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Abstract

Glycosylation is a frequently observed post-translational modification (PTM) of proteins.

It has been estimated over half of eukaryotic proteins in nature are glycoproteins. Glycopro-

tein analysis plays a vital role in drug preparation. Thus, characterization of glycans that are

linked to proteins has become necessary in glycoproteomics. Mass spectrometry has become

an effective analytical technique for glycoproteomics analysis because of its high throughput

and sensitivity. The large amount of spectral data collected in a mass spectrometry experiment

makes manual interpretation impossible and requires effective computational approaches for

automated analysis. Different algorithmic solutions have been proposed to address the chal-

lenges in glycoproteomics analysis based on mass spectrometry. However, new algorithms that

can identify intact glycopeptides are still demanded to improve result accuracy.

In this research, a glycan is represented as a rooted unordered labelled tree and we focus

on developing effective algorithms to determine glycan structures from tandem mass spectra.

Interpreting the tandem mass spectra of glycopeptides with a de novo sequencing method is es-

sential to identifying novel glycan structures. Thus, we mathematically formulated the glycan

de novo sequencing problem and propose a heuristic algorithm for glycan de novo sequencing

from HCD tandem mass spectra of glycopeptides.

Characterizing glycans from MS/MS with a de novo sequencing method requires high-

quality mass spectra for accurate results. The database search method usually has the ability to

obtain more reliable results since it has the assistance of glycan structural information. Thus,

we propose a de novo sequencing assisted database search method, GlycoNovoDB, for mass

spectra interpretation.

Keywords: Tandem mass spectrometry, glycan identification, glycopeptide, glycosyla-

tion
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Chapter 1

Introduction

Glycoproteomics is a branch of proteomics that identifies and characterizes proteins containing

carbohydrates as a post-translational modification (PTM). As distinct from proteomics, it fo-

cuses on the study of the glycosylation of proteins. Glycosylation is one of the most abundant

and essential PTMs of proteins. It is frequently observed and over half of eukaryotic proteins

in nature are estimated to be glycoproteins [1]. Glycoproteins are involved in a variety of bi-

ological processes such as recognition between cell types and immune response to pathogen

infections [2]. Research has reported that abnormal glycosylation can lead to serious physi-

ological disorders [3]. Moreover, glycoprotein analysis plays vital roles in drug preparation,

such as the design and production of antibodies with selected specificity and function [4]. Ad-

ditionally, unlike other simple PTMs, which have fixed mass change, glycosylation is much

more complex due to its variety of compositions in biological systems and different linkages

to proteins [5]. As a consequence, structure analysis in glycoproteomics is more complicated

compared with sequencing analysis in conventional proteomics. Hence, developing computa-

tional methods for glycoprotein identification is becoming increasingly demanding and remains

challenging in glycoproteomics research.

During the past decade, tandem mass spectrometry (MS/MS) has gradually served as a
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popular technique for protein sequence identification and quantification [6]. It enables high-

throughput protein analysis with high sensitivity and accuracy. In glycoproteomics research,

tandem mass spectrometry has also been widely used for the characterization of glycans and

glycoproteins in complex biological samples. The peptide with its attached glycan can be

studied as a single entity, which provides a comprehensive view of protein glycosylation. Al-

ternatively, each glycan can also be considered as a separate unit [7]. Two different experimen-

tal strategies will be conducted to analyze glycoproteins in biological samples, depending on

whether glycans and peptides are separated or not prior to the mass spectrometry analysis [8].

One obtains glycan and peptide MS/MS separately and the other generates spectra from intact

glycopeptides. The latter strategy has the advantage that it can conserve the glycosylation site

information. The general workflow in glycoproteomics analysis with tandem mass spectrom-

etry includes glycoprotein or glycopeptide enrichment, protein or peptide separation, tandem

mass spectrometric analysis, and bioinformatic data interpretation [9, 10]. A tandem mass

spectrometer can rapidly generate a large amount of mass spectral data for a biological sample,

which makes manual interpretation of these data time-consuming and challenging. Effective

algorithmic solutions that can facilitate automated analysis of the collected spectral data are

required.

With various existing fragmentation methods for tandem mass spectrometers, different

kinds of output mass spectra have their unique properties. The commonly used fragmentation

techniques include collision-induced dissociation (CID), higher-energy collision dissociation

(HCD), electron-capture dissociation (ECD), and electron-transfer dissociation (ETD). Differ-

ent fragmentation mechanisms usually break at different sites of a glycan or a glycopeptide,

and tend to generate different types of dominant fragment ions resulting in different spectra for

the same glycan or glycopeptide consequently [6]. It is possible to design effective algorithms

by taking advantage of the characteristics of these spectral data or combining multiple types of

mass spectral data.
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Currently, many efforts have been made to develop approaches for automated interpre-

tation of mass spectrometry based glycoproteomics data. One extensively studied method

is the database search, which is to find the best matching glycans by searching the glycan

database and comparing theoretical mass spectra with the experimental mass spectra. Several

published software packages using the database search method include GlycoFragment and

GlycoSearchMS [11], GlycoPep DB[12], GlyDB [13], SimGlycan [14], GlycoPeptideSearch

(GPS) [15], GlycoFragwork [7], GlycoMaster DB [16], and MAGIC [17]. Another method

for interpreting glycoproteomics data is de novo sequencing, which is essential to identify-

ing novel or unknown glycans. The computation of de novo sequencing does not depend on

database knowledge; instead the algorithms construct glycan structures from mass spectra di-

rectly. There have been several attempts to characterize glycan structures from MS/MS in the

de novo manner, such as GLYCH [18], Peptoonist [19], GlycoMaster [20], and the ones pro-

posed by Dong et al [21], Böcker et al [22], and Sun et al [23, 24]. Recently, several algorithms

and software tools have been developed to use the spectrum library search approach to solve

the peptide identification problem [6]. This method is used to identify peptides by matching

the experimental spectrum with the library spectrum directly. This is possible because the size

of the spectral library containing annotated spectra with validated results is growing. With the

increasing number of publicly available glycopeptide and glycan mass spectrometry data, the

spectrum library search method can also be applied to glycan or glycopeptide characterization

in the future.

The remainder of this thesis is organized as follows,

Chapter 2 introduces the fundamentals of MS/MS based glycoproteomics research, which

include biochemical basics for glycoproteins and mass spectrometry technology. Both experi-

mental and computational strategies for glycoproteomics analysis are described to facilitate the

understanding of the subsequent research topics.
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Chapter 3 mathematically formulates the problem of glycan de novo sequencing with

tandem mass spectrometry. Additionally, it presents a heuristic algorithm for glycan de novo

sequencing from HCD MS/MS spectra of N-linked glycopeptides. The algorithm proceeds in a

carefully designated pathway to construct the best matched glycan tree structures from MS/MS

spectra. The proposed method has been applied to HCD MS/MS spectra and compared with

other methods of similar purpose to evaluate its performance.

Chapter 4 presents a new approach for matching input spectra with glycan structures from

a glycan structure database by incorporating a de novo sequencing assisted ranking scheme.

This approach has been implemented as a software tool named GlycoNovoDB, for automated

glycan identification from glycopeptide HCD MS/MS. Experimental results have shown that

GlycoNovoDB can identify glycans effectively and has better performance than our de novo

sequencing algorithm proposed in Chapter 3 as well as another software GlycoMaster DB.

In order to identify glycans that are in the database with high accuracy as well as provide

new glycans that are not in the database with confidence, an improved method is proposed by

further combining the database search method and de novo sequencing method together.

Finally, Chapter 5 briefly summarizes the major contents of this thesis and discusses pos-

sible future research.
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Chapter 2

Background

2.1 Fundamentals of Glycoproteins

2.1.1 Carbohydrates

Carbohydrates are the most abundant type of organic molecules found in nature. A carbohy-

drate is a biological molecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms.

Their basic molecular formula is (CH2O)n, where n = 3 or more. Carbohydrates can be gener-

ally divided into three groups: monosaccharides, oligosaccharides, and polysaccharides. The

monosaccharides are also called simple sugars, and cannot be further hydrolyzed to simpler

compounds under mild conditions. Oligosaccharides consist of from two to ten simple sugar

molecules. Disaccharides and trisaccharides occur frequently in nature. Oligosaccharides with

four to six sugar units are usually bound covalently to other molecules, including glycopro-

teins [25]. Polysaccharides are polymeric carbohydrate molecules composed of long chains of

sugar units. They may be either in linear form or highly branched.

Monosaccharides are the building blocks of carbohydrates. Monosaccharides can be clas-

sified by the number of carbon atoms they contain: triose (3 carbons), tetrose (4 carbons),

5



pentose (5 carbons), hexose (6 carbons) etc. Monosaccharides may exist in linear form or ring

form, as shown in Figure 2.1. The monosaccharide shown in this figure is a mannose. The

ring form of a mannose is a ring structure consisting of six covalent bonds. By convention,

the carbon atoms are numbered from 1 to x along the backbone, starting from the end that is

closest to the C=O group.

Figure 2.1: The linear form and ring form of a monosaccharide (mannose).

There are numerous types of monosaccharides in nature. Common monosaccharides

found in animal oligosaccharides, which are considered in this study, are listed in Table 2.1. It

can be observed that some of the monosaccharides are epimers, which means two monosaccha-

rides differ only in their configurations rather than their mass. If two monosaccharides have the

same mass, they are equivalent in mass spectrometry. Epimers are not taken into consideration

in this study, because they can hardly be distinguished in an MS/MS spectrum. Therefore, in

the following thesis, abbreviations are used for monosaccharides with the same formulas. For

instance, N-Acetyglucosamine and N-Acetylgalactosamine have the same formula C8H15NO6,

and then their abbreviation HexNAc is used to represent them.

Two monosaccharides can combine via condensation reactions and form a glycosidic

bond. The condensation reaction happened between a hemiacetal group (i.e. the C1 group)

6



Table 2.1: Common monosaccharides

Monosaccharide Abbreviation Composition
Monoisotopic mass

Symbol
Intact Residue

Xylose Xyl C5H10O5 150.0528 132.0423 F

Fucose Fuc C6H12O5 164.0685 146.0579 N

Glucose

Mannose

Galactose

Hex C6H12O6 180.0634 162.0528 ©

N-Acetylglucosamine

N-Acetylgalactosamine
HexNAc C8H15NO6 221.0899 203.0794 �

N-Acetylneuraminic

acid
NeuAc C11H19NO9 309.1060 291.0954 �

N-Glycolylneuraminic

acid
NeuGc C11H19NO10 325.1009 307.0903 ♦

of one monosaccharide (or a molecule derived from a saccharide) and the hydroxyl group of

the other. During the reaction, an OH group is removed from one of the sugars and an H from

the other and an H2O molecule is formed. The new bond that is formed to combine the sugars

together is known as a glycosidic bond, or glycosidic linkage. Figure 2.2 shows two glucose

molecules combine with each other to form a maltose and release a water. Depending on which

hydroxyl group participates in the reaction, there are four possible types of glycosidic bonds,

which are 1-2, 1-3, 1-4, and 1-6. The numbers in the notation represent the numbering of car-

bon atom in the hemiacetal group and the hydroxyl group, respectively. As shown in Figure

2.2, the C1 of one molecule reacts with the C4 of the other molecule, and this forms a 1-4

glycosidic bond.

Figure 2.3(a) shows an example of tetrasaccharide consisting of four glucose molecules.

The glycosidic bonds shown in the tetrasaccharide are two 1-4 bonds and one 1-6 bond respec-

tively. The structure of an oligosaccharide can be represented as a tree structure, as shown in
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Figure 2.2: Two glucose molecules combine to form a maltose and release a water. The hemi-
acetal carbon atom (C1) is called anomeric carbon.

Figure 2.3(b). In the tree representation, each monosaccharide is represented as a node and we

use a symbol to denote it, meanwhile each glycosidic bond is represented as an edge. Since

there are at most five linkages for one monosaccharide, the degree of a glycan tree is bounded

by four.

Figure 2.3: An example of tetrasaccharide and its tree representation.
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Table 2.2: Common amino acid residues
Name 3-letter Symbol 1-letter Symbol Mono Mass Avg. Mass Residue Composition

Alanine Ala A 71.03711 71.08 C3H5NO

Arginine Arg R 156.10111 156.2 C6H12N4O

Asparagine Asn N 114.04293 114.1 C4H6N2O2

Aspartic Acid Asp D 115.02694 115.1 C4H5NO3

Cysteine Cys C 103.00919 103.1 C3H5NOS

Glutamic Acid Glu E 129.04259 129.1 C5H7NO3

Glutamine Gln Q 128.05858 128.1 C5H8N2O2

Glycine Gly G 57.02146 57.05 C2H3NO

Histidine His H 137.05891 137.1 C6H7N3O

Isoleucine Ile I 113.08406 113.2 C6H11NO

Leucine Leu L 113.08406 113.2 C6H11NO

Lysine Lys K 128.09496 128.2 C6H12N2O

Methionine Met M 131.04049 131.2 C5H9NOS

Phenyalanine Phe F 147.06841 147.2 C9H9NO

Proline Pro P 97.05276 97.12 C5H7NO

Serline Ser S 87.03203 87.08 C3H5NO2

Threonine Thr T 101.04768 101.1 C4H7NO2

Tryptophan Trp W 186.07931 186.2 C11H10N2O

Tyrosine Tyr Y 163.06333 163.2 C9H9NO2

Valine Val V 99.06841 99.13 C5H9NO

2.1.2 Amino Acids

Amino acids are molecules containing an amine group (−NH2), a carboxylic acid group (−COOH)

and a side chain (R group) that specific to each amino acid. Amino acids are building blocks

of proteins. The amino and carboxyl groups of amino acids can react in a head-to-tail fashion,

eliminating a water molecule and forming covalent amide linkage, which is typically referred

to peptide bone in peptides or proteins. There are 20 common amino acids commonly found in

proteins. Table 2.2 lists the name, mass and composition information of the 20 common amino

acids.
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2.1.3 Glycans and Glycoproteins

Carbohydrates are covalently linked with a variety of other molecules, such as lipid molecules,

which are common components of biological membranes. Proteins that are covalently linked

to carbohydrates are called glycoproteins. Glycoproteins, together with glycolipids, are called

glycoconjugates, and they are important components of cell walls and extracellular structures

in plants, animals, and bacteria [25]. Besides, they also serve in a variety of processes involving

recognition between cell types or recognition of cellular structures by other molecules.

Glycans usually refer to carbohydrate chains attached to glycoproteins or glycolipids.

Glycosylation occurs when a glycan is linked to a protein at specific amino acid residues.

Two different types of glycoproteins are commonly observed: N-linked glycoproteins and O-

linked glycoproteins, as shown in Figure 2.4. N-linked glycoproteins involve the attachment of

carbohydrate groups to the amide nitrogen of an asparagine residue in the peptide chain [25].

In O-linked glycoproteins, glycans are attached to proteins via the hydroxyl group of a serine

or threonine residue [25]. Glycans in N-linked glycoproteins are called N-linked glycans. O-

linked glycans refer to those in O-linked glycoproteins.

Analysis of protein sequence database has revealed that in most cases N-linked glycans are

attached to proteins via a sequence motif Asn-Xxx-Ser or Asn-Xxx-Thr, where Xxx denotes

any amino acid except proline [26]. The consensus tripeptide Asn-Xxx-Cys is also possible

in N-linked glycoproteins but less frequently observed [27]. These motifs provide good in-

formation for the analysis of glycosylation site and the sequencing of glycan-linked peptide.

Research has shown that most mammalian N-linked glycans share a common core structure

composed of two N-acetylglucosamine resides linked to a branched mannose triad. This core

structure is attached to asparagine residue in the peptide sequence via N-acetylglucosamine.

Other sugar units may be attached to each of the mannose residues of this branched core.

The resulting structures fall into three main categories of N-linked glycoforms: high mannose,
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Figure 2.4: N-linked and O-linked glycoproteins.

complex, and hybrid, depending on what types of other sugars are attached to this core.

