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Abstract 

Piezoelectric nanomaterials have attracted increasing attentions due to their distinct 

electromechanical features, especially the size-dependent properties, which differ greatly from 

their bulk counterparts.  

Due to the large strain gradients presented in nanostructures, the flexoelectricity is believed to 

be responsible for such size-dependent properties. In this thesis, based on the Kirchhoff plate 

model and the extended linear piezoelectric theory, a modified continuum mechanics based 

model is developed to study the size-dependent flexoelectric effect upon the static bending 

behaviors of a cantilevered piezoelectric nanoplate (PNP). Finite difference method (DFM) is 

employed to obtain the approximate numerical solutions. 

The numerical results indicate that the flexoelectric effect is more prominent with the decrease 

of the plate thickness, and it is also sensitive to the boundary conditions, the plate in-plane 

dimensions, and the applied mechanical and electrical loads. 

The current work aims at providing an increased understanding of the size-dependent 

properties of the piezoelectric nanomaterials. 
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Chapter 1  

1 General introduction 

1.1 Introduction 

Piezoelectric materials are smart materials that exhibit unique electromechanical coupling, 

which enables engineering designs to have more innovative features and functions. Such 

advanced materials have experienced growing interest in transduction technologies across 

all engineering platforms. Application examples include energy harvesters, sensors, 

transducers, actuators, medical imaging systems and structural health monitoring systems 

etc. As the dimension of various functional devices is reduced down to nanoscale, the need 

to develop piezoelectric nanomaterials as the building elements is becoming crucial. 

Attributing to the development of nanotechnology and synthesis techniques, various 

piezoelectric nanomaterials have been synthesized. The distinct mechanical and physical 

electrical properties of such nanomaterials make them appealing for a wide range of 

applications in nano-electromechanical systems (NEMS), such as piezoelectric 

nanogenerators, nanosensors, diodes and nanoresonators.  

Better exploitation of these novel materials requires improved understanding of the 

underlying fundamentals governing the delicate multi-physics coupling behavior of the 

materials. Extensive efforts have been naturally devoted to experimental testing and 

atomistic simulations, from which it is found that the physical properties of piezoelectric 

nanomaterials are different from their corresponding bulk counterparts, i.e., the size-

dependent properties. For example, size-dependent features are found in the Young’s 

modulus, the fracture strain of ZnO nanowires, and piezoelectric coefficients of BaTiO3 

(Chen et al., 2006; Stan et al., 2007; Desai and Haque, 2007; Zhang et al., 2009; 2011). 

The size dependent properties of piezoelectric nanomaterials may have a great impact on 

their potential applications, thus it is essential to have a better understanding of such size 

dependent features. Due to the extreme difficulty of performing experiments on 

nanostructures and the computational limitations of the atomistic simulations at both length 

and time scales, it is natural to resort to alternative efficient methods to study the 
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mechanical and physical properties of nanoscale materials, such as the continuum 

mechanics theories. However, the conventional models fail to capture the size effects since 

they neglect the variation of interatomic quantities. Thus, modified continuum models with 

the incorporation of the small scale features should be developed. Several modified 

continuum models have been proposed to investigate the properties of nanostructures, such 

as the linear surface elasticity model, the surface piezoelectricity model and the extended 

linear piezoelectricity theory. Their simulation results agree well with those from 

experiments and atomistic simulations. 

Due to the large surface to volume ratio of structures at nanoscales, surface effects are 

believed to play an important role in the size-dependent properties of nanomaterials. 

Particularly for piezoelectric nanomaterials, flexoelectricity is also believed to contribute 

to their size-dependent properties, which refers to a spontaneous polarization in linear 

response to an inhomogeneous deformation or strain gradients. Unlike the piezoelectricity, 

the flexoelectricity is a universal effect for all dielectrics, even in centrosymmetric 

materials. It is found in the literature that the flexoelectricity can modify some physical 

characteristics of piezoelectric nanomaterials, such as the dielectric constant (Catalan et 

al., 2004; 2005), shifts of domain configurations and modifications of the hysteresis loops 

(Lee et al., 2011), the reduction of capacitance due to the dead layer effect (Majdoub et al., 

2009). 

To better understand the flexoelectric effect, several theoretical frameworks have been 

established with the consideration of the nanoscale features, such as the theory proposed 

by Mindlin (1968) for dielectrics with the reverse flexoelectric effect, the theory developed 

by Maranganti et al. (2006) which includes the effects of the flexoelectricity, the reverse 

flexoelectricity and the strain gradients, and the model established by Hu and Shen (2010) 

with the consideration of the flexoelectricity, the electrostatic force and the surface effects. 

Based on these pioneering works, the flexoelectric effect on the physical and mechanical 

properties of piezoelectric nanostructures could be predicted quantitatively to some extent. 

However, the continuum modeling of the influence of the flexoelectricity on the physical 

properties of piezoelectric nanostructures is still limited in the literature, particularly for 
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comples configurations. Therefore, it is important to further uncover the flexoelectric effect 

on the mechanical and physical properties of these piezoelectric nanostructures.  

1.2 Research objectives 

To make better use of the nanoscale piezoelectricity for future design and applications, it 

is essential to have a thorough understanding on the characteristics of such nanoscale 

features. Since plates are one of the fundamental building blocks for piezoelectric nano-

devices, current work will focus on such a configuration. The main objective of this thesis 

is to provide a fundamental understanding of the size-dependent electromechanical 

coupling properties of a cantilevered piezoelectric nanoplate (PNP) with the flexoelectric 

effect, based on a modified Kirchhoff plate model. Detailed works are listed as the 

following: 

1) Developing a modified Kirchhoff model for cantilevered piezoelectric nanoplates 

considering the flexoelectric effect. 

2) Obtaining approximate numerical solutions for the governing equations by finite 

difference method (FDM). 

3) Studying the influence of the flexoelectric effect on the static bending and 

electromechanical coupling behaviors of cantilevered piezoelectric nanoplates. 

1.3 Thesis outline 

Chapter 1 introduces briefly the background of this study and states the research objectives 

and thesis outline. 

Chapter 2 provides a detailed review of the history of piezoelectric materials and their 

nanoscale counterparts and potential applications, the flexoelectricity and surface effects 

that contributes to the size-dependent properties of piezoelectric nanostructures. Moreover, 

the flexoelectric effects and their size-dependent properties are reviewed in detail. 

In Chapter 3, based on the extended linear theory of piezoelectricity and Kirchhoff plate 

model, a modified continuum mechanics based model that can capture the size features of 
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the cantilevered piezoelectric nanoplate is developed. In this model, the flexoelectric effect 

is incorporated in the governing equations and the boundary conditions. 

In Chapter 4, finite difference method (FDM) is employed to obtain the numerical solutions 

to the problem. The discrete process of the governing equations and boundary conditions 

is presented in detail. 

In Chapter 5, the size-dependent flexoelectric effect on the static bending behaviors and 

the electromechanical coupling of a cantilevered piezoelectric nanoplate is interpreted 

through the numerical results. The effects of different factors, such as the plate thickness, 

the plate in-plane dimensions, the applied voltages and the applied mechanical loads are 

investigated in detail. 

Chapter 6 presents the conclusion based on the FEM result and provides recommendation 

for future research. 
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Chapter 2  

2 Literature review 

2.1 Piezoelectricity 

The word piezoelectricity derives from Greek and means “electricity by pressure” (piezo 

comes from piezein, which means “to squeeze or press”; electricity comes from elektron, 

which means “shining light”). This term was suggested by Hankel (1881) to label the 

phenomenon first discovered by brothers Pierre and Jacques Curie (1880). Using certain 

crystals, the Curie brothers observed the production of positive and negative charges on 

several parts of the crystal surfaces when compressing the crystal in different directions. 

This phenomenon is known as the direct piezoelectric effect. By the end of the year after 

their discovery, the Curie brothers confirmed the existence of the reverse piezoelectric 

effect, which was first mathematically deducted by Lippmann (1881) using the 

fundamental thermodynamics theory. The reverse piezoelectric effect refers to the 

induction of mechanical deformations by the application of an electric field. The Curie 

brothers also found that the magnitude of the piezoelectric constant of quartz for the direct 

and reverse effects was the same.  

It is found that the piezoelectric effect only exists in materials with non-centrosymmetric 

crystal structures. As illustrated in Figure 2-1, for non-centrosymmetric molecule, the 

centers of mass for the positive ions coincide with that for the negative ions without any 

applied force. Thus, the external effects of the positive and negative charges cancel out 

reciprocally, which results in an electrically neutral molecule. When an external force is 

applied to the material, the centers of mass for both the positive and negative ions 

experience relative displacement with respect to each other, producing a dipole moment. 

The dipole moment cancels out inside the material, and a distribution of charge appears in 

the material surface, thus a polarization develops and produces an internal electric field. 

On the contrary, in centrosymmetric materials, the center of masses of the positive and 

negative ions coincide at the center of symmetry even under mechanical strains, remaining 

zero net polarization, which indicates no piezoelectricity for such centrosymmetric 

materials. The piezoelectric effect is reversible, which means that materials possessing 
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direct piezoelectric effect also exhibit reverse piezoelectric effect. For the reverse 

piezoelectric effect under the applied electric field, the negative ions have a tendency to 

move towards the positive ions. This change results in the shift of negative and positive 

ions, which will change the dimension of the material and give rise to strains. The 

mechanisms of direct piezoelectricity and reverse piezoelectricity show that although those 

two phenomena are reversible, they are fundamentally different. 

 

Figure 2-1 A molecular model for explaining the piezoelectricity: (a) unperturbed 

molecule; (b) molecule subjected to an external force, and (c) polarizing effect on the 

material surfaces (reproduced from Reference (Arnau, 2004)) 

Piezoelectricity is possessed by a group of natural materials such as quartz, zinc blende, 

sodium chlorate, calamine, topaz, tartaric acid, cane sugar, Rochelle salt and so on. 

However, due to the low electromechanical coupling effect, which limits the performance 

of those materials, the commercialization of piezoelectric materials was strongly inhibited 

in the early days. This situation was later changed when a major breakthrough came with 

the invention of piezoelectric ceramics, including barium titanate (BaTiO3) in the 1940s 
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and the lead zirconate titanate (PZT) in the 1950s. Those materials exhibit high dielectric 

and piezoelectric properties, therefore their behaviors could be altered to desired responses 

and applications (Jordan and Ounaies, 2001). Piezoelectric ceramics comprise of small 

crystallites in large quantities. Below the Curie point (Shah, 2011; Yan, 2013), each 

elementary crystallite has a built-in electric dipole. Neighboring dipoles tend to align with 

each other to form regions known as domains, hence, resulting in a net dipole moment to 

the domain. Domains are distributed randomly throughout the material, and the 

polarization directions between domains differ from one to another. Thus, there is no 

overall polarization or piezoelectric effect. However, the ceramics may become 

piezoelectric by a poling process during which the material is subjected to a strong electric 

filed at a temperature slightly below the Curie point.  As shown in Figure 2-2, during such 

a poling process, the electric field orients all the dipoles in the direction of the field. After 

the removal of the electric field, most dipoles remain locked in roughly the same direction, 

resulting in the appearance of permanent polarization. The poling process is usually the 

last step in manufacturing piezoelectric ceramics (Jordan and Ounaies, 2001).  

 

Figure 2-2 Effects of poling (reproduced from Reference (Morgan Matroc, Inc)) 

Due to the high electromechanical coupling effect and the development of modern 

technologies, the present-day needs and uses of piezoelectric materials are extended to 

various application areas, ranging from simple consumer products such as seat belt buzzer 
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to complex technological advancements, such as energy harvesting devices (Ottaman et 

al., 2002; Sodano et al., 2004; Shu et al., 2007), transformers (Flynn and Sanders, 2002; 

Ivensky et al., 2002; Horsley et al., 2007), sensors (Chee, 1998; Sirohi and Chopra, 2000, 

Steinem et al., 2007), transducers (Krimholtz et al., 1970a; 1970b; Leach, 1994; Dubois 

and Muralt, 1999), actuators (Crawley and De Luis, 1987; Ang et al., 2007; Rakotondrabe, 

2011), atomic force microscopy (Walters et al., 1996; Christman et al., 1998; Croft et al., 

2001), artificial muscles (Ashley, 2003), underwater sonars (Dahlstrom et al., 1988; Ting, 

1992; Tressler, 2008), medical imaging systems (Ritter et al., 2002; Shuang et al., 2007) 

and so on.  

2.2 Piezoelectric nanomaterials and their size-dependent 
properties 

Nanostructured materials are defined as materials with morphological features at nanoscale 

(Mishra and Sethy, 2013), which are smaller than 1 𝜇𝑚 in at least one dimension and 

potentially as small as atomic and molecular length scales (~0.2 𝑛𝑚) (Buzea et al., 2007). 

Compared with their bulk counterparts, nanomaterials exhibit unique properties such as 

larger fraction of surface atoms, large surface energy caused by high surface to volume 

ratio, spatial confinement, reduced imperfections and so on. With the development of 

synthesis techniques and nanotechnologies, diverse nanostructures can be achieved under 

specific growth conditions. Based on the dimension of the nanostructures, they are 

classified into three main categories (Fang et al., 2013): zero-dimensional (0D) 

nanoparticles with all three dimensions at the nanoscales (Dodds et al., 2012) such as 

nanocluster material (Demishev et al., 2002), nanodispersions (Green, 2010) and quantum 

dots (Alivisators, 1996); one-dimensional (1D) nanostructures with nanoscale features in 

two dimensions such as nanotubes (Yin and Qu, 2014), nanowires (Wang and Song, 2006), 

nanobelts (Kulkarni, et al., 2005), nanorods (Aydogdu, 2009), nanofibers (Zong et al., 

2002), nanorings (Wang and Duan, 2008) and etc.; two-dimensional (2D) nanostructures 

with nanoscale in one dimension such as nanofilms (Zhang and Wang, 2012), nanoribbons 

(Li et al., 2008), graphene (Murmu and Pradhan, 2009) and quantum walls (Landi et al., 

2005). 
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"Small is different", such materials may have special mechanical and physical properties 

stemming from their nanoscale features. In mechanical property aspects, they have 

enhanced stiffness and strength compared to their macroscale counterparts, which make 

them potential applications as reinforcements in composites. Due to electron/phonon 

scattering at grain boundaries of nanoscale crystallization, the thermal and electrical 

conductivity of nanowires are noticeable reduced (Chen et al., 2011).One of the most 

important features of nanowires is its considerable small thermal conductivity. Therefore, 

from manipulated materials to low-dimensional nanowires, it gives an innovative method 

to enhance the heat-electricity conversion efficiency for thermoelectric materials. The 

change in properties is not always preferable. For example, for ferroelectric materials 

smaller than 10 nm, the magnetisation direction can be switched using room temperature 

thermal energy, thus the materials will be useless for memory storage. 

In recent years, the combination of nanotechnology and piezoelectric technology has 

resulted in a new class of piezoelectric nanostructures (Fang et al., 2013).Those nanoscale 

piezoelectricity materials exhibit enhanced piezoelectric effect, excellent resilience, and 

semiconducting properties (Wang et al, 2007). Those unique features make them appealing 

for a wide range of applications in nanoelectromechanical systems (NEMS). One of the 

most promising applications is piezoelectric nanogenerators, first introduced by Wang and 

Song (2006). In their research, electricity was generated by deforming aligned piezoelectric 

nanowires with a conductive atomic force microscopy (AFM) tip, demonstrating a 

prototype of piezoelectric nanogenerators. Later, direct electricity generated from other 

one-dimensional and two-dimensional nanostructures has also been successfully 

demonstrated by researchers, including BaTiO3 nanowirs (Wang et al, 2007), PVDF 

nanofibers (Chang et al., 2010), BaTiO3 nanofilms (Park et al., 2010), and PZT 

nanoribbons (Qi et al., 2010). The development of such piezoelectric nanogenerators opens 

up new ways for self-powering of wireless nanodevices and nanosystems. Apart from the 

piezoelectric nanogenerators, there are other applications using nanostructured 

piezoelectric materials such as nanosensors (Lao et al., 2007), diodes (Yang et al., 2009) 

and nanoresonators (Asemi et al., 2014). However, as these applications are still in the 

early stage of the development, there is still a long way to go to make them available 

commercially. Thus, in order to fulfill the potential application of piezoelectric 
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nanomaterials, it is essential to have a better understanding of the electromechanical 

coupling at the nanoscale. 

For macroscale materials, their physical and mechanical properties can be well predicted 

by traditional technique. Extensive efforts have been made to investigate the properties of 

piezoelectric nanomaterials, including both experimental and atomistic studies. It is found 

that the physical properties of piezoelectric nanomaterials differ from their corresponding 

bulk counterparts, i.e., the size-dependent properties. By employing electric-field-induced 

resonance method, Chen et al. (2006) studied the Young’s modulus of ZnO nanowires, and 

the experiment results showed that the Young’s modulus increased dramatically with the 

decrease of the diameter. Using contact resonance atomic force microscopy (CR-AFM) 

and friction-type measurements, Stan et al. (2007) also found that the elastic property of 

ZnO nanowires showed size-dependence features. When the wire diameter was reduced to 

a certain small value, the radial elastic moduli and the shear modulus increased noticeably. 

Using a MEMS test-bed for quasi-static uniaxial tensile testing, Desai and Haque (2007) 

observed that the fracture strain of ZnO nanowires varied from 5% to 15% when decreasing 

the diameter from 500nm to 200nm. The study carried out by Wen et al. (2008) showed 

that the ultimate strength of ZnO nanowires could be up to 40 times of that of bulk material, 

in which the controlled lateral force atomic force microscopy (AFM) measurement was 

performed. Bühlmann et al. (2002) demonstrated a strong increase of the piezoelectric 

response of PZT films with lateral dimensions below 200nm based on piezoelectric 

sensitive scanning force microscopy in the contact mode.  Zhao et al. (2004) measured the 

effective piezoelectric coefficient of ZnO nanobelt using piezoresponse force microscopy 

(PFM), and it was found that the effective piezoelectric coefficient of ZnO nanobelts 

depended on the frequency and was much larger than the corresponding values of the bulk 

ZnO. Zhu et al. (2008) investigated the piezoelectric property of a ZnO nanowire and found 

size dependence of the piezoelectric coefficient using a resonance shift method with a 

nano-electromechanical oscillator. Minary-Jolandan et al. (2012) directly measured three 

independent piezoelectric coefficients of 𝑑33, 𝑑13 and 𝑑15 for GaN nanowires using an 

experimental approach based on scanning probe microscopy, and the result revealed that 

GaN nanowires displayed strong piezoelectricity in three dimensions, with up to six times 

of that for their bulk counterpart.  
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In addition to the experimental studies, atomistic simulations have also been employed to 

investigate the physical properties of nanoscale piezoelectric materials. For atomistic 

modeling, the atomic-level resolution is obtained by treating atoms as elementary units. 

Similar trends on the size-dependency have been observed. With molecular dynamical 

simulations, Komanduri et al. (2002) performed uniaxial tension on nanoscale silicon (Si) 

and germanium (Ge) using the multibody Tersoff potential, and they found that the extent 

of strain prior to failure was much higher than the one at the macroscale. Liang and Zhou 

(2003) analyzed the effects of size and strain rate on the tensile deformation of Cu 

nanowires using molecular dynamics simulations with an embedded atom method (EAM) 

potential. It was found that the yield stress decreased with the specimen size while ductility 

increased with the specimen size. Using molecular dynamics simulations, Kulkarni et al. 

(2005) studied the response of ZnO nanobelts to quasi-static tensile loading. It was 

demonstrated that the ultimate tensile strength and the Young’s modulus of the belts were 

dependent on the size and the growth orientation. Agrawal et al. (2008) examined elasticity 

size effects in ZnO nanowires using a combined experimental (an in situ TEM tensile 

testing technique) and computational (large-scale atomic/molecular massively parallel 

simulator) approach, demonstrating the size-dependency of Young’s modulus. Dai et al 

(2009) performed molecular dynamics simulation to study the tensile behavior of ZnO 

nanowires under tensile loading, and the relationship between the structural deformation 

and the size-dependent mechanical property was provided in detail. Using shell-model 

based molecular dynamics, Zhang et al. (2009; 2011) found that both the elastic modulus 

and piezoelectric coefficient of BaTiO3 nanowires are size dependent and their values 

differ from those of their bulk counterparts. Agrawal and Espinosa (2011) were the first to 

study the piezoelectric size effects of ZnO and GaN nanowires using principle-based 

density functional theory (DFT) calculation. They found a giant piezoelectric size effect, 

which was confirmed by Momeni et al. (2012) using a molecular dynamics approach.  

From the literature, we can see that size dependency is a factor that significantly affects the 

properties of nanoscale piezoelectric materials. Thus, it is of great importance to have a 

better understanding of the underlying physics of such size dependent properties. However, 

the extremely small dimensions of nanostructures can raise serious challenges for 

experimental measurements. Meanwhile, atomistic simulations have computational 
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limitations at both length and time scales, since generally they can only model 

nanostructures within several nanometers. Therefore, continuum mechanics modelling 

could be an alternative and efficient way to investigate the properties of nanomaterials. The 

structure features of materials at nanoscale break the law of continuum mechanics.  

Conventional continuum models ignore the variation of interatomic quantities and fail to 

capture the size effects of materials at nanoscale. Therefore, modified continuum models 

are required to incorporate the size effects. Due to the large surface to volume ratio of 

structures at nanoscale, surface effects are believed to play a substantial role in the size-

dependent properties of nanomaterials. Particularly for piezoelectric nanomaterials, 

flexoelectricity is also believed to contribute to their size-dependent properties. Therefore, 

these two features need to be incorporated in the continuum modeling. 

2.3 Factors that contribute to size-dependent properties of 
piezoelectric nanomaterials: surface effects and 
flexoelectricity 

2.3.1 Surface effects 

The concept of surface effects originates from the surface tension of liquid. Surface tension 

is a contractive tendency of a liquid surface that allows it to resist an external force, which 

is caused by the cohesion. The surface tension is described by the Young-Laplace equation, 

which states that the difference between the hydrostatic pressures of a spherical surface is 

proportional to the surface tension and the mean curvature. Based on the solution of this 

equation, shapes governed by the surface tension can be determined, such as the shape of 

water drops, puddles and soap bubbles. The essence of surface tensions is explained by the 

fact that the environment for atoms in the vicinity of a surface is different from that for 

atoms in the bulk. Thus, the energy of surface atoms differs from that of the corresponding 

bulk atoms, which in turn results in excess free energy, i.e. the free surface energy in the 

solid (Streitz et al., 1994). Different from liquids, the surface energy of solids is 

deformation dependent. The concept of surface stress in solids, introduced by Gibbs 

(1906), is defined through the change in excess free energy when the interface is deformed 

at a constant referential area. This surface stress is the work-conjugate to the surface strain 

with respect to surface energy. As the surface effect on the nearby atoms usually extends 
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to a few atomic layers, which are like a transition interphase, Gibbs idealized the surface 

energy and the surface stress as quantities in a continuum sense, belonging to a 

“mathematical surface” with a negligible thickness. Due to the large surface to volume 

ratio usually presented in nanomaterials, surface effects may be largely responsible for the 

size-dependent property of piezoelectric materials at nanoscale. 

Due to the limitation of both atomistic simulations and experimental testing as discussed 

previously, modified continuum models have been extensively investigated by researchers 

to better understand the size-dependent properties of nanomaterials. In order to incorporate 

the surface effects in the continuum modeling, Gurtin and Murdoch (1975) did a pioneering 

work with the development of the linear surface elasticity theory. According to this theory, 

nanostruture could be decomposed into a bulk part and surface layers with negligible 

thickness adhered to the bulk part without slipping (Commarata, 1997; Shen and Hu, 2010). 

The properties and constitutive equations for the surface differ from those for the bulk part. 

The generalized Young-Laplace equations are employed to govern the equilibrium of the 

surface, while the material properties can be obtained from experiments or atomistic 

simulations. By employing such continuum theory, Miller and Shenoy (2000) studied the 

size-dependent elastic property of Al and Si nanowires and nanoplates considering the 

surface effects. Based on the continuum theory of mechanics, Dingreville and Cherkaoui 

(2005) developed a framework with the surface free energy incorporated, and the results 

showed the size-dependent property of the overall elastic behavior of structural elements. 

Through the augmented continuum theory with surface effects, the size dependence of 

torsional rigidities of nanosized bars was studied by Shenoy (2002), and the results agreed 

well with those calculated using direct atomistic calculations. By incorporating the Young-

Laplace equation into the Euler Bernoulli beam theory, He and Lilley (2008) investigated 

the effect of surface stress and surface elasticity on the resonance frequencies of nanowires 

with different boundary conditions. Based on Gurtin’s linear surface elastic theory, Wang 

et al. (2008) quantitatively investigated the twisting deformation of nanowires due to the 

effects of anisotropic surface stresses and surface elasticity, and they demonstrated that 

such effects might be a reason for the formation of some micro-/nanohelices. Wang and 

Feng (2009) investigated the size-dependent surface effect on the axial buckling and 

transverse vibration of nanowires using Timoshenko beam model. Assadi and Farshi 
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(2010) studied the size dependent free vibration of curved nanobeams and rings with the 

consideration of surface energies. Besides one-dimensional nanostructures, two-

dimensional nanostructures have also been widely investigated with the consideration of 

the surface effects. He et al. (2003) analyzed the size-dependent deformation of elastic 

nanofilms with an arbitrary geometry and edge boundary conditions using the surface 

elasticity model. Wang and Zhao (2009) investigated the size-dependence of self-buckling 

and bending behaviors of nanoplates via incorporating surface effects. Lu et al. (2009) 

studied the elastic mechanical behavior of functionally graded nanomaterials taking into 

account surface effects by using modified Kirchhoff plate theory. Assadi et al. (2010) 

investigated the size dependent dynamic properties of nanoplates, in which the surface 

properties were considered, such as surface elasticity and residual stresses. Later, Assadi 

and Farshi (2011) also conducted a size dependent stability analysis of circular ultrathin 

films deposited on elastic medium considering surface energies.  

In the surface elasticity model, the surface energy density is associated with the in-plane 

strain at the surface. In piezoelectric nanostructures, it is reasonable to assume that the 

surface energy density may also rely on the electric field at the surface. By extending the 

surface elasticity model, Huang and Yu (2006) proposed a surface piezoelectricity model, 

in which the effect of surface piezoelectricity is taken into consideration in addition to the 

residual surface stress and the surface elasticity. Their work observed a considerable 

influence of surface piezoelectricity on the stresses and electric fields of a piezoelectric 

ring when the ring scaled down to nanoscale. Extensive investigations have been conducted 

based on the piezoelectric surface model. Li et al. (2011) did research on the wrinkling of 

piezoelectric films on compliant substrates with surface effects included, and it was shown 

that the surface effects depended on the film thickness. By employing Huang and Yu’s 

theory, Yan and Jiang (2011a; 2011b) studied the surfaces effects on the electromechanical 

coupling and bending behaviors of piezoelectric nanowires, as well as the vibrational and 

buckling behaviors of piezoelectric nanobeams with Euler-Bernoulli beam theory. Later, 

they applied the theory to curved piezoelectric nanobeams (Yan and Jiang, 2011c). 

Recently, Yan and Jiang (2012a; 2012b; 2012c) also systematically investigated surface 

effects on the static and dynamic behaviors of piezoelectric nanoplates using the modified 

Kirchhoff plate theory and the generalized Young-Laplace equations. Zhang et al. (2012) 
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examined the surface effects on the buckling of piezoelectric nanofilms due to an electrical 

voltage. Their results showed that the surface effects on the critical buckling voltage of a 

piezoelectric nanofilm relied sensitively on the thickness, the length-to-thickness ratio, and 

the residual surface stress. Zhang and Wang (2012) developed a sandwich-plate model to 

investigate the vibration of piezoelectric nanofilms, and it was found that the significant 

surface effect was originated primarily from the residual surface stress and the stress caused 

by an electrical voltage due to the surface piezoelectricity. Zhang et al. (2013) derived the 

governing equations of nanoscale piezoelectric plates considering surfaces effects, and 

found the size dependency of the effective properties and the natural frequencies. Later, 

Zhang et al. (2013) also presented a two-dimensional (2D) general equations for 

piezoelectric nanoshells considering the surface effects, and their results showed the size-

dependent property of resonant frequencies of a piezoelectric cylindrical shell.   

2.3.2 Flexoelectricity and its size-dependent property 

The flexoelectric phenomenon was first predicted by Makevich and Tolpygo (1957). 

Currently, the flexoelectricity is applied in two areas of condensed matter physics: soft 

matter (liquid crystals and biological materials) and common solids (Yudin and Tagantsev, 

2013). Unlike the piezoelectricity, which represents a conventional electromechanical 

coupling between the electric polarization and the uniform strain and is unique for 

noncentrosymmetric crystals, flexoelectricity is a universal effect for all dielectrics, even 

for centrosymmetric crystal structures. Flexoelectricity refers to a spontaneous polarization 

in linear response to an inhomogeneous deformation or strain gradients. Conversely, the 

reverse flexoelectricity refers to strain fields caused by polarization gradients. Tagantsev 

(1985) suggested four contributors to the flexoelectric effect: (1) the bulk dynamic 

flexoelectric effect, (2) the bulk static flexoelectric effect, (3) the surface flexoelectric 

effect, and (4) the surface piezoelectric effect. The first two contribute to the case of a 

propagating sound wave, and the last three contribute to the case of a strain gradient in a 

finite crystal medium.  

In regards to the surface flexoelectric response, there are two contributing factors: surface 

piezoelectric effect and surface flexoelectric effect. The average piezoelectric constant for 

surface atoms is dependent on the surface and the crystallographic orientation (Tagantsev, 
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1986). According to Tagantsev and Yurkov (2012) and Yudlin and Tagantsev (2013), for 

surface piezoelectricity, the effect is expected to be comparable to that of the static bulk 

flexoelectricity and scales as the bulk dielectric constant in high-K material. For surface 

flexoelectricity, the effect is tangible for materials with moderate values of dielectric 

constants. However, it is of minor importance in high-K material, which makes it less 

appealing in terms of practical applications. 

When an acoustic sound wave passes through a medium, it will generate a time-dependent 

strain gradient, which produces displacements of the ions. Accordingly, the acceleration of 

ions induces the flexoelectric response, which is called the dynamic flexoelectric effect. 

According to Tagantsev (1986) and Zubko et al. (2013), in a sound wave, both the static 

and the dynamic flexoelectric effects control the amplitude of the polarization, which 

differs considerably from the one for a static strain gradient condition. The result in the 

work of Tagantsev (1986) showed that the static and dynamic flexoelectric effects are of 

the same order in a sound wave. It is thus of great importance to account for the dynamic 

flexoelectric effect when investigating the properties of nanoscale dielectric materials in 

the dynamic electromechanical simulation (Kvasov and Tagantsev, 2015). 

In this thesis, we are interested in the case of dielectric materials under static bending 

condition without considering surface effects. It means only bulk static flexoelectric effect 

is considered in this work. Bulk static flexoelectricity is related to a fourth-order 

flexoelectric tensor 𝜇. Unlike the piezoelectric tensor, which vanishes for centrosymmetric 

material, the flexoelectric tensor is not zero for material of any symmetry; this difference 

was verified via lattice dynamics by Mindlin (1969) and Askar et al. (1970). According to 

Zubko et al. (2013), for centrosymmetric materials, under a homogenous deformation, the 

material will remain centrosymmetric since uniform strain does not break centrosymmetry. 

Thus, there is no polarization in such material under uniform deformation. In contrary, 

nonuniform deformation or strain gradients locally break the inverse symmetry of the 

material, rendering the formation of dipole moments and thus the induced polarization. 

In a phenomenological way, the electric polarization 𝑃𝑖 caused by the nonuniform strain 

𝜀𝑗𝑘 can be expressed by this equation, 
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𝑃𝑖 = 𝜇𝑖𝑗𝑘𝑙

𝜕𝜀𝑗𝑘

𝜕𝑥𝑙
 ( 2.1 ) 

Obviously, the strength of the flexoelectric effect depends on the numerical values of the 

flexoelectric coefficient 𝜇𝑖𝑗𝑘𝑙 or how large the strain gradients are. In general, the 

flexoelectric coefficients are rather insignificant relative to the piezoelectric coefficients in 

macro-scale piezoelectric materials. However, the strain gradients are closely linked with 

the feature scale of the structure. The essence of such a size-dependent flexoelectric effect 

is displayed in Figure 2-3. For two embedded triangular inclusions subject to a stress at 

two different length scales (μm vs. nm) but with the same aspect ratio, the strain field 

remains the same across both length scales, but the strain gradients scale as 1/𝑎𝑖. It is 

evident that for nanoscale materials, this flexoelectric effect becomes more significant. 

Thus, the size-dependent flexoelectricity may contribute significantly to the 

electromechanical coupling of piezoelectric materials at the nano-scale, which needs to be 

incorporated when modeling the electroelastic responses of piezoelectric nanostructures.  

 

Figure 2-3 Illustration of size effects due to scaling of strain gradients (reproduced from 

Reference (Majdoub et al. (2008b)) 
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2.3.3 Flexoelectricity characterization 

Kogan (1964) proposed a phenomenological description of the flexoelectric effect, and the 

flexoelectric coefficient 𝜇𝑖𝑗 was estimated to be the order of 𝑒/𝑎 (where 𝑒 is the electron 

charge and 𝑎 is the lattice parameters), which is usually as low as 10−10 − 10−11𝐶/𝑚. 

Later, Tagantsev (1985) investigated the flexoelectric phenomenon in details. For the 

flexoelectric effect, it was concluded that the flexoelectric coefficients 𝜇𝑖𝑗 might be in 

proportion to the dielectric susceptibility 𝜒𝑖𝑗 by the form of 𝜇𝑖𝑗 = 𝛾𝜒𝑖𝑗
𝑒

𝑎
 (where 𝛾 is a 

constant whose value is close to unity). From this equation, it can be seen that the 

flexoelectric coefficient 𝜇𝑖𝑗 is enhanced by the dielectrics with high dielectric susceptibility 

𝜒𝑖𝑗. This theory was later proved by a series of beam bending experiments carried out by 

Ma and Cross using materials such as barium strontium titanate (𝐵𝑎0.67𝑆𝑟0.33𝑇𝑖𝑂3) (2002), 

lead zirconate tiatnate (PZT) ceramics (2005), and barium titanate ceramics (2006). 

