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Abstract 

The current National Building Code of Canada (NBCC) recommends a wind load factor of 1.4 

and the nominal wind velocity pressure corresponding to a 50-year return period value of the 

annual maximum hourly-mean wind speed, VAH.  This study is focused on mapping wind hazard 

for Canada and on calibrating the required design wind load to improve reliability consistency of 

designed structures. 

Extreme value analysis of VAH was carried out by considering surface wind observations from 

approximately 1300 stations.  The results indicate that the spatial trends of the estimated mean of 

VAH are similar whether the data from stations with at least 20 or 10 years’ useable wind 

observations are considered, but the small sample size affects the spatial variations of the 

coefficient of variation (cov) of VAH.  The estimated 50-year return period values of VAH based on 

the at-site analysis differ from those inferred from two previous versions of the NBCC, and the 

differences persist if the estimates were obtained by using the region of influence approach.  

Potential reasons for the discrepancy were elaborated. 

It was shown that an improved reliability consistency can be achieved if a wind load factor of 

1.0 is employed and the nominal wind velocity pressure is assigned using the 500-year return 

period value of VAH.  It is also shown that a further improvement of the reliability consistency can 

be achieved if a variable return period as a function of cov of VAH is used to assign the nominal 

wind velocity pressure. 

 

Keywords: Annual maximum wind speed, Code calibration, Design code, Design wind velocity 

pressure, Extreme value analysis, Reliability analysis, Target reliability index, Wind hazard 

mapping 
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Chapter 1 Introduction 

 

1.1   Introduction and background 

The results of wind hazard assessment are used as the basis to assign wind load for design new 

structures and assessing existing structures and infrastructure systems. Return period values of the 

annual maximum hourly-mean wind speed, VAH, are employed to assign reference wind velocity 

pressure in the National Building Code of Canada (NBCC).  The T-year return period value of VAH 

is defined as the value of VAH such that its corresponding probability of exceedance equals 1/T.  

The wind velocity pressure is used to evaluate the design wind load according to 

w e g pp I qC C C  (1.1) 

here p is the specified external pressure caused by wind acted in a direction normal to the surface 

of the structure (as a pressure directed towards or as a suction directed away from the surface), Iw 

is the importance factor for wind load, q is the reference velocity pressure, Ce is the exposure 

factor, Cg is the gust effect factor and Cp is the external pressure coefficient averaged over the area 

of the surface considered. 

The current NBCC recommends a wind load factor of 1.4 and the nominal wind velocity 

pressure corresponding to 50-year return period value of VAH. 

Some relevant information on the evaluation of the return period value of the annual maximum 

wind speed can be found in Yip and Auld (1993), Yip et al. (1995), Morris (2009), and Hong et 

al. (2014).  Yip and Auld (1993) and Yip et al. (1995) described the update to the reference wind 

pressures implemented in the NBCC-1995 (NRCC 1995).  The Gumbel distribution was used to 

fit the annual maximum wind speed by using the method of moments (MOM).  More specifically, 
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they used wind records from 233 stations each with at least 10 years of data to estimate the 30-

year return period value of the annual maximum wind speed by adopting the Gumbel model fitted 

using the MOM.  A wind hazard map was plotted based on the 30-year return period value of the 

annual maximum wind speed estimated using the at-site statistics of the wind.  The wind speeds 

at locations tabulated in the NBCC were extracted from the map.  To estimate extreme wind speed 

for return period T other than 30 years, they introduced a ratio of the standard deviation to the 30-

year return period value of the annual maximum wind speed, and assumed that the ratio can be 

approximated by a constant for all stations considered.  The error caused by using 30-year return 

period values of the annual maximum wind speed and this constant ratio to estimate the return 

period value other than 30 years (e.g., 10 and 100 years) depends on T and the actual statistics of 

the annual maximum wind speed at a considered site (Hong et al. 2014). 

Companion-action load combinations were adopted in the NBCC-2005 and the 50-year return 

period value of the wind velocity pressure coupled with a wind load factor of 1.4 was 

recommended in the NBCC-2005 (Bartlett et al. 2003a, b).  The 50-year return period values of 

the wind velocity pressure were calculated based on their corresponding 30-year values 

recommended in the NBCC-1995 and by considering that the annual maximum wind speed is a 

Gumbel variate.  The reference wind velocity pressures were updated for the NBCC-2010 by 

fitting the Gumbel distribution to the annual extreme wind speed using the MOM.  For the 

updating, it was assumed that a constant cov of the annual maximum wind speed equal to 0.124 

could be adequate for all the meteorological stations considered (Morris 2009).  A comparison of 

the 50-year return period value of annual maximum (hourly-mean) wind speed, vAH-50, inferred 

from the NBCC-2010 and NBCC-2005 (Hong et al. 2014) indicated that there are significant 

changes in vAH-50 for some locations common in these two editions of the code.  The largest 
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decrease in the NBCC-2010 as compared to the NBCC-2005 is about 30%; the largest increase is 

less than 10%; the majority of changes are within 10%; two relatively high wind regions in the 

Northwest Territories and Nunavut in the NBCC-2005 are eliminated in the NBCC-2010; a series 

of continuous “consistent” wind speed regions from east to west of the country shown in the wind 

map inferred from the NBCC-2010 was not present in the map inferred from the NBCC-2005.  It 

was considered that these differences are partly due to the use of a constant cov to develop vAH-50 

for the NBCC-2010. 

A wind hazard mapping for Canada was carried out based on the annual maximum wind speed 

from more than 230 stations, where at least 20 years of useable data are available from each station 

(Hong et al. 2014).  They also applied the Akaike Information Criterion (AIC) (Akaike 1974) and 

concluded that the Gumbel distribution is preferable than the generalized extreme value 

distribution (GEVD) for more than 70% of cases.  The consideration of at least 20 years of useable 

data was aimed at reducing the statistical uncertainty in the estimated wind hazard due to small 

sample size, although it is inconsistent with the attitude taken in develop wind hazard for previous 

versions of the code.  The wind hazard maps in Hong et al. (2014) were developed based on the 

at-site analysis results (i.e., results from the extreme value analysis of the annual maximum wind 

speed at each meteorological station with suitable surface wind observations).  It was shown that 

there are discrepancies between their estimated vAH-50 and those inferred from the NBCC-2005 and 

NBCC-2010.  In an attempt to further investigate the wind hazard at Canadian sites and to further 

reduce the effect of small sample size to estimate return period values of the annual maximum 

wind speed, the use of regional frequency analysis (Hosking and Wallis 1997) for wind hazard 

mapping was presented by Hong and Ye (2014).  Comparison of the vAH-50 values estimated based 

on the regional frequency analysis to those obtained from the at-site analysis indicated that they 
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are in good agreement, especially if the Gumbel model is used.  One of the major disadvantages 

of using the wind records from a station with at least 20 years of useable data is that the valuable 

information from a station with less than 20 years of useable data is neglected for wind hazard 

mapping. Therefore, the density of the spatial distribution of the potentially available 

meteorological stations with valuable wind records is reduced for wind hazard mapping.  In 

addition, it is unknown if the consideration of the stations, each with less than 20 years of useable 

data, could affect the estimated return period value of the annual maximum wind speed in the 

regional frequency analysis and wind hazard mapping. 

It must be emphasized that the recommended wind load factor of 1.4 and the nominal wind 

velocity pressure corresponding to 50-year return period value of the annual maximum hourly-

mean wind speed, VAH, in the NBCC (NRCC 2005, 2010) are calibrated based on a typical 

coefficient of variation (cov) of VAH for a (50-year) target reliability index of 3.0 (i.e., failure 

probability of 1.35×10-3) (Bartlett et al. 2003a, b)  However, the cov of VAH is geographically 

varying and ranges from 0.05 to 0.3; the reliability indices of the structures designed according to 

the current code is sensitive to the cov of VAH at the construction site (Hong et al. 2016). This is 

partly because the wind load is proportional to the square of VAH, resulting in that the cov of the 

wind load equals about twice of the cov of VAH if all other variables involved in evaluating the 

wind force are treated deterministically. Moreover, although the use of a specified return period 

value of the wind velocity pressure and a calibrated wind load factor given a cov of VAH can lead 

to a target reliability, such a set of specified values and wind load factors is not unique. In fact, if 

the resulting factored design wind loads for different sets of specified values and wind load factors 

are the same, the same target reliability can be achieved. In addition, it is noted that the ASCE-7-

10 adopts a wind load factor of 1.0 with the design wind speed estimated using a return period, T, 
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of 700 years for the strength design of Category II structures (Vickery et al. 2010; Cook et al. 

2011). 

The above background information raises questions as to whether the design wind load 

requirements could be modified to improve the reliability consistency of codified design under 

wind load. 

 

1.2   Research objectives and thesis outline 

There are two main objectives for the proposed study which are listed below:  

1) Evaluate and map wind hazard for Canada using surface wind observations. 

2) Calibrate required factored design wind load considering the geographically varying wind 

climate (i.e., geographically varying coefficient of variation of the annual maximum hourly-

mean wind speed). 

For the evaluation and mapping of wind hazard, surface wind observations from Environment 

Canada for approximately 1300 stations are processed and adjusted by exposure and height.  Data 

from stations, each with at least 10 years of usable data are employed.  The wind hazard assessment 

was carried out using the at-site analysis and region of influence approach.  For the analysis, only 

the winds due to synoptic winds are considered; the winds caused by high intensity wind events 

such as downbursts and tornados are excluded from the analysis.  This is justified since the winds 

due high intensity wind events are not considered in the current National Building Code of Canada.  

For the calibration, the commonly employed first-order reliability method (Madsen et al. 2006) 

is employed, and a selected target reliability index consistent with that used to develop current 

design code is considered.  The selected target reliability index is based on that employed to 

calibrate the current design code (Bartlett et al. 2003a, b). The original contributions presented in 
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this thesis are 1) developed Canadian wind hazard map based on at-site analysis and regional of 

influence approach, and 2) calibrated the required design wind load that can be easily implemented 

in the design code to achieve improved reliability consistency. 

