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Abstract

The explosive proliferation of smart devices in the 5-th generation (5G) network expects

1,000-fold capacity enhancement, leading to the urgent need of highly resource-efficient tech-

nologies. Non-orthogonal multiple access (NOMA), a promising spectral efficient technology

for 5G to serve multiple users concurrently, can be combined with massive multiple input

multiple output (MIMO) and relaying technology, to achieve highly efficient communications.

Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO

and relaying systems.

Due to hardware constraints and channel condition variation, the first topic of the thesis

develops efficient antenna selection and user scheduling algorithms for sum rate maximization

in two MIMO-NOMA scenarios. In the single-band scenario, the proposed algorithm improves

antenna search efficiency by limiting the candidate antennas to those are beneficial to the rel-

evant users. In the multi-band scenario, the proposed algorithm selects the antennas and users

with the highest contribution total channel gain. Numerical results show that our proposed

algorithms achieve similar performance to other algorithms with reduced complexity.

The second part of the thesis proposes the relaying and power allocation scheme for the

NOMA-assisted relaying system to serve multiple cell-edge users. The relay node decodes

its own message from the source NOMA signal and transmits the remaining part of signal to

cell-edge users. The power allocation scheme is developed by minimizing the system outage

probability. To further evaluate the system performance, the ergodic capacity is approximated

by analyzing the interference at cell-edge users. Numerical results proves the performance

improvement of the proposed system over conventional orthogonal multiple access mechanism.

Keywords: 5G; Massive MIMO; NOMA; Relaying; Resource Allocation
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Chapter 1

Introduction

1.1 Background of 5G

The future 5-th generation (5G) network is expected to provide high-performance commu-

nications for rapidly increased devices at anytime and anywhere [1]. On one hand, a large

number of smart devices, including smart phones, tablets and laptops for purposes of daily

work and entertainments, require remarkably higher data rate, along with enhanced cell-edge

rate [2]. The reason is according to [3], it is predicted that in 2020 the data traffic from soft-

ware downloading, social networking, web browsing, file sharing and multi-media streaming

will be significantly enhanced where the high-definition video traffic, with intensive require-

ments for data rate and real-time playing, is going to be 13 times over that in 2014. On the

other hand, the Internet of Things (IoT) [4] would make various sensors, wearable devices,

household appliance and even vehicles connected to the core network in order to establish the

”smart life” for personal health, economy and convenience. For industrial consideration, the

monitor center should connect to multiple machines and sensors with very low latency to col-

1



2 Chapter 1. Introduction

lect real-time information and control pipes, valves and grids [5]. The data volume associated

with each device in IoT don’t have to be very large since there are only simple data and control

message exchange. But a significant number of devices need to be connected simultaneously.

Consequently, the expected overall network capacity enhancement will be 1,000 folds over

current situation [6][7]. Compared to the extremely high requirements, the currently available

spectrum resource becomes quite limited.

The newly developed millimeter-wave (mmWave) frequency bands may potentially help

support the network traffic enhancement. Firstly, the short-distance line-of-sight (LOS) direc-

tional communications can be well supported by the 60 GHz mmWave band for very high data

rate [8]. Furthermore, it is possible to obtain larger channel bandwidth, around 500 MHz per

channel in mmWave compared to 5-20 MHz in mainstream microwave bands. Additionally,

the small wavelength facilitates installing massive antennas into the mmWave transceivers [9].

However, the drawbacks from mmWave remarkably undermine the potential performance im-

provement. The most critical point is that the signal in mmWave bands is highly sensitive to

blockages which lead to severe penetration [10]. This creates severe signal strength loss in

non-line-of-sight (NLOS) environments, very common in large-scale communication systems.

Moreover, practical hardware overhead further limits the application of mmWave technology.

For instance, the mixed signal components in mmWave transceivers bring higher costs and en-

ergy consumption than microwave transceivers [9]. Therefore, it is hard for mmWave spectral

resource to contribute significantly to serving massive users and increasing network capacity.

All the frequency bands in the currently available spectrum have almost been developed for

telecommunications in mainstream protocols. The bands for LTE-based communication [11]

occupy a large portion of available spectrum. The CDMA and WCDMA protocols [12] are
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Increased Data Rate Requirement Massive Connections

PC and smart devices IoT

High Costs Resource Efficient Technologies

Figure 1.1: 5G use cases and corresponding requirements.

still using some bands for transitions from 3G to 4G in some undeveloped areas. Moreover,

the 2.4 GHz frequency band has been widely used by Wi-Fi and Bluetooth protocols. As a

result, novel highly efficient communication techniques are in need of the hour for exploiting

the current resources.

1.2 Research Motivations

1.2.1 Advantages of Spectral and Power Efficient Technologies

Non-orthogonal multiple access (NOMA) is a 5G promising spectral efficiency technology

applicable in the current spectrum resource [13]. Conventional orthogonal multiple access

(OMA), e.g., time division multiple access (TDMA) [14] and orthogonal frequency division

multiple access (OFDMA) [15], allocates orthogonal resource blocks for different users to

avoid inter-user interference. Instead, NOMA introduces inter-user interference at the network

side. To be specific, messages intended for several users are superimposed as a signal to be
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transmitted in one resource block where messages are allocated with different power levels.

When receiving the NOMA signal, certain user applies successive interference cancellation

(SIC) to remove the interference from other messages in order to obtain the message for its

own. Note that the power-domain multiplexing in NOMA allows a great number of messages

superposed into one signal. Hence, NOMA can increase the number of served users per cell.

And it is specially suitable for IoT where real-time connections between the control center and

massive various devices should be established without specific data rate requirements.

Massive Multi-input Multi-output (MIMO) is another spectral efficient technology for 5G

[16]. It can transmit multiple signals at the same time and frequency band by different spatial

patterns to multiple receivers. These signals can carry different data for a large group of users

or carry the same data for several specific users for performance gain. Additionally, with

beamforming technology to preprocess the signal at the transmitter side, the focus of the signal

can be narrowed to the targeted receiver so that the quality of the received signal is improved. In

this way, each cell can potentially support more users and increase the received signal strength.

Hence, the overall system capacity can be greatly enhanced within existing resources.

Relaying technology enables efficient utilization of power [17] to serve the increasing cell-

edge users. The better relay-destination (R-D) channel condition, which results from the short

R-D distance, leads to higher cell-edge user receive signal-to-noise ratio (SNR) than the direct

source-destination (S-D) transmission with the same transmit power. Moreover, device-to-

device (D2D) communication ability at smart devices enables some devices to be applied as

the relays [18], which saves the cost of deploying the relays. The relaying technology can also

enable the cooperation among cells if the relaying device is shared by several cells. Hence,

relaying devices can take advantage of high power efficiency to improve communication quality
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for all users [19].

1.2.2 Challenges for Resource Allocation

There are challenges to utilize NOMA, massive MIMO and relaying techniques and develop

relevant resource allocation strategies for overwhelming 5G system performance.

It is important to consider user scheduling and power allocation to cost-efficiently take ad-

vantage of NOMA protocol. Firstly, the dependence on SIC causes NOMA to be significantly

sensitive to channel quality. Due to channel condition variation, the non-orthogonality becomes

dynamic. Higher-level non-orthogonality leads to more contribution to improving system per-

formance, but with higher costs, i.e., higher requirements on SIC and worse stability. So to

control the level non-orthogonality, users should be scheduled into appropriate channels and

frequency bands. In particular, to seek a tradeoff between resource sharing and single-user

communication quality, the number of users sharing the same resource block and the relevant

user features should be decided. Note that NOMA protocol is not well applicable to certain

users associated with long distances, very poor channel conditions and very high target rates.

The reason is if allocating too much resources to satisfy these users’ requirements can cause

resource insufficiency for other users, which will downgrade the overall system performance.

Additionally, power level allocated to each message for the relevant NOMA user is supposed

to be well considered. This is because NOMA is a power-domain multiplexing strategy; the

power allocation influences the successful execution of SIC and whether single-user data rate

requirements will be met.

Though the system capacity is greatly enhanced by massive MIMO, it brings about high
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hardware and system complexity costs as well. The very large antenna array is partially respon-

sible for hardware costs. Moreover, for signal processing, each antenna needs to be connected

to a radio frequency (RF) chain, which introduces complicated hardware installation and pro-

cessing overhead. Furthermore, in the transitional stage from the 4-th generation network to

5G, the number of RF chains cannot match massive candidate antenna in the large array, mak-

ing it impractical to use all antennas in each time slot. Hence, selecting ”good” antennas to

match the existing RF chains exactly is a promising solution [20]. Moreover, each large-scale

antenna array has the upper-bound of capability to serve users; in certain time slot, serving

some users with extremely poor channel conditions will cost very much resource but obtain

only limited performance. So similarly, it is important to schedule ”good” users for communi-

cation in each time slot for cost-efficient resource utilization.

The relaying scheme should also be investigated to be adaptive to 5G in order to serve

multiple cell-interior and cell-edge users. Currently, a large number of smart devices have

been equipped with double antennas, and some of them can be applied as relaying devices to

enable D2D communications. Moreover, unlicensed band is going to be exploited in 5G [21].

The resource efficiency in conventional relaying systems are not high enough since the relaying

link requires one orthogonal resource block to avoid the interference. With extra unlicensed

band resource provided, the communication and resource efficiency can be possibly promoted.

Following these conditions, suitable relaying scheme for 5G with the idea of data offloading

[22] is worth considering. This is to improve the system throughput in order to guarantee the

quality of service for both the relaying devices (cell-interior users) and cell-edge users.

It is also inevitable to consider the integration of several 5G promising technologies. Firstly,

the evolution of the communication system is usually comprehensive. For instance, CDMA
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communication protocol [12] and rake receiver to counter the multipath fading are revolution-

ary technologies for highlighting the advancement of the 3G system over 2G. Then the 4G

breakthrough is featured by even more techniques, involving OFDMA protocol [15] to im-

prove the data rate, Voice over LTE (VoLTE) protocol [23] to transmit voice in pure data and

the true packet switched architecture to replace the circuit switched one. So 5G is expected

to be a revolution on communication system highlighted by multiple technologies. Further-

more, potentially compatible promising techniques for 5G are worth considering to improve

the system performance as much as possible. Moreover, some techniques are complementary

to each other. Massive MIMO is able to support multiple receivers or enhance the receive SNR

at certain receivers. NOMA can be applied to establish connections to a great number of users

simultaneously. The relaying technology can assist in transmitting signals to some users which

cannot have been supported by the BS. The features of these techniques create opportunities

for them to improve the performance for each other, contributing to better overall performance

in the 5G communication system.

Possible integration can be based on performance improvement of certain technology. The

drawback of NOMA is the communication quality for single user. In contrast to conventional

orthogonal multiple access (OMA) where the power in certain time slot [14] or frequency

band [15] is allocated to only one message, NOMA should allocate the same amount of power

to several messages, which undermines the single-user data rate. Hence, it is necessary for

NOMA to cooperate with other techniques for achieving better communication quality. Mas-

sive MIMO is able to provide received SNR gain by large-scale transmit antenna array. The

spectral efficiency of NOMA can be further developed by the relaying technology to support

multiple cell-edge users. In this way, it is natural to consider the design of NOMA-based mas-
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sive MIMO and relaying systems. Furthermore, to maximize the performance of these systems

within limited resources, it is important to consider relevant resource allocation strategies.

1.3 Research Objectives

Each research paper in the literature investigates only one promising technology in the future

5G on the preliminary implementation and performance. The objectives of this thesis are to

conduct integration of potential efficient techniques for 5G, i.e., massive MIMO, NOMA pro-

tocol, relaying technology, and, on the basis of systems formed by integrated techniques, to

propose resource allocation mechanisms in order to serve a great number of users simultane-

ously with high-level communication quality.

To exploit extremely high spectral efficiency for serving multiple users with good com-

munication quality for the 5G networks, the first objective is to integrate massive MIMO and

NOMA techniques into the 5G communication system. To take advantage of NOMA pro-

tocol, which is featured by power-domain multiplexing, to better the system performance, the

power allocation among NOMA users should also be specified in this designed massive-MIMO

NOMA system.

Next, in massive MIMO, limited RF chains make it impractical to use antenna all elements

in the MIMO antenna array; Additionally, the performance of NOMA protocol significantly

depends on channel conditions. Consequently, the following objective is to figure out antenna

selection and NOMA user scheduling algorithms to maximize user sum rate and control the

non-orthogonality between NOMA users prior to signal processing. In the massive MIMO-

NOMA system, specific algorithms are proposed to solve the problem in single-subband and
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multiple-subband scenarios, respectively. Moreover, to make the algorithms executable in the

system, the trade-off between system performance and the computational complexity of the

algorithms should be achieved.

Furthermore, as the proliferation of 5G smart devices, a large number of which have the re-

laying ability and double antennas, causes more cell-edge users, it is important to use NOMA to

assist relaying systems to serve multiple cell-edge users. Thus, the next objective is to propose

the NOMA assisted relaying scheme based on the new features of smart devices and newly

developed unlicensed band resource to guarantee the single-user data rate. For achieving the

minimal outage probability for the best effect of data rate guarantee, the NOMA-related power

allocation scheme should be determined. For further system performance characterization and

evaluation for the power allocation scheme, the system ergodic capacity based on this power

allocation scheme needs to be analyzed.

1.4 Contributions

The main contributions of this thesis are listed as follows:

• A general review of advantages and relevant problems brought by NOMA, massive

MIMO and relaying techniques in 5G are provided. A literature survey is done for:

power allocation, user pairing, relaying scheme under NOMA protocol; antenna selec-

tion, user scheduling for MIMO system; performance analysis in NOMA-based relaying

system.

• A massive MIMO-NOMA system is designed to improve the communication quality

for NOMA users. Then focused on the single-subband situation, the power allocation
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among NOMA users to maximize the sum rate is provided as the foundation for further

investigation.

• To achieve efficient resource allocation in massive MIMO-NOMA system, the antenna

selection and user scheduling mechanisms are investigated. According to different sce-

narios, the efficient antenna selection and user scheduling algorithms are proposed. In

single-band scenario, the antenna selection problem is solved by efficient search algo-

rithm, which achieves the search efficiency by limiting the candidate antennas into ones

beneficial to relevant users. For joint antenna selection and user scheduling in multi-

band multi-user scenario, joint AU contribution algorithm are raised by selecting the

antennas and users with the highest contribution to the total channel gain. Simulation

results demonstrate that proposed antenna selection algorithm achieves near-optimal per-

formance, and joint AU contribution algorithm achieves similar performance to existing

methods with reduced complexity. The proposed algorithms control the orthogonality

among NOMA users in a high-level without losing stability.