Unlike N-linked glycoproteins, which have common core structure and motif, O-linked

glycoproteins have more varied core structures and peptide sequences. The work of this study

mainly focuses on the analysis of N-linked glycoproteins.

2.2 Mass Spectrometry Technology

Mass spectrometry (MS) is an analytical technique that determines the composition of a sample

by measuring the mass-to-charge ratio (m/z) of the ionized analytes. Mass spectrometry has

both qualitative and quantitative uses, which include identifying the composition and structures

of unknown compounds [28–30], and quantifying the amount of a compound in a sample [31–

34]. Nowadays, MS is commonly used in analytical laboratories where need to analyze physi-
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cal, chemical, or biological properties of a wide variety of compounds. In proteomics, MS has

gradually become the method of choice for analysis of complex protein samples.

2.2.1 Mass Spectrometers and Configuration

In mass spectrometry, the molecules are ionized and the mass-to-charge ratio (m/z) of the ions

are measured, rather than measure the mass of a molecule directly [6]. A mass spectrometer

typically consists of three components: an ion source, a mass analyzer that measures the m/z of

the ionized analytes, and a detector that registers the number of ions at each m/z value [35]. In

a typical MS procedure, molecules of interest are first ionized in the ionizer. The ions are then

separated according to their different mass-to-charge ratio in the mass analyzer. Finally the

separated ions are detected by a mechanism capable of detecting charged particles. Results are

displayed as mass spectra, each of which consists of a list of peaks. Each peak is represented

by its m/z value and the relative abundance (i.e. intensity) of detected ions.

Each of the three major components of a mass spectrometer can be implemented based

on different technologies, generating mass spectral data with different properties. Two tech-

niques commonly used to ionize the molecules for mass spectrometric analysis are matrix-

assisted laser desorption/ionization (MALDI) [36, 37] and electrospray ionization (ESI) [38,

39]. The main difference between these two ionization techniques is that MALDI produces

singly charged ions (z = 1) while ESI can produce singly and multiply charged ions (mainly

z ≥ 1). ESI has the advantage that a large molecule can still be detected because its ions can

fall into the m/z range of a mass spectrometer when the charge state z ≥ 1. Thus, MALDI-

MS is normally used to analyze relatively simple peptide mixtures, whereas integrated liquid-

chromatography ESI-MS systems (LC-MS) are preferred for the analysis of complex sam-

ples [35].
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Mass analyzer, among the three components, is central to the mass spectrometry technol-

ogy. In proteomics, three primary parameters of mass analyzer are considered, which include

mass resolving power, mass accuracy, and mass range. Mass analyzers separate ions based on

their m/z. The mass resolving power evaluates how well the separations can be performed and

measured. IUPAC [40] defines resolving power in mass spectrometry is M/∆M, where ∆M is

the minimum peak separation, and M refers to the mass of the (second) peak. ∆M measures

the minimum peak separation in mass spectrometry which can be defined in different ways.

Two widely used definitions are the valley definition and the peak width definition. The valley

definition defines ∆M as the closest spacing between two singly charged ion signals of equal

hight with the valley between them less than a specified fraction of the hight of either peak.

Typical values of the fraction are 5%, 10%, or 50%. In the peak width definition, ∆M refers

to the width of a single peak at a hight which is a specified fraction of the maximum peak

hight. In practice, the value of 50% is frequently used, and is termed the “full width at half

maximum” (FWHM). Figure 2.5 illustrates the two definitions.

Figure 2.5: Methods of calculating mass resolving power: (a) calculation via 5% and 10%
valley definition. (b) calculation via full width at half maximum (FWHM) definition.

Mass accuracy refers to the difference between the true m/z and the measured m/z of a

given ion divided by the true m/z of the ion. It is usually measured by the terms of parts per mil-
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lion (ppm). Higher mass accuracy can increase the degree of confidence for peak assignments,

because increasing in mass accuracy will enhance the possibility of uniquely identifying the

elemental compositions of observed ions [40]. The mass range is the range of m/z over which

a mass analyzer can operate to record a mass spectrum. The unit of mass range is Dalton (Da).

One Da is 1
12 of the mass of a carbon atom (12C), and is approximately the mass of a hydrogen

atom.

There are several basic types of mass analyzer commonly used in proteomics research.

These are quadrupole [41], ion trap (quadrupole ion trap, QIT [42], linear ion trap, LIT or

LTQ [43]), time-of-flight (TOF) [44], Fourier transform ion cyclotron resonance (FTICR) [45],

and orbitrap [46]. Different types of mass analyzer are very different in design and perfor-

mance, in terms of sensitivity, accuracy, mass range, and other properties [40, 47]. Theses

analyzers can be used alone or put together in tandem mass spectrometry to utilize each advan-

tages. Table 2.3 [47, 48] summarized the performance of each mass analyzer.

Table 2.3: Comparison of the typical performance characteristics of several commonly used
mass analyzers.

Mass Analyzer Resolving Power Accuracy(ppm) m/z Range Scan Rate

Quadrupole 1,000 100-1,000 50-2,000; 200-4,000 Moderate

QIT 1,000 100-1,000 10-4,000 Moderate

LTQ 2,000 100-500 50-2,000; 200-4,000 Fast

TOF 10,000-20,000 10-100 No upper limit Fast

FT-ICR 100,000-750,000 <2 50-2,000; 200-4,000 Slow

Orbitrap 30,000-100,000 2-5 50-2,000; 200-4,000 Moderate

The final element of a mass spectrometer is the ion detector. After the ions are separated

by mass analyzer, the detector records the current signal produced or the charge induced when

an ion passes by or hits the metal surface of the detector. Usually the mass spectrometer is con-

nected to a computer with software that analyze the data provided by ion detector and produce

mass spectra. A mass spectrum is an intensity vs. m/z plot representing the distribution of ions
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by m/z in a sample. Each spectrum consists of a list of peaks. Figure 2.6 illustrates an example

of a mass spectrum. The x-axis of the mass spectrum represents mass-to-charge ratio (m/z),

and y-axis represents signal intensity of the ions. Each peak in the spectrum represents the

ions with the same m/z value, and the intensity of the peak reflects the number of ions detected

by the detector at the m/z. However, the abundances ratio between two different molecules

can not be regarded as the ratio of their peak intensities directly, because not all molecules

in the sample are measured with the same efficiency. Due to the charge competition [49] and

detectability of different molecules, some molecules may produce much lower intensity peaks

than other molecules even if they have the same abundance level in the sample.

Figure 2.6: An example of a visualized mass spectrum. The x-axis of the mass spectrum
represents mass-to-charge ratio (m/z), and y-axis represents signal intensity of the ions.

2.2.2 Tandem Mass Spectrometry

Tandem mass spectrometry (MS/MS) is a reliable tool to precisely identify and characterize

the structures of molecules, because it can provide more information about the molecules of

interest than traditional mass spectrometry. A tandem mass spectrometer has two mass analyz-

ers, or two sequential analyses in the same analyzer. The first mass analyzer selects ions at a
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certain m/z window. The selected ion is called precursor ion or the parent ion, which is then

fragmented by some fragmentation methods and yields product ions. The second mass ana-

lyzer measures the product ions as usual to form tandem mass spectrum. Peaks in the tandem

mass spectrum represent a set of fragment ions generated from the dissociation of a selected

molecule. Figure 2.7 shows the schematic of a typical tandem mass spectrometry. Two types

of mass spectra are generated in an MS/MS experiment: survey scan (or MS spectrum) and

tandem mass spectrum (or MS/MS spectrum).

Figure 2.7: Schematic of tandem mass spectrometry. The sample is ionized in the mass ionizer
first, and then analyzed by the first mass analyzer. Ions of interest (i.e. precursor ion) are
selected from the generated survey scan and fragmented into product ions, which are analyzed
by the second mass analyzer. Finally, MS/MS spectrum is produced.

In tandem mass spectrometry, fragmentation is an important step, which can help to gen-

erate the structural information of a molecule by ion dissociation. The most widely applied

fragmentation method for proteome identification and quantification is collision-induced dis-

sociation (CID) [50], or collisionally activated dissociation (CAD). Under CID condition, the

molecular ions undergo one or more collisions by interactions with neutral gas molecules, con-

tributing to vibrational energy which results in bond breakage and the fragmentation of the

molecular ion into smaller fragments. In general, CID is more effective for small, low-charged

peptides. Complementary to CID fragmentation, electron-transfer dissociation (ETD) [51],

or electron-capture dissociation (ECD) induces cleavage of charged molecules by transferring

electrons to them. Ideally, ETD can provide both the sequence information and the localization
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of the modification sites for the peptides with PTMs. Another frequently used fragmentation

method is high-energy collision dissociation (HCD) [52]. HCD fragmentation method is fea-

tured with higher activation energy and shorter activation time comparing the traditional CID

fragmentation method. Different fragmentation methods result in ion dissociation occurring at

different sites and can generate different types of dominant fragment ions. We will discuss the

fragmentation patterns of glycopeptide in the next section.

2.3 Mass Spectrometry Based Glycoproteomics Analysis

In glycoproteomics analysis, mass spectrometry has become a powerful tool because of its

high sensitivity and throughput. More specifically, mass spectrometry has been widely used to

identify glycoproteins, to evaluate glycosylation sites, and to elucidate glycan structures [53–

55]. Although both MALDI and ESI are capable of recording spectra of intact glycoproteins,

currently individual glycoforms can only be resolved from small proteins containing a limited

number of glycans, preferably attached to a single site [55]. Therefore, the top-down approach

for glycoprotein characterization in a complex sample is still challenging. The most widely

used methods are based on characterizing glycopeptides generated by the digestion of glyco-

proteins, followed by the analysis which based on either intact glycopeptides or deglycosylated

glycopeptides.

2.3.1 General Strategies

Depending on whether glycans and peptides are separated or not before the mass spectrometry

analysis, there are generally two different strategies to analyze glycoproteins in biological sam-

ples [8, 56, 57]. Figure 2.8 illustrates these two strategies for an integrated glycoproteomics

analysis. In one workflow, deglycosylation is applied to the glycoproteins in the biological
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samples first, in order to obtain glycans and deglycosylated glycopeptides respectively. The

mass spectrometry analysis in the following step will be conducted on the obtained glycans

and peptides separately. Finally the collected mass spectra will be used for glycan and peptide

identification. In the other workflow, glycoproteins are digested into glycopeptides by trypsin

first, and then the resulting intact glycopeptides are sent to mass spectrometer to produce mass

spectra. The final step for this strategy is the same as the previous method, which is to charac-

terize glycans from mass spectral data.

Figure 2.8: The strategies of mass spectrometry based glycoproteomics analysis. One strategy
is to isolate glycans from glycopeptides and then generate mass spectra of the released glycans
and deglycosylated peptides separately. The other strategy produces mass spectra directly from
intact glycopeptides.

Interpreting the mass spectral data of released glycans is a straightforward way to identify

glycan structures. However, it is difficult for assigning glycans as information about the sites

of glycan attachment cannot be inferred from MS results automatically. Instead, analysis of the
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data from intact glycopeptides has the advantage that the glycosylation sites can be reserved

and used to identify attached peptide sequence. Experiments have been reported to characterize

intact glycopeptides by interpreting tandem mass spectra of glycopeptides [8, 53, 58].

2.3.2 Fragmentation Patterns

In tandem mass spectrometry experiments, selected glycopeptide precursors will be further

fragmented before second mass analyzer analysis. The two components, peptide and glycan,

of the glycopeptide will undergo fragmentation. Peptide is a linear polymer of amino acids.

During the process of fragmentation, the peptide ion can fragment at three different sites along

the amino acid backbone, as shown in Figure 2.9. The nomenclature for fragment ions was first

proposed by Roepstorff and Fohlman [59], and subsequently modified by Johnson et al. [60].

Fragments will only be detected if they carry at least one charge. As shown in the figure, if the

charge is retained on the N terminal fragment, the ions are categorized as either a, b or c. If

the charge is retained on the C terminal, the ion type is either x, y or z. The subscript indicates

the number of residues in the fragment. The mass value of each peptide fragment ion provides

peptide structural information.

Similarly, the glycan moiety of a glycopeptide will be fragmented into different fragment

ions. According to cleavages at different sites of glycosidic bonds, there are six basic types of

ions: B/Y-ions, C/Z-ions, and A/X-ions, as shown in Figure 2.10. Fragment ions that contain

a non-reducing terminus (the monosaccharide residue in acetal form) are labelled with letters

A, B, C, and those that contain the reducing end (the monosaccharide residue with hemiacetal

functionality) of the glycan are labelled with letters from the end of the alphabet (X, Y, Z);

subscripts indicates the cleaved ions [61]. X-, Y- and Z-ions retain peptide units. The A-ions

and X-ions are produced by cross-ring cleavages, and are labelled by assigning each ring bond

a number and counting clockwise. If two or more glycosidic bond cleavages happen at the
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Figure 2.9: Examples of fragmented ions of a peptide. This peptide consists of four amino
acids. Six basic types of fragment ions, including a-, b-, c-, x-, y-, and z-ions, generated by
cleavages on the peptide backbone.

same time, internal fragment ions will be produced.

In MS/MS, different fragmentation approaches result in ions dissociation at different gly-

cosidic bonds or peptide backbone, and are consequently featured with different types of dom-

inant fragment ions. In recent research, several different dissociation methods have been re-

ported for glycoproteomics analysis, such as CID, HCD, and ECD/ETD. Each of these frag-

mentation methods has its unique characteristics and can be chosen according to different

requirements. CID and HCD usually break the glycosidic bonds of glycopeptide and yield

B-ions and Y-ions. HCD spectra are featured with a predominance of Y-ions. B-ions and A-

ions and other smaller species produced by further fragmentations can also be occasionally

observed [62]. Besides, HCD can produce fragment ions by breaking the glycosidic bonds but

leaving the attached peptide intact. In contrast, ECD/ETD often lead to cleavages at peptide

backbone and produce C-ions and Z-ions. ECD/ETD spectra can be used to determine both the

peptide sequence and the glycosylation site because the glycan linked to peptide backbone can

be retained intact [63]. Theoretically, both the glycan moiety and peptide backbone undergo
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Figure 2.10: Examples of fragmented ions of a glycan. This glycan contains three monosac-
charides. A-, B-, C-ions and X-, Y-, Z-ions are shown in the figure, where A/X- ions generated
from cross ring cleavages. It is worth noticing that not all the ions are marked in the figure.

fragmentation. CID and HCD techniques are mainly used for glycan structure determination.

By controlling the fragmentation energy, we can obtain the tandem mass spectra of glycopep-

tides in which a majority of peaks are generated from fragmentations upon the glycan moiety.

Combining two complementary fragmentation techniques in MS/MS analysis enables the

identification of peptide sequences, glycan structures, and glycosylation sites. For instance,

CID/ETD enables the elucidation of glycosylation sites by maintaining the glycan-peptide link-

age [64]; HCD/ETD enables the identification of glycan structure and peptide backbone, al-

lowing glycopeptide identification [16, 65]. It has become increasingly popular and promising

to use more than one types of fragmentation approaches in proteomics research.

2.4 Computational Approaches for Interpreting MS/MS Spec-
tra of Glycopeptides

In mass spectrometry based glycoproteomics, researchers identify glycan structures, attach-

ment sites and glycosylation linkages by interpreting MS/MS spectra produced in the experi-
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ment. The process of MS/MS interpretation and glycan reconstruction used to be done man-

ually by biochemists. However, with the rapid increase of mass spectrometry data collected

in wet-lab experiment in recent years, it is impractical for researchers to interpret the mass

spectral data manually. Therefore, it is necessary to develop automated approaches to do gly-

coprotein profiling based on mass spectrometry. Until now, extensive research has been made

for mass spectral interpretation. Generally, the computational approaches for automated glycan

or glycopeptide identification from mass spectra fall into two categories: database search and

glycan/glycopeptide de novo sequencing.