By applying uniaxial compression to a truncated triangle shaped sample, Cross (2006) 

measured some flexoelectric coefficients of Pb(Mg1/3Nb2/3)O3 and Ba0.67Sr0.33TiO3, but 

individual longitudinal components were hard to obtain due to the inhomogeneous strain 

gradients distribution. Using the same method as Ma and Cross, Zubko et al. (2007; 2008) 

measured the flexoelectric coefficients of SrTiO3 with different crystallographic 

orientations. It was found that it is impossible to obtain all components of the flexoelectric 

coefficients via this bending method. Using nanoindentation method, Gharbi et al. (2011) 

confirmed the order of flexoelectric coefficients of BaTiO3 obtained by Ma and Cross’s 

experiments. Zhou et al. (2012a) measured the flexoelectric coefficients of BaTiO3 by 

applying a homogeneous electric field, instead of applying a mechanical load. In addition 

to experimental studies, atomistic simulations have also been employed to derive the 

flexoelectric coefficients. Askar et al. (1970) used a shell-type model to derive the 

polarization-gradient coefficients, while Tagantsev (1986) employed a rigid-ion model to 

calculate the flexoelectric coefficients. For a rigid-ion model, the ion is considered as a 

whole part; while for the shell-type model, the outmost electron shell can move with 

reference to the ionic core. Through a lattice dynamics based microscopic approach, 

Maranganti and Sharma (2009) provided estimates of the flexoelectric tensor for certain 

crystalline dielectrics. Another way to determine the flexoelectric coefficients is the use of 
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the first principle theory (also known as the ab initio princile). According to Hong et al. 

(2010), the first principle theory can generate the independent flexoelectric coefficients, 

and provide guidance for the order of the value one should expect from experiments. Hong 

et al. (2010) used a direct ab initio approach to calculate the longitudinal flexoelectric 

coefficient of BaTiO3 and SrTiO3, the hardest one to measure experimentally (Zubko et 

al., 2007; 2008,). Using a first-principles-based effective Hamiltonian technique, 

Ponomareva et al. (2012) studied the magnitude and the sign of each flexoelectric tensors 

in (Ba0.5Sr0.5)TiO3 thin films, and they found that the flexoelectric coefficients depended 

strongly on the film’s thickness and temperature. Hong and Vanderbilt (2013) studied the 

flexoelectric coefficients using the first principle calculation, and it was found that the 

flexoelectric response could be divided into “longitudinal” and “transverse” components. 

Xu et al. (2013) determined the transverse and shear flexoelectric coefficients of BaTiO3 

and SrTiO3 via direct atomistic methods based on the first principle calculation. In addition 

to the methods mentioned above, with the techniques of harmonic decompositions and 

Cartan decompositions, Le Quang and He (2011) solved the basic problem of determining 

the number of independent components contained in a flexoelectric tensor for a given 

symmetry class. Based on the fundamental tensor relationship of the flexoelectricity, Shu 

et al. (2011) studied the symmetry of flexoelectric coefficients in matrix form for 

crystalline medium, and the non-zero and independent elements in the matrices were also 

calculated for 32 point groups and 7 Ci groups. 

2.3.4 Flexoelectric effects on the properties of nanoscale dielectrics 

In the literature, it was found that the flexoelectricity has a great impact on the properties 

of piezoelectric nanomaterials. Using the flexoelectric effect, Fousek et al. (1999) proposed 

a theory that by shaping the composite constituents properly, it is possible to create 

piezoelectric components without using piezoelectric materials. This concept was realized 

experimentally by Zhu et al. (2006), who fabricated a piezoelectric composite from 

Ba0.67Sr0.33TiO3 (BST) composition. Kityk et al. (2000) examined the elastic behavior of 

SrTiO3 using a three-point-bending method. They found nonlinear elastic anomalies in the 

real and imaginary parts of the complex Young’s modulus, which could be explained by 

assuming the ferroelectric order was induced by the applied strain gradient due to 
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flexoelectric coupling. Research carried out by Catalan et al. (2004; 2005) showed the 

important role played by flexoelectricity in decreasing the dielectric constant of 

ferroelectric thin films. Majdoub et al. (2009) explained that the flexoelectricity might be 

the dominant contributor to the dead layer effect in nanocapacitors, which rendered the 

magnitude of capacitance of such film lower than expected. Due to the flexoelectricity, Lee 

et al. (2011) showed that the domain configuration of HoMnO3 ferroelectric thin film 

changed from poly-domain to mono-domain, leading to a large systematic modification of 

the hysteresis loops. Catalan et al. (2011) found that in certain domain walls in PbTiO3, the 

flexoelectricity could induce polarization rotation, which is a characteristic of the 

morphotropic phase boundaries (MPB) with high piezoelectricity. By investigating the 

morphotropic phase boundaries (MPB) in ferroics, Borisevich et al. (2012) demonstrated 

that the flexoelectricity could render the effective domain wall energy negative, thus, 

making modulated phases near MPB stable. Lee et al. (2012) showed that the 

flexoelectricity could generate a rectifying diode effect and could also govern the local 

transport characteristics. The experiment carried out by Lu et al. (2012) suggested that due 

to the flexoelectric effect, the stress gradient induced by the tip of an atomic force 

microscope (AFM) could switch the polarization mechanically in the nanoscale 

ferroelectric film.  

To describe the flexoelectric effect phenomenologically, the Landau-Ginsburg-Devonshire 

(LGD) theory has been widely adopted by researchers. Based on such theory, Eliseev et al. 

(2009) pointed out that the flexoelectric effect on nano-rods and thin pills could change the 

uni-cell symmetry, leading to the shift of the phase transition temperature, the change of 

the spatial distribution of the order parameter, the distortion of the nanoparticle shape and 

the renormalization of extrapolation length of the boundary conditions. Zhou et al. (2012b) 

demonstrated that the flexoelectricity could result in the increase of the theoretical critical 

thickness in epitaxial BaTiO3 thin films, especially in the tension stressed films. Yudin et 

al. (2012) also adopted such theory to study the flexoelectric influence on the internal 

structure of neutral domain walls, and it was found that the flexoelectricity had an effect 

on the symmetry of domain walls, resulting in additional anisotropy and a domain wall 

structure different from the classical Bloch-wall structure. Chen and Soh (2012) 

phenomenologically studied the flexoelectric effect on the nanocomposite thin bilayer 
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films. The results showed that with the decrease of the film thickness, the polarization 

caused by flexoelectricity became more and more dominant, and it could even surpass the 

polarization caused by electrostricition and change the polarization value from negative to 

positive. Tagantsev and Yurkov (2012) phenomenologically suggested that the 

incorporation of the flexoelectric coupling could modify the mechanical boundary 

conditions of the nanostructures. This suggestion was later justified by Yan and Jiang 

(2013). They found that when considering the flexoelectric effect, the boundary condition 

of a cantilevered beam was more complicated than that of the conventional one. 

To better understand the flexoelectric effect, it is of importance to establish the theoretical 

framework taking into consideration the nanoscale feature. Based on Toupin’s (1956) 

linear piezoelectricity theory, Mindlin (1968) proposed a continuum field theory for the 

dielectrics with the reverse flexoelectric effect, which does not incorporate the direct 

flexoelectricity. Later, Maranganti et al. (2006) developed a complete theoretical 

framework for isotropic non-piezoelectric continuum materials considering the 

flexoelectric effect, its converse flexoelectric effect and the strain gradient effects. In this 

work, the fundamental solutions (Green’s functions) for the governing equations were 

derived, which provided explicit results for the strain-mismatched embedded inclusion 

problem. Recently, Hu and Shen (2010) established a more comprehensive theoretical 

model with the consideration of the flexoelectricity, the electrostatic force and the surface 

effects for nanosized dielectrics. 

Relying on these theoretical frameworks, many efforts have been devoted to investigating 

the flexoelectric effect on the physical and mechanical properties of the piezoelectric 

nanostructure. Based on the framework of Maranganti et al. (2006), Sharma et al. (2007) 

quantitatively demonstrated the possibility to create piezoelectric composite materials 

without using piezoelectric constituents. This theory was later verified by experiments 

carried out by Sharma et al. (2010), who created piezoelectric thin-film superlattices from 

non-piezoelectric materials.  Using atomistic and theoretical approaches, Majdoub et al. 

(2008b) showed that the size-dependent piezoelectric coefficients of piezoelectric 

nanostructures were enhanced strongly by flexoelectricity. Later, by employing an 

atomically dynamical continuum model in which nanobeams were under dynamical 
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mechanical excitations, Majdoub et al. (2008a) found that the flexoelectricity could 

dramatically enhance the energy-harvesting ability in nanostructure. Using a continuum 

model considering the piezoelectric and flexoelectric effects, Liu et al. (2012) studied the 

flexoelectric effect on the electric potential distribution of bent ZnO nanowire cantilevers. 

The results showed that the flexoelectricity might fill the gap between the experimental 

and classical piezoelectric theoretical results. Based on the extended linear piezoelectric 

theory (Hu and Shen, 2010), Yan and Jiang (2013) proposed modified Bernoulli and 

Timoshenko beam models to investigate the influence of flexoelectricity on the bending 

and vibration behaviors of piezoelectric nanobeams. The results indicated that the size-

dependent flexoelectric effect was sensitive to the boundary conditions, and the applied 

electrical load might reverse the deflection direction under certain loading conditions. 

Using the conventional Kirchhoff plate theory and the extended linear piezoelectric theory, 

Zhang and Jiang (2014) studied the electroelastic responses and the free vibrational 

behaviors of a clamped piezoelectric nanoplate considering flexoelectric effect. It was 

found that the flexoelectricity was more noticeable for thinner plates with smaller 

thickness, and the effect was dependent on the in-plane dimensions and the applied electric 

voltage. Based on the Kirchhoff plate theory, Liang et al. (2016) investigated the buckling 

and vibration of flexoelectric nanofilms, and the results indicated that the critical buckling 

loads and the natural frequency were influenced by the size-dependent flexoelectricity.  

2.4 Summary 

From the literature review stated above, it has demonstrated the importance of 

understanding the size dependent properties of piezoelectric nanomaterials in order to make 

better use of such nanostructures for future design and applications. For piezoelectric 

nanomaterials, the flexoelectricity is believed to contribute to its size dependent properties. 

Although efforts have been put into investigating the flexoelectric effect on the physical 

and electrical properties of piezoelectric nanostructures, the continuum modeling of such 

effect is still limited in the literature, especially for complex configurations. Thus, it is 

essential to further uncover the flexoelectric effect on the mechanical and physical 

properties of these piezoelectric nanomaterials. 
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Chapter 3  

3 Modeling of cantilevered piezoelectric nanoplates 
(PNPs) 

In this chapter, a mathematical model for a cantilevered piezoelectric nanoplate (PNP) 

accounting for the flexoelectricity is derived to study the size-dependent electromechanical 

behavior of the PNP. 

3.1 Extended linear piezoelectric theory 

Flexoelectricity represents an instantaneous polarization induced by non-uniform 

deformations or strain gradients. In order to take into account the effect induced by the 

strain gradients and some other coupling effects induced by polarization gradients (Hu and 

Shen, 2010), we adopt the extended linear theory of piezoelectricity to build the 

mathematical model in the current work. Under this theory, the most general form of the 

internal energy density function 𝑈 can be expressed as,  

𝑈 =
1

2
𝑎𝑘𝑙𝑃𝑘𝑃𝑙 +

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝜀𝑖𝑗𝑃𝑘 +

1

2
𝑏𝑖𝑗𝑘𝑙𝑃𝑖,𝑗𝑃𝑘,𝑙 + 𝑒𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑃𝑘,𝑙

+ 𝑓𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑘𝑃𝑙 +
1

2
𝑔𝑖𝑗𝑘𝑙𝑚𝑛𝑢𝑖,𝑗𝑘𝑢𝑙,𝑚𝑛 + ℎ𝑖𝑗𝑘𝑃𝑖𝑃𝑗,𝑘

+ 𝑟𝑖𝑗𝑘𝑙𝑚𝜀𝑖𝑗𝑢𝑘,𝑙𝑚 + 𝜂𝑖𝑗𝑘𝑚𝑛𝑃𝑖,𝑗𝑢𝑘,𝑚𝑛 

( 3.1 ) 

where  𝑃𝑖 stands for the component for the polarization tensor, 𝑢𝑖 is the component for the 

displacement tensor, and 𝜀𝑖𝑗 is the component for the strain tensor defined as 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 +

𝑢𝑗,𝑖). 𝑎𝑘𝑙, 𝑐𝑖𝑗𝑘𝑙 and 𝑑𝑖𝑗𝑘 are the elements of the reciprocal dielectric susceptibility, elastic 

constant, and piezoelectric constant tensors, respectively. These three terms stand for the 

conventional electromechanical couplings the same as those in the linear piezoelectric 

theory. The other terms are the higher order couplings between the electric polarization 

and the strain fields. 𝑏𝑖𝑗𝑘𝑙 represents the higher order coupling between the polarization 

gradient and the polarization gradient;  𝑓𝑖𝑗𝑘𝑙 is the component for direct flexocoupling 

coefficients, dictating the coupling between the strain gradient and the polarization; while 

𝑒𝑖𝑗𝑘𝑙 is the component for the reverse flexocoupling coefficients, representing the coupling 
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between the polarization gradient and the strain. In accordance with References (Sharma 

et al., 2010; Shen and Hu, 2010), it was justified that these two flexocoupling coefficient 

tensors satisfy 𝑓𝑖𝑗𝑘𝑙 = −𝑒𝑖𝑗𝑘𝑙. For simplicity purpose and to make the problem more 

mathematically tractable, the higher order couplings between the strain and the strain 

gradient (𝑟𝑖𝑗𝑘𝑙𝑚𝜀𝑖𝑗𝑢𝑘,𝑙𝑚), the strain gradient and the strain gradient (𝑔𝑖𝑗𝑘𝑙𝑚𝑛𝑢𝑖,𝑗𝑘𝑢𝑙,𝑚𝑛), and 

the strain gradient and the polarization gradient (𝜂𝑖𝑗𝑘𝑚𝑛𝑃𝑖,𝑗𝑢𝑘,𝑚𝑛) are ignored in the current 

work as in the existing studies (Majdoub et al., 2008b; Sharma et al., 2010; Yan and Jiang, 

2013; Zubko et al., 2013; Zhang, Yan and Jiang, 2014; Zhang and Jiang, 2014). Thus, the 

expression of 𝑈 can be reduced to 

𝑈 =
1

2
𝑎𝑘𝑙𝑃𝑘𝑃𝑙 +

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝜀𝑖𝑗𝑃𝑘 +

1

2
𝑏𝑖𝑗𝑘𝑙𝑃𝑖,𝑗𝑃𝑘,𝑙 + 𝑓𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑘𝑃𝑙

+ 𝑒𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑃𝑘,𝑙 

( 3.2 ) 

Accordingly, the constitutive equations for the piezoelectric medium can be derived from 

the internal energy density function 𝑈 as (Zhang, Yan and Jiang, 2014; Hu and Shen, 2014), 

𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
= 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝑃𝑘 + 𝑒𝑖𝑗𝑘𝑙𝑃𝑘,𝑙 ( 3.3 ) 

𝜎𝑖𝑗𝑚 =
𝜕𝑈

𝜕𝑢𝑖,𝑗𝑚
= 𝑓𝑖𝑗𝑚𝑘𝑃𝑘 ( 3.4 ) 

𝐸𝑖 =
𝜕𝑈

𝜕𝑃𝑖
= 𝑎𝑖𝑗𝑃𝑗 + 𝑑𝑗𝑘𝑖𝜀𝑗𝑘 + 𝑓𝑗𝑘𝑙𝑖𝑢𝑗,𝑘𝑙 ( 3.5 ) 

 𝐸𝑖𝑗 =
𝜕𝑈

𝜕𝑃𝑖,𝑗
= 𝑏𝑖𝑗𝑘𝑙𝑃𝑘,𝑙 + 𝑒𝑘𝑙𝑖𝑗𝜀𝑘𝑙 ( 3.6 ) 

where 𝜎𝑖𝑗 and 𝐸𝑖 are the stresses and the electric fields, respectively, and they have the 

same meaning as those traditional ones in the linear piezoelectric theory. It is clear that the 

flexoelectricity induces some effects upon these traditional quantities. For example, the 

extra term in the electric field 𝐸𝑖 is induced by the direct flexoelectricity while the extra 

term in the stress fields 𝜎𝑖𝑗 is caused by the reverse flexoelectricity. The flexoelectric effect 

also induces higher order stresses and higher order electric fields, i.e., 𝜎𝑖𝑗𝑚 (also called 
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moment stress) and 𝐸𝑖𝑗 (also called local electrical force). These two quantities are not 

involved in the classical linear piezoelectricity. 

For convenience purpose, the contracted index notation is adopted here for the 

conventional material constant tensors, for example, 𝑐11 = 𝑐1111, 𝑑31 = 𝑑311 and𝑓13 =

𝑓1133. Extensive efforts have been made to interpret and determine the flexocoupling 

coefficient tensor 𝑓𝑖𝑗𝑘𝑙 (Maranganti and Sharma, 2009; Sharma et al., 2010). It is found 

that the flexocoupling coefficient tensor 𝑓𝑖𝑗𝑘𝑙 has the same number of independent 

components as the flexoelectric coefficient tensor 𝜇𝑖𝑗𝑘𝑙 by following a relation 𝑓𝑖𝑗𝑘𝑙 =

𝑎𝑖𝑚(𝜇𝑚𝑗𝑘𝑙 + 𝜇𝑚𝑗𝑙𝑘 − 𝜇𝑚𝑘𝑙𝑗). For a given symmetry class of materials, Le Quang and He 

(2011) explained explicitly how to determine the number and types of all possible 

rotational symmetries for flexoelectric tensors. Shu et al. (2011) has calculated the non-

zero and independent elements of the direct flexoelectric coefficients in the matrix form. 

In the current work, the tetragonal barium titanate BaTiO3 (point group 4 mm) is used as 

the example material, with its flexoelectric coefficient tensors given by Shu et al. (2011).  

3.2 Derivation of the governing equations and the boundary 
conditions 

In the current work, the focus of the investigation is on the electroelastic response of a 

cantilevered PNP with length 𝑏, width 𝑎, and thickness ℎ as shown in Figure 3-1. A 

Cartesian coordinate system (𝑥, 𝑦, 𝑧) is used to describe the plate with 𝑥𝑦 plane being the 

midplane of the undeformed plate and 𝑧 axis along the plate thickness direction. For the 

plate, the edge 𝑦 = 0 is clamped while the other three edges are free to move. The 

piezoelectric plate is polarized along the 𝑧 direction and is coated with electrodes on the 

upper surface (𝑧 = ℎ 2⁄ ) and the lower surface (𝑧 = −ℎ 2)⁄ . The plate is subjected to both 

mechanical and electrical loads, i.e., a uniformly distributed mechanical load with density 

𝑞 and a constant electric voltage 𝑉 across the plate thickness. In order to perform the 

bending analysis of the piezoelectric plate, the Kirchhoff plate theory is adopted here with 

the displacement fields being defined as: 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑧)

𝜕𝑥
 ( 3.7 ) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑧)

𝜕𝑦
 ( 3.8 ) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) ( 3.9 ) 

where 𝑤(𝑥, 𝑦) is the transverse out-plane displacement along the plate thickness direction; 

𝑢(𝑥, 𝑦, 𝑧) and 𝑣(𝑥, 𝑦, 𝑧) are the in-plane displacements along the 𝑥 and 𝑦 directions, 

respectively; 𝑢0(𝑥, 𝑦) and 𝑣0(𝑥, 𝑦) are the in-plane displacements of the midplane along 

the 𝑥 and 𝑦 directions, respectively. As discussed in the literature (Yan and Jiang, 2012a; 

Yan and Jiang, 2013), such in-plane displacements of the midplane is caused by the applied 

electrical load due to the electromechanical coupling under the current loading condition. 

Obviously, such in-plane displacements are also influenced by the flexoelectric effect. 

Based on the displacement fields, the non-zero strains for the plate can thus be obtained as, 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
 ( 3.10 ) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
 ( 3.11 ) 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) =

1

2
(
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
) − 𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
 ( 3.12 ) 

Accordingly, the strain gradients along the plate thickness direction are derived as, 

𝜀𝑥𝑥,𝑧 = −
𝜕2𝑤

𝜕𝑥2
 ( 3.13 ) 

𝜀𝑦𝑦,𝑧 = −
𝜕2𝑤

𝜕𝑦2
 ( 3.14 ) 

𝜀𝑥𝑦,𝑧 = −
𝜕2𝑤

𝜕𝑥𝜕𝑦
 ( 3.15 ) 
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Figure 3-1 Schematic of a cantilevered piezoelectric nanoplate under applied mechanical 

and electrical loads 

It should be mentioned that the strain gradients along the 𝑥 and 𝑦 directions (for example, 

𝜀𝑥𝑥,𝑥 =
𝜕2𝑢0

𝜕𝑥2 − 𝑧
𝜕3𝑤

𝜕𝑥3  and 𝜀𝑦𝑦,𝑦 =
𝜕2𝑣0

𝜕𝑦2 − 𝑧
𝜕3𝑤

𝜕𝑦3) are neglected in comparison with the strain 

gradients along the thickness direction as defined in Eqs. ( 3.13 ) - ( 3.15 ). This assumption 

has also been adopted in the literature (Yan and Jiang, 2013; Zhang, Yan and Jiang, 2014) 

for Euler nanobeams and a Kirchhoff nanoplate, respectively, since the thickness of the 

objects is much smaller than the in-plane dimensions, i.e., ℎ ≪ 𝑎, 𝑏. Thus, in the following 

analysis, we will only take into account the flexoelectricity induced by the strain gradients 

along the thickness direction, i.e., 𝜀𝑥𝑥,𝑧, 𝜀𝑦𝑦,𝑧 and 𝜀𝑥𝑦,𝑧. 

For a piezoelectric nanobeam subjected to an electric potential 𝛷 across its thickness 

direction, Wang and Feng (2010) stated that the electric field in the length direction was 

insignificant compared with that in the thickness direction, which was supported by the 

available numerical simulation results (Gao and Wang, 2007). In the same way, for a thin 

piezoelectric nanoplate with large in-plane dimension to thickness ratio, it is reasonable to 

only consider the electric field along the thickness direction when the plate is under an 
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electric potential 𝛷 across its thickness direction (Zhao et al., 2007; Yan and Jiang, 2012; 

Zhang, Yan and Jiang, 2014; Zhang and Jiang, 2014). Thus, the electric field in 𝑧 direction 

𝐸𝑧 and the higher order electric field 𝐸𝑖𝑗, (𝑖 = 𝑧, 𝑗 = 𝑥, 𝑦, and 𝑧) for a piezoelectric 

nanoplate can be expressed as 

𝐸𝑧 = 𝑎33𝑃𝑧 + 𝑑31(𝜀𝑥𝑥 + 𝜀𝑦𝑦) + 𝑓13(𝜀𝑥𝑥,𝑧 + 𝜀𝑦𝑦,𝑧) ( 3.16 ) 

𝐸𝑧𝑥 = 𝑏31𝑃𝑧,𝑧 ( 3.17 ) 

𝐸𝑧𝑦 = 𝑏32𝑃𝑧,𝑧 ( 3.18 ) 

𝐸𝑧𝑧 = 𝑏33𝑃𝑧 + 𝑒13(𝜀𝑥𝑥 + 𝜀𝑦𝑦) ( 3.19 ) 

The electric field 𝐸𝑧 can also be expressed with regards to the electric potential 𝛷 and the 

higher order local electrical field 𝐸𝑖𝑗 as, 

𝐸𝑧 = −
𝜕𝛷

𝜕𝑧
+ 𝐸𝑧𝑥,𝑥 + 𝐸𝑧𝑦,𝑦 + 𝐸𝑧𝑧,𝑧 ( 3.20 ) 

Without the presence of free body charges, the Gauss’s law can be expressed as,  

−𝑘𝛷𝑧𝑧 + 𝑃𝑧,𝑧 = 0 ( 3.21 ) 

where 𝑘 = 𝑘0𝑘𝑏is the so-called background permittivity for ferroelectrics (Hlinka and 

Marton, 2006; Tagantsev and Gerra, 2006), while 𝑘0 = 8.85 × 10−12 𝐶 𝑉−1𝑚−1 is the 

permittivity of the vacuum (or the air), and 𝑘𝑏 = 6.62 is the specific background 

permittivity for BaTiO3 when the electric field is in the same direction as the polarization.  

Since the voltage is applied along the plate thickness direction, the electric boundary 

conditions for the plate are defined as, 

𝐸𝑖𝑗𝑛𝑗 = 0 ( 3.22 ) 

𝛷 (−
ℎ

2
) = 0 ( 3.23 ) 
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𝛷 (
ℎ

2
) = 𝑉 ( 3.24 ) 

Manipulating Eqs. ( 3.16 )-( 3.21 ) and considering the electric boundary conditions stated 

above, the electric potential 𝛷, the electric field 𝐸𝑧, and the polarization 𝑃𝑧 can be expressed 

in terms of  the plate transverse displacement 𝑤, the in-plane displacements 𝑢0 and 𝑣0, and 

the applied voltage 𝑉 as 

𝛷 =
𝑏33𝜆

2 − 𝑎33

𝜆
𝐶1𝑒

𝜆𝑧 −
𝑏33𝜆

2 − 𝑎33

𝜆
𝐶2𝑒

−𝜆𝑧

+ (𝑓13 − 𝑒13) (
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)𝑧 +

𝑑31

2
𝑧2 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

− 𝑑31𝑧 (
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) −

𝑎33

2
𝐶3𝑧

2 − 𝑎33𝐶4𝑧 + 𝐶5 

( 3.25 ) 

𝐸𝑧 = 𝑎33𝐶1𝑒
𝜆𝑧 + 𝑎33𝐶2𝑒

−𝜆𝑧 −
𝑑31

1 + 𝑘𝑎33
𝑧 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

+ 𝑑31 (
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) + 𝑎33𝐶4 − 𝑓13(

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) 

( 3.26 ) 

 𝑃𝑧 = 𝐶1𝑒
𝜆𝑧 + 𝐶2𝑒

−𝜆𝑧 + 𝐶3𝑧 + 𝐶4 ( 3.27 ) 

With 

𝜆 = √
1 + 𝑘𝑎33

𝑘𝑏33
 ( 3.28 ) 

𝐶1 =
𝑒13ℎ (

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2) − 2𝑒13(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

2𝑏33𝜆(𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2 )

 ( 3.29 ) 

𝐶2 =
𝑒13ℎ (

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2) + 2𝑒13(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

2𝑏33𝜆(𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2 )

 ( 3.30 ) 
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𝐶3 =
𝑘𝑑31

1 + 𝑘𝑎33
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) ( 3.31 ) 

𝐶4 = (
𝑓13

𝑎33
+

𝑓13

𝑏33𝜆2
)(

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) −

𝑑31

𝑎33
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) −

𝑉

𝑎33ℎ
 ( 3.32 ) 

𝐶5 =
𝑏33𝜆

2 − 𝑎33

𝑏33𝜆
𝑒13 (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

+ (𝑘
𝑏33𝜆

2 − 𝑎33

𝜆
−

ℎ2

8
)

𝑑31

1 + 𝑘𝑎33
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) +

𝑉

2
 

( 3.33 ) 

 It is worth to mention that when the impacts of the strain gradients and the polarization 

gradients are ruled out, we can get the same expressions of the electric fields as the ones 

for the classical piezoelectric plate.  

After the derivation of the electric fields, both the traditional stresses and the higher order 

stresses can be determined by substituting Eq. ( 3.27 ) into Eqs. ( 3.3 ) and ( 3.4 ). These 

stresses can also be expressed in terms of the plate transverse displacement 𝑤, the in-plane 

displacements 𝑢0 and 𝑣0, and the applied voltage 𝑉, i.e., 

𝜎𝑥𝑥 = 𝑐11 (
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
) + 𝑐12 (

𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
) + (𝑑31 + 𝑒13𝜆)𝐶1𝑒

𝜆𝑧

+ (𝑑31 − 𝑒13𝜆)𝐶2𝑒
−𝜆𝑧 + 𝑑31𝐶3𝑧 + 𝑑31𝐶4 + 𝑒13𝐶3 

( 3.34 ) 

𝜎𝑦𝑦 = 𝑐21 (
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
) + 𝑐22 (

𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
) + (𝑑32 + 𝑒23𝜆)𝐶1𝑒

𝜆𝑧

+ (𝑑32 − 𝑒23𝜆)𝐶2𝑒
−𝜆𝑧 + 𝑑32𝐶3𝑧 + 𝑑32𝐶4 + 𝑒23𝐶3 

( 3.35 ) 

𝜎𝑥𝑦 = 𝑐66(
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
) ( 3.36 ) 

𝜎𝑥𝑥𝑧 = 𝑓13𝐶1𝑒
𝜆𝑧 + 𝑓13𝐶2𝑒

𝜆𝑧 + 𝑓13𝐶3𝑧 + 𝑓13𝐶4 ( 3.37 ) 

𝜎𝑦𝑦𝑧 = 𝑓23𝐶1𝑒
𝜆𝑧 + 𝑓23𝐶2𝑒

𝜆𝑧 + 𝑓23𝐶3𝑧 + 𝑓23𝐶4 ( 3.38 ) 
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Based on the above Eqs. ( 3.34 )-( 3.36 ), it can be seen that resultant in-plane forces could 

be defined as,  

𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑑𝑧

ℎ
2

−
ℎ
2

= ℎ (𝑐11

𝜕𝑢0

𝜕𝑥
+ 𝑐12

𝜕𝑣0

𝜕𝑦
) +

𝑑31𝑓13ℎ

𝑎33(1 + 𝑘𝑎33)
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

− (
2𝑓13

2

𝑏33𝜆
+

𝑑31
2 ℎ

𝑎33
)(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) −

𝑑31𝑉

𝑎33
 

( 3.39 ) 

𝑁𝑦𝑦 = ∫ 𝜎𝑦𝑦𝑑𝑧

ℎ
2

−
ℎ
2

= ℎ (𝑐12

𝜕𝑢0

𝜕𝑥
+ 𝑐11

𝜕𝑣0

𝜕𝑦
) +

𝑑31𝑓13ℎ

𝑎33(1 + 𝑘𝑎33)
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

− (
2𝑓13

2

𝑏33𝜆
+

𝑑31
2 ℎ

𝑎33
)(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) −

𝑑31𝑉

𝑎33
 

( 3.40 ) 

𝑁𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑑𝑧

ℎ
2

−
ℎ
2

= ℎ𝑐66 (
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
) ( 3.41 ) 

It is clear that these forces are induced by the strain and the applied electrical load due to 

the electromechanical coupling, which is influenced by the flexoelectric effect. Apparently, 

for a cantilevered nanoplate with forces applied only in the thickness direction, those in-

plane forces are 0 due to the traction free conditions in the axial directions. As a result, 

there will be relaxation strains developed in the plate as discussed in Reference (Yan and 

Jiang, 2013), and it will have an influence on the electroelastic performance of the plate. 

The relaxation strain 𝜀0 is deduced from the traction free boundary condition as, 

𝜀0 =

𝑑31𝑉
𝑎33

−
𝑑31𝑓13ℎ

𝑎33(1 + 𝑘𝑎33)
(
𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2)

ℎ(𝐶11 + 𝐶12) − 2 (
2𝑓13

2

𝑏33𝜆
+

𝑑31
2 ℎ
𝑎33

)

 ( 3.42 ) 
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In order to determine the governing equations and the mechanical boundary conditions of 

the cantilevered piezoelectric nanoplate, the energy method is adopted in the current work. 

In the entire volume 𝛺 of the piezoelectric nanoplate, without the consideration of the 

kinetic energy, Hamilton’s principle takes the form of (Yan and Jiang, 2013; Hu and Shen, 

2014), 

−𝛿 ∫ 𝐻𝑑𝛺
𝛺

+ 𝛿𝑊 = 0 ( 3.43 ) 

where 𝑊 is the work done by the external force. For a cantilevered nanoplate, 𝑊 =

∬𝑞𝑤𝑑𝑥𝑑𝑦. 𝐻 = 𝑈 −
1

2
𝑘𝛷,𝑧𝛷,𝑧 + 𝛷,𝑧𝑃𝑧 (Toupin, 1956; Hu and Shen, 2014) is the electric 

enthalpy density, in which 𝑈 is the internal energy density defined by Eq. ( 3.2 ). By 

combining Eqs ( 3.2 )-( 3.6 ), the internal energy density 𝑈 of the plate can be expressed 

as 𝑈 =
1

2
(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 2𝜎𝑥𝑦𝜀𝑥𝑦 + 𝜎𝑥𝑥𝑧𝜀𝑥𝑥,𝑧 + 𝜎𝑦𝑦𝑧𝜀𝑦𝑦,𝑧 + 𝐸𝑧𝑃𝑧 + 𝐸𝑧𝑧𝑃𝑧,𝑧). 