• A Collaborative NOMA Assisted Relaying (CNAR) system is proposed with the collab-

oration of S-R NOMA link as macro-cell communication and R-D NOMA link as small-

cell communication. The relay is executed in full-duplex way to improve the system

throughput. Moreover, the S-R and R-D phases are executed in licensed and unlicensed

band, respectively, to avoid the interference. Then with outage probability derived, the

power allocation ratios are obtained by minimizing the outage probability. Then ca-

pacity analysis in high SNR regime is also provided to further characterize the system

performance. It is achieved by analyzing the interference at cell-edge users based on
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NOMA protocol. Simulation results validate our mathematical analysis, and show that

the relaying system assisted by NOMA achieves lower outage probability and higher

sum capacity than orthogonal multiple access (OMA). The proposed system develops

the spectral efficiency of NOMA protocol to serve multiple cell-edge users concurrently

with high data rate.

1.5 Thesis Outline

This outline of this thesis is as follows:

Chapter 2 investigates certain resource efficient technologies in 5G, i.e., NOMA, massive

MIMO, as well as relaying, their relevant problems and literature. Firstly, the critical points of

these technologies to achieve high resource efficiency are given. Then the problems brought

by these technologies are explained. The problem involves user scheduling, antenna selection,

power allocation and relaying mechanism design. Next, a study on the existing methods to

solve the problems is discussed.

Chapter 3 demonstrates the proposed methods to solve antenna selection and user schedul-

ing problems. The optimal power allocation scheme is provided for clarifying the standard of

antenna selection and user scheduling. Then efficient search algorithm is proposed to solve

antenna selection problem in single-band two user scenario. Next, Joint AU contribution al-

gorithm is proposed for joint antenna selection and user scheduling in multi-band multi-user

scenario. Simulation results are provided for validating the tradeoff between performance and

complexity of our proposed algorithms.

Chapter 4 studies the solution to serving multiple cell-edge users concurrently. In the sys-
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tem model, the relaying mechanism assisted by NOMA is proposed. In the next section, to

characterize the system, outage probability analysis is given with mathematical insights, with

the help of which the optimal power allocation method is also proposed. Following this, the

sum capacity approximation is provided by analyzing the ergodic capacity for each user. Sim-

ulation results of the proposed mechanism are compared with the relaying scheme assisted by

conventional OMA.

Chapter 5 summarizes the ideas, analysis and results from this thesis and discusses the

future potential research work.



Chapter 2

Technologies for Efficient Utilization of

Resources in 5G

In this chapter, the technical aspect of the future 5G networks, following problems and the

relevant literature survey for existing solutions will be provided. The first section introduces

resource efficient technologies for the future 5G, i.e., NOMA, massive MIMO, relaying mecha-

nism, and describes their principles to achieve resource efficiency. Following this, the problems

brought by these technologies are discussed, which involves antenna selection, user scheduling,

power allocation and relaying scheme design. Lastly, the chapter provides currently available

algorithms and approaches for these problems.

2.1 Principles of Resource-Efficient technologies in 5G

The future 5G are confronted with an explosive device proliferation and greatly enhanced data

traffic. To satisfy these demands within relatively constrained resources and tolerably increased

13
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costs, resource efficient strategies, involving NOMA, massive MIMO and the relaying technol-

ogy, is worth exploring.

2.1.1 NOMA

Drawbacks of Conventional OMA

Conventional OMA is able to service multiple users but some drawbacks downgrade the system

performance, one of which is serious interference management overhead at the network side.

To serve multiple users at the same time, the network side uses OMA protocol by dividing the

entire resource into orthogonal resource blocks in time-domain (TDMA) [14] or frequency-

domain (OFDMA) [15] to avoid inter-user interference. But if the constrained overall resource

is divided into multiple blocks for a great number of users, the resource volume per block

will be even more limited. The granularity of single resource block also has its lower bound.

Moreover, it is impractical if the network side undertakes all the interference management tasks

since the backhaul and feedback issues cost high overhead [24]. Thus, it would be better to

transfer some interference management tasks to the receiver side.

The other drawback for conventional OMA is the limitation on resource sharing. Whether

certain user reaches its target rate can be a standard for communication quality. For some

users with good channel conditions, the target rate can be easily reached so the resource can

be wasted to some extent. For users with poor channel conditions, we may need to allocate

an orthogonal block with large resource amount to guarantee the data rate [25][26], which

results in relatively low resource efficiency [27]. The phenomenon above will cause the overall

system performance degraded. Additionally, with the development of IoT, the BS or some
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control center has to establish massive real-time connections to a variety of smart devices with

different channel conditions [7][28]. Hence, it’s a good strategy if certain users with good

channel conditions can share one resource block with ones with poor channel conditions.

NOMA Advantages over OMA and NOMA Principle

NOMA protocol is an advantageous strategy for user side interference management and re-

source sharing. NOMA allows several messages multiplexed at the same time and frequency.

At the transmitter side by superposition coding, several messages are superimposed with differ-

ent allocated power level as a NOMA signal. Generally, more power is allocated to messages of

users with poorer channel conditions as the compensation, which also guarantees these users’

receive SNR in a comparable level to conventional OMA. At the receiver side, the users with

poor channel conditions treat the messages for other users and the environmental noise as the

whole noise for message decoding. The users with better channel conditions apply SIC for

message decoding. To be specific, they decode the messages for users with poorer channel

conditions in a similar manner. This decoding process is most likely successful due to better

channel conditions. Then the decoded messages are removed so that these uses are confronted

with less inter-user interference when they decode the messages for their own, which also

compensates for the less allocated power to these message. In other words, the general power

allocation idea achieves some user fairness, which can be further improved with accurate value.

Therefore, without considering the data rate with respect to each signal, we can support a

large number of users using NOMA, theoretically. The supporting ability is not restricted by

the number or the granularity of the resource blocks as it is in conventional OMA since NOMA

is a power-domain multiplexing strategy. To elaborate the NOMA principle, we assume one
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transmitter sends a NOMA signal superimposed by messages to M users. The norms of channel

coefficients from the transmitter to the 1-st, ..., m-th, ..., M-th receivers are ordered as |h1| >

... > |hm| > ... > |hM |. The superimposed NOMA signal is given by

x = P(
√
α1s1 + ... +

√
αmsm + ... +

√
αM sM) (2.1)

where the power allocation ratios are ordered as α1 < ... < αm < ... < αM to compensate for

the poor channel conditions. The receive signal at the m-th user becomes

y = P|hm|
∑M

i=1
√
αi + nm (2.2)

The M-th user treat messages for other (M − 1) users and the environmental noise as the

equivalent noise to decode the message for itself. So its post-processing SNR (PSNR) is given

by

S NRM =
ρ|hM |

2αM

ρ|hM |2
∑M−1

i=1 αi+1
(2.3)

For the m-th user, due to the ordered channel gains, it can most likely decode messages

from (m + 1)-th to M-th user successfully. Based on SIC, these messages are removed from

the original NOMA signal received by the m-th user. Then this user decodes its own message

by treating the remaining messages and environmental noise as the equivalent noise, through

which the PSNR becomes

S NRm =
ρ|hm |

2αm

ρ|hm |2
∑m−1

i=1 αi+1
(2.4)

Specially, the 1-st user only has to consider the environmental noise for its PSNR, resulting
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in

S NR1 = ρ|h1|
2α1. (2.5)

The above decoding process is illustrated in Fig. 2.2 for clearance.

NOMA Performance in Two-user Case

In many situations, there is minimum rate requirement for single user, for which only two user

share one resource block under NOMA protocol. In this typical case, users with better channel

conditions are denoted as near user (namely the 1-st user in the general case), while the other

as far users (namely the 2-nd user when M = 2 in the general case). For message decoding,

far user considers the near user message and environmental noise as the whole noise to decode

the message for its own. According to the aforementioned power allocation idea, the power

allocated to the message for far user is much higher than it is for near user to compensate for

poor channel conditions. Next, near user uses SIC to decode and then remove the message for

far user, based on which it decode its own message with only the environmental noise as the

noise.

We firstly characterize NOMA performance in this simple two-user case. Fig. 2.3 demon-

strates the achievable capacity as a function of transmit SNR. The power ratio allocated for

far user is 0.75 to compensate for the poorer channel condition. One can observe that for far

user, as transmit SNR increases, the achievable capacity gets close to a certain constant. This is

because far user treats the message for near user as part of the noise. When the transmit power

grows, the growth of noise power has similar level as that of useful signal power. In other

words, in Eq. (2.3) when M = 2, ρ → ∞ makes S NRM →
α2
α1

. For near user, its achievable
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Figure 2.3: Achievable capacity under NOMA protocol.

capacity nearly grows linearly with transmit SNR. The reason is due to SIC, the noise for its

message decoding is only the environmental noise, the power of which doesn’t become larger

as transmit power increases. If we consider it in Eq. (2.5), S NR1 increase linearly with ρ. In

this way, since the capacity for far user and near user both increase monotonically with transmit

SNR, the sum achievable capacity follows the same tendency.

Then we extend the above analysis to the general case where M users share one NOMA

signal. For the 2-nd to the M-th user, as each of them need to consider other users’ messages

as the noise, the achievable capacity is upper-bounded by certain constant. To be specific,

according to Eq. (2.4), as ρ → ∞, S NRm is asymptotically equivalent to αm∑m−1
i=1 αi

, which is

the upper-bound of the m-th user PSNR. This also indicates that at the user side, the power

ratio among relevant NOMA users can be maintained, which is expressed as PSNR. For the
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1-st user, corresponding to the near user in Fig. 2.3, its lower allocated power ratio can be

compensated by the receive SNR which can increase unlimitedly. Therefore, NOMA protocol

takes advantage of the user with the best channel condition to increase the sum rate and ensures

good levels of achievable rate for other users.

2.1.2 Massive MIMO

Though the applicable spectrum is slight broaden by the unlicensed band in the future 5G, the

existing resource is still far from being sufficient for the expected 1,000 fold capacity increase.

The massive MIMO technology, developed from conventional MIMO, is a spectral efficient

strategy to improve the 5G system performance. It is featured by multiple transmitter antennas

and multiple receive antennas to enable multiple signal inputs and outputs so that the system

throughput is significantly enhanced. At the receiver side, there can be different forms, i.e., a

large receive antenna array corresponding to single-user multi-Input multi-Output (SU-MIMO)

and multiple devices equipped with single antenna corresponding to Multi-User Multi-Input

Multi-Output (MU-MIMO) [29].

For conventional MIMO, one reason to achieve spectral efficiency is the spatial domain

multiplexing. To be concrete, by multiple antennas, different signals are transmitted and re-

ceived in different spatial patterns at the same time and frequency band. The benefits from

spatial multiplexing can be considered in a system level and at the receiver. In a system level,

spatial multiplexing enables MIMO system to achieve a great degree of freedom gain with

desired channel conditions. For instance, in high SNR regime, the system capacity is propor-

tional to {min(LT , LR) log(S NR)} [30]. The benefits from spatial multiplexing at the receiver
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Figure 2.4: Depiction of massive MIMO system.

side can be the diversity gain [31], which results from the following situation. If LR antennas at

user side receive the same signal from one transmit antenna, we receive LR copies of the same

signal corresponding to LR different SNR levels. There are some mechanisms at the receiver

side to obtain the diversity gain. According to the Selection Combining [32], it’s easy to select

the maximum SNR from all the copies as the output SNR. However, the output can be further

improved if we make full use of all the LR copies. Hence, if we use receive-maximal ratio

combining (MRC) mechanism [33], the output SNR will be the summation of receive SNR at

all LR receive antennas. Similarly, from multiple transmit antennas sending the same signal,

the user device with single receive antenna can also take advantage all different transmission

paths to improve receive SNR if transmit-MRC mechanism is applied [34].

Another reason for high spectral efficiency in MIMO system is beamforming that signals

intended for a group of closely positioned users are modulated and transmitted in a specific

angel targeting at the user group to improve the transmission accuracy [35]. In other words, the

allocated power can be almost concentrated at that angle associated with targeted user group

so that little leaked power cannot cause seriously interference to other group of users.
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Massive MIMO is also named as very large MIMO, full-dimension MIMO, hyper MIMO

and the large-scale antenna system. It reaps all the advantages from conventional MIMO but

on a very large scale by massive candidate antennas at the BS side and lots of receive anten-

nas at the user side [36]. Additional benefits can be obtained in massive MIMO. For instance,

from a great number of candidate antennas, it is more possible to find certain antennas with ex-

tremely good channel conditions, with which the transmit power is saved and system efficiency

is increased; the wireless network coverage can also be expanded to communicate with much

more users. Additionally, in MU-MIMO cases, massive transmit antennas at the BS contribute

to inter-user interference diminishment, which is achieved by the asymptotical orthogonality

among users if linear matched filter downlink precoding is applied at the BS side [37].

2.1.3 Relaying Technology

The relaying mechanism is widely used to improve the receive signal strength at cell-edge

users, which can be further exploited in 5G. Firstly, because of D2D connection ability in

smart devices, they can execute the relaying functions, which lower the load of the ISP without

having to establish additional infrastructure [7]. Furthermore, it is consistent with one of the

intentions by 5G, i.e., to shrink the cell size. Specifically, the size of macro cell can be shrunk

to the extent which exactly guarantees transmissions to relaying devices; one relaying device

is in charge of a small cell to improve the communication quality at users far from the BS.

Smaller cell size can increase the energy efficiency by short-range transmissions and easier

power concentration. Lastly, the newly developed high-frequency unlicensed band resource in

5G well matches WiFi protocol for short range D2D communications and data offloading [11].
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2.2 Challenges of Utilizing NOMA, MIMO and Relays

2.2.1 User Scheduling and Power Allocation in NOMA

In NOMA protocol, to guarantee the quality of service to each user, generally two users are

paired to share the same NOMA signal [38]. For both user to receive good-level service, it’s

worth considering which two users among all the users should be paired. Moreover, similar

to antenna side, in each time slot some users, if involved in communications, will get low

quality of service and cause low energy efficiency due to extremely poor channel conditions.

If they are forced paired with some users to execute NOMA protocol, they will affect normal

communications of other users; what’s more, the system performance, e.g., the sum rate, will

be even more downgraded. In this extreme case, those users will be given up temporarily for

cost-effective usage of system resources. This is fair since they can be scheduled in other time

slots when channel conditions are better [39].

With NOMA integrated into massive MIMO system, to improve the system performance, it

is important to select antennas and schedule users jointly as it is in conventional MIMO system

[40][41]. The reason is if we select antennas and users separately, e.g., select the antenna

subset first, some of the selected antenna may not be the best matches for users to be selected,

which may also influence user pairing strategy and performance. Hence, the joint selection of

antennas and users can lead to the best matched selected antennas and users.

Apart from user scheduling, power allocation is another step for NOMA system perfor-

mance improvement since NOMA is a power-domain multiplexing strategy. The objective of

power allocation can be maximization of sum rate or achieving the fairness with regard to data

rate guarantee among NOMA users [42].



24 Chapter 2. Technologies for Efficient Utilization of Resources in 5G

TX 
Baseband

RF Chain

RF Chain

RF Chain

...

Selected antennas

SIC

SIC

Near User

Far User

Far User

Near User

Figure 2.5: Illustration of antenna selection and user scheduling.

2.2.2 Antenna Selection and User Scheduling in Massive MIMO

The efficiency and diversity gain in massive MIMO is obtained at the expense of very high

computational complexity and hardware cost. In particular, each antenna used for data trans-

mission needs to be connected to one RF chain for signal processing. Each RF chain in trans-

mitter side consists of up-converter, power amplifier, filters and a digital-to-analog converter.

