microbiological methods as established in the Compendium of Analytical Methods. The 

protocol comprised a pre-collaborative study, where the LFIA Test Kit was compared 

against the reference culture method, MFHPB-10, using eight different raw meat products 

following an unpaired samples experimental layout. The results demonstrated that the 

newly developed LFIA Test Kit exceeds the performance parameters criteria established 

by the Microbiological Methods Committee (MMC), thus suggesting that the LFIA Test 

Kit represents a reliable alternative for meat producers in order to obtain presumptive 

presence/absence results in less than one day. The design and expression of a single-chain 

variable fragment (scFv) targeting E. coli O157 is also presented. Recombinant antibody 

fragments such as scFv have not been extensively exploited within food safety diagnostics, 

especially for pathogen detection. Thus, in this project the anti-O157 mouse monoclonal 

antibody (mAb) used as the detection reagent in the LFIA Test Kit was genetically 

sequenced prior to bioengineering a scFv that could potentially be used to improve the 

performance of the LFIA Test Kit. 
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CHAPTER 1 INTRODUCTION 
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1.1. General Overview of Food Safety 

 Food Safety 

The World Health Organization (WHO) defines food safety as a set of actions necessary 

to ensure that all food is as safe as possible throughout the production chain (1). Moreover, 

it is considered a multidisciplinary activity that requires full integration of a broad spectrum 

of disciplines, from technological to legal, while requiring the engagement of the different 

stakeholders within the food supply chain in order to create a successful food safety 

management system. Borchers et al. defined food safety as a “reasonable certainty of no 

harm” because it is impossible, from a feasible and economic perspective, to ensure with 

absolute certainty that all food will be safe (2). In addition, food safety can be considered 

as an intrinsic attribute that refers to the absence of hazards with an acceptable risk (3).  

In the last few decades, food safety has been gaining more attention as a global health issue 

due to the huge impact that foodborne illness is having on public health and socio-

economic development (4). Main concerns involve the emergence and/or redistribution of 

microbial and chemical hazards (e.g. mycotoxins), especially due to extreme weather 

conditions (5–7) and the increase in global food trade (7,8). Safe food and water supplies 

are relevant components of a healthy environment; therefore any new threats caused by the 

world’s evolution and dynamics can alter the agro-food production chain. The latest 

estimations from WHO indicate that >200 different diseases, including diarrhea and 

cancer, are linked to consumption of unsafe food (9), causing approximately 1 in 10 people 

worldwide to become ill and 420,000 to die annually, representing 33 million disability-

adjusted life years (DALYs)1 lost due to consumption of unsafe food (10). Specifically 

within Canada, approximately 3,000 food safety investigations are carried out each year, 

resulting in almost 250 recalls with an estimate of 4 million cases of food-related illness 

reported annually (11).  

                                                
1
 The disability-adjusted life year (DALY) measure was developed by the WHO to summarize the years of 

healthy life lost due to an acute illness and sequelae because it includes data on premature mortality and 
morbidity (58). 
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In fact, in 2000 food safety was recognized as an essential public health function by the 

Member States of the WHO (1). More recently, in April 2015, the WHO official World 

Health Day was dedicated to raising awareness about food safety and to highlight the 

impact of food safety on public health (9). At the national level, governments have 

implemented new programs and initiatives with the aim of increasing food safety 

awareness among all parties involved in food production, from farm-to-table and from 

governments-to-consumers. As an example, in 2010 the Healthy People 2020 initiative was 

launched in the USA. Included as one of its main goals is the reduction of foodborne 

diseases by improving food safety measures (12). Meanwhile in Canada, the Safe Food for 

Canadians Action Plan came into force in 2015. Among the activities included in this 

Action Plan are strengthening and developing food safety rules to update the Canadian 

food safety system and to better protect Canadians from food safety risks as a result (13).  

1.1.1.1 Microbiological food safety  

The WHO recently published the latest burden of foodborne illnesses, where a total of 600 

million cases and 418,000 deaths worldwide were estimated in 2010 (4). Interestingly, 

more than 50% of these estimates (360 million cases and 273,000 deaths) were linked to 

bacterial agents (4), emphasizing their prominent role as food safety hazards. In addition, 

the latest data from the Centers for Disease Control and Prevention (CDC), estimated that 

14 million illnesses, 60,000 hospitalizations, and 1,800 deaths occurred annually in the 

USA due to known foodborne pathogens (2). The CDC identified seven bacterial pathogens 

and two parasites as the major causes of foodborne illnesses with an incidence (in cases 

per 100,000 people, in 2008) of 12.68 for Campylobacter, 16.2 for Salmonella, 6.59 for 

Shigella, 2.25 for Cryptosporidium, 1.12 for Escherichia coli O157, and <1 for the other 4 

pathogens (Listeria, Vibrio, Yersinia, Cyclospora) (2). In Canada, 1.6 million cases of 

domestically acquired foodborne disease happen annually caused by 30 known pathogens 

(14). Based on these data, the first Canadian report of hospitalizations and deaths due to 

foodborne diseases estimated that 3,943 hospitalizations and 105 deaths are caused every 

year, from which 66% and 76%, respectively, are due to bacterial pathogens (15). Of note, 

the top bacterial pathogens found to cause most of the foodborne illness cases are 

C. perfringens, Campylobacter spp. and nontyphoidal Salmonella spp., in this order (14). 
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These differ from those considered to be major contributors to the number of 

hospitalizations (nontyphoidal Salmonella spp., Campylobacter spp. and verotoxigenic 

E. coli O157 (VTEC O157), in order) and deaths (L. monocytogenes, nontyphoidal 

Salmonella spp., and VTEC O157, in order), suggesting that the latter tend to have more 

severe outcomes (15). The statistics presented showed that foodborne pathogens result in 

considerable morbidity and mortality. Unlike toxic agents, foodborne pathogens can enter 

at almost any stage during the food production chain. In addition, bacterial pathogens can 

easily reach a new host using food as a vehicle because they can adapt, survive and/or grow 

within the food chain (8,16). Moreover, foodborne pathogens are dynamic and their effects 

are difficult to predict; they are constantly evolving into new, resistant strains and emerging 

in unusual food commodities (8). For this reason, microbiological food safety requires 

different approaches and strategies than food toxicity, in order to counteract the challenges 

that microorganisms represent to food safety (16). Specifically within Canada, the Safe 

Food for Canadians Framework is expected to establish effective prevention and control 

measures targeting the pathogens responsible for the greatest burden of disease and most 

severe illness. Focusing on microbial food safety, such measures include more stringent 

controls and testing requirements for pathogens like E. coli and Listeria, better tracing 

systems and compliance verification (11).  

1.2. Escherichia coli O157 and Its Role in Food Safety  

 General Overview of Pathogenic E. coli 

Through the years, Escherichia coli spp., a Gram negative facultative anaerobe, has been 

one of the most studied microorganisms. Although it is a typical resident of the human and 

animal intestinal tracts (17–19), several strains have acquired specific virulence factors that 

are known to cause diseases to either humans or animals (20–22). Based on the virulence 

mechanism(s) they use to interact with eukaryotic cells, these pathogenic strains have been 

classified into pathotypes, six of which have been identified as diarrheagenic: 

enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli 

(EIEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), and diffusely 

adherent E. coli (DAEC) (20,22–24). EPEC and ETEC most commonly cause diarrhea in 

infants and mostly frequently in developing countries (20,24). On the other hand, EIEC, 
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which causes dysentery and bloody diarrhea, is an intracellular pathotype that invades and 

replicates within colonic epithelial cells (20,23). In fact, EIEC is the only pathotype that 

does not adhere to the epithelial cells using their fimbriae or pili, as the rest of the 

pathogenic E. coli do (22). EAEC and ETEC are known to be major causes of traveler’s 

diarrhea. In addition, the EAEC mechanism of pathogenicity relies on bacterial cell 

stacking attachment to enterocytes from either the large or the small bowel, forming 

“bricked wall” biofilms on the cell surface (20,22,25). DAEC is a relatively new pathotype, 

which requires attachment to eukaryotic cells, but through the formation of finger-like 

cellular projections that engulf the bacterial cell (20,23,26). All five of these pathotypes 

are relevant to public health due to their potential to cause disease through consumption of 

contaminated food and water. Much research has focused on understanding the EHEC 

pathotype that has been in the spotlight since the first serotype, E. coli O157:H7 was 

discovered in 1982 during an outbreak related to contaminated ground beef hamburgers 

(21,27,28). Since then, E. coli O157 has been persistently linked to food and waterborne 

outbreaks with severe health consequences including hemorrhagic colitis and hemolytic-

uremic syndrome (HUS). In addition, several studies have reported that E. coli O157 has 

an extremely low infectious dose (<100 cells) (20,26,29,30), thermal resistance above 

normal ground beef cooking temperature (71°C) (29,31,32) and acid resistance that allows 

survival in environments with low pH (33–36). These features, together with the 

production of one or both of the potent Shiga toxins, Stx1 and Stx2, (18,37,38) have made 

E. coli O157 a major foodborne pathogen that requires sensitive and precise surveillance 

coupled with control measures to counteract its public health and economic effects. 

 Main Reservoirs and Transmission  

Through the years, the primary reservoir of E. coli O157 was shown to be the gut of 

ruminants (39,40), most frequently cattle, sheep, and goats (40,41). However, cattle are 

considered the major source of E. coli O157 (31,39,40) mainly due to the consumption of 

beef, which can become contaminated during slaughtering through contact of the carcass 

with hides contaminated with feces (27). In fact, from all food categories, ground beef has 

been consistently considered as the main cause of human EHEC infections (27,42,43). 

Interestingly, cattle remain asymptomatic while carrying and shedding the pathogen in 
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their feces (43–45) at a typical range of 10 to 100 CFU/g of feces (44). Normally, E. coli 

O157 is found at the terminal end of the colon, although colonization has been shown to 

be more prominent at the recto-anal junction (44,46). This has led to the hypothesis that 

some cattle, called “supershedders”, can excrete higher levels, >104 CFU/g of feces, of 

E. coli O157 (18,44,46,47). Although they represent less than 10% of the total cattle, 

studies have shown that “supershedders” might be responsible for 99% of the E. coli O157 

environmental contamination (44). This represents a major risk factor for humans because 

E. coli O157 is known to remain viable in feces, soil, and water for extended periods of 

time (40,46). For example, contamination of produce fields directly with feces or indirectly 

through contaminated water has been traced as the potential cause of the increasing number 

of E. coli O157 outbreaks linked to leafy green vegetables (45,48).  

Focusing on North America, two recent studies estimated that 65-68% of E. coli O157 

infections in the USA are transmitted by food products (27,43). In fact, many of the recent 

outbreaks are linked to leafy vegetables, which, together with beef, caused >25% of the 

E. coli O157 outbreaks and >40% of the illnesses reported in the 2003-2012 period in the 

USA (27). In agreement with USA findings, the most recent source attribution of enteric 

illness data in Canada estimated that foodborne transmission is still considered the main 

route (49). However, these estimations were obtained through an expert elicitation rather 

than an outbreak data analysis and were based on the analysis of a broad range of 

transmission routes, including water, person-to-person and animal contact in addition to 

food. Concerning this, E. coli O157 outbreaks are also linked to additional minor 

transmission routes besides contaminated food (2,27,43,44), such as water (2,27,43,44), 

direct contact with infected animals (27,43,44) or their environment (27,43) (Figure 1A). 

Moreover, person-to-person contact and fomite are also possible sources (27,43), although 

from 1982-2002 it only accounted for 14% of E. coli O157 outbreaks, mainly in child 

daycare centers (43); while from 2003-2012 it represented only 10% of the outbreaks 

identified in the USA (27). 

A different study, using a historical analysis of outbreaks from 1976 through 2005 

estimated that 37% of the E. coli infections were linked to beef while 23% and 11% were 

related to cooked multi-ingredient dishes and other types of meat except beef, respectively 
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(50). This study provided the first extensive analysis of illness attributions from Canadian 

foodborne outbreaks however, it did not reflect the emerging impact of fresh produce. In 

light of the high consumption rate of fresh fruits and vegetables in Canada, a recent report 

gathered data from 27 produce-related outbreaks occurring from 2001 through 2009 and 

estimated that 66% of these were caused by bacteria, of which 33% were attributed to 

E. coli O157 (51). These data show that, together with beef, fresh produce is becoming a 

major source of E. coli O157 infections (51). 

 Mechanisms of Pathogenesis  

E. coli O157 is considered a zoonotic foodborne pathogen of major public health concern 

and is one of the predominant pathogens in the etiology of gastrointestinal diseases. 

Infection of humans occurs after ingestion of contaminated food or water. Due to its acid 

resistance, E. coli O157 is able to overcome the acidic environment of the stomach and 

colonize the intestine, the early stage of the infection (18). It is believed that attachment to 

epithelial cells occurs in the colon and distal small intestine (22,52) through the formation 

of an attachment and effacing (A/E) lesion, which is frequently related to the development 

of bloody diarrhea and HUS (18). EHEC possesses a pathogenicity island called the locus 

of enterocyte effacement (LEE), which contains the genetic information that encodes for 

the synthesis of all proteins necessary for the A/E lesion (18,20). Intimin, which is a product 

of the eae (E. coli attaching and effacing) gene, is the outer membrane protein involved in 

the A/E lesion and is responsible for the adherence of E. coli O157 to the surface of the 

epithelial cells, triggering structural changes, such as loss of microvilli and pedestal 

formation (18,21,42) (Figure 1B). Therefore, the A/E lesion is a localized effect, whereas 

systemic complications arise due to the release of Stxs (18,37). The presence of the LEE 

virulence factor distinguishes EHEC strains from other Shiga toxin producing E. coli 

(STEC) strains. Therefore, EHEC, including E. coli O157, is considered a subset of the 

STEC group, which is known to produce hemorrhagic colitis and HUS due to the presence 

of the LEE and expression of Stxs (21,52).  
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Figure 1. Overview of the routes of transmission and human disease due to E. coli 

O157. A) The main source of E. coli O157 (cattle) is represented together with the major 

routes of transmission to humans: a) direct contact with cattle, b) consumption of 

contaminated food from bovine origin like milk and/or meat or c) through environmental 

contamination by feces that can be passed on to water or soil and thus, spread 

contamination to other food products. B) Once E. coli O157 is ingested by humans, it 

survives passage through the gastrointestinal tract until it reaches the colon, where it 

adheres to the epithelial cells through the membrane protein intimin. The latter is required 

for the formation of the characteristic A/E pedestal lesion and triggers the release of Stxs. 

The Stxs are then absorbed into blood vessels where it can travel to the kidneys, a major 

organ site for E. coli O157 infection. Images were modified from Gyles (18) and Croxen 

et al. (22). 
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Stxs are the other major virulence factor that E. coli O157 possesses. They are classified 

into two main groups, Stx1 and Stx2, based on their antigenicity (53). E. coli O157 can 

produce both or only one type of Stx (21,42,54). Although Stx1 is structurally identical to 

the toxin produced by S. dysenteriae type 1, some studies have shown that Stx2 is 1,000 

times more toxic for renal cells thus Stx2 is commonly associated with the pathogenesis of 

HUS (18,21,42,54). Once the A/E lesion is formed, Stxs are released and bound to their 

receptor within epithelial cells (18), triggering the uptake of the toxin by endocytosis 

(18,21). It is after the onset of hemorrhagic colitis that Stxs enter the blood, leading to renal 

failure associated with HUS (53) (Figure 1B). Stxs will produce damage to the vascular 

endothelial cells in the glomeruli and arterioles of the kidney, triggering clotting and 

clogging resulting in accumulation of waste in the blood (20,21), Meanwhile in the 

intestine, Stx is also involved in the development of bloody diarrhea, hemorrhagic colitis, 

and induction of apoptosis and necrosis of the epithelial intestinal cells resulting in 

perforation (20,22).  

Signs and symptoms may appear within an incubation period of 3-8 days (2,21), 

progressing from stomach cramps (2,27,54), watery diarrhea (52,54,55), bloody diarrhea 

(2,27,52,54) and vomit (2,27) to hemorrhagic colitis (52), renal failure (56) and/or HUS 

(27,52,56). However, the severity of the disease depends on complex mechanisms that 

interplay between regulation of the expression of virulence features and host factors (57). 

In fact, the role of other virulence factors can be as relevant as the LEE island, because 

atypical EHEC strains lacking the LEE have occasionally been shown to produce HUS 

(20,42,54). Additional virulence factors include hemolysin, a toxin that can contribute to 

the disruption of erythrocytes (18,21,57), O157 lipopolysaccharide that has a 

proinflammatory effect (53), and secreted proteins that aid in the formation of the A/E 

lesion (21,42), among many others.  

Recovery from the disease can take 8-10 days (2). Generally, infants, young children, the 

elderly and the immunocompromised are more susceptible. In fact, 5-15% of patients may 

develop HUS, especially young children (53–55). HUS involves acute renal failure, 

thrombocytopenia, and microangiopathic hemolytic anemia (20,21,54) with a fatality rate 
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of 3-5% (2,21). Thus far, there is no treatment for E. coli O157 infections, other than 

monitoring the illness, providing comfort, and preventing dehydration through proper 

hydration and nutrition. In addition, patients who develop complications may need further 

treatment, such as dialysis, to treat kidney failure (54). Although treatments have been 

developed, it has been shown that some E. coli O157 strains can increase the production of 

Stxs when exposed to antibiotics such as ampicillin, tetracycline or norfloxacin (55). On 

the other hand, some approaches have focused on preventing the release of Stxs during the 

diarrheal phase to decrease further damage, however results lacked efficacy (37). 

Therefore, current research is focused on improving the prevention of infections by 

adopting measures throughout the food chain to reduce the risk of transmission of E. coli 

O157 to humans. 

 Epidemiology and Economic Burden of E. coli O157 Infections 

In 2015, several published national, regional and global assessments of the burden of 

foodborne disease described E. coli O157 as one of the foodborne pathogens contributing 

to the overall burden of foodborne disease (4,15,27,58,59). The global initiative launched 

by WHO, namely the Foodborne Disease Burden Epidemiology Reference Group (FERG), 

estimated that STEC infections accounted for 1 million incidents, causing 128 deaths and 

loss of 13,000 DALYs in 2010, worldwide (4). A 2014 study of the global incidence of 

STEC infections estimated 2,801,000 acute illnesses, 3890 cases of HUS, 270 cases of 

permanent end-stage renal disease and 230 deaths annually (56). Of note, global estimates 

grouped STEC O157 and non-O157 together, however findings suggested that sequelae 

and fatalities were higher with STEC O157 cases (56). On the contrary, the number of 

STEC cases was below those attributed to other foodborne pathogens including typhoid 

fever and nontyphoidal salmonellosis nevertheless, the relevance of STEC infections relies 

on the severe sequelae that follow infection (56). Frenzen et al. reported that in the USA, 

medical care and loss of productivity due to STEC O157 cost approximately $30 million 

and $5 million in the USA annually, respectively (60). Moreover, an average of $635 

million US was estimated to be the total economic cost of 63,000 annual cases of STEC 

O157 caused foodborne illness, according to Scharff (61). On the other hand, in Canada, 

Sockett et al. estimated that long-term outcomes cost $377 million CAD annually for 
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approximately 37,800 on-going cases, while new primary cases had a cost of illness of 

$26.7 million CAD (22,300 cases annually), adding up to a total annual cost of illness of 

$403 million CAD (62). Despite these estimates being dramatic, they do not represent the 

true total cost of E. coli O157 illness because they mainly focus on medical and 

productivity losses, which ignore industrial and/or government costs (i.e. cost due to 

recalls) (61,62).  

 E. coli O157 Outbreaks, Recalls and Regulatory Aspects 

The first E. coli O157 outbreak ever reported was in 1982 during an investigation of 

hemorrhagic colitis linked to contaminated hamburgers (28,63). However, in 1992 the Jack 

in the Box E. coli O157 outbreak, the largest outbreak ever recorded up to that time, caused 

502 illness cases from which 31% were hospitalized, 9% developed HUS and 0.6% died 

(64,65). Further investigations found that improper processing and cooking of hamburgers 

were the main causes, which stimulated the establishment of regulatory measures to reduce 

meat contamination and public health actions to educate consumers about proper meat 

handling (64,65). In fact, this outbreak is considered a breakthrough in the evolution of 

food safety, especially for the control of E. coli O157 in food products. Indeed, in 1994 the 

United States Department of Agriculture Food Safety and Inspection Service (USDA-

FSIS) established that E. coli O157 was to be considered an adulterant in beef, prohibiting 

the sale of contaminated meat and, subsequently, starting programs for its detection (66–

68). Other measures that were taken to prevent outbreaks were as follows: 1) establishment 

of new cooking temperature guidelines in the Model Food Code for restaurants by the US 

Food and Drug Administration (FDA) (63,67); and 2) development of objective measures 

of meat doneness suggested by the National Livestock and Meat Board’s Blue Ribbon Task 

Force in the USA (63,67). More recently, the USDA-FSIS determined that E. coli O157 

was more prevalent than initially thought, and thus stricter regulations that included testing 

of hides and pre-eviscerated carcasses were recommended (69). These modifications to the 

testing programs influenced members of the beef industry positively, which was reflected 

in declining numbers of positive E. coli O157 beef samples and thus in the incidence of 

infection cases in 2002 (43). 
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Meanwhile in Canada, in 1990, STEC (including E. coli O157) became a notifiable disease, 

requiring the Public Health Agency of Canada (PHAC) to report any cases (66). Recently, 

the Canadian “Guidance Document on Escherichia coli O157:H7 and E. coli O157:NM in 

Raw Beef” was released. This document provides better recommendations, focusing on 

Good Agricultural Practices (GMPs) and Hazard Analysis and Critical Control Point 

(HACCP) programs, aiming to enhance the verification and control to minimize the 

prevalence of E. coli O157 in raw beef products (70). Due to the nature of raw beef, it 

possesses a high risk for contamination with E. coli O157 either during slaughtering or 

further processing and/or packaging. In addition, according to Statistics Canada and the 

Canadian Meat Council, beef continues to be the meat with the highest per capita 

consumption of 12 kg (boneless weight) annually (71). Therefore, in pursuit of minimizing 

the risk that this highly-consumed product represents to Canadians, Health Canada 

established that both precursor materials and finished raw ground beef products and beef 

products processed for raw consumption should not contain detectable levels of E. coli 

O157 (70). 

Despite the improvement of food safety practices, including creation and implementation 

of more stringent regulations, outbreaks are still occurring sporadically around the world. 

Of note, outbreaks not only have a huge health impact, but they also represent an economic 

burden for food manufacturers. In 2007, Topps Meat Company recalled approximately 

21.7 million pounds of frozen ground beef patties (72), which caused the company to leave 

the market shortly afterward (68). Moreover, global food trade means greater responsibility 

towards ensuring food safety across national borders because international distribution 

scales up the effect of potential outbreaks. Indeed, cases such as the XL Foods Inc. recall 

in 2012 proved the tremendous impact not only to the company, but also to our country’s 

beef industry. XL Foods Inc. exported products to over 20 countries; thus the safety of 

Canadian beef was questioned after the recall, not only within Canada but worldwide. This 

lead to an estimated cost to the Canadian beef industry between $16 million and $27 million 

CAD (73). Not surprising, this recall is considered the biggest recall in Canada. Some of 

the major outbreaks in North America are presented in Table 1. Although beef products 

continue to be the main source of E. coli O157 outbreaks and recalls in Canada and the 

USA (27,43,50,74), it is evident that fresh produce is becoming just as relevant in the  
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Table 1. Major E. coli O157 foodborne outbreaks in the USA and Canada, 2006-2016. 

Year Implicated food 
No. of cases 

Country Product Recall 
(lbs product) Reference 

Total Hospitalizations HUS Deaths 

2016 Jack & The Green Sprout’s alfalfa sprouts 11 2 0 0 USA NR (72) 

2015 Not identified 31 7 NR 0 Canada No (75) 

2015 Leafy greens 12 NR NR NR Canada NR (75) 

2015 Taylor Farm Pacific, Inc. celery and onion 
diced blend used in Costco rotisserie 
chicken salad) 

19 5 2 0 USA Yes (72) 

2014 Wolverine Packing Company’s ground beef 12 7 0 0 USA (1.8 million)  (72) 

2013 Gort’s Gouda Cheese Farm 28 4 1  1 Canada Yes (75) 

2013 Cardinal Meat Specialists Limited’s frozen 
beef burgers 

8 2 0 0 Canada Yes (75) 

2013 FreshPoint Inc.’s shredded lettuce 
distributed to some KFC and KFC-Taco 
Bell restaurants 

30 13 1  0 Canada Yes (75) 

2013 Glass Onion Catering’s ready-to-eat salads 33 7 2  0 USA (181,620) (72) 

2012 State Garden’s pre-packaged leafy greens 33 13 2  0 USA (31,000) (72) 

2012 XL Foods’ beef products 18 6 0 0 Canada (12 million) (75) 

2011 Romaine lettuce 58 34 3  0 USA NR (48,72) 

2011 Palmyra Bologna Company’s Lebanon 
bologna 

14 3 0 0 USA (23,000) (72) 

2011 DeFranco & Sons’s in-shell hazelnuts 161 12 0 0 USA and 
Canada# 

(20,000) (72,76) 

2010 Bravo Farms’ cheese 38 15 1  0 USA (105,000) (72) 

2010 National Steak and Poultry’s beef 21 9 1  0 USA (248,000) (72) 

2009 Chicken (suspected) 69 5 NR NR Canada NR (77) 

2009 Fairbanks Farm’s beef 26 19 5  2 USA (545,700)  (72) 
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Year Implicated food 
No. of cases 

Country Product Recall 
(lbs product) Reference 

Total Hospitalizations HUS Deaths 

2009 JBS Swift Beef Company’s beef 23 12 2  0 USA (421,280) (72) 

2009 Nestle Toll House raw refrigerated cookie 
dough 

72 34 10  0 USA 3.6 million 
packages 

(72,78) 

2008 Aunt Mid’s Produce Company’s iceberg 
lettuce 

742 21 NR 0 USA and 
Canada 

No (51,77) 

2008 Romaine lettuce 29 NR 1 NR Canada No (51,77) 

2008 Harvey’s Restaurant (Spanish onions 
(suspect)) 

235 26 NR 0 Canada No (51,77) 

2008 Kroger/Nebraska Ltd. ground beef 49 27 1  0 USA (5.3 million) (72) 

2007 Totino’s and Jeno’s frozen pizza (pepperoni) 21 8 4  0 USA 5 million pizzas (72,79) 

2007 Topp’s ground beef patties 40 21 2  0 USA (21.7 million) (72) 

2006 Lettuce (suspect) 7 NR NR NR Canada NR (51) 

2006 Natural Selection Foods, LLC’s fresh 
bagged spinach 

1993 102 31  3 USA and 
Canada# 

NR (51,72,80,81) 

2006 Taco Bell 71 53 8  NR USA NR (72) 
NR:	not	reported;	Yes:	there	was	a	product	recall	but	no	information	regarding	quantities;	No:	there	was	no	product	recall	linked	to	the	outbreak.	
1In	Canada,	8	cases	were	found,	all	of	them	hospitalized	
2Three	cases	were	in	Canada	
3One	case	was	reported	in	Ontario,	Canada.	
#The	recall	comprised	both	countries.



 

 

16 

increasing number of E. coli O157 outbreaks in Canada and the USA (43,48,51,80). In fact, 

after the 2006 outbreaks caused by fresh spinach in the USA, the FDA announced the 

implementation of the “Leafy Greens” initiative with the aim of identifying the potential 

public health concerns inherent to these products (82). Finally, outbreaks and recalls 

represent a relevant source of information and provide an opportunity to learn while 

prompting governments to improve guidelines and regulations to strengthen the food safety 

systems throughout the whole food chain.  

1.3. Current State-of-the-Art in Detection of Food Pathogens  

It is evident that food pathogen detection is an important environmental health milestone 

towards reducing the burden of foodborne diseases and economic losses due to 

contaminated food. The major objective of testing plans is to verify the adequacy of control 

manufacturing processes during food production (83). Focusing on E. coli O157, the 

impact of testing strategies on reducing risk has been proved since 2002, when the USDA-

FSIS reassessed the HACCP plans and extended the testing programs, after determining 

that E. coli O157 is likely to occur at all stages of raw beef production (69). Further 

implementation of these measures, resulted in a reduction of the prevalence of E. coli O157 

in ground beef from 0.73% in 2002 to 0.17% in 2006 (70), while the number of recalls also 

decreased from 21 in 2002 to 5 in 2005 (84). In Canada, data from 2009 have been 

encouraging, showing that testing of beef trim, potentially used for the production of 

ground beef, has prevented contaminated product to be further processed (70). Currently, 

as part of the new guidance document on E. coli O157, it is recommended that all precursor 

material used for the production of raw ground beef and beef products should be tested and 

only lots below detectable levels should be accepted (70). Therefore, testing programs, 

combined with proper sampling protocols and process controls, have played a key role not 

only in reducing the risk of E. coli O157 contamination, but also in determining the efficacy 

of the control measures established to prevent E. coli O157 contamination throughout the 

manufacturing process.  

In order to implement successful testing programs, effective detection methods must be 

available. Ideally, pathogen detection methods used for food testing should be rapid and 
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easy-to-use for early identification of potential hazards. Conversely, however, the “gold 

standard” conventional testing methods are known to be time-consuming and lengthy 

because they rely on culture, isolation, and biochemical identification. Food pathogens are 

commonly found in lower concentrations than food microbiota (85); thus a selective 

enrichment step is required to enable the recovery of the target microorganism while 

suppressing non-target organisms (86,87). The enrichment step involves transferring the 

food sample into a selective nutrient medium and incubation to allow the multiplication of 

the target pathogen to a detectable level (86,88,89). Furthermore, an isolation step using 

selective and differential agar plating helps to identify presumptive colonies of the target 

pathogen. Lastly, typical colonies are screened using biochemical and/or serological 

analysis. Presumptive results from this procedure can take up to four days, while 

confirmation may require up to one week (86,90,91). Therefore, one of the main challenges 

that food producers normally face when implementing testing protocols is that lengthy 

methods can delay the release of minimally processed products with short shelf life such 

as raw meat until they are screened and considered to be microbiologically safe (88,92). 

Consequently, a major research field has focused on the refinement of current methods and 

the development of more efficient technologies designed improve testing programs. Based 

on the needs of the food sector, three main characteristics of such tests are crucial: speed, 

sensitivity, and ease-of-use (16,91,92). Interestingly, the food pathogen testing market was 

valued at 7.42 billion USD as of 2015 and is expected to continue growing due to the 

establishment of ever more stringent regulations (93). Moreover, in a report from 2003, it 

was estimated that the beef and poultry industry in the USA performed approximately 369 

tests per processing plant per week, representing 22% of the total microbial tests within the 

USA food industry (91). Therefore, due to the establishment of new testing plans and recent 

enhancement of regulations applicable to the meat industry, it is expected that the food 

pathogen rapid testing market will continue growing.  

 Trends in Rapid Point-of-Care (POC) Methods 

The combination of scientific and technological approaches to improve global health care 

has been the basis of the exponential growth of novel POC diagnostic techniques. The main 

application of POC tests has been in the clinical diagnostics field to screen for infectious 
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diseases such as dengue, hepatitis B, HIV/AIDS, malaria and syphilis in patients from 

developing countries (94–97). The success achieved by on-site disease diagnosis and the 

rise in the market availability of POC tests helped to establish the optimal characteristics 

that a POC test should have. Indeed, in 2004 WHO’s Sexually Transmitted Diseases 

Diagnostics Initiative determined that a POC test should comply with the “ASSURED” 

principle, which means: Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-

free and Delivered (95–98). Based on this, a POC test can be defined as a simple and 

affordable assay for food producers that is performed at the location where the sample is 

found, and will provide a rapid outcome, which is crucial for taking appropriate immediate 

action (95,98,99). 

Even though most of the progress has been achieved in developing medical diagnostic 

tools, affordable and rapid technologies are also necessary to improve other fields such as 

environmental and food safety (99–101). As noted above, there is a dire need in food safety 

diagnostics for more rapid and sensitive methods that can replace traditional techniques 

that require more than two days to determine the presence of pathogens in food samples 

(91). However, due to recent advances in biotechnology, chemistry, and molecular biology, 

it has been possible to address some of the challenges that conventional pathogen detection 

possesses. In fact, significant advances towards developing rapid state-of-the-art 

microbiological methods that do not require laboratory facilities or special training so that 

they can be used throughout the food chain, but maintain high specificity and sensitivity, 

have occurred (101). The upcoming sections will provide an overview of the most relevant 

methodologies that are influencing the development of rapid POC tests for food safety. 

1.3.1.1 Molecular methods  

This research field has significantly grown in the last few decades with an increasing 

number of commercial diagnostic tools available not only in the clinical market but also in 

the food safety market. Application of nucleic acid-amplification tests (NAATs) such as 

polymerase chain reaction (PCR), quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) (90,102–107), and nucleic acid sequence-based amplification 

(NASBA) (68,86,90,106–109) have been commonly reported in the literature for pathogen 

detection. Moreover, a recent approach has focused on developing NAATs based on loop-
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mediated isothermal amplification (LAMP), with the advantage that it does not require 

thermocycling instruments or purified DNA (90,102,106), an important advantage for a 

POC test model. LAMP is known to be more specific and sensitive than standard PCR 

methods (106). Conversely, multiplex quantitative PCR (qPCR) has focused on the 

detection of several pathogens using only one sample, markedly reducing the labor 

intensive limitation of culture methods and traditional single PCR techniques 

(86,90,106,107). 

Regardless of the advantages that molecular diagnostic methods have such as specificity 

and sensitivity (95), one of their major shortcomings is they can detect DNA/RNA from 

dead microorganisms, resulting in misinterpretation of results in complex samples such as 

food (107). Moreover, most of these methods still require complex equipment, special 

training, several steps for sample preparation, and are considered to be expensive  processes 

for routine food analysis when compared to a conventional culture method (95,107,110).  

1.3.1.2 Optical methods 

Although some optical techniques have been used for more than a decade, the main 

challenge has been to transfer them into portable POC tests. The best example is surface 

plasmon resonance (SPR), which has the advantage of detecting molecular interactions 

without the need for labeled reagents (95,96). Thus, it can be used with nucleic acids or 

immunoassays (96). SPR has been used to detect C. jejuni, S. enterica ser. Typhimurium, 

Y. enterocolitica and E. coli O157, as well as other pathogens (108). Another optical 

technology that has been exploited for potential POC test development is surface enhanced 

Raman spectroscopy (SERS). Contrary to SPR, this technique requires a SERS tag 

component, normally gold or silver nanoparticles coated with a SERS dye encapsulated 

with silica and conjugated with the detection antibodies, which is combined with traditional 

Raman spectroscopy (111,112). This technique has been used to monitor, in real time, the 

growth of E. coli O157 during enrichment, showing high sensitivity and specificity with 

food samples (111). Some of the advantages of Raman spectroscopy are speed and minimal 

manipulation of samples (94). 
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1.3.1.3 Nanotechnology  

Some of the advances in nanotechnology in the diagnostics field are focused on labeling 

with metal or magnetic nanoparticles for immunoassays (96,111,113). The range of 

reagents for labeling goes from antibodies (106,114–116) to nucleic acids (99), the basis 

for biosensors (nanosensors) for real-time detection (108,117). Quantum dots are also a 

novel alternative for fluorescent labeling because they possess higher brightness, 

photostability and are more resistant to chemical degradation that traditional fluorescent 

dyes (96,99,118). In the food safety field, quantum dots have been used for detection of 

E. coli O157, Salmonella and L. monocytogenes (115). Working with nanomaterials has 

the advantage of increasing the number of reactive sites, resulting in higher sensitivity and 

specificity (94). The development of nanosensors represents a portable alternative with a 

shorter time-to-result at a low cost (117). Nanocantilevers, which are made of silicon-based 

materials and can detect biological binding interactions with high sensitivity and short 

time-to-result, exemplify this novel class of label-free nanosensors (101,117). 

1.3.1.4 Microfluidics  

Microfluidics represent a breakthrough in the POC research field with the development of 

the lab-on-a-chip or micro total analysis systems (µTAS) technology, recently applied to 

the analysis of a variety of biological samples (96,100,119). The introduction of this type 

of nanosensors has the advantage that sample processing, reactions, and reading of results 

happens in a miniature flow-through format requiring only small sample volumes 

(95,96,117). In addition, engineering efforts have resulted in platforms that are accessory-

free but contain complete analysis systems including fluid handling, and sample separation 

(119,120). Interestingly, low-cost devices have been produced using paper instead of 

plastic molds or nitrocellulose, with the extra benefit that paper allows multiplex analysis 

using microchannels (100,121,122). Moreover, paper is easily modifiable to bind proteins, 

DNA or other small molecules and allows for the development of colorimetric assays due 

to its inherent white color (122). Microfluidics have been combined with other techniques 

such as immunoassays, capillary electrophoresis, and DNA-analysis to design efficient 

microreactors (119). In fact, it has been possible to create DNA microarrays, which have 

been used to better understand the interactions between host and pathogens as well as the 
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mechanisms of microbial drug resistance (95). It is evident that microfluidics represents 

one of the most promising research areas in POC test development, with the potential to 

optimize sensitivity and specificity without requiring laboratory equipment. 

1.3.1.5 Immunoassays  

Enzyme immunoassays are one of the first described immunochemical techniques still 

widely used for diagnostics due to its ability to produce a colorimetric reaction that can be 

quantitated and visualized at a macroscopic scale (95,123). The most well-known 

immunoassay is the enzyme-linked immunosorbent assay (ELISA), which has become a 

notable tool for in vitro diagnostics, regulatory and quality assessments. Immunoassays are 

a versatile method that has been combined with several of the technologies described 

above. Recently, Weidemaier et al. reported a nanotechnology-based immunoassay using 

antibody-conjugated magnetic SERS nanoparticles added directly into the food sample, 

which capture the target pathogens as they grow and produces a real-time detectable signal 

read through the sample vessel (111). Moreover, Ho et al. developed a colorimetric 

immunoassay based POC test using immunoliposomes with an encapsulated visible dye to 

detect E. coli O157 (124). However, in light of developing POC tests, lateral flow 

immunoassays (LFIA) or immunochromatographic test strips are considered the most 

popular POC technology in clinical diagnostics (95,96). In fact, they are defined as an 

ASSURED technology (125,126). Thus, it is not surprising that it has also gained 

popularity within other fields such as food safety and has become a target technology for 

research (127). LFIAs are similar to an ELISA because they rely on the principle of 

antigen-antibody binding (128). Therefore, their sensitivity and specificity will be 

completely dependent on the concentration and accessibility of the target analyte in the 

sample, as well as of the binding strength and affinity between the antibody and the antigen 

(106). Contrary to ELISA, LFIAs have the advantage that results can be obtained relatively 

fast and do not require intensive training (95,96). Similar to other immunoassays, LFIAs 

have been combined with other techniques such as the prototype developed by Mondesire 

et al. This device consists of a POC LFIA, which relies on a solid-phase extraction merged 

with a NASBA or PCR technique for analysis of clinical samples and detection of 

pathogenic bacteria (129). Lateral flow assays that are combined with nucleic acids are 
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commonly known as NALF or NALFIA (nucleic acid lateral flow or nucleic acid lateral 

flow immunoassay). The former does not require antibodies because it uses amplicons or 

probes as capture and detection reagents, while the latter uses antibody recognition against 

a labeled amplicon (128). By combining LFIA not only with DNA/RNA techniques and 

also with nanoparticles labeling or miniaturized thin-layer chromatography, the sensitivity 

and selectivity of the assays has been improved (130). 

1.4. Overview of Lateral Flow Immunoassays (LFIAs) 

The first lateral flow or dipstick assay was developed in the 1960s for quantifying glucose 

in urine (131). Its principle relied on an enzymatic reaction that caused a color change, 

which was compared to a color chart to obtain a semi-quantitative result (131). However, 

it was two decades later, in the mid-1980s, when LFIAs were introduced to the clinical 

diagnostic field with the development of the pregnancy test (100,127). Shortly after, their 

application gradually expanded to other fields, where on/off signals were sufficient, such 

as drug screening (100), detection of cardiac markers (121), food (130,132,133) and 

environmental applications (100,130,133), particularly in resource-limited countries.  