Therefore, in our case, the expression of ∫ 𝐻𝑑𝛺
𝛺

  can be determined in terms of the 

displacements and the electric potential as: 

∫ 𝐻𝑑𝛺
𝛺

= ∬{(𝑐11

ℎ3

24
+ 𝐷11) [(

𝜕2𝑤

𝜕𝑥2
)

2

+ (
𝜕2𝑤

𝜕𝑦2
)

2

]

+ (𝑐12

ℎ3

12
+ 2𝐷11)

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
+

𝑓13𝑉

𝑎33
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

+ (
𝑐11ℎ

2
+ 𝐷22) [(

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

] + (𝑐11ℎ + 2𝐷22)
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

−
𝑑31𝑉

𝑎33
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) + 𝐷12 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)

+
𝑐66ℎ

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ 𝑐66

ℎ3

6
(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

− (
𝑘𝑉2

2ℎ

+
𝑉2

2𝑎33ℎ
)} 𝑑𝑥𝑑𝑦 

( 3.44 ) 

Applying the variation, the Hamilton’s principle can be expressed as, 
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−𝛿 ∬{(𝑐11

ℎ3

24
+ 𝐷11) [(

𝜕2𝑤

𝜕𝑥2
)

2

+ (
𝜕2𝑤

𝜕𝑦2
)

2

]

+ (𝑐12

ℎ3

12
+ 2𝐷11)

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
+

𝑓13𝑉

𝑎33
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)

+ (
𝑐11ℎ

2
+ 𝐷22) [(

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

] + (𝑐11ℎ + 2𝐷22)
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

−
𝑑31𝑉

𝑎33
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) + 𝐷12 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)

+
𝑐66ℎ

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ 𝑐66

ℎ3

6
(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

− (
𝑘𝑉2

2ℎ

+
𝑉2

2𝑎33ℎ
)} 𝑑𝑥𝑑𝑦 + 𝛿𝑊 = 0 

( 3.45 ) 

with 

𝛿 ∬(
𝜕2𝑤

𝜕𝑥2
)2 𝑑𝑥𝑑𝑦

= 2 ∬
𝜕4𝑤

𝜕𝑥4
𝛿𝑤𝑑𝑥𝑑𝑦 + 2∫

𝜕2𝑤

𝜕𝑥2

𝜕𝛿𝑤

𝜕𝑛
cos2 𝛼 𝑑𝑠

− 2∫
𝜕3𝑤

𝜕𝑥3
cos 𝛼 𝛿𝑤𝑑𝑠 

( 3.46 ) 

𝛿 ∬(
𝜕2𝑤

𝜕𝑦2
)2 𝑑𝑥𝑑𝑦

= 2 ∬
𝜕4𝑤

𝜕𝑦4
𝛿𝑤𝑑𝑥𝑑𝑦 + 2∫

𝜕2𝑤

𝜕𝑦2

𝜕𝛿𝑤

𝜕𝑛
sin2 𝛼 𝑑𝑠

− 2∫
𝜕3𝑤

𝜕𝑦3
sin 𝛼 𝛿𝑤𝑑𝑠 

( 3.47 ) 
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𝛿 ∬
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
𝑑𝑥𝑑𝑦

= 2 ∬
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝑥𝑑𝑦

+ ∫(
𝜕2𝑤

𝜕𝑥2
sin2 𝛼 +

𝜕2𝑤

𝜕𝑦2
cos2 𝛼)

𝜕𝛿𝑤

𝜕𝑛
𝑑𝑠

+ ∫(−
𝜕3𝑤

𝜕𝑥2𝜕𝑦
sin 𝛼 −

𝜕3𝑤

𝜕𝑥𝜕𝑦2
cos 𝛼)𝛿𝑤𝑑𝑠 

( 3.48 ) 

𝛿 ∬(
𝜕2𝑤

𝜕𝑥𝜕𝑦
)2 𝑑𝑥𝑑𝑦

= 2 ∬
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝑥𝑑𝑦

+ ∫{
𝜕

𝜕𝑠
[
𝜕2𝑤

𝜕𝑥𝜕𝑦
(sin2 𝛼 − cos2 𝛼)] − −

𝜕3𝑤

𝜕𝑥2𝜕𝑦
sin 𝛼

−
𝜕3𝑤

𝜕𝑥𝜕𝑦2
cos 𝛼} 𝛿𝑤𝑑𝑠 

( 3.49 ) 

𝛿 ∬
𝜕2𝑤

𝜕𝑥2
𝑑𝑥𝑑𝑦 = ∫

𝜕𝛿𝑤

𝜕𝑛
cos2 𝛼 𝑑𝑠 ( 3.50 ) 

𝛿 ∬
𝜕2𝑤

𝜕𝑦2
𝑑𝑥𝑑𝑦 = ∫

𝜕𝛿𝑤

𝜕𝑛
sin2 𝛼 𝑑𝑠 ( 3.51 ) 

𝛿 ∬(
𝜕𝑤

𝜕𝑥
)2𝑑𝑥𝑑𝑦 = −2∬

𝜕2𝑤

𝜕𝑥2
𝛿𝑤𝑑𝑥𝑑𝑦 + 2∫

𝜕𝑤

𝜕𝑥
𝛿𝑤 cos 𝛼 𝑑𝑠 ( 3.52 ) 

𝛿 ∬(
𝜕𝑤

𝜕𝑦
)2 𝑑𝑥𝑑𝑦 = −2∬

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝑥𝑑𝑦 + 2∫

𝜕𝑤

𝜕𝑦
𝛿𝑤 sin 𝛼 𝑑𝑠 ( 3.53 ) 
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𝛿 ∬
𝜕2𝑤

𝜕𝑥2

𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑦

= −∬
𝜕3𝑤

𝜕𝑥3
𝛿𝑢𝑑𝑥𝑑𝑦 + ∬

𝜕3𝑢

𝜕𝑥3
𝛿𝑤𝑑𝑥𝑑𝑦

+ ∫
𝜕2𝑤

𝜕𝑥2
𝛿𝑢 cos 𝛼 𝑑𝑠 − ∫

𝜕2𝑢

𝜕𝑥2
𝛿𝑤 cos𝛼 𝑑𝑠

+ ∫
𝜕𝑢

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑛
cos2 𝛼 𝑑𝑠 

( 3.54 ) 

𝛿 ∬
𝜕2𝑤

𝜕𝑥2

𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦

= −∬
𝜕3𝑤

𝜕𝑥2𝜕𝑦
𝛿𝑣𝑑𝑥𝑑𝑦 + ∬

𝜕3𝑣

𝜕𝑥2𝜕𝑦
𝛿𝑤𝑑𝑥𝑑𝑦

+ ∫
𝜕2𝑤

𝜕𝑥2
𝛿𝑣 sin 𝛼 𝑑𝑠 − ∫

𝜕2𝑣

𝜕𝑥𝜕𝑦
𝛿𝑤 cos 𝛼 𝑑𝑠

+ ∫
𝜕𝑣

𝜕𝑦

𝜕𝛿𝑤

𝜕𝑛
cos2 𝛼 𝑑𝑠 

( 3.55 ) 

𝛿 ∬
𝜕2𝑤

𝜕𝑦2

𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑦

= −∬
𝜕3𝑤

𝜕𝑥𝜕𝑦2
𝛿𝑢𝑑𝑥𝑑𝑦 + ∬

𝜕3𝑢

𝜕𝑥𝜕𝑦2
𝛿𝑤𝑑𝑥𝑑𝑦

+ ∫
𝜕2𝑤

𝜕𝑦2
𝛿𝑢 cos 𝛼 𝑑𝑠 − ∫

𝜕2𝑢

𝜕𝑥𝜕𝑦
𝛿𝑤 sin 𝛼 𝑑𝑠

+ ∫
𝜕𝑢

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑛
sin2 𝛼 𝑑𝑠 

( 3.56 ) 

𝛿 ∬
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦

= −∬
𝜕2𝑢

𝜕𝑥𝜕𝑦
𝛿𝑣𝑑𝑥𝑑𝑦 − ∬

𝜕2𝑣

𝜕𝑥𝜕𝑦
𝛿𝑢𝑑𝑥𝑑𝑦

+ ∫
𝜕𝑢

𝜕𝑥
𝛿𝑣 sin 𝛼 𝑑𝑠 + ∫

𝜕𝑣

𝜕𝑦
𝛿𝑢 cos 𝛼 𝑑𝑠 

( 3.57 ) 
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𝛿 ∬
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑦

= −∬
𝜕2𝑢

𝜕𝑥𝜕𝑦
𝛿𝑣𝑑𝑥𝑑𝑦 − ∬

𝜕2𝑣

𝜕𝑥𝜕𝑦
𝛿𝑢𝑑𝑥𝑑𝑦

+ ∫
𝜕𝑢

𝜕𝑦
𝛿𝑣 cos 𝛼 𝑑𝑠 + ∫

𝜕𝑣

𝜕𝑥
𝛿𝑢 sin 𝛼 𝑑𝑠 

( 3.58 ) 

𝛿 ∬
𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑦 = ∫𝛿𝑢 cos 𝛼 𝑑𝑠 ( 3.59 ) 

𝛿 ∬
𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦 = ∫𝛿𝑣𝑑𝑥𝑑𝑦 ( 3.60 ) 

Where 𝛼 stands for the angle between the outward normal of the boundary and the 𝑥 axis 

as demonstrated by Figure 3-2(a). The particular values of this angle for each boundary of 

the plate are shown in Figure 3-2(b). 

Thus, the Hamilton’s principle can be further expanded as, 

 ∬{𝛿𝑤 (2 (𝑐11
ℎ3

24
+ 𝐷11) (

𝜕4𝑤

𝜕𝑥4 +
𝜕4𝑤

𝜕𝑦4) + 2 (𝑐12
ℎ3

12
+ 2𝐷11 +

𝑐66
ℎ3

6
)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2 + 𝐷12 (
𝜕3𝑢

𝜕𝑥3 +
𝜕3𝑢

𝜕𝑥𝜕𝑦2 +
𝜕3𝑣

𝜕𝑦3 +
𝜕3𝑣

𝜕𝑦𝜕𝑥2) − 𝑞) + 𝛿𝑢 ((𝐶12ℎ +

2𝐷22 + 𝑐66ℎ)
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (𝑐11ℎ + 2𝐷22)

𝜕2𝑢

𝜕𝑥2 + 𝑐66ℎ
𝜕2𝑢

𝜕𝑦2 + 𝐷12 (
𝜕3𝑤

𝜕𝑥3 +

𝜕3𝑤

𝜕𝑥𝜕𝑦2)) + 𝛿𝑣 ((𝑐12ℎ + 2𝐷22 + 𝑐66ℎ)
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ (𝑐11ℎ + 2𝐷22)

𝜕2𝑣

𝜕𝑦2 +

𝑐66ℎ
𝜕2𝑣

𝜕𝑥2 + 𝐷12 (
𝜕3𝑤

𝜕𝑦3 +
𝜕3𝑤

𝜕𝑦𝜕𝑥2))} 𝑑𝑥𝑑𝑦 

 +∫ {𝛿𝑤 (2 (𝑐11
ℎ3

24
+ 𝐷11) (

𝜕3𝑤

𝜕𝑥3 cos 𝛼 +
𝜕3𝑤

𝜕𝑦3 sin 𝛼) + (𝑐12
ℎ3

12
+

𝛺

2𝐷11) (
𝜕3𝑤

𝜕𝑦𝜕𝑥2
sin 𝛼 +

𝜕3𝑤

𝜕𝑥𝜕𝑦2
cos 𝛼) + 𝐷12 (

𝜕2𝑢

𝜕𝑥2
cos 𝛼 +

𝜕2𝑢

𝜕𝑥𝜕𝑦
sin 𝛼 +

𝜕2𝑣

𝜕𝑦2
sin 𝛼 +

𝜕2𝑣

𝜕𝑥𝜕𝑦
cos 𝛼) − 𝑐66

ℎ3

6
(

𝜕

𝜕𝑠
[

𝜕2𝑤

𝜕𝑥𝜕𝑦
(sin2 𝛼 − cos2 𝛼)] −

( 3.61 ) 
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𝜕3𝑤

𝜕𝑥𝜕𝑦2
cos 𝛼 −

𝜕3𝑤

𝜕𝑦𝜕𝑥2
sin 𝛼)) +

𝜕𝛿𝑤

𝜕𝑛
(2 (𝑐11

ℎ3

24
+ 𝐷11) (

𝜕2𝑤

𝜕𝑥2
cos2 𝛼 +

𝜕2𝑤

𝜕𝑦2 sin2 𝛼) + (𝑐12
ℎ3

12
+ 2𝐷11) (

𝜕2𝑤

𝜕𝑥2 sin2 𝛼 +
𝜕2𝑤

𝜕𝑦2 cos2 𝛼) + 𝐷12 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) +

𝑓13𝑉

𝑎33
) + 𝛿𝑢 ((𝑐11ℎ + 2𝐷22)

𝜕𝑢

𝜕𝑥
cos 𝛼 + (𝑐12ℎ + 2𝐷22)

𝜕𝑣

𝜕𝑦
cos 𝛼 +

𝐷12 (
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) cos 𝛼 + 𝑐66ℎ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) sin 𝛼 −

𝑑31𝑉

𝑎33
cos 𝛼) +

𝛿𝑣 ((𝑐12ℎ + 2𝐷22)
𝜕𝑢

𝜕𝑥
sin 𝛼 + (𝑐11ℎ + 2𝐷22)

𝜕𝑣

𝜕𝑦
sin 𝛼 + 𝐷12 (

𝜕2𝑤

𝜕𝑥2 +

𝜕2𝑤

𝜕𝑦2) sin 𝛼 + 𝑐66ℎ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) cos 𝛼 −

𝑑31𝑉

𝑎33
sin 𝛼)} 𝑑𝑠 = 0 

It can be seen that the left-hand side of the Equation ( 3.61 ) is composed of two parts: the 

volume integration and the surface integration. To guarantee the left-hand side of the 

Equation ( 3.61 ) equals to 0, those two integration parts should be independent of each 

other and take 0 at the same time. Thus, the volume integration will give the governing 

equations, while the surface integration will give the boundary conditions for the 

cantilevered piezoelectric nanoplate. Since the virtual displacements are arbitrary in the 

body, i.e., the values of 𝛿𝑤, 𝛿𝑢 and 𝛿𝑣 are uncertain, their coefficients must take the value 

of 0, which, therefore, yield the governing equations as: 

2(𝑐11

ℎ3

24
+ 𝐷11) (

𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑦4
) + 2(𝑐12

ℎ3

12
+ 2𝐷11 + 𝑐66

ℎ3

6
)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2

+ 𝐷12 (
𝜕3𝑢

𝜕𝑥3
+

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+

𝜕3𝑣

𝜕𝑦3
+

𝜕3𝑣

𝜕𝑦𝜕𝑥2
) − 𝑞 = 0 

( 3.62 ) 

(𝑐12ℎ + 2𝐷22 + 𝑐66ℎ)
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (𝑐11ℎ + 2𝐷22)

𝜕2𝑢

𝜕𝑥2
+ 𝑐66ℎ

𝜕2𝑢

𝜕𝑦2

+ 𝐷12 (
𝜕3𝑤

𝜕𝑥3
+

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) = 0 

( 3.63 ) 
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(𝑐12ℎ + 2𝐷22 + 𝑐66ℎ)
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ (𝑐11ℎ + 2𝐷22)

𝜕2𝑣

𝜕𝑦2
+ 𝑐66ℎ

𝜕2𝑣

𝜕𝑥2

+ 𝐷12 (
𝜕3𝑤

𝜕𝑦3
+

𝜕3𝑤

𝜕𝑦𝜕𝑥2
) = 0 

( 3.64 ) 

with 

𝐷11 = −
𝑓13

2 ℎ2

4𝑏33𝜆

𝑒
𝜆ℎ
2 + 𝑒

−𝜆ℎ
2

𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2

−
𝑘𝑑31

2 ℎ3

24(1 + 𝑘𝑎33)
+

𝑏33ℎ𝑘2𝑑31
2

2(1 + 𝑘𝑎33)2

−
𝑓13

2 ℎ

2𝑎33(1 + 𝑘𝑎33)
 

( 3.65 ) 

𝐷12 =
2𝑓13𝑑31

𝑏33𝜆3
+

ℎ𝑓13𝑑31

𝑎33
−

𝑘ℎ𝑓13𝑑31

1 + 𝑘𝑎33
 ( 3.66 ) 

𝐷22 =
𝑓13

2 ℎ2

𝑏33𝜆

𝑒
𝜆ℎ
2 + 𝑒

−𝜆ℎ
2

𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2

−
2𝑓13

2

𝑏33𝜆
−

ℎ𝑑31
2

2𝑎33
 ( 3.67 ) 
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Figure 3-2 (a) demonstration of 𝛼 angle, and (b)  𝛼 angle for each boundary  

As discussed in the previous paragraph, the boundary conditions can be derived via the 

surface integration of the left-hand side of the Equation ( 3.61 ). For the clamped edge (𝑦 =



40 

 

0), the virtual displacements are 0, i.e., 𝛿𝑤 = 𝛿𝑢 = 𝛿𝑣 = 0, so the boundary conditions 

along the clamped edge can be expressed as: 

𝑢 = 𝑣 = 𝑤 = 0 ( 3.68 ) 

𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
= 0 ( 3.69 ) 

For the two free edges (𝑥 = 0, and 𝑥 = 𝑎), which are perpendicular to the clamped edge, 

the angles 𝛼 are 𝜋 and 0, respectively. Therefore, the boundary conditions can be derived 

as, 

2(𝑐11

ℎ3

24
+ 𝐷11)

𝜕2𝑤

𝜕𝑥2
+ (𝑐12

ℎ3

12
+ 2𝐷11)

𝜕2𝑤

𝜕𝑦2
+ 𝐷12 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) +

𝑓13𝑉

𝑎33

= 0 

( 3.70 ) 

2(𝑐11

ℎ3

24
+ 𝐷11)

𝜕3𝑤

𝜕𝑥3
+ (𝑐12

ℎ3

12
+ 2𝐷11 + 𝑐66

ℎ3

6
)

𝜕3𝑤

𝜕𝑥𝜕𝑦2

+ 𝐷12 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
) = 0 

( 3.71 ) 

(𝑐11ℎ + 2𝐷22)
𝜕𝑢

𝜕𝑥
+ (𝑐12ℎ + 2𝐷22)

𝜕𝑣

𝜕𝑦
+ 𝐷12 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) −

𝑑31𝑉

𝑎33
= 0 ( 3.72 ) 

𝑐66ℎ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = 0 ( 3.73 ) 

Similarly, for the free edge (𝑦 = 𝑏), which is parallel to the clamped edge with 𝛼 =
𝜋

2
 , the 

boundary conditions are determined as, 

2(𝑐11

ℎ3

24
+ 𝐷11)

𝜕2𝑤

𝜕𝑦2
+ (𝑐12

ℎ3

12
+ 2𝐷11)

𝜕2𝑤

𝜕𝑥2
+ 𝐷12 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) +

𝑓13𝑉

𝑎33

= 0 

( 3.74 ) 
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2(𝑐11

ℎ3

24
+ 𝐷11)

𝜕3𝑤

𝜕𝑦3
+ (𝑐12

ℎ3

12
+ 2𝐷11 + 𝑐66

ℎ3

6
)

𝜕3𝑤

𝜕𝑦𝜕𝑥2

+ 𝐷12 (
𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 0 

( 3.75 ) 

(𝑐11ℎ + 2𝐷22)
𝜕𝑢

𝜕𝑥
+ (𝑐12ℎ + 2𝐷22)

𝜕𝑣

𝜕𝑦
+ 𝐷12 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) −

𝑑31𝑉

𝑎33
= 0 ( 3.76 ) 

𝑐66ℎ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = 0 ( 3.77 ) 

Thus, by solving the governing equations with the displacements satisfying the boundary 

conditions, we will get the solution for the static bending response of the cantilevered 

piezoelectric nanoplate. 
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Chapter 4  

4 Finite difference method (FDM) 

From the previous chapter, it is seen that for the cantilevered PNP with combined bending 

and in-plane deformations, the governing equations and the boundary conditions are more 

complicated than the conventional cantilevered PNP. Thus, it is very difficult, if not 

impossible, to obtain the analytical solutions. Hence, finite difference method (FDM) is 

pursued here to find the numerical solutions for characterizing the electroelastic responses 

of the plate. Using FDM, all of the governing equations and the boundary conditions are 

discretized, and the problem is reduced to solving a number of algebraic equations. 

Following the standard procedure of the FDM, the plate is discretized into (Smith, 1985) a 

system of rectangular meshes (elements) formed by two sets of lines with equal space as 

shown in Figure 4-1. One set of lines is parallel to the 𝑥 direction while the other is parallel 

to the 𝑦 direction. The lines are separated by (𝑀 + 1) nodes along the 𝑥 direction and (𝑁 +

1) nodes along the 𝑦 direction, which means there are (𝑀 + 1) × (𝑁 + 1) mesh points in 

total. In the current work, square meshes are used, so the step size ∆𝑥 along the 𝑥 direction 

and the step size ∆𝑦 along the 𝑦 direction satisfy ∆𝑥 = ∆𝑦 =  
𝑎

𝑀
= 

𝑏

𝑁
. Algebraic equations 

are found for these mesh points. Obviously, the accuracy can be improved by increasing 

the number of mesh points to reduce the mesh size. In the course of numerical calculation, 

we will ensure the accurate results by using sufficiently small meshes. 
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Figure 4-1 Finite difference grid of a cantilevered PNP 

4.1 Finite difference approximation of derivatives 

In order to discretize the functions and their derivatives in the governing equations and the 

boundary conditions, we start with the Taylor series for a function 𝑓(𝑥, 𝑦) which is single-

valued, finite, and continuous with variables 𝑥 and 𝑦. By neglecting the higher order terms, 

we have,  

𝑓(𝑥 + ∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) + ∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

∆𝑥2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
 ( 4.1 ) 

𝑓(𝑥 − ∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) − ∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

∆𝑥2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
 ( 4.2 ) 

𝑓(𝑥, 𝑦 + ∆𝑦) ≈ 𝑓(𝑥, 𝑦) + ∆𝑦
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
+

∆𝑦2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
 ( 4.3 ) 

𝑓(𝑥, 𝑦 − ∆𝑦) ≈ 𝑓(𝑥, 𝑦) − ∆𝑦
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
+

∆𝑦2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
 ( 4.4 ) 
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From Eqs. ( 4.1 )-( 4.4 ), the approximations for the function 𝑓(𝑥, 𝑦) and its first and second 

derivatives with respect to 𝑥 and 𝑦 are derived as,  

𝑓(𝑥, 𝑦) ≈
𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥 − ∆𝑥, 𝑦) + 𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦 − ∆𝑦)

4
 ( 4.5 ) 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
≈

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥 − ∆𝑥, 𝑦)

2∆𝑥
 ( 4.6 ) 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
≈

𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦 − ∆𝑦)

2∆𝑦
 ( 4.7 ) 

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
≈

𝑓(𝑥 − ∆𝑥, 𝑦) − 2𝑓(𝑥, 𝑦) + 𝑓(𝑥 + ∆𝑥, 𝑦)

∆𝑥2
 ( 4.8 ) 

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
≈

𝑓(𝑥, 𝑦 − ∆𝑦) − 2𝑓(𝑥, 𝑦) + 𝑓(𝑥, 𝑦 + ∆𝑦)

∆𝑦2
 ( 4.9 ) 

If we take the third and the fourth order terms into consideration, the function 𝑓(𝑥, 𝑦) can 

be expressed by Taylor series as: 

𝑓(𝑥 + ∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) + ∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

∆𝑥2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+

∆𝑥3

6

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥3

+
∆𝑥4

24

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥4
 

( 4.10 ) 

𝑓(𝑥 − ∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) − ∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+

∆𝑥2

2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
−

∆𝑥3

6

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥3

+
∆𝑥4

24

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥4
 

( 4.11 ) 

𝑓(𝑥 + 2∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) + 2∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+ 2∆𝑥2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2

+
8∆𝑥3

6

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥3
+

16∆𝑥4

24

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥4
 

( 4.12 ) 
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𝑓(𝑥 − 2∆𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) − 2∆𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+ 2∆𝑥2

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2

−
8∆𝑥3

6

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥3
+

16∆𝑥4

24

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥4
 

( 4.13 ) 

Manipulating Eqs. ( 4.10 )-( 4.13 ) leads to the approximations for the third  and the fourth 

order derivatives of the function 𝑓(𝑥, 𝑦) with respect to 𝑥, as, 

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥3

≈
−𝑓(𝑥 − 2∆𝑥, 𝑦) + 2𝑓(𝑥 − ∆𝑥, 𝑦) − 2𝑓(𝑥 + ∆𝑥, 𝑦) + 𝑓(𝑥 + 2∆𝑥, 𝑦)

2∆𝑥3
 

( 4.14 ) 

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥4

≈
𝑓(𝑥 − 2∆𝑥, 𝑦) − 4(𝑥 − ∆𝑥, 𝑦) + 6𝑓(𝑥, 𝑦) − 4𝑓(𝑥 + ∆𝑥, 𝑦) + 𝑓(𝑥 + 2∆𝑥, 𝑦)

∆𝑥4
 

( 4.15 ) 

Similarly, the approximations for the third and fourth order derivatives of the function 

𝑓(𝑥, 𝑦) with respect to 𝑦 are expressed as, 

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑦3

≈
−𝑓(𝑥, 𝑦 − 2∆𝑦) + 2𝑓(𝑥, 𝑦 − ∆𝑦) − 2𝑓(𝑥, 𝑦 + ∆𝑦) + 𝑓(𝑥, 𝑦 + 2∆𝑦)

2∆𝑦3
 

( 4.16 ) 

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑦4

≈
𝑓(𝑥, 𝑦 − 2∆𝑦) − 4(𝑥, 𝑦 − ∆𝑦) + 6𝑓(𝑥, 𝑦) − 4𝑓(𝑥, 𝑦 + ∆𝑦) + 𝑓(𝑥, 𝑦 + 2∆𝑦)

∆𝑦4
 

( 4.17 ) 

For the first order derivative of 𝑓(𝑥, 𝑦) with respect 𝑥, Taylor’s series can be expressed as, 

𝜕𝑓(𝑥, 𝑦 + ∆𝑦)

𝜕𝑥
≈

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+ ∆𝑦

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
 ( 4.18 ) 
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𝜕𝑓(𝑥, 𝑦 − ∆𝑦)

𝜕𝑥
≈

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
− ∆𝑦

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
 ( 4.19 ) 

By deducting Eqs. ( 4.18 ) and ( 4.19 ), we can get the second order mixed partial derivative 

of the function 𝑓 with respect to 𝑥 and 𝑦 as, 

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
≈

1

4∆𝑥∆𝑦
{𝑓(𝑥 − ∆𝑥, 𝑦 − ∆𝑦) − 𝑓(𝑥 + ∆𝑥, 𝑦 − ∆𝑦)

− 𝑓(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) + 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)} 

( 4.20 ) 

For the second order derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥, Taylor’s series can be 

expressed as, 

𝜕2𝑓(𝑥, 𝑦 + ∆𝑦)

𝜕𝑥2
≈

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+ ∆𝑦

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦
+

∆𝑦2

2

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2
 ( 4.21 ) 

𝜕2𝑓(𝑥, 𝑦 − ∆𝑦)

𝜕𝑥2
≈

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
− ∆𝑦

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦
+

∆𝑦2

2

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2
 ( 4.22 ) 

By manipulating Eqs. ( 4.21 ) and ( 4.22 ), it gives the third order mixed partial derivative 

of the function 𝑓, which differentiates twice with respect to 𝑥 and once with respect to 𝑦, 

and the fourth order mixed partial derivative of the function 𝑓(𝑥, 𝑦) with respect to 𝑥 and 

𝑦 as, 

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦
≈

1

2∆𝑥2∆𝑦
{−𝑓(𝑥 − ∆𝑥, 𝑦 − ∆𝑦) + 2𝑓(𝑥, 𝑦 − ∆𝑦) − 𝑓(𝑥

+ ∆𝑥, 𝑦 − ∆𝑦)} + 𝑓(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) − 2𝑓(𝑥, 𝑦 + ∆𝑦)

+ 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) 

( 4.23 ) 

𝜕4𝑓(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2
≈

1

∆𝑥2∆𝑦2
{𝑓(𝑥 − ∆𝑥, 𝑦 − ∆𝑦) − 2𝑓(𝑥, 𝑦 − ∆𝑦)

+ 𝑓(𝑥 + ∆𝑥, 𝑦 − ∆𝑦) − 2𝑓(𝑥 − ∆𝑥, 𝑦) + 4𝑓(𝑥, 𝑦)

− 2𝑓(𝑥 + ∆𝑥, 𝑦) + 𝑓(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) − 2𝑓(𝑥, 𝑦 + ∆𝑦)

+ 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)} 

( 4.24 ) 
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Similarly, we can also get the third order mixed partial derivative of function 𝑓(𝑥, 𝑦), 

which differentiates once with respect to 𝑥 and twice with respect to 𝑦, as, 

𝜕3𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦2
≈

1

2∆𝑥∆𝑦2
{−𝑓(𝑥 − ∆𝑥, 𝑦 − ∆𝑦) + 2𝑓(𝑥 − ∆𝑥, 𝑦)

− 𝑓(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) + 𝑓(𝑥 + ∆𝑥, 𝑦 − ∆𝑦)

− 2𝑓(𝑥 + ∆𝑥, 𝑦) + 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)} 

( 4.25 ) 

4.2 Finite difference scheme of the governing equations 
and the boundary conditions 

For the purpose of making deduction process easier, we use (𝑖, 𝑗) to represent the 

position of the mesh point, which is the (𝑖 + 1)th element in the 𝑥 direction and the 

(𝑗 + 1)th element in the 𝑦 direction. 

4.2.1 Finite difference scheme of the governing equations 

By applying the finite difference approximations for the derivatives of function 𝑓(𝑥, 𝑦) to 

the displacements 𝑢, 𝑣 and 𝑤, the standard finite difference scheme of the governing 

equations ( 3.62 )-( 3.64 ) can be formulated in terms of the nodal displacements as, 

 
𝐴

∆𝑥4
{𝑤(𝑖 − 2, 𝑗) − 4𝑤(𝑖 − 1, 𝑗) + 6𝑤(𝑖, 𝑗) − 4𝑤(𝑖 + 1, 𝑗) + 𝑤(𝑖 +

2, 𝑗)} +
𝐴

∆𝑦4
{𝑤(𝑖, 𝑗 − 2) − 4𝑤(𝑖, 𝑗 − 1) + 6𝑤(𝑖, 𝑗) − 4𝑤(𝑖, 𝑗 + 1) +

𝑤(𝑖, 𝑗 + 2)} +
𝐵

∆𝑥2∆𝑦2
{𝑤(𝑖 − 1, 𝑗 − 1) − 2𝑤(𝑖, 𝑗 − 1) + 𝑤(𝑖 + 1, 𝑗 −

1) − 2𝑤(𝑖 − 1, 𝑗) + 4𝑤(𝑖, 𝑗) − 2𝑤(𝑖 + 1, 𝑗) + 𝑤(𝑖 − 1, 𝑗 + 1) −

2𝑤(𝑖, 𝑗 + 1) + 𝑤(𝑖 + 1, 𝑗 + 1)} −
𝐷12

2ℎ3
{𝑢(𝑖 − 2, 𝑗) − 2𝑢(𝑖 − 1, 𝑗) +

2𝑢(𝑖 + 1, 𝑗) − 𝑢(𝑖 + 2, 𝑗)} −
𝐷12

2∆𝑥∆𝑦2
{𝑢(𝑖 − 1, 𝑗 − 1) − 2𝑢(𝑖 − 1, 𝑗) +

𝑢(𝑖 − 1, 𝑗 + 1) − 𝑢(𝑖 + 1, 𝑗 − 1) + 2𝑢(𝑖 + 1, 𝑗) − 𝑢(𝑖 + 1, 𝑗 + 1)} −

𝐷12

2∆𝑥2∆𝑦
{𝑣(𝑖 − 1, 𝑗 − 1) − 2𝑣(𝑖, 𝑗 − 1) + 𝑣(𝑖 + 1, 𝑗 − 1) − 𝑣(𝑖 − 1, 𝑗 +

1) + 2𝑣(𝑖, 𝑗 + 1) − 𝑣(𝑖 + 1, 𝑗 + 1)} −
𝐷12

2∆𝑦3
{𝑣(𝑖, 𝑗 − 2) − 2𝑣(𝑖, 𝑗 − 1) +

2𝑣(𝑖, 𝑗 + 1) − 𝑣(𝑖, 𝑗 + 2)} − 𝑞𝑖,𝑗 = 0 

( 4.26 ) 
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𝐷

4∆𝑥∆𝑦
{𝑣(𝑖 − 1, 𝑗 − 1) − 𝑣(𝑖 + 1, 𝑗 − 1) − 𝑣(𝑖 − 1, 𝑗 + 1) + 𝑣(𝑖 + 1, 𝑗 +

1)} +
𝐸

∆𝑥2
{𝑢(𝑖 − 1, 𝑗) − 2𝑢(𝑖, 𝑗) + 𝑢(𝑖 + 1, 𝑗)} +

𝐺

∆𝑦2
{𝑢(𝑖, 𝑗 − 1) −

2𝑢(𝑖, 𝑗) + 𝑢(𝑖, 𝑗 + 1)} +
𝐷12

2∆𝑥3
{−𝑤(𝑖 − 2, 𝑗) + 2𝑤(𝑖 − 1, 𝑗) − 2𝑤(𝑖 +

1, 𝑗) + 𝑤(𝑖 + 2, 𝑗)} +
𝐷12

2∆𝑥∆𝑦2
{−𝑤(𝑖 − 1, 𝑗 − 𝑘) + 2𝑤(𝑖 − 1, 𝑗) − 𝑤(𝑖 −

1, 𝑗 + 1) + 𝑤(𝑖 + 1, 𝑗 − 1) − 2𝑤(𝑖 + 1, 𝑗) + 𝑤(𝑖 + 1, 𝑗 + 1)} = 0 

( 4.27 ) 

 
𝐷

4∆𝑥∆𝑦
{𝑢(𝑖 − 1, 𝑗 − 1) − 𝑢(𝑖 + 1, 𝑗 − 1) − 𝑢(𝑖 − 1, 𝑗 + 1) + 𝑢(𝑖 + 1, 𝑗 +

1)} +
𝐹

∆𝑦2
{𝑣(𝑖, 𝑗 − 1) − 2𝑣(𝑖, 𝑗) + 𝑣(𝑖, 𝑗 + 1)} +

𝐺

∆𝑥2
{𝑣(𝑖 − 1, 𝑗) −

2𝑣(𝑖, 𝑗) + 𝑣(𝑖 + 1, 𝑗)} +
𝐷12

2∆𝑥3
{−𝑤(𝑖, 𝑗 − 2) + 2𝑤(𝑖, 𝑗 − 1) − 2𝑤(𝑖, 𝑗 +

1) + 𝑤(𝑖, 𝑗 + 2)} +
𝐷12

2∆𝑥∆𝑦2
{−𝑤(𝑖 − 1, 𝑗 − 1) + 2𝑤(𝑖 − 1, 𝑗) − 𝑤(𝑖 −

1, 𝑗 + 1) + 𝑤(𝑖 + 1, 𝑗 − 1) − 2𝑤(𝑖 + 1, 𝑗) + 𝑤(𝑖 + 1, 𝑗 + 1)} = 0 

( 4.28 ) 

where 

𝐴 = 𝑐11

ℎ3

12
+ 2𝐷11 ( 4.29 ) 

𝐵 = 2(𝑐12

ℎ3

12
+ 2𝐷11 + 𝑐66

ℎ3

6
) ( 4.30 ) 

𝐷 = ℎ𝑐12 + 2𝐷22 + ℎ𝑐66 ( 4.31 ) 

𝐸 = 𝐹 = ℎ𝑐11 + 2𝐷22 ( 4.32 ) 

𝐺 = ℎ𝑐66 ( 4.33 ) 

Applying Eqs. ( 4.26 )-( 4.28 ) to all mesh points will form a system of (𝑀 + 1) × (𝑁 +

1)  algebraic equations, with all the internal and out-of-the-plate mesh points shown 

in Figure 4-2.  
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Figure 4-2 Internal and out-of-the-plate mesh points of the cantilevered PNP 

4.2.2 Finite difference scheme of the boundary conditions 

Following the same procedure as shown above, the finite difference approximations 

for the boundary conditions of Eqs. ( 3.68 )-( 3.77 ) can be derived.  