At the receiver side, each RF chain contains down-convertor, a low noise amplifier and analog-

to-digital convertor. Typical massive MIMO antenna array size can be 8×8, 16×16; it would

be even larger in the future [16]. Confronted with large number of users, if massive antennas

are all taken into use, the hardware costs will increase significantly. Potential problems will

be extended to system configuration and peripheral maintenance. Additionally, the increased

complexity of encoding and decoding spatial-time codes cannot be ignored. The above prob-

lems will impact real-time message transmission.

Antenna selection is a cost-effective solution for the tradeoff between system performance
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and costs. In each time slot, there are some antennas corresponding to better performance than

others. So the basic idea is to select LT ”best” antennas from all MT candidate antennas based

on some criteria so that the number of required RF chains is kept as LT . Those unselected

antennas contribute moderately to system performance while cost extra complexity. Hence,

performance can still be maintained in high-level and hardware complexity can be reduced.

2.2.3 NOMA Assisted Relaying System Design

NOMA protocol can increase the efficiency of relaying mechanism. Conventional relay only

accepts single message input and output single message to cell-edge users. Instead, by super-

position coding, NOMA provides multiple inputs and multiple outputs for the relay. Moreover,

in the further 5G, smart device with D2D communication ability can be applied as a relay. With

NOMA assisted, the relay can decode the message from source NOMA signal for itself and

transmit the remaining part to multiple cell-edge users. This strategy saves the the deployment

of relays and improve the system spectral efficiency.

However, some technical issues are supposed to be specified for the NOMA assisted relay-

ing system. To provide high throughput to support multiple users simultaneously, the relay-

ing scheme of the system need further investigation. Moreover, the power allocation method

among NOMA-based messages should be figured out to provide basic data rate guarantee for

single user.
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2.3 Considerations on NOMA User Pairing

NOMA user pairing strategy can be investigated into two scenarios, based on fixed allocated

power and target rate guarantee, respectively. The scenario with fixed allocated power is less

complex since power ratios don’t need dynamically adjusting. For another scenario, user pair-

ing and real-time power allocation are jointly considered to satisfy the user target rate [43].

2.3.1 User Pairing with Fixed Allocated Power

In this case, we focus on the user pairing issue with predefined power ratios. Following the

assumptions in Eq. (2.1), we assume the m-th and the n-th user conditioned on m > n form

a user pair with α2
m + α2

n = 1. Due to |hm|
2 < |hn|

2, based on NOMA principle, it holds that

αm > αn. So the achievable rate associated with these two users are

Rm = log(1 + αm |hm |
2

αn |hm |2+ 1
ρ

) (2.6)

and

Rn = log(1 + ραn|hn|
2). (2.7)

For the conventional OMA scheme, the achievable data rate associated with i-th user becomes

Ri = log(1 + ρ|hi|
2) (2.8)
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where i ∈ {m, n}. So the sum rate gain of NOMA over OMA scheme is given by

Rm + Rn − Rm − Rn
ρ→∞
→ log(

1
αn

) + log(ραn|hn|
2) − log(ρ|hm||hn|)

= log |hm| − log |hn|,

(2.9)

in very high SNR area. So more performance gain will be obtained if there is a lot difference

between the paired users’ channel gains.

2.3.2 User Pairing with Consideration of Target Rate

With the consideration of target rate, NOMA is executed under some condition. For some

user with weak connections to the transmitter in certain subband, satisfying the target rate

is the priority. If the transmit power is more than enough for that user to reach the target

rate, then the relevant subband can admit another user with strong connections to share the

power. Otherwise, the whole subband will be allocated to the weak user to compensate for

the poor channel quality as much as possible or we can schedule it in other time slot when its

corresponding channel conditions are better.

Following the assumption in Eq. (2.1) again, we focus on the m-th user as the one with

poor connection in the relevant subband and we regard the n-th user as the potential user to be

admitted into the same subband. Assume the target rate is R0 = log(1 + γ0) for the m-th user,

then to satisfy the target rate, the following inequation should be met

αm |hm |
2

αn |hm |2+ 1
ρ

> γ0. (2.10)
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This indicates that the maximal power allocation ratio to n-th user becomes

αn =


0, for |hm|

2 6 γ0
ρ

|hm |
2−

γ0
ρ

|hm |2(1+γ0) , for |hm|
2 > γ0

ρ

(2.11)

When |hm|
2 6 γ0

ρ
, it means the target rate for the m-th user cannot even be reached. So a general

pairing strategy is when |hm|
2 > γ0

ρ
, the m-th user can be paired with the n-th user. Otherwise,

we can consider allocate the entire power of relevant subband to the m-th user or not schedule

it for communication in the time slot since weak connection will reduce the energy efficiency.

Conditioned on the situation where the target rate for the m-th user can be reached, the

performance gain of NOMA over allocating all power to the m-th user is given by

Rm + Rn − R̃m = log(1 +
αm|hm|

2

αn|hm|
2 + 1

ρ

) + log(1 + ραn|hn|
2) − log(1 + ρ|hm|

2)

= log
1 + ραn|hn|

2

1 + ραn|hm|
2

(2.12)

2.4 Considerations on NOMA Power Allocation

Since NOMA is a power-domain multiplexing strategy, power allocation strategy is extremely

important for the efficiency of using NOMA and user experience. User sum rate maximiza-

tion and fairness are mainstream objectives in optimization problems for resource allocation

[44][45][46]. The problem formulations of these two objectives are provided as follows where

we assume that data rate can reach the achievable rate.
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2.4.1 Sum Rate Maximization

Generally in sum rate maximization problems, one critical constraint is the data rate associated

with each user should meet the target rate as the communication quality guarantee. So the sum

rate maximization problem can be formulated as

max
α1,...,αM

M∑
i=1

log(1 + S NRi)

s.t.



∑M
i=1 αi = 1

0 6 αi 6 1 ∀i, i ∈ {1, ...,M}

S NRi > γ0 ∀i, i ∈ {1, ...,M}

(2.13)

where S NRi is the PSNR at the i-th user.

2.4.2 Fairness Consideration

Although sum rate maximization leads to system performance maximization when the total

power is enough. However, due to higher data rate requirements or user proliferation, each

user can experience outage where the data rate doesn’t reach the target rate. Thus, user fairness

is worth considering for each user to experience as few outage events as possible, which can

be formulated as an outage probability minimization problem. Particularly, we define Event A j

happens when

ρ|hm |
2α j

ρ|hm |2
∑ j−1

i=1 αi+1
< γ j ∀ j, j ∈ {m, ...,M} (2.14)
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is satisfied [42]. To optimization problem to achieve user fairness can be formulated as

min
α1,...,αM

max
j

Pr[A j]

s.t.


∑M

i=1 αi = 1

0 6 αi 6 1

(2.15)

2.5 Antenna Selection Algorithms

2.5.1 Antenna Selection and Use Scheduling Based on Exhaustive Search

Generally, higher channel norm leads to better massive MIMO system performance. To apply

channel norm as the criterion for antenna selection and user scheduling, one direct strategy

is to exhaustively search possible sub-matrix from the original complete matrix and select the

one corresponding to the maximal channel norm. The size of the sub-matrix is the number of

required antennas and users. But the computational complexity is extremely high due to direct

search of all possible combinations. The complexity can be reduced slightly in NBJTRAS

algorithm by transforming matrix computation to vector computation [47]. NBJTRAS involves

two stages, i.e., the operation on row and column dimension, of which the steps are given as

follows.

Suppose the complete channel matrix H ∈ CNR×NT . Note that each receive antenna in the

following algorithm can be considered as a single-antenna user device.

Stage 1: The Operation on Row Dimension Define ir ∈ {1, 2, ..,C
LR
NR
} as the row combina-

tion index, which corresponds to the ir-th sub-matrix Hir ∈ C
LR×NT by lir = [l1

ir l2
ir ... lLR

ir
]T . In
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this way, we obtain Hir as

Hir =



hT
l1ir

hT
l2ir

...

hT
lLR
ir


=



Hir〈1, 1〉 . . . Hir〈1,NT 〉

Hir〈2, 1〉 . . . Hir〈2,NT 〉

... . . .
...

Hir〈LR, 1〉 . . . Hir〈LR,NT 〉


(2.16)

where hT
x is the x-th row of H. Then we define mx

ir
to express the magnitude of x-th column in

Hir , which is given by

mx
ir

=
∑LR

j=1 |Hir〈 j, x〉|
2, 1 6 x 6 NT . (2.17)

Then we obtain the norm vector mT
ir as

mT
ir = [m1

ir m2
ir ... mNT

ir
]. (2.18)

If we apply the evaluation mT
ir to all the CLR

NR
possible combinations, we obtain the norm

matrix M ∈ CCLR
NR
×NT expressed by

M =



mT
1

mT
2

...

mT
CLR

NR


=



m1
1 m2

1 ... mNT
1

m1
2 m2

2 ... mNT
2

...
... . . .

...

m1
CLR

NR

m2
CLR

NR

... mNT

CLR
NR


(2.19)
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Stage 2: The Operation on Column Dimension We find the largest LT elements in the r-th

row of M and attain the summation of them, denoted as mir
max. At the same time, we record the

column indices of these LT elements in the defined index vector lic(ir) = [l1
ic(ir) l2

ic(ir) ... l
LT
ic

(ir)]T .

This then yields the max-norm vector

mT
max = [m1

max m2
max ... m

CLR
NR

max]. (2.20)

Then we find

ir = arg max
16ir6CLR

NR

mir
max (2.21)

Finally, the indices of selected receive and transmit antennas are recorded in lir and lic(ir), re-

spectively, according to which we obtain the subset channel matrix Hsub as the optimal solution.

The complexity of NBJTRAS algorithm is analyzed for further comparison to other al-

gorithms. For Stage 1, in each Hir , the summation of elements in each column requires LR

computational operations. To deal with NT columns for each Hir matrix and CLR
NR

matrices in

total, it needs LRNTCLR
NR

operations. For Stage 2, there are CLR
NR

rows in matrix M and we need

to find the largest LT elements from NT elements per row with summing these elements up.

Then the maximal element should be found from CLR
NR

in vector mT
max. So CLR

NR
(NT + LT ) + CLR

NR

operations are needed for Stage 2. Eventually, by ignoring factors with low magnitudes, the

complexity of NBJTRAS algorithm is LRNTCLR
NR

.
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2.5.2 Antenna Selection and Use Scheduling Based on Successive Elimi-

nation

Another strategy of antenna selection and user scheduling is to successively remove the anten-

nas and users who generate the least contribution to system performance. This strategy can

be regarded as a sub-optimal algorithm. The complexity is gradually reduced as antennas and

users are eliminated one after another. JASUS Algorithm [48] elaborates this strategy in this

way. It successively deletes the antenna which undermines performance the most in each iter-

ation. In the mean time, it chooses the group of users generating a great level of orthogonality

during each iteration, which is elaborated by SUS Algorithm nested in JASUS Algorithm. The

steps of JASUS and SUS are provided as follows. The target is to select N antennas out of M

candidate antennas and schedule K users out of X candidate users in each time slot.

Algorithm 1 Steps of JASUS
1: initializeA ← {1, ...,M}, t ← 1;
2: while t 6 (M − N) do maxRate← 0;
3: for each m inA do
4: Ut ← a set of K users using SUS(A\{m},K);
5: R−m = Rsum(A\{m},Ut);
6: if R−m > maxRate then
7: maxRate← R−m;
8: mbad ← m;
9: U ← Ut;

10: end if
11: end for
12: A ← A\{mbad};
13: t ← t + 1;
14: end while
15: The set of antenna is given byA and the set of user is given byU;

Here, we also analyze the complexity of JASUS algorithm. Note that due to multiple

complicated loops in this algorithm, the results of complexity order estimation are not identical
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Algorithm 2 Steps of the semi-orthogonal user selection function (SUS)
1: initializeU ← {1, ..., X}, i← 1, SU ← ∅
2: while i < (X − K) do
3: for each x inU do
4: gx,A = hx,A −

∑i−1
j=1

hx,Ag̃H
j g̃ j

||̃g j ||2
;

5: end for
6: iopt = arg maxx∈U ||gx,A||2;
7: SU ∪ SU{iopt};
8: U ← U\SU;
9: g̃i = giopt ;

10: i← i + 1;
11: end while
12: Output the set of user is given byU;

from different perspectives. But the orders match the time consumption of the simulation

executed in Chapter 3. Hence, we provide one perspective of estimating the complexity as the

representative. For each t from JASUS algorithm, the main computational operations are on

Step 3 5 where the operation times are i(M − t)(X − i) for each i from the while loop in Step

2. Considering the number of loops, the key operation times in SUS algithm are
∑K−1

i=1 i(M −

t)(X− i) = (M− t)[ (K−1)KX
2 −

(K−1)K(2K−1)
6 ]. Back to JASUS algorithm, for each t within one while

loop in Step 2, the main operation times are (M− t)
∑K−1

i=1 i(M− t)(X− i). Since there are totally

(M − N) loops, the whole operations are
∑M−N

t=1 (M − t)
∑K−1

i=1 i(M − t)(X − i). By concentrating

on factors with high magnitude, the complexity is obtained as K2(M − N)MX.

2.6 Current Designs for NOMA-based Relaying System

There are two existing ideas of deploying the relaying devices. One way is to apply a relay

terminal for signal strength enhancement for single far user. The other way is to apply multiple

devices, which share one NOMA signal, as relays to improve the receive SNR for each other.
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They are described as follows.

2.6.1 System with Single Relay

The system is proposed by authors in [49]. In this system, there are two users in one cell where

one user has weak connections to the BS due to long distance. So one relay is introduced to

enhance the signal strength for far user. The transmission is executed in two phases:

First Phase: The BS transmits a NOMA signal superimposed by two messages. The relay

only decodes the message for far user. The near user decodes the message for far user first,

then it uses SIC to decode the message for its own.

Second Phase: The BS transmit the single message to near user. The relay transmits single

message to far user. far user will receive its own message, but near user will receive two

messages. Since based on SIC, near user removes the message for far user again and decodes

the message for its own.

Therefore, the capacity for the near user is

C1 = 1
2 log(1 + γ1(t1)) + 1

2 log(1 + γ1(t2)) (2.22)

where γ1(t1) is the PSNR obtained at near user in the first phase, and γ1(t2) is the PSNR obtained

in the second phase. And the capacity for the far user is given by

C2 = 1
2 log(1 + min{γ0, γr, γ2}) (2.23)

where γ0 is the SNR for near user to decode the far user message in the first phase, γr is the
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First Phase:

Second Phase:

Figure 2.6: NOMA-based Relaying System with Single Relay.

SNR for the relay to decode the far user message in the first phase, and γ2 is the SNR at far

user in the second phase.

The achievable diversity and ergodic capacity in this model are also analyzed in [49]. The

achievable diversity order is one for each message. And assuming ρb is the transmit SNR as

the BS, the sum ergodic capacity of this system has the scaling log ρb.