2.4.1 Database Search

Database search method is to search the glycan database to find the best matching glycans

by comparing theoretical mass spectra with the experimental ones. This kind of approaches

require the assistance of glycan database which is supposed to contain all the target glycans.

Although the protein sequence database commonly used in proteomics research seldom record

the glycan structure information for glycosylated proteins [9, 16], databases for isolated glycan

structures have become available, including CCSD/CarbBank [66], SweetDB [67], GLYCO-

SCIENCES.de [68], EUROCarbDB [69], GlycoSuiteDB [70, 71] and GlycomeDB [72, 73].

By far, several software packages have been developed based on this strategy.

GlycoFragment [74] can calculate all the theoretically possible MS-relevant fragment ions

of the glycans and use them to annotate an MS/MS spectrum. GlycoSearchMS [11] takes

the peak values of the experimental mass spectra as an input and searches for matches with

the calculated fragments of all glycan structures contained in the SweetDB database. Gly-

cosidIQ [75] was developed for computational interpretation of oligosaccharide mass spec-

trometric fragmentation based on matching experimental data with theoretically fragmented

oligosaccharides generated from the database GlycoSuiteDB. GlycoWorkBench [76] is a soft-
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ware tool developed by the EUROCarbDB initiative to provide support for the manual inter-

pretation of MS data. It evaluates a set of structures proposed by the user via matching the

list of peaks derived from the spectrum against the corresponding theoretical list of fragment

masses. These tools are designed for the interpretation of mass spectrometry data generated

from released glycans instead of intact glycopeptides. Since the glycan and peptide are sep-

arated before mass analysis, the information regarding the sites of glycan attachment cannot

be retrieved. The process of identifying deglycosylated peptide sequences is the same as that

is used in general proteomics research. The software tools and algorithms commonly used for

analyzing the MS/MS data of peptides include MOWSE [77], Mascot [29], PEAKS DB [78],

SEQUEST [79], X!Tandem [80].

GlycoPeptideSearch (GPS) [15] is a glycan database search program that can identify in-

tact N-glycopeptides from CID MS/MS spectral data. It first computes a short list of peptides

with an N-linked glycosylation motif, and then filters the MS/MS spectra with the signature

ions at m/z 204 and 366, corresponding to oxonium ions formed by a HexNAc and a disac-

charide Hex-HexNAc. Glycans from GlycomeDB that match the putative glycan masses are

grouped according to their mass and reported as a single match.

Mayampurath et al. proposed a computational framework for identifying intact N-linked

glycopeptides, and implemented it in a software tool called GlycoFragwork [7]. The tool

provided a platform for simultaneous scoring of fragmentation spectra of glycopeptides using

different methods, which include CID, HCD, and ETD. In the framework, individual scoring

schemes are applied to each fragmentation type utilizing information from a glycan and peptide

database, and an empirical false-discovery rate estimation method, based on a target-decoy

search approach is derived for the confidently assignment of these glycopeptides.

Two more recent tools, GlycoMasterDB [16] and MAGIC [17], both are designed for

automated identification of intact N-linked glycopeptides from HCD MS/MS spectra. Glyco-
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MasterDB simultaneously searches a protein sequence database and a glycan structure database

extracted from GlycomeDB to find the best pair of peptide and glycan for each input spectrum.

The software tool analyzes the data in three steps, including filtration of glycopeptide spectra,

glycan assignment, and peptide identification. The first two steps for glycan identification are

based on HCD spectra. The third step for peptide sequence determination uses either ETD

spectral (if available) or the calculated mass values of the peptides that bear the glycans and

contain the motif of N-glycopeptide. MAGIC is a glycopeptide identification platform that can

characterize N-linked glycoproteomics using beam-type CID data sets without prior known

protein and glycan information. It first uses an algorithm to detect a triplet pattern for accurate

Y1-ion identification. Then on the basis of the detected peptide mass, it generates in silico

peptide MS/MS spectra by assigning precursor mass and removing all of the B- and Y-ions for

database search. Finally, the glycan composition is determined based on the glycan mass and

all of the detected B- and Y-ions.

2.4.2 Glycan De Novo Sequencing

The computation of glycan de novo sequencing does not rely on glycan database knowledge,

instead the algorithms construct glycan structures from mass spectra directly. Therefore, de

novo sequencing method is essential to identify novel or unknown glycans. Besides, in the

situation that the target glycan is not included in the glycan database, this method is often used.

Previously, such method was often performed manually by biochemists. Recently, several

computational approaches have been proposed to meet the need of higher throughput.

STAT [81] is web-based computational program for saccharide topology analysis. It first

uses “knapsack algorithm” to compute all possible combinations of the selected monosaccha-

rides that sum to the adjusted total mass. Besides, the possible compositions of each product

ion mass input from tandem mass spectra are computed by essentially the same algorithm. Fi-
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nally, STAT computes all of the possible topologies that contain all of the substructures implied

by the product ions and rates the possible structures based on the likelihood that it is the correct

sequence. STAT can support calculations for structures of up to 10 monosaccharide units.

StrOligo [82] is a computer program for automated interpretation of tandem MS spectra

of complex N-linked glycans from mammals. The algorithm first builds a relationship tree

by examining each pair of peaks and checking whether the differences in m/z correspond to

the losses of one or two known monosaccharides. Then it determines the most probable com-

position by testing all possible combinations of monosaccharide residues summing up to the

precursor m/z value and scores them based on the degree of agreement with the relationship

tree. Subsequently, the potential compositions are assigned to a limited set of structures based

on the constraints deduced empirically from glycan structures observed in mammals. However,

this algorithm has limited ability to identify hybrid and high-mannose N-linked oligosaccha-

rides.

Tang et al. proposed a dynamic programming algorithm GLYCH [18] to determine

oligosaccharide structures from tandem mass spectra. This program takes cross-ring ions re-

sulting from interval cleavages into consideration when scoring possible glycan structures,

which is not incorporated into other programs. The algorithm consists of three steps. First,

a scoring scheme is developed to identify potential bond linkages between monosaccharides

based on the appearance pattern of cross-ring ions. Next, a dynamic programming algorithm

is used to determine the most possible glycan structures from the mass spectra. Finally, a

re-evaluation scheme is implemented to re-rank the oligosaccharides generated by taking into

account the double fragmentation ions. One limitation of GLYCH algorithm is that it prefers

linear structure to branching structure.

In [20], glycan structure de novo sequencing is defined as the problem of finding a glycan

tree structure T such that the mass of T is equal to a given value (precursor ion mass subtract
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peptide mass and a water), and summation of the scoring function calculated according to the

peaks in MS/MS is maximized. The time complexity varies according to whether the peaks can

be used repeatedly, because several different fragment ions of glycan tree may have the same

mass value and produce the same peak. It has been proved that glycan de novo sequencing is

an NP-hard problem, under the condition that each peak in the spectrum could be used only

once. GlycoMaster [20] uses heuristic programming technique to compute the best possible

structure among all possible monosaccharide combinations. It first generates many acceptable

small subtrees, and then join them together in an iterative process to obtain larger suboptimal

subtrees until the desired precursor mass is reached.

In [22], Böcker et al. presented an exact algorithm based on fixed-parameter algorithm

attempting to solve the NP-hard problem. They modify the recurrences proposed in [20] and

limit the running time explosion to the number of peaks in the sample spectrum. Since the

number of simple fragments of a given glycan is linear to its number of monosaccharides,

the algorithm can be maintained a polynomial running time with respect to the mass value

of the glycan. Besides, they also incorporate the set of explained peaks into the dynamic

programming to avoid multiple peak counting. At the end of this paper, it shows that how to

count the number of glycan topologies for a fixed size or a fixed mass and the complexity of

their algorithm is given, which indicates that the proposed algorithm is efficient.

Recently, Dong et al. [21] introduced a new glycan representation by abstracting a gly-

can structure as a directed acyclic graph instead of a tree. Based on this representation, they

proposed a de novo sequencing algorithm to construct the tree structure from MS/MS spectra

with logical constraints and some known biosynthesis rules. The algorithm rebuilds the glycan

structure in a bottom up fashion iteratively by storing every confirmed substructures as build-

ing block and using them to construct larger substructures. The scoring function used in the

algorithm allocates different probability for different glycosidic cleavages when the theoretical

spectrum is generated, which profile different candidate structures more accurate.
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A more recent program glyfon [83] based on machine learning was developed for de novo

sequencing of glycans from MS/MS spectra. The program builds a suitable model that disal-

lows multiple assignments for each peak of the fragmentation ions of glycans, and implements

a solver that employs Lagrangian relaxation with a dynamic programming technique. Then it

introduces a machine learning technique called structured support vector machines to optimize

scores for the algorithm. Additional constraints for core structures of known glycan types are

also implemented in the algorithm. An improvement of this program is investigating a novel

scoring scheme which takes intensities of MS/MS spectra into account.

For the purpose of interpreting glycan structures from mass spectra, database search

method generally has the ability to obtain more reliable results than de novo sequencing method,

due to that it is equipped with glycan database containing the structural knowledge of glycans.

Database search is expected to become more powerful with the size of glycan database increas-

ing. In the meanwhile, de novo sequencing method requires relatively high quality spectra to

generate more accurate results. However, with the development of mass spectrometry technol-

ogy, it has shown promising research prospects in glycan identification. It is unavoidable that

we will observe some new glycan structures which are not included in glycan database dur-

ing proteomics data analysis. As we know, manual interpretation of the glycopeptide spectra

is time-consuming and usually unreliable, which indicates that the interpretation of the novel

glycan by de novo sequencing method is necessary and sometimes the only available way.
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Chapter 3

Glycan De Novo Sequencing from HCD
Spectra

There are generally two strategies for glycoproteomics research depending on whether the

glycopetides are analyzed with the glycan released or kept attached to the peptdie. Most of

the previously available software tools or algorithms are designated to characterize released

glycans only. One disadvantage of this strategy is that it is hard to determine the glycosylation

site if there are more than one glycans attached to the glycoprotein or multiple glycoproteins in

the sample are digested into glycopeptides. Furthermore, it is also difficult for the sequenced

peptide to find the corresponding glycans attached to it. Generally, it is considered to be a

better way to identify glycans from the MS/MS spectra generated from intact glycopeptides

rather than released glycans.

GlycoMaster [20] is a useful software tool that can identify glycan structures from tandem

mass spectra without the knowledge of glycan database. It gradually constructs larger glycan

tree structures from previously selected subtrees using a heuristic algorithm. During each

round of growing larger trees, the best ranked subtree structures are reported and added in the

candidate list for the next round. However, this approach of constructing trees from leaves to

root has an unavoidable drawback. The algorithm was initially designed to determine glycan
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structures from CID MS/MS of glycopeptides. Due to the limited dynamic range of CID

spectrum, the mass values of Y-ion fragments attached to the peptide will normally exceed

the mass range of the spectrum. Besides, the peaks in the lower mass end of the spectrum

are usually not complete enough for the accurate determination of glycan structure. When the

algorithm proceeds, if the correct subtree structure is not included in candidate list in current

round, the algorithm will not be able to correct such negative condition in the subsequent steps.

Compared with CID spectrum, there are numerous quality peaks can be found in the larger m/z

end of HCD spectrum, which provides more information about Y-ions of the glycopeptide.

Besides, by controlling the fragmentation power, cleavages can happen at glycosidic bonds

only while the attached peptide can be kept intact in HCD spectra. Since the mass of a Y-ion

includes the mass of peptide, Y-ions and B-ions of the intact glycopeptide are separated in the

two sides of a spectrum, which is favorable for spectra interpretation.

Based on the advantages of HCD fragmentation technique, which can provide quality

spectra both in accuracy and resolution, we present a new method for glycan de novo sequenc-

ing from HCD spectra of N-linked glycopeptides. By utilizing the quality peaks in the larger

m/z end of HCD spectrum, the glycan de novo sequencing problem is modelled as a top-down

tree constructing process in a heuristic manner, in which the process starts at the glycosylation

site and the peptide is regarded as the root of the tree. It will gradually construct the glycan

tree from root to leaves until the mass of the glycan is reached.

In this chapter, we first present a mathematical model for the mass spectrometry based gly-

can de novo sequencing problem, and then propose a heuristic algorithm for glycan candidate

generation. Next, we apply a re-evaluation scheme to re-rank the generated glycan candidates

and report the top scored glycan that best fits the given mass spectrum. Moreover, the proposed

algorithm is implemented to verify its effectiveness.
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3.1 Notations and Problem Definition

A glycan structure was usually abstracted as a labelled rooted tree with node labels representing

monosaccharide types [18, 20, 22]. In this section, the glycopeptide structure is represent as a

tree and then a mathematical model for the glycan de novo sequencing problem is described.

3.1.1 Basic Notation

In an N-linked glycopeptide, usually only one glycan is attached to the peptide at the glycosy-

lation site. The total mass value of a glycopeptide consists of three parts: residue mass of the

peptide, residue mass of the glycan and an extra water. Let Σa be the alphabet of different types

of amino acids and P be the peptide consisting of m amino acids. The string of the peptide can

be represented as P = a1a2 . . . am. For an amino acid a ∈ Σa, we define ‖a‖ as its residue mass

value, then the residue mass of the peptide can be computed as ‖P‖ =
∑

1≤i≤m ‖ai‖.

The sugar units that constitute a glycan through glycosidic bonds are called monosaccha-

rides. It has been observed that some of the monosaccharides are epimers, which means that

they differ only in their configurations rather than their mass. By de novo sequencing method,

we cannot distinguish two epimers because they can hardly be separated from MS/MS spec-

tra. Therefore, we only consider six types of common monosaccharides in this study based

on the datasets we have. The name, abbreviation, composition, monoisotopic mass and sym-

bol of these different types of monosaccharides are shown in Table 2.1. We use Σg to denote

the alphabet of the different types (different mass) of monosaccharides. For a monosaccharide

g ∈ Σg, ‖g‖ is used to symbolize its residue mass value.

An N-linked glycan tree T is an unordered tree with its root linked to a peptide P. Each

node of T represents a monosaccharide, labelled by an element from Σg. The degree of a

30



glycan tree is bounded by four because there are at most five linkages for one monosaccharide.

Given a glycan tree T that include n monosaccharides, its mass can be represented as ‖T‖ =∑
1≤i≤n ‖gi‖. The actual mass of a glycopeptide G which consists of a glycan T and a peptide P

is ‖G‖ = ‖P‖ + ‖T‖ + ‖H2O‖.

Assume thatM is used to denote the peak list of a glycopeptide spectrum, then we have

M = {(mi, hi)|i = 1, 2, . . . , n}. Each element (mi, hi) represents a peak in the spectrum, where

mi is the m/z value and hi is the intensity of the peak. For a specific m/z value, if there is no

peak in the spectrumM, we consider that there exists a tuple (mi, hi) ∈ M with the intensity

hi = 0. The spectra need to be deisotoped and charge deconvoluted in a preprocessing step. The

deisotoping is to convert signals from higher mass natural isotope peaks to their corresponding

monoisotopic peak. The charge deconvolution will convert the multiply charged peaks to their

singly charged equivalents [84]. In our experiment, data preprocessing is done by the software

package PEAKS 6.0 [30]. Therefore, we assume that the spectrum M only contains ions of

charge one and the mass to charge ratio (m/z) of an ion is indeed equal to its mass value.