(1) Finite difference approximation of the boundary conditions for points along the 

clamped edge 𝑦 = 0, (0 ≤ 𝑖 ≤ 𝑀, 𝑗 = 0) 

𝑢(𝑖, 0) = 𝑣(𝑖, 0) = 𝑤(𝑖, 0) = 0 ( 4.34 ) 

𝜕𝑢(𝑖, 0)

𝜕𝑦
=

𝑢(𝑖, 1) − 𝑢(𝑖, −1)

2∆𝑦
= 0 ( 4.35 ) 

𝜕𝑣(𝑖, 0)

𝜕𝑦
=

𝑣(𝑖, 1) − 𝑣(𝑖, −1)

2∆𝑦
= 0 ( 4.36 ) 

𝜕𝑤(𝑖, 0)

𝜕𝑦
=

𝑤(𝑖, 1) − 𝑤(𝑖, −1)

2∆𝑦
= 0 ( 4.37 ) 

(2) Finite difference approximation of the boundary conditions for points along the free 

edge 𝑥 = 0, (𝑖 = 0, 0 ≤ 𝑗 ≤ 𝑁) 
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𝐷1{𝑤(−1, 𝑗) − 2𝑤(0, 𝑗) + 𝑤(1, 𝑗)} + 𝐷2{𝑤(0, 𝑗 − 1) − 2𝑤(0, 𝑗) +

𝑤(0, 𝑗 + 1)} +
𝐷3∆𝑥

2
{−𝑢(−1, 𝑗) + 𝑢(1, 𝑗)} +

𝐷3∆𝑥

2
{−𝑣(0, 𝑗 − 1) +

𝑣(0, 𝑗 + 1)} +
𝑓13𝑉

𝑎33
∆𝑥2 = 0  

( 4.38 ) 

𝐷1

2
{−𝑤(−2, 𝑗) + 2𝑤(−1, 𝑗) − 2𝑤(1, 𝑗) + 𝑤(2, 𝑗)} +

𝐷4

2
{−2(−1, 𝑗 −

1) + 2𝑤(−1, 𝑗) − 𝑤(−1, 𝑗 + 1) + 𝑤(1, 𝑗 − 1) − 2𝑤(1, 𝑗) + 𝑤(1, 𝑗 +

1)} + 𝐷3∆𝑥{𝑢(−1, 𝑗) − 2𝑤(0, 𝑗) + 𝑢(1, 𝑗)} +
𝐷3∆𝑥

4
{𝑣(−1, 𝑗 − 1) −

𝑣(1, 𝑗 − 1) − 𝑣(−1, 𝑗 + 1) + 𝑣(1, 𝑗 + 1)} = 0  

( 4.39 ) 

𝐷3{𝑤(−1, 𝑗) − 2𝑤(0, 𝑗) + 𝑤(1, 𝑗)} + 𝐷3{𝑤(0, 𝑗 − 1) − 2𝑤(0, 𝑗) +

𝑤(0, 𝑗 + 1)} +
𝐷5∆𝑥

2
{−𝑢(−1, 𝑗) + 𝑢(1, 𝑗)} +

𝐷6∆𝑥

2
{−𝑣(0, 𝑗 − 1) +

𝑣(0, 𝑗 + 1)} −
𝑑31𝑉

𝑎33
∆𝑥2 = 0  

( 4.40 ) 

{−𝑣(−1, 𝑗) + 𝑣(1, 𝑗)} + {−𝑢(0, 𝑗 − 1) + 𝑢(0, 𝑗 + 1)} = 0 ( 4.41 ) 

(3) Finite difference approximation of the boundary conditions for points along the free 

edge 𝑥 = 𝑎, (𝑖 = 𝑀, 0 ≤ 𝑗 ≤ 𝑁) 

𝐷1{𝑤(𝑀 − 1, 𝑗) − 2𝑤(𝑀, 𝑗) + 𝑤(𝑀 + 1, 𝑗)} + 𝐷2{𝑤(𝑀, 𝑗 − 1) −

2𝑤(𝑀, 𝑗) + 𝑤(𝑀, 𝑗 + 1)} +
𝐷3∆𝑥

2
{−𝑢(𝑀 − 1, 𝑗) + 𝑢(𝑀 + 1, 𝑗)} +

𝐷3∆𝑥

2
{−𝑣(𝑀, 𝑗 − 1) + 𝑢(𝑀, 𝑗 + 1)} +

𝑓13𝑉

𝑎33
∆𝑥2 = 0  

( 4.42 ) 

𝐷1

2
{−𝑤(𝑀 − 2, 𝑗) + 2𝑤(𝑀 − 1, 𝑗) − 2𝑤(𝑀 + 1, 𝑗) + 𝑤(𝑀 + 2, 𝑗)} +

𝐷4

2
{−𝑤(𝑀 − 1, 𝑗 − 1) + 2𝑤(𝑀 − 1, 𝑗) − 2𝑤(𝑀 − 1, 𝑗 + 1) + 𝑤(𝑀 +

1, 𝑗 − 1) − 2𝑤(𝑀 + 1, 𝑗) + 𝑤(𝑀 + 1, 𝑗 + 1)} + 𝐷3ℎ{𝑢(𝑀 − 1, 𝑗) −

2𝑢(𝑀, 𝑗) + 𝑢(𝑀 + 1, 𝑗)} +
𝐷3∆𝑥

4
{𝑣(𝑀 − 1, 𝑗 − 1) − 𝑣(𝑀 + 1, 𝑗 − 1) −

𝑣(𝑀 − 1, 𝑗 + 1) + 𝑣(𝑀 + 1, 𝑗 + 1)} = 0  

( 4.43 ) 
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𝐷3{𝑤(𝑀 − 1, 𝑗) − 2𝑤(𝑀, 𝑗) + 𝑤(𝑀 + 1, 𝑗)} + 𝐷3{𝑤(𝑀, 𝑗 − 1) −

2𝑤(𝑀, 𝑗) + 𝑤(𝑀, 𝑗 + 1)} +
𝐷5∆𝑥

2
{−𝑢(𝑀 − 1, 𝑗) + 𝑢(𝑀 + 1, 𝑗)} +

𝐷6∆𝑥

2
{−𝑣(𝑀, 𝑗 − 1) + 𝑉(𝑀, 𝑗 + 1)} −

𝑑31𝑉

𝑎33
∆𝑥2 = 0  

( 4.44 ) 

{−𝑣(𝑀 − 1, 𝑗) + 𝑣(𝑀 + 1, 𝑗)} + {−𝑢(𝑀, 𝑗 − 1) + 𝑢(𝑀, 𝑗 + 1)} = 0 ( 4.45 ) 

(4) Finite difference approximation of the boundary conditions for points along the free 

edge 𝑦 = 𝑏, (0 ≤ 𝑖 ≤ 𝑀, 𝑗 = 𝑁) 

 𝐷1{𝑤(𝑖, 𝑁 − 1) − 2𝑤(𝑖, 𝑁) + 𝑤(𝑖, 𝑁 + 1)} + 𝐷2{𝑤(𝑖 − 1,𝑁) −

2𝑤(𝑖, 𝑁) + 𝑤(𝑖 + 1,𝑁)} +
𝐷3∆𝑥

2
{−𝑢(𝑖 − 1,𝑁) + 𝑢(𝑖 + 1,𝑁)} +

𝐷3∆𝑥

2
{−𝑣(𝑖, 𝑁 − 1) + 𝑣(𝑖, 𝑁 + 1)} +

𝑓13𝑉

𝑎33
∆𝑥2 = 0 

( 4.46 ) 

 
𝐷1

2
{−𝑤(𝑖, 𝑁 − 1) + 2𝑤(𝑖, 𝑁 − 1) − 2𝑤(𝑖, 𝑁 + 1) + 𝑤(𝑖, 𝑁 + 2)} +

𝐷4

2
{−𝑤(𝑖 − 1,𝑁 − 1) + 2𝑤(𝑖, 𝑁 − 1) − 𝑤(𝑖 + 1,𝑁 − 1) + 𝑤(𝑖 − 1,𝑁 +

1) − 2𝑤(𝑖, 𝑁 + 1) + 𝑤(𝑖 + 1,𝑁 + 1)} + 𝐷3∆𝑥{𝑣(𝑖, 𝑁 − 1) −

2𝑣(𝑖, 𝑁) + 𝑣(𝑖, 𝑁 + 1)} +
𝐷3∆𝑥

4
{𝑢(𝑖 − 1,𝑁 − 1) − 𝑢(𝑖 + 1,𝑁 − 1) −

𝑢(𝑖 − 1,𝑁 + 1) + 𝑢(𝑖 + 1,𝑁 + 1)} = 0 

( 4.47 ) 

 𝐷3{𝑤(𝑖 − 1,𝑁) − 2𝑤(𝑖, 𝑁) + 𝑤(𝑖 + 1,𝑁)} + 𝐷3{𝑤(𝑖, 𝑁 − 1) −

2𝑤(𝑖, 𝑁) + 𝑤(𝑖, 𝑁 + 1)} +
𝐷5∆𝑥

2
{−𝑢(𝑖 − 1,𝑁) + 𝑢(𝑖 + 1,𝑁)} +

𝐷6∆𝑥

2
{−𝑣(𝑖, 𝑁 − 1) + 𝑣(𝑖, 𝑁 + 1)} −

𝑑31𝑉

𝑎33
∆𝑥2 = 0 

( 4.48 ) 

{−𝑣(𝑖 − 1,𝑁) + 𝑣(𝑖 + 1, 𝑁)} + {−𝑢(𝑖, 𝑁 − 1) + 𝑢(𝑖, 𝑁 + 1)} = 0 ( 4.49 ) 

where 

𝐷1 = 𝑐11

ℎ3

12
+ 2𝐷11 ( 4.50 ) 
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𝐷2 = 𝑐12

ℎ3

12
+ 2𝐷11 ( 4.51 ) 

𝐷3 = 𝐷12 ( 4.52 ) 

𝐷4 = 𝑐12
ℎ3

12
+ 2𝐷11 + 2𝑐66

ℎ3

6
  ( 4.53 ) 

𝐷5 = ℎ𝑐12 + 2𝐷22  ( 4.54 ) 

𝐷6 = ℎ𝐶11 + 2𝐷22  ( 4.55 ) 

From the finite difference scheme of the governing equations, it can be seen that there 

are mesh points outside the plate boundary. These out-of-the-plate mesh points are 

used to derive the finite difference approximations of the internal points near the 

edges. In order to solve the algebraic equations, the displacements of these out-of-

the-plate points must be determined in terms of the internal points by enforcing the 

boundary conditions.  

4.3 Displacements of out-of-the-plate mesh points  

(1) Out-of-the-plate mesh points relating to the boundary conditions of the points along 

the clamped edge 𝑦 = 0, (𝑗 = 0) 

From Eqs. ( 4.35 )-( 4.37 ), the displacements of the out-of-plate mesh points (𝑖, −1), (0 ≤

𝑖 ≤ 𝑀) can be expressed in terms of the internal points as, 

𝑢(𝑖, −1) = 𝑢(𝑖, 1) ( 4.56 ) 

𝑣(𝑖, −1) = 𝑣(𝑖, 1) ( 4.57 ) 

𝑤(𝑖, −1) = 𝑤(𝑖, 1) ( 4.58 ) 

(2) Out-of-the-plate mesh points relating to the boundary conditions of the points along 

the free edge 𝑥 = 0, (𝑖 = 0) 
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In order to determine the displacements for the mesh points outside the free edge (𝑥 = 0),  

we manipulate the boundary conditions of Eqs. ( 4.38 )-( 4.41 ) for points along the free 

edge, i.e., points (0, 𝑗), (2 ≤ 𝑗 ≤ (𝑁 − 1), and conclude that,  

𝑢(−1, 𝑗) = {(𝐷2𝐷3 − 𝐷1𝐷3)𝑤(0, 𝑗 − 1) + (2𝐷1𝐷3 − 2𝐷2𝐷3)𝑤(0, 𝑗) +

(𝐷2𝐷3 − 𝐷1𝐷3)𝑤(0, 𝑗 + 1) + (
𝐷3

2∆𝑥

2
−

𝐷1𝐷5∆𝑥

2
)𝑢(1, 𝑗) + (

𝐷1𝐷6∆𝑥

2
−

𝐷3
2∆𝑥

2
) 𝑣(0, 𝑗 − 1) + (

𝐷3
2∆𝑥

2
−

𝐷1𝐷6∆𝑥

2
) 𝑣(0, 𝑗 + 1) + 𝐷1

𝑑31𝑉∆𝑥2

𝑎33
+

𝐷3
𝑓13𝑉∆𝑥2

𝑎33
}

1

{
𝐷3

2∆𝑥

2
−

𝐷1𝐷5∆𝑥

2
}

  

( 4.59 ) 

𝑣(−1, 𝑗) = 𝑣(1, 𝑗) − 𝑢(0, 𝑗 − 1) + 𝑢(0, 𝑗 + 1)  ( 4.60 ) 

𝑤(−1, 𝑗) = {(𝐷2𝐷5 − 𝐷3
2)𝑤(0, 𝑗 − 1) + (4𝐷3

2 − 2𝐷1𝐷5 −

2𝐷2𝐷5)𝑤(0, 𝑗) + (𝐷1𝐷5 − 𝐷3
2)𝑤(1, 𝑗) + (𝐷2𝐷5 − 𝐷3

2)𝑤(0, 𝑗 + 1) +

(
𝐷3𝐷6∆𝑥

2
−

𝐷3𝐷5∆𝑥

2
)𝑣(0, 𝑗 − 1) + (

𝐷3𝐷5∆𝑥

2
−

𝐷3𝐷6∆𝑥

2
) 𝑣(0, 𝑗 + 1) +

𝐷3
𝑑31𝑉∆𝑥2

𝑎33
+ 𝐷5

𝑓13𝑉∆𝑥2

𝑎33
}

1

𝐷3
2−𝐷1𝐷5

  

( 4.61 ) 

𝑤(−2, 𝑗) = {(−
𝐷4

2
)𝑤(−1, 𝑗 − 1) + (𝐷1 + 𝐷4)𝑤(−1, 𝑗) +

(−
𝐷4

2
)𝑤(−1, 𝑗 + 1) +

𝐷4

2
𝑤(1, 𝑗 − 1) + (−𝐷1 − 𝐷4)𝑤(1, 𝑗) +

𝐷1

2
𝑤(2, 𝑗) +

𝐷4

2
𝑤(1, 𝑗 + 1) + 𝐷3ℎ∆𝑥(−1, 𝑗) + (−2𝐷3∆𝑥)𝑢(0, 𝑗) +

𝐷3ℎ∆𝑥(1, 𝑗) +
𝐷3∆𝑥

4
𝑣(−1, 𝑗 − 1) + (−

𝐷3∆𝑥

4
)𝑣(1, 𝑗 − 1) +

(−
𝐷3∆𝑥

4
) 𝑣(−1, 𝑗 + 1) +

𝐷3∆𝑥

4
𝑣(1, 𝑗 + 1)}

2

𝐷1
  

( 4.62 ) 

(3) Out-of-the-plate mesh points relating to the boundary conditions of the points along 

the free edge 𝑥 = 𝑎, (𝑖 = 𝑀) 

From the boundary conditions for points (𝑀, 𝑗), (2 ≤ 𝑗 ≤ (𝑁 − 1)), along the free edge 

𝑥 = 𝑎, the displacements of the mesh points outside the free edge (𝑥 = 𝑎) are determined 

as, 
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 𝑢(𝑀 + 1, 𝑗) = {(𝐷2𝐷3 − 𝐷1𝐷3)𝑤(𝑀, 𝑗 − 1) + (2𝐷1𝐷3 −

2𝐷2𝐷3)𝑤(𝑀, 𝑗) + (𝐷2𝐷3 − 𝐷1𝐷3)𝑤(𝑀, 𝑗 + 1) − (
𝐷3

2∆𝑥

2
−

𝐷1𝐷5∆𝑥

2
) 𝑢(𝑀 −

1, 𝑗) + (
𝐷1𝐷6∆𝑥

2
−

𝐷3
2∆𝑥

2
)𝑣(𝑀, 𝑗 − 1) + (

𝐷3
2∆𝑥

2
−

𝐷1𝐷6∆𝑥

2
) 𝑣(𝑀, 𝑗 + 1) +

𝐷1
𝑑31𝑉∆𝑥2

𝑎33
+ 𝐷3

𝑓13𝑉∆𝑥2

𝑎33
}

−1

{
𝐷3

2∆𝑥

2
−

𝐷1𝐷5∆𝑥

2
}

 

( 4.63 ) 

𝑣(𝑀 + 1, 𝑗) = 𝑣(𝑀 − 1, 𝑗) + 𝑢(𝑀, 𝑗 − 1) − 𝑢(𝑀, 𝑗 + 1)  ( 4.64 ) 

𝑤(𝑀 + 1, 𝑗) = {(𝐷2𝐷5 − 𝐷3
2)𝑤(𝑤(𝑀, 𝑗 − 1)) + (4𝐷3

2 − 2𝐷1𝐷5 −

2𝐷2𝐷5)𝑤(𝑀, 𝑗) + (𝐷1𝐷5 − 𝐷3
2)𝑤(𝑀 − 1, 𝑗) + (𝐷2𝐷5 − 𝐷3

2)𝑤(𝑀, 𝑗 +

1) + (
𝐷3𝐷6∆𝑥

2
−

𝐷3𝐷5∆𝑥

2
)𝑣(𝑀, 𝑗 − 1) + (

𝐷3𝐷5∆𝑥

2
−

𝐷3𝐷6∆𝑥

2
)𝑣(𝑀, 𝑗 + 1) +

𝐷3
𝑑31𝑉∆𝑥2

𝑎33
+ 𝐷5

𝑓13𝑉∆𝑥2

𝑎33
}

1

𝐷3
2−𝐷1𝐷5

  

( 4.65 ) 

𝑤(𝑀 + 2, 𝑗) = {(−
𝐷4

2
)𝑤(𝑀 − 1, 𝑗 − 1) + (𝐷1 + 𝐷4)𝑤(𝑀 − 1, 𝑗) +

(−
𝐷4

2
)𝑤(𝑀 − 1, 𝑗 + 1) +

𝐷4

2
𝑤(𝑀 + 1, 𝑗 − 1) + (−𝐷1 − 𝐷4)𝑤(𝑀 +

1, 𝑗) −
𝐷1

2
𝑤(𝑀 − 2, 𝑗) +

𝐷4

2
𝑤(𝑀 + 1, 𝑗 + 1) + 𝐷3∆𝑥𝑢(𝑀 − 1, 𝑗) +

(−2𝐷3∆𝑥)𝑢(𝑀, 𝑗) + 𝐷3∆𝑥𝑢(𝑀 + 1, 𝑗) +
𝐷3∆𝑥

4
𝑣(𝑀 − 1, 𝑗 − 1) +

(−
𝐷3∆𝑥

4
) 𝑣(𝑀 + 1, 𝑗 − 1) + (−

𝐷3∆𝑥

4
) 𝑣(𝑀 − 1, 𝑗 + 1) +

𝐷3∆𝑥

4
𝑣(𝑀 +

1, 𝑗 + 1)}  

( 4.66 ) 

(4) Out-of-the-plate mesh points relating to the boundary conditions of the points along 

the free edge 𝑦 = 𝑏, (𝑗 = 𝑁) 

From the boundary conditions for the mesh points (𝑖, 𝑁), (2 ≤ 𝑖 ≤ (𝑀 − 1)), the 

expressions for the displacements of the mesh points outside the free edge (𝑦 = 𝑏) are 

determined as, 

𝑢(𝑖, 𝑁 + 1) = 𝑢(𝑖, 𝑁 − 1) + 𝑣(𝑖 − 1,𝑁) − 𝑣(𝑖 + 1,𝑁) ( 4.67 ) 
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𝑣(𝑖, 𝑁 + 1) = {(2𝐷1𝐷3 − 2𝐷2𝐷3)𝑤(𝑖, 𝑁) + (𝐷2𝐷3 − 𝐷1𝐷3)𝑤(𝑖 −

1, 𝑁) + (𝐷2𝐷3 − 𝐷1𝐷3)𝑤(𝑖 + 1,𝑁) + (
𝐷1𝐷5∆𝑥

2
−

𝐷3
2∆𝑥

2
) 𝑣(𝑖, 𝑁 − 1) +

(
𝐷1𝐷6∆𝑥

2
−

𝐷3
2∆𝑥

2
) 𝑢(𝑖 − 1, 𝑁) + (

𝐷3
2∆𝑥

2
−

𝐷1𝐷6∆𝑥

2
) 𝑣(𝑖 + 1,𝑁) +

𝐷1
𝑑31𝑉∆𝑥2

𝑎33
+ 𝐷3

𝑓13𝑉∆𝑥2

𝑎33
}

1

(
𝐷1𝐷5∆𝑥

2
−

𝐷3
2∆𝑥

2
)

  

( 4.68 ) 

𝑤(𝑖, 𝑁 + 1) = {(𝐷1𝐷5 − 𝐷3
2)𝑤(𝑖, 𝑁 − 1) + (4𝐷3

2 − 2𝐷1𝐷5 −

2𝐷2𝐷5)𝑤(𝑖, 𝑁) + (𝐷2𝐷5 − 𝐷3
2)𝑤(𝑖 − 1,𝑁) + (𝐷2𝐷5 − 𝐷3

2)𝑤(𝑖 +

1, 𝑁) + (
𝐷3𝐷6∆𝑥

2
−

𝐷3𝐷5∆𝑥

2
)𝑢(𝑖 − 1,𝑁) + (

𝐷3𝐷5∆𝑥

2
−

𝐷3𝐷6

2
) 𝑢(𝑖 + 1,𝑁) +

𝐷3
𝑑31𝑉∆𝑥2

𝑎33
+ 𝐷5

𝑓13𝑉∆𝑥2

𝑎33
}

1

𝐷3
2−𝐷1𝐷5

  

( 4.69 ) 

 𝑤(𝑖, 𝑁 + 2) = {(−𝐷1 − 𝐷4)𝑤(𝑖, 𝑁 + 1) +
𝐷4

2
𝑤(𝑖 − 1,𝑁 + 1) +

𝐷4

2
𝑤(𝑖 + 1,𝑁 + 1) + (−

𝐷1

2
)𝑤(𝑖, 𝑁 − 2) + (𝐷1 + 𝐷4)𝑤(𝑖, 𝑁 − 1) +

(−
𝐷4

2
)𝑤(𝑖 − 1,𝑁 − 1) + (−

𝐷4

2
)𝑤(𝑖 + 1, 𝑁 − 1) + (−

𝐷3∆𝑥

4
)𝑢(𝑖 −

1, 𝑁 + 1) +
𝐷3∆𝑥

4
𝑢(𝑖 + 1,𝑁 + 1) +

𝐷3∆𝑥

4
𝑢(𝑖 − 1,𝑁 − 1) +

(−
𝐷3∆𝑥

4
) 𝑢(𝑖 + 1,𝑁 − 1) + 𝐷3∆𝑥𝑣(𝑖, 𝑁 + 1) + 𝐷3∆𝑥𝑣(𝑖, 𝑁 − 1) +

(−2𝐷3∆𝑥)𝑣(𝑖, 𝑁)}
−2

𝐷1
 

( 4.70 ) 

(5) The other remaining out-of-the-plate mesh points 

There are out-of-the-plate mesh points involved in the governing equation scheme, whose 

displacements have not been determined yet. Those mesh points can be divided into two 

types: one whose displacements are related to the boundary conditions, and the other one 

whose displacements are not related to the boundary conditions. Thus, in this section, 

efforts will be put into determining the displacements of the remaining out-of-the-plate 

mesh points with regards to the internal points. 
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(5.1)   Out-of-the-plate mesh points relating to the boundary conditions of the corner points 

(0, 0) and (𝑀, 0) 

For the point (0, 0) intersecting the clamped edge 𝑦 = 0 and the free edge 𝑥 = 0, and the 

point (𝑀, 0) intersecting the clamped edge 𝑦 = 0 and the free edge 𝑥 = 𝑎, 𝑤(0, 0) and 

𝑤(𝑀, 0) can be expressed by the central-difference method as, 

𝑤(0, 0) =
𝑤(−1, 0) + 𝑤(1, 0) + 𝑤(0,−1) + 𝑤(0, 1)

4
= 0 ( 4.71 ) 

𝑤(𝑀, 0) =
𝑤(𝑀 − 1, 0) + 𝑤(𝑀 + 1, 0) + 𝑤(𝑀,−1) + 𝑤(𝑀, 1)

4
= 0 ( 4.72 ) 

Manipulating Eqs.( 4.71 )-( 4.72 ) leads to the expressions of 𝑤(−1, 0) and 𝑤(𝑀 + 1, 0) 

with respect to internal points as, 

𝑤(−1, 0) = −2𝑤(1, 1) ( 4.73 ) 

𝑤(𝑀 + 1, 0) = −2𝑤(𝑀, 1) ( 4.74 ) 

Similarly, we can get the expressions of 𝑢(−1, 0), 𝑣(−1, 0), 𝑢(𝑀 + 1, 0) and 𝑣(𝑀 + 1, 0) 

with regards to internal points as, 

𝑢(−1, 0) = −2𝑢(1, 1) ( 4.75 ) 

𝑣(−1, 0) = −2𝑣(1, 1)  ( 4.76 ) 

𝑢(𝑀 + 1, 0) = −2𝑢(𝑀, 1)  ( 4.77 ) 

𝑣(𝑀 + 1, 0) = −2𝑣(𝑀, 1)  ( 4.78 ) 

(5.2)   Out-of-the-plate mesh points relating to the boundary conditions of the corner points 

(0, 𝑁) 

For the corner point (0,𝑁), it satisfies both the boundary conditions for the free edge 𝑥 =

0 and for the free edge 𝑦 = 𝑏. Manipulating Eqs. ( 3.70 ), ( 3.72 ), ( 3.74 ) and ( 3.76 ) 

leads to, 
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𝑢(−1,𝑁) = 𝑢(1, 𝑁) − 2∆𝑥
(𝐷1 + 𝐷2)

𝑑31𝑉
𝑎33

+ 2𝐷3
𝑓13𝑉
𝑎33

(𝐷1 + 𝐷2)(𝐷5 + 𝐷6) − 4𝐷3
2 

( 4.79 ) 

𝑣(0, 𝑁 + 1) = 𝑣(0, 𝑁 − 1) + 2∆𝑥
(𝐷1 + 𝐷2)

𝑑31𝑉
𝑎33

+ 2𝐷3
𝑓13𝑉
𝑎33

(𝐷1 + 𝐷2)(𝐷5 + 𝐷6) − 4𝐷3
2 

( 4.80 ) 

 𝑤(0,𝑁 + 1) = 2𝑤(0,𝑁) − 𝑤(0,𝑁 − 1) + ∆𝑥2
(𝐷5+𝐷6)

𝑓13𝑉

𝑎33
+2𝐷3

𝑑31𝑉

𝑎33

4𝐷3
2−(𝐷1+𝐷2)(𝐷5+𝐷6)

 ( 4.81 ) 

 𝑤(−2,𝑁) = 2𝑤(−1,𝑁) − 2𝑤(1, 𝑁) + 𝑤(2,𝑁) + {−𝑤(−1,𝑁 − 1) +

2𝑤(−1,𝑁) − 𝑤(−1,𝑁 + 1) + 𝑤(1,𝑁 − 1) − 2𝑤(1,𝑁) + 𝑤(1,𝑁 +

1)}
𝐷4

𝐷1
+ {𝑢(−1,𝑁) − 2𝑢(0, 𝑁) + 𝑢(1, 𝑁)}

2∆𝑥𝐷12

𝐷1
+ {𝑣(−1,𝑁 − 1) −

𝑣(1, 𝑁 − 1) − 𝑣(−1,𝑁 + 1) + 𝑣(1, 𝑁 + 1)}
∆𝑥𝐷12

2𝐷1
 

( 4.82 ) 

 𝑤(0,𝑁 + 2) = 𝑤(0,𝑁 − 2) − 2𝑤(0,𝑁 − 1) + 2𝑤(0,𝑁 + 1) +

{𝑤(−1,𝑁 − 1) − 2𝑤(0,𝑁 − 1) + 𝑤(1,𝑁 − 1) − 𝑤(−1,𝑁 + 1) +

2𝑤(0,𝑁 + 1) − 𝑤(1,𝑁 + 1)}
𝐷4

𝐷1
+ {−𝑣(0, 𝑁 − 1) + 2𝑣(0, 𝑁) −

𝑣(0, 𝑁 + 1)}
2∆𝑥𝐷12

𝐷1
+ {−𝑢(−1,𝑁 − 1) + 𝑢(0,𝑁 − 1) + 𝑢(−1,𝑁 + 1) −

𝑢(0,𝑁 + 1)}
∆𝑥𝐷12

2𝐷1
 

( 4.83 ) 

Combining the boundary conditions of Eq. ( 4.41 ) and 𝑢(0, 𝑁) =
𝑢(0,𝑁+1)+𝑢(0,𝑁−1)

2
 results 

in, 

𝑢(0, 𝑁 + 1) = 2𝑢(0, 𝑁) − 𝑢(0, 𝑁 − 1) ( 4.84 ) 

𝑣(−1,𝑁) = 2𝑢(0, 𝑁) − 2𝑢(0, 𝑁 − 1) + 𝑣(1, 𝑁)  ( 4.85 ) 

With the central-difference method, when governing equations ( 4.26 )-( 4.28 ) are applied 

to the corner point (0,𝑁), it can be seen that five out-of-the-plate points ((−2,𝑁), (−1,𝑁), 

(0,𝑁 + 1), (0,𝑁 + 2) and (−1, 𝑁 + 1)) are involved. So far, we have determined the 

expressions of 𝑤(−2,𝑁), 𝑤(−1,𝑁), 𝑤(0,𝑁 + 1) and 𝑤(0,𝑁 + 2) in terms of the internal 
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points. In order to determine the expression of 𝑤(−1,𝑁 + 1), one more boundary equation 

is needed. Shimpi and Sivakumar (1994) solved this problem and derived an additional 

equation by employing the corner reaction condition or the twisting moment ‘𝑀𝑥𝑦’. 

According to Timoshenko and Woinowsky-Krieger (1959), Fo-van (1980) and Lin and 

Yuan (1985), the twisting moment 𝑀𝑥𝑦 is defined as, 

𝑀𝑥𝑦 = 𝐷(1 − 𝛾)
𝜕2𝑤

𝜕𝑥𝜕𝑦
 ( 4.86 ) 

where 𝐷 is the flexural rigidity of the plate. Applying finite difference method to Eq. ( 4.86 

), we can get the expression of 𝑤(−1,𝑁 + 1) as, 

𝑤(−1,𝑁 + 1) = 𝑤(−1,𝑁 − 1) + 𝑤(0,𝑁 + 1) − 𝑤(0, 𝑁 − 1) ( 4.87 ) 

(5.3)   Out-of-the-plate points relating to the boundary conditions of the corner point (𝑀,𝑁) 

Following the same procedure for determining the displacements for the mesh points 

outside the corner point (0,𝑁), we can determine the displacement expressions for the mesh 

points outside the corner point (𝑀,𝑁) as,  

𝑢(𝑀,𝑁 + 1) = 2𝑢(𝑀,𝑁) − 𝑢(𝑀,𝑁 − 1) ( 4.88 ) 

𝑣(𝑀 + 1,𝑁) = −2𝑢(𝑀,𝑁) + 2𝑢(𝑀,𝑁 − 1) + 𝑣(𝑀 − 1, 𝑁) ( 4.89 ) 

 𝑢(𝑀 + 1, 𝑁) = 𝑢(𝑀 − 1,𝑁) + 2∆𝑥
(𝐷1+𝐷2)

𝑑31𝑉

𝑎33
+2𝐷3

𝑓13𝑉

𝑎33

(𝐷1+𝐷2)(𝐷5+𝐷6)−4𝐷3
2  ( 4.90 ) 

 𝑣(𝑀,𝑁 + 1) = 𝑣(𝑀,𝑁 − 1) + 2∆𝑥
(𝐷1+𝐷2)

𝑑31𝑉

𝑎33
+2𝐷3

𝑓13𝑉

𝑎33

(𝐷1+𝐷2)(𝐷5+𝐷6)−4𝐷3
2  ( 4.91 ) 

𝑤(𝑀 + 1, 𝑁 + 1) = 𝑤(𝑀 + 1,𝑁 − 1) + 𝑤(𝑀,𝑁 + 1) − 𝑤(𝑀,𝑁 − 1) ( 4.92 ) 

 𝑤(𝑀 + 1, 𝑁) = 2𝑤(𝑀,𝑁) − 𝑤(𝑀 − 1,𝑁) + ∆𝑥2
(𝐷5+𝐷6)

𝑓13𝑉

𝑎33
+2𝐷3

𝑑31𝑉

𝑎33

4𝐷3
2−(𝐷1+𝐷2)(𝐷5+𝐷6)

 ( 4.93 ) 
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 𝑤(𝑀,𝑁 + 1) = 2𝑤(𝑀,𝑁) − 𝑤(𝑀,𝑁 − 1) + ∆𝑥2
(𝐷5+𝐷6)

𝑓13𝑉

𝑎33
+2𝐷3

𝑑31𝑉

𝑎33

4𝐷3
2−(𝐷1+𝐷2)(𝐷5+𝐷6)

 ( 4.94 ) 

 𝑤(𝑀 + 2, 𝑁) = −2𝑤(𝑀 + 1, 𝑁) + 2𝑤(𝑀 − 1,𝑁) − 𝑤(𝑀 − 2,𝑁) −

{−𝑤(𝑀 + 1,𝑁 − 1) + 2𝑤(𝑀 + 1,𝑁) − 𝑤(𝑀 + 1,𝑁 + 1) +

𝑤(𝑀 − 1, 𝑁 − 1) − 2𝑤(𝑀 − 1,𝑁) + 𝑤(𝑀 − 1,𝑁 + 1)}
𝐷4

𝐷1
−

{𝑢(𝑀 + 1,𝑁) − 2𝑢(𝑀,𝑁) + 𝑢(𝑀 − 1,𝑁)}
2∆𝑥𝐷12

𝐷1
− {𝑣(𝑀 + 1,𝑁 − 1) −

𝑣(𝑀 − 1,𝑁 − 1) − 𝑣(𝑀 + 1,𝑁 + 1) + 𝑣(𝑀 − 1,𝑁 + 1)}
∆𝑥𝐷12

2𝐷1
 

( 4.95 ) 

 𝑤(𝑀,𝑁 + 2) = 𝑤(𝑀,𝑁 − 2) − 2𝑤(𝑀,𝑁 − 1) + 2𝑤(𝑀,𝑁 + 1) +

{𝑤(𝑀 + 1,𝑁 − 1) − 2𝑤(𝑀,𝑁 − 1) + 𝑤(𝑀 − 1,𝑁 − 1) − 𝑤(𝑀 +

1, 𝑁 + 1) + 2𝑤(𝑀,𝑁 + 1) − 𝑤(𝑀 − 1,𝑁 + 1)}
𝐷4

𝐷1
+ {−𝑣(𝑀,𝑁 − 1) +

2𝑣(𝑀,𝑁) − 𝑣(𝑀,𝑁 + 1)}
2∆𝑥𝐷12

𝐷1
+ {−𝑢(𝑀 + 1,𝑁 − 1) + 𝑢(𝑀,𝑁 −

1) + 𝑢(𝑀 + 1,𝑁 + 1) − 𝑢(𝑀,𝑁 + 1)}
∆𝑥𝐷12

2𝐷1
 

( 4.96 ) 

(5.4)   Other out-of-the-plate points that are not related to the boundary conditions 

From Figure 4-2, it can be seen that for out-of-the-plate mesh points (i.e. (−2, 𝑗), (0 ≤ 𝑗 ≤

𝑁), (𝑀 + 2, 𝑗), (0 ≤ 𝑗 ≤ 𝑁)  and (𝑖, 𝑁 + 2), (0 ≤ 𝑖 ≤ 𝑀)), the displacements in both 𝑥 

and 𝑦 directions (𝑢(𝑖, 𝑗), 𝑣(𝑖, 𝑗)) are not solved. In order to express them with the internal 

points, the finite difference scheme is applied. 