2.6.2 System with Multiple Relay Devices

The advantages of NOMA can be further demonstrated when every user served by the same BS

can be applied as a relay. This idea is achieved by the authors’ system design in [50]. To explain

the design concretely, we follow the assumptions in Eq. (2.1). There are totally M phases,

corresponding to M time slots, in this mechanism. In the 1-st Phase, the BS superimposes

the messages for all users as a NOMA signal and transmits. Except the M-th user, each user

decodes their own message using SIC. Then for the following phases, all users but the M-th one

transmit the decoded message for the farther users to obtain the diversity gain. For example,

for the (m + 1)-th Phase, only the m-th user transmit the superposed (M −m) messages to other

users. In this way, the m-th user obtains m copies of its own message to improve the receive

SNR. In other words, the user with poorer channel conditions will receive more message copies
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M-th User

m-th User

1-st User 1-st Phase:

2-th Phase:

(m+1)-th Phase:

…
…

Figure 2.7: NOMA-assisted Relaying System with Multiple Relays.

for higher diversity gain as the compensation.

The diversity order is also obtained for the above scheme. With the assumption that (m−1)

best users detect relevant messages successfully, by combining the observations from multiple

phases, the PSNR at the m-th user to decode its own message is

S NRCombine
m = |hm |

2αm

|hm |2
∑m−1

i=1 αi+
1
ρ

+
∑m−2

j=1
|h j→m |

2α( j→m),m

|h j→m |2
∑m−1

i= j+1 α( j→m),i+
1
ρ

+ ρ|h(m−1)→m|
2α[(m−1)→m],m

(2.24)

where h j→m is the channel coefficient from the j-th user to the m-th user and α( j→m),m is the

power allocation ratio to the message for the m-th user in the NOMA signal from the j-th user

to the m-th user. According to the proposition in [50], the scheme can guarantee that the m-th

ordered user achieves a diversity order of M.

2.7 Chapter Summary

This chapter describes two 5G spectral efficient technologies and literature review about their

applications so far. Firstly, the technical details of massive MIMO, NOMA and how they
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achieve high spectral efficiency is introduced. Following this, the problems brought by these

technologies are described, which are antennas selection, user scheduling in massive MIMO,

and user pairing, power allocation, relaying mechanism under NOMA protocol. Next, as liter-

ature survey, some existing algorithms for solving the aforementioned problems are presented

with mathematical demonstrations.



Chapter 3

Efficient Antenna Selection and User

Scheduling in 5G Massive MIMO-NOMA

System

3.1 Introduction

The remarkable growth of smart devices has led to 1,000-fold expected traffic enhancement

for the future 5G network system [2], compared to which the existing spectrum resource is

quite constrained. To support a great number of users as well as explosively increased network

capacity with limited spectrum, 5G networks depend on critical transmission technologies to

provide extremely high spectrum efficiency.

NOMA, which provides concurrent transmissions for multiple users, is recognized as one

promising solution for high spectral efficiency in 5G [13]. In traditional OMA, messages in-

tended for different users are transmitted in different time slots under TDMA protocol [14], or

39
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in different frequency bands under OFDMA protocol [15]. Instead, NOMA allows several users

to share the same time and spectral resources [50]. Specifically, NOMA serves different users

by transmitting multiple messages at different power levels to achieve non-orthogonal reuse,

which induces inter-user interference. At user side, the receivers apply successive interference

cancellation (SIC) to remove the interference and separate these messages for corresponding

users [51]. The performance of NOMA system can be improved if suitable users are clustered

as a NOMA group for SIC.

Massive MIMO is also a technology which archives high spectral efficiency in 5G [52].

The very large antenna array is able to transmit massive data streams with different spatial

patterns concurrently at the same frequency band to achieve spatial reuse. As a result, the

throughput within the same spectrum is significantly improved. Another application is the

massive antennas can transmit the same message to for the receiver side to achieve diversity

gain, which increases the receive SNR. Moreover, beamforming technology in massive MIMO

can potentially transmit messages in an specific angle, which is targeted at relevant NOMA user

group. With the transmit power concentrated at that angle, the energy efficiency in increased

and interference to other user groups is reduced.

Therefore, the integration of massive MIMO and NOMA technologies becomes a promis-

ing solution in obtaining extremely high spectral efficiency in 5G systems. However, massive

MIMO-NOMA system brings certain major technical challenges at the same time. Firstly,

MIMO RF chain elements, containing RF amplifier and analog-to-digital/digital-to-analog con-

verter, increase the hardware cost along with system complexity, since each antenna should be

match with one RF chain for signal processing. Note that during the transitional stage from

4G to 5G, RF chains are fewer than candidate antennas at the BS. So one critical scheme is to
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operate MIMO-NOMA with limited RF chains is to select the best subset of antennas for these

RF chains [53][54][55]. Different antennas correspond to different performance; even the same

antenna subset has different performance over time due to random user distribution and user

mobility. Hence, we should select the antenna subset with good performance in each time slot.

Furthermore, since channel conditions vary over time and frequency, it is more cost-effective

to schedule users into good channels at each time slot. Moreover, NOMA requires user pairing

for SIC, where typically one near user (with strong channel gain) and one far user (with weak

channel gain) are scheduled as a user pair. The inter-user channel gain different influences the

SIC effect. Moreover, there will be very broad bandwidth in the future 5G, including licensed

band and unlicensed band. Since channel gains with respect to different users are various in

different subbands, we should assign user pairs into different subbands to improve the system

performance. Hence, it is important to solve the antenna selection and user scheduling problem

jointly in massive MIMO-NOMA system.

A few researchers have worked on the MIMO-NOMA system. In [43], user pairing algo-

rithms are raised for two NOMA systems, but only single band scenarios are considered. A

proportional-fairness scheduler is employed to decide user pairs in [56]; B. Kim et. al sched-

ules two users with high correlation and large channel gain difference as a user pair [57]. But

these two methods only focus on NOMA user pairing scheme. A norm-based joint transmit and

receive antenna selection (NBJTRAS) scheme is presented in [47], which exhaustedly searches

all candidate transmit and receive antennas for a subset with the largest channel norm. For [48],

a joint antenna selection and user scheduling (JASUS) algorithm is proposed. It deletes the un-

desired antennas and users which generate a minimum contribution to the system performance

on after another. However, the above two algorithms can only be applied to scenarios with
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small candidate antenna and user sets due to high computational complexity. It is difficult to

apply these algorithms to massive MIMO-NOMA system. Moreover, to the best of our knowl-

edge, there exist no antenna selection algorithm based on NOMA communication protocol. In

[58], M. F. Hanif et al. investigates the sum rate maximization problem of a NOMA-based

MISO system, but the constraint of minimum data rate for each user is not considered.

In this chapter, we investigate the antenna selection and user scheduling problems in mas-

sive MIMO-NOMA system. We first consider a simple single-band two-user scenario, for

which we figure out the power allocation strategy is to allocation the exact power for far user

to reach the target rate. Then we raise an efficient search algorithm for single-band antenna

selection. The desired antennas are searched from limited candidate antennas which are bene-

ficial to the related users. Then we propose a joint AU contribution algorithm for joint antenna

selection and user scheduling in multi-band multi-user scenario. It selects and schedules the

antennas and users with the highest contribution to total channel gain.

The remainder of this chapter is organized as follows. Section II describes the system

model and formulates the problem. In Section III, an efficient search algorithm is proposed for

single-band two-user scenario. In Section IV, we present the joint AU contribution algorithm

for multi-user multi-band scenario. Numerical results are presented and analyzed in Section V.

Finally we conclude the paper in Section VI.
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Totally MT 

antennas
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BS side User side
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1st Subband

2nd Subband

k-th Subband

Figure 3.1: Massive MIMO-NOMA system with antenna selection and user scheduling.

3.2 System Model and Problem Formulation

3.2.1 Massive MIMO-NOMA System Model

We consider a massive MIMO-NOMA system in Fig. 4.1. The BS has MT transmit antennas

to communicate with MR users. The total transmit bandwidth is divided into K orthogonal

subbands. Since the BS has only LT RF chains, LT antennas are selected to serve users. For

NOMA, two users are assigned to each subband to form a user pair. So 2K users in total are

scheduled to be served. The candidate antenna set, candidate user set, desired selected antenna

subset, desired scheduled user subset are denoted asA,U,Ao
S ,Uo

S , respectively.

Provided antennas are selected and users are scheduled, a near user and a far user are served

concurrently in the k-th subband, depicted in Fig. 3.2. Assume the same antenna corresponds

to different channel coefficients in different subbands. Channel vectors from BS to near user

and far user are denoted as hk ∈ C
1×LT and gk ∈ C

1×LT , respectively, where |hk|
2 > |gk|

2. In each

subband, total transmit power serving two users is P0 and the power density of noise is N0.
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Figure 3.2: User service in k-th subband of massive MIMO-NOMA system.

According to NOMA protocol and relevant SIC mechanism [50], near user rate RN
k and far

user rate RF
k should meet the following constraints

RN
k 6 log2(1 + ραk|hk|

2), (3.1)

RF
k 6 log2(1 +

ρ(1−αk)|gk |
2

ραk |gk |
2+1 ) (3.2)

where αk ∈ [0, 1] is the allocated power ratio for near user, (1 − αk) is the ratio for far user and

transmit SNR is defined as ρ = P0
N0

for each subband.

3.2.2 Problem Formulation

Suppose upper bound of data rate in Eq. (3.1)(3.2) can be obtained for each user. Based on

selected antenna and user subsetsAo
S andUo

S , the sum rate in k-th subband is given by

Rk
sum(Ao

S ,U
o
S ) = log2[(1 + ραk|hk|

2)(1 +
ρ(1−αk)|gk |

2

ραk |gk |
2+1 )]. (3.3)
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In NOMA, PSNR denotes the receive SNR obtained after SIC at the relevant users. To

provide data rate guarantee, we set the minimum required PSNR as t for each user. Then the

user sum rate maximization problem can be formulated as:

max
Ao

S⊂A,U
o
S⊂U,αk∈[0,1]

Rsum(Ao
S ,U

o
S ) =

K∑
k=1

Rk
sum(Ao

S ,U
o
S )

s.t.



γN
k (Ao

S ,U
o
S ), γF

k (Ao
S ,U

o
S ) > t, (k = 1, 2, · · · ,K)

LT = |Ao
S | < |A| = MT ,

2K = |Uo
S | < |U| = MR

(3.4)

where in k-th subband, PSNR at near user γN
k and PSNR at far user γF

k are expressed as

γN
k (Ao

S ,U
o
S ) = ραk|hk|

2; γF
k (Ao

S ,U
o
S ) =

ρ(1−αk)|gk |
2

ραk |gk |
2+1 . (3.5)

Although exhaustive search can be employed to find the optimal solution to the Problem

(3.4), it requires high complexity. To solve the problem with low complexity, we give our

algorithms in the following sections.

3.3 Antenna Selection in Single-band Two-user Scenario

To investigate the solution to our problem in multi-band multi-user scenario, we first consider

simple single-band two-user antenna selection problem. For simplicity, we ignore script k for

every related variable in this section.
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3.3.1 Power Allocation Scheme

As the objective of our problem, user sum rate maximization is greatly affected by allocated

power ratio to the message for each user. Hence, we raise the following power allocation

scheme as the foundation for proposing further antenna selection and user scheduling algo-

rithm.

We consider power allocation under the assumption that antennas have benn selected and

users have been scheduled. In Eq. (3.3), we let z = (1 + ρα|h|2)(1 +
ρ(1−α)|g|2
ρα|g|2+1 ), so z derivative of

α is given by

∂z
∂α

= ρ|h|2 −
ρ|g|2(1 + ρ|g|2)
(ρα|g|2 + 1)2 +

ρ2|h|2|g|2(1 − 3α − α2ρ|g|2 + α2)
(ρα|g|2 + 1)2

=
( 1
ρ|g|2 + 1)( |h|

2

|g|2 − 1)

(α + 1
ρ|g|2 )2

> 0,

(3.6)

which proves that the sum rate in single-band scenario increases monotonically with α. Thus,

the optimal power allocation method is to allocate the minimum power for far user PSNR to

meet t, i.e., α =
(1− t

ρ|g|2
)

t+1 . Based on Eq. (3.3), the maximum single-band two-user sum rate

expression is derived as

Rp(h, g) = log2[(1 + ρ
|h|2(1− t

ρ|g|2
)

t+1 )(1 + t)]. (3.7)

We validate whether PSNR at both user meet the constraints in (3.4) simultaneously by

checking whether near user PSNR meets t, i.e., ρα|h|2 > t where α =
(1− t

ρ|g|2
)

t+1 . The reason

is when near user PSNR meets t, it indicates far user PSNR has already met t by using the

optimized power ratio. If near user PSNR cannot meet t by α =
(1− t

ρ|g|2
)

t+1 , total power will be
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allocated to near user message to maximize single-band user rate.

3.3.2 Efficient Search Algorithm for Antenna Selection

From Eq. (3.7), Rp(h, g) increases monotonically with channel gain from BS to near user |h|

and channel gain associated with far user |g|. Thus, we propose our efficient search algorithm

targeting at selecting antennas with highest channel gain efficiently. The key for efficiency

is that desired antennas are selected from limited candidate antennas with high channel gain

for relevant users. However, it is not in an exhaustive way that the desired antenna subset is

searched out of this limited scope.

To better describe our algorithm, we define AS as an antenna subset with |AS | = LT and

denote the single-band two users as User 1 and User 2. The channel gains of them are |hU1 |

and |hU2 |, respectively. We initialize AS by selecting LT antennas with highest channel gains

for User 2. Then we successively swap the antenna with the lowest User 1 channel gain in

AS for the antenna with the highest User 1 channel gain in complement Ac
S . Essentially,

these successive operations are steps in a ordered searching process rather than exhaustive

search in the limited scope. This is because within the selected antenna subset in each loop,

a relatively ”bad” antenna for User 2 is replaced by a relatively ”good” antennas for User 1,

which maintains the total channel gain of this antenna subset in a level as high as possible.

Next, for each updated AS after antenna swapping, we identify the user with higher channel

gain as near user and the other as far user; Then we allocate power for both users using the

scheme in Subsection 3.3.1. Finally, if the whole search process ends up without any AS for

both user PSNR to reach t concurrently, all power will be allocated to near user to maximize
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single-band user rate.

Our efficient search algorithm is elaborated in Algorithm 3. ai and ac
i is the i-th item inAS

and Ac
S . AS \{a∗i } ∪ {a

c∗
i } denotes a set given by excluding a∗i from AS and adding ac∗

i in. hU1
b

(b = 1, 2, ...,MT ) is the channel coefficient from b-th antenna to User 1.