LFIAs possess a long history within medical diagnostics. Several publications have 

focused on compiling state-of-the-art of LFIAs (130), which includes the development of 

quantitative or semi-quantitative LFIAs by using photometric readers (96,132) or signal 

amplification enhancement (95,96). However, LFIAs are relatively new in the food safety 

industry, where they have gained attention for detection of toxic compounds such as 

mycotoxins and pathogenic bacteria (90,133). Of note, detection of mycotoxins has been 

the major focus for developing quantitative LFIAs complemented with a mobile scanner 

(134–136). However, for pathogen detection, LFIAs have been unable to detect 

concentrations as low as 10 cells per g or ml, the infectious dose of some pathogens, such 

as E. coli O157 (21). Therefore, concentration techniques such as magnetic and 

paramagnetic beads (95,137,138) and/or pairing with enrichment steps (23,68,86) have 

been developed for maximizing sensitivity and improving the limit of detection. Following 

the recent implementation of stringent food safety regulations, the scientific and industrial 

desire to develop LFIAs to detect the major pathogens has increased due to their ease-of-

use, rapid outcome, and lack of training needed to perform the test. As such, development 
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of LFIAs has mainly focused on presence/absence formats for rapid and easy screening of 

food samples (90,106,133). Indeed, progress has been such that Dzantiev et al. compiled 

the recent advances on immunochromatographic assays developed for food analysis 

between 2007 and 2013 (132). These authors estimated that 14% of the scientific 

publications on immunochromatographic test systems were focused on the development of 

LFIAs for pathogen detection whereas 30% focused on mycotoxins detection. 

Furthermore, low development costs and facile production (127) give LFIAs an extra 

advantage over other technologies. From an economic perspective, a publication from 2009 

estimated that the food and beverage sector are the largest producer of rapid tests while 

being the third highest consumer of LFIA-based tests with $30 million USD generated in 

2007, just below the clinical and veterinary sectors (139). LFIAs combine the selectivity 

and sensitivity of immunoassays, such as ELISA, with the simplicity and speed of 

operation of a POC device. LFIAs are designed to provide results in less than 15 min after 

loading the sample; thus they represent an excellent alternative for the routine testing of 

food products. 

 LFIAs Principle and Main Components 

LFIAs rely on the movement, through capillarity, of a liquid sample that is initially loaded 

onto a sample pad found at one extreme of the nitrocellulose membrane, towards the other 

extreme where an absorbent pad will capture the remainder of the liquid. Capillary 

movement through the membrane allows the sample to pass through different zones, where 

immobilized recognition reagents will interact with the target analyte to form complexes 

that will attach within the test zone, while unreacted reagents will continue flowing to the 

control line, where they will attach (130,140). The target analyte complexes captured in 

the test zone will produce a visible line, similar to the one produced by unreacted reagents 

captured within the control line. However, the control line will develop whether or not the 

sample contains antigen, thereby ensuring that the test system is functioning properly 

(Figure 2).  

A typical LFIA format, besides the sample and absorbent pad, will include a conjugate 

release pad right after the sample pad, where recognition reagents are kept ready to interact 

with the target analyte as the sample starts flowing (130,140). Recognition reagents can be  
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Figure 2. Overview of the main components of a typical LFIA. Once the sample is 

applied in the sample pad, it will move through capillarity along the conjugation pad and 

nitrocellulose membrane until it reaches the absorbent pad. In the conjugation pad, the 

target antigen will react with some of the detection reagents, which will vary depending 

the type of assay (e.g. colloidal gold nanoparticles). In a direct assay, the detection 

reagent-antigen complex will continue traveling until it reaches the test line, where an 

immobilized capture reagent will trap the complexes and produce a positive signal. The 

rest of the unbound reagents bind to the control line. 
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formed by the primary detection antibody or a secondary antibody against the primary, 

which are conjugated to a label or marker (141). Although new alternatives for preparing 

recognition reagents, such as quantum dots (141,142) and liposomes with colored dyes 

(124,141,143), are being introduced, colloidal gold nanoparticles remain the most 

frequently used label alternative for LFIAs mainly due to their availability and low cost for 

large scale production (114,130,140,141). In addition, two main types of reactions are 

commonly used, which are based on the analyte to be determined. The direct assay 

normally is selected when the target has more than one epitope. In this case, the recognition 

reagent will bind to one epitope, while the capture reagent, normally attached to the test 

line, will bind an alternative epitope (130,133,140). In this case, the development of a test 

line is directly linked to the presence of the target analyte. On the other hand, the 

competitive assay is frequently selected when the target analyte is a small molecule, which 

is the case for mycotoxins (134,144). Two alternatives can be used, either the capture 

reagent is attached to the test line and labeled analyte competes with the sample analyte, or 

a protein-analyte is attached to the test line while the labeled antibody is initially mixed 

with the sample. In both cases, a colored test line will be indirectly linked to the presence 

of the target analyte in the sample (114,130,133). Therefore, because bacteria possess 

several surface antigens, the sandwich assay is preferred for development of LFIA for 

pathogen detection.  

Since the development of the LFIA technology, its main structural components have 

remained the same, while major improvements have focused on the analytical reagents and 

reaction conditions to enhance the performance of the assay according to its final 

application. In fact, the proper functionality of a LFIA depends on the selection of the 

capture and detection reagents, which are often antibodies. Generally, two types of 

antibodies are included in a sandwich assay, a polyclonal and a monoclonal antibody (pAb 

and mAb). The former is often immobilized in the test line zone acting as a capture 

antibody, while the latter will act as detection antibody either by direct labeling or by using 

a secondary labeled antibody against the mAb. Generally, the detection reagent will be 

dried in the conjugation pad, waiting for the sample to start running through the device for 

interaction with the target analyte. However, an alternative consists of the dried detection 
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reagents being stored in a tube, to which the sample is added, acting as a reconstituent, 

before inserting the LFIA test strip (145). Although both capture and detection antibodies 

are responsible for the analytical characteristics of the LFIA based on their interactions 

with the target analyte (146), mAbs are key in determining the specificity of the method. 

Therefore, efforts are continuously being made to maintain and improve the affinity of the 

mAbs. This includes using labeled secondary antibodies instead of direct labeling of the 

mAb because it has been shown that conjugation can decrease the affinity of the antibody 

while interfering in the antibody-antigen binding due to steric hindrance (130). In addition, 

research has focused on developing more specific antibodies with the adequate binding 

characteristics for their application in immunoassays. This has included optimizing 

hybridoma technologies as well as the development of antibody derivatives through genetic 

engineering (147). As a result of these approaches, LFIAs have evolved to comply with the 

needs demanded by the recent diagnostics markets. 

1.5. LFIAs for Detection of E. coli O157 in Food 

LFIAs, similar to most of the novel technologies that have been developed for pathogen 

detection, rely on biorecognition of surface antigens in order to detect whole bacterial cells 

(101). Some of the surface antigens found in E. coli O157 are commonly used as detection 

biomarkers, while also serving to classify E. coli isolates by serotyping. The latter is a 

technique based on three main antigens: “O”, “H” and “K”, which are frequently identified 

by serology (52,148). The former is the outermost variable part of the polysaccharide in 

the outer membrane (somatic antigen), the second is a flagellar protein, and the third is a 

capsular antigen (18,52,149,150). However, the K-antigen is rarely used by laboratories; 

only the O:H combination is considered the standard for classifying or serotyping E. coli 

strains (150–152). Of interest is a recent publication from the Escherichia coli O-antigen 

database (ECODAB) which suggested the existence of 180 O-antigens and >60 H-antigens 

(151). The O-antigen structure is extremely variable within E. coli spp. It is hence 

considered antigen-specific and therefore, particular to each serogroup (52,151). Although 

it is not considered a virulence factor, it has shown to play a relevant role in overall bacterial 

virulence, and hence it is closely associated with the pathogenicity of certain serotypes 

(149,153). Due to the fact that it is expressed in the outer membrane and is extremely 
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immunogenic, it is considered a target for both immune cells and bacteriophages (149). 

Furthermore, contrary to other surface antigens, it is heat-stable (149). Therefore, the O-

antigen is of particular interest for epidemiological studies, classification during outbreak 

investigations and as a diagnostic target (150). Indeed, through surveillance and 

epidemiological data, different O-serogroups have been associated more often with 

outbreaks than others, despite their H-antigen. This has been the case of E. coli O157:non-

H7 strains, which have been isolated from humans and patients with diarrhea including 

E. coli O157:H45, O157:H39 and O157:H16, among others (154). In light of these findings 

and considering E. coli O157 as one of the most implicated serotypes involved in human 

illness, antibodies against the O157-antigen have been constantly produced and used in the 

development of LFIAs for routine screening of E. coli O157 in food (155,156) or clinical 

samples (157,158).  

While there have been numerous LFIAs described for detecting E. coli O157 in food 

samples, only a few of them have been marketed. Nine gold nanoparticle-based LFIAs and 

one using magnetic nanoparticles, were commercially available at the time of writing 

(Table 2). Six of these were previously reported by Farrokh et al. and Jasson et al. (42,159) 

as validated methods for the detection of E. coli O157 in different types of food. Contrary 

to this, the remaining four methods, MaxSignal®, Quicking, SAS™, and SMART™-II, did 

not possess supporting information regarding their validation status (160–163). Besides 

commercialized LFIAs, Singh et al. summarized the information of six non-commercial 

LFIAs for the detection of E. coli O157, which have been developed and published by 

different research groups (133). Overall, the LFIAs described thus far, require an 

enrichment step in order to achieve detectable levels that range between 104 and 105 

CFU/ml (Table 2) (133,159). Despite the fact that the enrichment step can be as short as 6 

h, it is still necessary and a major feature to be considered when selecting a rapid POC 

method. 

 Validation of Alternative Microbiological Methods  

It is evident that through the years, national and international food legislation is becoming 

more stringent with respect to food safety, emphasizing surveillance and monitoring along 

the production chain as major components of programs such as HACCP and GMPs.  
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Table 2. Commercial LFIAs for detection of E. coli O157 in food samples (as of June, 2016). 

Brand Manufacturer Food Type 
Enrichment (h) 

Enrichment 
broth 

Sensitivity Validation Reference 

Dupont™ Lateral 
Flow System 

DuPont Ground beef, boneless 
beef trim 

Yes (8-18)  

P/E 

1 CFU/ 25g AOAC-RI PTM (42,164) 

FoodChek™* FoodChek™ 
Systems Inc. 

Raw ground beef, beef 
trim 

Yes (6-8)  

mTSB 

1 CFU/ 25g AOAC-RI PTM (42,165,166) 

MaxSignal® E. coli 
O157 Strip Test Kit 

Bioo Scientific 
Corporation 

Meat and meat 
products, dairy 
products 

Yes (18-24)  

mEC (meat)/ 
mTSB-n (dairy) 

1×104 CFU/ml 
post-enrichment 

N/S (160) 

Quicking Quicking Biotech 
Co., Ltd. 

N/S Yes 1×105 CFU/ml 
post-enrichment 

N/S (161) 

RapidChek® E. coli 
O157 (incl. H7) 

Romer Labs Raw ground beef, raw 
boneless beef, apple 
cider 

Yes (8-18)  

P/E, mEC or EEB 

N/S AOAC-RI PTM 
USDA FSIS MLG 

(42,167) 

Reveal 2.0 NEOGEN 
Corporation 

Raw ground beef, raw 
beef trim 

Yes (8-20) 

P/E 

1 CFU/ 25 or 
375g  

104 CFU/ml post 
enrichment 

AOAC-RI PTM (42,168) 

SAS™ E. coli O157 
and O157:H7 Test 

SA Scientific N/S Yes (16-24)  

mEC 

N/S N/S (162) 

Singlepath® E. coli 
O157 

EMD Millipore 
Corporation 

Raw ground beef, 
pasteurized milk 

Yes (24)  

mTSB-n and/or 
EEB 

1 CFU/ml or 25g AOAC-RI PTM 

Health Canada 

(42,169) 
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Brand Manufacturer Food Type 
Enrichment (h) 

Enrichment 
broth 

Sensitivity Validation Reference 

SMART™-II Rapid E. 
coli O157 Strip Test 

New Horizon 
Diagnostics 

N/S Yes 1 CFU/25g 

3.3×104 CFU/ml 
post-enrichment 

N/S (133,163) 

VIP® Gold- EHEC BioControl 
Systems, Inc. 

N/S Yes N/S AOAC OMA (42,170,171) 

The	 information	 provided	 in	 this	 table	 is	 based	 on	 the	 latest	 version	 of	 the	manufacturer’s	 web	 pages,	 product	 data	 sheets	 and/or	 validation	
certificates	available	at	the	time	of	writing.	
*FoodChek™	test	is	a	magnetic	nanoparticle	LFIA.	
AOAC	OMA:	AOAC	INTERNATIONAL	Official	Method	of	AnalysisSM		
AOAC-RI	PTM:	AOAC	Research	Institute	Performance	Tested	MethodSM	
N/S:	not	specified	
P/E:	proprietary	enrichment	

 

 



 

 

31 

Consequently, the development and commercialization of rapid methods have advanced 

because they represent an alternative to maintaining processing efficiency while complying 

with screening requirements. However, due to the critical role rapid methods play in 

ensuring the safety of food, evidence regarding their performance and fit for purpose is 

required before they can be considered reliable alternatives for pathogen screening 

(159,172,173). This process is known as validation and normally involves two main 

phases: 1) comparison of the alternative rapid method against a reference method, and 2) 

an interlaboratory study (105,159,174). The latter requires the participation of different 

laboratories in order to assess the reproducibility and repeatability of the results obtained 

with the alternative method (105). During the validation process, the alternative method is 

represented by the method that has been designed and is intended to be used instead of a 

gold standard, also known as the reference method (172). Most often an alternative method 

will be a system that intends to reduce the time necessary for getting a reliable result (159). 

Therefore, a rapid alternative method will be any new technique or system that can be used 

instead of a traditional culture method and provide results in a shorter time with a high 

degree of reliability. On the other hand, a reference method will comprise of any widely 

accepted method, normally internationally recognized with a well-established protocol, 

such as traditional culture methods (159,172). 

Something to highlight regarding the validation process is that it has to be recognized by 

all the parties involved; hence several private and regulatory standards have been 

developed worldwide that provide protocols for the validation of new microbiological 

methods (159,172). In North America, regulatory bodies such as Health Canada, FSIS 

Microbiology Laboratory Guidebook (MLG), and FDA Bacteriological Analytical Manual 

(BAM), have established validation protocols for microbiological detection methods in 

Canada and the USA, respectively (175), while in Europe the main standard for validation 

is the International Standardization Organization (ISO) 16140 (105,159). On the other 

hand, independent validation bodies include the Association of Analytical Communities 

(AOAC), mainly in North America, while NordVal, AFNOR or MicroVal are European 

organizations, which adopted ISO 16140 (127,159,172). Although these protocols agree 

with the main aim of ensuring the proper performance of the alternative methods, they are 
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specifically designed to comply with the needs of their particular market. They may not be 

fully recognized worldwide or by all stakeholders. In addition, validation by any of these 

bodies is not considered mandatory, however, the use of alternative methods may be 

restricted by the needs of certain stakeholders that require a specific validation scheme (e.g. 

official control by government agencies) (159). For this reason, method developers need 

to select carefully the type of validation protocol they will follow.  

1.5.1.1 Health Canada’s procedure for the validation of alternative microbiological 
methods  

In Canada, the Microbiological Methods Committee (MMC) is responsible for supplying 

the appropriate methods for ensuring food safety throughout the supply chain. To do that, 

the MMC reviews all submitted methodologies to guarantee that they are fit for purpose 

and that sound science was used along the validation procedures (174). Once a method is 

approved, it is included in the Compendium of Analytical Methods, which contains all 

methodologies that are used by Health Canada, the Canadian Food Inspection Agency 

(CFIA), and other organizations, to determine compliance with standards and regulations 

(174).  

In order for an alternative method to request inclusion in the Compendium, it must follow 

the “guidelines for the relative validation of indirect qualitative food microbiological 

methods”, which are found within the Compendium as well. Briefly, the method developer 

has to submit a package containing a pre-collaborative study, inclusivity/exclusivity 

studies, determination of the limit of detection (LOD) and a transfer study (174). The pre-

collaborative study involves comparison of the alternative method with a cultural reference 

method using a paired or unpaired protocol for further determination of the performance 

parameters (sensitivity, specificity, false negative and false positive rates, and efficacy) 

(174). Overall, the results obtained should show that the alternative method meets or 

exceeds the performance criteria established by the MMC: sensitivity ≥98%, specificity 

≥90.4%, false negative rate <2%, false positive rate <9.6%, efficacy ≥94%, and LOD 3-5 

CFU/25g (174). Once a complete submission package is received by the MMC, a Technical 

Group is formed and is responsible for making recommendations to the MMC after 

assessing all the data from the alternative method against the MMC criteria (174). 
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Furthermore, a final decision is made by the Bureau of Microbial Hazards Director, who 

then notifies the MMC and relays the decision to the developer. (174). Finally, an accepted 

method gains a Laboratory Procedure (MFLP) status, which means that the method 

complies with the minimum requirements of the Compendium of Analytical Methods 

(174). Interestingly, at the time of writing, the latest summary of methods for E. coli O157 

published in the Compendium contained 13 MFLPs and one MFHPB, represented by the 

gold standard for isolation of E. coli O157 from foods and environmental samples (174). 

Of note, an MFHPB is a fully validated and documented method (174). From the 13 MFLPs 

alternative methods, only one (MFLP-82: Merck Singlepath® Kit) involves an 

immunological approach whereas seven are genetic-based methods and one is based on 

phage technology, three are focused on detection of verotoxins, and the final one is for 

isolation of VTECs (174). Although rapid alternative methods, in addition to the ones listed 

in the Compendium, can be used by food manufacturers for their routine analysis, it is 

evident that methods accepted by Health Canada present a greater advantage, especially 

considering that CFIA-mandated testing requires use of methods included in the 

Compendium (174). In fact, this request is clearly stated in the Guidance Document on 

E. coli O157:H7 and E. coli O157:NM in Raw Beef and the Meat Hygiene Manual of 

Procedures, where only an approved rapid method should be used for screening of E. coli 

O157 in precursor material or ground beef or beef products (70,176).  

Overall, validation of alternative methods is highly recommended regardless of the 

protocol selected, as long as it fulfills the current needs of the different stakeholders 

involved in the food chain. Regarding detection of E. coli O157 in Canada, it is evident 

that stricter policies can indirectly restrict the options of alternative methods available for 

meat producers. However, for method developers, this also represents an opportunity to 

provide meat producers with new alternatives that can satisfy the criteria established by 

competent authorities.  

1.6. Development of Single-Chain Variable Fragments (scFv) for Pathogen Detection 

LFIAs have become an inexpensive, rapid and easy-to-use screening method with the extra 

advantage that they can be performed on-site. As noted above, the proper performance of 

this type of assay relies on high-affinity and specificity, attributed to the antibodies used 
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against the target antigen. Despite the fact that antibodies are currently widely used in 

research and commercial applications, their study started with the basis of immunology. 

The field of immunology as we know it can be traced back to the late 19th century, when 

Paul Ehrlich laid the groundwork by introducing the concepts of “antibody” and presented 

the “lock-and-key” principle, giving rise to the “magic bullet” theory (177,178). The latter 

explains the idea of a chemical substance that should target, with high affinity, any 

pathogen or toxin entering the body, while remaining harmless to the host (177,179). In 

1975, Köhler and Milstein expanded Ehrlich’s work by developing hybridoma technology, 

which allows production of limitless amounts of a single specific antibody, also known as 

monoclonal antibody (mAb) (179–181). Hybridoma technology represented a 

breakthrough in medical science because it provided endless opportunities to produce 

mAbs with precise specificities for clinical treatments and diagnostics (180). However, 

despite the advantages of being considered a standardized in vitro technique, it has 

limitations that led to the further application of genetic engineering techniques. The most 

well-known limitation is the human anti-mouse antibody reaction developed when mouse 

mAbs are used as human therapeutics (147,182). In addition, sometimes hybridomas are 

unstable and low yielding resulting in increased production costs whenever high amounts 

of mAbs are necessary (182,183). In light of this, researchers have focused their efforts on 

increasing knowledge on structure and function of antibodies by applying molecular 

biology techniques in order to overcome some of the limitations of conventional hybridoma 

technology through advanced antibody bioengineering.  

 Structure of Immunoglobulins (Ig) 

Antibodies are Y-shaped molecules belonging to the glycoproteins family, formed by four 

polypeptides: two identical heavy chains and two identical light chains (123,184). Each 

heavy and light chain possesses a molecular weight of approximately 50-75 and 25 kDa, 

respectively, which contributes to the total IgG molecular weight estimated of 150 kDa 

(123,184,185). There are five types of heavy chains that define the different isotypes of 

immunoglobulins: IgA, IgD, IgE, IgG, and IgM (123,184). In addition, two types of light 

chains are commonly found, κ and λ, which only differ structurally and not functionally 

(184). IgGs are the isotype most frequently exploited in research for therapeutics and as a 
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diagnostics tool. Interestingly, mice IgGs are primarily formed by κ light chains, while 

human IgGs can be 40:60 λ:κ (184). Despite the species, IgGs share a similar structure, 

consisting of the two heavy chains connected to each other by two to four inter-disulfide 

bonds at the carboxy-terminal and each light chain joined to the amino–terminal region of 

one of the heavy chains, respectively, by one disulfide bond (123,185). The inter-chain 

bonds are found close to the flexible hinge region, which separates the IgG into two 

important fragments: the crystallizable fragment (Fc) and the dimeric-antigen binding 

fragment [F(ab)2] (123,184). The former is the effector region and corresponds to the base 

of the “Y” (183,184), while the F(ab)2 region is responsible for the specificity that each 

IgG will have because it is involved in antigen recognition (123) (Figure 3A).  

The F(ab)2 is a dimeric structure that entails two Fab sites, each one containing a complete 

light chain and a fraction of the heavy chain corresponding to the first constant region (CH1) 

and the entire heavy variable region (VH) (186). Contrary to the heavy chain that has three 

CH, two of which form the Fc, light chains consist only of one constant region (CL) 

belonging entirely to the Fab together with its variable region (VL) (187). The Fab can be 

divided into a variable fragment (VH and VL) and a constant fragment (CH1 and CL) (186). 

Although the Fab region is involved in the interaction of the IgG with an antigen, the 

biggest impact relies on the variable fragment, which is suggested to be responsible for the 

great diversity of IgGs that exist. However, within the variable region, researchers have 

identified hypervariable segments, which have been proposed to be the actual sites where 

the antigen interacts with the IgG (123,187). Three hypervariable segments or 

complementarity determining regions (CDRs) are known in each VH and VL. When the 

first X-ray crystal structure of a Fab region was obtained, these CDRs were found to form 

six loops that were separated by relatively conserved regions that act as support; thus they 

are known as framework regions (FRs) (123,187). As noted, the six hypervariable CDR 

loops, derived from both heavy and light chains, form the binding site that will interact 

with its antigen through specific regions known as epitopes (123) (Figure 3B).  

The mechanism through which the variable domains are assembled is known as VDJ 

recombination for VH and VJ for VL (188). Through this process, three (or two for the VL) 

separate gene segments - variable (V), diversity (D), and the joining (J) - suffer a somatic  
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Figure 3. Overview of the structure of an IgG antibody. Schematic representation of A) 

a complete IgG molecule consisting of two heavy (H) and two light (L) chains. In general, 

an IgG molecule is divided into (Fab)2 and the Fc regions, which are joined by the hinge 

region, B) the (Fab)2 region, which is responsible for binding to the antigen, mainly through 

the six CDR loops found in the variable region of the heavy and light chain (VH and VL) 

(left chains). The right chains show the different segments based on the encoding germlines 

V, D, J and the constant regions found within the Fab. The composition of the diversity 

segment (D) is highlighted with the nontemplated (N) nucleotides represented by black 

lines on each side of the D segment, and C) VH and VL chains structure based on the somatic 

recombination process of the V, D, and J gene segments. The difference in the CDR 3 from 

the VH and VL is emphasized. Images are based on Georgiou et al. (189), Sarantopoulos 

(322), and Ahmad et al. (205). 
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rearrangement that is accompanied by other mechanisms such as imprecise joining of any 

of the three segments, trimming and/or random addition of nucleotides (N nucleotides) 

(188,189). The V gene encodes the first three FRs, CDR1, CDR2, and the amino-terminal 

of the CDR3 in both VH and VL (186,190). Moreover, the J gene, which is found between 

the V and the constant region of either the heavy or light chain, contains the carboxy-

terminal of the CDR3 and the last FR4 (186,190). Finally, the D gene, found between the 

V and the J regions within the VH, complements the CDR3 (123). The latter is considered 

the hallmark of any IgG because it is highly variable due to the random insertion of N-

nucleotides at any of the extremes of the D gene (186). Thus, CDR3 can vary not only in 

sequence, but also in length (Figure 3C). These whole variable region assembly 

mechanisms, together with the numerous possibilities of association between different 

heavy and light chains, are responsible for creating an infinite repertoire of IgGs from a 

finite number of genes (123,186,189). 

 Antibody Engineering 

Traditionally, mouse hybridomas have been the main source of monoclonal antibodies for 

medical applications. However, they possess a major limitation when used as therapeutics 

because they trigger the human anti-mouse antibody reaction (147,191). Thus, it is not 

surprising that most of the focus on engineering antibodies has been towards reducing their 

immunogenicity through techniques such as humanization or chimerization (147,191). 

Humanization involves grafting the murine CDRs into a human FR, while a chimeric 

antibody is constructed by replacing the murine constant regions (192) (Figure 4). Through 

these genetic engineering advancements, the market of recombinant antibodies has rapidly 

grown with a global value estimated at $20 billion per year in 2007 (193). Yet, recombinant 

antibodies have not been intensely exploited in other fields besides therapeutics (194). This 

can be attributed to the fact that great variability implies higher complexity, which hinders 

the use of simple techniques such as PCR because two primers are not sufficient to amplify 

the sequences of all VH and VL chains (194). Therefore, more complex approaches have 

been necessary in order to discern their specific sequence for further recombination. 

Techniques such as degenerate primers have been developed in order to overcome antibody 

variability during PCR (194–196). In addition, other novel PCR techniques such as  
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Figure 4. Examples of antibody engineering. Schematic representation of some 

recombinant antibodies using a murine IgG as template. On the left, an intact murine IgG 

is shown. On the right, three different structures are depicted: first, a chimeric antibody, 

which comprises the variable regions of the murine antibody joined to a constant human 

region. The second example is a humanized antibody consisting of the murine CDRs 

grafted into a human backbone. The last one, is a scFv, which is the most common 

antibody fragment that only contains the variable regions joined by a peptide linker. 
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5’-rapid amplification of cDNA ends (5’-RACE) (189,197) have been complemented with 

methods already applied for the development of therapeutic antibodies including phage 

display (198,199), leading to the production of newly improved antibodies. Furthermore, 

the advantages of recombinant over murine hybridoma antibodies surpass their production 

process, because properties such as their binding and specificity towards a particular 

antigen can be easily enhanced (147,194). 

1.6.2.1 Single-chain variable fragments (scFv) 

Several formats of recombinant antibodies have been developed, from chimeric antibodies 

to smaller fragments such as Fab, F(ab)2, or single-chain variable fragments (scFv) as 

monomers, dimers (diabodies), or trimers (triabodies) (200). However, one of the most 

frequently used formats used for production of recombinant antibodies is the expression of 

scFv, which are composed of the VH and VL domains of an antibody with a molecular 

weight between 27-30 kDa (201). Both chains are covalently bound by a flexible peptide 

linker forming a single polypeptide (197,202) (Figure 4). scFv are becoming extremely 

useful as drug therapies when complete antibodies struggle to reach their target due to their 

size, as proven for some cancer treatments (202). In some cases, the Fc is not crucial for 

functionality; in fact, it can increase the chances of non-specific binding due to interactions 

with other cells present in the samples. Thus, scFv, which are considered the smallest 

antibody fragment that contains the complete antigen binding site, can have better 

penetration and biodistribution within their target organs and cells (197,203). Besides the 

development of scFv for treatment purposes, the study of these antibody fragments has led 

to a better understanding of the stability and roles that each variable chain plays in antibody 

functionality; thus scFv are also a model system for antibody research (204,205). 

Moreover, scFv represent potential immunodiagnostics reagents because they can bind to 

a series of antigens such as proteins, haptens, chemicals and even whole bacterial cells 

using different immunoassay formats (205). Table 3 summarizes some of the most recent 

technologies that have been combined with the development and application of scFv as 

immunodiagnostics reagents. 
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Table 3. Summary of applications of scFv as immunodiagnostics reagents (as of June, 

2016). 

Target Antigen Organism Technique Research 
Group 

Reference 

Aflatoxin B1 N/A SPR Dunne et al. 
(2005) 

(206) 

Deoxynivalenol 
(DON) 

N/A Competitive ELISA Wang et al. 
(2007) 

(207) 

Diverse antigens Entamoeba 
hystolytica 

SERS microspectroscopy 
combined with nanoyeast-
scFv 

Wang et al. 
(2014) 

(208) 

Fluoroquinolone N/A ELISA Wen et al. 
(2012) 

(209) 

Fumonisin B1 N/A Competitive ELISA Zou et al. 
(2014) 

(210) 

Heat-labile and 
heat-stable toxins 

ETEC Immunoblotting/ ELISA Ozaki et al. 
(2015) 

(201) 

Heat shock protein 
6o (HSP6o) 

Strongyloides sp. ELISA Levenhagen et 
al. (2015) 

(211) 

Protective antigen 
(PA) 

Bacillus anthracis Protein chip 
(immunoassay) 

Wang et al. 
(2006)  

(212) 

Protein D (OmpD) Salmonella enterica 
serovar 
Typhimurium 

Competitive ELISA Meyer et al. 
(2011) 

(213) 

N/S Brucella melitensis ELISA Hayhurst et al. 
(2003) 

(214) 

N/A:	not	applicable;	N/S:	not	specified	
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Production of scFv requires the proper folding of the VH-linker-VL peptide and formation 

of disulfide bonds (215), which has been accomplished through bacterial expression 

systems, especially using E. coli (203,216). Moreover, other expression systems have also 

been used including, but not limited to yeast (204,205,217) and plants (204,205) with 

encouraging results. Wörn et al. summarized several studies that have reported the 

production of scFv with similar monomeric binding affinity as their mAb counterpart 

(204). Even though several scFv have been effectively produced as alternatives to whole 

antibodies, some others have proven to be challenging due to protein solubility and stability 

issues after expression (202,218). Some of these limitations are due to the great variability 

of the primary amino acid sequences that resulted in the development of two different 

approaches to solve these issues. The first group, involves modifications to the primary 

sequence of the scFv, including loop grafting by transplanting the CDRs into an acceptor 

framework to improve biophysical properties (218,219). Site-directed mutagenesis is based 

on the rational modification of specific amino acid residues (218,220). The second 

approach focuses on modifying protein expression conditions to favor the proper folding, 

such as expression hosts, isolation and purification (203,217). Together, these techniques 

have increased the success rate for obtaining functional scFv, promoting their applications 

beyond therapeutics and clinical diagnosis. 

1.6.2.2 Application of scFv to food pathogen detection 

As discussed above, intensive efforts have been made to improve the production of scFv 

has resulted in an increasing scientific and commercial interest to progressively introduce 

scFv into other fields such as immunodiagnostics (200,221). Within the food safety field, 

antibodies have been widely used for detection of toxic compounds and pathogenic bacteria 

using an extensive variety of immunological techniques. Even though there have been few 

reports of the application of scFv as alternatives to whole antibodies, scFv have already 

shown to be valuable reagents when used in biosensors due to their smaller size and high 

specificity (101,206,221). Thus far, most of the studies have focused on detection of 

mycotoxins for food analysis (Table 3). However, production of scFv for detection of food 

pathogenic bacteria has been recently reported, mainly using phage display technology for 

detection of Salmonella enterica serovar Typhimurium infections using competitive 
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ELISA (213). This scFv developed by Meyer et al. targeted protein D (OmpD) found in 

the outer membrane of S. enterica ser. Typhimurium, which is considered highly 

immunogenic (213). To our knowledge at the time of writing, this is the only study focused 

on the application of scFv for food safety purposes. It is thus evident that the use of scFvs 

for food safety can be considered a rather new research field, which could greatly benefit 

from the application of scFv as detection reagents. This knowledge provides the foundation 

for the antibody engineering work described in this thesis.
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CHAPTER 2  RATIONALE, HYPOTHESES AND OBJECTIVES
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2.1. Rationale 

It is clearly evident that E. coli O157 remains one of the major foodborne pathogens with 

huge implications for public health. Foodborne infection with E. coli O157 was first 

identified in 1982. Due to the severity of the disease and its long-term negative outcomes, 

E. coli O157 was designated as a food adulterant in 1994 by the USDA-FSIS, leading to 

the establishment of a detection program in beef (66).  

Meanwhile in Canada, mandatory testing programs, with a zero tolerance were established 

for E. coli O157 initially in ground meat (222). Since then, control and detection of E. coli 

O157 have become active research fields in food safety. The current standard detection 

method requires up to a week to confirm the presence of E. coli O157 in food samples, an 

obstacle for some food producers to promptly deliver safe food. On the other hand, 

alternative methods, approved by Health Canada, are mostly genetic-based and thus require 

special equipment, multiple steps or specialized training for their performance. In the work 

to be described, it was sought to develop and validate a POC test, based on the LFIA 

principle. This is intended to provide a reliable alternative for meat producers to enable 

easy and rapid detection of E. coli O157. Early detection of this pathogen is vital to prevent 

contaminated food from reaching consumers, attenuating or preventing the effects arising 

from a recall or an outbreak. Although the expansion of LFIA into the food safety field is 

relatively new, an increase in the development of new tests has followed the establishment 

of more stringent regulations mainly for food pathogen detection (139). Recently, advances 

in molecular biology have been combined with the LFIA principle to develop more 

sensitive, specific and faster LFIAs. The synthesis of single-chain variable fragments 

(scFv) can offer significant advantages over monoclonal antibodies as detection reagents. 

These advantages include enhancement of the specificity and sensitivity of the 

immunoassays (108). Previous to the work described in this thesis, synthesis and 

application of scFv as detection reagents has been mainly applied for the detection of 

mycotoxins using ELISA or SPR (206,210). The second part of this thesis focuses on the 

design and expression of a scFv that can be used to detect E. coli O157 in an immunoassay. 
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2.2. Hypotheses 

1) The LFIA Test Kit developed in this study will have similar or better performance, 

measured by the determination of the performance parameters and Probability of 

Detection when compared to the traditional culture method using a relative 

validation study. 

2) Proper pairing of the enrichment step and the LFIA device will result in shorter 

time-to-result, when compared to the time required for detection of E. coli O157 

using the traditional culture method and other immunoassays found in the current 

Compendium of Analytical Methods. 

3) Using the anti-O157 mAb as a starting point, a scFv will be derived by expression 

in E. coli cells, which will retain the binding properties of the parental anti-O157 

mAb when used in a functional immunoassay such as ELISA. 

2.3. Objectives 

1) To develop a rapid POC test based on the LFIA principle that can be used to visually 

demonstrate the presence or absence of E. coli O157 in meat samples. 

2) To compare the performance parameters of the newly developed LFIA Test Kit 

versus the criteria established by the MMC as stated in the current Compendium of 

Analytical Methods. 

3) To design, clone, express, and characterize the functionality of a scFv based upon 

the structure of the anti-O157 mAb used as the detection reagent in the LFIA Test 

Kit.
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CHAPTER 3 MATERIALS AND METHOD
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3.1. Bacterial Strains, Sample Preparation and Culture Conditions 

 Inclusivity and Exclusivity Strains 

The objective of this study was to ensure that the LFIA test kit had the ability to selectively 

detect a wide range of E. coli O157 strains (including H7 and non-motile), while excluding 

non-target organisms closely related to E. coli O157 and/or commonly found in raw meat 

products. The inclusivity panel was assembled considering the variability within E. coli 

O157 strains and the relevance of other O157:non-H7 E. coli as causes of human illness 

(27,154,223). A total of 50 E. coli O157 strains (including H7 and non-motile) was selected 

from different sources. Only 39 were O157:H7 serotype, 5 were O157:NM, and 6 of them 

were O157:non-H7 serotypes (H45, H42, H29, H25, H19, H12). In addition, 27 strains 

were from bovine origin isolated from different sources such as feces and meat (ground 

and salami). Around 18 strains were from human origin; 16 mainly from clinical isolation 

and 2 from feces. However, four strains did not have an origin specified, but their original 

depositor was stated by the contributor. Only one strain did not have any information 

regarding its history. All strains were biochemically characterized and confirmed as E. coli 

O157 prior to testing (Appendix A). 

For exclusivity, 37 non-E. coli O157 strains were selected from different sources that 

reflected the variability of organisms that can be present in the food matrices chosen for 

this study. Most of these (33) were Gram negative and belonged to the Enterobacteriaceae 

family, with the exception of Aeromonas hydrophila. From those Enterobacteria, 18 were 

E. coli non-O157, while the rest were bacteria frequently found in meat and closely related 

to E. coli O157. In addition, four Gram positive strains that can be found in meat were 

included in the panel (Bacillus subtilis, Enterococcus faecalis, and Listeria monocytogenes 

4a and 1/2c). Strains obtained from the Public Health Agency of Canada (PHAC) in 

Guelph, ON, Canada, were verified using the Vitek® microbial identification system 

before they were provided (Appendix A). 

Upon receipt, all 87 strains were initially grown in 5 ml of BBLTM TrypticaseTM Soy Broth 

[TSB; Becton, Dickinson and Company (BD), Sparks, MD, USA] or BactoTM Brain Heart 

Infusion (BHI) medium (BD, USA) incubated overnight at 37°C to reach late-exponential 
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phase (108–109 CFU/ml). A sub-culture was prepared by transferring 50 µl of the initial 

culture into 5 ml of TSB or BHI and incubated as previously stated. Cells were harvested 

by centrifugation (Eppendorf Centrifuge 5430, Rotor FA-45-30-11, Eppendorf AG, 

Hamburg, Germany) at 5000 ×g and re-suspended using TSB or BHI with 20% (v/v) 

glycerol as cryoprotectant and stored at -80°C for long-term storage. Furthermore, working 

cultures were prepared from frozen stocks by loop inoculation of 5 ml of TSB incubated 

overnight at 37°C to reach late-exponential phase (108–109 CFU/ml).  

 Bacterial Culture Enumeration  

Bacterial enumerations or plate counts were performed by plating 50 µl on TrypticaseTM 

Soy Agar (TSA; BD, USA) and/or the E. coli O157:H7 selective agar, cefixime rhamnose 

sorbitol MacConkey (CR-SMAC; Oxoid Limited, Basingstoke, Hampshire, UK) using the 

Spiral Plate Method (224) (Eddy Jet Spiral Plater, E Mode; Neu-tec Group Inc., 

Farmingdale, NY, USA) then incubating the plates at 37°C for 18-24 h. Two serial dilutions 

were normally plated per sample. Colonies on the agar plates were counted using the spiral 

plate counting grid and following the “rule of 20 colonies”. In brief, a wedge from the grid 

was selected and colonies were counted from the outer edge towards the center until more 

than 20 colonies had been reached. A similar area in the opposite side to the wedge selected 

was also counted, added up and divided by the sample volume deposited in those two areas 

as shown in the formula below: 

!"#$%	1 + !"#$%	2
*"+#,-	.-/"01%-. =

!34
,+  

Results were reported as CFU/ml of sample plated and recorded for further use in dilution 

calculations or estimation of cell concentration in samples (CFU/g or ml).  

 Preparation of Stressed E. coli O157 Cells. 

The protocol selected was adopted from a previous study done by Jasson et al. (225), which 

consisted of mimicking inherent factors normally present in food. Working cultures of E. 

coli O157 DSM17076, EC20060233, EC20001018, EC19970515, and EC20040339 were 

prepared as described in Section 3.1.1. In addition, a “food” broth was formulated using 
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TSB supplemented with 0.6% yeast extract (Sigma-Aldrich, St. Louis, MO, USA) 

(TSBYE) and acidified with HCl until a pH of 4.9 was reached. In addition, 130 g/L NaCl 

was added to simulate the salt concentration of a fermented sausage. The broth was filter 

sterilized and kept at 4°C. To determine the initial cell concentration, cultures were plated 

on TSA supplemented with 0.6% yeast extract (TSAYE) and CR-SMAC agar plates, which 

were considered non-selective and selective respectively. Serial dilutions were performed 

using the “food” broth up to a level of 106 CFU/ml. The inoculated broths were kept at 4°C 

for 10 d after which aliquots were plated on TSAYE and CR-SMAC plates for 

enumeration. The percentage of sub-lethal injury was determined by comparing the number 

of colonies in non-selective and selective agars using the formula below: 

%	0#6 − +-%ℎ9+	1$:#;< = $"$0-+-=%1>- − 0-+-=%1>-
$"$0-+-=%1>- ?	100		 

For each strain, at least three different experiments were undertaken and the percentage of 

sub-lethal injury was expressed as the average ± standard error of the mean. The % of sub-

lethal injury caused solely by the stress treatment was confirmed by determining if 

significant difference between selective and non-selective media performance existed 

using a two-sided t-test with α= 0.05. 