For points (−1, 𝑗), (0 ≤ 𝑗 < 𝑁), and (𝑖, 𝑁 + 1), (0 < 𝑖 < 𝑀), 𝑢(−1, 𝑗) and 𝑣(𝑖, 𝑁 + 1) can 

be written using the central-difference method as, 

𝑢(−1, 𝑗) =
𝑢(0, 𝑗) + 𝑢(−2, 𝑗) + 𝑢(−1, 𝑗 + 1) + 𝑢(−1, 𝑗 − 1)

4
 ( 4.97 ) 

𝑣(𝑖, 𝑁 + 1) =
𝑣(𝑖 + 1,𝑁 + 1) + 𝑣(𝑖 − 1,𝑁 + 1) + 𝑣(𝑖, 𝑁 + 2) + 𝑣(𝑖, 𝑁)

4
 ( 4.98 ) 
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Accordingly, the displacements of 𝑢(−2, 𝑗), 𝑢(𝑀 + 2, 𝑗) and 𝑣(𝑖, 𝑁 + 2) can be expressed 

as, 

𝑢(−2, 𝑗) = 4𝑢(−1, 𝑗) − 𝑢(0, 𝑗) − 𝑢(−1, 𝑗 + 1) − 𝑢(−1, 𝑗 − 1) ( 4.99 ) 

𝑢(𝑀 + 2, 𝑗) = 4𝑢(𝑀 + 1, 𝑗) − 𝑢(𝑀, 𝑗 ) − 𝑢(𝑀 + 1, 𝑗 + 1) − 𝑢(𝑀 + 1, 𝑗

− 1) 
( 4.100 ) 

𝑣(𝑖, 𝑁 + 2) = 4𝑣(𝑖, 𝑁 + 1) − 𝑣(𝑖 + 1,𝑁 + 1) − 𝑣(𝑖 − 1, 𝑁 + 1)

− 𝑣(𝑖, 𝑁) 
( 4.101 ) 

The finite difference schemes for the points (0, 𝑁 + 1) and (−1,𝑁) that are next to the 

corner point (0,𝑁) are expressed as, 

𝑢(0, 𝑁 + 1) =
𝑢(1, 𝑁 + 1) + 𝑢(−1,𝑁 + 1)

2
 ( 4.102 ) 

𝑢(−1,𝑁) =
𝑢(−1,𝑁 − 1) + 𝑢(−1,𝑁 + 1)

2
=

𝑢(−2,𝑁) + 𝑢(0, 𝑁)

2
 ( 4.103 ) 

𝑣(0, 𝑁 + 1) =
𝑣(1, 𝑁 + 1) + 𝑣(−1,𝑁 + 1)

2
 ( 4.104 ) 

𝑣(−1,𝑁) =
𝑣(−1,𝑁 − 1) + 𝑣(−1,𝑁 + 1)

2
=

𝑣(0, 𝑁 + 2) + 𝑣(0, 𝑁)

2
 ( 4.105 ) 

Accordingly, the expressions of 𝑢(−1,𝑁 + 1), 𝑢(−2,𝑁), 𝑣(−1,𝑁 + 1) and 𝑣(0, 𝑁 + 2) 

can thus be determined as, 

𝑢(−1,𝑁 + 1) =
2𝑢(0,𝑁 + 1) + 2𝑢(−1,𝑁) − 𝑢(1,𝑁 + 1) − 𝑢(−1,𝑁 − 1)

2
 ( 4.106 ) 

𝑢(−2,𝑁) = 2𝑢(−1,𝑁) − 𝑢(0, 𝑁) ( 4.107 ) 

𝑣(−1,𝑁 + 1) =
2𝑣(0, 𝑁 + 1) + 2𝑣(−1,𝑁) − 𝑣(1,𝑁 + 1) − 𝑣(−1,𝑁 − 1)

2
 ( 4.108 ) 

𝑣(0, 𝑁 + 2) = 2𝑣(0, 𝑁 + 1) − 𝑣(0, 𝑁) ( 4.109 ) 
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Similarly, based on the finite difference schemes for points (𝑀,𝑁 + 1) and (𝑀 + 1,𝑁) 

which are outside the corner point (𝑀,𝑁), 𝑢(𝑀 + 1,𝑁 + 1), 𝑢(𝑀 + 2,𝑁), 𝑣(𝑀 + 1,𝑁 +

1) and 𝑣(𝑀,𝑁 + 2) are derived as, 

𝑢(𝑀 + 1,𝑁 + 1)

=
2𝑢(𝑀,𝑁 + 1) + 2𝑢(𝑀 + 1,𝑁) − 𝑢(𝑀 − 1,𝑁 + 1) − 𝑢(𝑀 + 1,𝑁 − 1)

2
 

( 4.110 ) 

𝑢(𝑀 + 2, 𝑁) = 2𝑢(𝑀 + 1,𝑁) − 𝑢(𝑀,𝑁) ( 4.111 ) 

𝑣(𝑀 + 1,𝑁 + 1)

=
2𝑣(𝑀,𝑁 + 1) + 2𝑣(𝑀 + 1,𝑁) − 𝑣(𝑀 − 1,𝑁 + 1) − 𝑣(𝑀 + 1,𝑁 − 1)

2
 

( 4.112 ) 

𝑣(𝑀,𝑁 + 2) = 2𝑣(𝑀,𝑁 + 1) − 𝑣(𝑀,𝑁) ( 4.113 ) 

So far, all the out-of-the-plate mesh points involved in the finite difference scheme of the 

governing equations are described by the internal points. Thus, the governing equations ( 

4.26 )-( 4.28 ) can be rewritten for each point. Since the displacements for points along the 

clamped edge (𝑦 = 0) are known as 0 as shown by Eq ( 4.34 ), there are 3 × (𝑀 + 1) × 𝑁 

equations for (𝑀 + 1) × 𝑁 internal mesh points, whose displacements are to be 

determined. These 3 × (𝑀 + 1) × 𝑁 equations can be expressed in the matrix form as, 

[
𝐴1 𝐵1 𝐶1

𝐴2 𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

] {
𝑤
𝑢
𝑣
} = {

𝑄1

𝑄2

𝑄3

} ( 4.114 ) 

where {𝑤} = [𝑤0,1;  𝑤0,2;⋯𝑤𝑀−1,𝑁;  𝑤𝑀,𝑁], {𝑢} = [𝑢0,1;  𝑢0,2;⋯𝑢𝑀−1,𝑁;  𝑢𝑀,𝑁], {𝑣} =

[𝑣0,1;  𝑣0,2;⋯𝑣𝑀−1,𝑁;  𝑣𝑀,𝑁]  and [𝑄𝑖0,1
;  𝑄𝑖0,2

;⋯𝑄𝑖𝑀−1,𝑁
;  𝑄𝑖𝑀,𝑁

] (𝑖 = 1, 2 and 3) 

denote the vectors of nodal displacements and external electrical and mechanical loads, 

respectively. Matrices 𝐴𝑖((𝑀 + 1) × 𝑁, (𝑀 + 1) × 𝑁), 𝐵𝑖((𝑀 + 1) × 𝑁, (𝑀 + 1) ×

𝑁) and 𝐶𝑖((𝑀 + 1) × 𝑁, (𝑀 + 1) × 𝑁), (𝑖 = 1, 2 and 3) stand for coefficients of 

displacements {𝑤}, {𝑢} and {𝑣}   for the three governing equations ( 4.26 )-( 4.28 ), 
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respectively. The specific value of 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖 is provided in Appendix A while their 

expressions can be written as, 

[𝐴𝑖]

=

[
 
 
 
 
 

𝐴𝑖
(0,1),(0,1)

𝐴𝑖
(0,2),(0,1)

⋮
𝐴𝑖

(𝑀−1,𝑁),(0,1)

𝐴𝑖
(𝑀,𝑁),(0,1)

𝐴𝑖
(0,1),(0,2)

𝐴𝑖
(0,2),(0,2)

⋮
𝐴𝑖

(𝑀−1,𝑁),(0,2)

𝐴𝑖
(𝑀,𝑁),(0,2)

⋯
⋯
⋱
⋯
⋯

𝐴𝑖
(0,1),(𝑀−1,𝑁)

𝐴𝑖
(0,2),(𝑀−1,𝑁)

⋮
𝐴𝑖

(𝑀−1,𝑁),(𝑀−1,𝑁)

𝐴𝑖
(𝑀,𝑁),(𝑀−1,𝑁)

𝐴𝑖
(0,1),(𝑀,𝑁)

𝐴𝑖
(0,2),(𝑀,𝑁)

⋮
𝐴𝑖

(𝑀−1,𝑁),(𝑀,𝑁)

𝐴𝑖
(𝑀,𝑁),(𝑀,𝑁) ]

 
 
 
 
 

 
( 4.115 ) 

[𝐵𝑖]

=

[
 
 
 
 
 

𝐵𝑖
(0,1),(0,1)

𝐵𝑖
(0,2),(0,1)

⋮
𝐵𝑖

(𝑀−1,𝑁),(0,1)

𝐵𝑖
(𝑀,𝑁),(0,1)

𝐵𝑖
(0,1),(0,2)

𝐵𝑖
(0,2),(0,2)

⋮
𝐵𝑖

(𝑀−1,𝑁),(0,2)

𝐵𝑖
(𝑀,𝑁),(0,2)

⋯
⋯
⋱
⋯
⋯

𝐵𝑖
(0,1),(𝑀−1,𝑁)

𝐵𝑖
(0,2),(𝑀−1,𝑁)

⋮
𝐵𝑖

(𝑀−1,𝑁),(𝑀−1,𝑁)

𝐵𝑖
(𝑀,𝑁),(𝑀−1,𝑁)

𝐵𝑖
(0,1),(𝑀,𝑁)

𝐵𝑖
(0,2),(𝑀,𝑁)

⋮
𝐵𝑖

(𝑀−1,𝑁),(𝑀,𝑁)

𝐵𝑖
(𝑀,𝑁),(𝑀,𝑁) ]

 
 
 
 
 

 
( 4.116 ) 

[𝐶𝑖]

=

[
 
 
 
 
 

𝐶𝑖
(0,1),(0,1)

𝐶𝑖
(0,2),(0,1)

⋮
𝐶𝑖

(𝑀−1,𝑁),(0,1)

𝐶𝑖
(𝑀,𝑁),(0,1)

𝐶𝑖
(0,1),(0,2)

𝐶𝑖
(0,2),(0,2)

⋮
𝐶𝑖

(𝑀−1,𝑁),(0,2)

𝐶𝑖
(𝑀,𝑁),(0,2)

⋯
⋯
⋱
⋯
⋯

𝐶𝑖
(0,1),(𝑀−1,𝑁)

𝐶𝑖
(0,2),(𝑀−1,𝑁)

⋮
𝐶𝑖

(𝑀−1,𝑁),(𝑀−1,𝑁)

𝐶𝑖
(𝑀,𝑁),(𝑀−1,𝑁)

𝐶𝑖
(0,1),(𝑀,𝑁)

𝐶𝑖
(0,2),(𝑀,𝑁)

⋮
𝐶𝑖

(𝑀−1,𝑁),(𝑀,𝑁)

𝐶𝑖
(𝑀,𝑁),(𝑀,𝑁) ]

 
 
 
 
 

 
( 4.117 ) 

By solving the governing equation matrix ( 4.114 ) numerically via MATLAB, the 

deflection of the cantilevered PNP under applied mechanical and electrical loads can be 

determined. Accordingly, the complete electroelastic fields of the plate can be derived, 

which will be used to interpret the flexoelectric effects upon the bending behaviors of the 

cantilevered PNP. The MATLAB routine written for predicting the static deflection of the 

plate is provided in Appendix A. 
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Chapter 5  

5 The flexoelectric effect on the bending behavior of a 
cantilevered piezoelectric nanoplate (PNP) 

In this section, the electroelastic fields of a cantilevered PNP with various geometries in 

response to a uniformly distributed load 𝑞 and an electric voltage 𝑉 are investigated to 

study the flexoelectric effect. BaTiO3 is taken as the example material with its material 

properties given by Giannakopoulos and Suresh (1999). Based on this information, the 

material’s elastic, piezoelectric, and dielectric constants are calculated as 𝑐11 =

167.55 𝐺𝑃𝑎, 𝑐12 = 78.15 𝐺𝑃𝑎, 𝑐66 = 44.7 𝐺𝑃𝑎, 𝑎33 = 0.79 × 108 𝑉. 𝑚/𝐶, 𝑑31 = 3.5 ×

108 𝑉/𝑚 for a plane strain condition. Meanwhile, 𝑏33 = 1 × 10−9 𝐽𝑚3/𝐶2 was given in 

References (Maranganti et al., 2006; Eliseev et al., 2009). According to References 

(Tagantsev, 1986; Ponomareva et al., 2012; Zubko et al., 2013), the flexocoupling constant 

𝑓13 is within the range of 1 − 10 𝑉.  

5.1 Validation of the finite difference method (FDM) for the 
numerical simulation 

The accuracy of the FDM is first validated by comparing the numerical results with existing 

results in the literature for special cases. For an elastic Kirchhoff plate under a uniformly 

distributed load 𝑞, the deflection function 𝑤 was derived by Lin and Yuan (1985) using the 

method of two-direction trigonometric series as, 

 𝑤 =
𝑞𝑏4

24𝐷
(6

𝑦2

𝑏2 − 4
𝑦3

𝑏3 +
𝑦4

𝑏4) + ∑ (𝐴𝑚 sh
𝑚𝜋𝑦

𝑎
+ 𝐵𝑚 ch

𝑚𝜋𝑦

𝑎
+18

𝑚=2,4,…

𝐶𝑚
𝑚𝜋𝑦

𝑎
sh

𝑚𝜋𝑦

𝑎
+ 𝐷𝑚

𝑚𝜋𝑦

𝑎
ch

𝑚𝜋𝑦

𝑎
) cos

𝑚𝜋𝑥

𝑎
+ ∑ (𝐹𝑖 ch

𝑖𝜋𝑥

𝑏
+9

𝑖=1

𝐺𝑖
𝑖𝜋𝑥

𝑏
sh

𝑖𝜋𝑥

𝑏
) cos

𝑖𝜋𝑦

𝑏
+ 𝐾𝑜 + 𝐾3𝑥

2 + 𝐾4𝑦
2 =

𝛼𝑞𝑏4

𝐷
 

( 5.1 ) 

where 𝐷 is the flexural rigidity of the plate. For a plate made of BaTiO3 with the size of 

𝑎 = 𝑏 = 10ℎ (ℎ = 50 𝑛𝑚), the flexural rigidity is calculated as 𝐷 = 1.6697 × 10−12. The 

coefficients 𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐷𝑚, 𝐹𝑖, 𝐺𝑖, 𝐾𝑜, 𝐾3 and 𝐾4 were provided by Lin and Yuan (1985). 

The deflection factors 𝛼 for different positions along the free edges (𝑦 = 𝑏, 𝑥 = 0 and 𝑥 =

𝑎 ) of the plate were also provided by Lin et al. (1985) and are shown in Table 5-1 & Table 
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5-2, respectively. Based on the value of the deflection factors, the corresponding 

deflections can be calculated, and they are listed in these two tables, too. Without 

considering the flexoelectricity, our FDM simulation results under the same loading 

condition (𝑞 = 0.1 𝑝𝑁/𝑛𝑚2) are also presented here for comparison. It is found that the 

FDM results are in good agreement with the results in Reference (Lin et al., 1985).  

Table 5-1 The deflection of points along the free edge 𝑦 = 𝑏 

𝑥/𝑎 𝛼 
𝑤 (reference value for Lin 

et al., 1985) (nm) 
𝑤 (FDM) (nm) 

𝑤(𝑟𝑒)−𝑤(𝐹𝐷𝑀)

𝑤(𝑟𝑒)
 (%)  

0.5 0.12912 0.48332 0.48789 -0.95 

0.25 or 0.75 0.12861 0.48141 0.48617 -0.99 

0 or 1 0.12728 0.47633 0.48143 -1.05 

Table 5-2 The deflection of points along the free edge 𝑥 = 0 and 𝑥 = 𝑎 

𝑦/𝑏 𝛼 
𝑤 (reference value for Lin 

et al., 1985) (nm) 
𝑤 (FDEM) (nm) 

𝑤(𝑟𝑒)−𝑤(𝐹𝐷𝑀)

𝑤(𝑟𝑒)
 (%)  

0.25 0.011824 0.044259 0.044156 0.23 

0.5 0.043336 0.162215 0.163271 -0.65 

0.75 0.084078 0.314720 0.317677 -0.94 

When the plate becomes slender, i.e., one in-plane dimension is much larger than the other 

one, it can be simplified as a beam model. For example, a BaTiO3 plate with dimensions 

of 𝑎 = ℎ = 20 𝑛𝑚 and 𝑏 = 20ℎ can be treated as a beam. For a piezoelectric nanobeam 

subjected to a concentrated load 𝐹 = 0.1 𝑛𝑁 at the free end, the transverse deflection for 

the points along the longitudinal direction 𝑦 was analytically solved by Yan and Jiang 

(2013) as, 

𝑤 =
𝐹𝑦2

6(𝐸𝐼)
(𝑦 − 3𝑏) −

𝑐11𝑓13𝑉𝑎𝑦2

2(𝑎33𝐶11 − 𝑑31
2 )(𝐸𝐼)

 ( 5.2 ) 

where 𝐸𝐼 = (𝑐11 −
𝜖0𝑑31

2

𝜖0𝑎33+1
)

𝑏ℎ3

12
−

𝑓13
2

𝑎33
𝑏ℎ is the effective bending rigidity of the beam with 

the consideration of the flexoelectricity. In Reference (Yan and Jiang, 2013), the material 

constants were taken as 𝑐11 = 131 𝐺𝑃𝑎, 𝑑31 = 1.87 × 108 𝑉/𝑚, 𝑎33 = 0.79 × 108𝑉.𝑚/
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𝐶, and 𝑓13 = 5 𝑉. The corresponding deflection profile of the beam calculated by Eq. ( 5.2 

) is plotted in Figure 5-1. Our FDM simulation result for this slender plate is also provided 

in this figure for comparison. It is observed that our numerical results agree very well with 

the existing results for a piezoelectric nanobeam in Reference (Yan and Jiang, 2013).   

For those two special cases, the FDM scheme developed for the cantilevered PNP with the 

consideration of the flexoelectric effect is validated. Thus, it will be further employed to 

study the bending behavior of the cantilevered PNP. 

 

Figure 5-1 Comparison of the deflection of the plate using FDM and the deflection of the 

beam 

5.2 The flexoelectric effect on the static deflection of the 
cantilevered PNP 

Since there is no exact value for the flexocoupling constant provided in the literature for 

BaTiO3, for the illustration purpose of demonstrating the flexoelectric effects, 𝑓13 = 10𝑉 

is taken in the current work hereafter as in the other literature (Zhang, Yan and Jiang, 2014). 

Meanwhile, we must ensure that the applied distributed load  𝑞 will only induce small 

deformation in accordance with the theories stated in the previous section. 
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First, the flexoelectric effect on the overall bending profile of the plate is examined. For a 

cantilevered PNP with a size of 𝑏 = 2.5𝑎, 𝑎 =  12ℎ and ℎ = 30𝑛𝑚, under a mechanical 

distributed load 𝑞 = −0.01 𝑝𝑁/𝑛𝑚2and an electrical load 𝑉 = 0.002 𝑉, the bending 

profiles of the plate without and with considering the flexoelectricity are sketched in Figure 

5-2, respectively. From this figure, it can be seen that under the current loading condition, 

the bending profile of the plate under the flexoelectric effect is significantly different from 

that without considering the flexoelectricity. Thus, we can conclude that the flexoelectricity 

plays an important role in the plate deformation. The plate still keeps a symmetric profile 

with the plane of 𝑥 =
𝑎

2
, while the flexoelectricity influences the local deflection of the 

individual position points. For points with the same 𝑦 position, there is little difference 

among their bending deflections as shown in the figure below. Therefore, in the following 

analysis, we will take the points along the middle plane of the plate (𝑥 =
𝑎

2
) as examples 

for simplification. 
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Figure 5-2 Bending profile of the cantilevered PNP (a) without flexoelectric effect and 

(b) with flexoelectric effect 

5.2.1 The effect of plate thickness on the flexoelectricity 

As illustrated in the Introduction section, the flexoelectricity is closely linked to the feature 

scale of the nanostructures. Particularly for the nanoplate, since only the strain gradients 

along the thickness direction are considered, we will first investigate how the flexoelectric 

effect varies with the plate thickness. 

For a nanoplate with constant aspect ratios (𝑏 =  2.5𝑎, 𝑎 =  12ℎ, for example) under a 

mechanical distributed load 𝑞 = −0.01𝑝𝑁/𝑛𝑚2and various electrical voltages, Figure 5-3 

plots the normalized maximum deflection (𝑤/𝑤0
𝑉) against the plate thickness ℎ for the 

middle point of the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏). 𝑤0
𝑉 stands for the maximum deflection of 

the same point under the same loading conditions without the flexoelectric effect. Without 

any applied electric voltage, the cantilevered PNP exhibits a stiffer elastic behavior than 

the conventional one, as evidenced by a smaller deflection induced in the plate when 

considering the flexoelectric effect. A similar behavior was also observed for a cantilevered 

nanobeam (Yan and Jiang, 2013), which can be attributed to the fact that the flexoelectricity 

decreases the effective bending rigidity of the plate. It should also be noted that such 

flexoelectric effect could also be modified by the applied voltage as shown in boundary 

condition Eqs. ( 3.70 ), ( 3.72 ), ( 3.74 ) and ( 3.76 ). For example, when the applied voltage 



68 

 

is negative, the applied electrical load magnifies the soft bending behavior, i.e., with the 

increase of the voltage magnitude, the plate becomes softer. However, with the voltage 

applied in the opposite direction, the increase of the voltage magnitude could even stiffen 

the bending of the plate. It is also observed in this figure that the flexoelectric effect 

depends on the size of the plate and is more noticeable for plates with smaller thickness. 

As the plate thickness ℎ increases, the flexoelectric effects will diminish as expected and 

all the curves approach unity.  

 

Figure 5-3 Normalized deflection versus plate thickness under different voltages  

It is also interesting to notice that the direction and the magnitude of the applied voltage 

will influence how the plate deforms when the plate thickness is small enough, ℎ = 30 𝑛𝑚, 

for example. Figure 5-4 shows the lateral view of the bending profile of a cantilevered PNP 

under different applied voltages while the mechanical load is fixed as 𝑞 = −0.01 𝑝𝑁/𝑛𝑚2. 

It is concluded from the figure that when the thickness is small, the flexoelectricity has 

such a significant impact on the bending behavior of the plate that the deformation direction 

can even be altered when a voltage is applied. However, as the thickness increases, such 

flexoelectric effect decreases and the deformation direction will not be changed by the 

applied voltage. 



69 

 

 

 

Figure 5-4 Lateral bending profile view of a cantilevered PNP under different voltages 

(a) 𝑉 = −0.002𝑉, and (b) 𝑉 = 0.005𝑉  

5.2.2 The effect of the plate ratio on the flexoelectricity  

As discussed in the Reference (Zhang, Yan and Jiang, 2014), it was found that the 

flexoelectric effect might depend on the plate aspect ratio. For a rectangular plate with 

fixed in-plane aspect ratio and thickness (𝑏 = 2.5𝑎, ℎ = 30 𝑛𝑚), Figure 5-5 plots the 

normalized maximum deflection (𝑤/𝑤0
𝑉) against the plate aspect ratio (𝑏/ℎ) for the middle 

point of the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏) under different voltages while the mechanical 
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distributed load is fixed as 𝑞 = −0.01𝑝𝑁/𝑛𝑚2. From this figure, it is indicated that the 

aspect ratio 𝑎/ℎ, along with the applied voltage, also has an impact on the flexoelectric 

effect upon the bending of the plate. For example, the flexoelectric effect is not affected by 

the aspect ratio without the applied voltage, as demonstrated by the straight line for the 

case of 𝑉 = 0 𝑉. This phenomenon was also observed for a clamped PNP in Reference 

(Zhang, Yan and Jiang, 2014). However, when a voltage is applied, the effect of the 

flexoelectricity is more pronounced for the plates with smaller aspect ratios. With the 

increase of the plate aspect ratio, the applied voltage has negligible effects upon the 

flexoelectricity.  

It should be mentioned that for a clamped PNP in Reference (Zhang, Yan and Jiang, 2014), 

the variation of the flexoelectricity with the combined effects of aspect ratios and applied 

voltages is quite different from the current cantilevered PNP. Such discrepancy is mainly 

attributed to the boundary conditions. For a clamped nanoplate, the flexoelectricity will 

change the effective bending rigidity as well as the strain gradients. For the cantilevered 

nanoplate, the flexoelectricity will also modify the traditional boundary conditions as 

shown by Eqs. ( 3.70 )-( 3.77 ), which were defined as non-homogeneous boundary 

conditions for a cantilevered piezoelectric nanobeam in Reference (Yan and Jiang, 2013). 

Thus, it is concluded that the flexoelectric effect on the bending of the plate is also sensitive 

to the boundary conditions of the plate.  
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Figure 5-5 Normalized deflection with length to thickness ratio under different voltages 

The results shown in Figure 5-3 and Figure 5-5 clearly demonstrate that the flexoelectric 

effect upon the static bending behavior of a cantilevered PNP depends on the plate 

thickness, the aspect ratio and the applied electrical load. 

5.3 The flexoelectric effect on the relaxation strain of the 
cantilevered PNP 

As discussed in Chapter 2, for a cantilevered PNP under free axial loading conditions at 

the free ends, there exist relaxation strains along the axial 𝑥 and 𝑦 directions, which are 

induced by the applied voltage due to the intrinsic electromechanical coupling effect. From 

Equation ( 3.42 ), it can be seen that the relaxation strain is also affected by the 

flexoelectricity but not reliant on the 𝑧 position of the point. Figure 5-6 plots the in-plane 

distribution of the relaxation strain for a plate (𝑏 =  2.5𝑎, 𝑎 =  12ℎ, ℎ =  40𝑛𝑚) under a 

negative applied voltage (𝑉 =  −0.005 𝑉). In the absence of the flexoelectricity, the 

relaxation strain (𝜀0 =
𝑑31𝑉

𝑎33ℎ(𝐶11+𝐶12)−2𝑑31
2 ℎ

) is independent of the point positions and caused 

solely by the applied voltage, which is indicated by the flat plane in this figure. However, 

under the effect of the flexoelectricity, the relaxation strain varies with the point positions 

through the whole plate due to the change of the strain gradients. Particularly, the 
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flexoelectric effect on the relaxation strain is more prominent for the clamped edge due to 

the high strain gradient near the edge.  

 

Figure 5-6 In-plane distribution of relaxation strain under 𝑉 = −0.005𝑉 

5.3.1 The effect of plate thickness and applied voltages on the 
relaxation strain 

In order to see how the flexoelectric effect upon the relaxation strain varies with the plate 

thickness, Figure 5-7 plots the variation of the relaxation strain with the plate thickness ℎ 

for the middle point of the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏). This plate is set with constant 

dimension ratios (𝑏 = 2.5𝑎, 𝑎 = 12ℎ) and is subject to a mechanical load 𝑞 =

−0.01 𝑝𝑁/𝑛𝑚2 and different applied voltages. Without the consideration of the 

flexoelectricity, the relaxation strain due to the inherent electromechanical coupling is also 

provided in these figures for comparison, which is constant for all the points throughout 

the plate.  

It is obvious from these figures that both the plate thickness and the applied voltage have 

impacts on the relaxation strain. It is also found that the effect of the flexoelectricity is 

more pronounced when the plate thickness ℎ is small, and such an effect becomes weaker 

with the increase of the plate thickness ℎ. When the plate thickness is sufficiently large, 
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the relaxation strain approaches the one without the consideration of the flexoelectricity as 

expected.  

 

 

Figure 5-7 Relaxation strain with beam thickness under different voltages (a) 𝑉 =

−0.01𝑉 and (b) 𝑉 = 0.01𝑉 

5.3.2 The effect of applied mechanical loads on the relaxation 
strain 

As discussed in the previous section that the flexoelectricity is induced by the non-uniform 

strain, it is reasonable to assume that the transverse mechanical load applied to the plate 
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will have an influence upon the flexoelectric effect. For a plate whose geometry is set as 

𝑏 = 2.5𝑎, 𝑎 = 12ℎ, Figure 5-8 plots the variation of the relaxation strain with the plate 

thickness for the middle point at the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏) when the plate is under 

an applied voltage 𝑉 = −0.002𝑉 and different applied mechanical loads. The relaxation 

strain without the flexoelectricity is also provided in this figure for comparison. 

Under such a negative applied voltage (𝑉 = −0.002𝑉), the relaxation strain is negative. 

The magnitude of the relaxation strain with the flexoelectric effect is larger compared with 

the one without considering the flexoelectricity. Furthermore, the magnitude of the 

relaxation strain is enhanced by increasing the magnitude of the applied load 𝑞. With the 

increase of the plate thickness, the flexoelectric effect diminishes and the relaxation strain 

approaches that of the classical piezoelectric nanoplate. 

 

Figure 5-8 Relaxation strain with different applied loads 

5.4 The flexoelectric effect on the electric field of the 
cantilevered PNP 

As indicated by the electric filed Eq.( 3.26 ), the strain gradients will have an effect on the 

electric field distribution. Thus, in this section, efforts will be made to investigate the 

influence of different factors, such as the plate dimensions, the applied voltage, and the 

applied mechanical loads on the electric field distribution.  
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5.4.1 The effect of plate thickness on the electric field distribution  

To study how the plate thickness influences the electric field distribution, two plates with 

the same aspect ratios (𝑏 =  2.5𝑎, 𝑎 =  12ℎ) but different thicknesses (ℎ = 50 𝑛𝑚 and 

ℎ = 300 𝑛𝑚) are used as samples here. Figure 5-9 plots the electric field distribution 𝐸 

along the plate thickness direction for points at the middle of the free edge (𝑥 = 0.5𝑎, 𝑦 =

𝑏) for these two plates when the applied loads  𝑞 = −0.01 𝑝𝑁/𝑛𝑚2 and the applied voltage 

𝑉 = −0.002 𝑉.  

It can be seen that the flexoelectricity has a more noticeable impact upon the electric field 

for plates with smaller thickness, as the discrepancy between the plot considering the 

flexoelectricity and that of the classical solution is larger when ℎ = 50 𝑛𝑚. There are 

jumps of the electric field for points near the boundary surfaces for both cases. This kind 

of discrepancy near the surface when considering the flexoelectricity is a typical boundary 

behavior for a gradient theory, which was also seen in the polarization gradient result of a 

plate (Mindlin, 1969), the electric field result of a clamped PNP (Zhang, Yan and Jiang, 

2014) and the electric field of a circular cylindrical shell (Yang et al., 2004).  
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Figure 5-9 Electric field distribution along thickness direction at the middle of the free 

edge with different thickness (a) ℎ =  50 𝑛𝑚 and (b) ℎ = 300 𝑛𝑚 

5.4.2 The effect of applied voltages on the electric field distribution  

In order to see how the electric field changes with the applied voltages, for a PNP with 

dimension set as 𝑏 = 2.5𝑎, 𝑎 = 12ℎ and ℎ = 30 𝑛𝑚, Figure 5-10 depicts the normalized 

electric field (𝐸/𝐸0) along the thickness direction at the middle of the free edge (𝑥 =

0.5𝑎, 𝑦 = 𝑏) under a fixed mechanical load 𝑞 = −0.05𝑝𝑁/𝑛𝑚2 and different applied 

voltages, where 𝐸0 stands for the electric field of the plate without considering the 

flexoelectric effect. 

From this figure, it can be seen that when the applied mechanical load is fixed (𝑞 =

−0.01𝑝𝑁/𝑛𝑚2, for example) and the applied voltage is negative, the flexoelectric effect 

decreases with the increase of the magnitude of the applied load; however, an opposite 

trend is observed when the applied voltage is positive. 
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Figure 5-10 Electric field distribution along thickness direction at the middle of the free 

edge with different applied voltages 

5.4.3 The effect of applied mechanical loads on the electric field 
distribution  

For a PNP with constant aspect ratios and thickness (𝑏 =  2.5𝑎, 𝑎 =  12ℎ and ℎ =

20 𝑛𝑚) under an electrical load 𝑉 = −0.002 𝑉 and various mechanical loads, Figure 5-11 

plots the normalized electric field (𝐸/𝐸0) along the thickness direction for the points at the 

middle of the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏). As seen from Figure 5-11, it is concluded that 

the applied loads also modify the effect of the flexoelectricity on the electric field 

distribution. For example, the flexoelectric effect is enhanced by increasing the magnitude 

of the applied load, as the slope of the normalized electric field gets larger with the increase 

of the magnitude of the applied load.  
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Figure 5-11 Normalized electric field distribution along thickness direction at the middle 

of the free edge with different applied loads 

5.5 The flexoelectric effect on the polarization of the 
cantilevered PNP 

Due to the strain gradient, there will be a spontaneous electric polarization along the 

thickness direction, whose expression is shown as, 

𝑃𝑧 =
𝑒13ℎ (

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2) − 2𝑒13(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

2𝑏33𝜆(𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2 )

𝑒𝜆𝑧

+
𝑒13ℎ (

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2) + 2𝑒13(

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

2𝑏33𝜆(𝑒
𝜆ℎ
2 − 𝑒

−𝜆ℎ
2 )

𝑒−𝜆𝑧

+
𝑘𝑑31

1 + 𝑘𝑎33
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)𝑧

+ (
𝑓13

𝑎33
+

𝑓13

𝑏33𝜆2
) (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) −

𝑑31

𝑎33
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)

−
𝑉

𝑎33ℎ
 

( 5.3 ) 
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Within the range of the thickness considered in this work, the varying terms in relation to 

the point position along the thickness direction are relatively negligible in comparison with 

the fixed terms. Thus, we can neglect those terms and assume that the electric polarization 

of the bending PNP distributes uniformly along the plate thickness. Therefore, the 

expression for the polarization is simplified as,  

𝑃𝑧 = (
𝑓13

𝑎33
+

𝑓13

𝑏33𝜆2
) (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) −

𝑑31

𝑎33
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) −

𝑉

𝑎33ℎ
 ( 5.4 ) 

Figure 5-12 plots the in-plane distribution of the polarization for a plate (𝑏 = 2. 5𝑎, 𝑎 =

 12ℎ, ℎ =  50𝑛𝑚) under an applied mechanical load (𝑞 = −0.01𝑝𝑁/𝑛𝑚2) and a negative 

applied voltage (𝑉 =  −0.002 𝑉). Without the effect caused by the flexoelectricity, the 

polarization (𝑃𝑧 = −
𝑉

𝑎33ℎ
) remains constant throughout the plate as shown by the flat plane 

in this figure, which is purely intrigued by the applied electric voltage. However, since the 

strain gradient effect associated with the flexoelectricity is substantial and depends on the 

position (𝑥, 𝑦) of the point, the in-plane distribution of the polarization is influenced 

significantly by the flexoelectricity as shown by the non-uniform profile. For example, the 

polarization drops near the side of the clamped edge, and it increases gradually when 

approaching the end of the free edge (𝑦 = 𝑏). Except for the points near the clamped edge, 

it can be seen from the figure that the polarization various little along the 𝑥 direction for 

the points with the same 𝑦 position, as the strain gradients along the 𝑥 direction is smaller 

compared with that along the 𝑦 direction. 
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Figure 5-12 In-plane distribution of polarization under 𝑉 = −0.002𝑉  

5.5.1 The effect of plate thickness and applied voltages on the 
polarization 

In order to study the relationship between the flexoelectricity and the plate thickness, for a 

particular plate (𝑏 =  2.5𝑎, 𝑎 =  12ℎ), Figure 5-13 plots the polarization against the plate 

thickness under different electrical loads for the middle point of the free edge (𝑥 =

0.5𝑎, 𝑦 = 𝑏). From Figure 5-13, positive polarization is induced for this point without any 

applied voltage or with a negative voltage i.e., 𝑉 = −0.01𝑉, while negative polarization is 

induced with a positive voltage, i.e., 𝑉 = 0.01𝑉. Meanwhile, the magnitude of polarization 

is larger than that of the conventional plate for all of the three cases. It can also be seen that 

the flexoelectricity has a greater impact on the polarization for the plate with smaller 

thicknesses, and such impact decays with the increase of the plate thickness and eventually 

the polarization results approach those of the conventional plate.  
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Figure 5-13 Variation of polarization with plate thickness under different voltage (a) 𝑉 =

 −0.01 𝑉, (b) 𝑉 =  0 𝑉 and (c) 𝑉 = 0.01 𝑉 

5.5.2 The effect of applied mechanical loads on the polarization 

To study the relationship between the flexoelectricity and the applied loads, for PNPs with 

the same aspect ratios (𝑏 =  2.5𝑎, 𝑎 =  12ℎ) under an electrical load 𝑉 = −0.002 𝑉 and 

various mechanical loads, Figure 5-14 plots the polarization against the plate thickness ℎ 

for the middle point of the free edge (𝑥 = 0.5𝑎, 𝑦 = 𝑏). 