Algorithm 3 Efficient Search Algorithm
1: initializeA, Rmax = 0;
2: while (AS = ∅)||(max

ac
i ∈A

c
S

|hU1
ac

i
| > min

ai∈AS
|hU1

ai |) do

3: if AS = ∅ then
4: select LT antennas corresponding to the largest |hU2 | from A into AS , and obtain
Ac

S , |hU1 |;
5: else
6: ac∗

i = arg max
ac

i ∈A
c
S

|hU1
ac

i
| and a∗i = arg min

ai∈AS
|hU1

ai |;

7: AS ← AS \{a∗i } ∪ {a
c∗
i }, update |hU1 |, |hU2 |;

8: Ac
S ← A

c
S \{a

c∗
i } ∪ {a

∗
i };

9: end if
10: |h| ← max(|hU1 |, |hU2 |), |g| ← min(|hU1 |, |hU2 |);

11: calculate α =
1− t

ρ|g|2

t+1 ;
12: if ρα|h|2 > t & Rp(h, g) > Rmax then
13: Rmax = Rp(h, g),Ao

S ← AS ;
14: end if
15: end while
16: if Rmax = 0 then
17: Rmax = log2(1 + ρ|h|2),Ao

S ← AS ;
18: end if
19: output Rmax,Ao

S ;

The complexity of this algorithm is analyzed as follows for further comparison. Firstly, in

Step 4, we rank the norms of channel coefficients for both User 1 and User 2, costing (2MT )

computational operations. Next stage is the efficient search where loop operations are required.

For each while loop in Step 2, we need to calculate the channel gain relevant to potential

antenna group for both User 1 and User 2, which needs LT operations. The searching times

depend on the the relationship between LT and (MT − LT ). If LT 6 MT − LT , the extreme case
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is there is no overlap between the antenna subset beneficial to User 1 and User 2 where all the

beneficial antennas for User 2 should be replaced during swapping, resulting in LT searching

times. If LT > MT − LT , the largest number of non-overlapping antennas is (MT − LT ), causing

LT searching times. Thereafter, the searching times will be min(LT ,MT − LT ). In the above

analysis, by considering variables with high magnitudes, the complexity of efficient search

algorithm becomes O(MT + LT min(LT ,MT − LT )).

3.4 Joint Antenna Selection and User Scheduling in Multi-

band Multi-user Scenario

In this section, we investigate the problem of joint antenna selection and user scheduling in

multi-band multi-user scenario on the basis of the proposed power allocation scheme in last

section.

From Eq. (3.7), to find the highest Rp for system sum rate maximization, we have to

maximize |h| and |g| in each subband, which means maximization of the channel gain associated

with selected antennas and users. If we merely focus on antenna / user selection, we can select

the antenna / user with the highest contribution to total channel gain. Antenna / user side

contribution is defined as the ratio of channel gain occupied by certain antenna / user to total

channel gain. Since we consider joint antenna selection and user scheduling problem, we

should jointly take account of antenna and user side contribution. To be specific, the antenna /

user side contribution should be weighted from the other side.

The process of joint AU contribution algorithm is presented in Algorithm 4 and a contribu-
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tion update example is illustrated in Fig. 3.3. For this algorithm, defineUk
S as the selected user

subset in k-th subband. The channel matrix for k-th subband (k = 1, 2, 3, ...,K) is denoted as Hk.

hm,n,k is the m-th row, n-th column element of Hk. Define hm,k = [|h1,m,k|
2, |h2,m,k|

2, ..., |hMR,m,k|
2],hm =

[hm,1, ...,hm,k, ...,hm,K],m = 1, 2, ...,MT , and hn,k = [|hn,1,k|
2, |hn,2,k|

2, ..., |hn,MT ,k|
2] as channel vec-

tors. For the contributions, we define cwA = [cwA
1 , ..., cwA

m, ...cwA
MT

] as contribution vectors at

antenna side and cwU
k = [cwU

1,k, ..., cwU
n,k, ..., cwU

MR,k
] as the ones at user side, where the elements

are cwA
m and cwU

n,k for m-th antenna and n-th user in k-th subband, respectively. Then the com-

plete user side contribution vector is defined as cwU = [cwU
1 , ..., cwU

k , ..., cwU
K ]. We also define

ϕ(a,b) = a·b
‖H‖22

, where H ∈ CKMR×MT is constructed by H = [HT
1 HT

2 ... HT
K−1 HT

K]T .

Algorithm 4 Joint AU Contribution Algorithm
1: initialize the channel matrix Hk, k = 1, 2...,K;

2: initialize antenna side contribution cwA
m =

∑K
k=1
∑MR

n=1 hn,m,k

‖H‖22
,m = 1, 2, ...,MT ;

3: initialize user side contribution for each subband cwU
n,k =

∑MT
m=1 hn,m,k

‖H‖22
, n = 1, 2, ...,MR, k =

1, 2, ...,K;
4: based on antenna side contribution, update user side contribution cwU

n,k = φ(hn,k, cwA), n =

1, 2, ...,MR, k = 1, 2, ...,K;
5: US = NBUS(cwU);
6: null rows corresponding to unselected users in each Hk;
7: based on updated Hk, update user side contribution cwU

n,k = ϕ(hn,k, cwA), n =

1, 2, ...,MR, k = 1, 2, ...,K;
8: based on updated user side contribution vector cwU , update antenna contribution cwA

m =

ϕ(hm, cwU),m = 1, 2, ...,MT ;
9: select LT antennas with LT highest cwA

m and formAS ;

Particularly, the NOMA-based User Selection (NBUS) Algorithm is embedded in Joint AU

contribution Algorithm for user scheduling where we select desired users in a ordered manner.

Firstly we sort all the elements in user side contribution. Then we pick up the element with

the highest value, which is with respect to the n-th user in the k-th subband. Next we delete

n-th user in other subbands. Then we set flag to guarantee that each subband is assigned with
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Algorithm 5 NOMA-based User Scheduling Algorithm (NBUS)
1: input cwU ;
2: initiate i← 0, flag = [ f lag1, ... f lagk, ..., f lagK]← 0;
3: while i < 2K do
4: find out the element with the highest value in cwU , denoted as cwU

n∗,k∗;
5: while f lagk∗ = 2 do
6: find out the element with the next highest value in cwU , denoted as cwU

n∗,k∗;
7: end while
8: schedule the n∗-th User for communication in the k∗-th Subband;
9: f lagk∗ ← f lagk∗ + 1;

10: cwU
n∗,k ← 0,∀k;

11: i← i + 1;
12: end while
13: output selected user setUS .

exactly two NOMA users, which are associated with channel gains as high as possible.

It is critical to select users before antennas. If we select users first, we assign each sub-

band with the best suitable user pair then do antenna selection according to this assignment.

However, if we select antennas first, the selection is under the assumption that at the user side,

there is no restriction on user pairs assigned to subbands. In this way, the selected antennas and

users are not suitable enough. And we are able decide the desired subset when the contribution

vector on both sides are updated only once after initialization. This is because if we execute

mutual weighting followed by single antenna / user elimination for several times, the results

are quite similar. Mutual weighting will enlarge the gap between values of all elements in the

contribution vector, but it makes little difference on the sorting results.

Here again, the complexity of Joint AU Contribution Algorithm is provided for further

comparison. For Step 2 and Step 3, to generate the initial contribution for both the antenna

side and user side, because of MT candidate antennas, MR candidate users and K subbands, we

need (2KMT MR) operations. Then for Step 4 and Step 5, the update of user side contribution

also requires (2KMT MR), followed by (MRK) complexity for sorting. The operation times for
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Figure 3.3: A contribution update example of joint AU contribution algorithm.

next updates, including user side and the antenna side (Step 8 and Step 9), are (2KMT LR) due

to eliminated (MR − LR) users (Step 7). Lastly in Step 10, the sorting requires MT operations.

Similarly, by ignoring the factors with low magnitudes, we obtain the complexity of Joint AU

Contribution Algorithm as (KMT MR).

3.5 Numerical Results

In this section, we compare the performance of user sum rate and outage probability obtained

by proposed algorithms and existing methods. Note that our resource allocation scheme in

Section 3.3.1 is executed in all methods for fair comparison; the outage probability is the ratio

of the number of users not achieving the minimum required PSNR to the total number of users.

All results are obtained by Monte Carlo simulations.

Firstly, we compare efficient search algorithm, joint AU contribution algorithm, optimal
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Figure 3.4: Sum rate and outage probability as functions of minimum required PSNR in single-
band scenario where MT = 18, LT = 6.

(exhaustive search) and random antenna selection algorithm in single-band two-user scenario

where MR = 2K = 2, LT = 6 and ρ = 22dB. Channel matrix from all antennas to both users

is HU1U2 ∈ C2×MT where the elements are distributed as CN(0, 1). Note that when applying

joint AU contribution algorithm to this scenario, we only consider antenna side contribution.

In other words, the steps for initialization and update of user side contribution will not be

executed.

Fig. 3.4 shows the comparison of user sum rate and outage probability as functions of min-

imum required PSNR t when MT = 18. For all algorithms except random selection algorithm,

as t increases, sum rate decreases and then increases; outage probability increases monotoni-

cally with t. The reason is as t increases till t = 9.5, more power is supposed to be allocated to
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Figure 3.5: Sum rate and outage probability as functions of candidate antenna number in single-
band scenario where t = 9, LT = 6.

far user to make its PSNR meet higher t, resulting in the reduction of α. Thus, lower α causes

sum rate reduction. Furthermore, when t > 9.5, it is more difficult to find α for both user PSNR

to meet t. As a result, all power will be allocated to near user to increase single-band rate with

the occurrence of far user outage. For performance comparison, sum rate and outage proba-

bility of efficient search algorithm are better than those of joint AU contribution algorithm and

near-optimal.

In Fig. 3.5, we plot sum rate and outage probability as functions of candidate antenna num-

ber MT when t = 9. Note that we only apply optimal selection algorithm to MT = 11, 14, 17

due to huge simulation time for greater MT . For each algorithm except random selection,

larger sum rate is achieved and less outage occurs as MT increases. The reason is as there are
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more candidate antennas, the probability of selecting antennas with high channel gain becomes

larger. And when MT = 17, the sum rate of efficient search algorithm is higher than the optimal

one but the optimal method still holds the a little bit lower outage probability. This is because it

is more possible for optimal method to find the antenna subset which serves two NOMA users

with data rate guarantee simultaneously. Here again, efficient search algorithm is near-optimal

and outperforms joint AU contribution algorithm.

Next, joint AU contribution algorithm, NBJTRAS, JASUS and random selection algorithm

are compared in a multi-user multi-band scenario with MT = 16, 32, LT = 6, K = 3 and ρ =

22dB. Elements in k-th subband channel matrix Hk are distributed as CN(0, 1). For NBJTRAS,

JASUS algorithms, they are modified for the NOMA protocol. Specifically, there are K × MR

elements are the user side to denote total K subbands. To lower the outage probability, we

should guarantee one user in each subband is with relatively high channel gain. Thus, far

users are selected before the selection and identification of all near users are finished. The

mechanism can cause that there are no users or only one user selected in some subbands.

In this case, we replenish these positions by remaining users with the best channel gains in

corresponding subbands.

For Fig. 3.6, comparison of user sum rate and outage probability as functions of t when

MR = 10 is presented. Here, NBJTRAS is only applied to MT = 16 because of high compu-

tational complexity. One can observe that for each algorithm, sum rate keeps almost constant

while outage probability increases monotonically with t. This is caused by the following rea-

son. There are two types of subbands in this scenario. For first type of subband with larger

channel gain, both user PSNR can reach t concurrently by power allocation. For the same rea-

son as described in Fig. 3.4 analysis, two-user sum rate decreases as t increases. For second
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Figure 3.6: Performance of sum rate and outage probability as functions of minimum required
PSNR in multi-band scenario where MR = 10, LT = 6, K = 3.

type of subband with smaller channel gain, both user PSNR cannot meet t concurrently. So all

power will be allocated to near user, causing single-band rate increment and far user outage.

In this way, rate increment in the second type compensates for rate reduction in first type of

subband with more outages occurring. For performance comparison, joint AU contribution

algorithm has similar performance to NBJTRAS and outperform JASUS.

Fig. 3.7 presents sum rate and outage probability as functions of candidate antenna number

MR when t = 10. Because large MT and MR lead to high computational complexity, we limit the

two parameters to low values for NBJTRAS. For all algorithms except random selection, sum

rate grows while outage probability decreases. The reason is since there are more candidate

users to choose from, the probability of selecting users with high channel gain becomes higher.

Here again, joint AU contribution algorithm has performance similar to NBJTRAS and better
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Figure 3.7: Performance of sum rate and outage probability as functions of candidate user
number in multi-band scenario where t = 10, LT = 6, K = 3.

than JASUS.

For single-band scenario, the complexity is O(LTCLT
MT

) for optimal selection but O(MT +

LT min(LT ,MT − LT )) for efficient search algorithm and O(MT ) for joint AU contribution al-

gorithm. See the Appendix B for the complexity analysis of optimal algorithm and joint AU

contribution algorithm in this scenario. Hence, with complexity far less than optimal selection

and slightly higher than joint AU contribution algorithm, efficient search algorithm attains the

trade-off between performance and complexity.

In multi-band scenario, the complexity is O(KMT MR) for joint AU contribution algorithm

while O(KMTC2K
KMR

) for NBJTRAS (by letting LR = 2K, NT = MT and NR = MR in Chapter 2)

and O(K3(MT − LT )MT MR) for JASUS (by letting M = MT , X = KMR in Chapter 2). So for

practical multi-subband multi-user massive MIMO-NOMA, joint AU contribution algorithm
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presents performance similar to NBJTRAS but requires far lower complexity. This also proves

that joint AU contribution algorithm is suitable for massive MIMO where antenna and user

numbers are large.

3.6 Discussion: Practical Execution of Proposed Algorithm

The above simulation results can be achieved under the assumption that the perfect channel

information is known. To approach the theoretical performance as much as possible, the pro-

posed algorithm can be practically executed as follows.

As the initialization for data transmission, by channel estimation, the channel coefficients

between each candidate antennas and candidate users are obtained. Then the proposed algo-

rithm is executed as the BS side, which holds good computational ability, to select the antennas

and scheduled users. According to the selected subset, the associated data is transmitted from

the selected antennas to the selected users.

Note that the selection process and service provision are in a dynamic manner due to chan-

nel condition variation. Therefore, the channel estimation should be executed periodically.

Under critical overall channel coefficient change, the proposed algorithm should be executed

again to update the selected antenna and user subset accordingly. Sometimes it occurs that the

complete channel coefficient information cannot be obtained due to serious noise or possible

hardware failure. In this way, the historical channel information will be applied to predicting

the channel condition in the current moment.
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3.7 Chapter Summary

This chapter studies the antenna selection and user scheduling problems in massive MIMO-

NOMA system. We propose efficient antenna selection and user scheduling algorithms for

two scenarios. For the single-band two-user scenario, our efficient search algorithm selects

desired antennas from limited candidate antennas beneficial to the relevant users. For the multi-

band multi-user scenario, joint AU contribution algorithm takes accounts of the contribution

of each antenna’s and user’s channel gain to total channel gain jointly. Numerical results show

that efficient search algorithm achieves near-optimal performance, and joint AU contribution

algorithm has performance similar to existing methods but requires lower complexity.