 Artificial Inoculation of Food Samples 

Fresh retail lean ground beef or trimmed beef was obtained from local supermarkets one 

day before starting the experiments (Loblaws, London, ON, Canada) and aseptically 

divided into 25 g samples using Stomacher® bags. In order to mimic real scenarios, 

samples were inoculated either with healthy or stressed E. coli O157 cells prepared as 

described in Section 3.1.3. Both cultures were serially 10-fold diluted using DifcoTM 

Buffered Peptone Water (BPW; BD, USA) in order to achieve three inoculation levels: low 

(1-10 CFU/25 g), medium (102 CFU/25 g) and/or high (103 CFU/25 g), as per the objective 

of each experiment. Cell concentrations of inocula were confirmed by plate counts on TSA 

and CR-SMAC. In addition, an uninoculated 25 g sample was included as a negative 

control. After manual homogenization, samples were stored at 4°C for 48 h for 

equilibration before further use. 
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 Determination of Aerobic Plate Count (APC) of Food Samples 

APC, also known as total viable count (TVC), was also determined to establish the initial 

level of contamination in the food samples. A 25 g sample, from the same batch used in 

each experiment, was weighed into a Stomacher® bag and mixed with 225 ml (1:10) of 

BPW. The bag was loosely closed and stomached using a lab blender (BagMixer® 400P, 

Interscience Laboratories Inc., Woburn, MA, USA) for 1 min. A 10-fold dilution was 

prepared using BPW and an aliquot of both was plated on TSA. Plates were incubated at 

37°C for 48 h for enumeration. Cell concentrations were expressed as CFU/g of food 

sample. 

 Evaluation of Enrichment Conditions 

Table 4 summarizes the commercially available enrichment broths used throughout the 

development process. The first screening involved using pure cultures. Briefly, a working 

culture of E. coli O157 DSM 17076 was prepared as previously described and serially 

diluted in TSB to a final concentration of 102 CFU/ml. Initial inoculation levels were 

confirmed by plate counts on TSA and CR-SMAC. Cultures were incubated at 42°C for a 

maximum of 24 h. When necessary, bacterial growth was monitored by plating 50 µl every 

2 h on TSA and CR-SMAC.  

The final selection of the enrichment broth was based on the following: 1) the ability to 

recover E. coli O157 from artificially inoculated food samples prepared as per Section 

3.1.4; and 2) its interaction with the LFIA Test Kit. Therefore, after equilibration, 

Stomacher® bags containing the inoculated samples were filled with 225 ml of the 

appropriate enrichment broth, stomached for 1 min and regenerated 40 min at RT (room 

temperature). Food samples were incubated at 42°C for a maximum of 24 h. When 

necessary, a time-course study was performed with sampling every 2 h starting at 16 h. For 

enumeration, samples were plated on TSA and CR-SMAC and, if needed, they were 

previously serially diluted using BPW. 

 Cloning and Expression Bacterial Strains 

E. coli XL1-Blue competent cells (Stratagene) were used for plasmid expression and E. 

coli BL21 (DE3) competent cells (Novagen) were used to express the recombinant protein.  
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Table 4. Enrichment broths and their selective agents. 

Broth Selectivity Selective 
Agents 

Supplier 

Modified Tryptone Soya 
Broth (mTSB) 

Selective Bile salts No. 3 Oxoid Limited (Basingstoke, Hampshire, 
UK) 

RapidCultTM E. coli Selective Sodium 
thioglycolate 

EMD Chemicals (Darmstadt, Germany) 

BBLTM TripticaseTM Soy 
Broth+ Novobiocin 
(TSBN) 

Selective Novobiocin Becton, Dickinson and Company (Sparks, 
MD, USA)/ Sigma-Aldrich Co. LLC (St. 
Louis, MO, USA) 

BBLTM TripticaseTM Soy 
Broth (TSB) 

Non-
selective 

N/A Becton, Dickinson and Company (Sparks, 
MD, USA) 
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Both strains were grown aerobically at either 37°C or RT in Luria Broth (LB) (BD, USA) 

or on LB with 1.5% agar (BioShop, Burlington, ON, Canada). To maintain plasmid 

selectivity, the LB broth or agar was supplemented with ampicillin (20 µg/ml) and/or 

chloramphenicol (10 µg/ml), both from Sigma-Aldrich, USA. For long-term storage, 

bacterial strains were frozen in LB broth with 20% glycerol and kept at -80°C. Table 5 

summarizes the main characteristics of the two strains used within this part of the study. 

3.2. Development of a Lateral Flow Immunoassay (LFIA) for Detection of E. coli 
O157  

 Assembling of the LFIA  

The LFIA devices used during this project were manufactured at the International Point of 

Care Inc. (IPOC) facilities in Toronto, ON, Canada following their internal specifications 

and protocols (Garth Styba, president IPOC, 2016, pers. comm.). Standard LFIA devices 

were stored at RT, while bovine serum albumin (BSA) blocked devices were stored at 4°C 

upon arrival at our facilities. 

The standard LFIA device consists of one or two (tandem) plastic backed nitrocellulose 

membrane strips coated with streptavidin on the test line and a polyclonal goat anti-mouse 

antibody on the control line. A 28 mm polyester sample pad is adhered at one extreme of 

the membrane, while a cellulose membrane is attached as an absorption pad on the opposite 

side. The assembled LFIA strip(s) is (are) encased on a plastic cartridge, either a single or 

tandem unit, as shown in Figure 5.  

 In-Tube Sandwich Immunoassay  

An in-tube sandwich immunoassay was developed using three antibodies: a biotinylated 

capture polyclonal antibody (pAb-b), a primary detection monoclonal antibody (mAb) and 

a secondary antibody conjugated with colloidal gold (CGC) (Table 6). Briefly, the three 

antibodies were mixed, either in solution or lyophilized, in an Eppendorf tube with 200 µl 

of the sample assessed. Tubes were incubated for 30 min at RT. Furthermore, 150 µl of the 

suspension was then pipetted onto the sample window of the LFIA device and allowed to  
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Table 5. Cloning and expression E. coli competent cells. 

Bacterial 
Strain 

Characteristic Purpose Source 

E. coli BL21 
(DE3) 

FompT hsdSB(rB -, mB -) gal dcm (DE3) Protein 
Expression 

Novagen 

E. coli XL1 
Blue 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F’ proAB lacIqZΔM15 Tn10 (TetR)] 

Cloning Stratagene 
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Figure 5. Schematic representation of the LFIA. A) The LFIA device with the 

nitrocellulose strip(s) encased in either a single or tandem plastic cartridge. B) Diagram 

of the assembled nitrocellulose strip with the sample and absorbent pad on each extreme. 

The control line is formed by an immobilized polyclonal goat anti-mouse antibody, while 

the test line contains streptavidin. 
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Table 6. Antibodies used for the development of the LFIA Test Kit.  

Antibody Clonality Host/ 
Isotype 

Application Specificity Supplier 

Primary, 
detection 

13B3 anti-
E. coli 
O157 
(mAb)1 

Monoclonal Mouse/ 
IgG3 

ELISA, IF, 
Agglutina-
tion 

O157 LPS 
antigen 

USDA 
Agricultural 
Research Service, 
Meat Safety and 
Quality Research 
Unit, NE 

Capture biotin 
conjugate 
(pAb-b) 

Polyclonal Goat ELISA E. coli Pierce 
Biotechnology, 
IL, USA 

Secondary DGMG-
B001, 
colloidal 
gold 
conjugate 
(CGC)1 

Polyclonal Goat Lateral Flow 
Assay 

mouse IgG 
(heavy and 
light chains) 

BioAssay 
Works®, MD, 
USA 

1The	mAb	 ascites	 and	 colloidal	 gold	 conjugate	were	 further	 produced	 by	 International	 Point	 of	 Care	
(IPOC),	Toronto,	ON,	Canada.	
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flow through the membrane for 15 min before reading. Table 6 summarizes the main 

characteristics of each antibody used. 

 Optimization of Reagents and Blocking Conditions 

Optimization of the LFIA Test Kit was focused on membrane blocking, antibody 

concentrations and enhancement of the positive signals. The standard LFIA and the in-tube 

sandwich immunoassay described earlier were used throughout this process. Elimination 

of non-specific binding, involved common strategies using a wide variety of proteins or 

polymers, such as BSA, casein, fish serum, polyvinyl acetate (PVA), polyethylene glycol 

(PEG) or polyvinylpyrrolidone (PVP), which can be adsorbed by the nitrocellulose 

(114,133,134). Their main effect relies on interfering or competing with binding of the 

target reagents (226). Three sequential approaches were undertaken. The first approach 

involved using only a working culture of E. coli O157 DSM 17076 as positive control. 

Cells were harvested by centrifuging at 5,000 ×g for 10 min at RT and re-suspending the 

pellet in a blocking buffer consisting of 1% BSA (BioShop, Canada) and 0.05% Tween 20 

(Sigma-Aldrich, USA) in 1×PBS. As a negative control, blocking buffer was used. For the 

in-tube sandwich immunoassay, an aliquot of each sample was mixed with the capture and 

detection antibodies at a final concentration of 3 µg/ml respectively, while the CGC was 

used at 0.5 µg/ml throughout these experiments. The second approach consisted of pre-

treating the LFIA membrane with 50 µl of blocking buffer, allowing it to flow through the 

device before loading the sample. The in-tube sandwich immunoassay composition and 

procedure were kept the same. The final approach substituted the pre-treatment with the 

incorporation of the blocking agents during the manufacture of the LFIA device. For this 

purpose, various ratios of BSA and Tween 20 were sprayed onto the nitrocellulose 

membrane and/or the sample pad during assembly. In addition, different volumes of 

blocking solution per mm2 of nitrocellulose membrane were tested and compared. An 

overnight E. coli O157:H7 DSM17076 working culture was always used as positive 

control, while the blocking buffer or culture broth wwas used as a negative control, 

depending on the experiment. At a later stage, working cultures of other non-E. coli O157 

strains were tested for cross-reaction evaluation. Once potential prototypes of the LFIA 

device were selected, their performance was assessed not only with pure cultures, but also 
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using food samples prepared as per Section 3.1.4 and enriched using the selected 

enrichment protocols.  

The antibody concentrations were kept constant to compare the performance of all the 

different LFIA device prototypes. However, after the potential prototypes were chosen, 

antibody concentrations were fine-tuned for signal enhancement. Adjustments were made 

by preparing antibody suspensions using either 1×PBS or blocking buffer as the diluent. In 

order to extend the shelf life of the antibodies and facilitate their handling, potential 

working concentrations for the different antibodies were used to produced lyophilized 

beads at IPOC facilities following their standard manufacturing process (Garth Styba, 

president IPOC, 2016, pers. comm.). Although antibody beads eventually replaced the 

antibody suspension during the in-tube sandwich immunoassay, the procedure did not 

change. Because the beads were sensitive to humidity, they were stored in Eppendorf tubes 

inside a sealed metallic pouch with a desiccant and kept at 4°C until used. 

Biochemical and microbiological sample composition played a key role in signal intensity. 

Thus, to counterbalance the effect of such variations, it was necessary to standardize the 

LFIA Test Kit procedure. Two alternatives were evaluated, pH adjustment and dilution of 

sample matrix after enrichment. The final LFIA prototype and antibody beads for the in-

tube sandwich immunoassay were used throughout these experiments. Pure working 

cultures and food samples were prepared as before and enriched according to the final 

protocol. Before enrichment, the pH of the homogenized sample was measured. After 

enrichment, the sample was cooled to RT and 200 µl aliquots were pipetted into different 

Eppendorf tubes containing the three lyophilized beads used for the in-tube sandwich 

immunoassay. Different volumes of 1M HEPES buffer were added to each tube to adjust 

the pH, except for one that was used as a control. After 30 min incubation at RT, the sample 

was loaded into the LFIA device and the pH was measured using the remaining sample. 

pH values were compared before and after adjustment and correlated to the results obtained 

in the LFIA devices. All pH measurements were taken using a pHTestr®20 (Oakton® 

Instruments, Il, USA) and/or pH strips (VWR International, Radnor, PA, USA).  
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Finally, to evaluate the effect of sample composition and bacterial cell concentration, a 

tandem test was developed. Right after enrichment, a 200 µl aliquot was pipetted directly 

to an Eppendorf tube containing the antibody beads, named sample (A). A second aliquot 

was taken from the enriched sample and diluted 1:100 using BPW, which was called 

sample (B). An aliquot of 200 µl of this dilution was pipetted into a second tube containing 

beads. Both tubes were incubated in parallel according to the in-tube sandwich 

immunoassay protocol before 150 µl were loaded into the appropriate window in the 

tandem LFIA device. All samples were run through the nitrocellulose membrane for 15 min 

before the signal intensity was assessed. 

 Assessment of LFIA Device Signal 

All LFIA devices were assessed 15 min after sample loading. During the initial 

development stage, devices were only visually examined using the following criteria: 

1) well-defined control lines in both positive and negative controls, 2) clear presence of 

test line in positive controls and total absence in negative controls, and 3) absence of red 

smear across the nitrocellulose stripe in both positive and negative controls (Figure 6). 

Pictures were taken using an 8-megapixel iSight camera (Apple Inc., Ca, USA) and 

representative images were evaluated by an independent team of at least four people. 

Selection of potential prototypes was determined by consensus. 

During fine-tuning of the LFIA Test Kit, the intensity of the control and test line was 

measured using an optical reader, the i-Lynx™ system (Spectral Diagnostics Inc., Toronto, 

ON, Canada), for comparison to the results obtained during visual evaluation. 

Measurements were mostly performed in duplicate or triplicate and reported as the mean 

± standard error of the mean (SEM). 

 Determination of the Limit of Detection (LOD) 

During the development phase, the LOD was determined to establish the sensitivity of the 

potential LFIA device prototypes. Therefore, only a working culture of E. coli O157 

DSM17076 was used. Serial 10-fold dilutions were prepared using the appropriate broth 

up to a concentration of 10 CFU/ml. Aliquots of 200 µl of each dilution were incubated 

with the antibodies following the in-tube sandwich immunoassay protocol and 150 µl were  
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Figure 6. LFIA standard results. Positive Standard: result obtained with an in-tube 

sandwich immunoassay using a 107 CFU/ml E. coli O157 DSM 17076 working culture. 

Negative Standard: result obtained using TSB. Both samples were incubated 30 min at 

RT before they were loaded onto the device. Pictures were taken 15 min after loading. 

Both devices complied with the three criteria established for visual evaluation: clear 

control lines, defined test line with the positive control and complete absence on the 

negative, and no red smear along the nitrocellulose membrane.	
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loaded into the LFIA devices. After 15 min, results were evaluated as described in Section 

3.2.4. 

3.3. Relative Validation of a LFIA Test Kit for Detection of E. coli O157 in Raw Meat 
Products 

This section focuses on the methodologies performed to generate the data necessary for 

requesting the inclusion of the ADx™ Decision Point™ test kit for E. coli O157 (also 

referred as LFIA Test Kit in this document) in the Health Products and Food Branch 

Compendium of Analytical Methods from Health Canada. For this purpose, the guidelines 

outlined in the Procedure for the Development and Management of Food Microbiological 

Methods, Part 4 (March, 2011) from the Compendium of Analytical Methods were 

followed (174). The initial submission required a pre-collaborative study, also known as 

preliminary study, which consisted of comparing the alternative method (AM), in this case 

the LFIA Test Kit, to an approved reference method (RM). For this study, the reference 

method followed was the MFHPB-10 Isolation of E. coli O157:H7/NM from foods and 

environmental surface samples (October, 2014), which can also be found in the 

Compendium of Analytical Methods and is included in Appendix B. Furthermore, the 

relative validation not only involved the comparison of the AM to the RM, but also 

considered the results obtained with the RM as the true values, which were the basis for 

estimating the performance parameters of the LFIA Test Kit. Because the AM was 

developed using a different enrichment procedure than that suggested in the RM, the 

validation study followed an experimental layout for unpaired samples. This approach 

requires that each sample evaluated with the AM must be diverted to follow the RM path 

at the earliest stage possible to confirm the AM results. Figure 7 summarizes the protocol 

for the relative validation using unpaired samples that was followed to assess the 

performance of the LFIA Test Kit at Laboratory Services Division, University of Guelph, 

ON, Canada. 

Experiments in Section 3.3.1 were performed at Robarts Research Institute, London, ON, 

Canada; while the submission report was prepared in collaboration with IPOC, Canada. 

The relative validation had to be performed by an accredited laboratory for Test Method  
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Figure 7. Workflow diagram for the relative validation of unpaired samples for the 

LFIA Test Kit. Sample preparation, inoculation levels and distribution between the 

alternative method (AM) and the reference method (RM) are depicted as the top of the 

workflow. The left path shows the alternative method procedure, which includes the 

divergence of samples to the reference method for confirmation of results. The right path 

describes the procedure of the 45 samples allocated to the reference method for 

comparison.	
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Raw	Meat	
Products

Raw	Meat	
(unprocessed)	(90)

Ground	veal
(22)

Beef	trim
(22)

Carpaccio
(22)

AM
(12)

RM
(12)

Ground	beef
(24)

AM
(11)

RM
(11)

AM
(11)

RM
(11)

AM
(11)

RM
(11)

Raw	Meat	
(processed)	(90)

Raw	hamburger	
paDy	(22)

Raw	
meatball	(22)

Raw	kebab
(22)

AM
(12)

RM
(12)

Raw	
sausage	(24)

AM
(11)

RM
(11)

AM
(11)

RM
(11)

AM
(11)

RM
(11)

CT-SMAC

TSBN	(20mg/L)/	42±1°C

	IMS	as	per	MFHPB-10,	
SecAon	6.6.2

CHROMagar	
O157	(BD)

Incubate	18-24	h/	35±1°C
SelecAve	IsolaAon	MFHPB-10,	

SecAon	6.7

	Sample	analysis	LFIA	Test	Kit

ALTERNATIVE	CONFIRMATION	
RESULT

ALTERNATIVE	PRESUMPTIVE	
RESULT

22	h 16	h

ConfirmaAon	MFHPB-10,	
SecAon	6.8

BULK	FOOD	SAMPLE

Determine	Total	Via
ble	Count

Primary	Food	Sample
Uninoculated

Primary	Food	Sample
Low

Primary	Food	Sample
High

EquilibraAon	at	2-8°C	for	48	h

5	Replicates	AM
5	Replicates	RM

20	Replicates	AM
20	Replicates	RM

25	g	sample	in	225	ml	
TSBN	(pre-warmed	at	

42°C)	incubated	at	42±1°C	
for	16	h

25	g	sample	in	225	ml	
mTSBN	(pre-warmed	at	

35°C)	incubated	at	42±1°C	
for	22	h

LFIA	Test	Kit MFHPB-10

Samples	are	tested	
following	the	LFIA	Test	Kit	

procedure

At	16	h,	samples	are	
removed	and	cooled	to	RT	

before	analysis

ALTERNATIVE	
PRESUMPTIVE	RESULT	

At	22	h,	all	samples	were	
analyzed	following	the	
MFHPB-10,	starAng	at	
SecAon	6.6.2	(IMS)

SecAon	6.8	(IsolaAon)	was	
followed	by	plaAng	IMS	
beads	on	CHROMagar	
O157	and	CT-SMAC,	
incubated	at	35°C	for	

18-24	h

ConfirmaAon	was	done	by	
SecAon	6.8	of	MFHPB-10	

ALTERNATIVE	
CONFIRMATION	RESULT

At	22	h,	all	samples	were	
analyzed	following	the	
MFHPB-10,	starAng	at	
SecAon	6.6.2	(IMS)

SecAon	6.8	(IsolaAon)	was	
followed	by	plaAng	IMS	
beads	on	CHROMagar	
O157	and	CT-SMAC,	
incubated	at	35°C	for	

18-24	h

ConfirmaAon	was	done	by	
SecAon	6.8	of	MFHPB-10	

MFHPB-10	RESULT

20	Replicates	AM
20	Replicates	RM
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Development and Evaluation and Non-Routine Testing under ISO/IEC 17025. Thus, the 

experiments explained in Sections 3.3.2 and 3.3.3 were done by the Laboratory Services 

Division, University of Guelph, ON, Canada, who also provided an extensive report. 

Hence, information contained in both reports (Garth Styba, president IPOC, 2016, pers. 

comm.) was used in preparation of this section.  

 Inclusivity and Exclusivity Study 

The 50 E. coli O157 strains and the 37 non-E. coli O157 strains listed in Appendix A were 

used. In both cases, working cultures were prepared as described in Section 3.1.1 and 

coded using random numbering. Cultures were blindly run by an analyst using the LFIA 

Test Kit instructions found in Appendix C. All samples were run in triplicate to assess the 

consistency and reliability of the results.  

If false positives were found during the exclusivity study, the bacterial strains were retested 

by streaking a loop of the overnight culture on TSA plates and incubating at 37°C for 24 h. 

A single isolated colony was selected and inoculated using TSBN at 42°C for 22 h, which 

is the enrichment protocol suggested in the LFIA Test Kit. Then, the culture was evaluated 

using the LFIA device. In addition, these strains were biochemically characterized to rule 

out any cross-contamination, following the methodology described in Appendix A.  

 Relative Validation of the LFIA Test Kit Using a Protocol for Unpaired Samples ��

3.3.2.1 Sample preparation 

The validation study comprised two food types within the Raw Meat Food Category, which 

were Raw Meat (unprocessed) and Raw Meat (processed), as suggested in the 

Compendium of Analytical Methods. The main aim of performing a relative validation 

study was to demonstrate that the LFIA Test Kit could detect E. coli O157 equally or better 

than the cultural reference method (RM), MFHPB-10. Four food items per food type were 

evaluated; each one with twenty replicates that were equally split between the AM and the 

RM. In addition, ten more samples from each food type were included as negative controls 

(uninoculated) and were similarly split between AM and RM. A total of 180 samples, both 

unprocessed and processed raw meat products, were used. For each food type, Health 
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Canada’s guidelines require that food items chosen for evaluation must be as different as 

possible (174). Thus, raw ground beef, raw ground veal, raw beef trim and carpaccio were 

chosen as representatives of unprocessed raw meat products. Raw sausage, raw hamburger 

patty, raw meatballs and raw kebabs were selected for representing processed raw meat 

products. Each food item had 10 high (H), 10 low (L) and 2 uninoculated (U) samples, with 

the exception of ground beef and raw sausage, which had 4 uninoculated samples each one. 

All food samples used in this study were obtained by Laboratory Services Division, 

University of Guelph, from local retail stores in Guelph, ON, Canada. Figure 8 depicts the 

distribution of samples evaluated.  

3.3.2.2 Preparation of inocula for processed and unprocessed food samples 

The E. coli O157:H7 strains were procured from the Agriculture and Food Laboratory from 

the University of Guelph culture collection. For inoculation of Raw Meat (unprocessed) 

food items, strain E. coli O157:H7 ATCC 43889 from human origin was used. Briefly, an 

isolated colony, taken from a blood agar plate incubated overnight at 37°C, was used to 

inoculate 10 ml of BHI broth and further incubated 18-22 h with shaking at 35°C. Cells 

were harvested by centrifugation at 8,000 rpm for 10 min at 4°C. Moreover, the pellet was 

re-suspended and washed once using 10 ml of 0.1% peptone water for further use.  

Raw Meat (processed) food items must be inoculated with a stressed culture, which was 

prepared using E. coli O157:H7 strain 380-94 from unknown origin. The culture was 

prepared as above and further incubated in a water bath at 50°C for 1 h (heat stress) before 

proceeding with sample inoculation. The % of sub-lethal injury was calculated as described 

in Section 3.1.3 by plating in triplicate using non-selective (TSA) and selective 

(CHROMagar O157) agars, which were incubated at 35°C for 18-24 h. The % of sub-lethal 

injury achieved was reported as the average of the triplicates.  

Once both inocula were prepared and equilibrated for 18-24 h at 4°C, they were serially 

diluted 10-fold using 0.1% peptone water. Two inoculation levels were needed: a “low 

inoculum level (L)”, based on the likelihood of having a fractional recovery (a target 

inoculum level of <5 CFU/25g), and a “high inoculum level (H)”, calculated at  
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Figure 8. Scheme of the distribution of samples for the unpaired validation study. A 

total of 90 samples were evaluated for each food type (Raw Meat Unprocessed and 

Processed) distributed among four different Food Items respectively. Each Food Item had 

24 or 22 replicates, which were equally split between the alternative method (AM) and 

the reference method (RM). 
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approximately 1 log higher than (L). The definite culture titers were estimated using 

standard plate counts on TSA incubated at 35°C for 18-24 h.  

3.3.2.3 Food sample inoculation 

Firstly, TVC for each food item was estimated according to the method MFHPB-33 

Enumeration of Total Aerobic Bacteria in Food Products and Food Ingredients Using 

3M™ Petrifilm™ Aerobic Count Plates from the Compendium of Analytical Methods 

(Appendix D). To ensure sample homogeneity, all food items were initially kept in bulk 

before splitting them. The equivalent of 20 replicates of each food item was split into 2 

primary groups for low (L) and high (H) inoculation levels. The rest of the replicates were 

assigned to the uninoculated group (U). Each primary group was inoculated in bulk with 

the correspondent E. coli O157 strain, either (L) or (H) inocula prepared as previously 

described.  

Inoculated bulk samples were mixed and equilibrated at 4°C for 48 h before splitting into 

25 g portions and randomly assigned to either of the methods described in Figure 8. This 

procedure assured that the true inoculation status of the samples is unknown and thus the 

number of true positives within each method could be considered as statistically equal. In 

addition, an unpaired samples protocol is performed whenever an alternative method has a 

different enrichment than the reference method used for comparison. Therefore, the final 

sample distribution consisted of 20 (L), 20 (H) and 5 (U) per food type and method of 

analysis respectively.  

3.3.2.4 Most Probable Number (MPN) determination of inoculated bulk samples  

To determine E. coli O157 concentration after the 48 h equilibration at 4°C before 

enrichment, the MPN was determined using a remaining portion of the primary inoculated 

bulk samples of each food item evaluated. Portions of 50 g were taken in triplicate from 

each high and low inoculation level. Each replicate was mixed with 450 ml of mTSBN 

(1:10 dilution). Then, 10% (50 ml) was taken and mixed with another 450 ml of mTSBN 

(1:100 dilution). A third dilution was performed in the same way to yield a 1:1000 dilution. 

Finally, 50 ml were removed from this last sample to maintain the same volume as the 
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previous samples. The final result was a 3×3 (three replicates, three dilution-levels) MPN 

preparations, equivalent to having 45 g, 4.5 g and 0.45 g sample sizes. Samples were 

incubated at 42°C for 22-24 h before they were further processed using immunomagnetic 

separation (IMS) as per MFHPB-10. Furthermore, suspect colonies grown on CHROMagar 

O157 and cefixime tellurite sorbitol MacConkey (CT-SMAC) were confirmed as described 

in Section 6.8 of the MFHPB-10 method. Finally, the MPN calculator 

(http://members.ync.net/mcuriale/mpn/index.html) was used to estimate the MPN, based 

on the number of confirmed positives and reported as MPN/25g.  

3.3.2.5 LFIA Test Kit alternative method  

The 90 inoculated test portions of 25 g that were randomly assigned to the AM were placed 

in Stomacher® bags and homogenized in 225 ml of TSBN for 60 s using a Stomacher®. 

Sample bags were loosely closed to allow air exchange for E. coli O157 growth and 

incubated at 42±1°C for 16-24 h. After 16 h of enrichment, samples were analyzed using 

the LFIA Test Kit Method. Briefly, 200 µl of the sample were pipetted directly into tube 

A, while another aliquot of 10 µl of the enriched sample was diluted 1:100 with sample 

diluent before pipetting 200 µl into Vial B. Furthermore, 10 µl of the sample buffer were 

added to each vial, which were mixed thoroughly and incubated 30 min at RT. 

Subsequently, 150 µl from each vial were loaded into their correspondent sample port in 

the LFIA device. Results were visually assessed after 15 min according to the following 

pattern: a positive result would show control lines in both A and B result windows and test 

lines in either A and/or B. On the other hand, negative test results would show control lines 

in both A and B result windows, but no test lines in neither A nor B. These results were 

recorded as the Alternative Presumptive Result (AP). The complete LFIA Test Kit 

methodology and schemes for the proper interpretation of results are shown in Appendix 

C. 

Because the validation study required an unpaired sample protocol due to different 

enrichments used for the AM and RM, the AM enriched samples were re-incubated until 

completing 22 h at 42°C. Afterwards, samples were analyzed as described in the MFHPB-

10 using concentration by IMS followed by selective isolation and ending with 

confirmation of suspected colonies (Appendix B). The results obtained were recorded as 
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the Alternative Confirmation Result (AC). Figure 9 summarizes the process path followed 

to analyze the samples assigned to the alternative method.  

3.3.2.6 Reference method MFHPB-10 

The 90 samples assigned to the RM were tested following the RM MFHPB-10, which is 

found in Appendix B. Briefly, 225 ml of mTSB with 20 µg/ml Novobiocin (mTSBN) were 

mixed with each 25 g sample and homogenized for 2 min in a Stomacher®. Samples were 

incubated at 42±1°C for 22 h, before they were analyzed as described above, starting with 

IMS and finishing with confirmation of suspected colonies following the MFHPB-10 

method (Appendix B). The results obtained were recorded as the MFHPB-10 reference 

method result (RM).  

3.3.2.7 LOD 

For the determination of the LOD, only one food item was sufficient; thus ground beef was 

chosen. The methodology described in Annex 4.5, Supplement to the Procedure for the 

Development and Management of Food Microbiological Methods, Determination of the 

Limit of Detection found in the Compendium of Analytical Methods (174) was followed. 

Briefly, five spiking levels with six replicates each of artificially inoculated samples at a 

range of known inoculum, were analyzed using the AM. In order to determine the inoculum 

levels, a 3×3 MPN was performed using the highest inoculation level and following the 

methodology described in Section 3.3.2.4. The lowest cell concentrations were 

extrapolated from the results obtained from the MPN, while the LOD was estimated within 

the two levels that gave respectively more and less than 50% (3/6) positives. A scheme 

summarizing the LOD determination is found in Figure 10. 

 Evaluation of Probability of Detection (POD) and Performance Parameters 

For calculating the performance parameters of an AM using a relative validation procedure, 

the Compendium of Analytical Methods contains the statistical analyses for assessing the 

data generated experimentally. Annex 4.1 Performance Parameters of Microbiological 

Methods - Note on Sensitivity and Specificity and Annex 4.4 Supplement to the Procedure 

for the Development and Management of Food Microbiological Methods, Procedure for 

the Statistical Evaluation and Calculation of Performance Parameters of a New Alternative  
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Figure 9. Flow chart of the LFIA Test Kit alternative method. The enriched sample 

was evaluated at 16 h of enrichment using the alternative method. The results obtained 

were considered the Alternative Presumptive Results (AP) (right). Furthermore, samples 

were re-incubated up to 22 h and analyzed following the reference method starting at the 

immunomagnetic separation (IMS) procedure. These results were considered the 

Alternative Confirmation Results (AC) (left). 	
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Figure 10. LOD sample preparation scheme. The first row represents the number of 

samples and inoculation level needed for calculating the MPN. Second to sixth rows show 

the sequence of dilutions needed to estimate the LOD of the LFIA Test Kit.	
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Qualitative Method Compared to a Reference Cultural Method (174), were followed 

accordingly for presentation and analysis of data. Based on these guidelines, raw data were 

summarized in separate tables comprising the AM results and the RM results for each food 

type, due to the fact that an unpaired sample study was required. For the AM the 

Presumptive Result (AP) and the Confirmation Result (AC) were combined to obtain the 

Alternative Final Result (AF). Moreover, the Reference Method was considered to be 

100% sensitive and specific because it was based on traditional culturing techniques. Thus, 

it could not produce false positives nor false negatives. These raw data were used to 

conduct a Probability of Detection (POD) analysis, which included estimating the POD for 

the alternative method presumptive results (PODAP), the POD for the alternative method 

final results (PODAF) and the POD for the reference method results (PODR) with a 95% 

confidence interval. The POD is calculated by dividing the number of positives (!) by the 

number of samples analyzed (N). Thus, the POD is calculated for each spiking level per 

food type evaluated. Moreover, the comparative performance of the two methods was 

estimated by the differences in the POD values according to the following formulas:  

"#$% &',) = #$%&' − #$%) 

"#$% &,,&' = #$%&, − #$%&' 

If the 95% confidence interval associated with each difference included the value zero (0), 

the results of the AM were considered equivalent to those of the RM, and the range of false 

positive for that specific inoculation level and food item were considered acceptable, 

respectively. Finally, data from the AP and AF were used to calculate the performance 

parameters of the AM. When the AP result was confirmed by the RM, the AF was 

considered a true positive (TP); however, if the confirmation resulted as negative, then the 

final result was considered a false positive (FP). On the other hand, if the AP was negative 

and confirmed by the AF, it was considered a true negative (TN), but if the confirmation 

was positive, the result was a false negative (FN). This final evaluation was used:  

-./01213124 =
567.	#901213.0

567.	#901213.0 + ;<=0.	>.?<213.0 !100 
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-B.C1D1C124 =
567.	>.?<213.0

567.	>.?<213.0 + ;<=0.	#901213.0 !100 

;<=0.	>.?<213.	E<2. =
;<=0.	>.?<213.0

567.	#901213.0 + ;<=0.	>.?<213.0 !100 

;<=0.	#901213.	E<2. =
;<=0.	#901213.0

567.	>.?<213.0 + ;<=0.	#901213.0 !100 

3.4. Development of a Humanized Single-Chain Variable Fragment (scFv) Against 
the O-antigen of E. coli O157 

 Hybridoma Cell Line Growth Conditions, Screening and Propagation�

The 13B3 hybridoma cell line used in this study was kindly provided by Dr. James Bono 

from the Agricultural Research Service, U.S. Meat Animal Research Center, USDA, in 

Nebraska, USA (227). Cryopreserved cells were thawed in a water bath at 37°C and 

quickly diluted 1:10 in pre-warmed Gibco® Hybridoma-serum free medium (SFM) 

(Gibco®, Life Technologies Inc., Carlsbad, CA, USA). Cells were harvested by 

centrifugation at 200 ×g for 5 min at 4°C, and the supernatant removed. The pellet was re-

suspended in 5 ml of Hybridoma-SFM supplemented with 10% fetal bovine serum (FBS; 

Gibco®, Life Technologies Inc., USA) and placed in T25-flasks and incubated at 37°C in 

5% CO2. After 24 h, 5 ml of Hybridoma-SFM with 10% FBS were added to the T25-flasks 

and returned to the incubator. Cell viability was checked using an haemocytometer and the 

Trypan Blue Exclusion Method (228,229). When the cell density reached 105–106 cells/ml 

and the viability was above 90%, cells were subcloned following the 96-well plate Limiting 

Dilution Method, using a theoretical final concentration of 1 cell/well (228,230–233). After 

one week, 100 µl of Hybridoma-SFM were added to those wells with single colonies. The 

96-well plates were re-incubated until single colony wells reached 30–50% confluence and 

the medium turned yellow (228,231). At this point, the supernatants of single colony wells 

were screened for antibody production using a sandwich ELISA against E. coli O157:H7. 

To ensure the stability and monoclonality of the hybridoma cell-line, one of the positive 

clones was randomly selected and subcloned for a second time, as described above. After 

this second subcloning, the three clones with the highest antibody titre were sequentially 
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expanded to a 12-well plate, then a 6-well plate, and finally to a T75-flask. When cells 

reached >90% viability and a density of 106 cells/ml, they were harvested for 

cryopreservation by centrifugation at 200 ×g for 5 min at 4°C, and the supernatant 

discarded. The pellet was re-suspended in freshly made FBS with 10% dimethyl sulfoxide 

(DMSO; Sigma Aldrich, USA) and quickly transferred into cryopreservation vials for 

storage at -20°C overnight. Subsequently, cryovials were moved to a -80°C freezer for a 

maximum of one week before they were placed in a liquid nitrogen tank for long-term 

storage. 

For antibody production and RNA extraction, cells were harvested from a cryopreserved 

sample as previously described. This time, the pellet was re-suspended in 2 ml of 

Hybridoma-SFM with 10% FBS and transferred to the first well (#1) of a 24-well plate, 

with 7 more wells filled with 1 ml of Hybridoma-SFM with 10% FBS. A serial dilution 

was performed by transferring 1 ml from well #1 to well #2. Then, 1 ml of well #2 was 

transferred to well #3, and followed the same sequence until well #7 was reached. Cultures 

were mixed thoroughly in the well before proceeding with each dilution. The plate was 

incubated at 37°C in 5% CO2 for 1–2 d until the initial wells reached 70% confluence. At 

that point, cells were collected and placed in 15 ml conical tubes with 10 ml of fresh 

Hybridoma-SFM. Cells were harvested by centrifugation at 200 ×g for 10 min at RT and 

the supernatant was replaced with 2 ml of Hybridoma-SFM for pellet resuspension. The 

cells were transferred to a 6-well plate containing 4 ml of the same medium, and incubated 

at 37°C in 5% CO2. Plates were checked daily for cell viability and overcrowding. When 

wells in the 6-well plate reached 60–70% confluence, cells were transferred to a T75-flask 

containing 14 ml of Hybridoma-SFM. Cells were subcultured in T75-flasks in a 1:10 ratio 

for a maximum of three passages. When cell viability was >90%, an aliquot was taken for 

RNA extraction. The rest of the culture was re-incubated for antibody production until the 

medium turned yellow and the cell viability decreased to approximately 50%. Finally, the 

supernatant was collected by centrifugation at 200 ×g for 10 min at 4°C for antibody 

purification.  
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 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 
Western Blotting (WB) for Protein Visualization�

A 10 or 12% polyacrylamide resolving gel with 5% stacking gel was prepared using Tris-

Glycine Running Buffer, then 1D vertical SDS-PAGE was performed for 1.7 h at 110 V 

using a Mini-PROTEAN System (Bio-Rad Laboratories Inc., Hercules, CA, USA). 

Samples were mixed in a 3:1 ratio with Laemmli buffer (4×) and boiled for 10 min before 

loading into the gel. The gel was fixed and stained with Coomassie Blue staining solution 

for 10 min followed by destaining until the background of the gel was clear. For size 

determination, the BLUeye Prestained Protein Ladder (FroggaBio Inc., Toronto, ON, 

Canada) was used for comparison. 

For Western Blotting analysis, protein samples were separated on a 12% polyacrylamide 

resolving gel prepared as described above, without end-stage staining. Instead, proteins 

were immobilized for detection by transferring the samples from the gel matrix to a 

nitrocellulose membrane, 0.45 µm (Bio-Rad Laboratories Inc., USA) using electroblotting 

with a Trans-Blot® SD semi-dry transfer cell (Bio-Rad Laboratories Inc, USA) for 1.2 h 

at 16 V, 0.26 limit for one gel. Prior to transfer, both the resolving gel and the membrane 

were equilibrated with Towbin Semi-Dry Transfer Buffer for 20 min with gentle shaking. 

After transfer, the membrane was blocked using 5% (w/v) non-fat dry milk in 1×TBST 

overnight at RT with shaking. For protein detection the biotinylated tag was probed for 2 

h at RT with conjugated streptavidin-IRDye800 (1:10,000 in 1×TBST with 0.5% (w/v) 

non-fat dry milk). The membrane was washed 3 times with 1×TBST for 5, 7 and 10 min, 

respectively, and a last wash of 5 min with 1×TBS prior to viewing using a LI-COR 

Odyssey® Infrared Imaging System (LI-COR, Lincoln, NE, USA). The composition of all 

buffers and reagents is described in Appendix E.  