As revealed in Figure 5-14, the effect of the flexoelectricity is proportional to the 

magnitude of the applied loads. For example, for an arbitrary plate thickness, the effect of 

the flexoelectricity is boosted by increasing the magnitude of the applied mechanical load. 

As the plate thickness increases, although such reliance of the flexoelectric effect on the 

applied load still exists, the flexoelectric effect diminishes as indicated by the fact that all 

of the polarization lines approach the one without considering the flexoelectric effect. 

Thus, it is concluded that the plate thickness has a greater influence on the flexoelectric 

effect compared with the applied mechanical load. 
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Figure 5-14 Variation of polarization under different applied loads 

5.6 The flexoelectric effect on the electric potential of the 
cantilevered PNP 

As shown by the electric potential equation Eq.( 3.25 ),  the electric potential is dependent 

on the strain gradients, applied voltages and so on. Therefore, in the following section, we 

will pay our attention to studying the relationship between the electric potential and some 

factors, such as the plate dimensions, applied voltages and so on. 

5.6.1 The effect of plate thickness on the electric potential 

In order to study the correlation between the plate thickness and the electric potential, two 

plates with different thickness (ℎ = 20𝑛𝑚 and ℎ = 100𝑛𝑚) are taken as the study cases, 

while they share the same aspect ratios (𝑏 = 2.5𝑎, 𝑎 = 12ℎ). Figure 5-15 depicts the 

electric potential distribution along the thickness direction for points at the middle of the 

free edge (𝑥 = 0.5, 𝑦 = 𝑏) when the distributed load 𝑞 = −0.01𝑝𝑁/𝑛𝑚2and the applied 

voltage 𝑉 = −0.01𝑉.  

From the figures below, it implies that the electric potential relies more heavily on the 

flexoelectricity when the thickness is small, while such reliance reduces with the increase 

of the thickness. As shown in Figure 5-15 (a), when the thickness is small (for example, 

ℎ = 20𝑛𝑚), the electric potential changes suddenly at points near the boundary layers, 
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while it decrease gradually at other points. As discussed in 5.4.1, this kind of discrepancy 

is a typical boundary behavior for a gradient theory as observed in the literature. 

 

 

Figure 5-15 Electric potential with difference thickness (a) ℎ = 20𝑛𝑚 and (b) ℎ =

100𝑛𝑚 

5.6.2 The effect of applied voltages on the electric potential 

For a PNP with fixed properties (𝑏 =  2.5𝑎, 𝑎 =  12ℎ, ℎ = 20𝑛𝑚) under a distributed load 

𝑞 = −0.01𝑝𝑁/𝑛𝑚2, Figure 5-16 shows the electric potential with different applied 
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voltages along the thickness direction for points at the middle of the free edge (𝑥 =

0.5𝑎, 𝑦 = 𝑏). 

As shown in Figure 5-16, the flexoelectricity disturbs the electrical potential distribution 

and such an effect is influenced by the applied voltage. Even when the applied voltage is 

zero (𝑉 = 0𝑉), the strain gradient induced flexoelectricity alters the distribution of the 

electric potential significantly. When the applied voltage is negative, such as 𝑉 = −0.01𝑉, 

the electric potential for the points near the bottom layer of the plate is smaller than that of 

the conventional plate, while for the points near the top layer,  the electric potential 

surpasses that of the conventional plate. However, if the applied voltage is positive, an 

opposite trend is observed. Thus, we can concluded that the direction and magnitude of the 

applied electrical loads have a great influence on the distribution of the electric potential 

of the plate with the consideration of the flexoelectric effect.  
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Figure 5-16 Electric potential with different applied voltages (a) 𝑉 = −0.01𝑉, (b) 𝑉 =

0𝑉 and (c) 𝑉 = 0.01 𝑉 

5.6.3 The effect of applied mechanical loads on the electric 
potential 

To study how the applied mechanical load affects the electric potential, the electric 

potential of a plate (𝑏 = 2.5𝑎, 𝑎 = 12ℎ, ℎ = 20 𝑛𝑚) under a constant electrical load (𝑉 =

−0.002𝑉) and various applied loads is depicted in Figure 5-17. It can be seen that the 

flexoelectric effect on the electric potential is more significant for applied loads with a 

larger magnitude, as the difference between the electric potential considering the 
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flexoelectric effect and that of a conventional plate keeps increasing with the increase of 

the magnitude of applied loads. 

 

Figure 5-17 Electric potential with different applied loads 

From the results, it can be inferred that the impact of the flexoelectricity on the bending 

behavior of the cantilevered PNP is influenced by both the geometric properties of the plate 

and the applied electromechanical loads, i.e., the plate thickness, the plate in-plane 

dimensions, the applied electrical load and the applied mechanical load. 
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Chapter 6  

6 Conclusions and recommendations 

6.1 Conclusions 

There is a growing interest in developing piezoelectric nanostructures due to their distinct 

electromechanical coupling features, which have extensive applications in 

nanoelectromechanical systems (NEMS). Different from macroscale piezoelectric 

materials, nanoscale piezoelectric materials exhibit size-dependent mechanical and 

electrical properties. Thus, to make the best use of the piezoelectric nanomaterials, it is 

essential to have a better understanding of such size-dependent properties. In this thesis, 

based on the modified Kirchhoff plate continuum model, the size-dependent 

electromechanical behaviors of a cantilevered piezoelectric nanoplate have been 

investigated. The major findings and contributions are summarized as: 

1) Developed a mathematical model for a cantilevered piezoelectric nanoplates (PNP) 

accounting for the flexoelectricity, from which the non-conventional governing 

equations and boundary conditions can be directly derived from the variational 

principle. This model can be used to quantitatively predict the size-dependent 

mechanical and electrical properties of the cantilevered PNP. It should be 

mentioned that such a methodology is universal, which could be applied for any 

kind of piezoelectric nanostructures. 

2) Applied finite difference method (FDM) to obtain the approximate numerical 

solutions to the governing equations accompanied by the boundary conditions, 

resulting from the incorporation of the flexoelectric effect in the modified 

continuum mechanics model. 

3) Carried out a comprehensive investigation of the flexoelectric effect on the size-

dependent properties of the cantilevered PNP. From the numerical results 

calculated via FDM, it is found that the flexoelectricity has a significant influence 

on the electromechanical behaviors of the cantilevered PNP. Such effects are more 

evident with the decrease of the plate thickness, and it also depends on some other 

factors, such as the boundary constraints, the plate geometric ratio, and the applied 

mechanical and electrical loads. 
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6.2 Recommendations for future work 

This thesis developed a mathematical model to study the size-dependent properties of a 

cantilevered PNP under different mechanical and electrical loading conditions. Although 

the model is able to predict how the flexoelectricity influences the electromechanical 

coupling behaviors of the plate, there are still some limitations for the current work that 

need to be addressed and some other aspects that need to be further explored: 

1) The current work only investigated the flexoelectric effect upon the static bending 

behaviors of a cantilevered PNP. To fulfill the potential applications of the 

piezoelectric nanostructures for dynamics applications, the flexoelectric effect 

upon the dynamic performance of PNPs, such as the vibrational behaviors, needs 

further investigation. In this case, the dynamic bulk flexoelectricity should be 

considered in the formulation.  

2) When using the extended linear piezoelectric theory to derive the governing 

equations and the boundary conditions of the PNP, some factors are ignored to 

simplify the mathematical formulation process, such as the higher-order couplings 

between the strain and strain gradients, the strain gradient and the strain gradient 

and the strain gradient and the polarization gradient. Nevertheless, those factors 

might have a significant impact on the size effects of nanoscale piezoelectric 

materials. 

3) The present model only incorporated the flexoelectricity in the model. However, as 

discussed in the Introduction Section, surface effects such as surface 

piezoelectricity, surface elasticity and surface stress also contribute to the size-

dependent properties of the nanoscale piezoelectric materials. Thus, to predict the 

size-dependent behaviors of PNP more accurately, it is of importance to develop a 

more comprehensive model with the combined effects. 

4) The current study focused on a single-layer nanoplate. In fact, such nanoplates are 

often used as building blocks for complex structures, multi-layer nanocomposites 

for example. To meet the application demands, it is necessary to investigate the size 

effects of these complex nanostructures. 
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Appendices 

Appendix A: MATLAB routine for predicting the static deflection 

of a cantilevered PNP 

clc; 
clear all; 
format long; 
% Program is built for calculation of the flexoelectric effect on the 
% vibrational behaviors of a cantilevered piezoelectric nanoplate 
% Xining Wang 

  
% Matrix of displacement (N+1,M+1) 
%*********************************************% 
% System parameters                           % 
%*********************************************% 
% Material properties 
C11=167.55*10^9; % Pa - elastic constant 
C12=78.15*10^9;  % Pa - elastic constant 
C66=44.7*10^9;   % Pa - elastic constant 
a33=0.79*10^8;   % V.m/C - reciprocal dielectric susceptibility 
d31=3.5*10^8;    % V/m - piezoelectric constant tensor 
b33=10^(-9);     % Jm^3/C^2 - tensor used for the interaction of 

polarization 
% polarization gradient 
q=-0.1*10^5;       % pN/nm^2 - pressure 
V=0;           % V - voltage 
% Gradient and polarization gradient 
f13=0;          % V - tensor used for the interaction of the strain 

gradient 

  
% Plate physical properties 
th=50*10^-9;    % m - plate thickness 
wp=20*th;        % m - plate width 
lp=wp;        % m - plate length 
M=81; % Number of nodal elements on x 
N=81; % Number of nodal elements on y 

  
k0=8.85*10^-12;  % C.V^-1.m^-1 - permittivity of the vacuum of the air 
kb=6.62;         % C.V^-1.m^-1 - background permittivity of BaTiO3 
k1=k0*kb;        % C.V^-1.m^-1 
lamda=sqrt((1+k1*a33)/(k1*b33)); 
%*********************************************% 
% Analysis************************************% 
%*********************************************% 
% Mesh the plate and initialize some variables 
h=wp/(M-1);          % Step size in x 
k=lp/(N1);          % Step size in y 

  
% Coefficients of the equation 
D111=-(f13^2*th^2)/(4*b33*lamda)*(exp(lamda*th/2)+exp(-

lamda*th/2))/(exp(lamda*th/2)-exp(-lamda*th/2)); 
D112=-k1*d31^2*th^3/(24*(1+k1*a33)); 
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D113=b33*th*k1^2*d31^2/(2*(1+k1*a33)^2); 
D114=-f13^2*th/(2*a33*(1+k1*a33)); 
D11=D111+D112+D113+D114; 

  
D12=2*f13*d31/(b33*lamda^3)+th*d31*f13/a33-k1*d31*f13*th/(1+k1*a33);  

 
D221=f13^2/(b33*lamda)*(exp(lamda*th/2)+exp(-

lamda*th/2))/(exp(lamda*th/2)-exp(-lamda*th/2)); 
D222=-2*f13^2/(b33*lamda)-0.5*th*d31^2/a33; 
D22=D221+D222; 

  
% Coefficients of the governing equations 
A=C11*th^3/12+2*D11; 
B=2*(C12*th^3/12+2*D11+C66*th^3/6); 
D=th*C12+2*D22+th*C66; 
E=th*C11+2*D22; 
F=th*C11+2*D22; 
G=th*C66; 

  
% Coefficients of boundary conditions 
D1=C11*th^3/12+2*D11; 
D2=C12*th^3/12+2*D11; 
D3=D12; 
D4=C12*th^3/12+2*D11+2*C66*th^3/6; 
D5=th*C12+2*D22; 
D6=th*C11+2*D22; 

  
% Matrix of Governing equation 
G00=D3^2-D1*D5; 
G01=D3*f13*V*h^2/a33+D1*d31*V*h^2/a33; 
G02=D5*f13*V*h^2/a33+D3*d31*V*h^2/a33; 
G03=4*D3^2-(D1+D2)*(D5+D6); 
G05=(C11*h^3/12+2*D11)*d31*V*h^2/a33+D12*f13*V*h^2/a33; 
G06=(D5+D6)*f13*V*h^2/a33+2*D3*d31*V*h^2/a33; 
G07=(D1+D2)*2*d31*V*h^2/a33+D3*4*f13*V*h^2/a33; 
G08=C11*h^3/12+C12*h^3/12+4*D11+2*C66*h^3/6; 
G09=4*D3^2-2*D1*D5-2*D2*D5; 

  
% For x=1,(1,j) 
% For equation 1 
G11=(0.5*D12*(D3^2-D2*D5)+0.5*D*(D2*D3-D1*D3))/G00-0.5*D12; 
G12=(D12*(D1*D5+D2*D5-2*D3^2)+D*(D1*D3-D2*D3))/G00+2*D12; 
G13=(0.5*D12*(D3*D5*h*0.5-D3*D6*h*0.5)+0.5*D*(D1*D6*h*0.5-

D3^2*h*0.5))/G00; 
G14=-2*G13-2*F*h-2*G*h; 
% For equation 2 
G21=(D12*D4/(2*D1)-D12/2)*(D2*D5-D3^2)/G00; 

  
G221=(D12*D4/(2*D1)-D12/2)*G09; 
G222=(D12-D12*D4/D1)*(D2*D5-D3^2); 
G223=(2*E-2*D12*D3/D1)*(D2*D3-D1*D3); 
G22=(G221+G222+G223)/G00; 

  
G231=(D12*D4/D1-D12)*(D2*D5-D3^2); 
G232=(D12-D12*D4/D1)*G09; 



109 

 

G233=(2*E-2*D12*D3/D1)*(2*D1*D3-2*D2*D3); 
G23=(G231+G232+G233)/G00; 

  
G24=D12-D12*D4/D1; 
G25=(D12*D4/(2*D1)-D12/2)*(D3*D6*h/2-D3*D5*h/2)/G00; 
G26=((D12-D12*D4/D1)*(D3*D6*h/2-D3*D5*h/2)+(E-D12*D3/D1)*(D1*D6*h-

D3^2*h))/G00; 
G27=D12*D3*h/(4*D1)-D*h/4; 
G28=3*D12*D3*h/(2*D1)-2*G*h-2*E*h+D*h/2; 
G29=2*E*h-2*D12*D3*h/D1; 
G210=(2*E-2*D12*D3/D1)*G01/G00; 

  
% For equation 3 
G31=(B-A*D4/D1)*(D2*D5-D3^2)/G00+A; 

  
G321=(B-A*D4/D1)*G09; 
G322=(2*A*D4/D1-2*A-2*B)*(D2*D5-D3^2); 
G323=4*A*D3/D1*(D2*D3-D1*D3); 
G32=(G321+G322+G323)/G00-4*A-2*B; 

  
G331=(2*A*D4/D1-2*A-2*B)*G09; 
G332=2*(B-A*D4/D1)*(D2*D5-D3^2); 
G333=4*A*D3/D1*(2*D1*D3-2*D2*D3); 
G33=(G331+G332+G333)/G00+12*A+4*B; 

  
G34=2*A*D4/D1; 
G35=-4*A-4*A*D4/D1; 
G36=(B-A*D4/D1)*(D3*D6*h/2-D3*D5*h/2)/G00-D12*h/2; 
G37=((A*D4/D1-A-B)*(D3*D6*h-D3*D5*h)+2*A*D3/D1*(D1*D6*h-

D3^2*h))/G00+2*D12*h; 
G38=D12*h/2-A*D3*h/(2*D1); 
G39=-D12*h/2-3*A*D3*h/D1; 
G310=-2*D12*h+4*A*D3*h/D1; 
G311=(-2*A*G02+4*A*D3/D1*G01)/G00-q*h^4; 

  
% For x=2,(2,j) 
% For equation 1 
G41=(A*(D2*D5-D3^2)-D12*(D2*D3-D1*D3))/G00+B; 
G42=(A*G09-D12*(2*D1*D3-2*D2*D3))/G00-4*A-2*B; 
G43=(A*(D3*D6*h/2-D3*D5*h/2)-D12*(D1*D6*h-D3^2*h)/2)/G00-D12*h/2; 
G44=(A*G02-D12*G01)/G00-q*h^4; 
% For equation 2 
G51=D12/2*(D3^2-D2*D5)/G00-D12/2; 
G52=D12*(D1*D5+D2*D5-2*D3^2)/G00+2*D12; 
G53=0.5*D12*(D3*D5*h/2-D3*D6*h/2)/G00+D*h/4; 
G54=-0.5*D12*G02/G00; 

  
% For x=1,(1,1) 
% For equation 1 
G61=(0.5*G231+G232+G233)/G00+D12-D12*D4/D1; 
G62=D*h/4+7*D12*D3*h/(4*D1)-2*E*h-2*G*h; 
G63=((D12/2-D12*D4/(2*D1))*G02+(2*E-2*D12*D3/D1)*G01)/G00; 
G64=G25+D12*D3*h/(2*D1)-D*h/2; 
% For equation 2 
G71=(G331+0.5*G332+G333)/G00+13*A+2*B+2*A*D4/D1; 
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G72=7*A*D3*h/(2*D1); 
G73=((A*D4/D1-2*A-B)*G02+4*A*D3/D1*G01)/G00-q*h^4; 
G74=G36+D12*h-A*D3*h/D1; 
% For equation 3 
G82=-G13-2*F*h-2*G*h; 
G83=(D12*0.5*G02-D*0.5*G01)/G00; 

  
% For x=1,(1,N-1) 
% For equation 1 
G91=(G331+0.5*G332+G333)/G00+11*A+4*B; 
G92=(G322+G323)/G00-2*A-2*A*D4/D1; 
G93=-G36-D12*h+A*D3*h/D1; 
G94=-G37+2*D12*h-2*A*D3*h/D1; 
G95=-7*A*D3*h/(2*D1); 
G96=((A+B-A*D4/D1)*G06-A*D3/(2*D1)*G07)/G03+((A*D4/D1-2*A-

B)*G02+4*A*D3/D1*G01)/G00-q*h^4; 
% For equation 2 
G101=(G231*0.5+G232+G233)/G00; 
G102=(G222+G223)/G00-D12+D12*D4/D1; 
G103=-G25+D*h/2-D12*D3*h/(2*D1); 
G104=-G26+D12*D3*h/D1-D*h; 
G105=D*h/2-D12*D3*h/(2*D1); 
G106=D*h/4+7*D12*D3*h/(4*D1)-2*G*h-2*E*h; 
G108=((D12*D4/(2*D1)-D12/2)*G06+(D12*D3/4-D/4)*G07)/G03+((D12/2-

D12*D4/(2*D1))*G02+(2*E-2*D12*D3/D1)*G01)/G00; 
% For equation 3 
G111=(D12*G06-D/4*G07)/G03+(D/2*G01-D12/2*G02)/G00; 

  
% For x=1,y=N,(1,N) 
% For equation 1 
G12101=2*(2*B-2*A*D4/D1)*(D2*D5-D3^2); 
G12102=2*(-3*A*D12/(2*D1)-D12/2)*(D2*D3-D1*D3); 
G121=(G12101+G12102)/G00+4*A-4*B+8*A*D4/D1; 

  
G1221=(2*B-2*A*D4/D1)*(4*D3^2-2*D1*D5-2*D2*D5); 
G1222=-2*(-3*A*D12/(2*D1)-D12/2)*(D2*D3-D1*D3); 
G122=(G1221+G1222)/G00-4*A-4*A*D4/D1; 

  
G123=0.5*(G12101+G12102)/G00+2*A; 
G124=8*A*D4/D1-4*B; 

  
G1251=(2*B-2*A*D4/D1)*(D3*D6*h/2-D3*D5*h/2); 
G1252=(-3*A*D12/(2*D1)-D12/2)*(D1*D6*h/2-D3^2*h/2); 
G125=(G1251+G1252)/G00-13*A*D12*h/(4*D1)-D12*h/4; 

  
G126=-3*D12*h/2+9*A*D12*h/(2*D1); 
G127=-(G1251+G1252)/G00+D12*h/2; 
G128=(-4*(A+B-A*D4/D1)*G06+2*(D12/2+5*A*D12/(2*D1))*G07)/G03+(2*(2*B-

2*A*D4/D1)*G02+2*(-3*A*D12/(2*D1)-D12/2)*G01)/G00-q*h^4; 
G129=A*D12*h/(2*D1)-D12*h/2; 
G1210=D12*h-A*D12*h/D1; 
G1211=3*D12*h/4-3*A*D12*h/(4*D1); 
% For equation 2 
G13101=(-D12+D12*D4/D1)*(D2*D5-D3^2); 
G13102=-(-3*D/4+3*D12^2/(4*D1))*(D1*D3-D2*D3); 
G131=2*D12-2*D12*D4/D1+(G13101+G13102)/G00; 
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G132=2*D12*D4/D1-2*D12-2*G13102/G00; 
G133=(-D12+D12*D4/D1)*(4*D3^2-2*D1*D5-2*D2*D5)/G00; 
G134=2*D12-2*D12*D4/D1; 
G135=G13101/G00; 

  
G1361=(-3*D/4+3*D12^2/(4*D1))*(D1*D6*h/2-D3^2*h/2); 
G136=-2*E*h-D*h/8+17*D12^2*h/(8*D1)+G1361/G00; 

  
G137=(-D12+D12*D4/D1)*(D3*D6*h/2-D3*D5*h/2)/G00; 
G138=((D12-D12*D4/D1)*G06+(E+D/4-5*D12^2/(4*D1))*G07)/G03+((-

D12+D12*D4/D1)*G02+(-3*D/4+3*D12^2/(4*D1))*G01)/G00; 
G139=G13102/G00; 
G1310=2*E*h-2*D12^2*h/D1; 
G1311=-G1361/G00; 
G1312=D*h/2-D12^2*h/(2*D1); 
G1313=-3*D*h/8+3*D12^2*h/(8*D1); 
G1314=-D*h/4+D12^2*h/(4*D1); 

  
% For x=2,y=N-1,(2, N-1) 
% For equation 1 
G141=2*G41-B; 
G142=2*G44+q*h^4; 

  
% Oher coefficients 
G151=A*D3*h/D1; 
% Mesh the beam and initialize some variables 
% Matrix of the first governing equation 
A1=zeros(M*N); 
B1=A1; 
C1=A1; 
E1=zeros(M*N,1); 
% Matrix of the second governing equation 
A2=A1; 
B2=A1; 
C2=A1; 
E2=E1; 
% Matrix of the third governing equation 
A3=A1; 
B3=A1; 
C3=A1; 
E3=E1; 

  
% Set up the matrix 
% 16 points 
% For (1,1) 
A1(1,1)=G61; 
A1(1,M+1)=G22; 
A1(1,2*M+1)=G21; 
A1(1,2)=-2*G24; 
A1(1,M+2)=G24; 
B1(1,1)=G62; 
B1(1,M+1)=G*h; 
B1(1,2*M+1)=G27; 
B1(1,2)=G29; 
C1(1,1)=G64; 
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C1(1,M+1)=-G26; 
C1(1,2*M+1)=-G25; 
E1(1,1)=G63; 

  
A2(1,1)=G71; 
A2(1,M+1)=G32; 
A2(1,2*M+1)=G31; 
A2(1,2)=G35; 
A2(1,M+2)=G34; 
A2(1,3)=2*A; 
B2(1,1)=G72; 
B2(1,2*M+1)=G38; 
B2(1,2)=G310; 
B2(1,M+2)=D12*h/2; 
B2(1,3)=D12*h/2; 
C2(1,1)=G74; 
C2(1,M+1)=-G37; 
C2(1,2*M+1)=-G36; 
C2(1,M+2)=D12*h; 
E2(1,1)=G73; 

  
A3(1,1)=-G11; 
A3(1,M+1)=-G12; 
A3(1,2*M+1)=-G11; 
B3(1,1)=-D*h/2; 
B3(1,M+1)=G*h; 
C3(1,1)=G82; 
C3(1,M+1)=F*h; 
C3(1,2*M+1)=G13; 
C3(1,2)=2*G*h; 
E3(1,1)=G83; 

  
% For (M,1) 
A1(M,M)=-G61; 
A1(M,2*M)=-G22; 
A1(M,3*M)=-G21; 
A1(M,M-1)=2*G24; 
A1(M,2*M-1)=-G24; 
B1(M,M)=G62; 
B1(M,2*M)=G*h; 
B1(M,3*M)=G27; 
B1(M,M-1)=G29; 
C1(M,M)=-G64; 
C1(M,2*M)=G26; 
C1(M,3*M)=G25; 
E1(M,1)=-G63; 

  
A2(M,M)=G71; 
A2(M,2*M)=G32; 
A2(M,3*M)=G31; 
A2(M,M-1)=G35; 
A2(M,2*M-1)=G34; 
A2(M,M-2)=2*A; 
B2(M,M)=-G72; 
B2(M,3*M)=-G38; 
B2(M,M-1)=-G310; 
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B2(M,2*M-1)=-D12*h/2; 
B2(M,M-2)=-D12*h/2; 
C2(M,M)=G74; 
C2(M,2*M)=-G37; 
C2(M,3*M)=-G36; 
C2(M,2*M-1)=D12*h; 
E2(M,1)=G73; 

  
A3(M,M)=-G11; 
A3(M,2*M)=-G12; 
A3(M,3*M)=-G11; 
B3(M,M)=-D*h/2; 
B3(M,2*M)=G*h; 
C3(M,M)=G82; 
C3(M,2*M)=F*h; 
C3(M,3*M)=G13; 
C3(M,M-1)=2*G*h; 
E3(M,1)=G83; 

  
% For (1,2) 
A1(1+M,1)=G12; 
A1(1+M,1+2*M)=-G12; 
A1(1+M,1+3*M)=-G11; 
B1(1+M,1)=-G*h; 
B1(1+M,1+2*M)=G*h; 
C1(1+M,1)=F*h; 
C1(1+M,1+M)=G14; 
C1(1+M,1+2*M)=F*h; 
C1(1+M,1+3*M)=G13; 
C1(1+M,2+M)=2*G*h; 

  
A2(1+M,1)=G22; 
A2(1+M,1+M)=G23; 
A2(1+M,1+2*M)=G22; 
A2(1+M,1+3*M)=G21; 
A2(1+M,2)=G24; 
A2(1+M,2+M)=-2*G24; 
A2(1+M,2+2*M)=G24; 
B2(1+M,1)=G*h; 
B2(1+M,1+M)=G28; 
B2(1+M,1+2*M)=G*h; 
B2(1+M,1+3*M)=G27; 
B2(1+M,2+M)=G29; 
C2(1+M,1)=G26; 
C2(1+M,1+2*M)=-G26; 
C2(1+M,1+3*M)=-G25; 
E2(1+M,1)=G210; 

  
A3(1+M,1)=G32; 
A3(1+M,1+M)=G33; 
A3(1+M,1+2*M)=G32; 
A3(1+M,1+3*M)=G31; 
A3(1+M,2)=G34; 
A3(1+M,2+M)=G35; 
A3(1+M,2+2*M)=G34; 
A3(1+M,3+M)=2*A; 
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B3(1+M,1+M)=G39; 
B3(1+M,1+3*M)=G38; 
B3(1+M,2)=D12*h/2; 
B3(1+M,2+M)=G310; 
B3(1+M,2+2*M)=D12*h/2; 
B3(1+M,3+M)=D12*h/2; 
C3(1+M,1)=G37; 
C3(1+M,1+2*M)=-G37; 
C3(1+M,1+3*M)=-G36; 
C3(1+M,2)=-D12*h; 
C3(1+M,2+2*M)=D12*h; 
E3(1+M,1)=G311; 

  
% For (M,2) 
A1(2*M,M)=G12; 
A1(2*M,3*M)=-G12; 
A1(2*M,4*M)=-G11; 
B1(2*M,M)=-G*h; 
B1(2*M,3*M)=G*h; 
C1(2*M,M)=F*h; 
C1(2*M,2*M)=G14; 
C1(2*M,3*M)=F*h; 
C1(2*M,4*M)=G13; 
C1(2*M,2*M-1)=2*G*h; 

  
A2(2*M,M)=-G22; 
A2(2*M,2*M)=-G23; 
A2(2*M,3*M)=-G22; 
A2(2*M,4*M)=-G21; 
A2(2*M,M-1)=-G24; 
A2(2*M,2*M-1)=2*G24; 
A2(2*M,3*M-1)=-G24; 
B2(2*M,M)=G*h; 
B2(2*M,2*M)=G28; 
B2(2*M,3*M)=G*h; 
B2(2*M,4*M)=G27; 
B2(2*M,2*M-1)=G29; 
C2(2*M,M)=-G26; 
C2(2*M,3*M)=G26; 
C2(2*M,4*M)=G25; 
E2(2*M,1)=-G210; 

  
A3(2*M,M)=G32; 
A3(2*M,2*M)=G33; 
A3(2*M,3*M)=G32; 
A3(2*M,4*M)=G31; 
A3(2*M,M-1)=G34; 
A3(2*M,2*M-1)=G35; 
A3(2*M,3*M-1)=G34; 
A3(2*M,2*M-2)=2*A; 
B3(2*M,2*M)=-G39; 
B3(2*M,4*M)=-G38; 
B3(2*M,M-1)=-D12*h/2; 
B3(2*M,2*M-1)=-G310; 
B3(2*M,3*M-1)=-D12*h/2; 
B3(2*M,2*M-2)=-D12*h/2; 
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C3(2*M,M)=G37; 
C3(2*M,3*M)=-G37; 
C3(2*M,4*M)=-G36; 
C3(2*M,M-1)=-D12*h; 
C3(2*M,3*M-1)=D12*h; 
E3(2*M,1)=G311; 

  
% For (1,N-1) 
A1(1+M*(N-2),1+M*(N-4))=G31; 
A1(1+M*(N-2),1+M*(N-3))=G32; 
A1(1+M*(N-2),1+M*(N-2))=G91; 
A1(1+M*(N-2),1+M*(N-1))=G92; 
A1(1+M*(N-2),2+M*(N-3))=G34; 
A1(1+M*(N-2),2+M*(N-2))=G35; 
A1(1+M*(N-2),2+M*(N-1))=G34; 
A1(1+M*(N-2),3+M*(N-2))=2*A; 
B1(1+M*(N-2),1+M*(N-4))=G38; 
B1(1+M*(N-2),1+M*(N-2))=G95; 
B1(1+M*(N-2),2+M*(N-3))=D12*h/2; 
B1(1+M*(N-2),2+M*(N-2))=G310; 
B1(1+M*(N-2),2+M*(N-1))=D12*h/2; 
B1(1+M*(N-2),3+M*(N-2))=D12*h/2; 
C1(1+M*(N-2),1+M*(N-4))=G36; 
C1(1+M*(N-2),1+M*(N-3))=G37; 
C1(1+M*(N-2),1+M*(N-2))=G93; 
C1(1+M*(N-2),1+M*(N-1))=G94; 
C1(1+M*(N-2),2+M*(N-3))=-D12*h; 
C1(1+M*(N-2),2+M*(N-1))=G151; 
E1(1+M*(N-2),1)=G96; 

  
A2(1+M*(N-2),1+M*(N-4))=G21; 
A2(1+M*(N-2),1+M*(N-3))=G22; 
A2(1+M*(N-2),1+M*(N-2))=G101; 
A2(1+M*(N-2),1+M*(N-1))=G102; 
A2(1+M*(N-2),2+M*(N-3))=G24; 
A2(1+M*(N-2),2+M*(N-2))=-2*G24; 
A2(1+M*(N-2),2+M*(N-1))=G24; 
B2(1+M*(N-2),1+M*(N-4))=G27; 
B2(1+M*(N-2),1+M*(N-3))=G*h; 
B2(1+M*(N-2),1+M*(N-2))=G106; 
B2(1+M*(N-2),1+M*(N-1))=G*h; 
B2(1+M*(N-2),2+M*(N-2))=G29; 
C2(1+M*(N-2),1+M*(N-4))=G25; 
C2(1+M*(N-2),1+M*(N-3))=G26; 
C2(1+M*(N-2),1+M*(N-2))=G103; 
C2(1+M*(N-2),1+M*(N-1))=G104; 
C2(1+M*(N-2),2+M*(N-1))=G105; 
E2(1+M*(N-2),1)=G108; 

  
A3(1+M*(N-2),1+M*(N-4))=G11; 
A3(1+M*(N-2),1+M*(N-3))=G12; 
A3(1+M*(N-2),1+M*(N-2))=G11; 
B3(1+M*(N-2),1+M*(N-3))=-G*h; 
B3(1+M*(N-2),1+M*(N-1))=G*h; 
C3(1+M*(N-2),1+M*(N-4))=G13; 
C3(1+M*(N-2),1+M*(N-3))=F*h; 
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C3(1+M*(N-2),1+M*(N-2))=-G13-2*F*h-2*G*h; 
C3(1+M*(N-2),1+M*(N-1))=F*h; 
C3(1+M*(N-2),2+M*(N-2))=2*G*h; 
E3(1+M*(N-2),1)=G111; 