The tasks carried out to achieve the first objective are presented in Chapter 2, and those to 

achieve the second objective are descried in Chapter 3.  Finally, a summary of concluding remarks 

is presented in Chapter 4.  Also, some potential future studies are suggested. 

Chapter 2 contains part of a manuscript (co-authored by H.P. Hong) to be submitted for possible 

publication; Chapter 3 contains part of a manuscript (co-authored by P. Hong and H.P. Hong) to 

be submitted for possible publication. 
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Chapter 2 At-site Analysis and Regional of Influence 

 

2.1   Introduction 

Wind loads recommended in the structural design codes are often developed using extreme 

value analysis results from the surface wind observations.  In particular, the reference wind 

velocity pressures implemented in the National Building Code of Canada (NBCC) prior to, and 

including, 1990 can be found in NRCC (1990).  Estimates of the 10-, 30- and 100-year return 

period values of the annual maximum wind velocity pressures were provided; these return period 

values were calculated based on the return period values of the annual maximum wind speed.  It 

was further indicated that the Gumbel probability distribution fitted by the least-squares method 

was used for the annual maximum wind speed. 

Yip and Auld (1993) and Yip et al. (1995) described the update to the reference wind pressures 

implemented in the NBCC-1995 (NRCC 1995).  Again, the Gumbel distribution was used to fit 

the annual maximum wind speed but using the method of moments (MOM).  More specifically, 

they used wind records from 233 stations each with at least 10 years of data to estimate the 30-

year return period value of the annual maximum wind speed by adopting the Gumbel model fitted 

using the MOM.  A wind hazard map was plotted based on the 30-year return period value of the 

annual maximum wind speed estimated using the at-site statistics of the wind.  The wind speeds 

at locations tabulated in the NBCC were extracted from the map.  To estimate extreme wind speed 

for return periods T other than 30 years, they introduced a ratio of the standard deviation to the 30-

year return period value of the annual maximum wind speed, and assumed that the ratio can be 

approximated by a constant for all stations considered.  The error caused by using a 30-year return 

period value of the annual maximum wind speed and this constant ratio to estimate the return 
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period value other than 30 years (e.g., 10 and 100 years) depends on T and the actual statistics of 

the annual maximum wind speed at a considered site (Hong et al. 2014). 

The companion-action load combinations were adopted in the NBCC-2005, and the 50-year 

return period value of the wind velocity pressure coupled with a wind load factor of 1.4 was 

recommended in the NBCC-2005 (Bartlett et al. 2003).  The 50-year return period values of the 

wind velocity pressure were calculated based on their corresponding 30-year values recommended 

in the NBCC-1995 and by considering that the annual maximum wind speed is a Gumbel variate.  

The reference wind velocity pressures were updated for the NBCC-2010 by fitting the Gumbel 

distribution to the annual extreme wind speed using the MOM.  For the updating, it was assumed 

that a constant cov of the annual maximum wind speed equal to 0.124 would be adequate for all 

of the meteorological stations considered (Morris 2009).  A comparison of the 50-year return 

period value of annual maximum (hourly-mean) wind speed, vAH-50, inferred from the NBCC-2010 

and NBCC-2005 (Hong et al. 2014) indicated that there are significant changes in vAH-50 for some 

locations common in these two editions of the code.  The largest decrease in the NBCC-2010 as 

compared to the NBCC-2005 is about 30%; the largest increase is less than 10%; the majority of 

changes are within 10%; two relatively high wind regions in the Northwest Territories and 

Nunavut in the NBCC-2005 are eliminated in the NBCC-2010; a series of continuous “consistent” 

wind speed regions from east to west of the country shown in the wind map inferred from the 

NBCC-2010 was not present in that inferred from the NBCC-2005.  It was shown that these 

differences are partly due to the use of a constant cov to develop vAH-50 for the NBCC-2010. 

For the extreme wind hazard assessment, the Gumbel distribution, and the generalized extreme 

value distribution (GEVD) and the generalized Pareto distribution (GPD) are the most widely used 

probabilistic models (Peterka and Shahid 1998; Frank 2001; Sacre 2002; Holmes and Moriarty 
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1999; Kasperski 2002; Miller 2003; Hong et al. 2014; Mo et al. 2015).  If the Gumbel distribution 

is considered, the most often used distribution fitting methods include the MOM, the method of 

the maximum likelihood (MML), the method of L-moments (MLM) (Hosking 1990), the least-

squares method, and the generalized least-squares method (GLM) (also known as Lieblein-BLUE) 

(Lloyd 1952; Lieblein 1974).  The MOM, MLM and MML are also often used if the GEVD and 

GPD are considered.  The Gumbel distribution and GEVD are frequently adopted to fit the annual 

maximum wind speed, while the GPD is applied to the wind speeds over a threshold. 

For simplicity and to avoid the subjective selection of the threshold, a wind hazard mapping for 

Canada was recently carried out based on the annual maximum wind speed from more than 230 

stations, where at least 20 years of useable data are available from each station (Hong et al. 2014).  

They also applied Akaike Information Criterion (AIC) (Akaike 1974) and concluded that the 

Gumbel distribution is preferable than the GEVD for more than 70% of cases.  The consideration 

of at least 20 years of useable data was aimed at reducing the statistical uncertainty in the estimated 

wind hazard due to small sample size, although it is inconsistent with the attitude taken in develop 

wind hazard for previous versions of the code.  The wind hazard maps in Hong et al. (2014) were 

developed based on the at-site analysis results (i.e., results from the extreme value analysis of the 

annual maximum wind speed at each meteorological station with suitable surface wind 

observations).  It was shown that there are discrepancies between their estimated vAH-50 and those 

inferred from the NBCC-2005 and NBCC-2010.   

In an attempt to further investigate the wind hazard at Canadian sites and to further reduce the 

effect of small sample size to estimate return period value of the annual maximum wind speed, the 

use of the regional frequency analysis (Hosking and Wallis 1997) for wind hazard mapping was 

presented in Hong and Ye (2014).  For their analysis, the same data set used in Hong et al. (2014) 
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was considered; the k-means, hierarchical and self-organizing map clustering (Kohonen 2001; 

Hastie et al. 2001; Lin and Chen 2006) were used to explore potential clusters or regions; and 

statistical tests were then applied to identify homogeneous regions for subsequent regional 

frequency analysis.  It was concluded that the GEVD provides a better fit than the Gumbel 

distribution to the normalized data within a cluster, although the GEVD is associated with a low 

upper bound value that influences significantly the return period values with return period greater 

than 500 years.  Comparison of the vAH-50 values estimated based on the regional frequency analysis 

to those obtained from the at-site analysis indicated that they are in good agreement, especially if 

the Gumbel model is used. It was noteworthy that the use of cluster analysis to identify the climatic 

zones for other countries was also considered by Fovell and Fovell (1993) and Kruger et al. (2012). 

A major disadvantage of using the wind records from a station with at least 20 years of useable 

data is that the valuable information from a station with less than 20 years of useable data is 

neglected for wind hazard mapping. Therefore, the density of the spatial distribution of the 

potentially available meteorological stations with valuable wind records is reduced for wind hazard 

mapping.  In addition, it is unknown if the consideration of the stations, each with less than 20 

years of useable data, could affect the estimated return period value of the annual maximum wind 

speed in the regional frequency analysis and wind hazard mapping. 

The main objectives of this study were to compare wind hazard estimations based on the at-site 

analysis and regional approaches, to investigate the influence of including small number of annual 

maximum wind speed data from stations on the wind hazard mapping for Canada, and to assess 

the differences between the current wind hazard estimates to those inferred from the NBCC-2005 

and NBCC-2010.  For the analysis, information from approximately 1300 stations were 

considered, and the data from stations, each with at least 10 years of useable wind records, were 
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processed and analyzed. The consideration of 10 years of useable data was consistent with an 

earlier code development (Yip and Auld 1993, Yip et al. 1995).  It increased the task of the data 

processing since the wind measurements must be adjusted for exposure and height for them to 

represent those for a standardized condition stipulated in design codes.  The use of the cluster 

analysis together with the regional frequency analysis given in Hosking and Wallis (1997) as well 

as the region of influence analysis advocated by Burn (1990) was attempted.  Wind hazard maps 

based on the return period values of the annual maximum wind speed estimated using the 

considered approaches were developed and compared.  The comparison was extended to include 

the return period values of the annual maximum wind speed inferred from the NBCC-2005 and 

NBCC-2010.  Since the developed wind hazard maps based on the estimated vAH-50 may not comply 

with the code imposed requirements (e.g., a minimum design wind speed of 77.55 km/h is implied 

in the NBCC-2010), maps by considering a set of practical criteria were also presented. 

 

2.2   Surface wind observations 

The characteristics of the anemometer types operated in Canada and the types of wind data 

recorded at meteorological stations were presented in Yip et al. (1993), Yip and Auld (1995), and 

Hong et al. (2014).  The available wind speed records in Environment Canada (EC) HLY01 digital 

archive (see http://www.climate.weatheroffice.gc.ca/prods_servs/ documentation_index 

_e.html#hly01) were considered in this study.  The archive has been maintained by EC since 

January 1953, and only for some major Canadian airports the data tend to extend back to this date.  

The information on the anemometer site, including the history of anemometer height, location and 

instrumentation, was obtained from EC and used to assess the quality of wind data at each station 

(Morris 2013, private communication).  The locations of 1224 stations (each with at least more 

http://www.climate.weatheroffice.gc.ca/prods_servs/%20documentation_index%20_e.html#hly01
http://www.climate.weatheroffice.gc.ca/prods_servs/%20documentation_index%20_e.html#hly01
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than one year’s of data) where the wind records are available were shown in Figure 2-1a.  The 

empirical cumulative distribution of the record length at a station based on the considered stations 

was shown in Figure 2-1b, indicating that there are approximately 63% and 32% of the stations 

where each station has a wind record length greater than 10 and 20 years, respectively.  The 

maximum length of the wind record at a station is 58 years.  The wind measurements for some 

stations were not suitable for the purpose of wind hazard assessment for the standardized condition 

due to a variety of reasons, including the anemometer location (e.g., on the roof of a building) and 

frequency of observation.  In such cases, the wind measurements during the affected observation 

periods were removed from the dataset. 