3.1.2 Mass Representation of Ion Fragments

In tandem mass spectrometry, glycopeptides will be fragmented and yield product ions and

neutral fragments before they are transferred to the second mass analyzer. The fragmenta-

tions usually occur on the glycosidic bond of the glycopeptides. Theoretically, each fraction

of the glycopeptide will generate one peak in the MS/MS spectrum. Six types of fragmented

ions are commonly observed in the spectrum. From the reducing end, there are X-, Y-, and

Z-ions; while in the non-reducing end, fragments are labelled with A-, B-, and C-ions. Figure

2.10 shows an example of a glycan and part of its fragmented ions. The A- and X-ions are

generated from cross-ring cleavages. As we mentioned in the previous chapter, higher-energy

collision dissociation (HCD) is currently a popular technique to generate glycopeptide MS/MS

31



for glycan structure identification. By controlling the fragmentation energy, the peptides of

glycopeptides can be kept intact and we can obtain the tandem mass spectra in which a major-

ity of peaks are generated from glycosidic bond cleavages. Practically, both Y-ions and B-ions

dominate the fragment ions in HCD spectra with the former ion type generating more intensive

peaks than the latter one, thus for simplicity we only consider Y-ions when generating possi-

ble glycan candidates. In the evaluation, we also take B-ions and internal fragment ions into

consideration.

A glycan structure can be represented by a labelled rooted tree with node labels represent-

ing its monosaccharide types, as shown in Figure 3.1. Each monosaccharide of the glycan is

abstracted as a node, and each glycosidic bond between two monosaccharide is represented as

a linkage of the tree. In such representation, B-ions correspond to subtrees and Y-ions corre-

spond to the remaining glycopeptide with the subtrees removed.

Figure 3.1: A glycopeptide and its tree representation. (a) A glycopeptide. The glycan attached
to the peptide consists of four monosaccharides. (b) The abstract tree representation of the
glycopeptide. Each monosaccharide is abstracted as a node in the tree representation. Each
glycosidic bond between two monosaccharide is represented as a linkage of the tree.

Assume that ti is the subtree of T rooted at ith node and its mass is ‖ti‖, then the mass of

the B-ion associated with ti is bi = ‖ti‖ + 1.1 A Y-ion corresponds to a subtree of T with the
1There is a proton added to the ion in the ionization process.
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peptide attached and we call it root-preserving subtree. B-ion and Y-ion are complementary

to each other. Since a glycan structure is two-dimension, one Y-ion may complement with a

set of B-ions. Let y{i1,i2,...,ik} denote the mass value of a Y-ion corresponding to subtrees of T

rooted at peptide P with ti1 , ti2 , . . . , tik removed, where ti1 , ti2 , . . . , tik are nonoverlapping subtrees

of T respectively. We use y0 to denote the mass of the Y-ion generated at the cleavage of

glycosylation site, without glycan included. For a glycan tree structure constructed from its

associated spectrum, its theoretical m/z values of singly charged Y-ions can be calculated by

the enumeration of its root-preserving subtrees. The m/z value of a Y-ion is equal to the

precursor mass value subtracting the mass of the removed monosaccharide residues. The m/z

value of an internal fragment ion is equal to the total mass of the monosaccharide residues

plus an additional proton. We use I(G) to denote the set containing mass values of B-ions and

Y-ions generated from a glycopeptide G with n monosaccharides, and it can be represented as

follows,

I(G) =
⋃

1≤i≤n

{bi}
⋃

{i1,i2,...,ik}

y{i1,i2,...,ik} (3.1)

3.1.3 Problem Definition

The basic assumption of our model is that the greater number of high abundance peaks in the

spectrum that are matched by those ions of a glycopeptide, the more likely the glycopeptide

is the correct structure. More specifically, the evidence that a spectrumM is generated from

a glycopeptide G is that more and higher peaks in M that are matched by theoretical ion

fragments of G.

Because of the fact that the mass values acquired from mass spectrometers are not accu-

rate, we use δ > 0 to represent the maximum error bound of the mass spectrometers. Moreover,

we use M(G) to denote the set of peaks from the spectrumM that match with the theoretical
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ion mass values of G within the error tolerance δ,

M(G) = {(mi, hi) ∈ M|∃m ∈ I(G), |m − mi| ≤ δ} (3.2)

For each peak in the set M(G), a scoring function can be defined according to its mass value m

and intensity h. Here we simply use f (m, h) to denote the function and will discuss it later in

detail.

Let I(G) be all the possible ion mass values of a glycopeptide G, and I(G) can be computed

by Formula 3.1. M(G) contains all the peaks in M that can be explained by the ions of G.

Intuitively, the more and higher peaks included in M(G) indicates the more confident thatM is

generated from G. Therefore, the glycan de novo sequencing problem can be defined as follows:

Given a spectrum M, a precursor mass value Mp, a predefined error bound δ, and a peptide

mass ‖P‖, the objective is to construct a glycan tree T such that |‖T‖+‖P‖+‖H2O‖+1−Mp| ≤ δ,

and the score S (T ) is maximized,

S (T ) =
∑

(mi,hi)∈M(G)

f (mi, hi) (3.3)

The summation above is used to evaluate how likely a glycopeptide matches with a spectrum.

It is worth noticing that the peak list M(G) is represented as a set meaning that different theo-

retical ion fragments with the same mass value matching the same peak in a spectrum will be

counted only once in computing the scoring function.

3.1.4 Scoring Function

Several factors can be considered in the scoring function f (m, h), such as mass value, intensity

and ion types. Researchers can choose different factors to formulate the scoring function ac-

cording to the instruments and configurations adopted in mass spectrometry experiments. For

a peak with mass m and intensity h, a basic scoring function that only take the intensity of the
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peak into consideration is defined as follows,

f (m, h) =

{
log2(h + max(1 − hth, 0)), h ≥ hth

log2(0.5), otherwise (3.4)

The basic mechanism of the scoring function is that for each mass value m, it computes

the reward/penalty that an ion has mass m. hth ≥ 0.5 is the threshold used to define whether a

peak is useful or not. If there is a peak close to m with intensity h ≥ hth, the reward is equal to

the logarithm of h+max(1−hth, 0). If the selected hth ≥ 1, the reward is equal to the logarithmic

abundance of the peak directly. Otherwise, 1 − hth will be added to h to guarantee the reward

is always positive. If the intensity of a peak is less than hth, we treat it to be a miss-match

and a penalty score (a negative constant value) is imposed. In practice, we also consider the

existence of N-linked glycan core structure when evaluating glycan structures. The peaks of

each spectrum are normalized by dividing the intensity of highest peak and then scaled to the

range of 0 ∼ 100 before interpretation. In our experiment, hth is set to 0.5, i.e., if a peak with

relative intensity less than 0.5% of the highest peak, there would be a penalty score log2(0.5)

assigned to that peak. The log function is to reduce the influence of those peaks with relatively

high intensity.

3.2 Methods

3.2.1 Peptide Mass Inference

In the strategy that the intact glycopeptides are fragmented by tandem mass spectrometer, the

mass values of peptides and their attached glycans are usually unknown prior to analysis. By

controlling the fragmentation energy, HCD can break glycosidic bonds rather than peptide

bonds, and keep the attached peptide intact. Thus we can infer peptide mass from HCD spectra

generated from glycopeptides.
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As mentioned above, N-linked glycans share a common core structure consisting of two

N-Acetylglucosamine (GlcNAc) residues linked to a branched mannose (Man) triad, as shown

in Figure 3.2. HCD usually favors the fragmentation of this core structure and generate corre-

sponding Y-ions. In order to characterize the mass of peptide from spectrum, we need to find a

series of peaks that can support this core structure (i.e., peaks with mass values equal to peptide,

peptide+GlcNAc, peptide+2GlcNAc, peptide+2GlcNAc+Man, peptide+2GlcNAc+2Man, pep-

tide+2GlcNAc+3Man, respectively). More specifically, we need to identify a sequence of

peaks in which the mass difference of two adjacent peaks equals to the mass of a certain

monosaccharide residue.

Figure 3.2: An example for core structure in an N-linked glycopeptide. The two GlcNAc linked
to a branched Man triad in the dotted rectangle is the core structure.

Let ma, mb be the mass values of a GlcNAc residue and a Man residue respectively. Sup-

pose that the core structure of a glycopeptide is fragmented into a series of peaks in the spec-

trumM at the m/z values in Mci = {mi,mi + ma,mi + 2ma,mi + 2ma + mb,mi + 2ma + 2mb,mi +

2ma +3mb}. The mass representations for ion fragments of the core structure are summarized in

Table 3.1. The peptide mass calculation problem can be defined as finding a peak in spectrum

M, such that the score of mi calculated by the function S (mi) is maximized,

S (mi) =
∑

m∈Mci

f (m, h) (3.5)

In Equation 3.5, the function f (m, h) used to evaluate each peak in the set Mci is defined
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in Equation 3.4. If there exists a peak that can support one of the fragments of core structure,

a reward will be assigned to that peak. Otherwise, a penalty will be imposed. It is supposed

that the mass value set Mci with larger score provides more evidence that there exists a core

structure starting at mi.

Table 3.1: Mass representations for the ion fragments of the N-linked glycan core structure

Fragment Composition Mass Representation Fragment Structure

GlcNAc ma

Man mb

Peptide mi

Peptide+GlcNAc mi + ma

Peptide+2GlcNAc mi + 2ma

Peptide+2GlcNAc+Man mi + 2ma + mb

Peptide+2GlcNAc+2Man mi + 2ma + 2mb

Peptide+2GlcNAc+3Man mi + 2ma + 3mb

In order to describe the algorithm more efficiently, we define a list of mass values Md =

{ma, 2ma, 2ma + mb, 2ma + 2mb, 2ma + 3mb} to represent the mass differences between the peak

at m/z = mi and other peaks in Mci . For each peak in the spectrum M, we enumerate all its

possible mass values associated with Mci by adding a mass value in Md, and then calculate its

score. After evaluation of all the peaks, the one with highest score will be reported and its

mass is treated as the peptide residue mass. The pseudocode for this algorithm is shown in

Algorithm 1.

3.2.2 Algorithm for Candidate Generation

It has been proved that the complexity of the glycan de novo sequencing problem is NP-hard,

under the condition that each peak in spectrum cannot be repeatedly used when calculating
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Algorithm 1 Peptide Mass Inference
INPUT: Given an MS/MS spectrumM, a set of mass values Md, a threshold hth, and a prede-
fined error bound δ.
OUTPUT: A peak (m, h) ∈ M with maximum score S m.

1: for each (mi, hi) ∈ M|hi > hth do

2: S mi = f (mi, hi)

3: for each ∆m ∈ Md do

4: if ∃(m j, h j) ∈ M s.t. |m j − (mi + ∆m)| ≤ δ then

5: S mi+ = f (m j, h j)

6: return (m, h) that has max(S m)

scoring function [20]. Previous methods in [18] and [20] both constructed good solutions for

smaller size trees and then assemble the reported trees into larger ones. Such strategy is suitable

for glycan sequencing from CID spectra. While in HCD spectra, numerous quality peaks in

the higher mass end can be used to explore new tree construction strategies. In this research,

we provide a heuristic algorithm which construct the glycan tree from root to leaves based on

HCD spectra.

A glycan tree with n vertices can be represented as T = 〈v1, v2, . . . , vn〉, where vi denotes a

node of the tree T . If the whole peptide is treated as a node, the notation v0 can represent such

node as a single root. d(vi) is used to denote the degree of the subtree rooted at vi, and m(T )

represents the summation of monosaccharide residue mass values of the glycan tree T . We use

F(n) to denote a set of glycan trees with n nodes,

F(n) = { T | T is a glycan tree, |VT | = n} (3.6)

Given a glycan tree T and a monosaccharide g ∈ Σg, let v be a node of T with less than

four children, i.e., d(v) < 4. We use Tv⊗g to represent a new tree generated from T , where

g is a monosaccharide added as a new node to the tree through node v. Thus, v becomes the

parent node of g, and g becomes a leaf node of the newly constructed tree. In addition, we use
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T ⊗ g to represent the set containing all of the possible glycan trees generated by adding g to

T = 〈v1, v2, . . . , vn〉,

T ⊗ g = {Tvi⊗g | vi ∈ VT , d(vi) < 4} (3.7)

Figure 3.3: An example for new possible trees generated by adding a node g to a glycan tree
T . The added node is shaded in grey.

Figure 3.3 shows an example for new possible trees generated by adding a node g to a

glycan tree T . The original tree T contains five nodes, and the degree of each node is less

than four. Thus the added node g can be attached to any of the nodes in T and five new trees

can be generated theoretically, as shown in Figure 3.3 (a)-(e). However, considering that the

tree representation we applied for a glycan structure is an unordered rooted tree, the two trees

shown in Figure 3.3 (d) and (e) are actually the same. Therefore, there are four new trees

generated. From this figure we know that it is necessary to eliminate the duplications of trees

when generating new trees in order to control the size of candidate set. The algorithm to solve
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this problem will be proposed in next section.

As we mentioned before, using HCD fragmentation method, the peptide can be kept intact

during fragmentation. Thus, each Y-ion fragment corresponds to a subtree of the glycan tree

T that rooted at v0. During the construction of the glycan tree, we need to find out all those

subtrees to calculate the theoretical mass values of Y-ions. We use r to denote a root-preserving

subtree of T and the mass value of its corresponding Y-ion is ‖r‖ + ‖P‖ + ‖H2O‖ + 1.

Let RPS T denote the set of all the root-preserving subtrees of a glycan tree T , then we

have,

RPS T (T ) = {r | r is a root-preserving subtree of T } (3.8)

Therefore, the set of root-preserving subtrees of T ⊗ g can be represented as follows,

RPS T (T ⊗ g) =
⋃

vi∈VT

RPS T (Tvi⊗g) (3.9)

For those root-preserving subtrees of a glycan tree T which include a node v ∈ VT , we

also define subtrees set RPS T (T, v) as follows,

RPS T (T, v) = {r | r ∈ RPS T (T ), v ∈ VT } (3.10)

Specifically, RPS T (T, v) denotes a set of such root-preserving subtrees of a glycan tree T that

include a path from root to node v. Figure 3.4 shows an example which demonstrates the set

of root-preserving subtrees for the given glycan tree T . RPS T (T ) contains five different root-

preserving subtrees of T , as shown in Figure 3.4 (a)-(e). In the set RPS T (T ), (c), (d), and (e)

are the subtrees that contain the node v, thus they are in the set of RPS T (T, v).

Lemma 3.1 Given a glycan tree T , and a monosaccharide g ∈ Σg, the set of root-preserving

subtrees of the newly generated trees in T ⊗ g can be decomposed in the following way,
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Figure 3.4: An example demonstrating the sets of RPS T (T ) and RPS T (T, v) for the given
glycan tree structure T . The node v in the tree T is shaded grey. There are five different root-
preserving subtrees of T , in which three of them contain the node v and include a path from
root to the node v.

RPS T (T ⊗ g) = RPS T (T ) ∪
⋃
v∈VT ,

r∈RPS T (T,v)

{rv⊗g | d(v) < 4, v ∈ Vr}

Proof First of all, let us consider a new tree Tv⊗g generated from a tree T and a monosaccharide

g via node v. The set of root-preserving subtrees for Tv⊗g should contain all the subtrees from

RPS T (T ), because the original tree T is a subtree of Tv⊗g. Since g is a new node added to

the tree via node v, the subtrees in the set RPS T (T ) do not contain g. Those newly generated

root-preserving subtrees that contain g must also contain v, and they can be represented by the

union
⋃

r∈RPS T (T,v){rv⊗g | d(v) < 4}.
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Thus we have the set of root-preserving subtrees of Tv⊗g as follows,

RPS T (Tv⊗g) = RPS T (T ) ∪
⋃

r∈RPS T (T,v)

{rv⊗g | d(v) < 4} (3.11)

Furthermore, the set RPS T (T ⊗ g) corresponds to the calculation of RPS T (Tv⊗g) over all

the nodes in VT .

Based on the mathematical model described above, we now introduce our heuristic al-

gorithm for the glycan de novo sequencing problem. The glycan tree structure is gradually

constructed by adding one node during each iteration in the computation. For an iteration with

n nodes, a fixed number of glycan trees with highest scores are maintained in F(n). Mmin is set

to be the minimum tree mass value in F(n). Under the condition that even if we add a monosac-

charide with the smallest mass value to Mmin, the result is greater than M′ = Mp − mp − 19,

then the program will be terminated. F(n) is computed in the following two steps:

1. We compute a set of candidate glycan structures based on the equation

Fc(n) = ∪g∈Σg ∪T∈F(n−1) T ⊗ g;

2. Compute the score of each structure in Fc(n) by evaluating how its theoretical ion masses

match with peaks in mass spectrumM according to the scoring function defined in equa-

tion ??, then put the top |F| glycans in F(n) and remove those glycans with low scores.