 Enzyme-Linked Immunosorbent Assay (ELISA) and Fluorescent-Antibody 
Microscopy for Antibody Functionality Assessment�
An ELISA was performed for hybridoma screening and to determine the functionality of 

both the purified murine monoclonal anti-O157 and its derived single-chain variable 

fragment (scFvO157). The procedure was adapted from Westerman et al. (227). Briefly, 

microtiter plates were coated with 0.1 ml of an overnight working culture diluted to 
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approximately 5×108 CFU/ml in Coating Buffer. The plates were sealed with Saran wrap 

and incubated overnight at 4°C. E. coli O157 DSM 17076 was used as a positive control, 

while E. coli ATCC 25922, S. enterica ser. Typhimurium and L. monocytogenes were used 

as negative controls. Plates were washed 3 times with 1×PBST before adding 200 µl of 

Blocking Buffer and incubated for 1 h at RT. Washing was repeated as before and the 

appropriate sample (hybridoma supernatant, purified mAb or scFvO157) or controls 

(Hybridoma-SFM or protein diluent) was added to the wells. This time, plates were 

incubated for 2 h at RT. For hybridoma screening, the supernatant was undiluted, however, 

the mAb and scFvO157 samples were diluted in Blocking Buffer and assessed at different 

concentrations. Furthermore, the plates were washed 6 times as described above, blocked 

again with 200 µl of Blocking Buffer and incubated for 17 min or 1 h at RT then washed 

again. When evaluating the mAb functionality, plates were incubated 1 h at RT with 100 µl 

of peroxidase-conjugated anti-mouse IgG heavy and light chains (Jackson 

ImmunoResearch Inc., PA, USA) diluted 1:5,000 in Blocking Buffer. On the other hand, 

horseradish peroxidase conjugated streptavidin (Streptavidin-HRP; Moss, Inc., Maryland, 

USA) was used for scFvO157. Finally, plates were washed 6 times and 100 µl of 3,3',5,5'-

tetramethylbenzidine (TMB) ELISA peroxidase substrate (Rockland Immunochemicals 

Inc., USA) were added to each well. After 20 min at RT, plates were read using a VMax 

Kinetic ELISA Microplate Reader (Molecular Devices, LLC., CA, USA) at a wavelength 

of 650 nm. The absorbance of control samples was used to determine the cut-off value as 

established by the formula: 

F72 − 9DD	G<=7. = H3.6<?.	I=</J + 3(-%) 

Absorbance values above the cut-off were considered positive, while values below it were 
considered negative.  

For fluorescent microscopy, a loop from an overnight working culture was streaked onto a 

TSA plate and incubated at 37°C for 24 h. A colony was picked and spread onto a glass 

slide using a drop of water. Slides were allowed to air dry before they were fixed in cold 

( -20°C) acetone (Sigma-Aldrich, USA) for 10 min and air dried again. Two circles were 

drawn on each slide using a wax pencil to keep the reagents from spreading and drying out 

during incubation. As a negative control, 100 µl of 1×PBS were added to one circle, while 
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100 µl of either scFvO157 or mAb dilution were added to the other circles. After incubation 

at 37°C for 30 min in a moisture chamber, the slides were washed 3 times in 1×PBS and 

dried at RT before 100 µl of Streptavidin-fluorescein isothiocyanate conjugate 

(Streptavidin-FITC; BioLegend, San Diego, CA, USA) or anti-mouse IgG (whole 

molecule)-FITC (Sigma-Aldrich, USA) diluted 1:40 in 1×PBS with 5% BSA were added 

to each circle. The slides were re-incubated for 30 min at 37°C and washed as before with 

a final 2 min wash in distilled water. Slides were air dried and coverslips were mounted by 

using a drop of AquaPerm mounting medium (Life Technologies Inc., Carlsbad, CA, 

USA). The slides were then examined with an Olympus IX71 Inverted Micropscope 

(Olympus Canada Inc., Richmond Hill, ON, Canada).  

 Murine mAb Characterization and Purification�

The supernatant collected from the T75-flasks was initially isotyped using the Mouse 

Immunoglobulin Isotyping ELISA Kit from BD Pharmigen™ (BD Biosciences, San Jose, 

CA, USA). Eight different mouse immunoglobulin isotype-specific rat monoclonal 

antibodies (IgG1, IgG2a, IgG2b, IgG3, IgM, IgA, Ig κ, and Ig λ) were coated in each row 

of a 96-well plate. The positive control was an antigen mixture provided with the kit, while 

the negative control was the Hybridoma-SFM medium. As the detection antibody, a HRP-

labeled rat anti-mouse Ig monoclonal antibody was used. Preparation of reagents and assay 

conditions were according to the manufacturer’s instructions.  

The supernatant was concentrated 10 times using the Amicon® Ultra-15 Centrifugal Filter 

Units NMWL 30 kDa (EMD Millipore, Germany) at 4000 ×g before purification using the 

Nab™ Spin Kit for Antibody Purification (Thermo Scientific, IL, USA). A gravity-flow 

procedure was followed as per the manufacturer’s instructions. In brief, the sample was 

equilibrated with binding buffer in a 1:1 ratio and applied to the column. The column was 

washed using 15 ml of binding buffer, then the elution buffer (12 ml) was applied. The 

eluted antibody was collected in 3 ml fractions in tubes containing the appropriate volume 

of neutralization buffer. Purified fractions were analyzed by SDS-PAGE; those that stained 

positive pooled together, concentrated and dialyzed against 1×PBS pH 7.4 using the 

Amicon® Ultra-15 Centrifugal Filter Units NMWL 30 kDa. The antibody was assessed for 

homogeneity and purity by SDS-PAGE, and quantified using a NanoDrop 1000 



 

 

84 

Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Finally, aliquots 

were prepared and stored at 4°C for short-term use and at -20°C for long-term (up to 6 

months). 

The isoelectric point (pI) of the mAb was also determined with Ettan IPGphor II Isoelectric 

Focusing (IEF; Amersham Bioscience AB, Uppsala, Sweden) equipment. An aliquot of the 

purified mAb in 1×PBS, pH 7.4 was buffer exchanged using only water and the Amicon® 

Ultra-15 Centrifugal Filter Units NMWL 30 kDa. The sample was washed three times to 

remove 99% of the buffer. The appropriate sample volume was mixed with rehydration 

buffer stock solution (RBSS) and IPG buffer (GE Healthcare Life Sciences, Piscataway, 

NJ, USA). The mixture was spread evenly along the groove of each sample boat. 

Furthermore, the 13 cm gel strip (Immobiline DryStrip, GE Healthcare Life Sciences, 

USA) was placed with the gel facing down into each boat. For this assay, linear pH 3-10 

range strips were used. The strips were covered with Dry Strip Cover Fluid (GE Healthcare 

Life Sciences, USA) and then covered with the lid. The following step-n-hold protocol was 

used to run the samples: 20 V for 12 h, 100 V for 20 min, 500 V for 500 Vh, 1000 V for 

1000 Vh, 2000 V for 4000 Vh, 4000 V for 8000 Vh, 6000 V for 12000 Vh, and 8000 V for 

30000 Vh, for a total running time of 24 h. The gels were taken out of the boat, fixed with 

20% trichloroacetic acid (TCA; BDH Chemicals, VWR International, LLC) for 30 min, 

then washed with 40% methanol (Caledon Laboratories, ON, Canada) and 7% acetic acid 

(Sigma-Aldrich, USA) for 3 min, and used for direct staining with Gelcode™ Blue 

(Thermo Fisher Scientific Inc., USA) for 1 h. Strips were destained twice for 15 min with 

distilled water before distinct bands were visualized. The approximate distance for the 

bands with respect to the beginning of the gel strip was measured in cm and the pI was 

determined using the DryStrip gradient data provided by the gel strip supplier. 

 Hybridoma RNA Isolation ��

Between 1×106 and 5×106 hybridoma cells from an expanded ELISA-positive clone were 

harvested for RNA extraction. Hybridoma cells were centrifuged for 5 min at 200 ×g at 

4°C, the supernatant was discarded and the cells were washed with 1×PBS. The PureLink® 

RNA Mini Kit (Life Technologies, USA) was used following the manufacturer’s protocol 

for RNA purification from animal and plant cells. To ensure that total RNA was DNA-free, 
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an on-column DNase digestion was performed using a RNase-Free DNase Set (Qiagen 

Gmbh, Hilden, Germany) before washing the column. Total RNA elution was achieved 

with 50 µl of Dnase/RNase/Protease-free water (BioShop, Canada) and quantified using a 

NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific Inc., USA). 

 mAb Variable Regions Reverse Transcription (RT) and Polymerase Chain Reaction 
(PCR)��

The primers used for the RT-PCR were synthesized by Invitrogen® (Life Technologies, 

USA) based on the sequences published by Wang et al. (196), shown in Table 7. The 

highly degenerate 5’ primers for both variable heavy (VH) and light (VL) chains were 

designed to start at the first nucleotide of the framework region 1 (FR1). For the VH, a 

combination of two high degeneracy primers was used to cover the majority of possible 

sequences, ensuring amplification of the VH gene. On the other hand, the 3’ primers were 

complementary to the first constant region of each of the heavy and light kappa chains (CH1 

and CκL). In addition, to be chain specific, the CH1 primer used in this study was isotype-

specific for IgG3. All primers were rehydrated with the appropriate volume of Tris-EDTA 

(TE) buffer (Thermo Fisher Scientific Inc., USA) to obtain 100 µM stock solutions that 

were stored at -20°C. They were diluted 1:10 in TE buffer for preparation of working 

solutions that were stored at 4°C for short-term use. 

The QuantiTect Reverse Transcription Kit (Qiagen, Germany) was used to synthesize 

cDNA from 2 µg of total RNA. Two reactions were carried out, each one containing a final 

concentration of 0.7 µM of either the CH1 or CκL gene-specific primer. The rest of the 

procedure was followed as per the manufacturer’s protocol. The resultant cDNA was 

amplified by PCR (T100™ Thermal Cycler, Bio-Rad Laboratories, USA) using 1.25 U of 

Taq Polymerase (Life Technologies Inc., USA), 0.2 mM deoxyribonucleotide 

triphosphates (dNTP; Life Technologies Inc., USA), 1.5 mM MgCl2, 0.2 µM of each 

primer (CH1 and MH1/MH2 for VH reaction; CκL and Mκ for VL), 1×PCR buffer and 2 µl of 

the respective cDNA. The thermal cycling conditions for the amplification of the VH were 

as follows: denaturation at 94°C for 3 min, followed by 30 cycles of 95°C for 45 s, 45°C 

for 45 s, and 72°C for 1 min. The VL amplification was performed under the following 

conditions: initial denaturation at 94°C for 3 min, followed by 10 cycles of 95°C for 45 s,  
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Table 7. Sequences of primers for mAb VH and VL chains RT-PCR. 

Primer 
Name 

Sequence (5’-3’)1 Description 

CH1 gga aga tct AGG GAC CAA GGG 
ATA GAC AGA TGG 

Mouse heavy chain first constant region primer. 
IgG3 isotype specific (196) 

CκL ggt gca tgc GGA TAC AGT TGG 
TGC AGC ATC 

Mouse kappa chain constant region primer (196) 

MH1 ctt ccg gaa ttc SAR GTN MAG CTG 
SAG SAG TC 

Mouse heavy chain FR1 high degeneracy 
primers (196) 

MH2 ctt ccg gaa ttc SAR GTN MAG CTG 
SAG SAG TCW GG 

Mκ  gg gag ctc GAY ATT GTG MTS 
ACM CAR WCT MCA 

Mouse kappa chain FR1 universal degenerate 
primer (196) 

1Underlined	nucleotides	represent	restriction	enzyme	recognition	site.	
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45°C for 45 s, and 72°C for 1 min. Then, 10 cycles of 95°C for 45 s, 47°C for 45 s, and 

72°C for 1 min. Finally, 10 cycles of 95°C for 45 s, 50°C for 45 s, and 72°C for 1 min. In 

both cases, the final extension was achieved at 72°C for 7 min and the reaction cooled to 

4°C. Both of these amplification thermal cycling conditions were previously published by 

Koren et al. (195). 

 Plasmid DNA Isolation�

Plasmid DNA was isolated and purified from E. coli XL1 Blue or BL21 (DE3) cells in 

stationary phase (O/N aerobic growth at 37°C) with a QIAprep Spin Miniprep Kit (Qiagen, 

Venlo, Limburg, Netherlands) as per the manufacturer’s microcentrifuge protocol. Plasmid 

DNA was eluted with 50 µl of EB buffer (Qiagen, Netherlands) and stored no longer than 

one month at -20°C for further use. 

 DNA Visualization and Gel Extraction�

DNA was resolved by electrophoresis on 1%, 1.5% or 2% agarose DNA grade high-melt 

gels (Thermo Fisher Scientific Inc, USA) in 1×TBE buffer at 85 V using a Mini-Sub Cell® 

GT Agarose Gel Electrophoresis System (Bio-Rad Laboratories Inc., USA). Samples were 

mixed 2:1 with gel loading buffer for nucleic acids (Sigma-Aldrich, USA), stained with 

ethidium bromide (EtBr; MO BIO Laboratories, Inc., Qiagen, USA) and visualized under 

ultraviolet light (UV; EpiChemi3 with 3UVTM Transilluminator, UVP, LLC., CA, USA). 

For DNA fragment size determination, bands were compared against a 1 Kb Plus DNA 

ladder (Invitrogen, Life Technologies Inc., USA). The DNA bands of interest were excised 

and purified using a QIAquick Gel Extraction Kit (Qiagen, Netherlands) following the 

manufacturer’s protocol. Purified DNA was eluted with 30 µl of EB buffer (Qiagen, 

Netherlands) and the final concentration measured using a NanoDrop 1000 

Spectrophotometer (Thermo Fisher Scientific Inc., USA). 

 DNA Sequencing ��

Sequencing of the VH, VL chains and plasmid DNA was performed at Robarts Research 

Institute Sequencing Facility (Western University, London, ON, Canada) using either the 

specific primers in Table 7 or the standard primers provided by the Sequencing Facility, 
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which are described in Table 8. All samples were prepared following the standard 

operating procedures of the Sequencing Facility (www.robarts.ca/sample-preparation). 

 Construction of the Humanized scFvO157 

The VH and VL nucleotide sequences were translated into amino acids using�the ExPASy 

online translation tool from the Swiss Institute of Bioinformatics (SIB; 

http://web.expasy.org/translate/). To confirm that both sequences were new and 

corresponded to VH and VL murine domains, each one was submitted to the BLASTP 

program (http://blast.ncbi.nlm.nih.gov/Blast.cgi), where the non-redundant protein 

database was selected to perform a multiple sequence alignment (MSA) using the 

Constraint-Based Multiple Alignment Tool (COBALT). This helped to determine the 

degree of conservation of each residue based on the Identity Conservation Setting. 

Moreover, the specific CDR boundaries were defined based on predicted topological 3D 

modeling. Briefly, the VH and VL sequences were submitted to SWISS-MODEL 

(www.swissmodel.expasy.org) to obtain a structure homology model based on the template 

with the highest sequence identity found in the Protein Database (PDB). Using the 

COBALT results, the regions with more variability were used to define the 

complementarity determining region (CDR) loops in the 3D model. Predicted CDR loops 

and the immediate amino acids flanking them were finally grafted into a consensus 

humanized backbone previously described by Patterson et al. (234). Finally, the humanized 

scFvO157 construct was designed to have a Tobacco Etch Virus (TEV) cleavable site at 

the N-terminal and a C-terminal biotin tag, as well as KpnI and BamHI restriction enzyme 

sites, respectively, for strategic cloning purposes (Figure 11). The final humanized 

scFvO157 was codon optimized for cloning and expression in E. coli cells, synthesized and 

cloned into pUC57 plasmid by GenScript Corp (Piscataway, NJ, USA). 

Further along the process, the humanized scFvO157 sequence was reanalyzed using 

antibody informatics tools such as the Prediction of ImmunoGlobulin Structure (PIGS) 

web-based server (http://circe.med.uniroma1.it/pigs/)(235) and Maestro Software 

(Schrödinger, New York, NY, USA). The former was used to re-design the mAb. Briefly, 

the single sequence submission was chosen, which allowed for the prediction of a single 
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Table 8. Sequences of standard primers provided by the Sequencing Facility at 

Robarts Research Institute, Western University.  

Primer Name Sequence (5’ - 3’) Description 

M13/pUC forward CGC CAG GGT TTT CCC AGT 
CAC GAC 

Primers for sequencing inserts into pUC 
plasmids. 

M13/pUC reverse TCA CAC AGG AAA CAG CTA 
TGA C 

T7 promoter TAA TAC GAC TCA CTA TAG 
GG 

Primers for sequencing inserts into pET 
plasmids. 

T7 terminator GCT AGT TAT TGC TCA GCG 
G 
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Figure 11. Humanized scFvO157 construct. Complete humanized scFvO157 construct 

used for further cloning and expression. KpnI and BamHI restriction enzyme sites are 

shown at the N- and C-terminal respectively. TEV cleavable site is found at the N-terminal 

(orange) followed by the VH chain (blue) joined by a (G4S)3 linker (red) to the VL chain 

(green). The biotin tag (yellow) found in the extreme C-terminal was attached to the VL 

by a SG3 linker. 
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antibody by uploading the sequences of the VH and VL chains from the mAb. For template 

selection, the default number of results shown, which is 20, was used. Moreover, the “Best 

H and L chains” method was chosen and the VH and VL chain structure templates with the 

highest percentage of identity were selected for the prediction step. The Loop Grafting 

Method and Side Chain Modeling Method were kept as default. The predicted structure in 

PDB format was visualized with Maestro Software for subsequent structure analysis. On 

the other hand, the amino acid sequence of the consensus humanized scFv used as 

backbone for CDR grafting was submitted to SWISS-MODEL to obtain a 3D model and 

further imported into Maestro Software for analysis. 3D models were superimposed using 

the Protein Structure Alignment tool and the alignment score and root-mean-square 

deviations (RMSD) were calculated to quantify the similarity between the two models. 

Finally, the Multiple Sequence Viewer was used to compare some of the intrinsic 

properties such as hydrophobicity between both proteins. 

 Molecular Cloning of the scFvO157�

3.4.11.1 Restriction digestion 

The gene encoding the TEV::scFvO157::biotin tag was excised from pUC57 using the 

restriction enzymes KpnI and BamHI (New England BioLabs Inc., Ipswich, MA, USA) 

following the manufacturer’s instructions. Briefly, the double digestion reaction consisted 

of the target DNA plasmid, 1 U of each enzyme/µg DNA, 1×enzyme specific buffer and if 

necessary, 1×BSA (New England BioLabs Inc., USA). Then, the reaction was incubated 

for 1-2 h in a water bath at 37°C. As controls, single digestion reactions were prepared and 

compared by visualization in a 1% agarose gel. The construct was purified from the gel 

using a Qiaquick PCR Purification kit (Qiagen, Netherlands) and eluted with 50 µl of EB 

Buffer as per the manufacturer’s instructions. The same procedure was followed for 

preparing the digested pET32a(+) vector used for insertion of the TEV::scFvO157::biotin 

tag construct. 

3.4.11.2 DNA ligation 

Ligation of the TEV::scFvO157::biotin tag and the digested pET32a (+) plasmid was 

performed for 1 h in a water bath at 16°C. The reaction contained 40 U T4 DNA Ligase 
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(New England BioLabs Inc., USA), 1×T4 Ligase Buffer (New England BioLabs Inc., 

USA), and appropriate concentrations of both scFv construct and pET32a(+) digested 

plasmid, based on a sticky-ends ligation. 

All vectors used and obtained in this study are summarized in Table 9. In addition, all 

plasmid inserts were sequenced at the Robarts Research Institute Sequencing Facility 

(London, ON, Canada).  

3.4.11.3 Transformation of chemical competent E. coli cells 

A 100 µl aliquot of chemical competent E. coli cells was thawed and incubated with 10 µl 

of the appropriate plasmid DNA for 30 min on ice. Heat shock was induced by incubating 

the cell at 42°C for 45 s and immediately placing it on ice for 2 min. Subsequently, 900 µl 

of LB broth were added to the cells, which were incubated for 1 h at 37°C with shaking. 

Finally, the transformed cells were spread plated on LB agar containing the appropriate 

antibiotics and incubated overnight at 37°C for 18 h. 

3.4.11.4 E. coli clone selection 

Individual colonies taken from the spread plates were picked and inoculated into 4 ml of 

LB with the appropriate antibiotics. Tubes were incubated overnight for 18 h with shaking. 

Plasmid DNA was isolated as previously described and visualized using a 1% agarose gel. 

The insert size was also verified by restriction digestion and by sequencing for final 

confirmation. Cultures that were confirmed to be successfully transformed with the 

appropriate plasmid were prepared for storage at -80°C as described in Section 3.1.7. 

 Expression of scFvO157�

The E. coli BL21 (DE3) transformed with pBirACm (containing the birA gene coding for 

biotin ligase), and the pET32a(+)	TEV	scFvO157:biotin tag plasmids was used to express 

the recombinant protein of interest (TrxA	His•Tag®	TEV	scFvO157	biotin). Cells were 

grown aerobically at 37°C in LB medium with the appropriate antibiotics to an OD600= 

0.1- 0.5 (early log phase). For optimization of protein expression, induction was performed 

under different isopropyl-D-thiogalactopyranoside (IPTG; Bio Basic Canada Inc., 

Markham, ON, Canada) concentrations (1, 0.5, 0.3, 0.2, 0.1 mM), temperatures (4°C, 37°C  



 

 

94 

Table 9. Plasmids used in this study. 

Plasmid Name Relevant Characteristic Source 

pET32a(+) Protein expression vector; Apr; 109aa Trx•Tag™ 
thioredoxin protein (TrxA) and His•Tag® 
sequences 

Novagen 

pBirACm pACYC184 with inducible biotin ligase; Cmr Avidity 

pUC57::TEV:: scFvO157:: biotin 
tag 

Codon optimized scFvO157 sequence with KpnI 
and BamHI sites; Tobacco Etch Virus (TEV) 
protease cleavage site; C-terminal biotin tag; Apr 

GenScript 

pET32a(+)::TEV::scFvO157::biotin 
tag  

TEV:: scFvO157:: biotin from pUC57:: TEV:: 
scFvO157:: biotin inserted into KpnI and BamHI 
sites of pET32a (+)  

This 
study 

Apr,	Ampicillin	resistance;	Cmr,	Chloramphenicol	resistance		
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and RT) and incubation times (3, 6, 48 h, and overnight). In addition, protein biotinylation 

was achieved by adding 50 mM D-biotin (BioBasic Inc., Canada). Cells were harvested by 

centrifugation at 5,000 ×g for 7 min at 4°C and the pellet re-suspended in cold Native 

Buffer (20 mM Tris-HCl, pH 7.4, 200 mM NaCl). For cell lysis, the pellet was treated with 

0.25 mg/ml lysozyme (Sigma-Aldrich, USA) and 0.02 mg/ml DNase I (Sigma-Aldrich, 

USA) and incubated on ice for 1 h prior to sonication (Branson Sonifier 450, Branson 

Ultrasonics Corporation, USA) with output 5, 3 cycles of 30 pulses each. The soluble and 

insoluble fractions were separated by centrifugation at 4°C at 4,000 ×g for 15 min and both 

fractions stored at -20°C for further analysis. 

 Purification and Refolding of scFvO157 

The recombinant protein expressed was purified using nickel-nitrilotriacetic acid (Ni-

NTA) His•Bind® resin (Novagen, EMD Millipore, USA) under three different conditions, 

which were adapted from Akbari et al. (203) and are described below. 

3.4.13.1 Native conditions 

The soluble fraction was applied to a Ni2+-charged Ni-NTA affinity column and incubated 

at RT for 1 h with agitation using a rotator wheel. The column was washed with Native 

Buffer and eluted with increasing concentrations of imidazole (5 ml each of 15 mM, 

30 mM, 60 mM, and 200 mM imidazole in Native Buffer). 

3.4.13.2 Denaturing conditions 

The pellet containing the scFvO157 inclusion bodies was re-suspended in Denaturing 

Buffer pre-warmed at 37°C and gently rocked for 10 min at RT to ensure lysis. 

Furthermore, the cell lysate was sonicated on ice (3 cycles of 10 pulses using output 5). 

Cell debris was removed by centrifugation at 4,000 ×g for 15 min. Then, the supernatant 

was pipetted into a Ni2+-charged Ni-NTA affinity column and incubated at RT for 30 min 

with gentle agitation. The column was washed twice with Denaturing Binding Buffer and 

eluted using the Denaturing Elution Buffer. For refolding, the eluted recombinant protein 

was dialyzed (dialysis membrane, 12,000 Da MWCO; Sigma-Aldrich, USA) against 

10 mM Tris, 0.1 % Triton X-100, pH 5.5 buffer at 4°C to eliminate urea.  
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3.4.13.3 Hybrid conditions 

This protocol combined the previous denaturing and native methods. First, a bacterial pellet 

was lysed following the denaturing protocol. The supernatant was applied to a Ni2+-charged 

Ni-NTA affinity column and incubated at RT for 30 min with gentle agitation. The column 

was washed twice with Denaturing Binding Buffer and four times with Native Wash 

Buffer. Finally, the protein was eluted using Native Elution Buffer.  

All purified fractions were dialyzed 3 times, 1 h each, against 200-400 times the volume 

of Native Buffer at RT. Afterwards, the N-terminal tag (TrxA	His•Tag®	TEV) was 

cleaved by autoinactivation-resistant His7::TEV protease (30 µl/ml sample) incubated 2 d 

at RT. Cleaved proteins were purified using a second Ni-NTA affinity column following 

the native conditions protocol. The fraction containing the pure scFvO157	biotin was 

dialyzed against Native Buffer as described above, assessed for homogeneity by SDS-

PAGE and quantified using a Pierce™ BCA Protein Assay Kit and/or a NanoDrop 1000 

Spectrophotometer, both from Thermo Fisher Scientific Inc., USA. 
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CHAPTER 4 RESULTS
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4.1. Development of a LFIA for Detection of E. coli O157 

 Preparation and Evaluation of Bacterial Cultures 

4.1.1.1 Preparation of healthy bacterial cultures 

During the LFIA Test Kit development phase, five bacterial strains were frequently used 

throughout the process: E. coli O157 DSM 17076 served as the positive control, while S. 

enterica ser. Typhimurium LT-2, Shigella flexneri ATCC 25929, E. coli ATCC 25922 and 

Listeria monocytogenes ATCC 19115 were used as cross-reaction controls. S. enterica ser. 

Typhimurium, S. flexneri and E. coli ATCC 25922 are Gram negative bacteria belonging 

to the Enterobacteriaceae family and thus closely related to E. coli O157 (24,236). These 

bacteria represented ideal candidates for assessment of antibody cross-reactivity as they 

also possess the O-antigen as part of their outer membrane, although with structural 

variations that distinguish them from E. coli O157 (149). L. monocytogenes, a well-

described human pathogen, was used as a representative of the Gram positive group. All 

healthy cultures reached 109 CFU/ml after an 18-24 h incubation period, with the exception 

of S. enterica ser. Typhimurium, which was approximately 108 CFU/ml, as confirmed by 

plate counts. 

4.1.1.2 Preparation of stressed E. coli O157 cells 

Healthy cells, prepared as previously described, were used when assessing the performance 

of the LFIA Test Kit under unprocessed raw meat conditions. However, when evaluating 

processed raw meat conditions, it was necessary to mimic realistic situations, where 

bacterial replication may be impaired due to exposure of meat to physical or chemical 

treatments (170,225). Therefore, a “food stress” treatment, which consisted of incubating 

an E. coli O157 culture for 10 d at 4°C with conditions similar to real processed raw meat 

samples (TSB, 0.6% yeast extract, pH 4.9, and 130 g/L NaCl), was chosen for preparing 

stressed cells that could be used for artificial inoculation (225). After treatment, E. coli 

O157 cells were plated in parallel on non-selective (TSAYE) and selective (CR-SMAC) 

media and the difference in growth was further compared to obtain the % of sub-lethal 

injury. Therefore, to ensure the proper performance of both TSAYE and CR-SMAC media, 

they were initially evaluated with a healthy E. coli O157 control. Plate counts were further 

compared using a two-sided t-test (α=0.05). The results showed that cells plated on 
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selective media (CR-SMAC) produced significantly lower CFUs compared with non-

selective media (TSAYE) (p<0.05, Figure 12A). Hence, it was necessary to establish a % 

of sub-lethal injury, or threshold value, attributed to the media performance in order to 

distinguish from the true effect of the “food stress” treatment. The threshold value was 

estimated as one standard deviation above the mean of % of sub-lethal injury calculated 

for the eight healthy control samples assessed (225), which resulted in 21.7%. This 

threshold value was further used to assess whether the % of sub-lethal injury was truly 

caused by the “food stress” treatment or was simply an effect of the media performance. 

Furthermore, five different E. coli O157 strains were treated following the “food stress” 

protocol and the % of sub-lethal injury was compared with the threshold value previously 

obtained using a one-sample t-test (α=0.05). Two of them, EC20001018 and EC19970515, 

did not differ from the threshold value estimated (p=0.1426 and p=0.1385, respectively). 

Therefore, the % of sub-lethal injury for both of them was assumed to be due to the media 

performance rather than the effect of the “food stress” treatment. On the other hand, three 

strains showed a difference in % of sub-lethal injury (p<0.05), which was attributed to the 

effect of the “food stress” treatment (Figure 12B). These data demonstrated that although 

all strains evaluated belong to the same species, E. coli O157, there was an inherent cell-

to-cell variation that could be reflected in the response to stress. Finally, despite the fact 

that there was an intrinsic effect caused by the performance of the media, three strains 

showed an adequate % of sub-lethal injury, which was optimal for their further use in the 

artificial inoculation of meat samples. 

 Optimization of the LFIA Device Blocking Conditions 

In order to improve the visualization of the test line in the positive control while eliminating 

background signals, the first phase of the LFIA Test Kit development process focused on 

reducing the non-specific binding. Although different combinations of proteins and 

polymers were initially assessed, BSA, which is frequently reported to block non-specific 

binding in nitrocellulose strips (237–239), was selected as the best alternative for further 

optimization, based on our evaluation. In addition, Tween 20 was preferred over Triton X-

100 as a nonionic detergent for improvements in sample flow through wettability. Using a 

blocking buffer either as a sample diluent or pre-treatment decreased the red smear along 
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Figure 12. Preparation and assessment of stressed E. coli O157 cells. A) Bar graph 

shows the difference in CFUs between the non-selective (TSAYE) and selective (CR-

SMAC) media performance using an E. coli O157 control culture. CFUs were 

significantly lower on CR-SMAC compared with TSAYE (1.41×109 ± 1.57×108 and 

1.57×109 ± 1.77×108, respectively). The p-value is from a two-sided paired t-test (p= 

0.0254, n=8). Values represent mean ± SEM. B) Bar graph representing the % of sub-

lethal injury of 5 different E. coli O157 strains subjected to a “food stress” treatment. Each 

bar represents the mean value of % of sub-lethal injury ± SEM (n=3-5). A one sample t-

test, using the threshold value (21.7%), was performed to determine whether the % of sub-

lethal injury was truly caused by the “food stress” treatment or was mainly due to the 

performance of the media (*p ≤0.05) 
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the membrane and improved the flow of the sample through the nitrocellulose membrane, 

as indicated by a well-defined control line when compared with the device without 

blocking buffer (Table 10). In addition, positive samples showed a clearly defined test line 

within the 15 min window established for reading, while negative samples remained clear 

(Table 10). Despite the improved performance, the two approaches required additional 

steps, increasing the complexity of the assay. Thus, it was necessary to assess additional 

blocking strategies. 

4.1.2.1 Assessment of different nitrocellulose blocking solutions 

Prior work indicated that incorporating a blocking step increased the complexity of the 

assay despite the improvement in the performance of the LFIA. Thus, an alternative 

approach, where the blocking reagents were incorporated directly into the nitrocellulose 

membrane during manufacture, was assessed. 

The optimal concentration and type of blocking were determined by assessing different 

ratios of BSA and/or Tween 20. The most representative prototypes of the blocking 

optimization process are summarized in Table 11. The positive control was E. coli O157 

DSM 17076 diluted to 107 CFU/ml using TSB, while the negative control was TSB alone. 

Based on the criteria previously established for visual evaluation, LFIA devices A, E, and 

F were ruled out because there was no control line either in the positive or the negative 

control. Device B had twice the concentration of BSA and Tween 20 compared to A, which 

slightly improved the development of control lines, however, it did not decrease the 

formation of red smear along the membrane. This appearance was similar to device D, 

which contained the same concentration of BSA only. Device B blocking treatment was 

doubled in device C, causing better control lines and a slight decrease in the red smear. 

However, the test line in the positive control was still unclear. Finally, device G was 

blocked with a higher volume per mm2 of B treatment, resulting in an intense, well-defined 

control line in the negative control. The positive control had a clear background with the 

appearance of both the control and test lines, though the signal intensity was weak. 

Based on these results, the volume of the B solution was optimized and three more 

alternatives (1/2G, 1/4G, and 1/6G) were tested. The objective of using blocking post-  
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Table 10. Initial assessment of nitrocellulose blocking conditions. 

Blocking Positive Control Negative Control 

A) No blocking 

  

B) Blocking buffer as 
diluent 

  

C) Blocking buffer as 
pre-treatment 

  
A)	Standard	LFIA	with	no	blocking	buffer	used.	B)	Blocking	buffer	was	used	to	re-suspend	an	overnight	
culture	of	E.	coli	O157	DSM	17076	before	mixing	the	reagents	for	the	in-tube	sandwich	immunoassay.	C)	
Pre-treatment	 of	 the	 LFIA	 with	 50	 μl	 of	 blocking	 buffer	 before	 sample	 loading.	 The	 positive	 control	
consisted	of	a	107	CFU/ml	sample	of	E.	coli	O157	DSM	17076	while	the	negative	control	contained	only	
blocking	 buffer.	 Images	 of	 the	 LFIA	 devices	 were	 taken	 after	 15	 min	 after	 loading	 150	 μl	 of	 the	
corresponding	sample.	The	concentration	of	antibodies	was	kept	constant	throughout	these	experiments.	
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Table 11. Screening of blocking conditions for the LFIA devices. 

LFIA Nitrocellulose Treatment 
Visual Evaluation† 

Positive Control Negative Control 

A 0.75% BSA and 0.019% Tween 20 

  

B 2A 

  

C 2B 

  

D 2A-BSA only 

  

E 2A-Tween 20 only 

  

F Unblocked control kits 

  

G1 50 µl of B per 5.5 mm strip 

  

1/2G1 25 µl of B per 5.5 mm strip 

  

1/4G1 12.5 µl of B per 5.5 mm strip 

  

1/6G1 9.375 µl of B per 5.5 mm strip 
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Performance	was	evaluated	for	9	different	blocking	solutions	sprayed	over	nitrocellulose	strips	during	
manufacture	of	the	LFIA	devices.	All	cassettes	had	a	28	mm	sample	polyester	pad	blocked	with	Tween	20.	
1G	devices	were	treated	with	different	volumes	of	B	blocking	solution.	†Images	and	visual	evaluation	of	
the	 cassettes	 were	 performed	 after	 a	 prolonged	 incubation	 time	 of	 15	 min.	 Positive	 Control:	 E.	 coli	
O157:H7	DSM	17076	(107	CFU/ml).	Negative	Control:	TSB.	
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treatment was to evenly coat the surface of the membrane, which becomes chemically 

uneven due to different chemical species found in the capture reagents immobilized on the 

control and test lines. This can cause irregular flow when the sample is applied (240). 

However, the results in Table 11 demonstrate that post-treatment is only effective when a 

balance between BSA and Tween 20 is reached, allowing for removal of nonspecific 

adsorption, while maintaining the optimal activity of the capture reagents reflected on well-

defined control and test lines with a clear background. Therefore, the optimal blocking 

composition was achieved with the 1/6G device, which was selected for further studies. 

 Optimization of the In-Tube Sandwich Immunoassay 

Once the optimal LFIA device prototype was selected, other parameters that influenced the 

sensitivity and specificity of the LFIA Test Kit, such as concentration of antibodies, sample 

pH and sample concentration, were evaluated. Hence, most of the optimization focused on 

the in-tube sandwich immunoassay, which was based on noncompetitive indirect detection 

of the antigen by using a secondary anti-mouse antibody conjugated with colloidal gold. 

This format had the advantage of keeping intact the detection antibody because it was not 

directly labeled and thus it was fully immunoreactive. The detection antibody used was a 

mAb raised against the O-antigen of E. coli O157 previously described by Westerman 

et  al. (227). Its selection was based on reported ability to react with 47 E. coli O157:H7 

strains and 17 O157:non-H7 strains. Moreover, this mAb did not cross-react with any of 

38 non-E. coli enterobacteria tested by its developers (227). On the other hand, the 

biotinylated polyclonal antibody (pAb-b) acted as the capture antibody, binding to the 

streptavidin immobilized on the test line. This antibody was commercially available and 

chosen due to its synergy when combined with the mAb. 

The in-tube sandwich immunoassay optimizations were performed using checkerboard 

titrations to identify the best combinations of the different reagents or conditions assessed. 

In addition, fine-tuning involved supporting visual evaluation with the measurement of the 

control and test lines’ intensity by using the i-Lynx system. Previous studies performed at 

IPOC facilities using their standard LFIA commercial products have shown that values 

below 0.055 reflective units (RU) were not visually detected by an untrained panel (Garth 
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Styba, president IPOC, 2016, pers. comm.), therefore this value was adopted as the cut-off 

for discriminating positive versus negative results during the optimization studies. 

4.1.3.1 Optimization of the pH 

Besides antibody pairing, determining the suitable concentration of antibodies used in the 

in-tube sandwich immunoassay played a key role in the sensitivity and specificity of the 

LFIA Test Kit. However, even when adequate concentrations are used, their interaction 

with the antigen can be compromised by sample conditions, such as the pH. In fact, the 

effect of pH on the LFIA performance was noticed due to the presence of false positives 

with overnight cultures of non-target organisms, which were included as cross-reaction 

controls during the optimization stage. Previous screening had shown that none of the 

antibodies cross-reacted with these strains. Moreover, when the cultures were diluted 

10 fold with culture broth, the false-positives were eliminated. A previous study, which 

focused on the development of an immunochromatographic assay, reported that when the 

pH of samples was <5, false positives were detected and thus maintaining the pH between 

6 and 9 was recommended (241). Therefore, to assess the effect of pH on the LFIA Test 

Kit, the pH of overnight grown cultures was determined and adjusted to neutral (pH 7) 

using 1 M HEPES buffer. The normal pH of an E. coli O157 culture was estimated to be 

6, similar to the non-pathogenic E. coli ATCC 25922. Conversely, S. enterica ser. 

Typhimurium and S. flexneri cultures had a pH of 5, which resulted in high intensity false-

positive signals, as shown in Figure 13. However, pH neutralization reduced the 

appearance of the false-positive signals, especially with S. enterica ser. Typhimurium and 

S. flexneri. The effect of low pH on the development of false positives was confirmed when 

TSB, which has a neutral pH, showed RU values around 0.135 when its pH was adjusted 

to 5 (Figure 13). Overall, these data showed that, to maintain the optimal performance of 

the LFIA Test Kit, it is necessary to adjust the sample pH during the in-tube sandwich 

immunoassay. 

4.1.3.2 Optimization of the colloidal gold conjugated secondary antibody (CGC) 

In order to continue with the in-tube sandwich immunoassay optimization, different 

concentrations of the colloidal gold conjugate were assessed. This type of secondary  
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Figure 13. Optimization of the in-tube sandwich immunoassay pH conditions. Effect 

of pH on the performance of the LFIA device using pure bacterial cultures. Graph 

represents the intensity of the test lines before and after pH adjustment with 1 M HEPES 

buffer. Normal pH values were 6 for E. coli O157 at a concentration of 109 CFU/ml and 

E. coli ATCC 25922, while S. enterica ser. Typhimurium and S. flexneri cultures had a 

pH of 5. E. coli O157 at a concentration of 105 and 104 CFU/ml, and TSB had a normal 

pH of 7 similar to all sample after adjustment with 1 M HEPES. Data corresponds to the 

mean ± SEM (n=2-5). 
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labeled antibody is widely used in the development of immunochromatographic test strips 

due to the visible red color produced by the gold nanoparticles (114,133,140,242,243). 