 

Figure 2-1. Locations of the meteorological stations where wind speed records are available in EC 

HLY01 digital archive, and empirical cumulative distribution of the length of wind measurement 

period at each station: a) Spatial distribution of the stations, b) Empirical cumulative distribution 

of length of wind measurement period. 

 

Let nA denote the number of years of useable wind measurements at a station.  By considering 

that nA ≥ 10 or nA ≥ 20 was needed for a station to be included for the extreme value analysis of 
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the annual maximum wind speed, the number of identified stations were 620 and 236, respectively. 

As indicated in Hong et al. (2014), the wind records from 4 out of the 236 stations, each with nA ≥ 

20, are not reliable because they are affected significantly by local topographic conditions.  For 

improved spatial resolution they included three additional stations, each with at least 17 years of 

usable data, to improve the spatial resolution. To facilitated the comparison of the results with 

those given in Hong et al. (2014) and for simplicity of reference, data from these 235 stations (i.e., 

232+3) are referred to as the case with nA ≥ 20, even though nA is less than 20 for three of the 

stations.  Also, an analysis showed that the wind records from 36 out of the 384 stations with wind 

record length within 10 to 19 are not reliable because they are affected significantly by local 

topographic conditions or appear to report erroneously wind speeds as compared with those from 

nearby stations.  These resulted in the consideration of 583 stations identified in Figure 2-2 for this 

study. 

The adjustment of wind speed measurements at a station with nA ≥ 20 for anemometer height 

and for exposure was already carried out in Hong et al. (2014).  The adjusted for anemometer 

height was carried out using a power law with an exponent of 1/7 (NRCC 2010, Wan et al. 2010).  

The exposure adjustment was carried out based on the method recommended in ESDU (2002) and 

by following the steps given in Mara et al. (2013).  As an integral part of exposure adjustment 

analysis, satellite photos for each of the considered stations were scrutinized; numerous transitions 

in roughness length over varying fetches were considered; the exposure adjustment factor less than 

unity was considered for over exposed (open water) stations – an exposure condition that is not 

considered in the NBCC-2010. This approach for the adjustment was adopted in this study to 

process the wind measurements from stations where nA is greater than or equal to 10 but less than 

20. 
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Figure 2-2. Locations of 583 stations with useable data used in this study. 

 

In all cases, no distinction was made for thunderstorm days and non-thunderstorm days in 

processing the wind speed data; data quality control was carried out; the annual maximum wind 

speed was extracted from the adjusted wind speed measurements; and the extracted value was 

considered to be representative of the annual maximum moving average (AMMA) of the hourly-

mean wind speed VAH.  Detailed justification for these was already given in Hong et al. (2014). 

 

2.3   Extreme value analysis approach: at-site and regional approaches 

Two approaches were employed to estimate the T-year return period value of VAH, VAH-T.  The 

first one was the often used at-site analysis and the second one was a regional approach (Hosking 

and Wallis 1997, Burn 1990).  The application of the at-site analysis is directly focused on fitting 

samples of VAH from each meteorological station using a selected probabilistic model (Castillo 
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1988, Coles 2001). This approach is adequate for a relatively large samples size.  The regional 

approach makes additional assumptions to allow the incorporating of data from other stations to 

estimate statistics for a site of interest. In other words, it attempts to increase the sample size for 

the site of interest by borrowing data from other stations so the extreme value analysis can be 

carried out with a reduced or negligible statistical uncertainty caused by small sample size. 

As mentioned in the introduction, two of the most commonly used probability distributions for 

VAH are the Gumbel distribution and the GEVD. 

The Gumbel distribution is given by (Castillo 1988, Cole 2001),  

  auxxFGU /)(expexp)(  , (2.1) 

where FGU(x) denotes the cumulative distribution function, x denotes the value of the random 

variable X (representing VAH), and a and u are the scale and location parameters.  The mean X and 

the standard deviation X of a Gumbel variate X, are equal to au 5772.0  and 6/a , 

respectively.  The cov of X, vx, by definition, equals X/X.  For the distribution fitting, the MOM, 

MML, MLM and GLM could be considered (Castillo 1988, Hosking and Wallis 1997, Hong et al. 

2013). 

The estimators of a and u, denoted by â  and û , for the selected methods was listed in Table 

2-1.  The estimated T-year return period value of X, Tx̂ , (representing VAH-T) can be estimated 

using,  

  ˆ ˆ ˆ ln ln 1 1/Tx u a T     (2.2) 

 



17 

 

 

 

Table 2-1. Methods for estimating the model parameters and quantiles based on the Gumbel 

model (for n samples, with sample mean m and sample standard deviation s). 

Method Equations for estimating model parameters â  and û  

MOM  /6ˆ sa , and  /6ˆ smu  

MML Maximizing:    )exp(ln ii yyanL , Or solving, 

   0)exp( iii yyyn , and 0)exp(   iyn  where   auxy ii /  

MLM 2ln/)2(ˆ
01 bba  , and abu ˆˆ

0   

GLM  inia xca ,,
ˆ ,  iniu xcu ,,

ˆ  

where ca,i and cu,i are known as the coefficients of the best linear unbiased estimators 

(Lieblein 1974), and xj:n denotes the j-th ordered sample (in ascending order) of a 

set of random samples of size n. (See the tabulated constant in Hong et al. 2013)
 

 

Simulation analysis results indicate that the GLM is the preferred method for estimating Tx̂ , 

especially if the sample size is not large; this preference is followed by the MML, MLM and MOM 

in descending order (Hong et al. 2013).  These methods are considered for distribution fitting in 

the following sections. 

The GEVD FGE(x) is expressed as (Castillo 1988, Coles 2001), 

  k

GE auxkxF
/1

/)(1exp)(  , for 0k  (2.3)  

where u, a and k are the model parameters.  This distribution turns to the Gumbel distribution 

shown in Eq. (2.1) if k tends to 0.  The Tx̂  in this case is given by, 

  k

GT xF
k

a
ux

ˆ

)(ln1
ˆ

ˆ
ˆˆ  , (2.4) 

where â , û  and k̂  are the estimators of a, u and k shown in Eq. (2.3), and can be obtained using 

the MOM, MLM and MML (see Table 2-2). Hosking (1985) showed that the estimated xT is biased 
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if the MLM is used, but preferable to the MML because the use of MML leads to greater scatter 

in estimated xT if the sample size is small.  Martin and Stedinger (2000) indicated that the 

performance of the MOM, MLM and MML depends on the sample size, the distribution upper tail 

behaviour, the criteria such as the minimum bias and root-mean-square-error of Tx̂ .  Both of these 

studies indicated that the MML could give unrealistic predictions if the sample size is small.  The 

MOM, MLM, and MML are used to fit the GEVD for the numerical analysis. 

 

Table 2-2. Methods for estimating the model parameters and quantiles based on the generalized 

extreme value distribution. 

Method Equations for estimating model parameter â , û and k̂ . 

MOM Solving: kkaum /))1(1(  ,    kksignkkas )(/)1()21(
2/12  , and 

    2/323

3 )1()21(/)1(2)21()1(3)31()( kkkkkkksign   

where 3 is the sample skewness. 

MML Maximizing:    )exp()1(ln ii yykanL  

where   auxkky ii /1ln1  
. 

MLM Solving: kkaub /))1(1(0  , kkabb k /)21)(1(2 01

 , and 

       kkbbbb   21/312/3 0102  

 

The application of the regional frequency analysis (Hosking and Wallis 1997) to assess wind 

hazard for Canada was presented in Hong and Ye (2014) by considering the same data set used in 

Hong et al. (2014).  The application required, firstly, the identification of the potential 

homogeneous regions.  A preliminary analysis by using this approach and considering data from 

stations each with nA ≥ 10 was carried out in this study.  Three clustering analysis methods, namely 

the k-means clustering, hierarchical clustering and self-organizing map (Hastie et al. 2001; 
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Kohonen 2001), were used to explore possible homogeneous regions. Unfortunately, the number 

of the stations within some of the identified regions are very small and the test of homogeneity 

(Hosking and Wallis 1997) carried out indicated that many of the identified regions are definitely 

heterogeneous.  Therefore, application of this approach was not considered further, and an 

alternative regional approach – the region of influence (ROI) approach proposed by Burn (1990), 

was considered.  The ROI was developed to assess flood frequency; it was also applied to assess 

snow hazards (Mo et al. 2015).  The approach uses a distance Dij to measure the closeness of the 

i-th and j-th stations, where Dij is defined by, 

1/2

2

1

( )
M

i j

ij m m m

m

D w A A


 
  
 
  (2.5) 

where M is the number of attributes used to measure the similarity of the stations, wm is the weight 

of the m-th attribute, and 
i

mA  is the value of attribute m for station i. The statistics of VAH from the 

j-th station are weighted and used to estimate the T-year return period value of V for the i-th station 

if Dij is within a threshold.  It is noted that for assessing other types of climate data (Mo et al. 

2015), the normalized latitude, longitude and L-coefficient of variation (L-cv) of VAH associated 

with the stations were used as attributes for the ROI approach, where the normalization was carried 

out by dividing the variable value by its corresponding range for all stations, and equal weight is 

assigned to each attribute.  The threshold θi used to accept the j-th station to form the i-th ROI, Ri, 

if Dij ≦ θi, that was suggested by Burn (1990) is,  

,

( ) ,

L Li D

i D Li
L U L Li D

D

N N

N N
N N

N

 


  
     


 (2.6) 

where θL is a lower threshold value to include stations into Ri; NLi is the number of stations included 

in Ri if the threshold value is set at θL; ND is the desired number of stations for Ri; and θU is an 
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upper threshold value for sites with NLi <ND. 

The L-moment ratios (1, it , 
it3  ) for Ri, are calculated using the equations shown in Table 2-3.  