During the construction process, if the mass of one generated glycan satisfies the desired

glycan mass value M′, then this glycan will be put into the candidate results set R. When the

program finished, a fix number of glycans sorted by scores from high to low can be obtained

in R. Algorithm 2 presents the pseudocode for the algorithm of glycan candidates generation

described above.
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Algorithm 2 Glycan Candidates Generation by De Novo Sequencing
INPUT: Given a spectrumM, and glycopeptide precursor mass value Mp, and peptide mass

value mp, and a predefined error bound δ.

OUTPUT: A set R consists of candidate glycan structures with their scores, and each glycan

tree T in R satisfies |‖T‖ + ‖P‖ + ‖H2O‖ + 1 − Mp| ≤ δ.

1: M′ = Mp − mp − 19, Mmin = mp

2: while Mmin + min‖g‖ ≤ M′ do

3: Fc(n) = ∅

4: for T ∈ F(n − 1) do

5: for vi ∈ VT do

6: for g ∈ Σg do

7: T ′ = Tvi⊗g

8: RPS T (T ′) = RPS T (T )

9: for r ∈ RPS T (T ) do

10: if vi ∈ Vr and d(vi) < 4 then

11: RPS T (T ′) = RPS T (T ′) ∪ rvi⊗g

12: Fc(n) = Fc(n) ∪ T ′

13: Score each glycan tree in Fc(n) according to RPS T (T ), put top |F| in F(n)

14: Set Mmin to be the minimum mass value of trees in F(n)

15: Select the trees from F(n) that satisfies mass requirement and put them in R

3.2.3 Algorithm for Elimination of Duplicate Trees

The glycan structures are abstracted as unordered rooted trees in our method. The direct com-

putation of the set T ⊗ g and RPS T (T ⊗ g) from Equation 3.7 and Lemma 3.1 may generate

duplicate or isomorphic trees. Two trees are said to be isomorphic if that one tree can be

mapped into the other by permuting the order of the children of vertices [85]. We use a can-

didate set with fixed size to include all the trees generated in each iteration. The removal of

identical trees should be taken into consideration. Otherwise, the size limit of the candidate
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set maintained during computation would be reached quickly, yet the correct result may not be

included. To solve this problem, an algorithm similar to the tree isomorphism determination

algorithm described in [85] has been designed to eliminate the duplications of trees in a set.

For each newly generated tree, we first compare its tree mass and tree size with the trees

in the set. If two trees have the same tree mass and size, we need to assign a string to each

of them according to its structure and node information. Then we compare the two strings to

determine whether they are isomorphic. If they are isomorphic, we do not need to add the new

tree into the set. The string for a glycan tree T is obtained as follows.

1. Assign to each leaf of T a string of integer representing its node type. The correspon-

dence between the integers and node types can be found in Figure 3.5.

2. Inductively, assume that all vertices of T at height i + 1 have been assigned strings.

3. Assign to each nonleaf of T at height i a string by the following way: for each vertex v at

height i take the integer i0 assigned to v according to the correspondence shown in Figure

3.5 to be the first component of the string, and then sort all the strings associated with

its children in alphabetic order. The alphabet consists of integers assigned to different

types of monosaccharides as well as the left and right parentheses. The sorted strings are

then combined together and form a tuple. On completion of this step, each nonleaf v of

T at hight i will have a string i0(s1)(s2)...(sk) associated with it, where s1, s2, ..., sk are the

strings, in nondecreasing order, associated with the children of v.

4. Repeat step 3 until the root of T is assigned. That string can be used to represent the tree

T and used to compare with other trees.

In order to facilitate the understanding of the algorithm, Figure 3.5 illustrates the assign-

ment of strings to the vertices of one tree. As can be seen from the figure, the string assignment
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is iteratively from leave to root. At last, the string assigned to the root node of the tree is treated

as the string of the tree. The strings generated according to the procedure described above for

two isomorphic trees are identical, because the strings assigned to each child of one node in

the same level are sorted and concatenated together. By comparing the strings associated with

two glycan tree structures, we can determine whether these two trees are isomorphic or not.

Figure 3.5: (a) Strings assigned by isomorphic tree elimination algorithm. The final string
associated with the tree is 2(2(1(1(2(1(3))))(1(2(1(4)))))). (b) Integers assigned to different
types of monosaccharides.

The detailed procedure of two tree isomorphism determination is summarized in Algo-

rithms 3 and 4. The following notions are used in the algorithms. T is denoted as a glycan tree

with height H and mass m(T ). |T | is the size of tree T and S T is the string assigned to T . For a

node v in the tree T , C(v) represents the children set of v.
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Algorithm 3 String Representation for A Glycan Tree
INPUT: Given a glycan tree T , tree hight H, and the integers assigned to different types of
monosaccharides.
OUTPUT: A string representing T according to its structure and node type.

1: h← H

2: while h > 0 do

3: for each node v in Vi do

4: Set the integer i0 assigned to its type as its string sv

5: if v has children |C(v)| > 0 then

6: Sort the strings assigned to each child in lexicographic order, denoted as

(s1)(s2)...(sk)

7: Set sv by concatenating i0 and (s1)(s2)...(sk) together

8: h − −

9: return the string assigned to the root node of T

3.2.4 Complexity Analysis

The string assignment of an n-vertex labelled tree and determination of the isomorphism of two

trees can be done in O(n) time [85]. Therefore, we can eliminate the duplications of trees in a

set in O(nN log N) time, where N is the size of the set. We give the complexity of the proposed

Algorithm 2 and Algorithm 4 in the following Theorem 3.1.

Theorem 3.1 Algorithm 2 and Algorithm 4 compute glycan candidates from tandem mass

spectra by de novo sequencing in time bounded by

O(n4 × c × |Σg| × |F| × log(|F|))

Proof During each round of the tree construction when adding a new node to each tree of the

previous candidate list, there will be n× |Σg| possible newly generated treess. If the size of each
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Algorithm 4 Tree Isomorphism Determination
INPUT: Two glycan tree T1 and T2, and an error range δm.
OUTPUT: TRUE if T1 and T2 are identical; otherwise FALSE.

1: if |m(T1) − m(T2)| ≤ δm then

2: Return FALSE

3: if |T1|! = |T2| then

4: Return FALSE

5: if S T1 == null or S T2 == null then

6: Invoke Algorithm 3 to set the string for T1 or T2

7: if S T1! = S T2 then

8: Return FALSE

9: else

10: Return TRUE

candidate list is denoted as |F|, then there will be n × |Σg| × |F| new trees generated. The time

complexity for eliminating duplications of these new trees is bounded by O(n2 × |Σg| × |F| ×

log(|F|)).

For all the newly generated trees, each one is scored according to the matching between its

root-preserving subtrees against the peaks in spectrum. The number of root-preserving subtrees

of a specific tree is exponential to its size theoretically, which is bounded by O(2n). However,

in practice during our computation for generating glycan structures, the maximal size of RPS T

was less than 50. The main reason is that the degree of most nodes in a glycan tree is less

than four and the size of each glycan tree is small. For simplicity, we consider that the time

complexity for scoring each candidate tree structure is bounded by O(cn), where c is a constant.

In total, there will be maximum of n rounds of adding new nodes. Overall, the time complexity

of the algorithm proposed above is O(n4 × c× |Σg| × |F| × log(|F|)), where n is the total number

of the vertices for a glycan tree, which is less than 20 practically.
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3.2.5 Re-evaluation Scheme

During the previous step of glycan candidates generation, the ions we consider in the scoring

function are mainly Y-ions. Because of the complexity of glycan tree structures, two situations

may exists in the higher scored candidates. One is that many similar glycan structures are

reported by the algorithm with highest score, and the true structure is among them but can not

be distinguished. The other situation is that the target glycan is ranked in higher scored place

but not the first. Consider these situations, a more rigorous re-evaluation scheme should be

applied to filter candidate glycan structures and reduce the number of candidates.

In the post-processing section, each candidate glycan structure is theoretically fragmented

at glycosidic bonds and ion types we take into consideration here are B-ions and Y-ions as

well as internal fragment ions. The internal fragment ions refer to those fragments generated

from more than one cleavage on a glycan structure simultaneously. In addition, a new scoring

function is defined to re-evaluate glycan candidates according to their ion peaks. Let (mB, hB)

be the mass value and intensity for a B-ion. And (mY , hY), (mI , hI) are for a Y-ion and an internal

ion, respectively. The new score for a glycan tree candidate S re(T ) is calculated as follows,

S re(T ) = α
∑

f (mBi, hBi) + β
∑

f (mY j, hY j) + θ
∑

f (mI j, hI j) (3.12)

In Equation 3.12, the function f (m, h) used to evaluate a peak is the same as the one de-

fined in Equation 3.4. The parameters α, β, θ are used to adjust the relative weight of different

ion types. HCD spectra are featured with the predominance of Y-ions, while B-ions and in-

ternal ions can be occasionally observed in the low m/z end of the spectra. Thus, if a peak in

the experimental spectrum supports a Y-ion of a glycan candidate, that peak will be assigned

more weight than that supports a B-ion or an internal ion. In our experiment, α, β, and θ are

empirically set to 0.5, 1.0, and 0.3, respectively.
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After re-evaluation with a more stringent scheme, the glycan candidate structures are re-

ranked according to their new scores. Those glycan structures with higher re-ranking scores

are selected as the final candidates.

3.3 Experiments and Results

The approach proposed above was implemented in the experiments to test its performance and

the top 1000 candidates were selected during each iteration of computation, i.e., |F| = 1000.

The error bound δ = 0.2 Da were used in the experiment.

3.3.1 Datasets

The glycopeptide samples used in the experiments were derived from three kinds of pro-

tein samples: Alpha-1-acid glycoprotein of Bos taurus (Bovine), Ovomucoid of Gallus gallus

(Chicken), and Ig gamma-3 chain C region of Homo sapiens (Human). Experiments were car-

ried on a Thermo Scientific Orbitrap Elite hybrid mass spectrometer and HCD fragmentation

technique was used.

The newly developed software tool GlycoMaster DB [16] was used for comparison. Gly-

coMaster DB can analyze mass spectra produced with HCD fragmentation and identify N-

linked glycans by searching against the glycan structure database GlycomeDB [72]. The main

reason we choose a database searching method for comparison is that the algorithms mentioned

in [18, 20–22] which designed based on de novo sequencing method cannot handle glycopep-

tide data or can only analyze CID spectra. Besides, the results identified by database searching

method are relatively reliable.

Our experimental dataset contains 46 HCD spectra of glycopeptides, which were identi-
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Table 3.2: Performance of our algorithm compared with GlycoMasterDB

Rank1 Number of glycans Percentage(%)

1 35 76.09

2 6 13.04

3 ∼ 10 1 2.17

11 ∼ 20 1 2.17

>20 1 2.17

Can’t find 2 4.35

fied by GlycoMaster DB from the collected 1168 MS/MS spectra. The reported glycan struc-

tures were used to benchmark the performance of our proposed method.

3.3.2 Experimental Results

For each MS/MS spectrum in the dataset, top 10 candidates of glycan structures were reported

by GlycoMaster DB. Among those results, the highest ranked glycan structure was treated as

the reference structure, and this structure was compared with all the results constructed by

our algorithm. Table 3.2 shows the ranking status of the reference structures observed in our

reported results for those 46 MS/MS spectra.

As one can see from Table 3.2, there are 35 glycans with highest scores generated by our

proposed method have the same structures as those top-ranked glycans interpreted by Glyco-

Master DB. Besides, there are 6 glycans identified from their associated spectra by GlycoMas-

ter DB with highest scores ranked second place in our results. Therefore, if the case that the

corresponding reference structure ranking top two in our reported results is deemed correct,

then the accuracy rate of our proposed method can reach to 89.13%. Among the results that

the reference structures ranked greater than 10, for one entry its reference structure ranked 13

1”Rank” refers to the ranking status of the reference structure (the top glcyan structure reported by Glyco-
Master DB) in our result for a spectrum.
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and for the other entry is 32, which is the lowest rank observed in our results. However, after

observing that entry with lowest ranking, we can find that the two top ranked glycan structures

reported by our method and GlycoMaster DB were quite similar. Besides, the second ranked

glycan structures reported by both methods were identical. And the scores of those top two

results reported by GlycoMaster DB were indeed very close, which are 25.97 and 25.81 re-

spectively. In order to see the results intuitively, their structures are listed in Figure 3.6. In the

figure, structure (a) is the one ranked the first place in the results of GlycoMaster DB, which

is ranked 32 in our results. (b) shows the glycan structure ranked top by our method and (c)

shows the one ranked second in the results of both methods.

Figure 3.6: Comparison of the top two glycan structures reported by GlycoMaster DB and our
method for a certain spectrum. (a) Ranked No.1 and No.32 in the results of GlycoMaster DB
and our method respectively. (b) Top ranked result in our method. (c) Ranked second place in
both methods.

There are two entries that the reference glycan structures cannot be observed in the results

provided by our proposed algorithm. However, our reported glycans with highest score were

only partially different from the related reference structures. Figure 3.7 shows the difference of
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these two pairs of results.

Figure 3.7: Comparison of two pairs of glycan structures identified by GlycoMaster DB and
our method respectively. (a1) and (a2) are the top ranked glycans identified from the same
spectrum and (b1) and (b2) are identified from another spectrum. Both (a1) and (b1) are the
results reported by GlycoMaster DB, while (a2) and (b2) are reported by our method.

Each pair of glycans in the same row shown in Figure 3.7 were interpreted from the same

HCD spectrum. The first glycan in each row was identified by GlycoMaster DB with highest

scores, and the second one in each row was ranked first in the results of our method. As one

can see from the figure, the two glycans in the same row have high resemblance and one can

be converted to the other through a few steps of operations. This indicates that although our

algorithm did not find out the same glycan structures as GlycoMaster DB did, our results are

quite similar to the reference structures. After analyzing the two reference structures and those

associated specta, we find that the precursor mass of both glycans are relatively large, which

are more than 3000 Da. However, in the experiment, fragment ions with mass values greater

than 2000 Da can rarely be observed. Thus, it is difficult to construct the whole tree structure

correctly using de novo sequencing method due to the lacking of ion information. Although we

can take advantage of the b-ions from the smaller mass side of the spectrum, the information

is still not adequate to infer the whole tree structure in some of the cases in practice. For
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example, in the spectrum associated with glycan (a1) and (a2) shown in Figure 3.7, there are

two peaks at m/z 292.10 and 308.10, which can be interpreted as monosaccharides NeuAc (�)

and NeuGc (♦), but there is no peak that can support the disaccharide NeuGc-NeuGc (♦-♦) in

(a1). There are indeed two peaks at m/z 657.2365 and 673.2311, which can be interpreted as the

trisaccharides HexNAc-Hex-NeuAc (�-©-�) and HexNAc-Hex-NeuGc (�-©-♦) respectively.

However, the intensity of the peak supporting HexNAc-Hex-NeuGc is 434.49655, which is

much higher than the other one 192.08842. Thus, glycan structure in (a2) is more likely ranked

higher than that in (a1) during the tree construction process. Accordingly, we believe that

using more types of ions such as internal ions during construction may improve the results.

In general, our reported results were reasonable because they were supported well by each

corresponding spectrum.

3.4 An Improved Result

In our previous results, it is observed that the main difference between our top ranked glycan

structures and the ones reported by GlycoMaster DB appear at the leaf end of the trees. As

shown in Figure 3.7 (a1) and (a2), structure (a1) can be changed into (a2) if the two monosac-

charide NeuAc and NeuGc change position with each other. By investigating the spectra, we

can find that there are several peaks that support B-ions and internal ions. Therefore, we im-

prove our previous method by taking B-ions and internal ions into consideration during the tree

construction procedure.