CGC targets the mAb detection antibody which binds directly to the O157-antigen. A 

checkerboard titration of four samples and three concentrations was used to determine a 

suitable CGC concentration to continue with the optimization of the other two antibodies. 

Early in the process, it was noticed that 109 CFU/ml overnight cultures of E. coli O157 

presented a drastic decrease in intensity of the control and test lines, which could be 

mistaken for a false negative. Hence, a 105 CFU/ml dilution was included as a true 

representation of a positive result. In addition, S. enterica ser. Typhimurium was included 

as a false positive control, representative of non-target organisms. Finally, TSB was used 

as a negative control. Optimal conditions were determined based on the maximum color 

intensity of the control and test lines that could be achieved without producing background 

coloration or non-specific binding with the negative controls. Figure 14 shows a graphic 

representation of the results obtained for the CGC optimization, where the E. coli O157 

signal increased proportionally with the increase in CGC. However, there was also an 

increase in the false positive with the S. enterica ser. Typhimurium culture. Therefore, it 

was concluded that using the lowest CGC concentration assessed was optimal to further 

optimize the concentrations of the mAb and pAb-b because it gave a clear positive read out 

with E. coli O157 105 CFU/ml without producing false positive signals with either S. 

enterica ser. Typhimurium or TSB. 

4.1.3.3 Optimization of the antibodies 

During CGC optimization it was noted that high levels of E. coli O157 produced weak 

signals that were close to the cut-off value. Hence, different combinations of mAb and 

pAb-b were assessed to tackle the “hook-effect” or prozone effect, seen with E. coli O157 

at high concentrations. This effect occurs when the concentration of the target antigen 

exceeds that of the antibodies, reducing the formation of the sandwich complex and 

decreasing the intensity of the positive signal (143,244,245). Figure 15 represents the main 

antibody combinations assessed, however, the intensity of the test line was not improved 

when high levels of E. coli O157 were present. At this point, other modifications within 

IPOC’s manufacturing protocols, such as the concentration of streptavidin in the test line,
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Figure 14. Optimization of the colloidal gold conjugate secondary antibody 

concentration. Data represent the trend in the test line intensity with four different 

samples and three main concentrations of CGC assessed during one checkerboard 

titration. All cultures used in these experiments were grown in TSB and pH adjusted for 

the in-tube sandwich immunoassay using 1 M HEPES buffer. For E. coli O157 105 

CFU/ml dilution, BPW (pH 7) was used. The cut-off value (0.055 RU) is also represented 

as a dotted line. 
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Figure 15. Optimization of the mAb and pAb-b concentrations. The data represent the 

three most relevant concentrations of the mAb in combination with the two main 

concentrations of the pAb-b using the same four bacterial cultures as before. All cultures 

used in these experiments were grown in TSB and pH adjusted for the in-tube sandwich 

immunoassay using 1 M HEPES buffer. For E. coli O157 105 CFU/ml dilution, BPW (pH 

7) was used. The cut-off value (0.055 RU) is also represented as a dotted line.  
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membranes with faster capillary flow rate and increasing the reading time, were evaluated. 

Nevertheless, none of these approaches decreased the prozone effect without affecting the 

sensitivity and/or specificity of the LFIA Test Kit; thus other alternatives were further 

investigated. 

 Development of a Tandem LFIA Test Kit 

Besides the “hook-effect” previously described, it was hypothesized that matrix 

interference was another factor involved in low signal intensity. Food matrices are complex 

and contain high levels of contaminants that can hinder the ability of the detection method 

to produce a reliable result. Therefore, in order to tackle both issues, the approach adopted 

was to dilute the sample to an extent that matrix effect would be reduced, while the target 

organisms would be at an optimal concentration to eliminate the “hook-effect” without 

compromising specificity and sensitivity. In fact, this approach has been widely applied in 

the development of detection techniques for toxins or pathogens in food (246,247). 

A tandem LFIA device, containing two independent membranes was assembled, where the 

neat or undiluted sample was loaded in one window (A), while a 100-fold dilution was 

included in a second window (B). Figure 16 shows the results obtained for a concentration 

curve for a pure culture of E. coli O157 using the tandem LFIA device. The prozone effect 

was seen at 109 CFU/ml, where the RU value for both control and test lines in the (A) 

window were decreased due to the high concentration of bacteria in the sample. However, 

the 100-fold dilution in window (B) had an RU value that was almost doubled, allowing 

the sample to be accurately detected as a positive instead of a false negative. When using 

pure cultures, 104 CFU/ml was established as the limit of detection (LOD) of the LFIA, 

because it was the lowest cell concentration with readings above the cut-off value and 

confirmed by a visible test line detected by all members of the panel. Table 12 shows the 

proper visual interpretation of results when using the tandem test based on the data from 

Figure 16. Overall, these outcomes demonstrated that, by combining the test line results 

in both windows of the tandem LFIA device, it was possible to overcome the “hook-effect” 

obtaining positive results from samples containing 104-109 CFU/ml, with a maximum 

signal intensity achieved at 106 CFU/ml.
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Figure 16. E. coli O157 concentration curve using the tandem LFIA device. Control 

and test line curves for both neat (A) and 100-fold diluted (B) samples obtained using the 

tandem LFIA device with serial dilutions of an E. coli O157 pure culture. Data represent 

one experiment (mean ± SEM) of two independent experiments (n=2 performed in 

triplicate) using pure cultures of E. coli O157 grown on TSB overnight. The visual cut-

off value (0.055 RU) is shown in both graphs. CL: control line; TL: test line. 
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Table 12. Visual interpretation of an E. coli O157 concentration curve using the 

tandem LFIA device.  

Sample Neat (A) 

Mean RU ± SEM 

1/100 (B) 

Mean RU ± SEM 

Visual Interpretation 

Neat (A) 1/100 (B) Final Result 

EC9 0.096±0.007 0.180±0.021 + + POS 

EC8 0.127±0.013 0.537±0.049 + + POS 

EC7 0.171±0.004 0.230±0.033 + + POS 

EC6 0.558±0.048 0.040±0.014 + - POS 

EC5 0.308±0.041 0.036±0.011 + - POS 

EC4 0.090±0.009 0.039±0.001 + - POS 

EC3 0.039±0.004 0.046±0.011 - - NEG 

EC2 0.044±0.018 0.030±0.010 - - NEG 

EC1 0.043±0.004 0.055±0.007 - - NEG 
Data	shown	correspond	to	the	i-Lynx	readings	of	the	test	lines	from	serial	dilutions	of	a	pure	E.	coli	O157	
culture	grown	 in	TSB	overnight.	Results	 represent	one	 experiment	 (mean	±	 SEM)	of	 two	 independent	
experiments	 (n=2	performed	 in	 triplicate).	 For	 visual	 interpretation	 values	 >0.055	RU	are	 considered	
positive	(+)	while	values	≤0.055	are	considered	negative	(-).	The	combination	of	(A)	and	(B)	produced	the	
final	result	of	the	test.	EC9-EC1:	E.	coli	O157	109	CFU/ml	–	101	CFU/ml.	POS:	positive	result;	NEG:	negative	
result.	
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 Pairing the Enrichment Procedure with the LFIA Test Kit 

Previous data have demonstrated an optimal performance of the tandem LFIA device with 

pure cultures. Thus, the following stage consisted in proving the effectiveness of sample 

dilution to overcome matrix interference by combining the tandem test with the selected 

enrichment broth to detect E. coli O157 in artificially inoculated food samples. 

Bacterial pathogens are often found in low concentrations in food, hence an enrichment 

step is often necessary to increase the number of E. coli O157 cells to a detectable level, 

notably when stressed cells must be recovered. Extensive studies, which compared and 

assessed the performance of a variety of enrichment media and incubation conditions in 

order to recover E. coli O157 as fast and efficiently as possible, have been done by others 

(170,248–250). Therefore, this information was taken into consideration while selecting 

potential enrichment broths and conditions that could improve the performance of the LFIA 

device.  

4.1.5.1 Assessment of the RapidCult™ enrichment medium 

Although most of the selective enrichment media require the presence of antibiotics to 

inhibit the growth of competing microbiota, some antibiotics, such as cefixime and 

cefsulodin, have been reported to affect the growth rate of E. coli O157 (249,251,252). For 

this reason, RapidCult™ enrichment medium, which is a relatively new broth, was 

evaluated and selected for the LFIA Test Kit. This medium was the only commercially 

available medium that claimed to recover E. coli O157 from meat samples in 8 h at 42°C. 

Although its specific composition is not publicly available, one of the ingredients reported, 

sodium thioglycolate, has been used as a selective agent that maintains reducing conditions 

by lowering the oxygen concentration in the liquid medium and hence inhibiting the growth 

of most of the organisms found in certain types of food (253). When RapidCult™ was 

combined with the LFIA device, it became possible to detect 106 CFU/g in artificially 

inoculated ground beef samples and 105 CFU/ml when using pure cultures. In both cases, 

we started the procedure with 10 CFU/25g or ml of either healthy or stressed E. coli O157 

cells after an 8 h incubation time (data not shown). Regrettably, RapidCult™ had to be 

replaced during the development process as the manufacturer withdrew it from the market.  
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4.1.5.2 Assessment of mTSBN and mTSB enrichment media 

In order to replace the RapidCult™ enrichment medium, mTSBN and TSBN were further 

evaluated in combination with incubation at 42°C, which was earlier shown to yield higher 

recovery rates by acting as a selective factor for non-target organisms that commonly grow 

at 37°C (249,251,254). mTSBN was selected for the kit because it is the recommended 

enrichment broth in Health Canada’s reference method for isolation of E. coli O157 (255). 

The performance of enrichment was assessed in combination with the LFIA device using 

ground beef samples inoculated with 5 CFU/25g of non-stressed E. coli O157 cells. After 

12 h enrichment, E. coli O157 counts reached 1.6×107 CFU/ml2, however, the LFIA device 

failed to detect them. In order to investigate further, pure cultures of E. coli O157 were 

used to eliminate the influence of the food matrix. Samples of E. coli O157 cultures 

enriched in TSB, mTSB and mTSBN were tested. For these experiments, it was necessary 

to increase the cell concentration approximately 100 times because bacterial counts in 

mTSB and mTSBN only reached 3.63×104 and 3.44×103 CFU/ml3, respectively, after 12 h 

of enrichment. The results with mTSBN were consistent with those obtained with the 

ground beef samples, where it was not possible to detect the presence of E. coli O157 

despite reaching >108 CFU/ml after 12 h enrichment. Figure 17A compares the results of 

12 h enrichment using TSB, mTSB or mTSBN. After a 100-fold dilution, cells grown in 

TSB media gave a positive signal, while the other selective enrichments failed, even after 

dilution. As well as reducing the growth approximately 0.5 log10, with and without 

novobiocin, the presence of bile salts in mTSB and mTSBN appeared to inhibit the 

antibody-antigen interaction. mTSB contains 1.5 g/L of bile salts No. 3, which is a mixture 

of sodium cholate and sodium deoxycholate. The latter, which is considered an anionic 

salt, has proven to have a concentration-dependent inhibitory effect on the antigen-

antibody interaction (256). To test the hypothesis that bile salts inhibited the assay, 

different enriched samples grown in TSB, mTSB or ½ mTSB, where the concentration of  

                                                
2
 Average of E. coli O157 counts obtained in two experiments. 

3
 Average of E. coli O157 counts obtained in three experiments 
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Figure 17. Effect of bile salts on the LFIA Test Kit performance. A) Comparison of 

TSB, mTSB, or mTSBN enrichment media effect on the intensity of LFIA signals using 

undiluted samples (1×) and a 100-fold dilutions (1/100×) using each enrichment broths as 

diluent. B) Intensity of LFIA signals using 100-fold dilutions of enriched samples in TSB, 

mTSB or ½ mTSB, with either BPW or ½ mTSB. Graphs represent the mean ± SEM of 

one experiment measured in triplicate using 102 CFU/ml of non-stressed E. coli O157 

cells prior to enrichment. The cut-off value of 0.055 is also represented. The CFU/ml 

calculated for each sample is also included. These experiments were run with the 1/6G 

single LFIA device. CL: control line; TL: test line. 
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bile salts was diluted with either BPW or ½ mTSB just before the assessment with the 

LFIA Test Kit, were tested (Figure 17B) The intensity of the signals increased when TSB 

or ½ mTSB enriched samples were diluted with BPW, while the ½ mTSB sample diluted 

with the same enrichment broth failed to produce a positive signal. Despite the dilution, 

the intensity was still lower when compared with the TSB sample, perhaps also due to the 

approximately 0.5 log10 growth reduction in the presence of bile salts. These results are 

consistent with those from the previous experiment; thus both mTSBN and mTSB were 

eliminated as potential enrichment media. 

4.1.5.3 Assessment of TSBN enrichment medium 

Due to the previous findings, where the presence of bile salts interfered with the 

performance of the LFIA Test Kit, TSBN medium was further evaluated in combination 

with the LFIA. Novobiocin-containing medium has been reported to have better 

performance when compared against other antibiotics used as selective reagents for 

recovery of E. coli O157 (251,252). In addition, Novobiocin is described as the most 

common antibiotic used for selective enrichment (250), making it readily available and 

affordable from a commercial perspective. 

Using TSBN in combination with the tandem LFIA Test Kit failed to detect low 

concentrations of stressed E. coli O157 cells after 8 h of enrichment at 42°C (data not 

shown). Hence, after performing time-course studies, the enrichment time was increased 

to 16 h at 42°C to reach detectable levels. Samples inoculated with healthy or stressed, low 

or high inoculation levels produced visually positive results after 16 h of enrichment, an 

observation confirmed by further measuring the intensity of the test lines (Figure 18). In 

addition, both the presence of E. coli O157 and its concentration were confirmed by plate 

counts in CR-SMAC and CHROMagar. After 16 h, samples inoculated with healthy cells, 

regardless of the initial concentration, reached >7×108 CFU/ml, while samples inoculated 

with high levels of stressed cells reached approximately 1×108 CFU/ml. However, after 

20 h each of the samples had a concentration close to 1×109 CFU/ml. On the other hand, 

stressed cells inoculated at low concentrations reached approximately 2×108 CFU/ml and  
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Figure 18. TSBN enrichment medium time-course combined with the tandem LFIA 

Test Kit using artificial inoculated ground beef samples. Results from two different 

sets of ground beef samples inoculated with a low E. coli O157 cell concentration (<5 

CFU/25g): stressed cells (left) and healthy cells (right). Both control and test lines (CL 

and TL) are shown in each graph corresponding to either the A or the B window, 

respectively. Samples were assessed at 16, 18, and 20 h of enrichment using TSBN at 

42°C and plated on CR-SMAC and CHROMagar for confirmation and enumeration. 

Results represent one experiment of 5 different time-courses that were performed under 

similar conditions. 
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plateaued even after 20 h. Nevertheless, the results suggested that TSBN enrichment 

conditions were adequate for establishing the final LFIA Test Kit instructions for use. 

 Assessing the LOD Using Meat Samples 

Previously, the LOD of the LFIA Test Kit was determined using pure cultures. However, 

the food matrix and microbiota are known to interfere with the signal intensity. Thus, the 

LOD was re-assessed using an uninoculated ground beef sample previously enriched and 

used as a diluent for preparing serial dilutions of E. coli O157 culture. Results showed that 

the LOD of the LFIA device was ~2×105 CFU/ml (Figure 19), which is approximately 

10 fold higher than the LOD obtained with pure cultures. This increase is attributed to the 

influence of the food matrix mainly in the binding of the antigen-antibody complex to the 

test line and of the free mAb to the control line. 

Moreover, as shown in Figure 16, as the concentration of E. coli O157 increased, the 

intensity of the control line began to decrease, especially with the undiluted sample (A). 

This is believed to be due to a lower concentration of free mAb as more antibody-antigen 

sandwich complex is formed, augmenting the intensity of the test line proportionally. 

However, when the prozone effect starts, at around 107-108 CFU/ml, the intensity of both 

lines in the (A) window decreases. Window (B) showed the same effect, although in a 

delayed manner. This trend in signal intensity is also seen in Figure 19. Hence, besides 

providing an estimated LOD of the tandem LFIA Test Kit when using meat samples, these 

data also revealed an alternative to further investigate the relation between the 

concentration of E. coli O157 in meat samples and the intensity trends of both the control 

and test lines of the tandem device. 

 Estimating E. coli O157 Content in Artificially Inoculated Meat Samples Using the 
Tandem LFIA Test Kit 

Although the LFIA Test Kit is intended to obtain qualitative information regarding the 

presence/absence of E. coli O157 in meat samples, previous data showed that the 

combination of control and test line intensities within the tandem LFIA device could be 

used as an indicator of E. coli O157 concentration. Therefore, to investigate this further, 

six additional artificially inoculated meat samples were evaluated. Samples were  
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Figure 19. Assessment of the LOD of the LFIA Test Kit using food samples. 

Concentration curves for both neat (A) and 100-fold diluted (B) samples from a serial 

dilution of an overnight E. coli O157 culture (9.42×108 CFU/ml)) using an enriched 

ground beef sample as diluent. Data represent the mean ± SEM of one experiment 

measured in duplicate. The visual cut-off value (0.055 RU) is shown in both graphs. CL: 

control line; TL: test line. 
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inoculated with 5 CFU/25g and incubated for 12-24 h using TSBN enrichment conditions. 

All samples were assessed with the tandem LFIA device at different time-points. Tandem 

LFIA device results and their respective cell counts for each time-point were assessed 

individually to establish the criteria in Table 13. Even though a wide time for incubation 

range was assessed (12-24 h) to obtain a broad spectrum of E. coli O157 concentrations 

within the detectable levels of the tandem LFIA device, only one sample had its initial 

time-point enumeration within the lowest range. Six time-points were used to determine 

the upper and lower limits of the mid-range by calculating the mean value ± SD. 

Furthermore, 15 time-points were considered within the maximum level (Figure 20). In 

addition, an intensity score was linked to each criterion to account for the intensity of the 

four lines into one single result. A one-way analysis of variance (ANOVA) using SPSS 

v.23 (IMB Corporation, Armonk, NY, USA) was performed to examine the effect of the 

concentration of E. coli O157 in meat samples on the intensity score. Results showed that 

there was an effect of the E. coli O157 concentration levels on the intensity scores 

[F(2,63)=27.61, p<0.001]. Bonferroni post-hoc tests showed that there was a significant 

difference in mean concentration values between scores 1 and 3 (2×106 vs 3.62×108 ± 

2.06×108; p= <0.003), and 2 and 3 (2.72×107 ± 1.98×107 vs 3.62×108 ± 2.06×108; 

p=<0.001). This suggested that the combination of line intensities established for score 3 

is a good indicator of a high concentration of E. coli O157 in a sample. Despite the fact 

that scores 1 and 2 indicated low cell concentrations, with score 1 suggesting a lower mean 

concentration than score 2, the difference between these was not significant. The latter 

might have been due to the small number of time-points that had cell concentrations within 

the low range (5×105- 5×106), being underrepresented in score 1. Therefore, further studies 

must be performed to determine whether or not lower concentration ranges can be better 

differentiated. Overall, the data obtained demonstrated that the prozone effect, which 

showed an intensity inversely proportional to the concentration of the target antigen (E. 

coli O157), in combination with the relationship between control and test line intensities, 

can be a good indicator of target antigen concentration whenever a positive sample is 

obtained using the tandem LFIA Test Kit. 

 



 

 

130 

Table 13. E. coli O157 concentrations and intensity scores using the tandem LFIA 

Test Kit with meat samples. 

Sample 
Estimated 
Concentration 
(CFU/ml) 

Visual Interpretation 

Food Samples 

Tandem LFIA Device Image Neat (A) 1/100 (B) Intensity 
Score CL TL CL TL 

~5×105- 6×106 

 

LI LI HI - 1 

~6×106- 5×107 

 

LI LI HI LI 2 

>5×107 

 

LI - HI LI 3 

Different	combinations	of	control	and	test	 line	 intensities	obtained	with	the	tandem	LFIA	device	when	
analyzing	meat	samples.	These	combinations	were	linked	to	three	different	E.	coli	O157	concentrations,	
where	the	lower	and	upper	limits	of	the	mid-range	were	used	to	establish	the	low	and	high	concentration	
levels,	respectively.	In	addition	to	visual	evaluation,	the	line	intensities	were	linked	to	i-Lynx	readings	as	
follows:	 high	 intensity	 (HI)	 >1.000	 RU,	 low	 intensity	 (LI)	 <1.000	 RU,	 and	 negative	 (-)	 <0.055	 RU.	 To	
perform	the	statistical	analysis,	intensity	scores	were	assigned	to	each	set	of	line	combinations.	Results	
were	obtained	from	six	different	time-courses	run	independently	with	3-5	time-points,	each	one	assessed	
in	triplicate	(n=66).	
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Figure 20. Relationship between the tandem LFIA device control and test line 

intensities with E. coli O157 concentrations in meat samples. Graphs represent the 

general trend of the relationship between cell concentration and intensity (RU) of the 

control and test lines obtained by curve fitting using a total of 22 time-points. The limits 

of the three intensity scores (1, 2, and 3) are also defined by red lines. Data correspond to 

the mean ± SEM (n=3) obtained for each timepoint.  
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4.2. Relative Validation of a LFIA Test Kit for Detection of E. coli O157 in Raw Meat 
Products  

Prior results demonstrated that the tandem LFIA Test Kit was optimized to detect E. coli 

O157 in meat samples containing < 5 CFU/25g by using TSBN as the enrichment medium 

in combination with incubation for 16 h at 42°C. Therefore, the method was considered 

completely prepared for the relative validation of the pre-collaborative study. In order to 

be recognized as an alternative method (AM) by Health Canada’s Microbiological Methods 

Committee (MMC), the guidelines for the relative validation of indirect qualitative food 

microbiological methods found in Part 4 of the Procedure for the Development and 

Management of Food Microbiological Methods from the Compendium of Analytical 

Methods had to be followed (174). The LFIA Test Kit was considered to be an indirect 

qualitative method because it is based on the detection of the O157-antigen, which is a 

physical characteristic, found in the membrane of the target pathogen. In addition, it is 

considered qualitative due to the fact that it solely determines the presence or absence of 

E. coli O157. 

For the LFIA Test Kit validation study, two food types within the Raw Meat Food Category 

were considered, based on the classification of food categories found in the Compendium 

of Analytical Methods. These were Raw Meat (unprocessed) and Raw Meat (processed). 

All data presented in this section were generated in two facilities: Robarts Research 

Institute, Western University (Section 4.2.1) and Laboratory Services Division, University 

of Guelph (Section 4.2.2) and are adapted from the reports prepared for the submission 

package sent to Health Canada’s Microbiological Methods Committee. Detailed raw data 

are found in Appendix F, which are presented in the format required by the MMC for its 

evaluation.  

 Inclusivity and Exclusivity Study 

Inclusivity results using 50 E. coli O157 strains (including H7 and non-motile) tested 

positive with the LFIA Test Kit. Five strains had negative (-) A strips, but positive (+) B 

strips, which occurs when high cell concentrations are present in a sample (>107 CFU/ml). 

Moreover, two samples showed a positive (+) A strip, but a negative (-) B strip, which 
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occurs when the sample has a lower cell concentration (<106 CFU/ml). Six strains had at 

least one replicate differing from the rest, but without compromising the final result, which 

was positive (strains 6, 10, 35, 42, 44 and 47). The rest of the samples were consistent 

within the replicates, showing a positive signal (+) in both strips, suggesting that the cell 

concentration was between 106 and 107 CFU/ml. Overall, the inclusivity rate obtained was 

100%.  

Exclusivity results showed that 31 E. coli non-O157 strains included in this study were 

negative with the LFIA Test Kit. Six strains showed at least one weak positive replicate; 

thus they were retested by obtaining isolated colonies on TSA plates and then using LFIA 

Test Kit enrichment (TSBN at 42°C) incubated up to 24h. Four strains (E. coli O78:H11, 

E. coli O3:H2, S. flexneri, S. enterica ser. Typhimurium) were negative and only two E. coli 

strains, 044:H18 and O124:NM, remained weakly positive. These results represented an 

exclusivity rate of 94.6%. 

 Sample and Inocula Preparation  

For each food item used, the APC or TVC was first determined as it is required to be at 

least 10 times higher than the E. coli O157 inoculum. Results presented in Table 14 

confirmed that the APC and E. coli O157 ratio complied with the requirements. Moreover, 

the inoculation levels for both (H) and (L) were initially determined by calculating the 

culture titers using the plate counts of each culture. These values were confirmed after 

equilibration by the most probable number (MPN) method, as shown in Table 14. In the 

case of the E. coli O157 strain 380-94 inoculum used for raw processed meat, the average 

percentage of sub-lethal injury achieved after stress treatment was 63.5%, considered 

sufficient for the purpose of the study. Together, these data demonstrated that samples and 

inocula were properly prepared in accordance with the requirements established by the 

Compendium of Analytical Methods for further evaluation. 

 Artificial Inoculation and Experimental Layout Using an Unpaired Samples Protocol 

Using an unpaired samples protocol, two sets of data for each food type were obtained, one 

corresponding to the presumptive alternative method (AP) with its confirmation and the 
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Table 14. Estimation of TVC and inoculation levels for each food item. 

Food Item TVC 
(CFU/g) 

Target 
Level 

Estimated 
Inoculation Level 
(CFU/25g) 

MPN Results Post-spiking 

MPN 
Index 
Value 

Estimated 
Inoculation Level 
(MPN/25g) 

Raw ground 
beef 

3.20×103 Low 1.26 3-0-0 1.2 

Raw ground 
beef 

High 15 3-3-1 25 

Raw ground 
veal 

1.05×104 Low 1.26 2-0-0 0.5 

Raw ground 
veal 

High 15 3-3-0 13.3 

Raw beef 
trim 

3.4×104 Low 1.26 3-0-0 1.3 

Raw beef 
trim 

High 15 3-3-0 13.3 

Carpaccio 7.7×103 Low 1.26 3-0-0 1.3 

Carpaccio High 15 3-2-1 8.3 

Raw 
sausage* 

1.35×104 Low 0.96 3-0-0 1.3 

Raw 
sausage* 

High 9.6 3-3-0 13.3 

Raw burger 
patty* 

3.5×106 Low 0.96 2-0-0 0.5 

Raw burger 
patty* 

High 9.6 3-3-0 13.3 

Raw 
meatballs* 

4.6×103 Low 0.96 3-0-0 1.3 

Raw 
meatballs* 

High 9.6 3-2-1 8.3 

Raw kebabs* 6.2×105 Low 0.96 3-0-0 1.3 

Raw kebabs* High 9.6 3-3-1 25 

*These	food	items	were	inoculated	with	strain	380-94,	which	was	stressed	as	described	in	the	Inoculum	
Preparation	Section.	



 

 

136 

results from the RM. Table 15 and Table 16 summarize the data obtained for both food 

types, unprocessed and processed raw meat. For (H) samples, all 20 were presumptive 

positives and agreed with the confirmation results, while (L) samples, with a fractional 

inoculation, showed only 6 and 8 positives, respectively, from the 20 samples. The rest of 

(L) samples, 14 unprocessed and 12 processed, were neither detected with the AM nor the 

RM. Finally, all (U) samples were negative with the AM, which fully agreed with the 

confirmation results. Hence, based on the results presented, it was concluded that there 

were no discordant results (false positives/false negatives) when confirming the AM with 

the RM, with a total of 54 true positives and 36 true negatives in the complete study. 

 Evaluation of Probability of Detection (POD)  

Using the previous results, the performance parameters and POD were calculated for each 

spiking level of each food type. The results for the POD calculation, which is the proportion 

of positive results for a specific food type and level of inoculation (257) are shown in Table 

17, which confirmed that all 95% confidence intervals encompass the value zero (0). Thus, 

the AM was considered equivalent to the RM for all spiking levels of the two food types 

evaluated. In addition, the 95% confidence interval from the !"#$ %&,%( 	 also included 

the value zero (0), suggesting that the rate of false positives obtained was acceptable. 

 Evaluation of Performance Parameters 

Previous results showed that all combinations of spiking level and food type passed the 

POD analysis. Hence, they were all considered for the calculation of the performance 

parameters using only the results from the AM, which were the alternative presumptive 

(AP) and the alternative final (AF) together with the formulas previously described in 

Section 3.3.3. Overall, the AM complies with the criteria established by the MMC for each 

performance parameter evaluated. It achieved 100% sensitivity, which means that all 

positives confirmed by the RM were correctly identified by the AM and no false negatives 

were obtained. In addition, the LFIA Test Kit had 100% specificity with no false positives, 

suggesting that it only detected the target organism. Finally, it was considered 100% 

efficient because the presumptive results matched their confirmation (Table 18). 
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Table 15. Summary of the alternative method (AM) and reference method (RM) 

unpaired samples results for the unprocessed raw meat food type.

Alternative Method  Reference Method 

Total Samples 
AP AC AF1  RM 

POS NEG POS NEG TP TN FP FN  POS NEG 

(H) 
20 0 20 0 20 0 0 0  20 0 

(L) 6 14 6 14 6 14 0 0  8 12 

(U) 0 5 0 5 0 5 0 0  0 5 

TOTAL 26 19 26 19 26 19 0 0  28 17 
1Alternative	Final	Results	(AF)	are	defined	as	True	Positives	(TP),	True	Negatives	(TN),	false	positives	(FP)	
or	false	negatives	(FN).	
	AP:	Alternative	Presumptive;	AC:	Alternative	Confirmation;	RM:	Reference	Method;	POS:	positive	result;	
NEG:	negative	result.	
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Table 16. Summary of the alternative method (AM) and reference method (RM) 

unpaired samples results for the processed raw meat food type. 

Alternative Method  Reference Method 

Total Samples 
AP AC AF1  RM 

POS NEG POS NEG TP TN FP FN  POS NEG 

(H) 
20 0 20 0 20 0 0 0  20 0 

(L) 8 12 8 12 8 12 0 0  9 11 

(U) 0 5 0 5 0 5 0 0  0 5 

TOTAL 28 17 28 17 28 17 0 0  29 16 
1Alternative	Final	Results	(AF)	are	defined	as	True	Positives	(TP),	True	Negatives	(TN),	FP:	false	positives,	
or	FN:	false	negatives.		
AP:	Alternative	Presumptive;	AC:	Alternative	Confirmation;	RM:	Reference	Method;	POS:	positive	result;	
NEG:	negative	result.	
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Table 17. POD analysis for unprocessed and processed raw meat food types. 

Unprocessed raw meat 

Level 
Alternative Presumptive (AP) Alternative Final 

(AF) Reference (R) !"#$%&,( 	!"#$%",%& MMC 

Pass/ 
Fail POD1 LCL UCL POD LCL UCL POD LCL UCL dPOD LCL UCL dPOD LCL UCL 

(L) 1.00 0.88 1.00 1.00 0.88 1.00 1.00 0.88 1.00 0.00 -0.12 0.12 0.00 -0.12 0.12 Pass 

(H) 0.30 0.16 0.48 0.30 0.16 0.48 0.40 0.24 0.58 -0.10 -0.33 0.14 0.00 -0.23 0.23 Pass 

(U) 0.00 0.00 0.35 0.00 0.00 0.35 0.00 0.00 0.35 0.00 -0.35 0.35 0.00 -0.35 0.35 Pass 

Processed raw meat 

Level 
Alternative Presumptive 

(AP) Alternative Final (AF) Reference (R) !"#$%&,( 	!"#$%",%& MMC 

Pass / 
Fail POD1 LCL UCL POD LCL UCL POD LCL UCL dPOD LCL UCL dPOD LCL UCL 

(L) 0.40 0.24 0.58 0.40 0.24 0.58 0.45 0.28 0.63 -0.05 -0.29 0.20 0.00 -0.24 0.24 Pass 

(H) 1.00 0.88 1.00 1.00 0.88 1.00 1.00 0.88 1.00 0.00 -0.12 0.12 0.00 -0.12 0.12 Pass 

(U) 0.00 0.00 0.35 0.00 0.00 0.35 0.00 0.00 0.35 0.00 -0.35 0.35 0.00 -0.35 0.35 Pass 
1Probability	of	Detection	(POD)	was	calculated	as	POD=	x/N,	where	x	represents	the	number	of	positives	and	N	the	number	of	samples	evaluated.	
LCL:	lower	confidence	limit;	UCL:	upper	confidence	limit;	MMC:	Microbiological	Methods	Committee.	
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Table 18. Performance parameters for the Alternative Method.

Food Type 
Performance Parameters 

Relative 
Sensitivity 

Relative 
Specificity 

FP 
Rate 

FN 
Rate 

Test 
Efficacy 

MMC Criteria  >98% ≥90.4% <9.6% <2% ≥94% 

Raw meat-unprocessed-
25g 

100% 100% 0% 0% 100% 

Ready-to-cook-processed-
25g 

100% 100% 0% 0% 100% 

Total 100% 100% 0% 0% 100% 

Pass/Fail Pass Pass Pass Pass Pass 
The	results	showed	were	achieved	at	16	h	of	enrichment	following	the	LFIA	Test	Kit	procedure.	
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 Determination of the LOD 

The last criterion assessed for the AM was the LOD, which is defined in the Compendium 

of Analytical Methods as the smallest amount of culturable microorganisms that can be 

detected by a specific method in 50% of the samples evaluated (174). For this study, five 

spiking levels were included with six replicates each. All samples were analyzed with the 

AM, but confirmed with the RM. Moreover, to determine the proper cell concentration 

used for inoculation, a 3×3 MPN was also performed using a different set of samples 

inoculated with the highest level used for the LOD. Thus, the highest inoculation was 

estimated to be 2.35 MPN/25g with a confidence limit between 0.575 and 9.5 MPN/25g, 

obtained from the MPN Index Value of 3-1-0. Using this result, the lower cell 

concentrations included in the LOD study were extrapolated and included in Table 19. 

Finally, the LOD was between the two levels that give respectively more and less than 50% 

positives. Thus, based on the recorded number of positive and negative replicates for each 

inoculum level, the LOD was 0.588-1.175 MPN/25g (level 2-3). 

Based on the results presented in this section, it was concluded that the LFIA Test Kit 

exceeded the performance parameters criteria established by the MMC after 16 h of 

enrichment as shown in Table 18. In addition, considering the MPN range obtained for the 

LOD as an estimate of CFUs (258), it was lower than the range settled by the 

Microbiological Methods Committee, which is 3-5 CFU/25g (174); thus, its performance 

was considered comparable to that of the RM. Therefore, it represents a faster and simpler 

alternative for pre-screening of raw meat samples. Moreover, these outcomes resulted in 

an official submission of the LFIA Test Kit to the MMC requesting its evaluation for 

inclusion into Health Canada’s Compendium of Analytical Methods. 

4.3. Development of the scFvO157 

 Stability of the Hybridoma Cell Line 

The hybridoma cell line (13B3) that produced a monoclonal antibody specific for the 

O157-antigen that was used throughout this study was first reported in 1997 by Westerman 

et al. from the U.S. Meat Animal Research Center, USDA (227). Because stocks were 

stored for an extended period of time, it was necessary to ensure that proper antibody  
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Table 19. Determination of the LOD for the raw meat products category using MPN. 

Level No. Positives/ No. Negatives 

Level 1, 2.35 MPN/25g1 6/6 

Level 2, 1.175 MPN/25g 4/6 

Level 3, 0.588 MPN/25g 1/6 

Level 4, 0.294 MPN/25g 1/6 

Level 5, 0.147 MPN/25g 0/6 
1The	 highest	 inoculation	 level	 was	 estimated	 using	 a	 3×3	 MPN	 and	 used	 to	 determine	 the	 lower	
inoculation	levels.	
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specificity was retained. Once the hybridoma was recovered from liquid nitrogen, it was 

cloned twice using the limiting dilution method, resulting in 97.8% of positive clones when 

screened using ELISA (data not shown). Previous studies have shown that hybridomas, 

which yield >90% of positive clones after repeated subcloning, can be considered as stable 

(183,228,231,232,259). Thus, once ensuring that cells were healthy and stable, three clones 

were further expanded for antibody production and RNA extraction. 

 Anti-O157 mAb Characterization  

Antibody characterization had two main objectives within this study: 1) to guarantee that 

the hybridoma cell line was producing the mAb of interest before proceeding with RNA 

extraction and genetic sequencing; and 2) to determine the main features and properties 

necessary for their optimal performance as a diagnostic reagent. For this purpose, the mAb 

was produced by incubating the hybridoma cell cultures until the cells reached a saturated 

density (viability <50%). At this point, the medium turned yellow and the supernatant was 

collected. The supernatant of three expanded clones was initially assessed for the mAb 

isotype. This isotyping analysis indicated that the anti-O157 mAb was an IgG3 isotype 

with kappa light chains (Figure 21), thus confirming the outcome reported by Westerman 

et al. for this specific cell line (227).  

4.3.2.1 Anti-O157 mAb purification and ELISA 

Further characterization of the anti-O157 mAb required the mAb to be pure in order to 

eliminate potential interference effects of non-Ig components found in the hybridoma 

supernatant. Thus, the mAb was affinity purified using immobilized protein G resin. The 

presence of the pure mAb in the eluted fraction was confirmed by SDS-PAGE, where the 

50 kDa and 25 kDa bands characteristic of the heavy and light chains were visualized 

(Figure 22A). Furthermore, the functionality of the mAb was determined by ELISA using 

E. coli O157 and three other non-target strains (E. coli ATCC 25922, S. enterica ser. 

Typhimurium and L. monocytogenes) at a concentration of 107 CFU/well. The absorbance 

obtained with the mAb in the presence of E. coli O157 was 0.606 ± 0.058, while all non-

target organisms were below the average cut-off value estimated for each individual strain 

(Figure 22B). Based on these results, it was confirmed that the mAb produced by the  



 

 

144 

Figure 21. Anti-O157 mAb isotyping results. The supernatant of three selected positive 

clones (3A5, 3C4, and 1B3) was used for antibody isotyping using an isotyping ELISA 

kit. The positive control was an antigen reference mixture provided with the isotyping kit, 

while the negative control was the Hybridoma-SFM. The positive reaction wells 

developed a yellow color after the addition of stop solution demonstrating the IgG3 

isotype and kappa light chain for the anti-O157 mAb. 
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Figure 22. Overview of the anti-O157 mAb purification steps and ELISA results. A) 

Representative image of the affinity purification steps of the mAb using 10% SDS-PAGE 

gel stained with Coomasie blue. 1) Molecular Weight Marker (kDa); 2) Column flow 

through; 3) Pure mAb; 4) Crude supernatant before purification. B) ELISA results 

obtained with the positive control (E. coli O157) and 3 negative controls (S. enterica ser. 

Typhimurium, E. coli ATCC 25922 and L. monocytogenes). Data was obtained using 1.25 

µg/ml of the mAb and 107 CFU/well of each culture. Bars represent the mean ± SEM 

(n=6). The cut-off value was calculated for each sample as the blank mean ± 3SD (n=4-

6), represented as a dotted line. 
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hybridoma cell line had the expected specificity towards E. coli O157 when used in an 

ELISA. 

4.3.2.2 Determination of the anti-O157 mAb isoelectric point (pI) 

In addition to isotyping and functional ELISA characterization, there are other relevant 

features that can help to predict the performance of an antibody in a particular assay or 

technique. As an example, the pI of antibodies is infrequently available despite its effect 

on proper folding, solubility and thus antigen-antibody interaction. The pI, by definition, 

is the pH at which the net charge equals zero and thus the antibody may precipitate (260–

262). In addition, knowledge of the pI increases the success rate of labelling techniques 

because most of them depend on the presence of charged amino acids (123). Therefore, 

knowledge of an antibody pI can help to predict its behavior in an assay and, if necessary, 

improve the conditions to ensure its proper function. For these reasons, the pI of the anti-

O157 mAb was determined by using isoelectric focusing (IEF) and immobilized pH 

gradient gel strips. Figure 23A shows the stained gel strips with a defined band 

approximately at 7.9 cm when urea was present in the sample mixture and at 7.7 cm when 

urea was absent (native). The pH gradient data provided by the supplier was graphed in 

order to interpolate the pI values, which were estimated to be 6.75 and 6.63, respectively 

(Figure 23B). This slight shift between native and denaturing conditions can be explained 

by the effect of urea, which causes a conformational change and hence alters the total 

charge of the antibody. This effect has been previously reported by comparing the pI values 

of denaturing and native proteins using IEF (263). Moreover, a previous study measuring 

the pI of around 50 different hybridoma mAb, found that >90% were within a pH of 6-8 

(262). Therefore, the pI obtained under native conditions, which was approximately 6.63, 

was considered acceptable for the anti-O157 mAb. 