The Gumbel distribution and GEV distribution are employed to fit the calculated (1, it ) and (1, 

it , 
it3 ), respectively, in the ROI approach, and the quantile of nonexceedance probability F = 1- 

1/T at the i-th station, Qi(F) is given by,  

( ) ( )i iQ F q F  , (2.7)  

where µi is the mean value of VAH at the i-th station, and q(F) is the regional quantile function 

determined based on the fitted distribution in the ROI approach.  

Following the suggestions given in Burn (1990), for the numerical analysis in the following 

sections, ND was taken equal to 50, and θL and θU were set to the 15th and 30th percentile of the 

ascendingly sorted, non-zero Dij, respectively, for the case with nA ≥ 20.  These values are set equal 

to the 25th and 50th percentile of Dij for the case with nA ≥ 10. 

 

Table 2-3.  Equations used to calculate L-moment ratios it and 
it3  for Ri. (Burn 1990). 

Equation for estimating 

L-moment ratios 

Notes 

1 1

/
i iN N

i

j ij j j ij

j j

t n t n
 

     
iN  is the number of stations in Ri; for the j-th station, jt  = (l2/l1) is 

the L-coefficient of variation (L-CV), 
j

t
,3

 = (l3/l2) is L-skewness, 

and (l1, l2, l3)j are the estimated first three L-moments, and jn  is the 

sample size; and ij is the weighting function given by Burn (1990) 
3 3,

1 1

/
i iN N

i

j ij j j ij

j j

t n t n
 

     

 1 /
n

ij ijD W    The parameters n and W are taken equal to 2.5 and the 50th 

percentile of Dij, respectively 
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2.4   Wind hazard estimation and mapping  

2.4.1   Wind hazard mapping based on extreme wind speed inferred from the NBCC 

The reference velocity wind pressure for specified locations in Appendix C of the NBCC-2005 

and NBCC-2010 was developed based on extreme value analysis results, expert subjective opinion 

and judgement, and consideration of some practical criteria for code making.  The velocity wind 

pressures in the NBCC-2005 and NBCC-2010 were considered to correspond to 50-vAH-50 and an 

average air density of 1.2929 kg/m3 was considered to be adequate (Boyd 1967).  Using the 

tabulated location-specific reference velocity wind pressures in the NBCC-2005 and NBCC-2010, 

vAH-50 was calculated and used for wind hazard mapping in Hong et al. (2014).  They showed that 

there are changes to vAH-50 from the NBCC-2005 to NBCC-2010; most changes are within 10%; 

the largest decrease is about 30%; and the largest increase is less than 10%.  Some of the changes 

were likely caused by the assumption of constant cov of VAH made for updating the NBCC-2010.  

The spatial interpolation needed to map the wind hazard was carried out using the ordinary kriging 

implemented in ArcGIS (version 10.2) (ESRI 2011) (Johnston et al. 2003).  The use of the ordinary 

kriging was justified since a comparison showed that it is the preferred spatial interpolation 

technique for the wind speed (Ye et al. 2015).  These hazard maps were replotted in Figure 2-3 to 

facilitate the comparison in the following sections.  Moreover, throughout this study, unless 

otherwise indicated, the ordinary kriging with nugget not equal to zero implemented in the ArcGIS 

were used for wind hazard mapping.  However, for completeness, some of the corresponding maps 

interpolated with nugget equal to zero were included in Appendix A.  
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Figure 2-3. Wind hazard maps inferred from the reference velocity wind pressures given in the 

NBCC-2005 and NBCC-2010. 

 

2.4.2   Comparison of the spatial varying wind hazard using data with nA ≥ 20 and ≥ 10 

Using samples of VAH for each of the stations shown in Figure 2-2, the mean and cov at each 

station were calculated.  The calculated values were shown in Figure 2-4 for the case with nA ≥ 20, 

and in Figure 2-5 for the case with nA ≥ 10.  Comparison of the plots shown in Figures 2-4 and 2-

5 indicated that the spatial trends of the means for the two cases are similar except there are three 

patches of low mean values within the region where the mean is less than 50 km/h.  There are 

differences in the spatial trends of the cov values for the two cases.  For example, there are several 

patches in Figure 2-5b with large cov values.  Inspection of the data from stations within these 

patches indicated that these large cov values are associated with stations where nA is within 10 and 

16.  The decreasing spatial trend of the cov value from east towards west or northwest shown in 

Figure 2-4b is not apparent in Figure 2-5b.  These indicated that while the spatial trends of the 

mean of VAH are relatively stable by decreasing nA from 20 to 10, the small sample size effect is 
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significant for the estimated cov.  

 

 

Figure 2-4.  Mean and coefficient of varaition of VAH for the case with nA ≥ 20. 

 

  

Figure 2-5.  Mean and coefficient of varaition of VAH for the case with nA ≥ 10. 

For the case with nA ≥ 20 which was already reported in Hong et al. (2014), the mean ranges 

approximately from 38 to 135 km/h, and the cov varies from 0.05 to 0.3 with an average of 0.138.  
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For the case with nA ≥ 10, the mean of VAH ranges approximately from 28 to 159 km/h, and the 

cov of VAH varies from 0.05 to 0.3 with an average of 0.125.  This showed that the range of cov of 

VAH for the case with nA ≥ 10 is similar to that for the case with nA ≥ 20.  The smaller mean of cov 

value for the former is attributed to that there are many more stations with smaller cov values for 

the former than for the latter. 

To inspect distribution of the cov of VAH, VAH, for the considered cases, empirical cumulative 

distributions of VAH were presented in Figure 2-6, indicating that for the case with nA ≥ 10, the 0.1 

and 0.9-quantiles of the VAH are 0.081 and 0.171, and the 0.2 and 0.8-quantiles of the VAH are 

0.094 and 0.151.  The values become 0.103 and 0.173, and 0.113 and 0.162 for the case with nA ≥ 

20.  Comparison of these ranges indicates that for wind measurements from majority of stations, 

the estimated cov ranges for the cases with nA ≥ 10 and nA ≥ 20 are consistent.  However, there are 

large differences in the estimated cov values for cov values in the lower (or upper tail) region for 

the cases with nA ≥ 10 and nA ≥ 20. These are partly attributed to small sample size effect and to 

the spatial locations of stations. 

By considering that VAH was Gumbel distributed (see Eq. (2.1)), distribution fitting for the case 

with nA ≥ 10 was carried out using the MOM, MML, MLM and GLM, and vAH-50 was estimated 

using Eq. (2.2).  Comparison of vAH-50 estimated by different fitting methods was depicted in Figure 

2-7. The overall impression was that the differences between vAH-50 estimated by using different 

fitting methods are greater than those observed for the case with nA ≥ 20 (Hong et al. 2014), 

especially for the plots shown in Figure 2-7a and 2-7c.  For reference purpose, the calculated VAH-

50 by using the Gumbel distribution and the GLM are shown in Appendix B. 
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Figure 2-6.  Empirical distribution of ξVAH 

 

 

   

Figure 2-7.  Comparison of the estimated vAH-50 by different fitting methods and considering VAH 

is Gumbel distributed: a) using the MOM vs using the GLM; b) using the MML vs using the 

GLM; c) using the MLM vs using the GLM. 

 

Since GLM is the preferred distribution fitting method, the estimated vAH-50 by the GLM was 

illustrated in Figure 2-8 to show the spatial trends and to aid a possible modification to vAH-50 

recommended in the NBCC-2010.  For the plotting, the results for the case with nA ≥ 20 and the 
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case with nA ≥ 10 were presented for comparison purpose, even though the results for the case with 

nA ≥ 20 were already given in Hong et al. (2014). 

  

  

Figure 2-8.  Estimated vAH-50 using the GLM for the selected meteorological stations shown in 

Figure 2-2:  a) Contour map of vAH-50 for the case with nA ≥ 20, b) Contour map of vAH-50 for the 

case with nA ≥ 10. 

 

Comparison of the results shown in Figure 2-8 indicated that the contour lines for the case with 

nA ≥ 10 are rougher than those for the case with nA ≥ 20, and the overall spatial trends in Figures 

2-8a and 2-8b are similar, except that there are three visible patches of low wind speeds in Figure 

2-8b (within the region where vAH-50 ranges from 70 to 80 km/h) that are consistent with those 

shown in Figure 2-5a for the mean value of VAH.  Visual inspection of the results presented in 

Figures 2-3 and 2-8 indicated that the wind hazard maps shown in Figure 2-8 differ from those 

shown in Figure 2-3.  However, there are some resemblance as well, especially if the regions with 

vAH-50 less than the minimum design wind speed of 77.55 km/h were replaced by vAH-50 = 77.55 

km/h.  The resemblance included that some of the smoothness of the wind speed across the country 
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from east to west shown in Figure 2-3b are retained in Figure 2-8 and, the localized wind speed 

features shown in Figures 2-3a and 2-3b in the northern and coastal regions are maintained. 

To quantify the differences, the ratio of vAH-50 inferred from the NBCC-2005 (or NBCC-2010) 

to the estimated vAH-50 for the case with nA ≥ 10, denoted as RC05/E10 (or in RC10/E10), was calculated 

for the locations where the tabulated reference wind velocity pressure is available.  The empirical 

distributions of RC05/E10 and R C10/E10 were presented in Figure 2-9 by considering the values 

obtained for the locations where the inferred vAH-50 from the codes are greater than the lower bound 

value of 77.55 km/h mentioned earlier. 

  

 

Figure 2-9.  Empirical distribution of RC05/E10 and RC10/E10.   

 

The empirical distributions presented in Figure 2-9, indicated that the ratios are within 0.95 to 

1.05 for only 30% of the locations, and within 0.9 to 1.1 for 60% of the locations.  This observation 

is consistent with that drawn from the results for the case with nA ≥ 20 (Hong et al. 2014). 