Chapter 4

Power Allocation and Performance of

Collaborative NOMA Assisted Relaying

System

4.1 Introduction

It is well known that serving cell-edge users from the BS is difficult because the signal power

decays exponentially with the distance, which is greatly serious in common non-line-of-sight

communication environments [59]. Moreover, the rapid proliferation of smart devices in the

future 5G causes quite a few cell-edge users in need of guaranteed quality of service [2][60],

the standard of which is raised due to various of real-time mobile applications, such as video

streaming and other online entertainments. So it is necessary to provide service for multiple

cell-edge users simultaneously with guaranteed data rate. However, other than transmitting

data to multiple users, the 5G networks have to process massive signallings and coordinate

60
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BSs as well [61]. The power resource is constrained compared to a great number of tasks.

Furthermore, communicating with multiple users requires more spectrum resources; If we limit

the connections in the existing spectrum, the inter-user interference will be too strong for good

quality of service. Conditioned on constrained power and spectrum resource, it is challenging

to serve multiple cell-edge users concurrently with data rate guarantee.

Therefore, candidate power and spectral efficient strategies are urgently required to provide

concurrent data transmissions to multiple cell-edge users. One strategy is to use the relay,

which increases the user receive SNR by short-range communication even with low transmit

power. Compared to the amplify-and-forward (AF) relay, the decode-and-forward (DF) relay

is preferred since only the desired signals for cell-edge users are sent from the transmitter of the

relay. Furthermore, the D2D transmission functions of smart devices make it possible to apply

some device as the relay, which save the effort of establishing extra relays. The smart device

can receive the message intended for its own and forward the messages for cell-edge users.

Another strategy, NOMA, the promising spectral efficient technology for 5G, can improve the

performance of relaying systems. NOMA allows messages for several users multiplexed at

the same time and frequency band by allocating different power [13][62] to these messages.

At the user side, SIC is applied to the message separation. Specifically, users with better

channel conditions decode other users’ messages and then remove them in order to decode

messages for their own [63]. Furthermore, because of superposition coding, the power ratios

among messages in a NOMA signal can be maintained at the receivers in relaying systems.

Particularly, ratios are maintained by good channel conditions in the S-R link; because of

short-range communication, the channel condition in the R-D links may be better than S-R

link, resulting in the ratio maintenance, as well. This maintenance helps us better analyze
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and control the receive SNR at most of the NOMA users. Such effect cannot be achieved by

separated message links in conventional OMA. In this way, using NOMA to provide multiple

message inputs and outputs for the relay becomes a promising solution to serving several cell-

edge users simultaneously.

In this chapter, we propose the Collaborative NOMA Assisted Relaying (CNAR) system

in 5G featured by the collaboration of the S-R NOMA link as macro-cell communication and

R-D NOMA link as small-cell communication. The BS superimposes messages intended for

the relay and cell-edge users as a NOMA signal and transmits. The relay decodes its own mes-

sage from the NOMA signal by SIC scheme; then the relay superposes messages for cell-edge

users with adjusted power in NOMA protocol and transmits them to the destinations. The SIC

scheme at the relay fits DF relaying mechanism very well because by SIC, some messages in

the source NOMA signal are decoded at the relay and the relay only transmits the messages

preferred by the cell-edge users. Since multiple users need to be served simultaneously, the

system throughput should be improved. Thus, the S-R and R-D phases are connected by a

double-antenna relay which operates in full-duplex mode to provide high throughput. More-

over, the S-R and R-D phases are executed in licensed and unlicensed band, respectively, to

avoid the interference. Particularly, signals in the S-R phase are carried by cellular commu-

nication protocol, like the prevalent LTE, while the device applied as the relay can transmit

signals to other users using D2D communication protocols, e.g., WiFi and Bluetooth. How-

ever, the performance of the proposed system is yet to be characterized and power allocation

among NOMA signals should be determined to guarantee the data rate for multiple users.

Several works have been done on the performance evaluation for the NOMA assisted re-

laying systems. In [64], the outage performance of NOMA-assisted AF-relaying networks is
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analyzed but the drawbacks of AF relaying system undermine the advantage of NOMA. In par-

ticular, at the relay, the power allocated to each message cannot be adjusted for R-D links, and

the interference from the S-R link is amplified as well. In [65], the capacity of a NOMA-based

DF relaying system is analyzed where the destination receives two messages from two time

slots, respectively. And the author proposes a suboptimal power allocation scheme to maxi-

mize the sum rate associated with these messages. S. Rini et al. in [66] also considers rate

maximization at multiple cell-edge users assisted by several relays. For [67], a relay selection

mechanism is proposed to obtain the lowest outage probability among all other relay selection

schemes. However, the above researchers fails to consider applying certain user device as the

relay. Furthermore, the authors in [65][66] fail to consider the fairness where the rate related to

each message should reach a target level. For [49][68], the outage probability for user fairness

and ergodic sum rate expressions for NOMA downlink cooperative networks are investigated.

In [69], a cooperative SWIPT NOMA protocol is raised where some devices with DF relaying

functions are selected to assist cell-edge devices. In [50], the author derives the outage prob-

ability of a extremely complex system where sequential NOMA links from multiple relaying

devices are used to support cell-edge users. User fairness is considered in [50][65]. However,

these works only focus on low-throughput half-duplex relaying mode where the cell-edge user

receive SNR depends on links from the BS and the relay.

As we propose our CNAR system based on full-duplex relaying mode, the system perfor-

mance is analyzed in the following way. Firstly, we define that the outage occurs when the

achievable rate with regard to any message doesn’t reach the target rate. And the exact sys-

tem outage probability expression is derived by analyzing the outage behavior of S-R and R-D

phases, separately. Following this, to guarantee the data rate, we raise the optimal power allo-
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cation scheme by minimizing the system outage probability. Then, the ergodic sum capacity

of CNAR system in high SNR regime is approximated based on the optimal power allocation

scheme. Specifically, the capacity approximation for cell-edge users are obtained by discussing

the interference at them on the basis of NOMA protocol.

The remainder of this chapter is organized as follows. Section 4.2 describes the CNAR

system model. In Section 4.3, with exact expression of system outage probability derived,

an optimal power allocation scheme is proposed by minimizing the outage probability; the

ergodic sum capacity analysis and approximation are also provided. Then numerical results

are presented and analyzed in Section 4.4. Finally Section 4.5 concludes the paper.

4.2 System Model

h
1,2g

2,2g

1,3g

2,3g

Macro Cell Licensed Band
Small Cell Unlicensed Band

Decode

Acquire

Acquire

123 ,, sss

MT1

MT2

MT3

2s

3s
BS

331221111 sαPsαPsαPsSR 
Transmit

and Transmit
332222 sβPsβPs RD 

First Phase:
Second Phase:

First Phase:
Second Phase:

Figure 4.1: CNAR system model.

The CNAR communication system is proposed in Fig. 4.1. We assume that a group of

three mobile terminals (MTs) are supported by the BS, where MT1 is the nearest to BS. Due to
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long distances from the BS to MT2 and MT3, regarded as cell-edge users, it is hard for BS to

provide good quality of service via direct links. Hence, we apply MT1 as a relay to establish

connections from BS to MT2 and MT3. In this way, there are two phases for serving the group

of three MTs. In the first phase, i.e., the S-R phase, BS superposes three messages as a NOMA

signal to be transmitted to MT1; MT1 receives the signal and decodes all three messages. In the

second phase, i.e., the R-D phase, MT1 superimposes messages for MT2, MT3 with adjusted

power as another NOMA signal and transmits; MT2, MT3 receive the signal and acquire their

own messages. Assume that each MT is equipped with double antennas. To achieve high

throughput, MT1 operates in full-duplex relaying mode. It receives the NOMA signal from BS

with one antenna (receive antenna) and, at the same time, transmits the decoded messages in

last time slot with the other antenna (transmit antenna) to MT2, MT3. Moreover, to avoid the

interference, the first phase is executed in licensed band as macro-cell communication, and the

second phase is in unlicensed band as small-cell communication. We also assume that the both

the BS and the relay transmit messages at a rate matching the Shannon channel capacity for

each messages.

Specifically, in the first phase, BS superposes three messages as the NOMA signal sS R =

√
P1α1s1 +

√
P1α2s2 +

√
P1α3s3, which is transmitted to MT1. s1, s2 and s3 are messages

intended for MT1, MT2 and MT3, respectively. P1 is the transmit power from one BS antenna

assigned to serve this group of three MTs. α1, α2 and α3 are the ratios of power allocated to s1,
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Figure 4.2: Decoding process at MT1 for the first phase based on SIC.

s2 and s3 where α1 + α2 + α3 = 1. Thus, the received signal at MT1 is given by

y1 = hsS R + n1

=
√

P1α1hs1 +
√

P1α2hs2 +
√

P1α3hs3 + n1

(4.1)

where h ∼ CN(0, σ2
1) denotes the BS-MT1 Rayleigh channel coefficient and n1 ∼ CN(0,N)

denotes the AWGN at MT1 receive antenna.

After receiving sS R, MT1 decodes the three messages using the principle of SIC. Particu-

larly, it treats s2, s1 and n1 as the noise to decode s3. Then by removing s3, which is part of

the interference when decoding s2, it treats s1 and n1 as the noise to decode s2. Next, with s2

removed, n1 is treated as the noise to decode s1. The SIC-based decoding process is illustrated

in Fig. 4.2. Considering the user fairness, we set the target rate as R0 related to each message as
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the standard for quality of service. Hence, the corresponding target SNR becomes γ0 = 2R0 −1.

To reach the target SNR, the following conditions should be met consecutively:

S NR3,1 =
α3ρ1|h|2

(1 − α3)ρ1|h|2 + 1
> γ0,

S NR2,1 =
α2ρ1|h|2

α1ρ1|h|2 + 1
> γ0,

S NR1,1 = α1ρ1|h|2 > γ0,

(4.2)

where S NRk,1 is the PSNR [70] at MT1 for the k-th message and ρ1 ,
P1
N is BS transmit SNR.

Here, when |h|2 is high, it holds that S NR3,1 ≈
α3

1−α3
and S NR2,1 ≈

α2
α1

, which demonstrates that

the power ratios for s3 and s2 can be maintained. Moreover, the achievable rate associated with

s1 is given by

C1 = log2(1 + α1ρ1|h|2). (4.3)

For the second phase, by superposing s2 and s3 as the NOMA signal sRD, MT1 transmits

sRD =
√

P2β2s2 +
√

P2β3s3 to MT2 and MT3. P2 is the transmission power from MT1. β2 and

β3 are the power allocation ratios for s2 and s3 where β2 + β3 = 1. Because MT2, MT3 have

double antennas for receiving, their received signals are

y2 = g2sRD + n2

y3 = g3sRD + n3

(4.4)

where g2 = [g2,1, g2,2]T , n2 = [n2,1, n2,2]T and g3 = [g3,1, g3,2]T , n3 = [n3,1, n3,2]T . g2,1, g2,2 ∼

CN(0, σ2
2) denote Rayleigh channel coefficients from MT1 single transmit antenna to MT2

double antennas, corresponding to AWGN n2,1, n2,2 ∼ CN(0,N). And g3,1, g3,2 ∼ CN(0, σ2
3)
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denote Rayleigh channel coefficients from MT1 single transmit antenna to MT3 double anten-

nas, with AWGN n3,1, n3,2 ∼ CN(0,N).

In every time slot, we should identify NOMA far user and near user to apply SIC at the

receiver of near user [51]. Assuming MRC is applied at MT2, MT3, the combining channel

gains for them are ||g2||
2
2 and ||g3||

2
2, respectively. Hence, when ||g2||

2
2 > ||g3||

2
2, MT2 is identified

as near user with power ratio for near user βN = β2 and MT3 as far user with power ratio for

far user βF = β3; otherwise, their statuses are swapped with βN = β3, βF = β2. The decoding

processes are explained by Fig. 4.3. In this figure, sF , gF , nF are the message, channel gain and

AWGN corresponding to far user while sN , gN , nN are for near user. For far user, it considers

sN and nN as the noise to decode sF . Since ||gN ||
2
2 > ||gF ||

2
2, sF can be decoded and then removed

by near user. So for near user, it executes the same step as far user first; then it removes sF

from the NOMA signal and decodes sN with only nN as the noise.

Again, with the target rate R0 for each message, the conditions for far user and near user to

meet the target SNR are:

S NRF,2 =
βF min{||g2||

2
2, ||g3||

2
2}ρ2

βN min{||g2||
2
2, ||g3||

2
2}ρ2 + 1

> γ0,

S NRN,2 = βN max{||g2||
2
2, ||g3||

2
2}ρ2 > γ0.

(4.5)

where S NRF,2 denotes the PSNR at far user, S NRN,2 is the PSNR at near user and ρ2 ,
P2
N

is MT1 transmit SNR. When min{||g2||
2
2, ||g3||

2
2} is large due to short-range communication,

S NRF,2 ≈
βF
βN

means that the power ratio between far user and near user message is maintained.

In fact, MT1 is a DF relay to connect transmissions in the first and second phase. Since the

end-to-end data rate of DF relaying is dominated by the weakest link [71], the achievable rate
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Figure 4.3: SIC-based decoding process at NOMA far user and near user for the second phase.

associated with s2 and s3 are

C2 = log2(1 + min{S NR2,1, S NR2,2}) (4.6)

C3 = log2(1 + min{S NR3,1, S NR3,2}) (4.7)

where S NR2,2 and S NR3,2 are PSNR at MT2 and MT3, respectively.

4.3 Power Allocation and Performance

In this section, we derive the system outage probability and propose the optimal power alloca-

tion scheme by minimizing the outage probability, which aims to achieve single-user data rate
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guarantee and inter-user fairness. Then we provide the analysis of the ergodic sum capacity

based on the proposed power allocation scheme.

4.3.1 Power Allocation Scheme and Outage Performance

Define that during the two-phase communication in the proposed CNAR system, if the achiev-

able rate associated with any message is lower than the target rate, the outage occurs in our

CNAR system. Let Event A = {All constraints in (4.2) are met} for the first-phase transmission,

Event B = {All constraints in (4.5) are met} for the second-phase transmission. So the system

outage probability is expressed as

Pout = 1 − Pr[A] Pr[B]. (4.8)

According to (4.2), we derive Pr[A] as follows

Pr[A] = Pr[|h|2 > max{γ1, γ2, γ3}] (4.9)

where γ1 ,
γ0
ρ1α1

, γ2 ,
γ0

ρ1(α2−γ0α1) > 0 and γ3 ,
γ0

ρ1[α3−γ0(1−α3)] > 0.