 RT-PCR and Sequencing of the Variable Heavy and Light (VH and VL) Chains of the 
Anti-O157 mAb  

Besides the previous characteristics that were obtained for the anti-O157 mAb, the most 

important, considered as the “fingerprint” of an antibody, is the amino acid sequence of the 

complementarity determining regions (CDRs). CDRs represent the specific antigen  
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Figure 23. pI determination of the anti-O157 mAb using IEF. A) Linear pH 3-10 

Immobiline DryStrip gels showing the mAb band after IEF. Sample containing urea (U) 

showed a band at approximately 7.9 cm, while the sample without urea (NU) has a band 

at approximately 7.7 cm. Strips were stained with GelCode™ Blue after IEF. B) Graph 

represents the DryStrip gradient data provided by the supplier, which was used to estimate 

the pI of the anti-O157 mAb by interpolation. Both pIs, with and without urea, are shown. 
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binding sites; hence knowing these boundaries allows for the understanding of the 

antibody-antigen interactions while permitting further bioengineering of alternative 

recombinant antibodies with potentially improved features. The approach adopted for the 

anti-O157 mAb was to use its VH and VL chains amino acid sequences to synthesize a 

single-chain variable fragment (scFv) that could be used for targeting the O157-antigen. 

For this purpose, it was necessary to sequence the antigen binding site of the mAb. The 

PCR products corresponding to both VH and VL chains of the mAb were obtained by using 

the primers described by Wang et al. (196) and the thermal cycling conditions stated by 

Koren et al. (195). The length of the amplicons obtained after sequencing corresponded to 

409 and 381bp, for the murine VH and VL chains, respectively (Figure 24). Hence, these 

data were in agreement with previous studies that have shown that VH and VL chains’ PCR 

products can vary between 400-470 and 360-390 bp, respectively, depending on the 

primers degeneracy and conditions used (192,195). 

 Characterization of the Anti-O157 mAb VH and VL Chains 

In order to continue with the development of the scFvO157, the nucleotide sequences of 

the murine VH and VL chains were translated into amino acids. Then, each individual 

sequence was submitted to the BLASTP program to search for possible identical sequences 

that had been reported to date. The analysis provided us with the 100 amino acid sequences 

that produced a significant alignment with the query. Table 20 summarizes the results into 

two representative sequences for each variable chain, the one with the highest percentage 

of identity regardless of the sequence coverage and the one with the highest sequence 

coverage despite the level of identity. This analysis demonstrated that there was no 

characterized sequence 100% identical to the anti-O157 mAb in the database. Antibody 

variable domains are highly conserved, especially in the framework regions (FRs), which 

was reflected in the high percentages of identity achieved. In particular, VL chains tend to 

be more conserved than VH chains, consistent with the higher percentage of identity we 

found among the query sequences for the VL than for the VH chain. Moreover, the analysis 

of the conserved domains suggested that both sequences, obtained experimentally, 

belonged to a murine-heavy chain and a murine kappa-light chain variable region, which 

were the results expected.
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Figure 24. Gel electrophoresis of VH and VL chains PCR products. The correctly 

amplified VH and VL of the mAb expressed by the hybridoma cell-line were 

approximately 409 and 381 bp, respectively. The PCR products were analyzed on a 2% 

agarose gel stained with ethidium bromide. 
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Table 20. anti-O157 mAb VH and VL chains BLASTP results.

Murine 
Variable 
Region 

BLAST MSA Result 

Accesion Sequence %Query 
Coverage %Identity 

VH AJG06889.1 immunoglobulin heavy chain variable 
region [Mus musculus] 

98 77 

AAO18783.1 immunoglobulin heavy chain variable 
region [Mus musculus] 

86 92 

VL ADE80875 anti-botulism toxin B immunoglobulin 
kappa light chain variable region, partial 
[Mus musculus] 

99 90 

AAC13704 Ig kappa light chain variable region, 
partial [Mus musculus] 

90 98 

For	 each	 variable	 sequence	 query,	 the	 results	 with	 the	 highest	 sequence	 coverage	 and	 identity,	
respectively,	were	selected	among	the	100	hits.	
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To supplement the results obtained with BLASTP, a COBALT analysis was performed to 

pre-screen the VH and VL chains for FRs and CDRs. Figure 25 presents a preliminary 

overview of the conserved and variable residues, which mainly shaped the FRs and CDRs, 

respectively. The most noticeable CDR detected was H3, which corresponds to the most 

diverse loop among the six that formed the variable domain or V-domain. Although it was 

possible to outline the other five CDRs, the COBALT analysis did not provide concise 

information to allow us to determine the exact boundaries of the CDR. Therefore, this 

information was further evaluated using 3D modelling. 

 Construction of the Humanized scFvO157 

After the experimental sequences were confirmed to belong to murine VH and VL domains, 

they were used to create 3D models for estimating the CDR loops based on topological 

predicting modeling. For this purpose, SWISS-MODEL was used to find the template with 

the highest identity within the Protein Database (PDB). Table 21 summarizes the relevant 

characteristics for each of the models created. Besides the sequence identity and coverage, 

the Global Model Quality Estimation (GMQE) was also reported. It combines properties 

from the target and the template alignment reflecting the accuracy of the model built. 

Values closer to one indicated higher reliability in the result. For the VH and VL, the GMQE 

values were 0.93 and 0.98, respectively, suggesting that models obtained were good 

enough to determine the CDR loops. Figure 26A and Figure 26B shows the 3D models 

with the CDR loops outlined by refining the COBALT results with the topology of the 

model. 

Once CDR loops were defined, both murine VH and VL sequences could have been used 

for constructing the scFv. However, previous studies have shown that recombinant 

proteins, including scFv, tend to aggregate when expressed in E. coli (215,264,265). 

Therefore, the murine VH and VL sequences were aligned with a humanized consensus 

scFv (234) and adjusted for loop grafting into the humanized backbone. Loop grafting, 

especially murine loops into humanized backbone, has been shown to improve the stability 

of scFv synthesized for therapeutic purposes (218,220). The final amino acid sequence of 

the humanized scFvO157, described in Figure 26D, was submitted to SWISS-MODEL to  
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Figure 25. anti-O157 mAb VH and VL chain amino acid sequences and COBALT 

analysis results. The 121 and 116 amino acid sequences are shown with a color code 

representing the degree of conservation of each residue based on the alignment with the 

100 most significant sequences found in the literature. RED: highly conserved residues 

within that position. BLUE: less conserved residues, but without gaps in that position 

when aligned. GREY: residues which position had gaps at least in one sequence aligned. 

For the latter, upper case residues mean that less than 50% of the analyzed sequences 

contain gaps and lowercase, greater than 50%. Underlined regions were found to be the 

most variable within each chain. Heavy chain CDRs: H1, H2, and H3; Light chain CDRs: 

L1, L2, and L3. 
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VH 
lpefQVKLEESGGGLVKPGGSLKLSCAASGFAFSSYDMSWVRQTPEKRLEWVAFISSG 
          H1     H2 
 
GGRTYYPDTVKGRFTISRDNAKNTLYLQMSSLKSEDSGMHYCART---------EWY----- 
          H3 
 
FDVWGAGTTVTVSSa 
 
 
VL 
welDIVITQSPSSLAVSAGEKVTMSCKSSQSVLYSSNQKNYLAWYQQKPGQSPKLLIY 
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WASTRESGVPDRFTGSGSGTDFTLTINSVQAEDLAVYYCHQYLSS--WTFGGGTKLEI 
   L2                 L3 
 
KR 
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Table 21. SWISS-MODEL homology modeling results used for the construction of 

the scFvO157. 

Sequence 
SWISS-MODEL Homology Modeling Results 

Template 
(PDB) Description Seq. 

Identity 
Seq. 
Similarity 

Seq. 
Coverage GMQE1 

Murine VH 2zuq.1.C Fab fragment 
heavy chain, X-
ray 

86.32 0.57 0.97 0.93 

Murine VL 4m61.2.A Fab A52 light 
chain, X-ray 

95.58 0.60 0.97 0.98 

Humanized 
scFvO157 

2ghw.1.B anti-sars scFv 
antibody, 80R 

78.39 0.54 1.00 0.83 

Templates	with	the	highest	identity	were	chosen	to	create	the	3D-model	for	each	variable	chain	and	the	
final	humanized	scFvO157.	The	characteristics	that	are	relevant	to	assess	the	quality	and	reliability	of	the	
model	created	are	included	for	each	sequence.	1GMQE	stands	for	Global	Model	Quality	Estimation	and	is	
expressed	as	a	number	between	zero	and	one.	The	highest	the	value,	the	higher	the	reliability	in	the	model.	
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Figure 26. Construction of the humanized scFvO157 based on 3D modeling. Ribbon 

representation of 3D models obtained for the A) murine VH, B) murine VL, and C) 

humanized scFvO157. D) The final humanized scFvO157 amino acid sequence, with the 

grafted murine CDRs underlined in their corresponding VH and VL human backbone. The 

polylinker is shown in purple. Murine VH CDRs are represented as follows: dark green, 

H1; blue, H1; light green, H3. On the other hand, murine VL CDRs are as followed: 

yellow, L1; orange, L2; red, L3. 



 

 

160 

 

D) Humanized scFvO157 
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSY
DMSWVRQAPGKGLEWVAFISSGGGRTYYAD
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV
YYCARTEWYFDVWGQGTLVTVSSGGGGSGG
GGSGGGGSDIVMTQSPSTLSASVGDRVTITCL
YSSNQKNYLAWYQQKPGKAPKLLIYWASTR
ESGVPSRFSGSGSGTDFTLTISSLQPEDFATYY
CHQYLSSWTFGQGTKLEIK 
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obtain the 3D model, as shown in Figure 26C. The humanized scFvO157 was 

complemented with two more sequences: a tobacco etch virus (TEV) protease cleavable 

site on the N-terminus and a biotin tag on the C-terminus. Once completed, the amino acid 

sequence was reverse translated into a DNA sequence, with KpnI and BamHI restriction 

enzyme sites incorporated onto the 5’ and 3’ ends, respectively (Figure 27). This sequence 

was codon optimized in order to improve translational efficiency in E. coli, synthesized 

and cloned into the pUC57 plasmid for further processing. 

 Molecular Cloning of the Humanized scFvO157 

Besides using loop grafting as an approach for increasing protein solubility, the humanized 

scFvO157 was also fused, at the N-terminal, with thioredoxin (TrxA). The latter has the 

ability to confer translation efficiency and solubility to fused proteins (265,266). TrxA is a 

protein feature included in pET32a(+) plasmid, which was selected for expression of the 

scFvO157 construct. In addition, pET32a(+) contains a His6tag, commonly used for protein 

purification with Ni-NTA affinity resin columns. 

Because the scFvO157 was to be used as a detection reagent, the construct was designed 

to carry a biotin tag sequence at the C-terminal, which consisted of 15 amino acids 

(AviTag™ Technology, Avidity). Biotinylation was proved to be successful through the 

insertion of the pBirAcm plasmid, which contains the gene that codes for the BirA enzyme 

and is also induced by the presence of IPTG. The AviTag™ sequence was recognized by 

the BirA enzyme for an in vivo addition of biotin, which was combined with the culture 

medium during induction. Therefore, the final protein expressed in E. coli BL21(DE3) was 

TrxA�His6 tag�TEV�scFvO157�biotin. Figure 28C depicts the pET32a(+) cloned map 

with the most relevant features. 

After the cloning process, the presence of the 801 bp scFvO157 construct was initially 

assessed by agarose gel electrophoresis. Figure 28A shows the shift in gel bands when the 

scFvO157 construct was successfully cloned into pET32a(+). A restriction enzyme 

digestion was performed to corroborate the presence of the construct by its size. Figure 

28B shows a ~800 bp band, which corresponds to the size of the scFvO157 construct, while  
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Figure 27. Deduced amino acid and DNA sequences used for scFvO157 expression. 

A) scFvO157 amino acid sequence including the TEV cleavable site on the N-terminal 

(bold) and the biotin tag (red) in the C-terminal. B) Reverse translated and codon 

optimized nucleotide sequence with the KpnI (blue) and BamHI (green) restriction 

enzyme sites at 5’ and 3’ ends respectively. 
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A) 
ENLYFQâGEVQLVESGGGLVQPGGSLRLSCAASGFAFSSYDMSWVRQAPGKGLE
WVAFISSGGGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTEW
YFDVWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSTLSASVGDRVTITCLYS
SNQKNYLAWYQQKPGKAPKLLIYWASTRESGVPSRFSGSGSGTDFTLTISSLQPEDF
ATYYCHQYLSSWTFGQGTKLEIKSGGGLNDIFEAQKIEWHE 
 
B) 
GGT ACC GAA AAC CTG TAT TTC CAA GGC GAA GTC CAA CTG GTC GAA TCG 
GGT GGC GGT CTG GTC CAA CCG GGC GGC TCC CTG CGT CTG TCC TGC GCG 
GCC AGC GGC TTT GCA TTC AGC TCT TAT GAT ATG TCC TGG GTT CGT CAG 
GCA CCG GGT AAA GGC CTG GAA TGG GTC GCT TTT ATT AGT TCC GGC GGT 
GGC CGC ACC TAT TAC GCT GAT TCT GTG AAA GGT CGT TTC ACC ATC TCT CGC 
GAC AAC AGT AAA AAT ACG CTG TAT CTG CAG ATG AAC AGC CTG CGT GCA 
GAA GAT ACC GCT GTG TAT TAC TGC GCG CGC ACG GAA TGG TAC TTT GAC 
GTT TGG GGT CAA GGC ACC CTG GTG ACG GTT TCA TCG GGT GGC GGT GGC 
AGC GGT GGC GGT GGC TCT GGT GGC GGT GGC AGT GAT ATT GTC ATG ACC 
CAG AGC CCG TCT ACC CTG AGT GCG TCC GTC GGT GAC CGT GTG ACC ATC 
ACG TGT CTG TAT AGC TCT AAC CAG AAA AAC TAT CTG GCC TGG TAT CAG 
CAA AAA CCG GGC AAA GCG CCG AAA CTG CTG ATT TAC TGG GCC TCC ACC 
CGT GAA TCA GGT GTT CCG TCG CGC TTT TCA GGT TCG GGC AGC GGC ACC 
GAT TTC ACC CTG ACG ATC AGT TCC CTG CAG CCG GAA GAC TTT GCC ACC 
TAT TAC TGC CAT CAG TAT CTG TCA TCG TGG ACC TTC GGC CAG GGT ACG 
AAA CTG GAA ATT AAA TCG GGC GGT GGC CTG AAC GAC ATC TTT GAA GCA 
CAG AAA ATT GAA TGG CAC GAA TAA GGA TCC 
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Figure 28. Cloning of the scFvO157 construct into pET32a(+) expression plasmid.A) 

Image comparing the empty pET32a(+) (lane 1) with the pET32a(+)�scFvO157 construct 

(lane 2). B) Image of restriction digests, where lane 1 and 2 include KpnI or BamHI alone 

resulting in single bands of the full size empty plasmid. Lane 3 corresponds to a double 

digested KpnI/ BamHI empty plasmid, which produced a single band of slightly lower 

size. Lane 4 shows the products of a double digested KpnI/ BamHI cloned pET32a(+), 

matching the size of the backbone (~5858 bp) and the released insert of  ~800 bp. Both 

images correspond to 1% w/v agarose gels stained with EtBr. C) pET32a(+) map 

containing the 801 bp scFvO157 gene (red) cloned using KpnI and BamHI. The 

TrxA�His6tag is situated where protein translation starts. 
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no smaller bands were seen when empty plasmids were also cut. In addition, the plasmid 

was sequenced to confirm that the construct sequence was correct after the cloning process. 

 Expression of the Humanized scFvO157 

Despite the efforts made during the design of the scFvO157 construct to ensure protein 

solubility, the initial trials for expression and purification resulted in poor yields of the 

purified protein (Figure 29). Attempts were made to assess its functionality by ELISA 

using E. coli O157 DSM 17076 as a positive control and E. coli ATCC25922 as a negative 

control. However, the results obtained with E. coli O157 (0.035 ± 0.001) did not notably 

surpass the cut-off value, besides, the negative control was also positive although with a 

lower absorbance (0.013 ± 0.004)4. Because these results were considered inconclusive, 

immunofluorescence microscopy was also attempted to evaluate the scFvO157 specificity, 

but did not result in an improved outcome that could serve as evidence of the proper 

function of the scFvO157. 

Due to the previous results, efforts to increase the expression of soluble protein were made. 

It has been shown that overexpression of heterologous genes can promote protein 

misfolding (217), which can lead to aggregation and consequently formation of 

intracellular inclusion bodies (264,267). Taking this into consideration, different attempts 

were made to modulate production rate through the induction step. Modification of 

conditions, including induction time, temperature, and concentration of the inducer (IPTG), 

were tried, however the SDS-PAGE analysis after cell disruption showed that none of the 

variations succeeded in increasing the expression of soluble protein and thus the yield of 

purified scFvO157 (Figure 30). The fact that optimization of process parameters improves 

protein solubility has been well-established (197,203,267), however, their effects are still 

unpredictable and dependent on the particular requirements of the protein expressed 

(264,268). 

                                                
4
 Average of the absorbance obtained from duplicates± SEM. The cut-off value average was calculated from 

a total of four blank replicates for each of the two strains assessed. 
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Figure 29. Overview of the purification and cleavage of the scFvO157. SDS-PAGE 

and Western Blot analysis of the purification steps including A) separation of the 

TrxA�His6tag�TEV�scFvO157�biotin protein (45 kDa) from the crude extract (flow) by 

increasing imidazole concentrations (mM) using Ni2±affinity gravity chromatography, B) 

removal of the TrxA�6×His tag using autoinactivation-resistent His7�TEV cleavage, and 

C) purification of the scFvO157 using an imidazole gradient and Ni2±affinity gravity 

chromatography. Schematic representations of the target protein throughout the process 

are also included. Images correspond to 12% SDS-PAGE gels stained with Coomassie 

blue or nitrocellulose membranes stained with Pierce™ Reversible Protein Stain Kit. 

Western Blot images correspond to detection using streptavidin-IRDye800. 
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Figure 30. Effect of temperature and induction time in the expression of soluble 

scFvO157. SDS-PAGE and Western Blot analysis of soluble and insoluble fractions 

showing the effect of different induction conditions on protein expression. Inductions 

were carried out in small scale with (+) and without (-) 0.1 mM IPTG. SDS-PAGE images 

correspond to 12% SDS-PAGE gels stained with Coomassie blue. Western Blot images 

correspond to detection using streptavidin-IRDye800. 
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As a final alternative, attempts were focused on recovering the cytoplasmic inclusion 

bodies from the cell pellet by using denaturing conditions and solubilization in 8 M urea. 

Although the advantage of this approach was that inclusion bodies were obtained mostly 

unadulterated after cell disruption, in vitro refolding proved to be difficult due to 

precipitation of the target protein. Therefore, a second alternative using a combination of 

denaturing and native buffers was also tried, but it was not advantageous to the overall 

yield. Both methods proved to increase the protein extraction yield when compared to the 

previous results obtained from the soluble protein fraction. However, further in vitro 

refolding and/or processing was particularly challenging due to constant precipitation. 

Through all these efforts, it was concluded that obtaining sufficient yields of the pure 

scFvO157 was and still is a challenge that requires a thorough study to adapt either the 

induction or the in vitro refolding procedures to the particular characteristics of the 

expressed protein. 

 Re-Design of the scFvO157 Structure 

The major constraint in this study was the difficulty in obtaining an adequate yield of 

purified scFvO157 to perform proper functional assessments. Two main challenges were 

identified: a) low expression of soluble protein and b) precipitation of purified inclusion 

bodies during in vitro refolding. Even though both limitations can be overcome by 

adjusting conditions during induction or further refolding, whether a recombinant protein 

is soluble or forms inclusion bodies relies mostly on its primary structure 

(197,264,269,270). Protein sequence provides information regarding functional 

conformation (268), thus minor changes in the primary amino acid sequence 

(197,268,270,271), or in its length (271) may affect the expression of soluble protein or 

affect the proper folding. In order to investigate the potential effect of the scFvO157 

primary sequence in its soluble expression levels, a retrospective approach was adopted; 

two of the most relevant intrinsic properties of the scFvO157 were compared against the 

humanized scFv template used for its construction. 

The initial alignment score between the humanized scFv0157 and its template was 0.015 

with a RMSD of 0.609 Å as obtained with Maestro Software. The default settings were 
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used, where all residues within both structures were considered for the alignment. Both 

values were particularly small, confirming the high structural similarity and thus 

meaningful alignment of the 3D models. One of the major intrinsic protein properties that 

plays a key role in promoting aggregation is hydrophobicity, especially when clusters of 

hydrophobic residues are exposed in the surface of the expressed protein (264,272). For 

this reason, the primary sequences were aligned and compared using the Kyte-Dolittle 

hydrophobicity color scheme in the Multiple Sequence Viewer, where minor amino acid 

distinctions were found between the CDR loops of both sequences (Figure 31). To have a 

better estimation of the effect of those residue variations, the amino acid sequences were 

used to calculate the hydrophobicity index for each scFv using the GPMAW bioinformatics 

tool (http://www.alphalyse.com/gpmaw_lite.html). The outcome was -0.28 and -0.34 for 

the scFvO157 and the humanized scFv template, respectively, suggesting that the former 

was slightly more hydrophobic. Formation of inclusion bodies has been assumed to be 

favored by non-specific interactions among hydrophobic residues found in different 

molecules (216,273). Therefore, the modifications in amino acid residues due to loop 

grafting may have predisposed the aggregation of the expressed protein, when compared 

with its humanized template. 

To complement the hydrophobicity results, the theoretical pI of both scFv was also 

obtained, using the GPMAW bioinformatics tool, with the result being 8.95 for the 

scFvO157 and 9.22 for the humanized scFv template. Because the scFv were not expressed 

alone, the hydrophobicity index and pI were also calculated for the protein including the 

fusion partner, TrxA, cleavage sites and tags. The hydrophobicity index was similar to the 

one obtained for the scFv alone however pI values were 6.05 for the scFvO157 and 5.65 

for the humanized scFv template. As noted, there was a remarkable difference in pI values 

between the humanized scFv template and the scFvO157, regardless of the presence of the 

fusion partner and tags. These results support the hypothesis that even though the 

humanized backbone was kept constant the differences in certain amino acid residues 

found in the CDR loops can significantly change the protein properties. In addition, they 

reinforce the fact that extraction and processing conditions need to be tailor made for each 

particular protein taking into consideration such characteristics. 
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Figure 31. Hydrophobicity comparison of the scFvO157 and scFv humanized 

template CDR loops. The six CDR loops were aligned and compared using the Kyte-

Dolittle hydrophobicity color scheme in the Multiple Sequence Viewer of Maestro 

Software. Hydrophobic residues are red, hydrophilic residues are blue, and residues 

without hydrophobicity are white. The first line represents the CDR loops of the scFv 

humanized template (1) while the second line represents the CDR loops of the scFvO157 

(2). Blue arrows represent beta sheet secondary structures. 
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CHAPTER 5 DISCUSSION
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Safe food and water are crucial elements of a healthy society. However, given current food 

processing techniques and practices, it is not reasonable to guarantee that all food will be 

safe; however, it is possible to ensure, that all food will be free of hazards to an acceptable 

level of risk (3). In pursuit of this, initiatives around the world have been implemented, 

where one of the key elements to increase food safety relies on early detection of potential 

hazards and monitoring of food following a farm-to-fork approach (5,8). Of particular 

interest has been the development of improved detection tools for targeting bacterial 

pathogens in food, where research efforts have been focused in order to achieve the 

following: a) identify microbial hazards (7) and b) decrease the burden of disease caused 

by foodborne diseases and pathogens (8).  

In this work, the focus was on E. coli O157, which is of particular interest due to its 

relevance in food safety since this serotype was first described in 1982. Of importance, in 

2015, the first Canadian study that focused on estimates of hospitalizations and deaths due 

to foodborne illness considered E. coli O157 was among the top five foodborne pathogens 

with the highest number of hospitalizations (246) and among the four pathogens with the 

highest number of deaths (8) each year (15). Although it was not considered as one of the 

pathogens that causes the greatest number of illnesses (15), either due to infrequent 

reporting (62) or to a lower incidence (274), its contribution to the total number of 

hospitalizations and deaths due to the severity of the illness and long-term negative 

outcomes, including death, establishes this pathogen as a major public health concern. In 

addition, a study published in 2014 estimated a significant annual cost of illness due to E. 

coli O157 infections in Canada (62). Based on an estimate of 22,344 annual primary 

infections and 37,867 on-going long-term cases, extrapolated from the incidence rate of 

2008 (2.28 infections/100,000 persons) reported by the Public Health Agency of Canada 

(PHAC), an annual cost of at least $403.9 million CAD was estimated due to primary cases 

and long-term outcomes caused by E. coli O157 infections (62). Since 1990, verotoxigenic 

E. coli (including E. coli O157) became a notifiable disease, meaning that any case has to 

be reported by PHAC (66). In addition, due to the low infectious dose of E. coli O157 and 

considering that meat, especially raw beef products, has been the most implicated in 

outbreaks in Canada (31), a no detectable level policy for E. coli O157 was established 

specifically for these food products (70). However, despite all these efforts made to control 
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foodborne diseases, new challenges, including climate change (5,7), are having a huge 

impact on microbial ecology with the emergence of foodborne diseases and unusual 

outbreaks. These all have to be rapidly investigated (5). Together with Salmonella spp., 

E. coli O157 is considered of great concern due to its stress tolerance response (e.g. acid 

resistance) that could potentially make it a strong survivor in the event of climate change 

(7). In addition, with the globalization of the food market, the risks of spreading potential 

foodborne diseases globally have also increased (7,8). For these reasons, it is evident that 

E. coli O157 has been and still is one of the major foodborne pathogens upon which 

research in Canada should be focused.  

One of the tools that food producers use as part of their food safety surveillance system is 

microbial testing for monitoring and early pathogen detection. Conventional bacterial 

culture has most commonly been used, which, in practical terms, requires up to a week to 

confirm the presence of E. coli O157 in contaminated food. Therefore, in the last decade, 

there has been an increase in rapid detection methods (159) that can be used for fast 

screening instead of the lengthy, laborious traditional culture method. These technologies 

are allowing food producers to release safe products at an earlier stage instead of waiting 

for the traditional cultural results that take several days. Numerous reviews have focused 

on analyzing the advantages and disadvantages of emerging technologies that are being 

used for developing rapid methods for the detection of foodborne pathogens (106,159,275). 

In particular, the lateral flow immunoassay (LFIA) format has received significant 

attention in food safety research (106,132,140) and commercial (106) sectors, as it is 

considered an inexpensive, easy-to-use, and fast alternative for pre-screening (106). 

Despite the fact that several LFIA were commercially available at the time of writing, for 

example, MaxSignal® E. coli O157 Strip Test Kit (Bioo Scientific Corporation), DuPont™ 

Lateral Flow System for E. coli O157 (DuPont), FoodChek™ E. coli O157 test 

(FoodChek™ Systems Inc.), Reveal 2.0 for E. coli O157:H7 (Neogen Corporation), and 

VIP® Gold for EHEC (BioControl), not all of them were approved by Health Canada. In 

fact, in the latest published version of the summary of methods found in Health Canada’s 

Compendium of Analytical Methods for E. coli O157:H7, only one immunological 

method, the Merck Singlepath® E. coli O157 Kit, has met the standards required for it to 

be approved for screening purposes (276). In practice, essentially two methods are widely 



 

 

178 

used in the Canadian food production system, conventional culture and PCR, thus a reliable 

and validated point of care test that has regulatory authority would be a major advance in 

food safety in Canada and potentially beyond. 

Given the critical role that an alternative method plays in determining the reasonable level 

of risk of food products, these tests must be subjected to a thorough evaluation before 

commercialization and use for food analysis. Several standards have been developed 

worldwide that provide protocols for the validation of new microbiological methods. The 

most widely recognized are the AOAC International programs, the ISO 16140 Standard 

(159), USDA-FSIS Guidance for Evaluating Test Kit Performance (277), and Health 

Canada’s Guidelines for the Development and Management of Food Microbiological 

Methods (174). As it is critical that the results obtained with the alternative method are 

reliable and recognized by the government parties (159) involved in a food safety 

management system, Health Canada’s guidelines were selected for the validation of the 

LFIA Test Kit. In fact, food producers can determine which testing method to use based 

on the fit for purpose. However, particularly in the case of raw beef products, the CFIA 

based on the Meat Hygiene Manual of Procedures, which is under the Meat Inspection Act 

and Meat Inspection Regulations, requires that the testing of products must be done using 

an approved method listed under Health Canada’s Compendium of Analytical Methods 

(176). Collectively, this information, in combination with the fact that Merck Singlepath® 

was the only approved immunological method, brought up the possibility to proceed with 

the validation process to seek the inclusion of the alternative LFIA Test Kit method in the 

Compendium of Analytical Methods. It should be noted that the LFIA Test Kit developed 

during this study for the detection of E. coli O157 is currently undergoing the assessment 

by the Technical Group of the Microbiological Methods Committee for its inclusion in the 

Compendium of Analytical Methods (174). 

In general terms, the validation of an alternative method can be defined as the process of 

confirming its “fitness for purpose” by providing and examining objective evidence that 

will lead to the establishment of the method’s performance parameters (159,172). 

Regardless of the validation standard used, the initial stage involves the comparison of the 

alternative method against a reference method (105,159,173). In most cases, the reference 
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method is represented by the conventional culture method, which is internationally 

recognized by the standard agencies or governmental authorities.  

Focusing on the LFIA Test Kit validation, this procedure is defined in the Compendium as 

a Relative Validation, where the performance of the Test Kit was assessed in comparison 

with the reference method MFHPB-10 as shown in Table 15 and Table 16. Although these 

results showed that the LFIA Test Kit was able to detect the same number of positives as 

the reference method (true positives), it does not provide evidence of an equivalency 

between both methods. Therefore, the POD analysis had to be performed, which is a model 

that helps to determine equivalency between two methods particularly in cases where 

different sample portions are evaluated with each method due to different enrichments. As 

shown in Table 17, the POD is calculated for each inoculation level, which makes the 

qualitative data conditional on the concentration of E. coli O157 present in the sample 

(278). In addition, the POD compares the response of the alternative and the reference 

method by the mathematical difference of their POD values (dPOD), while the statistical 

significance is given by the calculation of its confidence interval (278). These final results 

were further used to determine the performance parameters in Table 18. Overall, the 

relevance of the POD analysis is that it allows one to determine the compliance of an 

alternative method with established performance parameters, as stated in Table 17, based 

on concentration. It also determines the equivalence between two methods (278). In 

addition to the POD and performance parameters analysis, an effective alternative method 

should have a LOD comparable to the standard method or ≤3 CFU/g (174). In the case of 

alternative methods for detection of E. coli O157 in raw meat products, this is critical due 

to the total absence of established criteria (176), which implies that 1 CFU/25g sample 

should be detectable. Indeed, the results obtained for the LOD evaluation (Table 19) 

demonstrated that the LFIA Test Kit was able to comply with this requirement. The LFIA 

Test Kit was able to deliver presumptive results in 17 h of total assessment time compared 

with the 2 days that it takes to obtain isolated presumptive colonies with the culture 

reference method (255). Therefore, it proved to be faster but was still sensitive enough to 

meet the required criteria. In addition, the validation results were similar to the Merck 

Singlepath® results reported in the AOAC Research Institute certificate for raw ground 
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beef (169), but with the great advantage of providing results in <25 h, which is the reported 

total analysis time found in the AOAC® Performance TestedSM Certificate. 

The principle of the LFIA relies on a sandwich immunoassay, where the monoclonal 

antibody confers the specificity necessary to detect E coli O157. In fact, Westerman et al. 

reported that the mAb selected for this assay reacted with 47 E. coli O157:H7 strains and 

17 O157:non-H7 strains (227). This was further supported by the results obtained with the 

inclusivity study performed for the validation of the LFIA Test Kit (Section 4.2.1 and 

Appendix A), where all E. coli strains expressing the O157 somatic antigen were detected, 

regardless of the H antigen they possessed. Although two strains, E. coli O44:H18 and 

E. coli O124:NM belonging to the enteroaggregative (EAEC) and enteroinvasive (EIEC) 

pathotypes, respectively, produced weakly positive results during the exclusivity study, 

they were not considered as a critical cross-reaction issue due to the nature of the strains 

and the overall result obtained during the exclusivity study. Further analysis using an 

ELISA suggested that the mAb did not cross-react with these strains. In addition, no 

evidence was found that could structurally link the O44 and O124 antigens with the O157. 

Therefore, this represents an opportunity to further investigate these results and potentially 

improve the performance of the LFIA Test Kit. 

The concept of sandwich immunoassays has been known for some time and has been 

widely used in pathogen detection because bacteria have many different epitopes that can 

be targeted by different antibodies without interfering with each other (140). Frequently 

used formats are based on immobilized captured antibody on a nitrocellulose membrane 

(140) or by using conjugation pads, where the immune complex is formed (239). However, 

the former technology has proven to alter the binding site of the antibody by adsorption-

induced denaturation, which can cause non-specific interactions (279). 

An ideal method for a sandwich immunoassay is one that can maintain the native structure 

of the antibodies, which involves keeping the antibodies in solution and avoiding 

immobilization. In addition, allowing a longer incubation time has proven to increase the 

sensitivity of the assay, without a significant impact on the total assay time (132). To our 
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knowledge, this is the first attempt to combine an in-tube-sandwich immunoassay with a 

LFIA device for pathogen detection. 

The main challenge that rapid methods, such as the LFIA Test Kit, normally face within 

food safety, is the complexity and variability of the food samples (132,280) and the low 

concentration of pathogens, which in combination decrease the sensitivity and specificity 

of the assay. Therefore, over the course of the development process, several modifications 

and optimization of reagents and assay conditions were evaluated to obtain an acceptable 

LOD, while maintaining a clear difference between positive and negative samples 

distinguishable by the naked eye. We can highlight the relevance of ensuring proper 

nitrocellulose blocking to prevent non-specific binding (Table 10). Particularly, it was 

noticed that over-blocking the membranes caused weak control and test lines, which might 

have been due to an excess of BSA and/or Tween 20 that interfered with the binding of 

complexes with the capture reagents immobilized in either the control or test line (134) 

(Table 11). Importantly, however, it was also demonstrated that low sample pH promotes 

the development of false positive results (Figure 13). Indeed, minor changes in pH can 

alter the stability of any protein, not only of antibodies, by influencing their net charges 

and thus their conformation (241,281,282). This can produce non-specific interactions with 

either the immobilized streptavidin in the test line or with other ligands found in the sample 

(241,281). In fact, Kim et al. reported false positives during the development of a dipstick 

immunoassay used for detection of E. coli O157 in ground beef samples (283). They 

attributed this effect to the possible denaturation or degradation of the polyclonal antibody, 

which could then have non-specific interactions with the detection and/or conjugated 

antibodies. 

On the other hand, background microbiota, naturally present in food matrices, has proven 

to act as a competitor to target pathogens, which normally are found in lower numbers. The 

food microbiota can potentially inhibit the growth of the target microorganism and thus its 

detection (248,257,284) when present in high concentrations, making it necessary to use 

enrichment techniques frequently supplemented with growth inhibitors. However, some 

inhibitors, such as cefixime, have also been shown to affect E. coli O157 growth. In fact, 

this effect was demonstrated when comparing the performance of non-selective and 
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selective media for preparation of stressed cells (Figure 12A). Ogden et al. have reported 

that cefixime, a supplement found in CR-SMAC, can inhibit the growth of some E. coli 

O157 strains (285), perhaps explaining the difference in counts. These findings agreed with 

the results reported by Jasson et al., where using a combination of cefixime and tellurite 

with MacConkey medium (CT-SMAC) as selective agar caused a significant difference in 

performance with TSAYE (225). Therefore, for enrichment purposes, novobiocin was 

preferred in combination with TSB. This enrichment medium proved to be compatible with 

the LFIA device by detecting E. coli O157 from food samples after 16 h of enrichment at 

42°C (Figure 18). 

Particularly, in LFIA, matrix composition alters the capillary flow and thus the intensity of 

the control and test lines (134). In addition, the matrix composition can also interfere with 

the formation of antigen-antibodies complex (132). Indeed, this effect was noted when 

comparing the results with the undiluted samples (window A) in Figure 16 and Figure 19, 

where reduction of the control line intensities was approximately 7-fold in the presence of 

food matrix, but without compromising the final qualitative result. The concept of sample 

dilution has been reported for dealing with matrix effects in immunochromatographic 

assays however this approach has the potential disadvantage of decreasing assay sensitivity 

(132). Therefore, the adoption of a tandem device represented an opportunity to solve the 

prozone and matrix effect, without altering the sensitivity of the assay, which was 

approximately 104 CFU/ml when using pure cultures and 105 CFU/ml with meat samples. 

The latter was an acceptable LOD, which agreed with data Shan et al. reported for six 

different LFIA (140). These LFIAs were previously developed for detection of foodborne 

pathogens using colloidal gold, showing LODs between 105 and 106 CFU/ml (140).  

The initial objective of immunochromatographic assays is to deliver qualitative results 

(132). However, lately, there has been more interest in developing quantitative assays for 

food safety, especially for determination of toxic compounds such as mycotoxins 

(134,135,144,286) and chemical contaminants (281), where more than a presence/absence 

result is needed. Interestingly, few studies were found regarding quantitative applications 

of LFIA for bacterial analysis (287). In these devices, to determine concentration, the 

intensity of the test line is normally measured by using a photometric device. However, 
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this is impractical for a point-of-care rapid test. The tandem LFIA, although focused only 

on E. coli O157, demonstrated that it could be potentially useful in determining semi-

quantitatively the concentration of a target bacteria by measuring the intensity of the lines 

in the two windows of the device (Figure 20). It was also possible to link the control and 

test line intensity measurements with a simple visual evaluation of the tandem LFIA device 

(Table 13). To our knowledge, the tandem LFIA device represents a new alternative, not 

only for solving LFIA issues such as prozone and matrix effect, which are frequently faced 

in food safety due to the complex nature of the samples, but also as a potential alternative 

for transitioning from qualitative to semi-quantitative results without needing extra 

equipment. 

The application of immunochromatographic systems, such as LFIA, has shown great 

potential in the food safety sector. Specifically, improvement in sensitivity and specificity 

has been shown when they are combined with new detection schemes or novel reagents 

(e.g. gold nanoparticles combined with enzymatic activity or thermal contrast 

(125,126,246,288). Of importance is the application of single-chain antibody fragment 

(scFv) in diagnostic tools such as LFIAs. Indeed, recent studies have introduced scFv as 

novel alternatives (108,200,207,210,289) to monoclonal antibodies. Significant 

advantages, such as large-scale (207,210) and more cost-effective production methods 

(120,210,290) with enhanced or similar sensitivity and specificity than the parent 

monoclonal antibody, have been demonstrated when scFv are used in ELISAs 

(108,201,210). Within the food safety field, most of the scFv applications have been 

reported for detection of mycotoxin (207,210). In addition, promising results have also 

been reported for detection of antibiotics such as fluoroquinolones (209), enterotoxigenic 

E. coli toxins (201), and for detection of S. enterica ser. Typhimurium using competitive 

ELISA (213). Therefore, it is evident that scFv have not been fully exploited for detection 

of foodborne pathogens. Within this study, a scFv recombinant antibody directed against 

the O157-antigen expressed in the outer membrane of E. coli O157 (scFvO157), was 

developed. 

Although, monoclonal antibodies still represent the main alternative for high-sensitivity 

reagents for immunoassays, it has been well-documented that cell culture supernatants tend 
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to have low concentrations of mAb, ranging from 1-100 µg/ml (180,291) depending on the 

cell line, culture medium, culture conditions and/or cell line stability. Thus, the 

concentration of large volumes of supernatant before purification has become a common 

practice (180), which can increase the complexity and cost of the production process. 