The GEVD (see Eq. (2.4)) was also used to fit the data for the case with nA ≥ 10.  For the fitting, 

the methods listed in Table 2-2 were employed and vAH-50 was estimated using Eq. (2.4) and the 
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fitted distribution parameters. A comparison of the estimated vAH-50 using the Gumbel distribution 

and the GEVD distribution but applying the same distribution fitting method was shown in Figure 

2-10.  The figure showed that the estimated vAH-50 by these two distributions are in relatively good 

agreement if the MOM and MML were used.  This observation is consistent with that made by 

considering nA ≥ 20 (Hong et al. 2014).  Moreover, by using the AIC, it was concluded that the 

use of the Gumbel distribution for VAH is preferred for approximately 73% of stations for the case 

with nA ≥ 10.  The percentage is slightly greater than the reported 70% for the case with nA ≥ 20.  

Therefore, for consistency and simplicity, the Gumbel distribution was recommended if the wind 

records from many stations are to be considered to develop wind hazard maps. 

 

   

Figure 2-10.  Comparison of the estimated vAH-50 by different distribution types: a) using MOM, 

b) using the MML, and c) using MLM 

 

2.4.3   Estimated wind hazard using the ROI approach 

By applying the ROI approach, values of vAH-50 at each of the stations shown in Figure 2-2 were 

estimated for the cases with nA ≥ 20 and nA ≥ 10.  Inspection of the analysis results indicates that 

for the cases with nA ≥ 20 the number of stations included in a ROI for a station ranges from 4 to 

100, and the average number of stations included in a ROI is 66.  For the case with nA ≥ 10, the 

number of stations included in a ROI ranges from 2 to 173, and the average number of stations 
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included in a ROI is 93.  The estimated values of vAH-50 were shown in Figure 2-11a and 2-11b by 

considering the Gumbel distribution, and in Figure 2-11c and 2-11d by considering the GEVD 

distribution.  Comparison of maps obtained by using the ROI shown in the figure indicated that: 

a) In general, the spatial trends shown in Figures 2-11a and 2-11b are similar.  There are more 

detailed local spatial variations of vAH-50 shown in Figure 2-11b for the case with nA ≥ 10 than 

those depicted in Figure 2-11b for the case with nA ≥ 20.  This showed that even with the 

application of the ROI approach, the inclusion of stations with nA within 10 to 19 still resulted 

sharper spatial changes.  The differences between Figures 2-11a and 2-11b are similar to those 

between Figures 2-8a and 2-8b which are obtained based on the at-site analysis. 

b) For the case with nA ≥ 20, the maps of vAH-50 are not sensitive to whether the Gumbel distribution 

or the GEVD is employed, indicating that the fitted Gumbel distribution and GEVD are close 

for, at least, the nonexceedance probability of 0.98, and the estimated vAH-50 values are robust.  

c) The observed robustness in the estimated vAH-50 observed for the case with nA ≥ 20 is not 

applicable to the estimates for the case with nA ≥ 10, that are shown in Figures 2-11b and 2-

11d. 

Based on the above observations, and the fact that the results presented in Figure 2-8a, 2-11a 

and 2-11c are almost identical, it was suggested that maps shown in Figures 2-11a or 2-11b to be 

adopted to represent the wind hazard for Canada if vAH-50 is of interest.  Again, for reference 

purpose, the calculated VAH-50 by using the Gumbel distribution and the ROI approach are shown 

in Appendix B. 

Similarly, results based on vAH-100 and vAH-500 were calculated and shown in Figure 2-12 for 

completeness.  The spatial trends observed from Figure 2-12 are similar to those shown in Figures 

2-11a and 2-11b, except the magnitude of the estimated return period values for different T values 
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differs, which is expected.  The are differences between the estimated VAH-T for the cases with nA 

≥ 20 and nA ≥ 10.  The differences seem to increase slightly as T increases. 

  

a) Gumbel distribution and nA ≥ 20 b) Gumbel distribution and nA ≥ 10 

  

  

c) GEVD and nA ≥ 20 d) GEVD and nA ≥ 10 

Figure 2-11.  Wind hazard maps developed based on the ROI approach: a) Gumbel distribution 

and nA ≥ 20, b) Gumbel distribution and nA ≥ 10, c) GEVD and nA ≥ 20, d) GEVD and nA ≥ 10. 
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a) vAH-100 for nA ≥ 20 b) vAH-100 for nA ≥ 10 

 

 

  

c) vAH-500 for nA ≥ 20 d) vAH-500 for nA ≥ 10 

Figure 2-12.  Wind hazard maps developed based on the ROI approach and consideing the Gumbel 

model: a) vAH-100 for nA ≥ 20, b) vAH-100 for nA ≥ 10, c) vAH-500 for nA ≥ 20, and d) vAH-500 for nA ≥ 

10. 
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2.5   Effect of additional considerations on spatially interpolated wind 

hazard maps 

If no additional constraints were to be considered, vAH-50 shown in Figures 2-11a or 2-11b could 

be adopted to represent the wind hazard and potentially used for code making.  However, there 

were several additional considerations to assign the wind loads in the previous editions of NBCC.  

For example, the exposure correction factor can be less than unity due to over exposure (i.e., open 

water exposure at coastal regions); an open water exposure category is not currently considered in 

the NBCC-2010.  If the open water exposure category is introduced in a future edition of NBCC, 

the results presented in the previous sections can be used directly. Otherwise, the exposure 

correction factor equal to one should be used for over exposed stations so the results to be 

consistent with the existing exposure categories specified in NBCC-2010.  Also, a lower bound, 

vLB, of 77.55 km/h which is used in the NBCC-2010.  Therefore, using the value directly 

interpolating from vAH-50 obtained at the stations for locations specified in the NBCC-2010 may 

not be satisfactory.  Also, the direct interpolation does not explicitly consider the proximity of a 

location to a meteorological station, and whether an exact or inexact interpolator is preferred.  

Although the exact interpolator leads to an estimated value to be the same as the observed value 

at a sample point, it may not be associated with the lowest root-mean-square-error (RMSE) 

obtained from the cross-validation analysis (Johnston et al. 2003; Ye et al. 2015).  An inexact 

interpolator results in an estimated value differing from the known value at a sample point but 

could be associated with lowest RMSE obtained from the cross-validation analysis. The ordinary 

kriging can be an exact interpolator if the nugget equal to zero is used.  Moreover, for a location 

tabulated in the NBCC table that is within a distance D from any meteorological stations, the use 

of vAH-50 for the station with the shortest distance to the location may be preferred if D is small. 
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Based on these considerations, maps are interpolated based on vAH-50 obtained using the ROI but 

considering the following additional criteria (Hong et al. 2014): 

1) Use vAH-50 for the station with the shortest distance to the location if D ≤ 5 km. 

2) Use the maximum of the spatially interpolated value and the estimated vAH-50 for the station 

with the shortest distance to the location if 5 < D ≤ 20 km. 

3) Use the interpolated value for the location if 20 < D ≤ 50 km, 

4) The existing value shown in NBCC-2010 is adopted, if D > 50 km to a location, 

5) vLB is used if the estimate vAH-50 is less than vLB. 

By considering the above requirements, sets of wind hazard maps are obtained and shown in 

Figure 2-13 for the case with nA ≥ 20 and Figure 2-14 for the case with nA ≥ 10.  In all cases, the 

ROI approach was used with the Gumbel distribution.  Comparison of the results shown in Figures 

2-13a and 2-13b to those shown in Figures 2-13c and 2-13d, indicated that there are differences 

but not very large.  This can be explained by noting that a degree of smoothing was already 

introduced in the estimated vAH-50 sine they are estimated by using the ROI approach.  Similar 

observations can be made by comparing the results shown in Figures 2-14a and 2-14b to those 

shown in Figure 2-14c and 2-14d. 
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a) With over exposure correction & nugget ≠ 0. b) Without over exposure correction & nugget ≠0. 

 

 

c) With over exposure correction & nugget = 0. d) Without over exposure correction & nugget =0. 

Figure 2-13.  Trends of the 50-year return period values based on the adopted criteria and applying 

the ordinary kriging technique without/with nugget equal to zero for the case with nA ≥ 20. 
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a) With over exposure correction & nugget ≠ 0. b) Without over exposure correction & nugget ≠0. 

 

  

c)  With over exposure correction & nugget = 0. d) Without over exposure correction & nugget =0. 

Figure 2-14.  Trends of the 50-year return period values based on the adopted criteria and 

applying the ordinary kriging technique without/with nugget equal to zero for the case with nA ≥ 

10. 
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To appreciate the differences between the estimated values shown in the plots presented in 

Figures 2-13 and 2-14 to those given in the NBCC-2005 and NBCC-2010, the ratio of the tabulated 

vAH-50 in the NBCC-2005 or NBCC-2010 to that inferred from Figure 2-13d or Figure 2-14d was 

calculated and shown in Figure 2-15.  The symbol R with subscripts represents the ratio of the 50-

year return period wind speed inferred from the code to that estimated in Figure 2-13d or 2-14d, 

where C05 and C10 indicate that the values are inferred from NBCC-2005 and NBCC-2010, 

respectively, and E10 and E20 indicate that the values are estimated for the case with nA ≥ 10 and 

the case with with nA ≥ 20, respectively. 

 

 

a) For the case with nA ≥ 20. b) For the case with nA ≥ 10. 
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c) For the case with nA ≥ 20 & satisfy Criterion 1. d) For the case with nA ≥ 10 & satisfy Criterion 1. 

Figure 2-15.  Statistics of the estimated ratio the 50-year wind speed by considering the values 

inferred from the codes and the estimated values shown in Figure 2-13c and 2-14c: a) For the case 

with nA ≥ 20, b) For the case with nA ≥ 10, c) For the case with nA ≥ 20 & satisfy Criterion 1, and 

d) For the case with nA ≥ 10 & satisfy Criterion 1. 

 

The figure showed that the ratio differs from unity for many locations.  The concentration of 

RC05/E10 and RC10/E10 equal to one shown in Figures 2-15a and 2-15b is a direct consequence of 

Criterion 4.  To better appreciate the ratios of RC05/E10 and RC10/E10 for locations that are within 5 

km of a considered station, these values are plotted in Figures 2-15c and 2-15d, indicating that 

even locations that are within 5 km from any meteorological stations, the ratios differ from unity.  