  
% For (M,N-1) 
A1(M*(N-1),M*(N-3))=G31; 
A1(M*(N-1),M*(N-2))=G32; 
A1(M*(N-1),M*(N-1))=G91; 
A1(M*(N-1),M*N)=G92; 
A1(M*(N-1),M*(N-2)-1)=G34; 
A1(M*(N-1),M*(N-1)-1)=G35; 
A1(M*(N-1),M*N-1)=G34; 
A1(M*(N-1),M*(N-1)-2)=2*A; 
B1(M*(N-1),M*(N-3))=-G38; 
B1(M*(N-1),M*(N-1))=-G95; 
B1(M*(N-1),M*(N-2)-1)=-D12*h/2; 
B1(M*(N-1),M*(N-1)-1)=-G310; 
B1(M*(N-1),M*N-1)=-D12*h/2; 
B1(M*(N-1),M*(N-1)-2)=-D12*h/2; 
C1(M*(N-1),M*(N-3))=G36; 
C1(M*(N-1),M*(N-2))=G37; 
C1(M*(N-1),M*(N-1))=G93; 
C1(M*(N-1),M*N)=G94; 
C1(M*(N-1),M*(N-2)-1)=-D12*h; 
C1(M*(N-1),M*N-1)=G151; 
E1(M*(N-1),1)=G96; 

  
A2(M*(N-1),M*(N-3))=-G21; 
A2(M*(N-1),M*(N-2))=-G22; 
A2(M*(N-1),M*(N-1))=-G101; 
A2(M*(N-1),M*N)=-G102; 
A2(M*(N-1),M*(N-2)-1)=-G24; 
A2(M*(N-1),M*(N-1)-1)=2*G24; 
A2(M*(N-1),M*N-1)=-G24; 
B2(M*(N-1),M*(N-3))=G27; 
B2(M*(N-1),M*(N-2))=G*h; 
B2(M*(N-1),M*(N-1))=G106; 
B2(M*(N-1),M*N)=G*h; 
B2(M*(N-1),M*(N-1)-1)=G29; 
C2(M*(N-1),M*(N-3))=-G25; 
C2(M*(N-1),M*(N-2))=-G26; 
C2(M*(N-1),M*(N-1))=-G103; 
C2(M*(N-1),M*N)=-G104; 
C2(M*(N-1),M*N-1)=-G105; 
E2(M*(N-1),1)=-G108; 

  
A3(M*(N-1),M*(N-3))=G11; 
A3(M*(N-1),M*(N-2))=G12; 
A3(M*(N-1),M*(N-1))=G11; 
B3(M*(N-1),M*(N-2))=-G*h; 
B3(M*(N-1),M*N)=G*h; 
C3(M*(N-1),M*(N-3))=G13; 
C3(M*(N-1),M*(N-2))=F*h; 
C3(M*(N-1),M*(N-1))=-G13-2*F*h-2*G*h; 
C3(M*(N-1),M*N)=F*h; 
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C3(M*(N-1),M*(N-1)-1)=2*G*h; 
E3(M*(N-1),1)=G111; 

  
% For (1,N) 
A1(1+M*(N-1),1+M*(N-1))=G121; 
A1(1+M*(N-1),2+M*(N-1))=G122; 
A1(1+M*(N-1),3+M*(N-1))=G123; 
A1(1+M*(N-1),1+M*(N-2))=G122; 
A1(1+M*(N-1),2+M*(N-2))=G124; 
A1(1+M*(N-1),1+M*(N-3))=G123; 
B1(1+M*(N-1),1+M*(N-1))=G125; 
B1(1+M*(N-1),2+M*(N-1))=G126; 
B1(1+M*(N-1),3+M*(N-1))=G127; 
B1(1+M*(N-1),1+M*(N-2))=G129; 
B1(1+M*(N-1),2+M*(N-2))=G1210; 
B1(1+M*(N-1),1+M*(N-3))=G1211; 
C1(1+M*(N-1),1+M*(N-1))=-G125; 
C1(1+M*(N-1),2+M*(N-1))=-G129; 
C1(1+M*(N-1),3+M*(N-1))=-G1211; 
C1(1+M*(N-1),1+M*(N-2))=-G126; 
C1(1+M*(N-1),2+M*(N-2))=-G1210; 
C1(1+M*(N-1),1+M*(N-3))=-G127; 
E1(1+M*(N-1),1)=G128; 

  
A2(1+M*(N-1),1+M*(N-1))=G131; 
A2(1+M*(N-1),2+M*(N-1))=G132; 
A2(1+M*(N-1),3+M*(N-1))=G139; 
A2(1+M*(N-1),1+M*(N-2))=G133; 
A2(1+M*(N-1),2+M*(N-2))=G134; 
A2(1+M*(N-1),1+M*(N-3))=G135; 
B2(1+M*(N-1),1+M*(N-1))=G136; 
B2(1+M*(N-1),2+M*(N-1))=G1310; 
B2(1+M*(N-1),3+M*(N-1))=G1311; 
B2(1+M*(N-1),1+M*(N-2))=G1312; 
B2(1+M*(N-1),1+M*(N-3))=G1313; 
C2(1+M*(N-1),1+M*(N-1))=-G137; 
C2(1+M*(N-1),2+M*(N-1))=G1314; 
C2(1+M*(N-1),1+M*(N-2))=G1314; 
C2(1+M*(N-1),2+M*(N-2))=G1312; 
C2(1+M*(N-1),1+M*(N-3))=G137; 
E2(1+M*(N-1),1)=G138; 

  
A3(1+M*(N-1),1+M*(N-1))=-G131; 
A3(1+M*(N-1),2+M*(N-1))=-G133; 
A3(1+M*(N-1),3+M*(N-1))=-G135; 
A3(1+M*(N-1),1+M*(N-2))=-G132; 
A3(1+M*(N-1),2+M*(N-2))=-G134; 
A3(1+M*(N-1),1+M*(N-3))=-G139; 
B3(1+M*(N-1),1+M*(N-1))=-G137; 
B3(1+M*(N-1),2+M*(N-1))=G1314; 
B3(1+M*(N-1),3+M*(N-1))=G137; 
B3(1+M*(N-1),1+M*(N-2))=G1314; 
B3(1+M*(N-1),2+M*(N-2))=G1312; 
C3(1+M*(N-1),1+M*(N-1))=G136; 
C3(1+M*(N-1),2+M*(N-1))=G1312; 
C3(1+M*(N-1),3+M*(N-1))=G1313; 
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C3(1+M*(N-1),1+M*(N-2))=G1310; 
C3(1+M*(N-1),1+M*(N-3))=G1311; 
E3(1+M*(N-1),1)=-G138; 

  
% For (M,N) 
A1(M*N,M*N)=G121; 
A1(M*N,M*N-1)=G122; 
A1(M*N,M*N-2)=G123; 
A1(M*N,M*(N-1))=G122; 
A1(M*N,M*(N-1)-1)=G124; 
A1(M*N,M*(N-2))=G123; 
B1(M*N,M*N)=-G125; 
B1(M*N,M*N-1)=-G126; 
B1(M*N,M*N-2)=-G127; 
B1(M*N,M*(N-1))=-G129; 
B1(M*N,M*(N-1)-1)=-G1210; 
B1(M*N,M*(N-2))=-G1211; 
C1(M*N,M*N)=-G125; 
C1(M*N,M*N-1)=-G129; 
C1(M*N,M*N-2)=-G1211; 
C1(M*N,M*(N-1))=-G126; 
C1(M*N,M*(N-1)-1)=-G1210; 
C1(M*N,M*(N-2))=-G127; 
E1(M*N,1)=G128; 

  
A2(M*N,M*N)=-G131; 
A2(M*N,M*N-1)=-G132; 
A2(M*N,M*N-2)=-G139; 
A2(M*N,M*(N-1))=-G133; 
A2(M*N,M*(N-1)-1)=-G134; 
A2(M*N,M*(N-2))=-G135; 
B2(M*N,M*N)=G136; 
B2(M*N,M*N-1)=G1310; 
B2(M*N,M*N-2)=G1311; 
B2(M*N,M*(N-1))=G1312; 
B2(M*N,M*(N-2))=G1313; 
C2(M*N,M*N)=G137; 
C2(M*N,M*N-1)=-G1314; 
C2(M*N,M*(N-1))=-G1314; 
C2(M*N,M*(N-1)-1)=-G1312; 
C2(M*N,M*(N-2))=-G137; 
E2(M*N,1)=-G138; 

  
A3(M*N,M*N)=-G131; 
A3(M*N,M*N-1)=-G133; 
A3(M*N,M*N-2)=-G135; 
A3(M*N,M*(N-1))=-G132; 
A3(M*N,M*(N-1)-1)=-G134; 
A3(M*N,M*(N-2))=-G139; 
B3(M*N,M*N)=-G137; 
B3(M*N,M*N-1)=G1314; 
B3(M*N,M*N-2)=G137; 
B3(M*N,M*(N-1))=G1314; 
B3(M*N,M*(N-1)-1)=G1312; 
C3(M*N,M*N)=G136; 
C3(M*N,M*N-1)=G1312; 
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C3(M*N,M*N-2)=G1313; 
C3(M*N,M*(N-1))=G1310; 
C3(M*N,M*(N-2))=G1311; 
E3(M*N,1)=-G138; 

  
% For (2,1) 
A1(2,1)=G42; 
A1(2,2)=12*A+4*B; 
A1(2,3)=-4*A-2*B; 
A1(2,4)=A; 
A1(2,1+M)=G41; 
A1(2,2+M)=-4*A-2*B; 
A1(2,3+M)=B; 
A1(2,2+2*M)=A; 
B1(2,1)=2*D12*h; 
B1(2,2)=-D12*h/2; 
B1(2,3)=-2*D12*h; 
B1(2,4)=D12*h/2; 
B1(2,1+M)=-D12*h/2; 
B1(2,3+M)=D12*h/2; 
C1(2,2)=-D12*h/2; 
C1(2,1+M)=-G43; 
C1(2,2+M)=-2*D12*h; 
C1(2,3+M)=D12*h/2; 
C1(2,2+2*M)=D12*h/2; 
E1(2,1)=G44; 

  
A2(2,1)=G52; 
A2(2,2)=D12/2; 
A2(2,3)=-2*D12; 
A2(2,4)=D12/2; 
A2(2,1+M)=G51; 
A2(2,3+M)=D12/2; 
B2(2,1)=E*h; 
B2(2,2)=-2*E*h-2*G*h; 
B2(2,3)=E*h; 
B2(2,2+M)=G*h; 
C2(2,1+M)=-G53; 
C2(2,3+M)=D*h/4; 
E2(2,1)=G54; 

  
A3(2,1+M)=D12/2; 
A3(2,2)=-D12/2; 
A3(2,2+M)=-2*D12; 
A3(2,3+M)=D12/2; 
A3(2,2+2*M)=D12/2; 
B3(2,1+M)=-D*h/4; 
B3(2,3+M)=D*h/4; 
C3(2,1)=G*h; 
C3(2,2)=-2*F*h-2*G*h; 
C3(2,3)=G*h; 
C3(2,2+M)=F*h; 

  
% For (M-1,1) 
A1(M-1,M)=G42; 
A1(M-1,M-1)=12*A+4*B; 
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A1(M-1,M-2)=-4*A-2*B; 
A1(M-1,M-3)=A; 
A1(M-1,2*M)=G41; 
A1(M-1,2*M-1)=-4*A-2*B; 
A1(M-1,2*M-2)=B; 
A1(M-1,3*M-1)=A; 
B1(M-1,M)=-2*D12*h; 
B1(M-1,M-1)=D12*h/2; 
B1(M-1,M-2)=2*D12*h; 
B1(M-1,M-3)=-D12*h/2; 
B1(M-1,2*M)=D12*h/2; 
B1(M-1,2*M-2)=-D12*h/2; 
C1(M-1,M-1)=-D12*h/2; 
C1(M-1,2*M)=-G43; 
C1(M-1,2*M-1)=-2*D12*h; 
C1(M-1,2*M-2)=D12*h/2; 
C1(M-1,3*M-1)=D12*h/2; 
E1(M-1,1)=G44; 

  
A2(M-1,M)=-G52; 
A2(M-1,M-1)=-D12/2; 
A2(M-1,M-2)=2*D12; 
A2(M-1,M-3)=-D12/2; 
A2(M-1,2*M)=-G51; 
A2(M-1,2*M-2)=-D12/2; 
B2(M-1,M)=E*h; 
B2(M-1,M-1)=-2*E*h-2*G*h; 
B2(M-1,M-2)=E*h; 
B2(M-1,2*M-1)=G*h; 
C2(M-1,2*M)=G53; 
C2(M-1,2*M-2)=-D*h/4; 
E2(M-1,1)=-G54; 

  
A3(M-1,2*M)=D12/2; 
A3(M-1,M-1)=-D12/2; 
A3(M-1,2*M-1)=-2*D12; 
A3(M-1,2*M-2)=D12/2; 
A3(M-1,3*M-1)=D12/2; 
B3(M-1,2*M)=-D*h/4; 
B3(M-1,2*M-2)=D*h/4; 
C3(M-1,M)=G*h; 
C3(M-1,M-1)=-2*F*h-2*G*h; 
C3(M-1,M-2)=G*h; 
C3(M-1,2*M-1)=F*h; 

  
% For x=2,(2,2) 
A1(2+M,1)=G41; 
A1(2+M,1+M)=G42; 
A1(2+M,1+2*M)=G41; 
A1(2+M,2)=-4*A-2*B; 
A1(2+M,2+M)=11*A+4*B; 
A1(2+M,2+2*M)=-4*A-2*B; 
A1(2+M,2+3*M)=A; 
A1(2+M,3)=B; 
A1(2+M,3+M)=-4*A-2*B; 
A1(2+M,3+2*M)=B; 
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A1(2+M,4+M)=A; 
B1(2+M,1)=-D12*h/2; 
B1(2+M,1+M)=2*D12*h; 
B1(2+M,1+2*M)=-D12*h/2; 
B1(2+M,2+M)=-D12*h/2; 
B1(2+M,3)=D12*h/2; 
B1(2+M,3+M)=-2*D12*h; 
B1(2+M,3+2*M)=D12*h/2; 
B1(2+M,4+M)=D12*h/2; 
C1(2+M,1)=G43; 
C1(2+M,1+M*2)=-G43; 
C1(2+M,2)=2*D12*h; 
C1(2+M,2+M*2)=-2*D12*h; 
C1(2+M,2+M*3)=D12*h/2; 
C1(2+M,3)=-D12*h/2; 
C1(2+M,3+M*2)=D12*h/2; 
E1(2+M,1)=G44; 

  
A2(2+M,1)=G51; 
A2(2+M,1+M)=G52; 
A2(2+M,1+M*2)=G51; 
A2(2+M,2+M)=D12/2; 
A2(2+M,3)=D12/2; 
A2(2+M,3+M)=-2*D12; 
A2(2+M,3+M*2)=D12/2; 
A2(2+M,4+M)=D12/2; 
B2(2+M,1+M)=E*h; 
B2(2+M,2)=G*h; 
B2(2+M,2+M)=-2*G*h-2*E*h; 
B2(2+M,2+M*2)=G*h; 
B2(2+M,3+M)=E*h; 
C2(2+M,1)=G53; 
C2(2+M,1+M*2)=-G53; 
C2(2+M,3)=-D*h/4; 
C2(2+M,3+M*2)=D*h/4; 
E2(2+M,1)=G54; 

  
A3(2+M,1)=-D12/2; 
A3(2+M,1+M*2)=D12/2; 
A3(2+M,2)=2*D12; 
A3(2+M,2+M*2)=-2*D12; 
A3(2+M,2+M*3)=D12/2; 
A3(2+M,3)=-D12/2; 
A3(2+M,3+M*2)=D12/2; 
B3(2+M,1)=D*h/4; 
B3(2+M,1+M*2)=-D*h/4; 
B3(2+M,3)=-D*h/4; 
B3(2+M,3+M*2)=D*h/4; 
C3(2+M,1+M)=G*h; 
C3(2+M,2)=F*h; 
C3(2+M,2+M)=-2*F*h-2*G*h; 
C3(2+M,2+M*2)=F*h; 
C3(2+M,3+M)=G*h; 
  

 
% For (M-1,2) 
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A1(2*M-1,M)=G41; 
A1(2*M-1,2*M)=G42; 
A1(2*M-1,3*M)=G41; 
A1(2*M-1,M-1)=-4*A-2*B; 
A1(2*M-1,2*M-1)=11*A+4*B; 
A1(2*M-1,3*M-1)=-4*A-2*B; 
A1(2*M-1,4*M-1)=A; 
A1(2*M-1,M-2)=B; 
A1(2*M-1,2*M-2)=-4*A-2*B; 
A1(2*M-1,3*M-2)=B; 
A1(2*M-1,2*M-3)=A; 
B1(2*M-1,M)=D12*h/2; 
B1(2*M-1,2*M)=-2*D12*h; 
B1(2*M-1,3*M)=D12*h/2; 
B1(2*M-1,2*M-1)=D12*h/2; 
B1(2*M-1,M-2)=-D12*h/2; 
B1(2*M-1,2*M-2)=2*D12*h; 
B1(2*M-1,3*M-2)=-D12*h/2; 
B1(2*M-1,2*M-3)=-D12*h/2; 
C1(2*M-1,M)=G43; 
C1(2*M-1,3*M)=-G43; 
C1(2*M-1,M-1)=2*D12*h; 
C1(2*M-1,M*3-1)=-2*D12*h; 
C1(2*M-1,M*4-1)=D12*h/2; 
C1(2*M-1,M-2)=-D12*h/2; 
C1(2*M-1,M*3-2)=D12*h/2; 
E1(2*M-1,1)=G44; 

  
A2(2*M-1,M)=-G51; 
A2(2*M-1,2*M)=-G52; 
A2(2*M-1,3*M)=-G51; 
A2(2*M-1,2*M-1)=-D12/2; 
A2(2*M-1,M-2)=-D12/2; 
A2(2*M-1,2*M-2)=2*D12; 
A2(2*M-1,3*M-2)=-D12/2; 
A2(2*M-1,2*M-3)=-D12/2; 
B2(2*M-1,2*M)=E*h; 
B2(2*M-1,M-1)=G*h; 
B2(2*M-1,2*M-1)=-2*G*h-2*E*h; 
B2(2*M-1,3*M-1)=G*h; 
B2(2*M-1,2*M-2)=E*h; 
C2(2*M-1,M)=-G53; 
C2(2*M-1,3*M)=G53; 
C2(2*M-1,M-2)=D*h/4; 
C2(2*M-1,3*M-2)=-D*h/4; 
E2(2*M-1,1)=-G54; 

  
A3(2*M-1,M)=-D12/2; 
A3(2*M-1,3*M)=D12/2; 
A3(2*M-1,M-1)=2*D12; 
A3(2*M-1,3*M-1)=-2*D12; 
A3(2*M-1,4*M-1)=D12/2; 
A3(2*M-1,M-2)=-D12/2; 
A3(2*M-1,3*M-2)=D12/2; 
B3(2*M-1,M)=D*h/4; 
B3(2*M-1,3*M)=-D*h/4; 
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B3(2*M-1,M-2)=-D*h/4; 
B3(2*M-1,3*M-2)=D*h/4; 
C3(2*M-1,2*M)=G*h; 
C3(2*M-1,M-1)=F*h; 
C3(2*M-1,2*M-1)=-2*F*h-2*G*h; 
C3(2*M-1,3*M-1)=F*h; 
C3(2*M-1,2*M-2)=G*h; 

  
% For (2,N-1) 
A1(2+M*(N-2),1+M*(N-1))=G141; 
A1(2+M*(N-2),2+M*(N-1))=G42; 
A1(2+M*(N-2),3+M*(N-1))=G41; 
A1(2+M*(N-2),1+M*(N-2))=G42; 
A1(2+M*(N-2),2+M*(N-2))=10*A+4*B; 
A1(2+M*(N-2),3+M*(N-2))=-4*A-2*B; 
A1(2+M*(N-2),4+M*(N-2))=A; 
A1(2+M*(N-2),1+M*(N-3))=G41; 
A1(2+M*(N-2),2+M*(N-3))=-4*A-2*B; 
A1(2+M*(N-2),3+M*(N-3))=B; 
A1(2+M*(N-2),2+M*(N-4))=A; 
B1(2+M*(N-2),1+M*(N-1))=G43; 
B1(2+M*(N-2),3+M*(N-1))=-G43; 
B1(2+M*(N-2),1+M*(N-2))=2*D12*h; 
B1(2+M*(N-2),2+M*(N-2))=-D12*h/2; 
B1(2+M*(N-2),3+M*(N-2))=-2*D12*h; 
B1(2+M*(N-2),4+M*(N-2))=D12*h/2; 
B1(2+M*(N-2),1+M*(N-3))=-D12*h/2; 
B1(2+M*(N-2),3+M*(N-3))=D12*h/2; 
C1(2+M*(N-2),1+M*(N-1))=-G43; 
C1(2+M*(N-2),2+M*(N-1))=-2*D12*h; 
C1(2+M*(N-2),3+M*(N-1))=D12*h/2; 
C1(2+M*(N-2),2+M*(N-2))=D12*h/2; 
C1(2+M*(N-2),1+M*(N-3))=G43; 
C1(2+M*(N-2),2+M*(N-3))=2*D12*h; 
C1(2+M*(N-2),3+M*(N-3))=-D12*h/2; 
C1(2+M*(N-2),2+M*(N-4))=-D12*h/2; 
E1(2+M*(N-2),1)=G142; 

  
A2(2+M*(N-2),1+M*(N-1))=-G51; 
A2(2+M*(N-2),2+M*(N-1))=-G52; 
A2(2+M*(N-2),3+M*(N-1))=-G51; 
A2(2+M*(N-2),2+M*(N-2))=-D12/2; 
A2(2+M*(N-2),1+M*(N-3))=-D12/2; 
A2(2+M*(N-2),2+M*(N-3))=2*D12; 
A2(2+M*(N-2),3+M*(N-3))=-D12/2; 
A2(2+M*(N-2),2+M*(N-4))=-D12/2; 
B2(2+M*(N-2),1+M*(N-1))=-G53; 
B2(2+M*(N-2),3+M*(N-1))=G53; 
B2(2+M*(N-2),1+M*(N-3))=D*h/4; 
B2(2+M*(N-2),3+M*(N-3))=-D*h/4; 
C2(2+M*(N-2),2+M*(N-1))=F*h; 
C2(2+M*(N-2),1+M*(N-2))=G*h; 
C2(2+M*(N-2),2+M*(N-2))=-2*F*h-2*G*h; 
C2(2+M*(N-2),3+M*(N-2))=G*h; 
C2(2+M*(N-2),2+M*(N-3))=F*h; 
E2(2+M*(N-2),1)=-G54; 
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A3(2+M*(N-2),1+M*(N-1))=G51; 
A3(2+M*(N-2),3+M*(N-1))=D12/2; 
A3(2+M*(N-2),1+M*(N-2))=G52; 
A3(2+M*(N-2),2+M*(N-2))=D12/2; 
A3(2+M*(N-2),3+M*(N-2))=-2*D12; 
A3(2+M*(N-2),4+M*(N-2))=D12/2; 
A3(2+M*(N-2),1+M*(N-3))=G51; 
A3(2+M*(N-2),3+M*(N-3))=D12/2; 
B3(2+M*(N-2),2+M*(N-1))=G*h; 
B3(2+M*(N-2),1+M*(N-2))=E*h; 
B3(2+M*(N-2),2+M*(N-2))=-2*E*h-2*G*h; 
B3(2+M*(N-2),3+M*(N-2))=E*h; 
B3(2+M*(N-2),2+M*(N-3))=G*h; 
C3(2+M*(N-2),1+M*(N-1))=-G53; 
C3(2+M*(N-2),3+M*(N-1))=D*h/4; 
C3(2+M*(N-2),1+M*(N-3))=G53; 
C3(2+M*(N-2),3+M*(N-3))=-D*h/4; 
E3(2+M*(N-2),1)=G54; 

  
% For (M-1,N-1) 
A1(M*(N-1)-1,M*N)=G141; 
A1(M*(N-1)-1,M*N-1)=G42; 
A1(M*(N-1)-1,M*N-2)=G41; 
A1(M*(N-1)-1,M*(N-1))=G42; 
A1(M*(N-1)-1,M*(N-1)-1)=10*A+4*B; 
A1(M*(N-1)-1,M*(N-1)-2)=-4*A-2*B; 
A1(M*(N-1)-1,M*(N-1)-3)=A; 
A1(M*(N-1)-1,M*(N-2))=G41; 
A1(M*(N-1)-1,M*(N-2)-1)=-4*A-2*B; 
A1(M*(N-1)-1,M*(N-2)-2)=B; 
A1(M*(N-1)-1,M*(N-3)-1)=A; 
B1(M*(N-1)-1,M*N)=-G43; 
B1(M*(N-1)-1,M*N-2)=G43; 
B1(M*(N-1)-1,M*(N-1))=-2*D12*h; 
B1(M*(N-1)-1,M*(N-1)-1)=D12*h/2; 
B1(M*(N-1)-1,M*(N-1)-2)=2*D12*h; 
B1(M*(N-1)-1,M*(N-1)-3)=-D12*h/2; 
B1(M*(N-1)-1,M*(N-2))=D12*h/2; 
B1(M*(N-1)-1,M*(N-2)-2)=-D12*h/2; 
C1(M*(N-1)-1,M*N)=-G43; 
C1(M*(N-1)-1,M*N-1)=-2*D12*h; 
C1(M*(N-1)-1,M*N-2)=D12*h/2; 
C1(M*(N-1)-1,M*(N-1)-1)=D12*h/2; 
C1(M*(N-1)-1,M*(N-2))=G43; 
C1(M*(N-1)-1,M*(N-2)-1)=2*D12*h; 
C1(M*(N-1)-1,M*(N-2)-2)=-D12*h/2; 
C1(M*(N-1)-1,M*(N-3)-1)=-D12*h/2; 
E1(M*(N-1)-1,1)=G142; 

  
A2(M*(N-1)-1,M*N)=-G51; 
A2(M*(N-1)-1,M*N-1)=-G52; 
A2(M*(N-1)-1,M*N-2)=-G51; 
A2(M*(N-1)-1,M*(N-1)-1)=-D12/2; 
A2(M*(N-1)-1,M*(N-2))=-D12/2; 
A2(M*(N-1)-1,M*(N-2)-1)=2*D12; 
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A2(M*(N-1)-1,M*(N-2)-2)=-D12/2; 
A2(M*(N-1)-1,M*(N-3)-1)=-D12/2; 
B2(M*(N-1)-1,M*N)=-G53; 
B2(M*(N-1)-1,M*N-2)=G53; 
B2(M*(N-1)-1,M*(N-2))=D*h/4; 
B2(M*(N-1)-1,M*(N-2)-2)=-D*h/4; 
C2(M*(N-1)-1,M*N-1)=F*h; 
C2(M*(N-1)-1,M*(N-1))=G*h; 
C2(M*(N-1)-1,M*(N-1)-1)=-2*F*h-2*G*h; 
C2(M*(N-1)-1,M*(N-1)-2)=G*h; 
C2(M*(N-1)-1,M*(N-2)-1)=F*h; 
E2(M*(N-1)-1,1)=-G54; 

  
A3(M*(N-1)-1,M*N)=-G51; 
A3(M*(N-1)-1,M*N-2)=-D12/2; 
A3(M*(N-1)-1,M*(N-1))=-G52; 
A3(M*(N-1)-1,M*(N-1)-1)=-D12/2; 
A3(M*(N-1)-1,M*(N-1)-2)=2*D12; 
A3(M*(N-1)-1,M*(N-1)-3)=-D12/2; 
A3(M*(N-1)-1,M*(N-2))=-G51; 
A3(M*(N-1)-1,M*(N-2)-2)=-D12/2; 
B3(M*(N-1)-1,M*N-1)=G*h; 
B3(M*(N-1)-1,M*(N-1))=E*h; 
B3(M*(N-1)-1,M*(N-1)-1)=-2*E*h-2*G*h; 
B3(M*(N-1)-1,M*(N-1)-2)=E*h; 
B3(M*(N-1)-1,M*(N-2)-1)=G*h; 
C3(M*(N-1)-1,M*N)=G53; 
C3(M*(N-1)-1,M*N-2)=-D*h/4; 
C3(M*(N-1)-1,M*(N-2))=-G53; 
C3(M*(N-1)-1,M*(N-2)-2)=D*h/4; 
E3(M*(N-1)-1,1)=-G54; 

  
% For (2,N) 
A1(2+M*(N-1),1+M*(N-1))=G92; 
A1(2+M*(N-1),2+M*(N-1))=G91; 
A1(2+M*(N-1),3+M*(N-1))=G32; 
A1(2+M*(N-1),4+M*(N-1))=G31; 
A1(2+M*(N-1),1+M*(N-2))=G34; 
A1(2+M*(N-1),2+M*(N-2))=G35; 
A1(2+M*(N-1),3+M*(N-2))=G34; 
A1(2+M*(N-1),2+M*(N-3))=2*A; 
B1(2+M*(N-1),1+M*(N-1))=-G94; 
B1(2+M*(N-1),2+M*(N-1))=-G93; 
B1(2+M*(N-1),3+M*(N-1))=-G37; 
B1(2+M*(N-1),4+M*(N-1))=-G36; 
B1(2+M*(N-1),1+M*(N-2))=-G151; 
B1(2+M*(N-1),3+M*(N-2))=D12*h; 
C1(2+M*(N-1),2+M*(N-1))=-G93; 
C1(2+M*(N-1),4+M*(N-1))=-G38; 
C1(2+M*(N-1),1+M*(N-2))=-D12*h/2; 
C1(2+M*(N-1),2+M*(N-2))=-G310; 
C1(2+M*(N-1),3+M*(N-2))=-D12*h/2; 
C1(2+M*(N-1),2+M*(N-3))=-D12*h/2; 
E1(2+M*(N-1),1)=G96; 

  
A2(2+M*(N-1),2+M*(N-1))=-G11; 
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A2(2+M*(N-1),3+M*(N-1))=-G12; 
A2(2+M*(N-1),4+M*(N-1))=-G11; 
B2(2+M*(N-1),1+M*(N-1))=E*h; 
B2(2+M*(N-1),2+M*(N-1))=-G13-2*E*h-2*G*h; 
B2(2+M*(N-1),3+M*(N-1))=E*h; 
B2(2+M*(N-1),4+M*(N-1))=G13; 
B2(2+M*(N-1),2+M*(N-2))=2*G*h; 
C2(2+M*(N-1),1+M*(N-1))=G*h; 
C2(2+M*(N-1),3+M*(N-1))=-G*h; 
E2(2+M*(N-1),1)=-G111; 

  
A3(2+M*(N-1),1+M*(N-1))=-G102; 
A3(2+M*(N-1),2+M*(N-1))=-G101; 
A3(2+M*(N-1),3+M*(N-1))=-G22; 
A3(2+M*(N-1),4+M*(N-1))=-G21; 
A3(2+M*(N-1),1+M*(N-2))=-G24; 
A3(2+M*(N-1),2+M*(N-2))=2*G24; 
A3(2+M*(N-1),3+M*(N-2))=-G24; 
B3(2+M*(N-1),1+M*(N-1))=G104; 
B3(2+M*(N-1),2+M*(N-1))=G103; 
B3(2+M*(N-1),3+M*(N-1))=G26; 
B3(2+M*(N-1),4+M*(N-1))=G25; 
B3(2+M*(N-1),1+M*(N-2))=G105; 
C3(2+M*(N-1),1+M*(N-1))=G*h; 
C3(2+M*(N-1),2+M*(N-1))=G106; 
C3(2+M*(N-1),3+M*(N-1))=G*h; 
C3(2+M*(N-1),4+M*(N-1))=G27; 
C3(2+M*(N-1),2+M*(N-2))=G29; 
E3(2+M*(N-1),1)=-G108; 

  
% For (M-1,N) 
A1(M*N-1,M*N)=G92; 
A1(M*N-1,M*N-1)=G91; 
A1(M*N-1,M*N-2)=G32; 
A1(M*N-1,M*N-3)=G31; 
A1(M*N-1,M*(N-1))=G34; 
A1(M*N-1,M*(N-1)-1)=G35; 
A1(M*N-1,M*(N-1)-2)=G34; 
A1(M*N-1,M*(N-2)-1)=2*A; 
B1(M*N-1,M*N)=G94; 
B1(M*N-1,M*N-1)=G93; 
B1(M*N-1,M*N-2)=G37; 
B1(M*N-1,M*N-3)=G36; 
B1(M*N-1,M*(N-1))=G151; 
B1(M*N-1,M*(N-1)-2)=-D12*h; 
C1(M*N-1,M*N-1)=-G93; 
C1(M*N-1,M*N-3)=-G38; 
C1(M*N-1,M*(N-1))=-D12*h/2; 
C1(M*N-1,M*(N-1)-1)=-G310; 
C1(M*N-1,M*(N-1)-2)=-D12*h/2; 
C1(M*N-1,M*(N-2)-1)=-D12*h/2; 
E1(M*N-1,1)=G96; 

  
A2(M*N-1,M*N-1)=G11; 
A2(M*N-1,M*N-2)=G12; 
A2(M*N-1,M*N-3)=G11; 
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B2(M*N-1,M*N)=E*h; 
B2(M*N-1,M*N-1)=-G13-2*E*h-2*G*h; 
B2(M*N-1,M*N-2)=E*h; 
B2(M*N-1,M*N-3)=G13; 
B2(M*N-1,M*(N-1)-1)=2*G*h; 
C2(M*N-1,M*N)=-G*h; 
C2(M*N-1,M*N-2)=G*h; 
E2(M*N-1,1)=G111; 

  
A3(M*N-1,M*N)=-G102; 
A3(M*N-1,M*N-1)=-G101; 
A3(M*N-1,M*N-2)=-G22; 
A3(M*N-1,M*N-3)=-G21; 
A3(M*N-1,M*(N-1))=-G24; 
A3(M*N-1,M*(N-1)-1)=2*G24; 
A3(M*N-1,M*(N-1)-2)=-G24; 
B3(M*N-1,M*N)=G104; 
B3(M*N-1,M*N-1)=G103; 
B3(M*N-1,M*N-2)=G26; 
B3(M*N-1,M*N-3)=G25; 
B3(M*N-1,M*(N-1))=G105; 
C3(M*N-1,M*N)=G*h; 
C3(M*N-1,M*N-1)=G106; 
C3(M*N-1,M*N-2)=G*h; 
C3(M*N-1,M*N-3)=G27; 
C3(M*N-1,M*(N-1)-1)=G29; 
E3(M*N-1,1)=-G108; 

  
% 4 x rows 
for j=3:1:(N-2) 
    % For x=1,(1,j) 
    A1(1+M*(j-1),1+M*(j-3))=G11; 
    A1(1+M*(j-1),1+M*(j-2))=G12; 
    A1(1+M*(j-1),1+M*j)=-G12; 
    A1(1+M*(j-1),1+M*(j+1))=-G11; 
    B1(1+M*(j-1),1+M*(j-2))=-G*h; 
    B1(1+M*(j-1),1+M*j)=G*h; 
    C1(1+M*(j-1),1+M*(j-3))=G13; 
    C1(1+M*(j-1),1+M*(j-2))=F*h; 
    C1(1+M*(j-1),1+M*(j-1))=G14; 
    C1(1+M*(j-1),1+M*j)=F*h; 
    C1(1+M*(j-1),1+M*(j+1))=G13; 
    C1(1+M*(j-1),2+M*(j-1))=2*G*h; 