Indeed, the average yield of the anti-O157 mAb obtained through hybridoma technology 

was 11.58± 2.245 µg/ml of supernatant purified. The concentration of mAb was considered 

sufficient for the purpose of this study, nevertheless, it may not be ideal for the downstream 

processing requirements of the LFIA Test Kit manufacturing process. Hence, it was of 

particular interest, not only from a manufacturing perspective, but also for the advancement 

of food safety, to engineer a scFv that could target one of the major foodborne pathogens, 

which is E. coli O157. The scFvO157 was derived from the anti-O157 mAb (227), which 

was used as the capture antibody for the development of the LFIA Test Kit. This mAb was 

confirmed to be an IgG3 isotype (Figure 21), which is the preferred immunoglobulin 

isotype secreted against bacterial antigens (228,291). Moreover, after purification (Figure 

22A) and functional characterization through ELISA (Figure 22B), it was confirmed that 

the anti-O157 mAb was successfully produced by the 13B3 hybridoma cell line and 

specific against E. coli O157. 

The early development of the scFvO157 consisted of the molecular cloning and sequencing 

of the anti-O157 mAb variable regions, which is formed by the variable heavy (VH) and 

light (VL) chains (Figure 24). Monoclonal antibodies are considered unique molecules due 

to their particular specificity, which, surprisingly, is only attributed to the genetic diversity 

and length of six loops known as complementarity determining regions (CDRs) found 

within the VH and VL (292,293). Such variability has led to a classification of 15 VH and 

18 Vκ gene families (192), which makes amplification of murine Ig genes challenging. 

Attempts to successfully amplify V-genes have led to the development of consensus or 

degenerate primers that target the framework and constant conserved regions of both the 

VH and VL chains (192,196,261,294). The translated amino acid sequences were further 
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characterized using the BLASTP program and COBALT, which is a constraint-based 

alignment tool (295). In combination, they compared the VH and VL chain sequences with 

protein databases providing as an end-result a multiple sequence alignment where 

conserved and significant variable residues within the sequences could be identified 

(Figure 25) (296). In fact, it was possible to recognize the conserved residues of the 

variable chains that mainly represent the framework regions. These conserved regions were 

responsible for the identity percentage obtained on the sequence comparison (Table 20). 

The difference between the target and the templates was due to the areas within the 

sequences that outlined the CDR loops (Figure 25). Besides confirming that the variable 

regions belonged to a murine antibody and corresponded to VH and VL chains, the analysis 

demonstrated that at the time of writing no other murine antibody against the O157-antigen 

was previously published in the database. A search performed in the protein database 

(PDB) showed 207 results related to “O157”, but none of them were antibodies that could 

target the O157-antigen. Overall, cloning and sequencing of the anti-O157 mAb variable 

region represents a unique opportunity to preserve its particular specificity, which can be 

relevant for extensive characterization or in the event of hybridoma loss. To our 

knowledge, this may represent the first sequenced V-gene of a murine mAb against E. coli 

O157. 

Using the sequence information of the murine V-gene has been helpful in creating 

molecular models for guiding the in vitro engineering of scFv (209). Homology modeling 

is the most common computational tool used to predict 3D structures of proteins based on 

the comparison of their primary amino acid sequence with a template protein 

(209,297,298). For this purpose, SWISS-MODEL, which is considered one of the most 

frequently used public modeling servers (298,299), was used. Overall, homology modeling 

is efficient and reliable, however V-gene prediction, particularly CDR loops, may represent 

a challenging and more laborious procedure. Reliable models generally can be obtained 

when the target-template sequence identity is >40% (297,298). However, the second 

requirement for homology modeling involves the correct target-template alignment (297), 

which was represented by the GMQE score (300). The molecular modeling performed led 

to the identification of the CDR loops using 3D models with a high GMQE score and 

sequences with >80% identity (Figure 26A and Figure 26B, Table 21). This step was 
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critical because minor modifications to the CDR loops sequence structure can lead to loss 

of functionality. 

As most of the development of scFvs has been focused on drug therapy development, 

humanization of scFvs has become a common practice (301). A second benefit obtained 

from loop grafting has been the achievement of a higher stability of the scFv structure when 

compared to the original murine scFv (218). Therefore, the scFvO157 construct was 

designed by loop grafting of murine CDRs onto a humanized consensus backbone 

previously described to be successfully expressed in E. coli (234) (Figure 26C and Figure 

26D). As a fact, scFvs have frequently been reported to be difficult to express as a soluble 

protein in E. coli. Several strategies, such as codon optimization (203) and fusion with 

highly soluble proteins (e.g. TrxA) (266), have been developed in order to overcome this 

issue. In fact, both strategies were adopted during the design of the scFvO157 construct. 

Expression of the recombinant protein was successful, however despite the efforts made to 

ensure its solubility, it was mainly expressed as inclusion bodies found in the insoluble 

fraction of the cell lysate (Figure 30). Several factors, such as use of strong promoters 

(268,302), high inducer concentrations (268,302), or high temperatures during induction 

(268), have been linked to the formation of these insoluble aggregates, which overall 

increased overexpression of the recombinant protein (303). Throughout this study, several 

attempts were made to improve the expression of soluble protein (Figure 30). Induction 

was tried at different temperatures, such as 4°C, however it resulted in low yields of both 

soluble and insoluble fractions mainly due to a reduced bacterial growth rate. The optimal 

temperature range frequently reported for induction is 15-25°C (RT) (265,304), which 

showed a slightly higher amount of soluble protein when induction was performed during 

6 h (Figure 30). Induction was also started at early log phase because it promotes the 

production of more soluble protein (265). Different concentrations of inducer (IPTG) were 

also tried and showed a proportional increase of expressed protein with higher 

concentrations of inducer, but mainly as inclusion bodies (data not shown). 

Inclusion body formation is commonly reported in scFv synthesis; hence, isolation and 

refolding of insoluble aggregates has become a common practice for recovery of functional 

proteins (203,210,218,290,303). Within this study, isolation of inclusion bodies was 
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proved to be successful under denaturing and hybrid conditions, however refolding 

strategies were not ideal for recovery of a functional protein that could be used for 

functional assessment. These results demonstrate that synthesis of recombinant proteins 

using the E. coli expression system, in particular scFvs, still represents a challenging 

process in order to fulfill the requirements of large-scale production, which is the end-stage 

objective of their application. 

Different approaches, such as expression in yeasts (217) or Gram-positive bacteria (e.g. 

Bacillus brevis and Bacillus subtilis) (215), can be used in order to prevent inclusion bodies 

formation. However, importantly, several studies have reported the relevance of protein 

structure in the proper expression and folding. Fahnert et al. highlighted the fact that 

specific structural characteristics, such as point mutations, can be critical in promoting 

protein aggregation (268). In addition, Akbari et al. have shown that the order of the VH 

and VL chains in scFv can affect the expression and stability (203), while Gu et al. have 

reported that the functional cooperativity of both VH and VL chains can be influenced by 

the length and sequence of the peptide linker (305). Overall, recombinant antibody design 

is challenging and when loop grafting is performed, proper selection of the framework is 

critical because it can affect the CDR conformation and also proper pairing of the VH and 

VL chains (184). Potential substitution of specific residues from the murine backbone into 

the new framework may affect the proper folding and functionality (180). In fact, these 

backmutations can be recognized by homology modeling of the V-genes or by structure 

analysis (180). In light of this evidence, it was speculated that expression of soluble 

scFvO157 may be enhanced by a re-design of the primary scFvO157 structure using 

computational tools to aid in predicting its properties and to overcome the obstacles faced 

during the experimental stage. 
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CHAPTER 6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS 
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6.1. Overall Findings and Implications 

The results obtained after the relative validation study clearly demonstrated that the LFIA 

Test Kit was faster and sensitive enough to serve as an alternative detection method for 

Canadian meat producers to rapidly detect E. coli O157 in contaminated samples, while 

meeting the criteria required by the Microbiological Methods Committee (MMC) 

described in Health Canada’s Compendium of Analytical Methods. In addition, these 

findings suggested a reduction in total analysis time, requiring only 17 h from enrichment-

to-result, as compared with 25 h reported in the Merck Singlepath® AOAC® Performance 

TestedSM Certificate (169). The newly developed LFIA Test Kit is capable of detecting 

E. coli O157 in contaminated processed and unprocessed meat samples, with a time-to-

results advantage over its direct competitors (Merck Singlepath® and the MFHPB-10), 

emphasizing its inherent commercial value as a potential E. coli O157 detection alternative 

for meat producers. 

Moreover, by assembling a tandem LFIA device, we devised a novel and simple alternative 

to overcome one of the most common weaknesses of this type of immunoassay, which is 

the prozone or “hook-effect” (143,244,245). Previous studies suggested using sample 

dilution as the potential solution to the prozone effect (288). However, this directly 

decreased assay sensitivity. Therefore, the novel design of the tandem LFIA device, which 

allows analysis of both undiluted and diluted samples simultaneously, maintains the benefit 

of sample dilution without compromising the sensitivity of the method. In addition, this 

new LFIA design provides an opportunity to further develop a visual semi-quantitative 

technique for estimating bacterial concentrations in complex matrices including food 

samples. Although we were able to demonstrate the relationship between the intensities of 

the control and test lines with E. coli O157 cell concentration in meat samples, further 

research should focus on validating this approach using different food items, such as 

produce. Overall, this tandem device advances LFIA performance by providing a feasible, 

simple and easy-to-use alternative that effectively overcomes the “hook-effect”, while 

concomitantly offering the possibility to transform a qualitative method into a semi-

quantitative LFIA without needing extra equipment for interpreting the results. 
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Although the LFIA Test Kit successfully passed the relative validation for submission to 

Health Canada’s Microbiological Methods Committee, we elected to try to further improve 

the detection method by the synthesis of a scFv derived from the anti-O157 mAb used as 

the immunochemical reagent. 

Several advantages were foreseen with this approach, including the following a) potential 

enhancement of the assay sensitivity, b) easy and cost-effective production of detection 

reagents in bacterial hosts and c) positive proof of the application of a scFv as a detection 

reagent for food pathogens. The use of scFv in food pathogen detection has not been well-

exploited, with only a few publications focusing on the detection of enterotoxigenic E. coli 

toxins (201) and S. enterica ser. Typhimurium membrane protein D (213). Hence, the 

synthesis of a scFv that could target the antigen of a major food pathogen such as E. coli 

O157 represents an innovative adaptation that could benefit the food sector. Moreover, we 

can validate that no protein or nucleotide sequences related to antibodies or recombinant 

proteins against E. coli O157 are publicly available at the time of writing. This is interesting 

because this study might represent the first attempt to genetically characterize a mAb 

targeting E. coli O157. Knowledge of the variable domain genetic sequence opens a wide 

range of possibilities for in-depth antibody engineering research using bioinformatics that 

could help to develop novel alternatives for tackling E. coli O157 food contamination. 

Some examples of these approaches are predicting antigen-antibody interactions and 

analyzing the effects of site-directed mutagenesis for improvement of the binding affinity, 

among others. 

Our results indicated correct sequencing of the target variable regions of the anti-O157 

mAb was achieved. We were also able to express this scFvO157 in a cell-based E. coli host 

system. Unfortunately, we were unable to completely evaluate the functionality of the 

scFvO157 due to the limited yield of bioengineered soluble protein obtained, a result of 

the formation of inclusion bodies. Many different conditions were explored in an attempt 

to improve the solubility and yield of the E. coli expressed bioengineered protein. These 

included testing different purification techniques to enhance the recovery of these inclusion 

bodies. 
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These experimental problems prompted us to reconsider the scFvO157 gene design 

because modification of the primary scFv sequence could positively alter the folding and 

stability properties of the expressed, bioengineered protein. Although we were able to 

initiate this retrospective analysis by using novel bioinformatics tools for antibody and 

protein design, this component of the study was not completed within the time available. 

This last part of the study provided the foundation for improved scFv design with the help 

of computational tools as the main thrust for future research. 

6.2. Research Limitations 

As mentioned previously, the LFIA Test Kit was successfully submitted for assessment by 

the MMC. However, several limitations were noted during the development process. First, 

that the enrichment broth RapidCult™ was no longer on the commercial market 

represented a major setback. RapidCult™ broth was initially selected, among other broths 

assessed, due to its ability to recover healthy and stressed E. coli O157 cells from 

artificially inoculated meat samples in 8 h of incubation. Therefore, new readily available 

enrichment broths were also evaluated. We evaluated commonly used alternatives such as 

mTSB, mTSB+novobiocin, and TSB+novobiocin. The latter was the final enrichment 

broth selected because the presence of bile salts in the other two alternatives interfered in 

the detection of E. coli O157 using the LFIA device. Despite the successful results obtained 

with the LFIA Test Kit, the presence of novobiocin seemed to delay the recovery of E. coli 

O157 cells, especially when stressed. Thus, it was not feasible to replicate the results 

obtained with RapidCult in the 8 h incubation time, forcing us to increase the enrichment 

period to 16 h. Although other potential alternatives could also be evaluated, previous 

comparison studies performed by others (87,170,248–250) were used to screen for the most 

appropriate broths to evaluate with the LFIA Test Kit. 

During the optimization phase, small lots of LFIA devices and/or reagents were 

manufactured, limiting the number of duplicates and/or experimental replicates within each 

experiment. To overcome this issue, the reagents and LFIA devices were strategically 

allocated using primarily checkerboard titrations. We included experimental controls to 

ensure that the screening and optimization data are representative, while achieving a robust 

performance that could be confirmed during the relative validation process. Whereas this 
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approach allowed us to determine the optimal conditions for a functional LFIA Test Kit, it 

could present a source of bias due to the lack of sufficient replicates. 

Sample preparation was also a main limitation for the performance of the LFIA Test Kit. 

As noted, physicochemical properties of food samples, including pH and matrix 

composition, interfered with specificity and the intensity of the control and test lines. As a 

result, pH optimization was necessary when the pH of samples was below 5. Although 

meat samples used during the development process demonstrated a consistent pH value of 

6 after enrichment, they were less acidic than the S. enterica ser. Typhimurium and S. 

flexneri pure cultures evaluated. Hence, it was necessary to create a general methodology 

to account for the potential diversity of sample pH. Sample dilution was also necessary to 

counteract the effect of sample composition and the prozone effect caused by an excess of 

antigen. Consequently, the general procedure using the tandem LFIA Test Kit was 

validated including a pH adjustment step. Both approaches resulted in a functional LFIA 

Test Kit, although this compromised the simplicity of the test because it required the 

incorporation of simple, but extra, pipetting steps. This represents an opportunity to further 

assess the sample buffer as lyophilized beads included with the antibodies beads which, 

due to time constraints and manufacturing limitations, it was not possible to continue the 

optimization with this format.  

Finally, during the production of the scFvO157 the major limitation faced was the inability 

to obtain an appropriate yield of purified scFvO157. Initial attempts to demonstrate the 

functionality of the scFvO157 through ELISA and immunofluorescence microscopy were 

made, however, the results were inconclusive due to low signal magnitude. Expression of 

the recombinant protein was successful as demonstrated by Western Blot analysis (Figure 

29). However, despite cautionary efforts made during the design of the scFvO157 gene, it 

was mainly expressed as inclusion bodies found in the insoluble fraction of the cell lysate. 

It has been well-documented that expression of scFv as soluble protein represents a 

challenging process (197,205,215). In fact, different approaches to tackling this limitation 

have been published, including expression in a different host such as yeasts (217), Gram-

positive bacteria (e.g. Bacillus brevis and Bacillus subtilis) (215), or other E. coli strains 

such as E. coli Origami B (DE3) (265,304). These approaches are designed to improve 



 

 

193 

disulfide bond-dependent protein folding and may be more appropriate here. In addition, 

the influence of induction conditions has been widely assessed (197,267,306). Because the 

latter are considered to be easily modifiable as they are involved in the final stage of 

scFvO157 synthesis, they were initially evaluated, as shown in Figure 30. The results 

obtained confirmed only the fact that the scFvO157 was mainly produced as insoluble 

protein regardless of the induction conditions used. Thus, the next approach used was 

focused on the purification of the inclusion bodies, which showed promising results in 

terms of purification but its further refolding step required further optimization. Therefore, 

despite the fact that we were able to express the bioengineered scFvO157, the overall 

results were considered inconclusive due to the lack of unambiguous evidence that could 

support the successful production of the scFvO157 through functional assessment.  

6.3. Future Directions 

 Extending the Application of the LFIA Test Kit 

Due to an increasing awareness of healthy eating habits, trends are switching towards 

higher consumption of sustainable, fresh produce (6,7). Thus, fresh products have been 

recently recognized as an emerging source of foodborne pathogens because they are mainly 

eaten raw (7,48,307). In fact, in the last decade, there have been several foodborne 

outbreaks linked to consumption of fresh vegetables worldwide. These include an outbreak 

related to iceberg lettuce and the well-known case of contaminated bagged spinach that 

occurred in 2006 (308). In 2011, a multistate outbreak caused by contaminated romaine 

lettuce was also reported (48). All three of these outbreaks occurred in the US. Thus, it will 

be relevant to assess the applicability of the LFIA Test Kit on detection of E. coli O157 in 

fresh produce. It is important to focus on leafy green vegetables, which are considered the 

commodity with the highest microbiological safety concern because they are prone to 

contamination with E. coli O157 from irrigation water, soil and/or manure used as fertilizer 

(6). Therefore, demonstrating the suitability of the LFIA Test Kit and further validating its 

performance against the reference method may represent a new possibility for expanding 

the applicability of the LFIA Test Kit to fresh produce, a commodity that is emerging as a 

high-risk carrier for E. coli O157. 



 

 

194 

 Collaborative Study 

The study presented in this work focused on the first stage of the validation process for 

alternative detection methods, namely a pre-collaborative study. It will be important to 

continue with the second stage, which is a collaborative study comprising the comparison 

of the alternative method against the reference method, but this time pursued in parallel by 

multiple laboratories (174). The main objectives of this study will be as follow: a) to 

determine the variability of the outcomes obtained when using the LFIA Test Kit in 

different laboratories with similar samples, and b) to compare these results with the ones 

obtained during the pre-collaborative study. The collaborative study will be performed 

following the guidelines established in Health Canada’s Compendium of Analytical 

Methods. Overall, these guidelines require a minimum of eight accredited laboratories, 

evaluating at least one relevant food type with three contamination levels (negative control, 

slightly above the alternative method detection level, and 10 times higher than the 

alternative detection level). Each level should comprise 8 replicates for a total of 24 

samples assessed by the LFIA Test Kit and the reference method (174). Although 

artificially inoculated samples are accepted, including naturally contaminated samples is 

preferred. Performing a collaborative study is highly recommended because it will generate 

robust evidence to evaluate the performance of the LFIA Test Kit, especially if this method 

is expected to aid regulatory activity as suggested through our submission of the pre-

collaborative study to Health Canada’s Microbiological Methods Committee. 

 Tandem LFIA Test Kit as a Semi-Quantitative Assay 

To date, most of the commercially available LFIAs have been developed for obtaining 

qualitative results (presence/absence). However, research has been focusing lately on 

adapting the LFIA format to provide semi-quantitative or even quantitative results. 

Although, the focus has been mainly on measuring the intensity of the test line (130), 

modification in the design of the traditional LFIA format has also been considered as a 

feasible approach for developing more sensitive and quantitative formats (309,310). In this 

work, the tandem LFIA device was adopted as a solution to the prozone and matrix effect 

faced during the development of the alternative detection method. However, results 

obtained with enriched meat samples suggested that it could potentially be used to estimate 
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the concentration of E. coli O157 in contaminated samples. Future studies should focus on 

proving the concept of a tandem LFIA as a visual semi-quantitative method. For this 

purpose, the results obtained during this study should be confirmed by using a larger 

number of samples with emphasis on the lower concentration ranges so that they are as 

equally represented as the high concentration range. In addition, the subsequent visual 

evaluation of the results should also be carried out using an untrained panel to ensure that 

the combination of lines is easily interpreted and linked to the concentration levels 

previously stipulated. Overall, the tandem LFIA design offers a technology with significant 

advantages over the standard LFIA device once it if confirmed to consistently provide an 

easy-to-interpret visual result linked to a level of contamination with E. coli O157. 

 Alternative Strategies for Improving the Synthesis of Soluble scFvO157 

It is important to further study the expression of the humanized scFvO157 using different 

expression hosts in order to avoid the necessity of isolating inclusion bodies and to obtain 

a higher yield of soluble protein. Within E. coli expression hosts, there is a wide variety of 

strains that have been developed to improve soluble protein expression. E. coli strains have 

many advantages over other expression systems including fast and easy transformation, 

and inexpensive culture broths with high cell density easily achievable due to rapid growth 

rate (265,266,290,306). Hence, for future studies, it is recommended to initially evaluate 

the expression in strains such as E. coli Origami B (DE3) or Novagen AD494, which are 

designed to promote proper folding of proteins through the formation of disulfide bonds, 

especially when the recombinant protein is fused to TrxA (216). Different vectors, which 

aim at expressing soluble recombinant proteins using E. coli as an expression host 

(271,306), have also been described. Other alternatives are represented by co-expression 

of chaperones (216,306,311), and/or fusion of other protein carriers besides TrxA, such as 

maltose binding protein (216,311) or the E. coli N-utilizing substance A (NusA) (216). 

Both have shown to substantially increase the solubility of highly insoluble scFv when 

expressed in E. coli (216). 

Soluble protein expression in different hosts other than E. coli has also been suggested. As 

an example, the Gram-positive Bacillus megaterium has been successfully used for 

expression of a scFv, with the advantage of secreting the expressed protein directly into 
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the growth medium, facilitating its further purification with superior yields than expression 

in E. coli (215). Moreover, expression in eukaryotic cells such as yeasts also provides a 

cost-effective alternative for expression of soluble recombinant proteins, which can be 

easily purified from the culture supernatant (290). Due to the vast number of combinations 

that can be assessed, microexpression incubator shakers have also been developed, which 

allows screening of all possible conditions faster and cost-effectively in small, less 

expensive reactions (271). 

 Alternative Strategies for in vitro Refolding of Inclusion Bodies 

Within this study, purification and refolding of the scFvO157 inclusion bodies represented 

a challenging process due to constant precipitation. Therefore, alternative protocols must 

be assessed in order to increase the yield of purified protein. In vitro refolding can be 

facilitated by dialysis (273,303,312), dilution (218,273) or solid phase (273,303). Dialysis 

and solid-phase were the methods tried for the refolding step of the scFvO157; thus it is 

strongly advisable to evaluate the dilution method. Something to be considered of the 

refolding strategy is that buffer composition is strongly dependent on the inherent 

characteristics of the recombinant protein. Hence, different buffer compositions should be 

assessed regardless of the methodology chosen for refolding. An ideal screening method 

for selecting the proper conditions for scFvO157 refolding is described by Vincentelli et al. 

(273), where 96-well plates were used to assess the solubility of a target protein in a 

selection of refolding conditions by measuring the turbidity of the solution as a result of 

protein precipitation. Those conditions that showed absorbance values close to the 

absorbance of the buffer alone were regarded as optimal for protein solubility and further 

used to determine the proper folding of the protein through techniques such as circular 

dichroism (204,273,303) and dynamic light scattering (273). Recovery of inclusion body 

is becoming more common due to an increase in production of recombinant proteins mainly 

for therapeutics. This has switched the perspective of looking at inclusion body as an 

advantage rather than a problem needed to be solved. Inclusion body recovery allows for a 

faster and more efficient purification, however efficient in vitro refolding strategies still 

require careful optimization that can only be accomplished by proper knowledge of the 

protein of interest. 
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 Re-Evaluation of the scFvO157 Using Bioinformatics 

Besides assessing other expression and in vitro refolding strategies, re-evaluation of the 

scFvO157 structure should also be pursued. Characteristics such as folding, solubility, and 

stability can be predicted and improved once structural information is available and 

properly analyzed. In recent years, several computational tools have been developed with 

the main objective of assisting in the successful engineering of recombinant proteins, 

including scFv. In fact, a field known as “antibody informatics” has evolved to tackle some 

of the major obstacles faced during antibody drug discovery (313). A recent publication 

from Shirai et al. highlighted many of the obstacles presented during the antibody 

engineering experimental workflow and linked them to the ideal informatics tools that can 

be used to overcome these problems (313). Hence, this approach could be easily adopted 

to identify the major constraints and identify the necessary tools to improve the design of 

scFv regardless of their future application. 

Focusing on scFvO157, the main obstacle is the formation of inclusion body and 

aggregation during expression, which may be attributed to unsuitable physicochemical 

properties of the bioengineered protein and may be improved by an adequate in silico 

design. Some of the scFvO157 re-evaluation was started by analyzing and comparing the 

theoretical hydrophobicity and pI of both the humanized scFvO157 and the human scFv 

acceptor primary sequences (Section 4.3.8). Findings suggested that differences found 

between the scFvO157 and the human scFv acceptor are due to the loop grafting process 

and could have influenced the improper folding of the scFvO157. These results support the 

assertion that proper knowledge of the scFv characteristics could help to determine the 

optimal conditions for its expression and purification.  

During antibody engineering, there are three main structural characteristics that have to be 

considered: a) the primary amino acid sequence, which is the result of V(D)J gene segment 

and somatic mutations, b) the structure of the six CDR loops, which form the antigen-

binding site, and c) the relative orientation of the VH and VL chains, which will partially 

determine the interaction with the target antigen. Based on these, it is suggested to first 

analyze the murine VH and VL chain sequences and further compare them with the 

humanized scFvO157 initially designed. Kuroda et al. suggested a simple procedure that 
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starts by using the VH and VL chain sequences for antibody modeling, followed by an 

antibody-antigen docking simulation, which provides a prediction of potential mutations 

for enhancing the desired antibody properties including solubility (314). For the first step, 

which is antibody modeling, a web server named PIGS (prediction of immunoglobulin 

structure) developed by Marcatili et al., is suggested to model the variable domain of the 

anti-O157 mAb. This server takes into consideration not only the alignment of the primary 

amino acid sequence, but also the canonical structures of the CDR loops and the final 

packing (orientation) of the VH and VL chain in order to derive the quaternary structure that 

best predicts the conformation of the antibody structure (315,316). The PIGS murine anti-

O157 mAb model can be further superimposed with the scFvO157 to determine if the latter 

maintains the proper folding, secondary structure and VH and VL chain packing of the 

original mAb. Furthermore, the anti-O157 mAb model can be subjected to a detailed 

analysis of its primary and secondary structure to identify those residue positions that are 

crucial for antigen recognition. Interestingly, some residues within the FRs have been 

identified as crucial for antigen binding, while conserved residues within the CDRs have 

been regarded as providing structural support rather than contributing directly to active 

binding (219). Hence, discrimination among functional and structural residues will allow 

the refinement of the CDR grafting process to potentially enhance biophysical properties 

such as solubility. Finally, as an additional in silico analysis, the PIGS murine anti-O157 

mAb model can be used to develop an antibody-antigen docking model using programs 

such as Glide from Schrödinger Software (317,318). Besides providing supporting 

information for enhancement of scFvO157 design, attempting to develop an antibody-

carbohydrate docking model will further expand the knowledge regarding this type of 

interaction because most of the research has focused on antibody-protein/ peptide binding 

(319).  

In conclusion, by using a combination of bioinformatics tools it is possible to undertake an 

in silico modeling strategy to achieve the following a) understand the possible structural 

cause(s) that underlie the formation of inclusion body and aggregation during  recombinant 

protein expression stage, and b) increase the knowledge of the murine anti-O157 mAb 

sequence and tertiary structure to re-design the scFvO157 and potentially improve the 

experimental design to enhance its solubility during expression.  
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Appendices 

Appendix A: Characterization of inclusivity and exclusivity strains 

Both inclusivity and exclusivity panels were assembled by collecting strains from multiple reliable 

contributors including the following: Public Health Agency of Canada, Guelph, ON, Canada (PHAC), 

Western University, Department of Microbiology and Immunology, London, ON, Canada (UWO), Canadian 

Research Institute for Food Safety, Guelph, ON, Canada (CRIFS), Leibniz Institute DSMZ- German 

Collection of Microorganisms and Cell Cultures, Braunschweig, Germany (DSMZ), University of Manitoba, 

Department of Food Science, Winnipeg, MN, Canada (UofM), American Type Culture Collection, VA, USA 

(ATCC), and Health Canada, Listeriosis Reference Service, Ottawa, ON, Canada. 

The characterization of the 50 E. coli O157 strains was done according to the confirmation assays described 

in the MFHPB-10 Isolation of Escherichia coli O157:H7/NM from foods and environmental surface samples, 

Section 6.8 (255), except for the presence of verotoxins, which was provided by the respective contributors.  

Strains, taken from the frozen stocks, were grown in TSB at 37°C for 24 h. A loop was taken from each 

culture and streaked into TSA plates to obtain isolated colonies. Plates were incubated at 37° for 18-24 h. A 

grid was drawn in two selective agars: Oxoid CR-SMAC (Oxoid Limited, UK) and BBL CHROMagar O157 

(BD, USA). For each strain, isolated colonies from the TSA plates were picked and inoculated in each grid 

cell of both agars. Finally, plates were incubated at the appropriate time and temperature suggested by the 

suppliers. After incubation, colonies were considered positive (+) if they presented the characteristic growth 

being translucent, colorless or straw-colored edges, with a dark center ranging from grey to pink (non-sorbitol 

fermenting) for the CR-SMAC and, mauve against white background for the CHROMagar. If they were red 

in the CR-SMAC and/ or colorless, blue, green, or blue-green on the CHROMagar, they were considered 

negative (-). For cellobiose fermentation, tubes containing 5ml of Purple Broth (Difco™, BD, USA) with 1% 

cellobiose (Sigma-Aldrich, USA) were inoculated with one isolated colony of each strain obtained from the 

TSA plates. Then, they were incubated at 37°C for 18-24 h. After incubation, positive (+) strains showed 

color change from purple to yellow since they fermented cellobiose, while negative (-) strains showed no 

color change. Furthermore, the API 20E Test rapid identification system was performed following the 

manufacturer’s instructions (API 20E Identification system for Enterobacteriaceae and other non-fastidious 

Gram-negative rods; bioMérieux, Inc.; 07584D-GB-2002/10). The numerical profiles obtained were used to 

confirm the strains as E. coli according to their database. The presence of the O157 antigen was confirmed 

by O157 antisera agglutination using an isolated colony from the TSA plates and re-suspended in a small 

drop of saline solution on a glass slide. Then, a similar drop of E. coli O157 antiserum (BD, USA) was added. 

Both drops were mixed with the needle. To promote agglutination, the slide was rocked back and forth for 

1 min (320). Positive strains (+) showed the presence of white lumps, while negative (+) strains maintained 

a homogeneous turbid solutions. Finally, H7 serotyping was done by immobilization. Briefly, columns of 
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semi-solid agar (TSA/ 0.4% agar) were prepared containing H7 antiserum (BD, USA). Then, they were 

stabbed with a needle containing an isolated colony taken from the TSA agar plates for each strain. Tubes 

were incubated at 37°C for 18-24 h. After incubation, positive tubes (+) showed growth only along the stab 

because they were immobilized due to the presence of the flagellar H7 antigen. Negative tubes (-) showed 

growth (cloudiness) away from the stab line, which meant that E. coli cells were motile, but did not have the 

H7 antigen. Finally, positive strains (+) were inoculated in agar columns without antigen to discriminate from 

real H7 motile strains and non-motile ones (NM). Tubes were also incubated at 37°C for 18-24 h. E. coli H7 

strains grew away from the stab line when no H7 antiserum was present (+), while non-motile strains 

remained along the stab line (-) (320,321).  

The results for the characterization of the fifty E. coli O157 strains collected are shown below. The O- and 

H-antigen confirmation assays showed the expected results, where all strains were positive for the O157-

antigen agglutination and H7-antigen strains were immobilized with the H7 antiserum. Moreover, all strains 

were negative for cellobiose fermentation. On the other hand, 84% of the strains were sorbitol negative, while 

16% were sorbitol positive according to the results obtained with the CR-SMAC. From the latter, two were 

H7, while the rest had a different flagellar H-antigen. CHROMagar results showed characteristic mauve 

colonies for all O157:H7/ NM strains, while strains with different H-antigen did not grow or presented a 

different color (negative). The API 20E results corresponded to an Escherichia coli 1 taxon with a percentage 

of identity (ID) above 97.7% for all strains but one. The latter, E. coli O157:NM 02-1840, showed a mixed 

taxon, Escherichia coli 1 and Escherichia coli 2, with an ID of 83.1 and 10.1% respectively. 
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E. coli O157 strains and characterization results 

# Culture 
Collection Reference Strain Serotype Source/ 

Origin 

Shiga 
Toxin* Confirmatory Tests 

VT1 VT2 CR-
SMAC 

CHROM 
Agar O157 H7 Cellobiose API Test 

1 CRIFS C480 Escherichia 
coli 

O157:H7 N/A N/I N/I + + + + - Escherichia 
coli 1 

2 CRIFS C654, 
EC20321 

Escherichia 
coli 

O157:H7 L.Goodridge N/I N/I + + + + - Escherichia 
coli 1 

3 CRIFS C670, 
EC960282 

Escherichia 
coli 

O157:H25 Bovine N* N* - - + - - Escherichia 
coli 1 

4 CRIFS C671, 
EC940076 

Escherichia 
coli 

O157:H19 Bovine N* N* - - + - - Escherichia 
coli 1 

5 CRIFS C677, 
EC930195, 
32511 

Escherichia 
coli 

O157:NM L.Goodridge N/I N/I + + + + - Escherichia 
coli 1 

6 CRIFS C899, ATCC 
43888 

Escherichia 
coli 

O157:H7 Human , 
feces 

N/I N/I + + + + - Escherichia 
coli 1 

7 CRIFS C901, ATCC 
43894 

Escherichia 
coli 

O157:H7 Human , 
feces 

N/I N/I + + + + - Escherichia 
coli 1 

8 CRIFS C918, 380-94 Escherichia 
coli 

O157:H7 Bovine, 
salami 

N/I N/I + + + + - Escherichia 
coli 1 

9 CRIFS C919, 9490 Escherichia 
coli 

O157:H7 USDA N/I N/I + + + + - Escherichia 
coli 1 

10 CRIFS C1264, 
ATCC 
700927 

Escherichia 
coli 

O157:H7 Derived 
from 
ATCC43895 

N/I N/I + + + + - Escherichia 
coli 1 

11 DSMZ DSM 17076, 
NCTC 12900 

Escherichia 
coli 

O157:H7 Human, 
clinical 

N N + + + + - Escherichia 
coli 1 

12 PHAC EC19920333 Escherichia 
coli 

O157:H7 Human, 
clinical 

N Y + + + + - Escherichia 
coli 1 
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# Culture 
Collection Reference Strain Serotype Source/ 

Origin 

Shiga 
Toxin* Confirmatory Tests 

VT1 VT2 CR-
SMAC 

CHROM 
Agar O157 H7 Cellobiose API Test 

13 PHAC EC19930038 Escherichia 
coli 

O157:H7 Human, 
clinical 

N Y + + + + - Escherichia 
coli 1 

14 PHAC EC19930553 Escherichia 
coli 

O157:H7 Human, 
clinical 

Y Y + + + + - Escherichia 
coli 1 

15 PHAC EC19950095 Escherichia 
coli 

O157:NM Bovine, 
meat 

Y Y + + + - - Escherichia 
coli 1 

16 PHAC EC19960266 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N + + + + - Escherichia 
coli 1 

17 PHAC EC19960274 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N + + + + - Escherichia 
coli 1 

18 PHAC EC19961016 Escherichia 
coli 

O157:H7 Human, 
clinical 

Y N + + + + - Escherichia 
coli 1 

19 PHAC EC19961025 Escherichia 
coli 

O157:H7 Human, 
clinical 

N Y + + + + - Escherichia 
coli 1 

20 PHAC EC19961027 Escherichia 
coli 

O157:H7 Human, 
clinical 

Y Y + + + + - Escherichia 
coli 1 

21 PHAC EC19961090 Escherichia 
coli 

O157:H7 Human, 
clinical 

Y N + + + + - Escherichia 
coli 1 

22 PHAC EC19970409 Escherichia 
coli 

O157:H7 Bovine, 
meat 

Y Y + + + + - Escherichia 
coli 1 

23 PHAC EC19970419 Escherichia 
coli 

O157:H7 Bovine, 
meat 

Y Y + + + + - Escherichia 
coli 1 

24 PHAC EC19970462 Escherichia 
coli 

O157:H7 Bovine, 
meat 

Y N + + + + - Escherichia 
coli 1 

25 PHAC EC19970465-
1 

Escherichia 
coli 

O157:H45 Bovine, 
meat 

N N - - + - - Escherichia 
coli 1 

26 PHAC EC19970515 Escherichia 
coli 

O157:H7 Bovine, 
meat 

Y Y + + + + - Escherichia 
coli 1 
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# Culture 
Collection Reference Strain Serotype Source/ 

Origin 

Shiga 
Toxin* Confirmatory Tests 

VT1 VT2 CR-
SMAC 

CHROM 
Agar O157 H7 Cellobiose API Test 

27 PHAC EC19970524 Escherichia 
coli 

O157:H42 Bovine, 
meat 

N N - - + - - Escherichia 
coli 1 

28 PHAC EC19990951 Escherichia 
coli 

O157:H7 Bovine, 
salami 

Y Y + + + + - Escherichia 
coli 1 

29 PHAC EC20000671 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

30 PHAC EC20000673 Escherichia 
coli 

O157:H7 Bovine, 
Meat 

N Y + + + + - Escherichia 
coli 1 

31 PHAC EC20001018 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

32 PHAC EC20010294 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

33 PHAC EC20011231 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

34 PHAC EC20011236 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

35 PHAC EC20011244 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

36 PHAC EC20020335 Escherichia 
coli 

O157:H7 Human, 
clinical 

Y Y + + + + - Escherichia 
coli 1 

37 PHAC EC20040339 Escherichia 
coli 

O157:H7 Bovine, 
meat 

Y Y + + + + - Escherichia 
coli 1 

38 PHAC EC20050147 Escherichia 
coli 

O157:H12 Bovine, 
feces 

N N - - + - - Escherichia 
coli 1 

39 PHAC EC20060233 Escherichia 
coli 

O157:H7 Bovine, 
ground 

Y Y + + + + - Escherichia 
coli 1 

40 PHAC EC20060754 Escherichia 
coli 

O157:H29 Bovine, 
feces 

N N - - + - - Escherichia 
coli 1 
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# Culture 
Collection Reference Strain Serotype Source/ 

Origin 

Shiga 
Toxin* Confirmatory Tests 

VT1 VT2 CR-
SMAC 

CHROM 
Agar O157 H7 Cellobiose API Test 

41 PHAC EC20130376 Escherichia 
coli 

O157:H7 Bovine, 
feces 

N Y + + + + - Escherichia 
coli 1 

42 PHAC EC20130378 Escherichia 
coli 

O157:H7 Bovine, 
feces 

N Y + + + + - Escherichia 
coli 1 

43 PHAC EC20130390 Escherichia 
coli 

O157:NM Bovine, 
feces 

Y Y + + + - - Escherichia 
coli 1 

44 PHAC EC20130395 Escherichia 
coli 

O157:NM Bovine, 
feces 

Y Y + + + - - Escherichia 
coli 1 

45 PHAC EC20132075 Escherichia 
coli 

O157:H7 Bovine, 
feces 

N Y + + + + - Escherichia 
coli 1 

46 UofM 00-3581 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N - + + + - Escherichia 
coli 1 

47 UofM 02-0304 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N - + + + - Escherichia 
coli 1 

48 UofM 02-0627 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N + + + + - Escherichia 
coli 1 

49 UofM 02-0628 Escherichia 
coli 

O157:H7 Human, 
clinical 

N N + + + + - Escherichia 
coli 1 

50 UofM 02-1840 Escherichia 
coli 

O157:NM Human, 
clinical 

N N + - + - - Escherichia 
coli** 

*Shiga	toxin	information	was	provided	by	the	contributors.	N:absence	of	Shiga	Toxin;	Y:	presence	of	Shiga	Toxin;	+:	positive	results;	-:	negative	results;	
N/I:	no	information	provided;	N/A:	not	available.	**This	strain	showed	a	percentage	of	identity	of	83.1%	corresponding	to	Escherichia	coli	1	and	a	
10.1%	corresponding	to	Eschericha	coli	2.
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On the other hand, only the six strains that initially showed at least one positive replicate during the LFIA 

Test Kit exclusivity study, were characterized following the methodology below. 