This again suggest that the values tabulated in NBCC need to be scrutinized and updated. 

 

2.6   Summary and conclusions 

Wind records obtained from Environment Canada for approximately 1300 stations are 

processed.  The processing includes the height and exposure adjustment so the processed wind 

records represent those for a standard height and exposure condition referred in the National 
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Building Code of Canada.  It was identified that there are about 230 stations, each with more than 

20 years of useable annual maximum wind speed (case with nA ≥ 20); and that there are about 580 

stations, each with more than 10 years of useable annual maximum wind speed (case with nA ≥ 

10). 

The data are used to investigate the effect of small sample size on mapping the wind hazard for 

Canada and, the differences between the current wind hazard estimates to those inferred from the 

NBCC-2005 and NBCC-2010.  For the investigation, both at-site analysis and the region of 

influence approach are employed, and the Gumbel as well as the generalized extreme value 

distributions are employed.  It was concluded that: 

1) The spatial trends of the estimated mean values of annual maximum wind speed, VAH, for the 

two cases (i.e., nA ≥ 20 and nA ≥ 10) are similar except there are three patches of low mean 

values within the region where the mean is less than 50 km/h for the case with nA ≥ 10.  There 

are differences in the spatial trends of the cov values for the two cases.  This shows that the 

small sample size effect could be significant for the estimated cov, which is expected. 

2) For the case with nA ≥ 10, the cov of VAH varies from 0.05 to 0.30 with an average of 0.125.  

For the case with nA ≥ 20, the cov varies from 0.05 to 0.3 with an average of 0.138. This showed 

that the range of cov of VAH for the case with nA ≥ 10 is similar to that for the case with nA ≥ 

20.  The smaller mean of cov value for the former is attributed to that there are many more 

stations with smaller cov values for the former than for the latter. 

3) Based on the at-site analysis, the overall spatial trends of vAH are similar for the cases with nA 

≥ 20 and nA ≥ 10, except that the contours obtained for the case with nA ≥ 20 is smoother.  

However, the mapped wind hazard differs from those recommended in NBCC-2005 and 

NBCC-2010.  This is partly attributed to the use of constant cov or constant ratio of the standard 
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deviation to the 30-year return period value of VAH employed in developing the wind hazard in 

these editions of code. 

4) Distribution fitting and the use of AIC criterion indicates that the Gumbel distribution for VAH 

is preferable than the GEV distribution for approximately 70% of stations whether data from 

stations with nA ≥ 10 or nA ≥ 20 are considered.  The estimated ratio of vAH-50 inferred from 

code to vAH-50 estimated based on the at-site analysis using the Gumbel distribution indicates 

that the ratio is within 0.95 to 1.05 for only 30% of the locations, and within 0.9 to 1.1 for 60% 

of the locations, quantifying the discrepancy.  

5) The mapped wind hazard based on vAH-50 estimated using the ROI approach is not very sensitive 

to whether the Gumbel distribution or the GEVD distribution is employed, but is sensitive to 

whether the case with nA ≥ 10 or the case with nA ≥ 20 is considered.  Therefore, to avoid 

possible small sample size effect, it is suggested the case with nA ≥ 20 to be employed for wind 

hazard mapping. 
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Chapter 3 Codification of Wind Load for Improved Reliability Consistency 

over Canadian Sites 

 

3.1   Introduction 

The 2005 version of the National Building Code of Canada (NBCC) (NRCC 2005) adopts the 

50-year return period value of the annual maximum hourly-mean wind speed to calculate the 

reference wind velocity pressure (i.e., nominal wind load) and a wind load factor of 1.4.  These 

suggested factored design wind load is calibrated for a (50-year) target reliability index of 3.0 (i.e., 

failure probability of 1.35×10-3) (Bartlett et al. 2003a, b).  The reference wind velocity pressure 

and the wind load factor remained the same in the newer versions of the NBCC (NRCC 2010, 

2015).  For the calibration of the factored design wind load, commonly employed target reliability-

based calibration procedure and the first order reliability method (Ellingwood et al. 1980; Madsen 

et al. 2006) are employed.  The annual maximum hourly-mean wind speed, VAH, is modeled as a 

Gumbel variate with a typical coefficient of variation (cov) of 0.134. 

The consideration of Gumbel distribution for VAH is justified and supported by several studies 

(Yip et al. 1995; Peterka and Shahid, 1998; Frank, 2001), although other probabilistic models are 

also considered in the literature.  These include the generalized extreme value distribution (GEVD) 

(Jenkinson, 1955) and the generalized Pareto distribution (GPD) (Pickands 1975) (Holmes and 

Moriarty 1999; Kasperski 2002; Miller 2003; Hong and Ye 2014).  Using the surface wind 

observations from Canadian sites, it was observed (Hong et al. 2014) that the Gumbel distribution 

is preferable to the generalized extreme value distribution (GEVD) for 70% of considered stations 

if the Akaike information criterion (AIC) (Akaike 1974) is adopted. In their analysis, VAH values 

from 235 meteorological stations, each with 20 years of useable data (except 3 stations) are 
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considered.  Their observation is also supported by the results shown in Chapter 2.  The typical 

cov value of 0.134 is in agreement with the average cov value estimated using the recorded surface 

wind observations, although the cov value is geographically varying and ranges from 0.05 to 0.3 

(Hong et al. 2014).  The range of cov value is also confirmed in Chapter 2 by using surface wind 

observations from more than 500 stations, each with at least 10 years of useable data.  The variation 

of the cov of VAH can significantly impact the notional reliability of codified design that is 

governed by the wind load or its combination with other loads (Hong et al. 2016) partly because 

the wind load is proportional to the square of VAH, resulting in that the cov of the wind load equals 

about twice of the cov of VAH if all other variables involved in evaluating the wind force are treated 

deterministically.  Moreover, although the use of a specified return period value of the wind 

velocity pressure and a calibrated wind load factor given a cov of VAH can lead to a target 

reliability, such a set of the specified value and wind load factor is not unique.  In fact, if the 

resulting factored design wind loads for different sets of specified value and wind load factor are 

the same, the same target reliability can be achieved.  In addition, it is noted that the ASCE-7-10 

adopts a wind load factor of 1.0 with the design wind speed estimated using a return period, T, of 

700 years for the strength design of Category II structures (Vickery et al. 2010; Cook et al. 2011). 

In this study, the differences in the implied notional reliability index for structures designed 

according to the current design code is examined by considering the spatially varying cov of VAH.  

It is shown that the differences can be reduced if the geographically varying return period is used 

to assign the design wind velocity pressure and with wind load factor of 1.0.  The reliability-based 

calibration takes into account the target reliability index implied by using the current design code 

for typical cov value.  An equation to calculate the required return period as a function of cov of 

VAH is developed based on the calibration results by considering ranges of combinations of 
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permanent, and wind loads.  The required (factored) design wind velocity pressure map for Canada 

is also developed using the preferred probabilistic model of the annual maximum wind speed for 

Canadian sites. 

 

3.2 Probabilistic models adopted for the calibration 

A review of previous studies focused on the reference wind pressure for earlier versions of 

NBCC carried out by Hong et al. (2014) indicate that VAH is frequently considered as a Gumbel 

variate.  They also obtained surface wind observations at 1224 locations from Environment 

Canada.  After processing the data, and carrying out exposure and height adjustment, an extreme 

value analysis was carried out by considering surface wind observations at a station with the 

number of years of useable data, nA, at least equal to 20 (except 3 stations).  For the analysis, both 

the Gumbel distribution and GEVD are adopted and several commonly employed fitting methods 

are considered.  From the at-site analysis, and the application of AIC, it was concluded that the 

Gumbel distribution is preferred at least in 69.5% of the cases.  The use of data from stations with 

nA ≥ 20 is aimed at reducing the small sample size effect in estimating the return period value of 

VAH.  A disadvantage of treating the data in such a manner is that the valuable information from a 

station with nA < 20 is neglected; the density of the spatial distribution of the potentially available 

stations with valuable wind records is reduced for wind hazard mapping. 

To overcome this, the use of the at-site analysis and region of influence (Burn 1990) was 

considered in Chapter 2 by using data from a station with nA ≥ 10.  Again, both the Gumbel 

distribution and the GEVD are considered.  In this case, the use of the AIC indicates that that the 

Gumbel distribution for VAH is preferred for approximately 73% of stations, which is slightly 

greater than 70% mentioned earlier for the case with nA ≥ 20.  From the at-site analysis, it was 
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concluded that the spatial trends of the estimated mean values of VAH for nA ≥ 20 and for nA ≥ 10 

are similar except there are small patches of low mean values within the region where the mean is 

less than 50 km/h for the case with nA ≥ 10.  There are some differences in the spatial trends of the 

cov values for the two cases, which are partly attributed to small sample size effects. For easy 

reference, the cov values are re-plotted in Figure 3-1.  The ranges of the cov values in both plots 

are within 0.05 and 0.30.  The estimated arithmetic mean of the cov for Figure 3-1a equals 0.138 

which differs 0.125 that is obtained from Figure 3-1b. This large difference could be due to that 

there are many stations located in the sites with low cov value for the case with nA ≥ 10.  To 

investigate this further and to have a better appreciation of the central tendency of cov of VAH over 

Canada, an area-weighted mean of cov of VAH is calculated, where the area associated with each 

station is defined using the Voronoi polygon (Aurenhammer,1991) as shown in Figure 3-2.  The 

estimated area-weighted mean of cov of VAH equals 0.141 for the case with nA ≥ 20, and 0.135 for 

the case with nA ≥10. Therefore, it seems appropriate to consider that the typical cov of VAH equals 

0.138. 