     
    A2(1+M*(j-1),1+M*(j-3))=G21; 
    A2(1+M*(j-1),1+M*(j-2))=G22; 
    A2(1+M*(j-1),1+M*(j-1))=G23; 
    A2(1+M*(j-1),1+M*j)=G22; 
    A2(1+M*(j-1),1+M*(j+1))=G21; 
    A2(1+M*(j-1),2+M*(j-2))=G24; 
    A2(1+M*(j-1),2+M*(j-1))=-2*G24; 
    A2(1+M*(j-1),2+M*j)=G24; 
    B2(1+M*(j-1),1+M*(j-3))=G27; 
    B2(1+M*(j-1),1+M*(j-2))=G*h; 
    B2(1+M*(j-1),1+M*(j-1))=G28; 
    B2(1+M*(j-1),1+M*j)=G*h; 
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    B2(1+M*(j-1),1+M*(j+1))=G27; 
    B2(1+M*(j-1),2+M*(j-1))=G29; 
    C2(1+M*(j-1),1+M*(j-3))=G25; 
    C2(1+M*(j-1),1+M*(j-2))=G26; 
    C2(1+M*(j-1),1+M*j)=-G26; 
    C2(1+M*(j-1),1+M*(j+1))=-G25; 
    E2(1+M*(j-1),1)=G210; 

     
    A3(1+M*(j-1),1+M*(j-3))=G31; 
    A3(1+M*(j-1),1+M*(j-2))=G32; 
    A3(1+M*(j-1),1+M*(j-1))=G33; 
    A3(1+M*(j-1),1+M*j)=G32; 
    A3(1+M*(j-1),1+M*(j+1))=G31; 
    A3(1+M*(j-1),2+M*(j-2))=G34; 
    A3(1+M*(j-1),2+M*(j-1))=G35; 
    A3(1+M*(j-1),2+M*j)=G34; 
    A3(1+M*(j-1),3+M*(j-1))=2*A; 
    B3(1+M*(j-1),1+M*(j-3))=G38; 
    B3(1+M*(j-1),1+M*(j-1))=G39; 
    B3(1+M*(j-1),1+M*(j+1))=G38; 
    B3(1+M*(j-1),2+M*(j-2))=D12*h/2; 
    B3(1+M*(j-1),2+M*(j-1))=G310; 
    B3(1+M*(j-1),2+M*j)=D12*h/2; 
    B3(1+M*(j-1),3+M*(j-1))=D12*h/2; 
    C3(1+M*(j-1),1+M*(j-3))=G36; 
    C3(1+M*(j-1),1+M*(j-2))=G37; 
    C3(1+M*(j-1),1+M*j)=-G37; 
    C3(1+M*(j-1),1+M*(j+1))=-G36; 
    C3(1+M*(j-1),2+M*(j-2))=-D12*h; 
    C3(1+M*(j-1),2+M*j)=D12*h; 
    E3(1+M*(j-1),1)=G311; 

     
    % For x=M,(M,j) 
    A1(M*j,M*(j-2))=G11; 
    A1(M*j,M*(j-1))=G12; 
    A1(M*j,M*(j+1))=-G12; 
    A1(M*j,M*(j+2))=-G11; 
    B1(M*j,M*(j-1))=-G*h; 
    B1(M*j,M*(j+1))=G*h; 
    C1(M*j,M*(j-2))=G13; 
    C1(M*j,M*(j-1))=F*h; 
    C1(M*j,M*j)=G14; 
    C1(M*j,M*(j+1))=F*h; 
    C1(M*j,M*(j+2))=G13; 
    C1(M*j,M*j-1)=2*G*h; 

     
    A2(M*j,M*(j-2))=-G21; 
    A2(M*j,M*(j-1))=-G22; 
    A2(M*j,M*j)=-G23; 
    A2(M*j,M*(j+1))=-G22; 
    A2(M*j,M*(j+2))=-G21; 
    A2(M*j,M*(j-1)-1)=-G24; 
    A2(M*j,M*j-1)=2*G24; 
    A2(M*j,M*(j+1)-1)=-G24; 
    B2(M*j,M*(j-2))=G27; 
    B2(M*j,M*(j-1))=G*h; 



129 

 

    B2(M*j,M*j)=G28; 
    B2(M*j,M*(j+1))=G*h; 
    B2(M*j,M*(j+2))=G27; 
    B2(M*j,M*j-1)=G29; 
    C2(M*j,M*(j-2))=-G25; 
    C2(M*j,M*(j-1))=-G26; 
    C2(M*j,M*(j+1))=G26; 
    C2(M*j,M*(j+2))=G25; 
    E2(M*j,1)=-G210; 

     
    A3(M*j,M*(j-2))=G31; 
    A3(M*j,M*(j-1))=G32; 
    A3(M*j,M*j)=G33; 
    A3(M*j,M*(j+1))=G32; 
    A3(M*j,M*(j+2))=G31; 
    A3(M*j,M*(j-1)-1)=G34; 
    A3(M*j,M*j-1)=G35; 
    A3(M*j,M*(j+1)-1)=G34; 
    A3(M*j,M*j-2)=2*A; 
    B3(M*j,M*(j-2))=-G38; 
    B3(M*j,M*j)=-G39; 
    B3(M*j,M*(j+2))=-G38; 
    B3(M*j,M*(j-1)-1)=-D12*h/2; 
    B3(M*j,M*j-1)=-G310; 
    B3(M*j,M*(j+1)-1)=-D12*h/2; 
    B3(M*j,M*j-2)=-D12*h/2; 
    C3(M*j,M*(j-2))=G36; 
    C3(M*j,M*(j-1))=G37; 
    C3(M*j,M*(j+1))=-G37; 
    C3(M*j,M*(j+2))=-G36; 
    C3(M*j,M*(j-1)-1)=-D12*h; 
    C3(M*j,M*(j+1)-1)=D12*h; 
    E3(M*j,1)=G311; 

     
    % For x=2,(2,j) 
    A1(2+M*(j-1),1+M*(j-2))=G41; 
    A1(2+M*(j-1),1+M*(j-1))=G42; 
    A1(2+M*(j-1),1+M*j)=G41; 
    A1(2+M*(j-1),2+M*(j-3))=A; 
    A1(2+M*(j-1),2+M*(j-2))=-4*A-2*B; 
    A1(2+M*(j-1),2+M*(j-1))=11*A+4*B; 
    A1(2+M*(j-1),2+M*j)=-4*A-2*B; 
    A1(2+M*(j-1),2+M*(j+1))=A; 
    A1(2+M*(j-1),3+M*(j-2))=B; 
    A1(2+M*(j-1),3+M*(j-1))=-4*A-2*B; 
    A1(2+M*(j-1),3+M*j)=B; 
    A1(2+M*(j-1),4+M*(j-1))=A; 
    B1(2+M*(j-1),1+M*(j-2))=-D12*h/2; 
    B1(2+M*(j-1),1+M*(j-1))=2*D12*h; 
    B1(2+M*(j-1),1+M*j)=-D12*h/2; 
    B1(2+M*(j-1),2+M*(j-1))=-D12*h/2; 
    B1(2+M*(j-1),3+M*(j-2))=D12*h/2; 
    B1(2+M*(j-1),3+M*(j-1))=-2*D12*h; 
    B1(2+M*(j-1),3+M*j)=D12*h/2; 
    B1(2+M*(j-1),4+M*(j-1))=D12*h/2; 
    C1(2+M*(j-1),1+M*(j-2))=G43; 
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    C1(2+M*(j-1),1+M*j)=-G43; 
    C1(2+M*(j-1),2+M*(j-3))=-D12*h/2; 
    C1(2+M*(j-1),2+M*(j-2))=2*D12*h; 
    C1(2+M*(j-1),2+M*j)=-2*D12*h; 
    C1(2+M*(j-1),2+M*(j+1))=D12*h/2; 
    C1(2+M*(j-1),3+M*(j-2))=-D12*h/2; 
    C1(2+M*(j-1),3+M*j)=D12*h/2; 
    E1(2+M*(j-1),1)=G44; 

     
    A2(2+M*(j-1),1+M*(j-2))=G51; 
    A2(2+M*(j-1),1+M*(j-1))=G52; 
    A2(2+M*(j-1),1+M*j)=G51; 
    A2(2+M*(j-1),2+M*(j-1))=D12/2; 
    A2(2+M*(j-1),3+M*(j-2))=D12/2; 
    A2(2+M*(j-1),3+M*(j-1))=-2*D12; 
    A2(2+M*(j-1),3+M*j)=D12/2; 
    A2(2+M*(j-1),4+M*(j-1))=D12/2; 
    B2(2+M*(j-1),1+M*(j-1))=E*h; 
    B2(2+M*(j-1),2+M*(j-2))=G*h; 
    B2(2+M*(j-1),2+M*(j-1))=-2*G*h-2*E*h; 
    B2(2+M*(j-1),2+M*j)=G*h; 
    B2(2+M*(j-1),3+M*(j-1))=E*h; 
    C2(2+M*(j-1),1+M*(j-2))=G53; 
    C2(2+M*(j-1),1+M*j)=-G53; 
    C2(2+M*(j-1),3+M*(j-2))=-D*h/4; 
    C2(2+M*(j-1),3+M*j)=D*h/4; 
    E2(2+M*(j-1),1)=G54; 

     
    A3(2+M*(j-1),1+M*(j-2))=-D12/2; 
    A3(2+M*(j-1),1+M*j)=D12/2; 
    A3(2+M*(j-1),2+M*(j-3))=-D12/2; 
    A3(2+M*(j-1),2+M*(j-2))=2*D12; 
    A3(2+M*(j-1),2+M*j)=-2*D12; 
    A3(2+M*(j-1),2+M*(j+1))=D12/2; 
    A3(2+M*(j-1),3+M*(j-2))=-D12/2; 
    A3(2+M*(j-1),3+M*j)=D12/2; 
    B3(2+M*(j-1),1+M*(j-2))=D*h/4; 
    B3(2+M*(j-1),1+M*j)=-D*h/4; 
    B3(2+M*(j-1),3+M*(j-1))=-D*h/4; 
    B3(2+M*(j-1),3+M*j)=D*h/4; 
    C3(2+M*(j-1),1+M*(j-1))=G*h; 
    C3(2+M*(j-1),2+M*(j-2))=F*h; 
    C3(2+M*(j-1),2+M*(j-1))=-2*F*h-2*G*h; 
    C3(2+M*(j-1),2+M*j)=F*h; 
    C3(2+M*(j-1),3+M*(j-1))=G*h; 

     
    % For x=M-1,(M-1,j) 
    A1(M*j-1,M*(j-1))=G41; 
    A1(M*j-1,M*j)=G42; 
    A1(M*j-1,M*(j+1))=G41; 
    A1(M*j-1,M*(j-2)-1)=A; 
    A1(M*j-1,M*(j-1)-1)=-4*A-2*B; 
    A1(M*j-1,M*j-1)=11*A+4*B; 
    A1(M*j-1,M*(j+1)-1)=-4*A-2*B; 
    A1(M*j-1,M*(j+2)-1)=A; 
    A1(M*j-1,M*(j-1)-2)=B; 
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    A1(M*j-1,M*j-2)=-4*A-2*B; 
    A1(M*j-1,M*(j+1)-2)=B; 
    A1(M*j-1,M*j-3)=A; 
    B1(M*j-1,M*(j-1))=D12*h/2; 
    B1(M*j-1,M*j)=-2*D12*h; 
    B1(M*j-1,M*(j+1))=D12*h/2; 
    B1(M*j-1,M*j-1)=D12*h/2; 
    B1(M*j-1,M*(j-1)-2)=-D12*h/2; 
    B1(M*j-1,M*j-2)=2*D12*h; 
    B1(M*j-1,M*(j+1)-2)=-D12*h/2; 
    B1(M*j-1,M*j-3)=-D12*h/2; 
    C1(M*j-1,M*(j-1))=G43; 
    C1(M*j-1,M*(j+1))=-G43; 
    C1(M*j-1,M*(j-2)-1)=-D12*h/2; 
    C1(M*j-1,M*(j-1)-1)=2*D12*h; 
    C1(M*j-1,M*(j+1)-1)=-2*D12*h; 
    C1(M*j-1,M*(j+2)-1)=D12*h/2; 
    C1(M*j-1,M*(j-1)-2)=-D12*h/2; 
    C1(M*j-1,M*(j+1)-2)=D12*h/2; 
    E1(M*j-1,1)=G44; 

     
    A2(M*j-1,M*(j-1))=-G51; 
    A2(M*j-1,M*j)=-G52; 
    A2(M*j-1,M*(j+1))=-G51; 
    A2(M*j-1,M*j-1)=-D12/2; 
    A2(M*j-1,M*(j-1)-2)=-D12/2; 
    A2(M*j-1,M*j-2)=2*D12; 
    A2(M*j-1,M*(j+1)-2)=-D12/2; 
    A2(M*j-1,M*j-3)=-D12/2; 
    B2(M*j-1,M*j)=E*h; 
    B2(M*j-1,M*(j-1)-1)=G*h; 
    B2(M*j-1,M*j-1)=-2*G*h-2*E*h; 
    B2(M*j-1,M*(j+1)-1)=G*h; 
    B2(M*j-1,M*j-2)=E*h; 
    C2(M*j-1,M*(j-1))=-G53; 
    C2(M*j-1,M*(j+1))=G53; 
    C2(M*j-1,M*(j-1)-2)=D*h/4; 
    C2(M*j-1,M*(j+1)-2)=-D*h/4; 
    E2(M*j-1,1)=-G54; 

     
    A3(M*j-1,M*(j-1))=-D12/2; 
    A3(M*j-1,M*(j+1))=D12/2; 
    A3(M*j-1,M*(j-2)-1)=-D12/2; 
    A3(M*j-1,M*(j-1)-1)=2*D12; 
    A3(M*j-1,M*(j+1)-1)=-2*D12; 
    A3(M*j-1,M*(j+2)-1)=D12/2; 
    A3(M*j-1,M*(j-1)-2)=-D12/2; 
    A3(M*j-1,M*(j+1)-2)=D12/2; 
    B3(M*j-1,M*(j-1))=D*h/4; 
    B3(M*j-1,M*(j+1))=-D*h/4; 
    B3(M*j-1,M*(j-1)-2)=-D*h/4; 
    B3(M*j-1,M*(j+1)-2)=D*h/4; 
    C3(M*j-1,M*j)=G*h; 
    C3(M*j-1,M*(j-1)-1)=F*h; 
    C3(M*j-1,M*j-1)=-2*F*h-2*G*h; 
    C3(M*j-1,M*(j+1)-1)=F*h; 
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    C3(M*j-1,M*j-2)=G*h; 
end 

  
for i=3:1:(M-2) 
    % For y=N,(i,N) 
    A1(i+M*(N-1),i-2+M*(N-1))=G31; 
    A1(i+M*(N-1),i-1+M*(N-1))=G32; 
    A1(i+M*(N-1),i+M*(N-1))=G33; 
    A1(i+M*(N-1),i+1+M*(N-1))=G32; 
    A1(i+M*(N-1),i+2+M*(N-1))=G31; 
    A1(i+M*(N-1),i-1+M*(N-2))=G34; 
    A1(i+M*(N-1),i+M*(N-2))=G35; 
    A1(i+M*(N-1),i+1+M*(N-2))=G34; 
    A1(i+M*(N-1),i+M*(N-3))=2*A; 
    B1(i+M*(N-1),i-2+M*(N-1))=G36; 
    B1(i+M*(N-1),i-1+M*(N-1))=G37; 
    B1(i+M*(N-1),i+1+M*(N-1))=-G37; 
    B1(i+M*(N-1),i+2+M*(N-1))=-G36; 
    B1(i+M*(N-1),i-1+M*(N-2))=-D12*h; 
    B1(i+M*(N-1),i+1+M*(N-2))=D12*h; 
    C1(i+M*(N-1),i-2+M*(N-1))=-G38; 
    C1(i+M*(N-1),i+M*(N-1))=-G39; 
    C1(i+M*(N-1),i+2+M*(N-1))=-G38; 
    C1(i+M*(N-1),i-1+M*(N-2))=-D12*h/2; 
    C1(i+M*(N-1),i+M*(N-2))=-G310; 
    C1(i+M*(N-1),i+1+M*(N-2))=-D12*h/2; 
    C1(i+M*(N-1),i+M*(N-3))=-D12*h/2; 
    E1(i+M*(N-1),1)=G311; 

     
    A2(i+M*(N-1),i-2+M*(N-1))=G11; 
    A2(i+M*(N-1),i-1+M*(N-1))=G12; 
    A2(i+M*(N-1),i+1+M*(N-1))=-G12; 
    A2(i+M*(N-1),i+2+M*(N-1))=-G11; 
    B2(i+M*(N-1),i-2+M*(N-1))=G13; 
    B2(i+M*(N-1),i-1+M*(N-1))=E*h; 
    B2(i+M*(N-1),i+M*(N-1))=G14; 
    B2(i+M*(N-1),i+1+M*(N-1))=E*h; 
    B2(i+M*(N-1),i+2+M*(N-1))=G13; 
    B2(i+M*(N-1),i+M*(N-2))=2*G*h; 
    C2(i+M*(N-1),i-1+M*(N-1))=G*h; 
    C2(i+M*(N-1),i+1+M*(N-1))=-G*h; 

     
    A3(i+M*(N-1),i-2+M*(N-1))=-G21; 
    A3(i+M*(N-1),i-1+M*(N-1))=-G22; 
    A3(i+M*(N-1),i+M*(N-1))=-G23; 
    A3(i+M*(N-1),i+1+M*(N-1))=-G22; 
    A3(i+M*(N-1),i+2+M*(N-1))=-G21; 
    A3(i+M*(N-1),i-1+M*(N-2))=-G24; 
    A3(i+M*(N-1),i+M*(N-2))=2*G24; 
    A3(i+M*(N-1),i+1+M*(N-2))=-G24; 
    B3(i+M*(N-1),i-2+M*(N-1))=-G25; 
    B3(i+M*(N-1),i-1+M*(N-1))=-G26; 
    B3(i+M*(N-1),i+1+M*(N-1))=G26; 
    B3(i+M*(N-1),i+2+M*(N-1))=G25; 
    C3(i+M*(N-1),i-2+M*(N-1))=G27; 
    C3(i+M*(N-1),i-1+M*(N-1))=G*h; 
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    C3(i+M*(N-1),i+M*(N-1))=G28; 
    C3(i+M*(N-1),i+1+M*(N-1))=G*h; 
    C3(i+M*(N-1),i+2+M*(N-1))=G27; 
    C3(i+M*(N-1),i+M*(N-2))=G29; 
    E3(i+M*(N-1),1)=-G210; 

     
    % For y=N-1,(i,N-1) 
    A1(i+M*(N-2),i-1+M*(N-1))=G41; 
    A1(i+M*(N-2),i+M*(N-1))=G42; 
    A1(i+M*(N-2),i+1+M*(N-1))=G41; 
    A1(i+M*(N-2),i-2+M*(N-2))=A; 
    A1(i+M*(N-2),i-1+M*(N-2))=-4*A-2*B; 
    A1(i+M*(N-2),i+M*(N-2))=11*A+4*B; 
    A1(i+M*(N-2),i+1+M*(N-2))=-4*A-2*B; 
    A1(i+M*(N-2),i+2+M*(N-2))=A; 
    A1(i+M*(N-2),i-1+M*(N-3))=B; 
    A1(i+M*(N-2),i+M*(N-3))=-4*A-2*B; 
    A1(i+M*(N-2),i+1+M*(N-3))=B; 
    A1(i+M*(N-2),i+M*(N-4))=A; 
    B1(i+M*(N-2),i-1+M*(N-1))=G43; 
    B1(i+M*(N-2),i+1+M*(N-1))=-G43; 
    B1(i+M*(N-2),i-2+M*(N-2))=-D12*h/2; 
    B1(i+M*(N-2),i-1+M*(N-2))=2*D12*h; 
    B1(i+M*(N-2),i+1+M*(N-2))=-2*D12*h; 
    B1(i+M*(N-2),i+2+M*(N-2))=D12*h/2; 
    B1(i+M*(N-2),i-1+M*(N-3))=-D12*h/2; 
    B1(i+M*(N-2),i+1+M*(N-3))=D12*h/2; 
    C1(i+M*(N-2),i-1+M*(N-1))=D12*h/2; 
    C1(i+M*(N-2),i+M*(N-1))=-2*D12*h; 
    C1(i+M*(N-2),i+1+M*(N-1))=D12*h/2; 
    C1(i+M*(N-2),i+M*(N-2))=D12*h/2; 
    C1(i+M*(N-2),i-1+M*(N-3))=-D12*h/2; 
    C1(i+M*(N-2),i+M*(N-3))=2*D12*h; 
    C1(i+M*(N-2),i+1+M*(N-3))=-D12*h/2; 
    C1(i+M*(N-2),i+M*(N-4))=-D12*h/2; 
    E1(i+M*(N-2),1)=G44; 

     
    A2(i+M*(N-2),i-1+M*(N-1))=-G51; 
    A2(i+M*(N-2),i+M*(N-1))=-G52; 
    A2(i+M*(N-2),i+1+M*(N-1))=-G51; 
    A2(i+M*(N-2),i+M*(N-2))=-D12/2; 
    A2(i+M*(N-2),i-1+M*(N-3))=-D12/2; 
    A2(i+M*(N-2),i+M*(N-3))=2*D12; 
    A2(i+M*(N-2),i+1+M*(N-3))=-D12/2; 
    A2(i+M*(N-2),i+M*(N-4))=-D12/2; 
    B2(i+M*(N-2),i-1+M*(N-1))=-G53; 
    B2(i+M*(N-2),i+1+M*(N-1))=G53; 
    B2(i+M*(N-2),i-1+M*(N-3))=D*h/4; 
    B2(i+M*(N-2),i+1+M*(N-3))=-D*h/4; 
    C2(i+M*(N-2),i+M*(N-1))=F*h; 
    C2(i+M*(N-2),i-1+M*(N-2))=G*h; 
    C2(i+M*(N-2),i+M*(N-2))=-2*F*h-2*G*h; 
    C2(i+M*(N-2),i+1+M*(N-2))=G*h; 
    C2(i+M*(N-2),i+M*(N-3))=F*h; 
    E2(i+M*(N-2),1)=-G54; 
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    A3(i+M*(N-2),i-1+M*(N-1))=-D12/2; 
    A3(i+M*(N-2),i+1+M*(N-1))=D12/2; 
    A3(i+M*(N-2),i-2+M*(N-2))=-D12/2; 
    A3(i+M*(N-2),i-1+M*(N-2))=2*D12; 
    A3(i+M*(N-2),i+1+M*(N-2))=-2*D12; 
    A3(i+M*(N-2),i+2+M*(N-2))=D12/2; 
    A3(i+M*(N-2),i-1+M*(N-3))=-D12/2; 
    A3(i+M*(N-2),i+1+M*(N-3))=D12/2; 
    B3(i+M*(N-2),i+M*(N-1))=G*h; 
    B3(i+M*(N-2),i-1+M*(N-2))=E*h; 
    B3(i+M*(N-2),i+M*(N-2))=-2*E*h-2*G*h; 
    B3(i+M*(N-2),i+1+M*(N-2))=E*h; 
    B3(i+M*(N-2),i+M*(N-3))=G*h; 
    C3(i+M*(N-2),i-1+M*(N-1))=-D*h/4; 
    C3(i+M*(N-2),i+1+M*(N-1))=D*h/4; 
    C3(i+M*(N-2),i-1+M*(N-3))=D*h/4; 
    C3(i+M*(N-2),i+1+M*(N-3))=-D*h/4; 

     
    % For y=2,(i,2) 
    A1(i+M,i-1)=B; 
    A1(i+M,i)=-4*A-2*B; 
    A1(i+M,i+1)=B; 
    A1(i+M,i-2+M)=A; 
    A1(i+M,i-1+M)=-4*A-2*B; 
    A1(i+M,i+M)=12*A+4*B; 
    A1(i+M,i+1+M)=-4*A-2*B; 
    A1(i+M,i+2+M)=A; 
    A1(i+M,i-1+2*M)=B; 
    A1(i+M,i+2*M)=-4*A-2*B; 
    A1(i+M,i+1+2*M)=B; 
    A1(i+M,i+3*M)=A; 
    B1(i+M,i-1)=-D12*h/2; 
    B1(i+M,i+1)=D12*h/2; 
    B1(i+M,i-2+M)=-D12*h/2; 
    B1(i+M,i-1+M)=2*D12*h; 
    B1(i+M,i+1+M)=-2*D12*h; 
    B1(i+M,i+2+M)=D12*h/2; 
    B1(i+M,i-1+2*M)=-D12*h/2; 
    B1(i+M,i+1+2*M)=D12*h/2; 
    C1(i+M,i-1)=-D12*h/2; 
    C1(i+M,i)=2*D12*h; 
    C1(i+M,i+1)=-D12*h/2; 
    C1(i+M,i-1+2*M)=D12*h/2; 
    C1(i+M,i+2*M)=-2*D12*h; 
    C1(i+M,i+1+2*M)=D12*h/2; 
    C1(i+M,i+3*M)=D12*h/2; 
    E1(i+M,1)=-q*h^4; 

     
    A2(i+M,i-1)=-D12/2; 
    A2(i+M,i+1)=D12/2; 
    A2(i+M,i-2+M)=-D12/2; 
    A2(i+M,i-1+M)=2*D12; 
    A2(i+M,i+1+M)=-2*D12; 
    A2(i+M,i+2+M)=D12/2; 
    A2(i+M,i-1+2*M)=-D12/2; 
    A2(i+M,i+1+2*M)=D12/2; 
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    B2(i+M,i)=G*h; 
    B2(i+M,i-1+M)=E*h; 
    B2(i+M,i+M)=-2*E*h-2*G*h; 
    B2(i+M,i+1+M)=E*h; 
    B2(i+M,i+2*M)=G*h; 
    C2(i+M,i-1)=D*h/4; 
    C2(i+M,i+1)=-D*h/4; 
    C2(i+M,i-1+2*M)=-D*h/4; 
    C2(i+M,i+1+2*M)=D*h/4; 

     
    A3(i+M,i-1)=-D12/2; 
    A3(i+M,i)=2*D12; 
    A3(i+M,i+1)=-D12/2; 
    A3(i+M,i-1+2*M)=D12/2; 
    A3(i+M,i+2*M)=-2*D12; 
    A3(i+M,i+1+2*M)=D12/2; 
    A3(i+M,i+3*M)=D12/2; 
    B3(i+M,i-1)=D*h/4; 
    B3(i+M,i+1)=-D*h/4; 
    B3(i+M,i-1+2*M)=-D*h/4; 
    B3(i+M,i+1+2*M)=D*h/4; 
    C3(i+M,i)=F*h; 
    C3(i+M,i-1+M)=G*h; 
    C3(i+M,i+M)=-2*F*h-2*G*h; 
    C3(i+M,i+1+M)=G*h; 
    C3(i+M,i+2*M)=F*h; 

     
    % For y=1,(i,1) 
    A1(i,i-2)=A; 
    A1(i,i-1)=-4*A-2*B; 
    A1(i,i)=13*A+4*B; 
    A1(i,i+1)=-4*A-2*B; 
    A1(i,i+2)=A; 
    A1(i,i-1+M)=B; 
    A1(i,i+M)=-4*A-2*B; 
    A1(i,i+1+M)=B; 
    A1(i,i+2*M)=A; 
    B1(i,i-2)=-D12*h/2; 
    B1(i,i-1)=2*D12*h; 
    B1(i,i+1)=-2*D12*h; 
    B1(i,i+2)=D12*h/2; 
    B1(i,i-1+M)=-D12*h/2; 
    B1(i,i+1+M)=D12*h/2; 
    C1(i,i)=-D12*h/2; 
    C1(i,i-1+M)=D12*h/2; 
    C1(i,i+M)=-2*D12*h; 
    C1(i,i+1+M)=D12*h/2; 
    C1(i,i+2*M)=D12*h/2; 
    E1(i,1)=-q*h^4; 

     
    A2(i,i-2)=-D12/2; 
    A2(i,i-1)=2*D12; 
    A2(i,i+1)=-2*D12; 
    A2(i,i+2)=D12/2; 
    A2(i,i-1+M)=-D12/2; 
    A2(i,i+1+M)=D12/2; 
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    B2(i,i-1)=E*h; 
    B2(i,i)=-2*E*h-2*G*h; 
    B2(i,i+1)=E*h; 
    B2(i,i+M)=G*h; 
    C2(i,i-1+M)=-D*h/4; 
    C2(i,i+1+M)=D*h/4; 

     
    A3(i,i)=-D12/2; 
    A3(i,i-1+M)=D12/2; 
    A3(i,i+M)=-2*D12; 
    A3(i,i+1+M)=D12/2; 
    A3(i,i+2*M)=D12/2; 
    B3(i,i-1+M)=-D*h/4; 
    B3(i,i+1+M)=D*h/4; 
    C3(i,i-1)=G*h; 
    C3(i,i)=-2*F*h-2*G*h; 
    C3(i,i+1)=G*h; 
    C3(i,i+M)=F*h; 
end 

  
for i=3:1:(M-2) %(j,i) 
    for j=3:1:(N-2) 
        A1(i+M*(j-1),i+M*(j-3))=A; 
        A1(i+M*(j-1),i-1+M*(j-2))=B; 
        A1(i+M*(j-1),i+M*(j-2))=-4*A-2*B; 
        A1(i+M*(j-1),i+1+M*(j-2))=B; 
        A1(i+M*(j-1),i-2+M*(j-1))=A; 
        A1(i+M*(j-1),i-1+M*(j-1))=-4*A-2*B; 
        A1(i+M*(j-1),i+M*(j-1))=12*A+4*B; 
        A1(i+M*(j-1),i+1+M*(j-1))=-4*A-2*B; 
        A1(i+M*(j-1),i+2+M*(j-1))=A; 
        A1(i+M*(j-1),i-1+M*j)=B; 
        A1(i+M*(j-1),i+M*j)=-4*A-2*B; 
        A1(i+M*(j-1),i+1+M*j)=B; 
        A1(i+M*(j-1),i+M*(j+1))=A; 
        B1(i+M*(j-1),i-1+M*(j-2))=-D12*h/2; 
        B1(i+M*(j-1),i+1+M*(j-2))=D12*h/2; 
        B1(i+M*(j-1),i-2+M*(j-1))=-D12*h/2; 
        B1(i+M*(j-1),i-1+M*(j-1))=2*D12*h; 
        B1(i+M*(j-1),i+1+M*(j-1))=-2*D12*h; 
        B1(i+M*(j-1),i+2+M*(j-1))=D12*h/2; 
        B1(i+M*(j-1),i-1+M*j)=-D12*h/2; 
        B1(i+M*(j-1),i+1+M*j)=D12*h/2; 
        C1(i+M*(j-1),i+M*(j-3))=-D12*h/2; 
        C1(i+M*(j-1),i-1+M*(j-2))=-D12*h/2; 
        C1(i+M*(j-1),i+M*(j-2))=2*D12*h; 
        C1(i+M*(j-1),i+1+M*(j-2))=-D12*h/2; 
        C1(i+M*(j-1),i-1+M*j)=D12*h/2; 
        C1(i+M*(j-1),i+M*j)=-2*D12*h; 
        C1(i+M*(j-1),i+1+M*j)=D12*h/2; 
        C1(i+M*(j-1),i+M*(j+1))=D12*h/2; 
        E1(i+M*(j-1),1)=-q*h^4; 

         
        A2(i+M*(j-1),i-1+M*(j-2))=-D12/2; 
        A2(i+M*(j-1),i+1+M*(j-2))=D12/2; 
        A2(i+M*(j-1),i-2+M*(j-1))=-D12/2; 
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        A2(i+M*(j-1),i-1+M*(j-1))=2*D12; 
        A2(i+M*(j-1),i+1+M*(j-1))=-2*D12; 
        A2(i+M*(j-1),i+2+M*(j-1))=D12/2; 
        A2(i+M*(j-1),i-1+M*j)=-D12/2; 
        A2(i+M*(j-1),i+1+M*j)=D12/2; 
        B2(i+M*(j-1),i+M*(j-2))=G*h; 
        B2(i+M*(j-1),i-1+M*(j-1))=E*h; 
        B2(i+M*(j-1),i+M*(j-1))=-2*E*h-2*G*h; 
        B2(i+M*(j-1),i+1+M*(j-1))=E*h; 
        B2(i+M*(j-1),i+M*j)=G*h; 
        C2(i+M*(j-1),i-1+M*(j-2))=D*h/4; 
        C2(i+M*(j-1),i+1+M*(j-2))=-D*h/4; 
        C2(i+M*(j-1),i-1+M*j)=-D*h/4; 
        C2(i+M*(j-1),i+1+M*j)=D*h/4; 

         
        A3(i+M*(j-1),i+M*(j-3))=-D12/2; 
        A3(i+M*(j-1),i-1+M*(j-2))=-D12/2; 
        A3(i+M*(j-1),i+M*(j-2))=2*D12; 
        A3(i+M*(j-1),i+1+M*(j-2))=-D12/2; 
        A3(i+M*(j-1),i-1+M*j)=D12/2; 
        A3(i+M*(j-1),i+M*j)=-2*D12; 
        A3(i+M*(j-1),i+1+M*j)=D12/2; 
        A3(i+M*(j-1),i+M*(j+1))=D12/2; 
        B3(i+M*(j-1),i-1+M*(j-2))=D*h/4; 
        B3(i+M*(j-1),i+1+M*(j-2))=-D*h/4; 
        B3(i+M*(j-1),i-1+M*j)=-D*h/4; 
        B3(i+M*(j-1),i+1+M*j)=D*h/4; 
        C3(i+M*(j-1),i+M*(j-2))=F*h; 
        C3(i+M*(j-1),i-1+M*(j-1))=G*h; 
        C3(i+M*(j-1),i+M*(j-1))=-2*F*h-2*G*h; 
        C3(i+M*(j-1),i+1+M*(j-1))=G*h; 
        C3(i+M*(j-1),i+M*j)=F*h; 
    end 
end 

  
% Integration matrix of the 3 governing equations 
A11=[A1,B1,C1]; 
A12=[A2,B2,C2]; 
A13=[A3,B3,C3]; 
A144=[A11;A12;A13]; 
B=-1*[E1;E2;E3]; 
% Solving the displacement matrix 
WUV=A144\B; 
W=zeros(N,M); 
U=W; 
V=W; 
for i=1:N 
    for j=1:M 
        W(i,j)=WUV(j+M*(i-1),1); 
        U(i,j)=WUV(j+M*(i-1)+M*N,1); 
        V(i,j)=WUV(j+M*(i-1)+2*M*N,1); 
    end 
end 

  
x=[0:h:(wp-h)]*10^9; 
y=[0:k:(lp-k)]*10^9; 
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[X,Y] = meshgrid(x,y); 
WW=10^9*W; 
surf(X,Y,WW); 
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