To derive Pr[B], (4.5) can be rewritten as

min{||g2||
2
2, ||g3||

2
2} >

γ0

ρ2[βF(1 + γ0) − γ0]
, wF > 0

max{||g2||
2
2, ||g3||

2
2} >

γ0

ρ2βN
, wN

(4.10)

where min{||g2||
2
2, ||g3||

2
2} is the channel gain for far users and max{||g2||

2
2, ||g3||

2
2} is the channel
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gain for near user. Since far user has lower channel gain, it is reasonable to set lower channel

gain threshold for far user than near user to achieve higher probability of meeting the constrains

in (4.10). Hence, we assume wN > wF , indicating 1+γ0
2+γ0
6 βF < 1. Then Pr[B] is given by

Pr[B] = Pr[min{||g2||
2
2, ||g3||

2
2} > wF ,max{||g2||

2
2, ||g3||

2
2} > wN]

=φ(wN , σ2)φ(wF , σ3) + φ(wF , σ2)φ(wN , σ3) − φ(wN , σ2)φ(wN , σ3)

(4.11)

where φ(w, σ) , 1
σ2 exp(− w

σ2 )w + exp(− w
σ2 ). See the appendix for the proof of Pr[B].

To maximize Pr[A], we have to minimize max{γ1, γ2, γ3}. So finding the optimal power

allocation ratios in the first phase is equivalent to the following problem

min
α1,α2,α3

max{γ1, γ2, γ3}

= max
α1,α2,α3

min{α1, α2 − γ0α1, α3 − γ0(1 − α3)}

s.t.



α1 + α2 + α3 = 1

α2 − γ0α1 > 0

α3 − γ0(1 − α3) > 0.

(4.12)

Inspired by [72], we introduce α4 to represent the objective. So problem (4.12) is equivalent
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to to following form

min
α1,α2,α3

(−α4)

s.t.



0 < α4 6 1 − (1 + γ0)(α1 + α2)

0 < α4 6 α2 − γ0α1

0 < α4 6 α1

(4.13)

Here, we can apply Lagrange multiplier method to find a possible solution [73]. The La-

grange function is written as

L(α,µ) = − α4 + µ1[(1 + γ0)(α1 + α2) + α4 − 1]

+ µ2(γ0α1 − α2 + α4) + µ3(−α1 + α4).

(4.14)

where α = [α1, α2, α4] and µ = [µ1, µ2, µ3].

Based on Karush-Kuhn-Tucker (KKT) conditions [73], by letting the partial derivatives

with respect to α of L(α,µ) equal to zero, i. e., ∂L
∂α1

= ∂L
∂α2

= ∂L
∂α4

= 0, we obtain



µ1 = 1
γ2

0+3γ0+3 ,

µ2 =
1+γ0

γ2
0+3γ0+3 ,

µ3 = 1 − 2+γ0

γ2
0+3γ0+3 .

(4.15)

KKT conditions also require µ1[(1+γ0)(α1+α2)+α4−1]+µ2(γ0α1−α2+α4)+µ3(−α1+α4) =
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0. Since in (4.15) µ1, µ2 and µ3 are positive values, the following inequations should be satisfied



(1 + γ0)(α1 + α2) + α4 − 1 = 0,

γ0α1 − α2 + α4 = 0,

−α1 + α4 = 0.

(4.16)

So the candidate solution obtained from (4.16) is given by



α1 = 1
γ2

0+3γ0+3 ,

α2 =
1+γ0

γ2
0+3γ0+3 ,

α3 = 1 − 2+γ0

γ2
0+3γ0+3 ,

α4 = 1
γ2

0+3γ0+3 .

(4.17)

To check the feasibility of the candidate solution (4.17) with second order sufficient condi-

tions (SONC) [73], we obtain y for SONC by calculating the Jacobian evaluated at the solution,

which is given by

y = J(α(1))T · 0 =


1 + γ0 1 + γ0 1

γ0 −1 1

−1 0 1



T

· 0 = 0 (4.18)
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And the Hessian of Lagrangian (4.14) is calculated as

∇2
αL(α,µ) =



∂L2

∂α2
1

∂L2

∂α1∂α2

∂L2

∂α1∂α4

∂L2

∂α2∂α1

∂L2

∂α2
2

∂L2

∂α2∂α4

∂L2

∂α4∂α1

∂L2

∂α4∂α2

∂L2

∂α2
4


=


0 0 0

0 0 0

0 0 0


(4.19)

So the SONC equation gets the following relationship:

yT · ∇2
αL(α,µ) · y > 0, (4.20)

proving solution (4.17) is feasible [74].

In this way, the maximized Pr[A] is given by

Pr[A] = Pr[|h|2 >
γ0(γ2

0 + 3γ0 + 3)
ρ1

]

= exp(−
γ0(γ2

0 + 3γ0 + 3)

ρ1σ
2
1

).

(4.21)

For power allocation ratios in the second phase, generally we should solve the equation

∂Pr[B]
∂βF

= 0 to figure out possible optimal βF . Due to many exponential components in ∂Pr[B]
∂βF

,

it is hard to obtain the explicit expression of optimal βF . However, we find it very easy to

exhaustively search possible βF values within 1+γ0
2+γ0
6 βF < 1 to find out the optimal βF . Then

the βN is obtained by βN = 1 − βF .
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4.3.2 Ergodic Capacity Performance

In the field of wireless communications, the ergodic capacity is a critical metric for evaluat-

ing the system performance. It is defined in [75] that ”The ergodic capacity is the maximum

mutual information between the input and output if the code spans an infinite number of inde-

pendent realizations of the channel matrix”. In other words, the ergodic capacity is the average

theoretical channel capacity over time if the capacity is estimated over a fading channel.

It is hard to obtain the exact expressions of ergodic capacity in CNAR system. So ergodic

sum capacity approximations in high ρ1 and ρ2 regime are given by analyzing the achievable

rate for each message as follows.

In the first-phase transmission for s1, by using
∫ ∞

0
log2(1 + µx) fX(x)dx =

µ

ln 2

∫ ∞
0

1−FX(x)
1+µx dx,

we obtain the achievable rate of BS-MT1 channel as

E[C1] =

∫ ∞

0
log2(1 + ρ1α1x) f|h|2(x)dx

=
ρ1α1

ln 2

∫ ∞

0

exp(− x
σ2

1
)

1 + ρ1α1x
dx

(a)
= −

1
ln 2

e
1

ρ1α1σ
2
1 Ei(−

1
ρ1α1σ

2
1

)

(b)
≈ −

1
ln 2

(1 +
1

ρ1α1σ
2
1

)[C + ln(
1

ρ1α1σ
2
1

) −
1

ρ1α1σ
2
1

]

(4.22)

where Ei(x) =
∫ x

−∞

et

t dt, x < 0 is the exponential integral function. (a) is obtained according to

Eq. (3.352.4) in [76]. Approximation (b) is made by applying e−x ∼
x→0 1 − x and Ei(x) ∼x→0 [C +

ln(−x) + x] where C denotes the Euler constant in high ρ1 regime.

According to (4.6), we calculate E[C2] by discussing min{S NR2,1, S NR2,2} as follows. For

S NR2,1, when ρ1 is large, S NR2,1 ≈
α2
α1

= 1 + γ0. For S NR2,2 in high ρ2 regime, if MT2 is far



76Chapter 4. PowerAllocation and Performance ofCollaborativeNOMA AssistedRelaying System

user, it holds that S NR2,2 = S NRF,2 ≈
βF
βN
> S NR2,1, leading to min{S NR2,1, S NR2,2} = S NR2,1.

And if MT2 is near user with the condition S NRN,2 = βNρ2||g2||
2
2 > S NR2,1, min{S NR2,1, S NR2,2}

also equals to S NR2,1. However, if MT2 is near user conditioned on βNρ2||g2||
2
2 6 S NR2,1,

min{S NR2,1, S NR2,2} becomes βNρ2||g2||
2
2. The above cases for the discussion are listed in Ta-

ble 4.1.

Table 4.1: Table for value of min{S NR2,1, S NR2,2} under different conditions
MT2 Status Condition min{S NR2,1, S NR2,2}

Far user None S NR2,1

Near user βNρ2||g2||
2
2 > S NR2,1 S NR2,1

Near user βNρ2||g2||
2
2 6 S NR2,1 βNρ2||g2||

2
2

Define Event D = {MT2 is near user with the condition βNρ2||g2||
2
2 6 S NR2,1}. We prove in

the appendix that when ρ2 is large, Pr[D] ≈ 0. So Event D seldom happens, which indicates

E[C2] ≈ log2(1 + S NR2,1) = log2(2 + γ0). (4.23)

Table 4.2: A list for value of min{S NR3,1, S NR3,2} in different conditions
MT3 Status Condition min{S NR3,1, S NR3,2}

Far user None S NR3,1

Near user βNρ2||g3||
2
2 > S NR3,1 S NR3,1

Near user βNρ2||g3||
2
2 6 S NR3,1 βNρ2||g3||

2
2

Next, to calculate E[C3] based on (4.7), the discussion on min{S NR3,1, S NR3,2} is also

required. Since S NRF,2 > S NR3,1 ≈
(1+γ0)2

2+γ0
in high ρ1 and ρ2 regime, the approximation

method used for E[C2] is also applicable with similar calculating process. A similar discussion

is provided in Table 4.2. So we obtain

E[C3] ≈ log2(1 + S NR3,1) = log2(γ
2
0+3γ0+3

2+γ0
). (4.24)
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Therefore, in high ρ1 and ρ2 regime, the ergodic sum capacity for CNAR system is approx-

imated as

E[C1] + E[C2] + E[C3]

≈ −
1

ln 2
(1 +

1
ρ1α1σ

2
1

)[C + ln(
1

ρ1α1σ
2
1

) −
1

ρ1α1σ
2
1

] + log2(γ2
0 + 3γ0 + 3).

(4.25)

4.4 Numerical Results

We compare the outage probability and ergodic capacity obtained by CNAR system, conven-

tional OMA system and the relaying system based on OMA. In all systems, for the purpose

of illustration, we suppose the BS and all MTs are on a straight line. Assume BS-MT1 dis-
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tance d1 = 55m, MT1-MT2 distance d2 = 55m and MT1-MT3 distance d3 = 82.5m. Suppose

σ2
i = ( di

D0
)−θ where the reference distance D0 is 100m and the path loss exponent θ is 4. So

σ1 = σ2 = 3.31 and σ3 = 1.47.

In the conventional OMA system, for fairness comparison, we set the BS transmit SNR as

(ρ1 + ρ2). The BS transmits s1, s2 and s3 to each MT using 1
3 time resource, respectively. Each

MT receives signal from lincensed and unlicensed band at the same time by double antennas

and uses MRC for receive signal processing, which is depicted in Fig. 4.4. In the OMA-based

relaying system, we assume that s1, s2 and s3 are transmitted using 1
3 time resource in the S-R

link, respectively; s2 and s3 are sent using half time resource in the R-D link, respectively. Other

assumptions are the same as CNAR system. The OMA-based relaying system is illustrated in

Fig. 4.5. Specially, the outage probability of conventional OMA system is calculated by taking

the average of the three MTs’ outage probabilities in Monte-Carol simulations. This reason

is the three MTs communicate with the BS separately in OMA, making the outage behavior

considered in an individual manner. But for relaying systems, the three MTs influence the

communication quality of each other. So it’s better to consider the outage behavior from the

perspective of a group.

Fig. 4.6 shows comparison of outage probability as a function of target rate R0 when

ρ2 = 15dB. One can observe that the theoretical analysis is verified by the simulation results.

For lower value R0, the outage probability for conventional OMA is the lowest. But it grows

significantly as R0 increases, which is not suitable for 5G as the data rate requirement is higher

in the future 5G. Moreover, the outage probability of CNAR system is much lower than the

OMA-based system for different R0 values.

In Fig. 4.7 and Fig. 4.8, we plot outage probability with respect to ρ1 and ρ2, respectively
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when R0 = 2. Here again, our theoretical derivations are validated and the CNAR system

has much lower outage probability than conventional OMA and OMA-based relaying system.

Moreover, in Fig. 4.7 with ρ1 increasing, the outage probability for CNAR doesn’t decrease

significantly. The reason is according to Eq. (4.8), when large ρ1 makes Pr[A] ≈ 1, Pout is

lower-bounded by 1 − Pr[B], which is determined by the MT1 transmit SNR and target rate.

Similarly, the outage probability for CNAR doesn’t reduce obviously in Fig. 4.8 as ρ2 increases.

The reason is similar to the one in Fig. 4.8. As a result, in high SNR regime, the choice of

target rate has much more influence than BS and MT1 transmit power. This phenomenon can

be considered in a practical view. In the past several years when the target rate is in low level,

(where the services are mainly texts and online music), the traditional OMA is enough for

required communication quality. But when the target rate is higher currently and in the future,

the relaying systems have much performance gain over traditional OMA when the total power,

spectrum and antennas are the same.

Fig. 4.9 presents the capacity results for CNAR and OMA-based system when the target

rate R0 = 2 and ρ1 = 19dB. The figure shows that the approximations of the capacity in CNAR

system well match the simulation results. One can also observe that the simulation curve for

C2 is not as close to its approximation as the curve for C3. The reason is as MT2 is nearer

to MT1, MT2 is more possible to be near user. When Event D occurs, log2(1 + βNρ2||g2||
2
2) 6

log2(1 + S NR2,1) lower the capacity from the approximation to some extent. And our power

allocation scheme makes the ergodic capacity of each CNAR user above the target rate.

From Fig. 4.10, CNAR has sum capacity gain over the OMA-based one. This is because

NOMA enables each user to exploit all time resource while OMA limits the time resource

that each user can use. Moreover, it’s easier to maintain the receive SNR at cell-edge users
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Figure 4.8: Outage probability as a function of MT1 transmit SNR ρ2 when R0 = 2.
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as a constant based on power ratios in NOMA, while conventional OMA causes their receive

SNR reduced due to the poor channel quality in long-distance transmission. According to the

tendency of curves, sum capacity of OMA-based system increases a little bit faster than CNAR

system, which indicates under extremely high transmit SNR, the sum capacity of CNAR system

will be lower than OMA. However, the practical situation where transmit power is limited is

suitable for CNAR to outperform OMA-based relaying system.

4.5 Chapter Summary

This chapter proposes a CNAR system in 5G to serve multiple cell-edge users concurrently

with data rate guarantee. To characterize the system performance, we derive the exact system

outage probability by analyzing the outage behavior in the S-R and R-D links separately. Then

we provide the optimal power allocation scheme to guarantee the data rate by minimizing the
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outage probability. Additionally, we give the approximation of ergodic sum capacity in high

SNR regime from the discussion on the interference at cell-edge users based on NOMA prin-

ciples. Numerical results validate the theoretical analysis. And they demonstrate that though

conventional OMA has low outage probability when the target rate is very small, our CNAR

has better outage and capacity performance than conventional OMA and OMA-based relaying

system at high target rate for the future 5G networks.



Chapter 5

Conclusions

5.1 Thesis Summary

In this thesis, the application of resource efficient techniques, i.e., massive MIMO, NOMA and

relaying technology, in the future 5G has been investigated mainly from three aspects. They

involves a general introduction of these techniques, following problems and literature survey of

existing solutions, our proposed algorithms for efficient antenna selection and user scheduling

in 5G massive MIMO-NOMA system, and a design along with performance a analysis of

CNAR system.

In particular, firstly, the principles of massive MIMO, NOMA to achieve high spectral

efficiency and relaying technology to achieve power efficiency are introduced. Following this,

relevant problems, including antenna selection, user scheduling, power allocation and relaying

scheme design, are described with the necessity to be solve. A literature survey on currently

available approaches is also provided.