If the ROI approach is employed (see Chapter 2), the results indicates that the estimated return 

period value of VAH is not very sensitive to whether the Gumbel distribution or the GEVD 

distribution is employed, but is sensitive to whether the case with nA ≥ 10 or the case with nA ≥ 20 

is considered.  To reduce small sample size effect, it was recommended that the data with nA ≥ 20 

is to be considered for wind hazard mapping by using the ROI approach and the Gumbel 

distribution.  The mean and cov of VAH in this case is illustrated in Figure 3-3.  Note that the mean 

of VAH is not affected by whether the at-site analysis or ROI approaches are employed, while this 

is not the case for the cov.  Based on the results shown in Figure 3-3b, the minimum, maximum 

and the area-weighted mean of cov of VAH are 0.119, 0.285 and 0.141, respectively.  
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a) for the case with nA ≥ 20. b) for the case with nA ≥ 10 

Figure 3-1.  Coefficient of variation of the annual maximum hourly-mean wind speed: a) for the 

case with nA ≥ 20 and b) for the case with nA ≥ 10. 

 

 

a) for the case with nA ≥ 20. b) for the case with nA ≥ 10 

Figure 3-2.  Voronoi polygon associated with each station for the estimation of area-weighted 

mean of cov of VAH: a) for the case with nA ≥ 20 and b) for the case with nA ≥ 10. 
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a) Mean of VAH (km/hr) b) cov of of VAH  

Figure 3-3.  Mean and coefficient of variation of the annual maximum hourly-mean wind speed: 

a) Mean of VAH (km/hr), and b) cov of of VAH (inferred from the analysis results obtained from 

the ROI approach, see Chapter 2). 

 

Besides of the probabilistic model for the annual maximum wind speed, it is considered that the 

ratio of the wind load effect to the nominal wind load effect on a structural member can be 

expressed as, 

 
2

/n AH TW ZW V v 
 (3.1) 

where Z is an uncertain transformation factor that takes into account the uncertainty in the exposure 

coefficient, the external pressure coefficient, and the gust factor, and code specified values, Wn is 

the reference (or nominal) wind load effect on the structural member calculated according to the 

design code, and vT denote the T-year return period value of VAH.  Z is considered to be a lognormal 

variate with mean of 0.68 and cov of 0.22 (Bartlett et al. 2003a, b). 
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Following previous calibration analysis, it is considered that the dead load effect can be 

modelled as normal variate with a typical mean to nominal ratio of 1.05 and a cov of 0.10, and that 

the member resistance for structural steel can be modelled as a lognormal variate with a typical 

mean to nominal ratio of 1.17 and a cov of 0.108. 

 

3.3 Calibrating design wind load for spatially varying extreme wind 

characteristics  

3.3.1 Limit state function and analysis procedure 

The procedure for reliability-based design code calibration is frequently carried out for a 

selected target reliability index and structural member behaviour; it is well described in the 

literature (Ellingwood et al. 1980, Madsen et al. 2006).  For designs that satisfy the minimum 

design strength requirement and are governed by dead load combined with the wind load, the limit 

state function )( Txg , can be written as (Hong et al. 2016),  

 
2

50

/

/

/1 1
( )

1

H TD
T R W D

R W D D W

Z V vX
g v X R

R  

 
   

 
   (3.2) 

where R is the resistance factor; D is the dead load factor; W is the wind load factor; RW/D is the 

ratio of the factored design wind load WWn to the factored design dead load DDn; XR = R/Rn; Rn 

is the nominal resistance; XD = D/Dn; Dn is the nominal dead load and VH50 is the 50-year maximum 

hourly-mean wind speed rather than the annual maximum hourly mean wind speed.  According to 

the present applicant Canadian design codes, R = 0.9 for structural steel, D = 1.25, W = 1.40 and 

T = 50 years (CSA S16 2001, NRCC 2010). 

The failure probability for a service period of 50 years, denoted by Pf can be evaluated using 

the efficient first order reliability method (Madsen et al. 2006).  In such a case, 
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50( )fP  
 (3.3) 

where ( )  denotes the standard normal distribution function, and the reliability index of the 

design structural member for 50-year service period, 50, is estimated by solving, 

 

1/2
4
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50

1

2

50

/
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x R

R




       





 
   

     
 



 (3.4) 

in which          1 1 1 1

1 2 3 50 4, , , ( ( ) , ( ) , ( ) , ( )
R DR D X X Z VHx x z u F y F y F y F y        ; 

1( )
RXF 

, 1( )DF  , 

1( )ZF   and 
50

1 ( )
AHVF 

 denote the inverse probability distributions of XR, XD, Z and VH50 respectively; 

and yi, i =1, …, 4, are values of independent standard normal variates Yi. 

 

3.3.2 Calibration results and wind speed contour map for reliability consistent design 

Based on the formulation and analysis procedure presented in the previous section, reliability 

analysis is carried out for a range of cov values.  The estimated 50 values for a range of cov values 

are shown in Figure 3-4a with corresponding Pf presented in Figure 3-4b. 

Note that for the cov of VAH, vv, equal to the typical value of 0.138, the use of T = 50 years and 

W = 1.40 is equivalent to the use of T = 500 years and W = 1.0; and that the use of higher return 

period with W = 1.0 is preferred to improve reliability consistency (Hong et al. 2016). 

To illustrate this, analysis carried out for Figure 3-4 is repeated but using T = 500 years and W 

= 1.0.  The obtained results are shown in Figure 3-5. 
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a) Estimated 50. b) Estimated Pf. 

Figure 3-4.  Estimated 50 and Pf for W = 1.40 and using T = 50 years to assigning the reference 

wind velocity pressure: a) Estimated 50 and b) Estimated Pf.  

 

 

 

 

a) Estimated 50. b) Estimated Pf. 

Figure 3-5.  Estimated 50 and Pf for W = 1.0 and using T = 500 years to assigning the reference 

wind velocity pressure: a) Estimated 50 and b) Estimated Pf .  
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To further improve the reliability-consistency and ensure that the 50 values for sites with 

different vV values are close to those for vV = 0.138, the analysis of the required T is carried out by 

trial and error. The obtained T values are used to obtain the following empirical equation,  

75 3000 VT v  
 (3.5) 

By using this suggested return period for assigning vT, and W = 1.0, the estimated 50 values 

for vV ranging from 0.05 to 0.3 are shown in Figure 3-6.  Comparison of the results presented in 

Figures 3-4 to 3-6 indicates that the use of the geographically (i.e., vV) dependent return period to 

assign the reference wind speed or reference wind velocity pressure for the design under wind 

load, the reliability consistency is much improved. 

 

  

a) Estimated 50. b) Estimated Pf. 

Figure 3-6.  Estimated 50 and Pf for W=1.0 and using the return period given in Eq. (3.5) to 

assign vT: a) Estimated 50 and b) Estimated Pf . 

 

Therefore, if the use of T dictated by Eq. (3.5) is adopted for code making, by using the statistics 

of the annual maximum hourly-mean wind speed shown Figure 3-3, a wind speed map for 
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reliability consistent design is developed and shown in Figure 3-7.  For the developed design wind 

load, the lower bound value of 1.4 77.55  (= 91.8 km/hr) that is consistent with that employed 

to develop the wind load criterion in NBCC (2010) is adopted.  Note that by using Eq. (3.5) the 

calculated T equals 432 years for vV = 0.119 and 930 years for vV = 0.285 (for the range of vV see 

Figure 3-3).  

To see the differences between the suggested factored design wind load and those suggested in 

NBCC (2005, 2010), ratios of the factored design wind load in the code to that suggested by using 

Figure 3-7 with W = 1.0 is calculated and shown in Figure 3-8.  The results presented in the figure 

indicates that the ratio ranges from 0.8 to 1.5 if the NBCC-2005 is considered and from 0.8 to 0.14 

if the NBCC-2010 is considered.  However, for majority of locations the ratio is close to unity and 

within 0.9 to 1.1.  Therefore, if the suggested design wind load is considered, significant change 

occurs only at localized sites. 

 

 
Figure 3-7.  Suggested design wind speed considering the return period shown in Eq. (3.5).   
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Figure 3-8.  Ratio of factored design wind load to the suggested factored design wind load  

 

3.4 Conclusions  

We summarized newly developed probabilistic characteristics of wind hazard. One of the 

essential observation is that there is significant geographic variation of the coefficient of variation 

(cov) of the annual maximum wind speed. This variation results in the inconsistency in the 

reliability indices of structures placed at different sites and designed according to current structural 

design code. 

To improve reliability-consistency, it is suggested that the use of 50-year return period value of 

the wind velocity pressure and a wind load factor of 1.4 is to be replaced by 500-year return period 

value of the wind velocity pressure and a wind load factor of 1.0. 

To further improve the reliability-consistency, a somewhat bolder step is to implement the wind 

load based on the geographical location (or cov) dependent return period suggested in this study 
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(see Eq. (3.5)). Ready to use design wind speed based on such an approach is provided (Figure 3-

6).  
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Chapter 4   Conclusions and Recommendations for future work 

 

4.1 Summary and conclusions 

The summary and main conclusions are already included at the end of Chapters 2 and 3.  

They are repeated below: 

(1) The spatial trends of the estimated mean values of annual maximum wind speed, VAH, for 

the two cases (i.e., nA ≥ 20 and nA ≥ 10) are similar except there are three patches of low 

mean values within the region where the mean is less than 50 km/h for the case with nA ≥ 

10.  There are differences in the spatial trends of the cov values for the two cases.  This 

shows that the small sample size effect could be significant for the estimated cov, which is 

expected. 

(2) For the case with nA ≥ 10, the cov of VAH varies from 0.05 to 0.30 with an average of 0.125.  

For the case with nA ≥ 20, the cov varies from 0.05 to 0.3 with an average of 0.138. This 

showed that the range of cov of VAH for the case with nA ≥ 10 is similar to that for the case 

with nA ≥ 20.  The smaller mean of cov value for the former is attributed to that there are 

many more stations with smaller cov values for the former than for the latter. 

(3) Based on the at-site analysis, the overall spatial trends of vAH are similar for the cases with 

nA ≥ 20 and nA ≥ 10, except that the contours obtained for the case with nA ≥ 20 is smoother.  