Strains, taken from frozen stocks were grown in TSB at 37°C for 24 h. A loop was taken from each culture 

and streaked into TSA plates to obtain isolated colonies. Plates were incubated at 37° for 18-24 h. The 

cellobiose, API 20E Test and O157 antisera agglutination tests were performed as described in the inclusivity 

studies. In addition, two more tests were included in order to characterize Shigella flexneri. Briefly, a lactose 

fermentation test was prepared using tubes containing 5ml of Purple Broth with 1% lactose (J.T.Baker® 

Chemicals, Avantor Performance Materials, PA, USA) inoculated with one isolated colony obtained from 

TSA plates. Then they were incubated at 37°C for 18-24 h. After incubation, positive (+) strains showed 

color change from purple to yellow because they fermented lactose, while negative (-) strains showed no 

color change. As positive control we used E. coli ATCC 25922. Mobility was assessed using columns of 

semisolid agar (TSA/ 0.4% agar) stabbed with a needle containing an isolated colony taken from TSA agar 

plates. Tubes were incubated at 37°C for 18-24 h. After incubation, positive tubes showed growth 

(cloudiness) away from the stab, which meant that the strain was motile. Negative tubes showed a delimited 

growth along the stab meaning that the strain lack motility. 

A summary of the results obtained from the biochemical characterization of the six strains that had at least 

one replicate positive during the exclusivity study is found below. Strains with a percentage of identity (ID) 

higher that 90% were no further evaluated. Strain EC20130473 had 85.5% ID corresponding to an E. coli 1, 

however, the 14.4% ID missing was related to an E. coli 2 taxon thus, it was not considered either. On the 

other hand, ATCC 25929 Shigella flexneri, had 68.8% ID corresponding to Shigella spp., while 17.5% 

matching the E. coli 2 taxon. Therefore, this strain was subjected to two more biochemical tests: lactose 

fermentation and motility following the methodology described above. The results obtained for this strain 

showed a lack of ability to ferment lactose and no motility, which are typical from Shigella spp. when 

compared against E. coli spp. 

Non-E. coli O157 strains used within this study 

# Culture 
Collection Reference Strain Serotype Origin/ Source 

1 ATCC ATCC 19114 Listeria 
monocytogenes 

4a Animal, tissue 

2 ATCC ATCC 43886, CDC 
E2539-C1 

Escherichia coli O25:K98:NM Human, feces 

3 ATCC ATCC 43893, CDC 
EDL 1284 [929-78] 

Escherichia coli O124:NM Human, feces 

4 CRIFS C390 Salmonella 
Heidenberg 

N/A N/A 

5 CRIFS C398 Salmonella newport N/A N/A 
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# Culture 
Collection Reference Strain Serotype Origin/ Source 

6 CRIFS C417 Salmonella 
Enteritidis 

N/A N/A 

7 CRIFS C1116 Salmonella javiana N/A N/A 

8 CRIFS EC 910005 Escherichia coli O111:NM N/A 

9 CRIFS EC 910040 Escherichia coli O145:NM N/A 

10 CRIFS EC 910060 Escherichia coli O121:H7 N/A 

11 CRIFS EC 920232 Escherichia coli O2:H5 Bovine 

12 CRIFS EC 930004 Escherichia coli O103:H2 N/A 

13 HC HPB 5949 Listeria 
monocytogenes 

1/2C Food, ready-to-eat 

14 PHAC ATCC 6051 Bacillus subtilis N/A HJ Conn 

15 PHAC ATCC 7966 Aeromonas 
hydrophila 

N/A From tin of milk 
with a fishy odor 

16 PHAC ATCC 12014 Escherichia coli O55:NM CDC 

17 PHAC ATCC 13047 Enterobacter 
cloacae 

N/A Spinal fluid 

18 PHAC ATCC 23715 Yersinia 
enterocolitica 

N/A Human, blood 

19 PHAC ATCC 25922 Escherichia coli O6 Human, clinical 

20 PHAC ATCC 25929 Shigella flexneri N/A Human, feces 

21 PHAC ATCC 25931 Shigella sonnei N/A Human, feces 

22 PHAC ATCC 33650 Escherichia 
hermanii 

N/A Human, female 
toe 

23 PHAC ATCC 43162 Citrobacter braakii 
(freundii) 

N/A Clinical isolate, 
California 

24 PHAC ATCC 43887 Escherichia coli O111:NM Human, feces 

25 PHAC ATCC 49149 Enterococcus 
faecalis 

N/A Clinical isolate 

26 PHAC ATCC 700926 Escherichia coli OR:H48:K- Derived from 
parent strain 
W1485 

27 PHAC EC20130462 Escherichia coli O75:H5 N/A 

28 PHAC EC20130463 Escherichia coli O21:H4 N/A 

29 PHAC EC20130466 Escherichia coli O44:H18 N/A 

30 PHAC EC20130467 Escherichia coli O3:H2 N/A 

31 PHAC EC20130469 Escherichia coli O28ac:NM N/A 

32 PHAC EC20130473 Escherichia coli O78:H11 N/A 

33 PHAC EC20130476 Escherichia coli O25:NM N/A 
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# Culture 
Collection Reference Strain Serotype Origin/ Source 

34 PHAC MB1914 Hafnia alvei N/A N/A 

35 PHAC NO152388 Enterobacter 
aerogenes 

N/A N/A 

36 UWO ATCC 13883, 
UWO#479 

Klebsiella 
pneumoniae 

N/A NCTC 

37 UWO LT-2 S. enterica ser. 
Typhimurium 

N/A N/A 

PHAC:	Public	Health	Agency	of	Canada,	Guelph;	UWO:	Western	University,	Department	of	Microbiology	
and	 Immunology;	 CRIFS:	 Canadian	 Research	 Institute	 for	 Food	 Safety,	 Guelph;	 ATCC:	 American	 Type	
Culture	Collection;	HC:	Health	Canada,	Listeriosis	Reference	Service;	N/A:	not	available.	

Characterization of non-target strains 

# Culture 
Collection Reference Strain Serotype 

Confirmatory Tests 

O157 Cellobiose API Test 
(%identity) 

1 PHAC EC20130473 Escherichia 
coli 

O78:H11 - - Escherichia 
coli** 

2 PHAC EC20130467 Escherichia 
coli 

O3:H2 - - Escherichia 
coli 1 (98.1) 

3 PHAC EC20130466 Escherichia 
coli 

O44:H18 - - Escherichia 
coli (98.1) 

4 ATCC ATCC43893, 
CDC EDL 
1284 [929-
78] 

Escherichia 
coli 

O124:NM - - Escherichia 
coli 1 (96.3) 

5 PHAC ATCC 25929 Shigella 
flexneri 

 - - Shigella 
spp. (68.8) 

6 UWO  S. enterica 
ser. 
Typhimurium 

 - - Salmonella 
spp. (98.6) 

**This	strain	showed	a	percentage	of	identity	of	85.5%	corresponding	to	Escherichia	coli	1	and	a	14.4%	
corresponding	to	Escherichia	coli	2.	
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Appendix B: MFHPB-10 Isolation of Escherichia coli O157:H7/NM from foods and environmental surface samples 
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Appendix C: LFIA Test Kit package insert 

ADx
™

 
DECISION POINT™

 

 
Rapid Food Safety Testing Solutions 
 

 E. coli O157 
 
 
 
Application 
This method is applicable for the recovery and detection of Escherichia coli O157 (including H7 and non-motile) in 
raw meat and ready-to-cook meat products. 
 
Description 
DECISION Point TM is a qualitative immunoassay that employs specific antibodies against target antigens found in 
E. coli O157. 
 
Assay Principles 
The system uses a selective enrichment medium for the rapid recovery and growth of the target organism. After 
enrichment, a portion of the sample is placed into a sample vial containing dried antibody reagents. The sample is 
incubated with the reagents for 30 minutes at room temperature. If E.coli O157 is present in the sample, it will form 
an antibody-antigen-antibody complex in solution. The sample is loaded onto the cassette, where it will flow through 
the nitrocellulose membrane. Any complex formed will be captured in the test zone of the membrane, thus displaying 
a visible red line. The rest of the sample will continue to migrate until it reaches the control line. The control line will 
develop whether or not the sample contains E.coli O157, thereby ensuring that the test system is functioning properly. 
 
Intended User 
The test is designed to be used by personnel who are familiar with the aseptic techniques required in a microbiological 
laboratory. Specialized training is not required; however, basic knowledge of food microbiology is recommended. 
 
Materials Provided: 
• DECISION Point TM foiled test cassettes – single use 
• DECISION Point TM foiled test reagent vials – single use 
• DECISION Point TM Sample Diluent 
• DECISION Point TM Sample Buffer 
• Eppendorf tubes for dilutions 
 
Materials Required But Not Provided: 
• Pipettes and tips for pipettes 
• Stomacher®-type filter bags 
• Sterile (deionized or distilled) water 
• Dried enrichment media: Tryptic Soy Broth + 20 mg/L Novobiocin 
 
Equipment Required: 
• Autoclave 
• Analytical balance 
• Stomacher® 
• Timer 
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• Incubator capable of maintaining 42 ± 1ºC 
• Vortex (if available) 
 
Storage and Handling 
• Store DECISION Point TM test components at 2-8°C. 
• Inspect the DECISION Point TM foiled test cassette and foiled test reagent vials for damage prior to use. Do not 

use if the foil shows evidence of damage or perforation. 
• Each DECISION Point TM test cassette and reagent vials is intended for single use only. 
• DECISION Point TM test cassette and test reagent vials should remain in their sealed foil pouches until ready to 

perform the test. 
 
Sample Preparation and Cultivation: 
 
1. Sample Addition 

• 25 g samples: Aseptically combine 25 g of sample with 225 mL of enrichment medium (1:10) in a 
Stomacher® bag. Place the bag in a Stomacher® machine and mix for 60 seconds at normal speed. 

• 325 g samples: Aseptically combine 325 g of sample with 2925 mL of enrichment medium (1:10) in a 
Stomacher® bag. Place the bag in a Stomacher® machine and mix for 60 seconds at normal speed. 

 
2. Incubation 
Close the sample bag loosely to allow air exchange for E. coli O157 growth. Incubate at 42 ± 1ºC:  

• 25 g samples: 16-24 hours. 
• 325 g samples: 22–24 hours.  

 
3. Cooling 
After the appropriate incubation time has elapsed, allow the enriched sample to cool to room temperature prior to 
testing. 
 
4. Mixing 
Hold the bag so that the bottom is supported and gently mix the contents using a side-to-side motion. 
 
DECISION Point TM Test Procedure (FIGURE 1): 
1. Remove the required number of foiled test cassettes, foiled test reagent vials, sample diluent bottles and sample 

buffer bottles from 2-8°C storage. 
Note: Allow the foiled test cassettes to equilibrate to room temperature during the 30 minutes sample 
incubation.  

2. Open up reagent vial pouch and label both vials with the sample number. 
3. Pipette 1.0 mL of Sample Diluent into a clean Eppendorf tube, add 10 µL of the sample directly from the 

Stomacher® bag (yielding 1/100 dilution) and mix thoroughly by vortexing or pipetting up and down several 
times. 

4. Transfer a 200 µL sample directly from the Stomacher® bag into Vial A. 
5. Transfer a 200 µL of the diluted sample (from Step 3) into Vial B. 
6. Add 10 µL of Sample Buffer into both vials, close caps and mix thoroughly by vortexing or inverting tubes several 

times. 
7. Let the samples incubate on the bench at room temperature for 30 minutes.  
8. Open pouches containing the DECISION Point TM test cassettes 1-2 minutes before the end of the incubation 

time and label the cassettes with the sample number. 
9. When the incubation period is completed, load 150 µL of sample from vial A into sample port A (left) on the test 

device and 150 µL of sample from vial B into sample port B (right). 
10. Read the test results at 15 minutes. Observations after 17 minutes may be inaccurate due to overdevelopment of 

the reaction. For results interpretation please see below. 
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Visual Interpretation of Results 
Check for the presence of red lines in the Control (C) and Test (T) areas in result windows A and B at 15 minutes. 
• A positive test result is indicated by: 

ü Control lines in both A and B result windows. 
ü Test lines in either one or both A and B result windows. 

• A negative test result is indicated by: 
ü Control lines in both A and B result windows.  
ü Test lines in neither A and B result windows. 

• An invalid test result is indicated by: 
ü No Control lines in either A and B result windows. 

• Notes: 
ü Different intensities of Test and Control lines are acceptable. 
ü The test is not quantitative and test line intensity does not reflect target antigen concentration. 
ü If the test interpretation is invalid, the sample should be retested. 

 
Possible Test Results 
        Positive Results           Negative Result  Invalid Results 

              
 
Disposal 
Decontaminate (autoclave, bleach, etc.) and dispose of used DECISION Point TM test cassettes, reagent vials, media, 
and pipettes/tips in accordance with good laboratory practices and local and federal regulations. 
 
FIGURE 1: Test Flow Chart  
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Appendix D: MFHPB-33 Enumeration of total aerobic bacteria in food products and food ingredients using 3M™ Petrifilmt™ aerobic count 

plates 
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Appendix E: Buffer and reagents prepared for this study. 

Buffer/ Reagent Composition Application 

Blocking Buffer 137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM 
KH2PO4, pH 7.4, 10% BSA ELISA 

Coating Buffer 0.1 M sodium carbonate buffer pH 9.5 ELISA 

Coomassie Blue 
Staining Solution 

45% (v/v) methanol, 10% (v/v) glacial acetic acid, 0.3% (w/v) 
Coomassie brilliant blue R-250 

Protein 
Visualization 

Denaturing Binding 
Buffer 8 M urea, 20 mM sodium phosphate, 500 mM NaCl, pH 7.8 scFvO157 

Purification 

Denaturing Buffer 6M guanidine hydrochloride, 20 mM sodium phosphate, 500 
mM NaCl, pH 7.8 

scFvO157 
Purification 

Denaturing Elution 
Buffer 8 M urea, 20 mM sodium phosphate, 500 mM NaCl, pH 4 scFvO157 

Purification 

Destaining Solution 40% (v/v) methanol, 10% (v/v) glacial acetic acid Protein 
Visualization 

Laemmli Buffer (4×) 250 mM Tris-HCl pH 6.8, 8% (w/v) SDS, 40% (v/v) glycerol, 
0.02% (w/v) bromophenol blue, 8% (v/v) β-mercaptoethanol 

Protein 
Visualization 

Native Buffer 20 mM Tris-HCl, pH 7.4, 200 mM NaCl scFvO157 
Purification 

Native Elution Buffer 50 mM NaH2PO4, 0.5 M NaCl and 250 mM imidazole, pH 8.0 scFvO157 
Purification 

Native Wash Buffer 50 mM NaH2PO4 and 0.5 M NaCl, pH 8.0 scFvO157 
Purification 

PBS (1×) 137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM 
KH2PO4, pH 7.4 Various 

PBST (1×) 137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM 
KH2PO4, 0.05% (v/v) Tween-20 ELISA 

Polyacrylamide 
Resolving Gel (10%) 

2.0 ml ddH2O, 1.7 ml 30% acrylamide/bisacrylamide (37.5:1) 
aqueous solution, 1.3 ml 1.5 M Tris-HCl pH 8.8, 0.05 ml 10% 
SDS, 0.05 ml 10% APS, 0.002 ml TEMED (5 ml Final 
Volume) 

Protein 
Visualization 
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Buffer/ Reagent Composition Application 

Polyacrylamide 
Resolving Gel (12%) 

1.7 ml ddH2O, 2.0 ml 30% acrylamide/bisacrylamide (37.5:1) 
aqueous solution, 1.3 ml 1.5 M Tris-HCl pH 8.8, 0.05 ml 10% 
SDS, 0.05 ml 10% APS, 0.002 ml TEMED (5 ml Final 
Volume) 

Protein 
Visualization 

Polyacrylamide 
Stacking Gel (5%) 

0.01 ml 10% SDS, 0.13 ml 0.5 M Tris-HCl pH 6.8, 0.17 ml 
acrylamide/bisacrylamide (37.5:1) aqueous solution, 0.01 ml 
10% APS, 0.001 ml TEMED (1 ml Final Volume) 

Protein 
Visualization 

Rehydration Buffer 
Stock Solution 
(RBSS) 

48% urea (w/v), 2% CHAPS (w/v), 0.02% bromophenol blue 
(w/v) IEF 

TBE (1×) 89 mM Tris-HCl, 89 mM boric acid, 2 mM EDTA pH 8.0 DNA 
Visualization 

TBS (1×) 50 mM Tris-HCl pH 7.6, 150 mM NaCl Protein 
Visualization 

TBST (1×) 10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% Tween-20 Protein 
Visualization 

Towbin Semi-dry 
Transfer Buffer 191 mM glycine, 50 mM Tris Protein 

Visualization 

Tris-Glycine 
Running Buffer (1×) 192 mM glycine, 25 mM Tris, 0.1% (w/v) SDS, pH 8.3–8.6 Protein 

Visualization 
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Appendix F: Supporting information for the LFIA Test Kit relative validation study (raw data) 

Inclusivity study 

# Culture 
Collection Reference Strain Serotype Source/ Origin 

Decision 
Point ™ Test 
Kit 

A B 

1 PHAC EC20060233 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ + 

+ + 

2 PHAC EC20040339 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

3 PHAC EC20011244 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ + 

+ + 

4 PHAC EC20011236 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ + 

+ + 

5 PHAC EC20011231 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ + 

+ + 

6 PHAC EC20010294 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ - 

+ + 

7 PHAC EC20001018 Escherichia 
coli 

O157:H7 Bovine, ground - + 

- + 

- + 

8 PHAC EC20000673 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

9 PHAC EC20000671 Escherichia 
coli 

O157:H7 Bovine, ground + + 

+ + 

+ + 

10 PHAC EC19990951 Escherichia 
coli 

O157:H7 Bovine, salami + + 

+ + 

- + 



 

 

249 

# Culture 
Collection Reference Strain Serotype Source/ Origin 

Decision 
Point ™ Test 
Kit 

A B 

11 PHAC EC19970515 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

12 PHAC EC19970462 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

13 PHAC EC19970419 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

14 PHAC EC19970409 Escherichia 
coli 

O157:H7 Bovine, meat + + 

+ + 

+ + 

15 PHAC EC19950095 Escherichia 
coli 

O157:NM Bovine, meat + + 

+ + 

+ + 

16 PHAC EC20130376 Escherichia 
coli 

O157:H7 Bovine, feces + + 

+ + 

+ + 

17 PHAC EC20130395 Escherichia 
coli 

O157:NM Bovine, feces + + 

+ + 

+ + 

18 PHAC EC20132075 Escherichia 
coli 

O157:H7 Bovine, feces + + 

+ + 

+ + 

19 PHAC EC20130390 Escherichia 
coli 

O157:NM Bovine, feces + + 

+ + 

+ + 

20 PHAC EC20130378 Escherichia 
coli 

O157:H7 Bovine, feces + + 

+ + 

+ + 

21 PHAC EC19961016 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 
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# Culture 
Collection Reference Strain Serotype Source/ Origin 

Decision 
Point ™ Test 
Kit 

A B 

22 PHAC EC19961090 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

23 PHAC EC19961025 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

24 PHAC EC19961027 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

25 PHAC EC20020335 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

26 PHAC EC19930553 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

27 PHAC EC19930038 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

28 PHAC EC19920333 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

29 PHAC EC19960266 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

30 PHAC EC19960274 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

31 PHAC EC20050147 Escherichia 
coli 

O157:H12 Bovine, feces - + 

- + 

- + 

32 PHAC EC20060754 Escherichia 
coli 

O157:H29 Bovine, feces + + 

+ + 

+ + 
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# Culture 
Collection Reference Strain Serotype Source/ Origin 

Decision 
Point ™ Test 
Kit 

A B 

33 PHAC EC19970524 Escherichia 
coli 

O157:H42 Bovine, meat - + 

- + 

- + 

34 PHAC EC19970465-1 Escherichia 
coli 

O157:H45 Bovine, meat + - 

+ - 

+ - 

35 CRIFS C480 Escherichia 
coli 

O157:H7 N/A + + 

+ + 

- + 

36 CRIFS EC20321 Escherichia 
coli 

O157:H7 L.Goodridge + + 

+ + 

+ + 

37 CRIFS ATCC 43888 Escherichia 
coli 

O157:H7 Human, feces + + 

+ + 

+ + 

38 CRIFS ATCC 43894 Escherichia 
coli 

O157:H7 Human, feces + + 

+ + 

+ + 

39 CRIFS ATCC 700927 Escherichia 
coli 

O157:H7 Derived from 
ATCC43895 

+ + 

+ + 

+ + 

40 CRIFS EC960282 Escherichia 
coli 

O157:H25 Bovine + - 

+ - 

+ - 

41 CRIFS EC940076 Escherichia 
coli 

O157:H19 Bovine - + 

- + 

- + 

42 CRIFS EC930195; 
32511 

Escherichia 
coli 

O157:NM L.Goodridge + + 

- + 

+ + 

43 DSMZ DSM 17076/ 
NCTC 12900 

Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 
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# Culture 
Collection Reference Strain Serotype Source/ Origin 

Decision 
Point ™ Test 
Kit 

A B 

44 UofM 00-3581 Escherichia 
coli 

O157:H7 Human, clinical - + 

+ + 

- + 

45 UofM 02-0304 Escherichia 
coli 

O157:H7 Human, clinical + + 

+ + 

+ + 

46 UofM 02-0627 Escherichia 
coli 

O157:H7 Human, clinical - + 

- + 

- + 

47 UofM 02-0628 Escherichia 
coli 

O157:H7 Human, clinical + + 

- + 

+ + 

48 UofM 02-1840 Escherichia 
coli 

O157:NM Human, clinical - + 

- + 

- + 

49 CRIFS 380-94 Escherichia 
coli 

O157:H7 Bovine, salami + + 

+ + 

+ + 

50 CRIFS 9490 Escherichia 
coli 

O157:H7 USDA + + 

+ + 

+ + 
PHAC:	 Public	 Health	 Agency	 of	 Canada,	 Guelph;	 CRIFS:	 Canadian	 Research	 Institute	 for	 Food	 Safety,	
Guelph;	DSMZ:	Leibniz	 Institute	DSMZ-	German	Collection	of	Microorganisms	and	Cell	Cultures;	UofM:	
University	of	Manitoba.	N/A:	not	available.	

Exclusivity study  

# Culture 
Collection Reference Strain Serotype Origin/ 

Source 

DECISION 
Point TM 

Test Kit 
A B 

1 PHAC ATCC 7966 Aeromonas 
hydrophila 

 From tin 
of milk 
with a 
fishy 
odor 

- - 
- - 
- - 

2 UWO ATCC 13883 
UWO#479 

Klebsiella 
pneumoniae 

 NCTC - - 
- - 
- - 

3 PHAC ATCC 6051  HJ Conn - - 
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# Culture 
Collection Reference Strain Serotype Origin/ 

Source 

DECISION 
Point TM 

Test Kit 
A B 

Bacillus 
subtilis 

- - 
- - 

4 PHAC ATCC 43162 Citrobacter 
braakii 
(freundii) 

 Clinical 
isolate, 
California 

- - 
- - 
- - 

5 PHAC NO152388 Enterobacter 
aerogenes 

 N/A - - 
- - 
- - 

6 PHAC ATCC 13047 Enterobacter 
cloacae 

 Spinal 
fluid 

- - 
- - 
- - 

7 PHAC ATCC 49149 Enterococcus 
faecalis 

 Clinical 
isolate 

- - 
- - 
- - 

8 PHAC ATCC 25922 Escherichia 
coli 

O6 Human, 
clinical 

- - 
- - 
- - 

9 PHAC ATCC 700926 Escherichia 
coli 

OR:H48:K- Derived 
from 
parent 
strain 
W1485 

- - 
- - 
- - 

10 PHAC ATCC 12014 Escherichia 
coli 

O55:NM CDC - - 
- - 
- - 

11 PHAC ATCC 43887 Escherichia 
coli 

O111:NM Human, 
feces 

- - 
- - 
- - 

12 PHAC EC20130476 Escherichia 
coli 

O25:NM N/A - - 
- - 
- - 

13 PHAC EC20130473 Escherichia 
coli 

O78:H11 N/A - - 
- - 
- - 

14 PHAC EC20130469 Escherichia 
coli 

O28ac:NM N/A - - 
- - 
- - 

15 PHAC EC20130467 Escherichia 
coli 

O3:H2 N/A - - 
- - 
- - 

16 PHAC EC20130466 Escherichia 
coli 

O44:H18 N/A + - 
- - 
+ - 

17 PHAC EC20130463 Escherichia 
coli 

O21:H4 N/A - - 
- - 
- - 

18 PHAC EC20130462 Escherichia 
coli 

O75:H5 N/A - - 
- - 
- - 

19 CRIFS EC 920232 Escherichia 
coli 

O2:H5 Bovine - - 
- - 
- - 
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# Culture 
Collection Reference Strain Serotype Origin/ 

Source 

DECISION 
Point TM 

Test Kit 
A B 

20 CRIFS EC 930004 Escherichia 
coli 

O103:H2 N/A - - 
- - 
- - 

21 CRIFS EC 910040 Escherichia 
coli 

O145:NM N/A - - 
- - 
- - 

22 CRIFS EC 910005 Escherichia 
coli 

O111:NM N/A - - 
- - 
- - 

23 CRIFS EC 910060 Escherichia 
coli 

O121:H7 N/A - - 
- - 
- - 

24 ATCC ATCC43893, CDC 
EDL 1284 [929-78] 

Escherichia 
coli 

O124:NM Human, 
feces 

+ - 
+ - 
+ - 

25 ATCC ATCC 43886, CDC 
E2539-C1 

Escherichia 
coli 

O25:K98:NM Human, 
feces 

- - 
- - 
- - 

26 PHAC ATCC 33650 Escherichia 
hermanii 

 Human, 
female 
toe 

- - 
- - 
- - 

27 PHAC MB1914 Hafnia alvei  N/A - - 
- - 
- - 

28 PHAC ATCC 49347 Shigella 
dysenteriae 

 Human, 
feces 

- - 
- - 
- - 

29 PHAC ATCC 25929 Shigella 
flexneri 

 Human, 
feces 

- - 
- - 
- - 

30 PHAC ATCC 25931 Shigella sonnei  Human, 
feces 

- - 
- - 
- - 

31 PHAC ATCC 23715 Yersinia 
enterocolitica 

 Human, 
blood 

- - 
- - 
- - 

32 UWO LT-2 Salmonella 
enterica ser. 
Typhimurium 

 N/A - - 
- - 
- - 

33 CRIFS C398 Salmonella 
newport 

 N/A - - 
- - 
- - 

34 CRIFS C390 Salmonella 
Heidenberg 

 N/A - - 
- - 
- - 

35 CRIFS C417 Salmonella 
Enteritidis 

 N/A - - 
- - 
- - 

36 CRIFS C1116 Salmonella 
javiana 

 N/A - - 
- - 
- - 

37 ATCC ATCC 19114 4a - - 
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# Culture 
Collection Reference Strain Serotype Origin/ 

Source 

DECISION 
Point TM 

Test Kit 
A B 

Listeria 
monocytogenes 

Animal, 
tissue 

- - 
- - 

38 HC HPB 5949 Listeria 
monocytogenes 

1/2C Food, 
ready-to-
eat 

- - 
- - 
- - 

PHAC:	Public	Health	Agency	of	Canada,	Guelph;	UWO:	Western	University,	Department	of	Microbiology	
and	 Immunology;	 CRIFS:	 Canadian	 Research	 Institute	 for	 Food	 Safety,	 Guelph;	 ATCC:	 American	 Type	
Culture	Collection;	HC:	Health	Canada,	Listeriosis	Reference	Service;	N/A:	not	available.	

Estimation of the (H) and (L) inoculum levels for each food item evaluated 

Food Item Target 
Level 

Cell Titre 
(CFU/ml) 

10-fold 
Serial 
Dilution 
Selected 

Volume 
Inoculated 
(ml)1 

CFU 
Inoculated2 

Estimated 
Inoculation 
Level 
(CFU/25g) 

Raw 
ground beef 

Low 1.26× 108 1.00× 10-7 4.0 50.4 1.26 

Raw 
ground beef 

High 1.50× 108 1.00× 10-6 4.0 600 15 

Raw 
ground veal 

Low 1.26× 108 1.00× 10-7 4.0 50.4 1.26 

Raw 
ground veal 

High 1.50× 108 1.00× 10-6 4.0 600 15 

Raw beef 
trim 

Low 1.26× 108 1.00× 10-7 4.0 50.4 1.26 

Raw beef 
trim 

High 1.50× 108 1.00× 10-6 4.0 600 15 

Carpaccio Low 1.26× 108 1.00× 10-7 4.0 50.4 1.26 

Carpaccio High 1.50× 108 1.00× 10-6 4.0 600 15 

Raw 
sausage* 

Low 9.6× 107 1.00× 10-7 4.0 38.4 0.96 

Raw 
sausage* 

High 9.60× 107 1.00× 10-6 4.0 384 9.6 

Raw burger 
patty* 

Low 9.6× 107 1.00× 10-7 4.0 38.4 0.96 

Raw burger 
patty* 

High 9.60× 107 1.00× 10-6 4.0 384 9.6 

Raw 
meatballs* 

Low 9.6× 107 1.00× 10-7 4.0 38.4 0.96 

Raw 
meatballs* 

High 9.60× 107 1.00× 10-6 4.0 384 9.6 
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Food Item Target 
Level 

Cell Titre 
(CFU/ml) 

10-fold 
Serial 
Dilution 
Selected 

Volume 
Inoculated 
(ml)1 

CFU 
Inoculated2 

Estimated 
Inoculation 
Level 
(CFU/25g) 

Raw 
kebabs* 

Low 9.6× 107 1.00× 10-7 4.0 38.4 0.96 

Raw 
kebabs* 

High 9.60× 107 1.00× 10-6 4.0 384 9.6 

1Volume	from	the	selected	dilution	that	was	used	to	inoculate	1.0kg	of	each	food	item.	
2Total	number	of	CFU	that	were	inoculated	into	1.0kg	of	each	food	item.	
*These	food	items	were	inoculated	with	strain	380-94,	which	was	stressed	as	described	in	the	Inoculum	
Preparation	Section.	

AM results for the fresh meats (unprocessed) food type. 

Sample Item Inoculation Level MPN/25g 
Alternative Results 

Presumptive Confirmation Final* 

AM ground beef H1 H 25 POS POS TP 

AM ground beef H2 H 25 POS POS TP 

AM ground beef H3 H 25 POS POS TP 

AM ground beef H4 H 25 POS POS TP 

AM ground beef H5 H 25 POS POS TP 

AM ground veal H1 H 13.3 POS POS TP 

AM ground veal H2 H 13.3 POS POS TP 

AM ground veal H3 H 13.3 POS POS TP 

AM ground veal H4 H 13.3 POS POS TP 

AM ground veal H5 H 13.3 POS POS TP 

AM beef trim H1 H 13.3 POS POS TP 

AM beef trim H2 H 13.3 POS POS TP 

AM beef trim H3 H 13.3 POS POS TP 

AM beef trim H4 H 13.3 POS POS TP 

AM beef trim H5 H 13.3 POS POS TP 

AM carpaccio H1 H 8.25 POS POS TP 

AM carpaccio H2 H 8.25 POS POS TP 

AM carpaccio H3 H 8.25 POS POS TP 

AM carpaccio H4 H 8.25 POS POS TP 

AM carpaccio H5 H 8.25 POS POS TP 

AM ground beef L1 L 1.2 NEG NEG TN 

AM ground beef L2 L 1.2 NEG NEG TN 

AM ground beef L3 L 1.2 POS POS TP 

AM ground beef L4 L 1.2 NEG NEG TN 
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Sample Item Inoculation Level MPN/25g 
Alternative Results 

Presumptive Confirmation Final* 

AM ground beef L5 L 1.2 NEG NEG TN 

AM ground veal L1 L 0.5 POS POS TP 

AM ground veal L2 L 0.5 PO POS TP 

AM ground veal L3 L 0.5 NEG NEG TN 

AM ground veal L4 L 0.5 NEG NEG TN 

AM ground veal L5 L 0.5 NEG NEG TN 

AM beef trim L1 L 1.3 POS POS TP 

AM beef trim L2 L 1.3 NEG NEG TN 

AM beef trim L3 L 1.3 NEG NEG TN 

AM beef trim L4 L 1.3 NEG NEG TN 

AM beef trim L5 L 1.3 POS POS TP 

AM carpaccio L1 L 1.3 NEG NEG TN 

AM carpaccio L2 L 1.3 POS POS TP 

AM carpaccio L3 L 1.3 NEG NEG TN 

AM carpaccio L4 L 1.3 NEG NEG TN 

AM carpaccio L5 L 1.3 NEG NEG TN 

AM ground beef U1 U - NEG NEG TN 

AM ground beef U2 U - NEG NEG TN 

AM ground veal U U - NEG NEG TN 

AM beef trim U U - NEG NEG TN 

AM carpaccio U U - NEG NEG TN 
*Alternative	Final	Results	are	defined	as	True	Positives	(TP)	or	True	Negatives	(TN).	

AM results for the ready-to cook (processed) food type. 

Sample Item Inoculation Level MPN/25g Alternative Results 

Presumptive Confirmation Final* 

AM raw sausage H1 H 13.3 POS POS TP 

AM raw sausage H2 H 13.3 POS POS TP 

AM raw sausage H3 H 13.3 POS POS TP 

AM raw sausage H4 H 13.3 POS POS TP 

AM raw sausage H5 H 13.3 POS POS TP 

AM raw patty H1 H 13.3 POS POS TP 

AM raw patty H2 H 13.3 POS POS TP 

AM raw patty H3 H 13.3 POS POS TP 

AM raw patty H4 H 13.3 POS POS TP 
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Sample Item Inoculation Level MPN/25g Alternative Results 

Presumptive Confirmation Final* 

AM raw patty H5 H 13.3 POS POS TP 

AM raw meatball H1 H 8.3 POS POS TP 

AM raw meatball H2 H 8.3 POS POS TP 

AM raw meatball H3 H 8.3 POS POS TP 

AM raw meatball H4 H 8.3 POS POS TP 

AM raw meatball H5 H 8.3 POS POS TP 

AM raw kebab H1 H 25 POS POS TP 

AM raw kebab H2 H 25 POS POS TP 

AM raw kebab H3 H 25 POS POS TP 

AM raw kebab H4 H 25 POS POS TP 

AM raw kebab H5 H 25 POS POS TP 

AM raw sausage L1 L 1.3 POS POS TP 

AM raw sausage L2 L 1.3 NEG NEG TN 

AM raw sausage L3 L 1.3 POS POS TP 

AM raw sausage L4 L 1.3 NEG NEG TN 

AM raw sausage L5 L 1.3 NEG NEG TN 

AM raw patty L1 L 0.5 POS POS TP 

AM raw patty L2 L 0.5 NEG NEG TN 

AM raw patty L3 L 0.5 POS POS TP 

AM raw patty L4 L 0.5 NEG NEG TN 

AM raw patty L5 L 0.5 POS POS TP 

AM raw meatball L1 L 1.3 POS POS TP 

AM raw meatball L2 L 1.3 NEG NEG TN 

AM raw meatball L3 L 1.3 NEG NEG TN 

AM raw meatball L4 L 1.3 NEG NEG TN 

AM raw meatball L5 L 1.3 NEG NEG TN 

AM raw kebab L1 L 1.3 POS POS TP 

AM raw kebab L2 L 1.3 NEG NEG TN 

AM raw kebab L3 L 1.3 NEG NEG TN 

AM raw kebab L4 L 1.3 NEG NEG TN 

AM raw kebab L5 L 1.3 POS POS TP 

AM raw sausage U1 U - NEG NEG TN 

AM raw sausage U2 U - NEG NEG TN 

AM raw patty U U - NEG NEG TN 
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Sample Item Inoculation Level MPN/25g Alternative Results 

Presumptive Confirmation Final* 

AM raw meatball U U - NEG NEG TN 

AM raw kebab U U - NEG NEG TN 
*Alternative	Final	Results	are	defined	as	True	Positives	(TP)	or	True	Negatives	(TN).	

RM results for the fresh meats (unprocessed) food type. 

Sample Item Inoculation Level MPN/25g MFHPB-10 Results 

RM ground beef H1 H 25 POS 

RM ground beef H2 H 25 POS 

RM ground beef H3 H 25 POS 

RM ground beef H4 H 25 POS 

RM ground beef H5 H 25 POS 

RM ground veal H1 H 13.3 POS 

RM ground veal H2 H 13.3 POS 

RM ground veal H3 H 13.3 POS 

RM ground veal H4 H 13.3 POS 

RM ground veal H5 H 13.3 POS 

RM beef trim H1 H 13.3 POS 

RM beef trim H2 H 13.3 POS 

RM beef trim H3 H 13.3 POS 

R beef trim H4 H 13.3 POS 

RM beef trim H5 H 13.3 POS 

RM carpaccio H1 H 8.25 POS 

RM carpaccio H2 H 8.25 POS 

RM carpaccio H3 H 8.25 POS 

RM carpaccio H4 H 8.25 POS 

RM carpaccio H5 H 8.25 POS 

RM ground beef L1 L 1.2 NEG 

RM ground beef L2 L 1.2 POS 

RM ground beef L3 L 1.2 NEG 

RM ground beef L4 L 1.2 POS 

RM ground beef L5 L 1.2 NEG 

RM ground veal L1 L 0.5 NEG 

RM ground veal L2 L 0.5 POS 

RM ground veal L3 L 0.5 NEG 

RM ground veal L4 L 0.5 POS 
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Sample Item Inoculation Level MPN/25g MFHPB-10 Results 

RM ground veal L5 L 0.5 NEG 

RM beef trim L1 L 1.3 POS 

RM beef trim L2 L 1.3 NEG 

RM beef trim L3 L 1.3 NEG 

RM beef trim L4 L 1.3 NEG 

RM beef trim L5 L 1.3 NEG 

RM carpaccio L1 L 1.3 POS 

RM carpaccio L2 L 1.3 POS 

RM carpaccio L3 L 1.3 POS 

RM carpaccio L4 L 1.3 NEG 

RM carpaccio L5 L 1.3 NEG 

RM ground beef U1 U - NEG 

RM ground beef U2 U - NEG 

RM ground veal U U - NEG 

RM beef trim U U - NEG 

RM carpaccio U U - NEG 

RM results for the ready-to-cook (processed) food type. 

Sample Item Inoculation Level MPN/25g MFHPB-10Results 

RM raw sausage H1 H 13.3 POS 

RM raw sausage H2 H 13.3 POS 

RM raw sausage H3 H 13.3 POS 

RM raw sausage H4 H 13.3 POS 

RM raw sausage H5 H 13.3 POS 

RM raw patty H1 H 13.3 POS 

RM raw patty H2 H 13.3 POS 

RM raw patty H3 H 13.3 POS 

RM raw patty H4 H 13.3 POS 

RM raw patty H5 H 13.3 POS 

RM raw meatball H1 H 8.3 POS 

RM raw meatball H2 H 8.3 POS 

RM raw meatball H3 H 8.3 POS 

RM raw meatball H4 H 8.3 POS 

RM raw meatball H5 H 8.3 POS 

RM raw kebab H1 H 25 POS 

RM raw kebab H2 H 25 POS 
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Sample Item Inoculation Level MPN/25g MFHPB-10Results 

RM raw kebab H3 H 25 POS 

RM raw kebab H4 H 25 POS 

RM raw kebab H5 H 25 POS 

RM raw sausage L1 L 1.3 POS 

RM raw sausage L2 L 1.3 NEG 

RM raw sausage L3 L 1.3 POS 

RM raw sausage L4 L 1.3 NEG 

RM raw sausage L5 L 1.3 POS 

RM raw patty L1 L 0.5 POS 

RM raw patty L2 L 0.5 NEG 

RM raw patty L3 L 0.5 NEG 

RM raw patty L4 L 0.5 NEG 

RM raw patty L5 L 0.5 POS 

RM raw meatball L1 L 1.3 POS 

RM raw meatball L2 L 1.3 NEG 

RM raw meatball L3 L 1.3 NEG 

RM raw meatball L4 L 1.3 NEG 

RM raw meatball L5 L 1.3 NEG 

RM raw kebab L1 L 1.3 POS 

RM raw kebab L2 L 1.3 NEG 

RM raw kebab L3 L 1.3 POS 

RM raw kebab L4 L 1.3 NEG 

RM raw kebab L5 L 1.3 POS 

RM raw sausage U1 U - NEG 

RM raw sausage U2 U - NEG 

RM raw patty U U - NEG 

RM raw meatball U U - NEG 

RM raw kebab U U - NEG 
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