Most spectra of N-linked glycoppetides have peaks corresponding to oxonium ions formed

by one to three monosaccharide residues in low m/z region. For each spectrum, we maintain

a set which contains five possible linear trisaccharides well supported by significant peaks.

During each round of generating new trees, we check to see if there is a leaf-containing linear

trisaccharide structure of the current tree same as one in the set. A bonus will be added to this
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tree in this case.

Table 3.3: Performance of improved method compared with previous de novo sequencing
method

Rank1 De Novo Sequencing Method Improved Method
Number Percentage(%) Number Percentage(%)

1 35 76.09 40 86.96
2 6 13.04 1 2.17
3 0 0.00 1 2.17

4 ∼ 10 1 2.17 1 2.17
> 10 2 4.35 2 4.35

Can’t find 2 4.35 1 2.17

Better results were obtained based on the improvements, as shown in Table 3.3. As can be

seen from the table, there are 40 top ranked glycans reported by our improved method having

the same structures as those top-ranked glycans interpreted by GlycoMaster DB. Compared

with the original de novo sequencing algorithm, the improved method has higher accuracy.

There are two entries that the reference glycan structures can not be observed in the results

reported by our previous algorithm as shown in Figure 3.7. After improving the algorithm, the

structure (a1) shown in the figure can be found in the results although it is not ranked very

high. The reason is clear. According to the mechanism of the improvement, the trisaccharide

HexNAc-Hex-NeuAc (�-©-�) shown in (a1) can help the structure to earn a bonus during the

construction, which increases the possibility of the structure (a1) to be included in the candidate

list.

3.5 Conclusion and Discussion

In this chapter, a mathematical model for glycan de novo sequencing problem is represented

as a tree construction problem under the condition that the score of the tree is maximized
1”Rank” refers to the ranking status of the reference structure (the top glycan structure reported by Glyco-

Master DB) in our results for a spectrum.
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according to its associated spectrum. We propose a heuristic algorithm for glycan candidates

generation from HCD MS/MS spectra. Each tree is constructed from root (peptide) to leaves

in a heuristic manner by utilizing the quality peaks in the higher mass end of the spectra.

Furthermore, in order to filter candidate glycans more effectively and reduce the number of

candidates, a re-evaluation scheme is applied and those glycans with higher re-ranking scores

are selected as final candidates.

The proposed approach is applied to identify glycan structures from 46 HCD tandem mass

spectra of N-linked glycopeptides. The performance of the proposed approach is compared

with a successful database searching method, GlycoMaster DB. For each spectrum, the top

ranked glycan structure reported by GlycoMaster DB is treated as the reference structure and

its ranking status in our results is considered as criteria for assessment. Experimental results

have shown that the results of our proposed method are comparable with GlycoMaster DB,

with the accuracy rate reaching to 89.13%. In terms of those reference structures which are not

ranked higher or not found in our results, our top reported glycan structures are quite similar

to them. It indicates that our results can be applied in some database searching method by

assisting the filtration of tentative candidates.

Comparing with database searching method, de novo sequencing method require high-

quality MS/MS spectra for a reliable analysis. It is still a challenging problem in glycan de novo

sequencing. In next chapter, we will combine our de novo sequencing method with database

searching method to improve the accuracy of glycan structure characterization from MS/MS

spectra.
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Chapter 4

Glycan Structure Identification using
Database Search and De Novo Sequencing

Currently, two commonly used computational approaches for glycan structure identification

with tandem mass spectrometry are database search and de novo sequencing. To some extent,

de novo sequencing method is more difficult than database search method, since it does not

rely on any glycan database. Glycan identification by de novo sequencing can only rely on

the information obtained from tandem mass spectra, without the assistance of any structural

knowledge of glycans. Generally, database search method has the ability to obtain more re-

liable results than de novo sequencing method. However, a distinctive advantage of glycan

de novo sequencing is that it can identify some new glycan structures which are not included

in the glycan database. With the development of mass spectrometry technology, more quality

mass spectra will be produced, which can be used for glycan de novo sequencing to get more

accurate results. Both of these two approaches have advantages and disadvantages, thus a bet-

ter way is to combine them together for interpretation of glycan structures from tandem mass

spectra.

In this chapter, we proposed a new method for matching the input spectra with glycan

structures acquired from glycan database by incorporating a de novo sequencing assisted rank-

56



ing scheme. The de novo sequencing results used to screen the candidates from database are

acquired by the method proposed in the previous chapter. The new approach typically inter-

prets the spectral data in three steps: (1) peptide mass inference, (2) glycan candidates selection

from glycan database and raw score calculation, (3) filtration of glycan candidates by incor-

porating de novo sequencing results. In addition, we improved the efficiency of this de novo

sequencing assisted database search method by combining the glycan candidates acquired from

both methods and re-evaluating them to get better results. Experimental results showed that our

proposed methods not only can identify glycans from tandem mass spectra with high accuracy,

but also has the potential for finding new glycan structures that not included in the current

glycan database.

4.1 Preliminaries

4.1.1 Notations and Problem Formulation

In an N-linked glycopeptide, a glycan is attached to a peptide at the glycosylation site. The

total mass of a glycopeptide consists of the residue mass of peptide, glycan and an extra water.

The glycan structure can be abstracted as a labelled rooted unordered tree, where each node

label represents a monosaccharide type [18, 20, 22]. The degree of such glycan tree is bounded

by four because one monosaccharide can have five linkages at most. Similar to the notations

in Chapter 3, six types of common monosaccharides are considered as shown in Table 2.1.

Epimers, which differ only in their conformation rather than their mass, are not taken into

consideration, because they can hardly be distinguished in a MS/MS spectrum. Assume that in

an N-linked glycopeptide G, a glycan tree T is an unordered tree with its root linked to a peptide

P and the tree includes n monosaccharides. We use Σg to denote the alphabet of different types

(mass) of monosaccharide. For a monosaccharide g ∈ Σg, ‖g‖ is used to symbolize its residue

mass value. The mass of tree T can be represented as ‖T‖ =
∑

1≤i≤n ‖gi‖, and the mass of the
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glycopeptide G is ‖G‖ = ‖P‖ + ‖T‖ + ‖H2O‖.

In MS/MS, cleavages of glycosidic bonds result in B/Y-ions, C/Z-ions, and A/X-ions.

Figure 2.10 shows an example of a glycopeptide and its ion fragments. The A/X-ions are

generated by cross-ring cleavages under a relatively high collision energy [61]. In HCD spectra,

Y-ions dominate all the fragment ions. Research also shows that peaks representing internal

fragment ions can be observed in the low m/z region [86]. The internal fragment ions refer to

those fragments generated by more than one cleavages on a glycan structure simultaneously.

Therefore, we take B/Y-ions as well as internal ions into consideration when calculating the

theoretical fragment ions of a glycan structure in database. In the tree representation, B-ions

correspond to subtrees and Y-ions correspond to the remaining glycopeptide with one or more

subtrees removed, while internal ions are part of a subtree. Here, we use I(G) to denote the set

of mass values of B/Y-ions and internal ions generated from a glycopeptide G. For the glycans

in database, the Y-ion mass values of their corresponding glycopeptides can be computed by

adding the mass of attached peptides to their own Y-ions.

Assume that a spectrumM is generated by the fragmentation of a glycopeptide G, andM

is represented by a peak listM = {(mi, hi)|i = 1, 2, . . . , n}, where mi and hi represent the mass

and the intensity of a peak in the spectrum, respectively. In addition, we use Mp to denote the

precursor mass value of the glycopeptide. It can be obtained from the m/z and charge state z

reported by the experiment instrument. For a specific m/z value, if there is no corresponding

peak in spectrum M, we consider there to be a tuple (mi, hi) ∈ M with its intensity hi = 0.

Intuitively, the more and higher peaks in the spectrumM can match with ion fragments of the

glycopeptide G, the more likely thatM is generated from G. More formally, M(G) is adopted

to denote the set of peaks from spectrumM that match with the theoretical ion mass values of

G within an error tolerance δ > 0, then we have

M(G) = {(mi, hi) ∈ M|∃m ∈ I(G), |m − mi| ≤ δ} (4.1)
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The problem of glycan structure identification from a spectrum using database search

method is to find the best matching glycan by comparing the MS/MS spectrum against all

glycan structures from a glycan database. Thus, the glycan database searching problem can be

formulated as follows: given a MS/MS spectrumM, a precursor mass value Mp, a predefined

error bound δ, a peptide mass ‖P‖, and a glycan database D, the objective is to find a glycan

structure T from D that maximize the value of a specific scoring function S (M,T ), such that

|‖T‖ + ‖P‖ + ‖H2O‖ + 1 − Mp| ≤ δ. The scoring function S (M,T ) evaluates how likely the

glycopeptide associated with the glycan tree T matches with the spectrum M. The scoring

function S (M,T ) can be defined as follows,

S (M,T ) =
∑

(mi,hi)∈M(G)

f (mi, hi) (4.2)

In Equation 4.2, the function f (m, h) is used to calculate the score for a fragment ion

matched by a peak with mass value m and intensity h in spectrum M. We will discuss the

definition of this function in next section. It is worth noticing that different theoretical ion

fragments with the same mass value that match the same peak in a spectrum will be counted

only once during the computation of the scoring function.

4.1.2 Scoring Function

The scoring function is essential for best glycan candidate selection that we should pay special

attention to. Usually the intensity value of the matched peaks, the fragment ion types, as well

as the mass errors are taken into consideration when deriving a reasonable function f (m, h) to

measure the reward or penalty each matched peak can impose on the overall matching. The

function defined in this method is based on the one proposed in Chapter 3. We improved

Equation 3.4 by incorporating the consideration of mass error [30]. The score for a fragment

ion matched by a peak with mass value m and intensity value h is calculated as follows,
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f (m, h) =

 log2(h + max(1 − hth, 0)) × exp(−(m−m′
δ

)2), h ≥ hth

log2(0.5), otherwise
(4.3)

In Equation 4.3, m′ is the mass value of an ion, m is the mass value of the observed peak

for that ion, and δ is the mass error tolerance of the mass spectrometer. The exponential factor

in the equation reflects the mass error. h denotes the intensity value of the observed peak.

hth ≥ 0.5 is the threshold set to define whether the peak is useful or not. If the intensity of the

peak is less than hth, it is treated as a miss-match and a penalty score is imposed. In practice,

the peaks of each spectrum are normalized by dividing the intensity of highest peak and scaled

to range of 0 ∼ 100 before interpretation. In our experiment, hth is set to 0.5, i.e., if a peak with

relative intensity less than 0.5%, there would be a penalty score log2(0.5) assigned to that peak.

4.2 Methods

The glycan identification by de novo sequencing assisted database search method mainly con-

tains three steps. The first step is inferring the mass value of peptide from the spectrum. Since

we are trying to identify the glycan structure from the spectrum of intact glycopeptide, the

mass value of the peptide in the glycopeptide may be unknown in advance. We need to infer

the mass value of peptide first, and then calculate the mass value of the attached glycan. This

step has been described in Chapter 3, thus omitted in this chapter. The second and third steps

are glycan candidates selection from database and filtration of candidates with the assistance

of de novo sequencing results respectively. In the following of this section, these two steps will

be illustrated.
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4.2.1 Glycan Candidates Selection and Raw Score Calculation

In this step, firstly the glcan candidates which satisfy the mass value requirement will be se-

lected from the database. Secondly, the raw score of each candidate will be calculated by

matching its theoretical fragment ions with the given spectrum.

As mentioned in the section of Notations, the total mass of a glycopeptide consists of a

peptide mass, a glycan mass, and a water. The theoretical mass value of the peptide can be

inferred from the spectrum based on the method described in Chapter 3 by taking advantage

of core structure in an N-linked glycopeptide. Then we can obtain glycan mass by subtracting

the inferred peptide mass and an ‖H2O‖ from the input molecular mass. Moreover, since our

research focuses on N-linked glycosylation, we extracted all the N-linked glycans from the gly-

can database GlycomeDB in advance. Given an inferred peptide mass value m′p, a predefined

mass tolerance ∆, and a precursor mass value Mp, those N-linked glycans whose mass values

mT satisfy the equation |Mp −m′p − ‖H2O‖ − 1 −mT | ≤ ∆ will be selected from the database as

the tentative candidates.

The correctness of a glycan structure is justified based on the intuition that it should pro-

duce more and higher-intensity peaks and generate a higher score than other structure does. In

order to evaluate to what extent a candidate glycan matches with the spectrum, its simulated

theoretical MS/MS is used to compare against experimental MS/MS and the raw matching

score S raw(T ) is given based on Equation 4.3. S raw(T ) denotes the summation of all theoretic

fragment ion scores for a glycan tree T . The ion types we take into consideration in this study

are B-ions, Y-ions as well as internal fragment ions. Let (mB, hB) be the mass value and inten-

sity for a B-ion. Meanwhile, we use (mY , hY) and (mI , hI) to represent a Y-ion and an internal

ion respectively. The raw score for a glycan tree candidate S raw(T ) is calculated as follows,

S raw(T ) = α
∑

f (mBi, hBi) + β
∑

f (mY j, hY j) + θ
∑

f (mIk, hIk) (4.4)
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In Equation 4.4, the function f (m, h) used for each peak is the same as the one defined in

Equation 4.3. The parameters α, β, θ are used to adjust the relative weight of different ion types.

In our experiment, α, β, and θ are empirically configured to be 0.5, 1.0, and 0.25 respectively.

The raw score serves for the purpose of pre-evaluation of each candidate glycan structure

in database. However, only using raw score to rank all the candidates is not sufficient, because

it could happen that several similar glycan structures match to the same group of peaks in the

spectrum that we cannot decide which one is the best matching structure. Therefore, a further

filtration strategy is needed to obtain better results.

4.2.2 Algorithm for Filtration by De Novo Sequencing

In Chapter 3, we formulated the problem of glycan de novo sequencing from MS/MS spectra,

and proposed a heuristic algorithm for identifying glycan from HCD MS/MS spectra of N-

linked glycopeptides. The algorithm has the ability to construct the best matching glycan tree

structures from the given glycopeptide MS/MS spectra. Although not all the correct glycans

can be identified as the best matching structures for the spectra used in the experiment, our top

reported glycan structures are quite similar to those correct ones. In this step, we will employ

the de novo sequencing results to screen the candidates acquired from glycan database.

In the de novo sequencing algorithm, the top 1000 ranked glycan structures will be re-

ported for each spectrum, among which those glycans with score greater than half of the highest

score are selected for the database candidates filtration. We use Lnovo = {R1,R2, . . . ,Rm} to de-

note such a sorted list of glycans selected from de novo sequencing result, where Ri(1 ≤ i ≤ m)

represents a glycan structure with score larger than half of the score of top ranked glycan. The

rank of Ri in the list is denoted as rank(Ri). Besides, we use Ldb = {Q1,Q2, . . . ,Qn} to repre-

sent the list of glycan candidates selected from the glycan database. Then the filtration strategy
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proceeds as follows.

1. For each glycan Q j in Ldb, compare it with a glycan Ri in Lnovo. For a pair (Q j,Ri), we cal-

culate the similarity score S sim(Q j,Ri), based on which we then calculate the comparison

score S comp(Q j,Ri) according to the following equation,

S comp(Q j,Ri) = S sim(Q j,Ri) × exp (
1

rank(Ri)
) (4.5)

2. Repeat step 1 until the comparison score S comp(Q j,Ri) for each glycan structure Ri in list

Lnovo against Q j is calculated. Then sort Ri in Lnovo according to their comparison score

and select top K glycans to form a new list L′novo( j).