Next, the antenna selection and user scheduling strategies in massive MIMO-NOMA sys-
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tem is investigated. With power allocation scheme among NOMA users figured out as the

basis, efficient antenna selection algorithm is proposed for single-band scenario. It searches

desired antennas from candidate antennas beneficial to relevant users. The joint AU contribu-

tion algorithm is proposed for multi-band multi-user scenario, which considers the contribution

of each antenna’s and user’s channel gain to total channel gain jointly. Simulation results show

that efficient search algorithm reaches near-optimal performance, and joint AU contribution

algorithm achieves performance similar to existing methods with reduces complexity. These

algorithms achieve high-level inter-user orthogonality with maintaining system stability.

Furthermore, a collaborative NOMA assisted relaying system is proposed for serve mul-

tiple cell-edge users simultaneously with data rate guarantee. The system is featured by the

collaboration of S-R and R-D links to provide multiple input and output for the relay. Then

with analysis of the outage behavior in the S-R and R-D links separately, we derive the sys-

tem outage probability, by minimizing which the optimal power allocation ratios are obtained.

To further characterize the system performance, we analyze the sum ergodic capacity by dis-

cussing the interference based on NOMA protocol. Simulation results validate the mathemat-

ical analysis and demonstrate that the proposed relaying system assisted by NOMA has better

outage and capacity performance than OMA.

5.2 Future Works

Some aspects of the application of the abovementioned 5G technologies still remain uncovered

in this thesis. They are worthy further consideration and exploration. Some aspects are listed

as follows:
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• In the massive MIMO-NOMA system, we focus on the power allocation scheme among

single NOMA user pair in each subband, with the assumption that the same power is allo-

cated to each subband. The global power allocation strategy requires future investigation

to improve the system capacity.

• We merely consider one user group forming a R-D connection in our CNAR system, but

massive users need to be served in practical 5G situation. As a result, the strategies to

designate certain user devices as relaying devices and assign cell-edge users to them are

worth investigating.

• For capacity maximization, some far users in the massive MIMO-NOMA system are

not scheduled for communications in certain time slots. However, they can possibly

be scheduled if assisted by relaying devices. Hence, potential combination of massive

MIMO-NOMA and CNAR systems to improve the communication quality can be con-

sidered.



Bibliography

[1] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selen, and J. Skold. “5G wireless
access: requirements and realization”. IEEE Commun. Mag., 52(12):42–47, Dec. 2014.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J.C.
Zhang. “What will 5G be?”. IEEE J. Sel. Areas Commun, 32(6):1065–1082, Jun. 2014.

[3] E. Bjornson, J. Hoydis, M. Kountouris, and M. Debbah. “Massive MIMO systems with
non-ideal hardware: Energy effciency, estimation, and capacity limits”. IEEE Trans. Inf.
Theory, 60(11):7112–7139, Nov. 2014.

[4] C. Lai, H. Li, X. Liang, R. Lu, K. Zhang, and X. Shen. “CPAL: A conditional privacy-
preserving authentication with access linkability for roaming service”. IEEE Internet
Things J., 1(1):2327–4662, Feb. 2014.

[5] M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and J. Sachs. “Enhanced radio access
and data transmission procedures facilitating industry-compliant machine-type commu-
nications over LTE-based 5G networks”. IEEE Wireless Commun., 23(1):56–63, Feb.
2016.

[6] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu. “5G network capacity: Key elements
and technologies”. IEEE Trans. Veh. Technol., 9(1):71–78, Jan. 2014.

[7] S. Andreev, O. Galinina, A. Pyattaev, M. Gerasimenko, T. Tirronen, J. Torsner, J. Sachs,
M. Dohler, and Y. Koucheryavy. “Understanding the IoT connectivity landscape: a con-
temporary M2M radio technology roadmap”. IEEE Commun. Mag., 53(9):32–40, Sep.
2015.

[8] S. Scott-Hayward and E. Garcia-Palacios. “Multimedia resource allocation in mmwave
5G networks”. IEEE Commun. Mag., 53(1):240–247, Jan. 2015.

[9] T. Bai, A. Alkhateeb., and R. W. Heath. “Coverage and capacity of millimeter-wave
cellular networks”. IEEE Commun. Mag., 52(9):70–77, Sep. 2014.

87



88 BIBLIOGRAPHY

[10] Z. Pi and F. Khan. “An introduction to millimeter-wave mobile broadband systems”.
IEEE Commun. Mag., 49(6):101–107, Jun. 2011.

[11] L. Lei, Z. Zhong, C. Lin, and X. Shen. “Operator controlled device-to-device communi-
cations in LTE-advanced networks”. IEEE Wireless Commun., 19(3):96C104, Jun. 2012.

[12] S. Liu, Z. Luo, Y. Liu., and J. Gao. “Spreading code design for downlink space-time-
frequency spreading CDMA”. IEEE Trans. Veh. Technol., 57(5):2933–2946, Feb. 2008.

[13] L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang. “Non-orthogonal multiple access
for 5G: solutions, challenges, opportunities, and future research trends”. IEEE Commun.
Mag., 53(9):74–81, Sep. 2015.

[14] N. Hu, Y. Yao, and Z. Yang. “Analysis of cooperative TDMA in rayleigh fading chan-
nels”. IEEE Trans. Veh. Technol., 62(3):1158–1168, Nov. 2012.

[15] N. Gupta and A.K. Jagannatham. “Multiuser successive maximum ratio transmission
(MS-MRT) for video quality maximization in unicast and broadcast MIMO OFDMA-
based 4G wireless networks”. IEEE Trans. Veh. Technol., 63(7):3147–3156, Jan. 2014.

[16] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta. “Massive MIMO for next
generation wireless systems”. IEEE Commun. Mag., 52(2):186–195, Feb. 2014.

[17] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, and Z. Turanyi.
“Design aspects of network assisted device-to-device communications”. IEEE Commun.
Mag., 50(3):170–177, Mar. 2012.

[18] J. Deng, A. A. Dowhuszko, R. Freij, and O. Tirkkonen. “Relay selection and resource
allocation for D2D-relaying under uplink cellular power control”. Proc. of IEEE GC
Wkshps, pages 1–6, Dec. 2015.

[19] Q. Zhao, Y. Mao, S. Leng, and H. Wang. “Multimedia traffic placement under 5G radio
access techniques in indoor environments”. Proc. of IEEE ICC, pages 3891–3896, Jun.
2015.

[20] N. B. Mehta, S. Kashyap, and A. F. Molisch. “Antenna selection in LTE: from motivation
to specification”. IEEE Commun. Mag., 50(10):144–150, Oct. 2012.

[21] A. Al-Dulaimi, S. Al-Rubaye, Q. Ni, and E. Sousa. “5G communications race: Pursuit
of more capacity triggers LTE in unlicensed band”. IEEE Trans. Veh. Mag., 10(1):43–51,
Mar. 2015.



BIBLIOGRAPHY 89

[22] Z. Arslan, M. Erel, Y. Ozcevik, and B. Canberk. “SDoff: A software-defined offloading
controller for heterogeneous networks”. Proc. of IEEE WCNC, pages 2827–2832, Apr.
2014.

[23] A. Sniady, M. Sonderskov, and J. Soler. “VoLTE performance in railway scenarios: In-
vestigating VoLTE as a viable replacement for GSM-R”. IEEE Veh. Technol. Mag., 10
(3):60–70, Jul. 2015.

[24] W. Nam, D. Bai, J. Lee, and I. Kang. “Advanced interference management for 5G cellular
networks”. IEEE Commun. Mag., 52(5):52–60, May 2014.

[25] A. Vallejo, A. Zaballos, J. Selga, and J. Dalmau. “Next-generation QoS control architec-
tures for distribution smart grid communication networks”. IEEE Commun. Mag., 50(5):
128–134, May 2012.

[26] D. Huang, B. He, and C. Miao. “A survey of resource management in multi-tier web
applications”. IEEE Commun. Surveys Tuts., 16(3):1574–1590, Jan. 2014.

[27] T. Liu, C. Yang, and L. Yang. “A unified analysis of spectral efficiency for two-hop
relay systems with different resource configurations”. IEEE Trans. Veh. Technol., 62(3):
3137–3148, Sep. 2013.

[28] R. Dou and G. Nan. “Optimizing sensor network coverage and regional connectivity in
industrial IoT systems”. IEEE Syst. J., PP(99):1–10, Jun. 2015.

[29] Q. Wang, G. Lim, L. J. Cimini, L. J. Greenstein, D. S. Chan, and A. Hedayat. “Quantify-
ing and comparing energy efficiencies on SU-MIMO and MU-MIMO downlinks”. Proc.
of IEEE GLOBECOM, pages 1–6, Dec. 2015.

[30] D. Tse and P. Viswanat. Fundamentals of Wireless Communication. 1st ed. Cambridge,
U. K.: Cambridge Univ. Press, 2005.

[31] Y. Jang, K. Min, S. Park, and S. Choi. “Spatial resource utilization to maximize uplink
spectral efficiency in full-duplex massive MIMO”. Proc. of IEEE ICC, pages 1583–1588,
Jun. 2015.

[32] T. M. Kim, A. Ghaderipoor, and A. Paulraj. “Antenna selection and power combining
for transmit beamforming in MIMO systems”. Proc. of IEEE GLOBECOM, pages 4600–
4605, Dec. 2012.

[33] R. M. Radaydeh and M. Alouini. “On the performance of arbitrary transmit selection for
threshold-based receive MRC with and without co-channel interference”. IEEE Trans.
Commun., 59(11):3177–3191, Oct. 2011.



90 BIBLIOGRAPHY

[34] A. Paulraj, R. Nabar, and D. Gore. Introduction to Space-Time Wireless Communications.
1st ed. Cambridge, U. K.: Cambridge Univ. Press, 2008.

[35] Q. Nadeem, A. Kammoun, M. Debbah, and M. Alouini. “3D massive MIMO systems:
Modeling and performance analysis”. IEEE Trans. Wireless Commun., 14(12):6926–
6939, Jul. 2015.

[36] A. Chockalingam and B. S. Rajan. Large MIMO Systems. Cambridge, U. K.: Cambridge
Univ. Press, 2014.

[37] C. He and R. D. Gitlin. “Limiting performance of massive MIMO downlink cellular
systems”. Proc. of Information Theory and Application Workshop, pages 1–6, Feb. 2016.

[38] A. Li, A. Benjebbour, X. Chen, H. Jiang, and H. Kayama. “Investigation on hybrid
automatic repeat request (HARQ) design for NOMA with SU-MIMO”. Proc. of IEEE
PIMRC, pages 590–594, Aug. 2015.

[39] X. Chen, A. Benjebbour, A. Li, and A. Harada. “Multi-user proportional fair scheduling
for uplink non-orthogonal multiple access (NOMA)”. Proc. of IEEE VTC Spring, pages
1–5, May 2014.

[40] P. Patcharamaneepakorn, A. Doufexi, and S. Armour. “Reduced complexity joint user and
receive antenna selection algorithms for SLNR-based precoding in MU-MIMO systems”.
Proc. of IEEE VTC Spring, pages 1–5, May 2012.

[41] M. Torabi and D. Haccoun. “Performance analysis of joint user scheduling and antenna
selection over MIMO fading channels”. IEEE Signal Process. Lett., 18(4):235–238, Feb.
2011.

[42] S. Shi, L. Yang, and H. Zhu. “Outage balancing in downlink non-orthogonal multiple
access with statistical channel state information”. IEEE Trans. Wireless Commun., PP
(99):1, Mar. 2016.

[43] Z. Ding, P. Fan, and H. V. Poor. “Impact of user pairing on 5G non-orthogonal multiple
access”. IEEE Trans. Veh. Technol., PP(99):1, Sep. 2015.

[44] J. Shin and J. Jeong. “Improved outage probability of indoor PLC system for multiple
users using resource allocation algorithms”. IEEE Trans. Power Del., 28(4):2228–2235,
Jul. 2013.

[45] I. Ahmed and A. Mohamed. “Outage optimal resource allocation for two-hop mul-
tiuser multirelay cooperative communication in OFDMA upstream”. Proc. of IEEE VTC
Spring, pages 1–6, May 2011.



BIBLIOGRAPHY 91

[46] X. Cai, J. Zheng, Y. Zhang, and H. Murata. “A capacity oriented resource allocation
algorithm for device-to-device communication in mobile cellular networks”. Proc. of
IEEE ICC, pages 2233–2238, Jun. 2014.

[47] P. Zhang, S. Chen, and L. Hanzo. “Two-tier channel estimation aided near-capacity
MIMO transceivers relying on norm-based joint transmit and receive antenna selection”.
IEEE Trans. Wireless Commun., 14(1):122–137, Jul. 2014.

[48] M. Benmimoune, E. Driouch, W. Ajib, and D. Massicotte. “Joint transmit antenna se-
lection and user scheduling for massive MIMO systems”. Proc. of IEEE WCNC, pages
381–386, Mar. 2015.

[49] J. Kim and I. Lee. “Non-orthogonal multiple access in coordinated direct and relay trans-
mission”. IEEE Commun. Lett., 19(11):2037–2040, Nov. 2015.

[50] Z. Ding, M. Peng, and H. Vincent Poor. “Cooperative non-orthogonal multiple access in
5G systems”. IEEE Commun. Lett., 19(8):1462–1465, Aug. 2015.

[51] J. Choi. “Minimum power multicast beamforming with superposition coding for mul-
tiresolution broadcast and application to NOMA systems”. IEEE Trans. Commun., 63(3):
791–800, Jan. 2015.

[52] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad,
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Appendix A

Proofs of Equations for Performance

Analysis in CNAR System

Proof Proof of Pr[B] With the probability density function (PDF) for Rayleigh channel, the

cumulative distribution functions (CDF) of ||g2||
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2 can be obtained by
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2 is calculated as
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So we get the following PDF of ||g2||
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where (e) is obtained by FX(x)|x=∞ = 1 and log2(1 + λx)|x=∞ = λ
ln 2
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Proof Proof of Pr[D]
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−
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βNρ2σ
2
2σ

2
3

]

where (c) is obtained by e−x ∼
x→0 1 − x when ρ2 is large. Then it makes 1

ρ2
2

in (c) close to zero,

indicating Pr[D] ≈ 0.



Appendix B

Analysis of Complexity for single-band

Scenario

The optimal algorithm will exhaustively search all possible CLT
MT

possibilities of antenna subset

and figure out the one with the maximal user sum rate. So the operation times are 2LTCLT
MT

for

obtaining all possibilities of user sum rate and CLT
MT

for obtaining the optimal one. In this way,

the complexity for optimal algorithm in antenna selection is O(LTCLT
MT

).

For Joint AU contribution algorithm, only the steps relevant to antenna side should be

executed since users involved in communications have been identified. In particular, we can

initialized the user side contribution as cwU = 1 for each user. Then we need to calculate the

antenna side contribution only once. Since there are one subband, the computational operations

are 2MT , followed by MT operations for sorting. As a result, the final complexity is O(MT ).
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