3. The score of a glycan Q j in database list Ldb is readjusted based on two parts. One

is its raw score calculated by matching its theoretic mass spectrum with experimental

spectrum, the other is the comparison score calculated according to its similarity to the

glycans Rk in the list L′novo( j). The equation for calculating the score of Q j is shown as

follows,

S (Q j) = log(S raw(Q j) ×
1
K
×

K∑
k=1

S comp(Q j,Rk)) (4.6)

4. Repeat above steps until each Q j in the database list has been scored according to Equa-

tion 4.6. Then we sort these glycans in decreasing order and select the top F glycans as

the final filtration result.

Algorithm 5 summarizes the strategy of glycan candidates filtration by incorporating the

results from our de novo glycan sequencing method. The following notations are used in the

algorithm. S raw denotes the raw score of a glycan structure from database calculated according

to Equation 4.4. S sim is the similarity score between two trees from database and de novo

sequencing results respectively. In next section we will discuss how to calculate this similarity

score. S comp is the comparison score between two trees which considers not only the similarity

between them but also the rank of the tree in de novo sequencing result.
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Algorithm 5 Filtration of glycan candidates
INPUT: Given an MS/MS spectrumM, a sorted list of glycans Lnovo = {R1,R2, . . . ,Rm} from
de novo sequencing, a list of glycan candidates Ldb = {Q1,Q2, . . . ,Qn} from database.
OUTPUT: A ranked list of glycans with size F from database list Ldb.

1: for each j from 1 to n do

2: calculate its raw score S raw(Q j)

3: for each i from 1 to m do

4: calculate the similarity score S sim(Q j,Ri)

5: S comp(Q j,Ri) = S sim(Q j,Ri) × exp( 1
rank(Ri)

)

6: sort all Ri in Lnovo and select top K scored glycans

7: S (Q j) = log(S raw(Q j) × 1
K ×
∑K

k=1 S comp(Q j,Rk))

8: sort all Q j in Ldb in decreasing order and select top F as filtration result.

4.2.3 Algorithm for Calculating Similarity Between Labelled Unordered
Trees

In the filtration strategy, the similarity score S sim between two glycan structures is calculated

based on the comparison of two glycans from the database list and the de novo list respectively.

As mentioned in the section of Notations, a glycan is usually abstracted as a rooted labelled

unordered tree with degree less than or equal to four. In order to calculate similarity score,

we first compute the editing distance between two labelled unordered glycan trees, and then

convert the distance measure to a similarity measure.

Labelled unordered trees are rooted trees whose nodes are labelled and in which only

ancestor relationships are significant while the left-to-right order among siblings is not signifi-

cant. That is, the children of a node in a labelled unordered tree do not have an ordering [87].

There are three kinds of operations for unordered trees: (1) changing a node n means changing

the label on n; (2) deleting a node n means making the children of n become the children of the

parent of n and then removing n; (3) inserting n as a child of n′ will make n the parent of some
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subset of the current children of n′.

Suppose we have a numbering for each unordered glycan tree. Let t[i] be the ith node

of tree T in the given numbering. T [i] be the subtree rooted at t[i] and F[i] be the unordered

forest by deleting t[i] from T [i]. Let θ denote the empty tree and λ denote the null node. Let

T1, T2 be two trees, a is either λ or a label of a node in T1 and b is either λ or a label of a

node in T2. Three kinds of edit operations are considered, which are change (a → b), delete

(a→ λ), and insert (λ→ b). Let γ be a cost function that assigns to each edit operation a→ b

a non-negative real number γ(a→ b). We constrain γ to be a distance metric. That is,

1. γ(a→ b) ≥ 0; γ(a→ a) = 0

2. γ(a→ b) = γ(b→ a)

3. γ(a→ c) ≤ γ(a→ b) + γ(b→ c)

Let S be a finite sequence s1, s2, . . . , sk of edit operations. Then the editing distance

between two labelled unordered trees T1 and T2 is defined as follows,

d(T1,T2) = min
S
{γ(S )|S is a finite sequence ofedit operations transforming T1 to T2}

In addition, a triple (Me,T1,T2) is defined to be an editing distance mapping from T1 to

T2, where Me ⊂ [1 . . . |T1|] × [1 . . . |T2|] is any set of pairs of integers (i, j) satisfying: For any

pairs (i1, j1) and (i2, j2) in Me,

1. i1 = i2 if and only if j1 = j2 (one-to-one);

2. t1[i1] is an ancestor of t1[i2] if and only if t2[ j1] is an ancestor of t2[ j2] (ancestor order

preserved).
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Given S , a sequence s1, s2, . . . , sk of edit operations from T1 to T2, there exists a mapping

Me from T1 to T2 such that γ(Me) ≤ γ(S ) [87]. The relation between the editing distance and

the editing distance mapping is

d(T1,T2) = min
Me
{γ(Me)|Me is an editing distance mapping from T1 to T2}

In [87], Zhang et al. showed that the computation of the editing distance between un-

ordered labelled trees is NP-complete, even if the trees are binary trees with a label alphabet of

size two. Motivated by this, a new editing based distance between unordered trees is defined

in [88]. The intuitive idea of the new editing distance is based on a restriction of the mapping

between two trees, which is two separate subtrees of tree T1 should be mapped to two sepa-

rate subtrees in tree T2. Suppose a triple (M,T1,T2) is a restricted editing distance mapping

from T1 to T2, then any set of pairs of integers (i, j) should satisfy the following conditions.

First, for any pairs (i1, j1) and (i2, j2) in M, they satisfy the restrictions required in editing dis-

tance mapping. Second, for any triples (i1, j1), (i2, j2) and (i3, j3) in M, lca(t1[i1], t1[i2]) is a

proper ancestor of t1[i3] if and only if lca(t2[ j1], t2[ j2]) is a proper ancestor of t2[ j3], where lca

represents least common ancestor.

Based on the restricted mapping, the new editing based distance between T1 and T2 is

defined as follows,

D(T1,T2) = min
M
{γ(M)|M is a restricted editing distance mapping trasforming T1 to T2}

The algorithm we used to compute the editing distance between labelled unordered trees

T1 and T2 is similar to the algorithm proposed in [89]. The recursion functions used in the

algorithm are shown in Equation 4.7 and Equation 4.8.
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D(F1[i], F2[ j]) = min


D(F1[i], θ) + min

1≤s≤ni
{D(F1[is], F2[ j]) − D(F1[is], θ)},

D(θ, F2[ j]) + min
1≤t≤n j

{D(F1[i], F2[ jt]) − D(θ, F2[ jt])},

min
MM(i, j)

γ(MM(i, j)).

(4.7)

D(T1[i],T2[ j]) = min


D(T1[i], θ) + min

1≤s≤ni
{D(T1[is],T2[ j]) − D(T1[is], θ)},

D(θ,T2[ j]) + min
1≤t≤n j

{D(T1[i],T2[ jt]) − D(θ,T2[ jt])},

D(F1[i], F2[ j]) + γ(t1[i]→ t2[ j]).

(4.8)

In Equation 4.7, MM(i, j) is defined as a maximum matching on a restricted mapping

between F1[i] and F2[ j]. In [89], the computation of min
MM(i, j)

γ(MM(i, j)) was defined to be

the minimum cost maximum bipartite matching problem and reduced to the minimum cost

maximum flow problem by adding two empty trees to F1[i] and F2[ j] respectively. However,

in our glycan tree comparison problem, we use a more straightforward way to calculate this

value. We know in prior that the degree of a glycan tree is bounded by 4, thus we can simply try

every permutation between the children of t1[i] and the children of t2[ j] to find the minimum

cost for this case. Let ni and n j be the number of children of t1[i] and t2[ j] respectively and

suppose ni ≥ n j. There are totally P(ni, n j) permutations to be considered. One exemplary

permutation between F1[i] and F2[ j] can be seen in Figure 4.1. Compared with the original

algorithm of constructing a minimum cost maximum flow network, the simple idea of trying

every permutation is much easier to implement.

The editing based distance between two trees is a distance metric. To simplify our calcula-

tion, we then convert the distance metric into a similarity metric. The transformation proposed

in [90] was used. Let D(T1,T2) be the editing distance between tree T1 and T2, and θ is an

empty tree, then the similarity score S sim(T1,T2) between T1 and T2 can be calculated as fol-

lows,

S sim(T1,T2) =
D(T1, θ) + D(T2, θ) − D(T1,T2)

2
(4.9)

67



Figure 4.1: An example of permutation between F1[i] and F2[ j], where the two subtrees T2[ j1]
and T2[ j2] in F2[ j] are mapped to the two subtrees in F1[i] which can reach the minimum cost,
say T1[i2] and T1[i4] respectively, and all the other subtrees in F1[i] are deleted.

4.2.4 Complexity Analysis

In Algorithm 5 that computes the editing based distance, the complexity of computing D(T1[i],T2[ j])

is bounded by O(ni + n j). In our case, ni and n j both are less or equal to 4, therefore the to-

tal times of calculation is not larger than 8. The complexity of computing D(F1[i], F2[ j]) is

bounded by O(ni + n j) plus the complexity of trying every permutation in case 3 of Equation

4.7, whose value is bounded by 24 = P(4, 4). Hence for any pair i and j, the complexity of

computing D(T1[i],T2[ j]) and D(F1[i], F2[ j]) is bounded by 40 = 8 + 8 + 24, and this can be

denoted as a constant C(C ≤ 40). Therefore the complexity of our algorithm for computing

editing based distance is O(C × |T1| × |T2|). To sum up, the time complexity for the filtration

in total is O(n × m × C × |T1| × |T2|)), where n is the size of glycan candidates from glycan

database, and m denotes the size of the glycan list from de novo sequencing.
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4.3 Experiments and Results

Based on the proposed approach, we have developed a software program, GlycoNovoDB, for

glycan structure identification from HCD glycopeptide spectra. For each spectrum, the top 20

scored glycans were reported as the final candidates, i.e., F = 20.

4.3.1 Datasets

The glycopeptide samples used in the experiments were derived from three kinds of pro-

tein samples: Alpha-1-acid glycoprotein of Bos taurus (Bovine), Ovomucoid of Gallus gallus

(Chicken), and Ig gamma-3 chain C region of Homo sapiens (Human). Experiments were car-

ried on a Thermo Scientific Orbitrap Elite hybrid mass spectrometer and HCD fragmentation

technique was used.

The software tool GlycoMaster DB [16] and our previously proposed de novo sequencing

algorithm [24] were used for comparison. GlycoMaster DB can analyze mass spectra produced

with HCD fragmentation and identify N-linked glycans by searching against the glycan struc-

ture database GlycomeDB [72]. Our previous method doesn’t use any database knowledge, it

can also identify glycans from spectra effectively with an accuracy rate of 89.13% if top two

ranked glycans are deemed correct. The performance of these two methods as well as our new

developed program will be tested on the same dataset.

Our experimental dataset contains 46 HCD spectra of glycopeptides, which were identi-

fied by GlycoMaster DB from the collected 1168 MS/MS spectra. The reported glycan struc-

tures were used to benchmark the performance of our proposed methods.
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Table 4.1: Performance of de novo sequencing method and GlycoNovoDB compared with
GlycoMaster DB

Rank1 De Novo Sequencing Method GlycoNovoDB
Number Percentage(%) Number Percentage(%)

1 40 86.96 45 97.83
2 1 2.17 1 2.17
3 1 2.17 0 0.00

4 ∼ 10 1 2.17 0 0.00
> 10 2 4.35 0 0.00

can’t find 1 2.17 0 0.00

4.3.2 Experimental Results

For each MS/MS spectrum in the dataset, GlycoMaster DB reported 10 glycan candidates with

highest score. Among these results, the top ranked glycan structure was treated as the reference

structure in our experiment. The reference structure was compared with all the results reported

by our de novo sequencing algorithm as well as our new approach GlycoNovoDB. Table 4.1

shows the ranking status of reference structures observed in our reported results for those 46

MS/MS spectra.

From Table 4.1, we can see that there are 40 glycans with highest scores generated by

our previous de novo sequencing method have the same structures as those top-ranked glycans

interpreted by GlycoMaster DB. While compared with our new method, GlycoNovoDB, 45

glycans ranked at the first place reported by GlycoMaster DB are also ranked top by our new

method. In our previous de novo sequencing method, there is one entry that the reference gly-

can structure cannot be observed in the reported result. However, all the reference structures for

each given spectrum can be identified by GlycoNovoDB and ranked at least top two. In general,

it it easy to see that our new proposed approach, GlycoNovoDB, can provide results with much

higher accuracy than the previous de novo sequencing method. The reasons are obvious. One

1”Rank” refers to the ranking status of the reference structure (the top glycan structure reported by Glyco-
Master DB) in our results for a spectrum.
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is that the glycan database can provide relatively reliable glycan structure information that can

improve the accuracy of the identification results. Another reason may be that although for sev-

eral spectra, their reference glycan structures identified by GlycoMaster DB are not ranked the

first place in our de novo sequencing results, the glycans constructed by our previous method

with higher score are only partially different from the related reference structures [24]. In this

case, with the support of our de novo sequencing results, the glycan candidates selected from

the database can be filtered efficiently and a better result can be reached.

For the 46 HCD spectra of glycopeptides, there are 6 spectra that GlycoMaster DB re-

ported more than one top-ranked glycan structures with the same score, which means there

are several different glycan structures sharing the same highest score that cannot be distin-

guished. However, this did not happen in our program GlycoNovoDB. By interpreting each

mass spectrum manually, there indeed exists some evidence that GlycoNovoDB can report

more confident results than GlycoMaster DB. One example can be seen in Figure 4.2. The two

glycan structures shown in the figure are interpreted from the same spectrum and both ranked

top with the same score in GlycoMaster DB result. While in our result, glycan (a) has higher

score than glycan (b) and is ranked the first place. By investigating the ion fragments of these

two glycans and comparing them with the peaks in their associated spectrum, we have found

that there is one peak at m/z 569.221 with intensity 2192.233, which can be interpreted as an

ion consists of residues of two HexNAc (�) and a Hex (©). From the two glycans shown in

Figure 4.2, it can be seen that glycan (a) is easy to generate a b-ion corresponding to that peak,

as shown in the dotted rectangle. However, in order to produce the same peak, glycan (b) needs

three cleavages to generate an internal ion, which is much more difficult. Therefore, we believe

that glycan (a) is more likely to be the correct glycan structure for the given spectrum.
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Figure 4.2: An example of glycans identified from the same spectrum that share the same top
score in the results reported by GlycoMaster DB. However, in the results of GlycoNovoDB,
glycan (a) is ranked higher than glycan (b).

4.4 Recent Improvements

Database search method is an extensively studied method for proteomics research. However,

its application is limited currently due to the incompleteness of glycan databases. De novo

sequencing method normally relies on high quality spectra but can potentially provide glycans

that are not included in the glycan database. In the previous sections of this chapter, we have

demonstrated a new method for glycan identification from HCD glycopeptide spectra by inte-

grating the de novo sequencing results in the database search framework. Experimental results

showed that the proposed method can identify glycan structures with high accuracy. Although

this new method utilized the de novo sequencing results to improve the accuracy rate of glycan

identification, the glycans are selected directly from database. It means that if a glycan struc-

ture is not included in the database, we can never correctly identify it by interpreting its mass

spectrum. Even if the true glycan structure is generated by our de novo sequencing method,

the new database search method can only output some database glycan structures which are

similar to the true glycan structure. Therefore, we will further combine de novo sequencing
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method and database search method by merging the two sets of candidates together and de-

signing more efficient scoring function to identify glycans that are in the database with high

accuracy or provide new glycan structures that are not in database confidently.

4.4.1 Methods

In the de novo sequencing method proposed in Chapter 3, each glycan candidate is constructed

from root to leaves in a heuristic manner by utilizing the quality peaks in the higher mass end

of the HCD MS/MS. On one hand, the construction process does not rely on any knowledge of

glycan database, thus the glycan candidates generated from de novo sequencing method may

contain novel glycan structures. On the other hand, the glycan candidates selected from glycan

database by GlycoNovoDB have high accuracy with the assistance of structure information

when the correct structure is indeed included in the database. Our main idea is to combine the

two sets of candidates acquired from de novo sequencing method and database search method

together, and then evaluate the score of each candidate using the same scoring function to find

out the glycan structure that is best matched with the given spectrum.

In order to evaluate all the glycan candidates fairly and effectively, a strict scoring function

should be designed. The fragment ion types we considered here are Y-ions, B-ions, and internal

ions. The score function used to calculate the score for a fragment ion matched by a peak is the

same as Equation 4.3. Then the scoring function to evaluate to what extent a candidate glycan

structure matches with the given spectrum is generally based on the summation of all theoretic

fragment ion scores of the glycan structure. We also consider the percentage of matched peaks

among all the peaks in the spectrum. Equation 4.10 calculates the score of a glycan structure

T matched with a spectrum.
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S imp(T ) = (α
∑

f (mBi, hBi) + β
∑

f (mY j, hY j) + θ
∑

f (mIk, hIk)) ×
Nmatch

Nall
(4.10)

In Equation 4.10, the function f (m, h) is the same as the one defined in Equation 4.3.

(mB, hB), (mY , hY), and (mI , hI) represent B-ion, Y-ion, and internal fragment ion respectively.

Nmatch denotes the number of peaks that matched with ions, and Nall is the total number of the

peaks in the spectrum. The parameters α, β, θ are used to adjust the relative weight of different

ion types, since a certain fragment technique usually does not produce the same amount of dif-

ferent fragment ions. Here, α, β, and θ are empirically set to be 0.5, 1.0, and 0.25 respectively.

Given a spectrumM, a glycan database D, the improved method for glycan identification

proceeds as follows,

1. Use the de novo sequencing algorithm to generate a list of candidates, and select top 20

ranked glycan into the sorted list Cnovo.

2. Use the database search method GlycoNovoDB to generate the glycan candidates from

database D. Similarly, top 20 ranked glycans will be selected into the list Cdb.

3. If the two top ranked glycans in Cnovo and Cdb have the same structure, then we treat this

glycan structure as the one that is best matched with the given spectrum and output as

the result.

4. Otherwise, the theoretical fragment ions of each glycan candidate in the list Cnovo and

Cdb will be considered. By matching the fragment ions against the peaks in the spectrum

M, the score of each candidate can be calculated according to Equation 4.10.

5. Sort all the glycan candidates according to its score S imp. If the top ranked glycan is

from the list Cdb, it is treated as the correct structure for the given spectrum. Otherwise,
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we believe that the database may not contain the correct glycan structure associated with

M, and our de novo sequencing results provide a good reference.

4.4.2 Experimental Results

The dataset we used to test the performance of this improved method is the same as the one

used in the experiment for testing GlycoNovoDB. The dataset contains 46 HCD spectra of

glycopeptides, which were identified by GlycoMaster DB from the collected 1168 MS/MS

spectra.

Among all these 46 spectra of glycopeptides, there are 40 spectra that de novo sequencing

algorithm and GlycoNovoDB reported the same top-ranked glycan structure for each spec-

trum. Thus we believe that these 40 spectra are confidently interpreted. The glycan structure

identified for each spectrum is treated as the correct glycan that is associated with the given

spectrum.

For the left 6 spectra in the dataset, there are two spectra for which the glycans identified

by GlycoNovoDB have higher scores than those reported by the de novo sequencing algorithm

in the new scoring system. Figure 4.3 and 4.4 show the glycan structures reported by Gly-

coNovoDB and de novo sequencing method for each of the two spectra respectively. As shown

in Figure 4.3, the two glycan structures are interpreted from the same spectrum. Glycan (a) is

identified by GlycoNovoDB while glycan (b) is identified by the de novo sequencing algorithm,

and glycan (a) has higher score than (b) after calculation based on the same scoring function.

By checking their associated mass spectrum manually, we believe that this result is meaning-

ful. In the spectrum, there is one peak at m/z 569.2213 with intensity 2844.5134, which can

be interpreted as an ion consists of residues of two HexNAc(�) and a Hex (©). From the two

glycan structures shown in Figure 4.3, it can be seen that glycan (a) is more likely to generate a
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B-ion corresponding to that peak, which is circled in the dotted rectangle. There exists a peak

at m/z 772.30096 in the spectrum, which can be considered as a support for the ion shown in

the dotted rectangle in glycan (b). However, the intensity of that peak is only 51.14829. After

normalization by dividing the intensity of highest peak (117376.984), it is scaled to 0.043576,

which is less than the threshold hth = 0.5. Thus there would be a penalty score assigned to that

peak, which may reduces the score of the glycan structure (b).

Figure 4.3: Comparison of the two glycan structures identified from the same spectrum by
GlycoNovoDB and de novo sequencing algorithm respectively. Glycan (a) identified by Gly-
coNovoDB has higher score than glycan (b) which is reported by de novo sequencing method.

Similar to Figure 4.3, Figure 4.4 shows another example that the glycan structure identi-

fied by GlycoNovoDB has higher score than the one identified from the same spectrum by the

de novo sequencing method. By investigating the theoretical ion fragments of the two glycans

shown in Figure 4.4 and comparing them with the peaks in their corresponding spectrum, it

can be found that there is a peak at m/z 325.1133 with intensity 145.17714. This peak can be

interpreted as an ion consists of residues of two Hex (©), which is more likely to be a B-ion

as shown in the dotted rectangle in glycan (a). While for the glycan (b) shown in the figure, it

will require at least two cleavages to generate such ion fragment. Besides, glycan (b) is quite

possible to generate a B-ion which has three residues of Hex (©), but we can not find any peak

can support this fragment ion, since there is no peak at m/z 487.1662.
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Figure 4.4: Another example of two glycan structures identified from the same spectrum by
GlycoNovoDB and de novo sequencing algorithm respectively. Glycan (a) identified by Gly-
coNovoDB has higher score than glycan (b) which is reported by de novo sequencing method.

For the other four spectra of glycopeptide in the dataset, the glycan structures identified

by de novo sequencing method have higher scores than those identified by GlycoNovoDB.

Figure 4.5 shows the structures reported by the two methods for each spectrum. In the figure,

each pair of glycan structures in the same row are reported for the same spectrum. The first

glycan in each row is identified by de novo sequencing algorithm with highest score. The

second glycan in each row is reported by GlycoNovoDB. By comparing the glycan structures

in each row, we can find that the two glycans in the same row are only partially different.

Empirically, it is hard to tell which one is the correct glycan associated to the given spectrum,

but the structures reported by the de novo sequencing algorithm indeed have highest score

according to the new scoring function. It also means that the structures constructed by the de

novo sequencing algorithm match better with the given spectra than those selected from the

database. Experts may be able to utilize some known biochemistry rules to select the better

glycan structures according to the results. We believe that the results provide a good reference

for the biochemists to find glycans that are not included in the current glycan database.
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Figure 4.5: Comparison of four pairs of glycan structures in the case that glycans identified by
de novo sequencing algorithm are ranked top according to the Function 4.10. The first glycan
in each row (i.e. a1, b1, c1, d1) is reported by de novo sequencing method, while the second
glycan in each row (i.e. a2, b2, c2, d2) is ranked top in the results reported by GlycoNovoDB.

4.5 Conclusion

In this chapter, we established a mathematical model for glycan database search problem and

proposed a method for glycan structure determination from HCD glycopeptide spectra by uti-

lizing our de novo sequencing results in the database search framework. The method proceeds

as follows. First, the mass of peptide attached to the glycan was determined from each spec-
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trum. Then we extracted all of the N-linked glycans from the glycan structure database Gly-

comeDB and generate glycan candidates that satisfy the mass constraint. Moreover, the glycan

candidates were filtered by incorporating the de novo sequencing results obtained from our

previously proposed algorithm. The algorithm for calculating editing based distance between

unordered labeled trees were used to compute the similarity between two glycan structures

from database and de novo sequencing results respectively.

The proposed approach was implemented as a software program GlycoNovoDB. The per-

formance of GlycoNovoDB was compared with the software GlycoMaster DB and our previ-

ously designed de novo sequencing algorithm by identifying glycan structures from 46 HCD

tandem mass spectra of N-linked glycopeptides. Experimental results showed that our new

proposed method has higher accuracy rate than de novo sequencing method. Besides, Gly-

coNovoDB provides more meaningful results than GlycoMaster DB, since it can distinguish

the multiple glycans reported by GlycoMaster DB with the same highest score more efficiently.

To take the advantages of de novo sequencing method and database search method effi-

ciently, we further combined the two methods together. The improved method is to identify

glycans that are in the database with high accuracy and provide new glycans that are not in the

database in some cases. In the improved method, the two sets of glycan candidates obtained

from de novo sequencing algorithm and GlycoNovoDB were merged together and compared

according to their scores calculated by a single scoring function. Experimental results showed

that the improved method has the ability to determine glycan structures from mass spectra with

high confidence. In the case that the true glycan structure may be not included in the current

database, this method can also provide a meaningful structure as a good reference.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Glycan characterization is an important topic in glycoproteomics research. It provides essential

information to study the function of glycoproteins. With the development of mass spectrome-

ters, mass spectrometry has gradually become one of the dominant techniques for determining

glycan and glycopeptide primary structures. Interpreting massive and various mass spectral

data manually is time consuming and tedious. Therefore it is necessary to develop software

packages to automate the identification of glycan structures from mass spectral data. In the

past, due to the mass range limitation, peptides and their attached glycans are usually separated

before mass spectrometry analysis. In this kind of approach, glycans and peptides are analyzed

individually, and the information from glycosylation sites is discarded. Alternatively, a differ-

ent approach is to characterize intact glycopeptides by tandem mass spectrometry. Analysis of

intact glycopeptides is a promising method for glycan and peptide identification as well as gly-

cosylation site determination, since the glycosylation site information is conserved in the intact

glycopeptide. Compared with traditional peptide sequencing from MS/MS, glycan identifica-

tion is a much more challenging problem. The primary reason is that the structure of glycans

is two-dimensional and the biosynthesis of glycans is a non-template driven process. There is
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currently an increasing necessity for developing effective computational methods for the char-

acterization of glycan from mass spectra. In this thesis, we conducted research regarding the

identification of glycan structures from tandem mass spectra on two different but correlated

topics: glycan de novo sequencing, and glycan identification combining de novo sequencing

with database search.

Nowadays, the accuracy and resolution of the instruments is getting better, and there is

great flexibility to choose different techniques in an experiment. Thus, it is theoretically pos-

sible to design more efficient algorithm to improve the accuracy of de novo sequencing. This

inspired us to design a novel heuristic algorithm for glycan identification from HCD spectra,

which described in Chapter 3. A mathematical model for the glycan de novo sequencing prob-

lem is represented as a tree construction problem. According to the algorithm, each glycan tree

is constructed from root (peptide) to leaves in a heuristic manner by utilizing the quality peaks

in the higher mass end of the mass spectra. A re-evaluation scheme is also applied to filter the

candidate glycans to reduce the examination space of candidates. The comparison between our

de novo sequencing algorithm and the database search method, GlycoMaster DB, shows that

our proposed algorithm can effectively identify glycans from MS/MS, and its performance is

comparable with GlycoMaster DB with regarding to accuracy.

Compared with the de novo sequencing method, database search method has the possi-

bility to identify glycans from MS/MS with higher accuracy. Conventionally, database search

is quite a successful approach for peptide sequencing. However, it is not so effective when

applying to glycan identification, since the glycan databases are not quite complete yet. The

algorithm proposed in Chapter 3 provides some partially correct glycan structures, and these

partially correct results can be applied in database search method to assist the filtration of

tentative candidates. The methods proposed to determine glycan structures in Chapter 4 are

executed based on combining database search and de novo sequencing together. We establish

a mathematical model for the glycan database search problem and propose GlycoNovoDB for
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glycan identification by integrating the preliminary de novo sequencing results in the database

search framework. The de novo sequencing results provide a way to score and rank the glycan

candidates extracted from the glycan database. The algorithm for calculating editing based dis-

tance between unordered labelled trees is used to compute the similarity between two glycan

structures from the database and de novo sequencing results respectively. Experiments shows

that GlycoNovoDB can achieve a higher accuracy rate than the de novo sequencing method

shown in Chapter 3, and provide more meaningful results than GlycoMaster DB. In order to

identify glycans that are in the database with high accuracy as well as provide new glycans

that are not in the database with confidence, we further combine database search method and

de novo sequencing method together. In the improved method, the glycan candidates obtained

from the de novo sequencing algorithm and GlycoNovoDB are merged together and ranked

according to a revised scoring function. Experimental results show that the improved method

can provide some meaningful structures as reference when the true glycan structures are not

included in the database.

5.2 Future Work

The research on the characterization of glycan structures with tandem mass spectrometry re-

mains challenging even with the progress we achieved in this research. The proteomics com-

munity will have to continue to work on the problem before we are able to discover the under-

lying knowledge. For the general area of glycoproteomics, our future work will be focusing

on providing effective algorithmic solutions for the computational challenges described in the

following section.

First, in this research we have proposed two approaches for the purpose of glycan struc-

ture determination from HCD mass spectra which includes glycan structure de novo sequenc-

ing and de novo assisted database search. However, for the de novo sequencing method, we
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have observed that some of the top ranked structures do not conform to the biochemical rules.

Under such circumstances, we can adopt a non-computational method which is to consult the

researchers with biochemistry expertise to help determining the final decision of choosing the

structure with the most likelihood, while another possible computational method that may be

useful is to fully utilize the structural information from the glycan structure database. As we

have established in our model, the glycan structure is treated as a tree and each node in the

tree is constrained to have a maximum number of four children. In our previous method, we

actually neglected the importance of the connection tendency between a pair of monosaccha-

rides, and we believe the fact that one type of monosaccharide tends to connect to another type

of monosaccharide with different possibilities due to the underlying biochemical properties. A

feasible way to deal with the connection tendency is to make a statistical calculation based on

the given glycan structure database in order to find the connecting frequencies (or probabilities)

between each pair of monosaccharide residues. Such statistical information can form a matrix

similar to that of the BLOSSUM matrix of amino acids which can be used to assist the process

of reconstructing the glycan structure or to re-rank the structures reported with the same score

by the algorithm.

Second, in the conventional shotgun proteomics research for peptide identification, a pri-

mary task the researcher is faced with is to distinguish incorrect from correct identification

results after they are reported. Similarly, in our current problem of interpreting MS/MS spectra

of glycopeptides, effective validation methods for estimating the incorrect glycan structures are

indeed necessary for the successful analysis of large-volume glycoproteomics data. Nowadays,

the Target-Decoy Database method is widely used to validate the results by providing statistical

estimations on the False Discovery Rate (FDR) at a certain score threshold. For the purpose of

identifying the glycan structures from database, we can apply a similar target-decoy strategy

for estimating the level of uncertainty in our reported results. Methods for such a purpose are

considered to be necessary especially in the case that large-scale mass spectral datasets are used
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as an input and manual examination of individual glycan-structure matches (GSM) become im-

practical. The decoy glycan structure database being constructed should have a similar number

of glycan structures, similar glycan structure mass distribution, and similar monosaccharide

residue distribution as the target glycan structure database. A possible and straightforward way

of generating such a decoy structure database is to label each of the glycan structures in the

target database in some kind of order, for instance post order, and then reverse or shuffle the

order of all the monosaccharides to form a new glycan with the same kind of tree structure. The

newly generated structure will have the same number of monosaccharides, the same theoretical

mass values, and more importantly, will generate the same number of subtree structures as the

original target structure. After constructing the decoy glycan database, the next step we will do

is to search the input MS/MS spectrum against both the target database and the decoy database

to determine the likelihood of the correctness of the reported result. A general guideline is that

if for a specific input spectrum, the top ranked glycan structure from the target database has a

smaller score than the top ranked glycan structure from the decoy database, then we will count

it as a false discovery. In the final step, only the structures from target dataset with scores above

a specifically determined threshold will be reported as the trustworthy results.
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