However, the mapped wind hazard differs from those recommended in NBCC-2005 and 

NBCC-2010.  This is partly attributed to the use of constant cov or constant ratio of the 

standard deviation to the 30-year return period value of VAH employed in developing the 

wind hazard in these editions of code. 
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(4) Distribution fitting and the use of AIC criterion indicates that the Gumbel distribution for 

VAH is preferable than the GEV distribution for approximately 70% of stations whether data 

from stations with nA ≥ 10 or nA ≥ 20 are considered.  The estimated ratio of vAH-50 inferred 

from code to vAH-50 estimated based on the at-site analysis using the Gumbel distribution 

indicates that the ratio is within 0.95 to 1.05 for only 30% of the locations, and within 0.9 to 

1.1 for 60% of the locations, quantifying the discrepancy.  

(5) The mapped wind hazard based on vAH-50 estimated using the ROI approach is not very 

sensitive to whether the Gumbel distribution or the GEVD distribution is employed, but is 

sensitive to whether the case with nA ≥ 10 or the case with nA ≥ 20 is considered.  Therefore, 

to avoid possible small sample size effect, it is suggested the case with nA ≥ 20 to be 

employed for wind hazard mapping. 

(6) There is significant geographic variation of the coefficient of variation (cov) of the annual 

maximum wind speed. This variation results in the inconsistency in the reliability indices of 

structures placed at different sites and designed according to current structural design code. 

(7) To improve reliability-consistency, it is suggested that the use of 50-year return period value 

of the wind velocity pressure and a wind load factor of 1.4 is to be replaced by 500-year 

return period value of the wind velocity pressure and a wind load factor of 1.0. 

(8) To further improve the reliability-consistency, a somewhat bolder step is to implement the 

wind load based on the geographical location (or cov) dependent return period suggested in 

this study (see Eq. (3.5)). Ready to use design wind speed based on such an approach is 

provided (Figure 3-6).  
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4.2 Recommendations for future work 

Several tasks can be carried out to enhance and support the conclusions drawn from this 

investigations.  These include: 

1)  The use of the region of influence approach depends on the subjectively selected parameters.  

Therefore, it would be desirable to explore potential improvement of the approach, although 

how exact this can be done is not clear at present. 

2) The calibration carried out considered only the dead and wind load.  The analysis by also 

including the live load can strengthen the findings of this study. 

3) Only synoptic winds are considered, and the wind directionality effect is ignored.  How to 

consider wind directionality as well as high intensity winds (downburst and tornado) in the 

codified design could be important and should be investigated. 
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Appendix A.   Spatially Interpolated Statistics of Annual Maximum 

Wind Based on Ordinary Kriging with Nugget Equal to Zero 

The maps shown in this appendix is similar to those shown in the main text, except that they 

are obtained based on ordinary kriging with nugget equal to zero.  In general, the spatial trends of 

the maps shown in the appendix are similar to those shown in the main text, except that more 

localized features are exhibited in the figures presented in this appendix. 

 

  

Figure A1.  Wind hazard maps inferred from the reference velocity wind pressures given in the 

NBCC-2005 and NBCC-2010. 
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Figure A2.  Mean and coefficient of varaition of VAH for the case with nA ≥ 20. 

 

 

  

Figure A3.  Mean and coefficient of varaition of VAH for the case with nA ≥ 10. 
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Figure A4.  Estimated vAH-50 using the GLM for the selected meteorological stations shown in 

Figure 2-2:  a) Contour map of vAH-50 for the case with nA ≥ 20, b) Contour map of vAH-50 for the 

case with nA ≥ 10. 

 

 

  

a) Gumbel distribution and nA ≥ 20 b) Gumbel distribution and nA ≥ 10 
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c) GEVD and nA ≥ 20 d) GEVD and nA ≥ 10 

Figure A5.  Wind hazard maps developed based on the ROI approach: a) Gumbel distribution 

and nA ≥ 20, b) Gumbel distribution and nA ≥ 10, c) GEVD and nA ≥ 20, d) GEVD and nA ≥ 10. 

 

 

  

a) vAH-100 for nA ≥ 20 b) vAH-100 for nA ≥ 10 
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c) vAH-500 for nA ≥ 20 d) vAH-500 for nA ≥ 10 

Figure A6.  Wind hazard maps developed based on the ROI apporach and consideing the Gumbel 

model: a) vAH-100 for nA ≥ 20, b) vAH-100 for nA ≥ 10, c) vAH-500 for nA ≥ 20, and d) vAH-500 for nA ≥ 

10. 
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Appendix B. Interpolated 50-year Return Period Values for Specified 

Locations in NBCC Based on At-site Analysis and ROI 

 

Table B1. Comparison of NBCC-2005, NBCC-2010 and interpolated 50-year return period 

values (km/h) based on at-site analysis and ROI. 

Location NBCC-

2005 

(km/h) 

NBCC-

2010 

(km/h) 

Method 

At-site 

analysis 

with  

nA≥20 

(km/h) 

At-site 

analysis 

with 

nA≥10 

(km/h) 

ROI 

with 

nA≥20 

(km/h) 

ROI  

with  

nA≥10 

(km/h) 

100 Mile House 88.18 83.77 79.92 71.51 78.53 70.80 

Abbotsford 111.18 93.92 78.47 84.83 76.64 81.26 

Agassiz 122.29 97.07 78.72 87.71 76.75 87.38 

Alberni 112.08 80.10 86.01 68.04 83.96 68.04 

Ashcroft 87.04 87.28 79.73 74.74 77.88 73.31 

Beatton River 77.34 77.55 75.88 74.96 75.42 74.03 

Burns Lake 88.18 88.42 81.99 66.96 79.31 66.19 

Cache Creek 88.18 88.42 79.55 74.74 78.11 73.31 

Campbell River 112.96 102.10 91.25 96.61 89.45 95.79 

Carmi 87.04 87.28 83.99 81.10 81.19 80.56 

Castlegar 82.34 82.56 84.39 75.57 82.00 73.46 

Chetwend 89.31 89.55 75.52 82.67 74.77 79.11 

Chilliwack 119.82 97.07 77.81 85.41 75.96 83.59 

Comox 113.84 102.10 90.35 84.92 87.47 86.01 

Courtenay 113.84 102.10 90.58 86.39 87.73 87.04 

Cranbrook 81.12 81.34 86.66 99.80 85.78 99.14 

Crescent Valley 81.12 81.34 86.55 80.46 84.41 79.09 

Crofton 112.08 89.55 81.68 81.26 79.65 79.43 

Dawson Creek 89.31 89.55 75.71 81.26 75.28 79.79 

Dog Creek 89.31 83.77 77.44 71.23 76.32 71.95 

Duncan 112.08 88.42 81.71 88.40 79.69 86.36 

Elko 91.51 89.55 88.40 87.00 87.81 85.96 

Fernie 97.83 89.55 86.97 88.69 86.75 88.24 

Fort Nelson 74.72 77.55 71.14 69.20 69.61 68.79 
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Fort St. John 88.18 88.42 75.74 80.54 75.09 79.01 

Glacier 79.88 80.10 82.28 78.73 81.37 77.68 

Golden 83.54 83.77 82.83 80.20 82.13 78.32 

Grand Forks 90.41 89.55 84.14 84.83 81.48 84.78 

Greenwood 93.66 89.55 84.01 84.83 81.30 84.78 

Hope 112.08 112.38 79.50 85.06 77.17 84.93 

Kamloops 89.31 89.55 80.57 72.47 78.61 71.71 

Kaslo 78.62 78.83 85.35 77.52 84.19 74.54 

Kelowna 96.80 89.55 81.47 70.05 79.15 69.87 

Kimberley 81.12 81.34 86.97 93.14 85.84 91.87 

Kitimat Plant 97.83 98.10 89.59 79.75 87.29 80.98 

Kitimat 

Townsite 

97.83 98.10 89.77 90.89 87.63 91.55 

Lillooet 93.66 93.92 78.54 74.60 77.20 73.84 

Lytton 92.59 92.85 79.64 93.24 77.55 93.47 

Mackenzie 79.88 80.10 75.70 64.43 74.37 62.95 

Masset 111.18 110.59 99.07 113.88 96.99 114.81 

McBride 83.54 83.77 78.49 75.80 77.19 73.68 

McLeod Lake 79.88 80.10 76.94 73.86 75.40 71.96 

Merritt 93.66 93.92 80.55 71.29 78.18 71.40 

Mission City 115.58 92.85 78.82 85.01 77.18 82.11 

Montrose 83.54 83.77 86.18 87.07 83.84 85.70 

Nakusp 81.12 81.34 83.54 63.80 81.94 62.69 

Nanaimo 112.08 100.12 85.26 82.02 82.76 80.63 

Nelson 81.12 81.34 86.30 79.50 84.59 75.84 

Ocean Falls 108.46 108.76 96.46 102.89 95.09 104.40 

Osoyoos 99.85 89.55 83.01 68.49 80.43 67.82 

Penticton 108.46 94.98 82.35 76.11 79.92 75.71 

Port Alberni 112.08 80.10 86.00 68.10 83.94 68.01 

Port Hardy 111.18 102.10 101.20 106.10 100.35 106.54 

Port McNeill 111.18 102.10 99.29 106.79 98.19 107.13 

Powell River 111.18 101.12 88.19 90.98 85.44 89.68 

Prince George 85.89 86.13 77.86 74.53 76.45 72.40 

Prince Rupert 103.76 104.05 93.04 96.69 90.74 96.93 

Princeton 84.72 84.95 79.49 67.12 77.29 67.90 

Qualicum Beach 112.96 103.08 86.58 83.47 84.05 83.16 

Quesnel 78.62 78.83 77.09 69.34 75.90 68.09 

Revelstoke 79.88 80.10 83.27 80.50 81.95 80.55 

Salmon Arm 88.18 88.42 81.13 69.77 79.12 68.19 

Sandspit 116.44 125.05 103.12 115.11 101.89 110.13 
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Sidney 109.38 91.76 82.61 85.80 80.87 82.64 

Smith River 74.72 77.55 68.91 65.37 67.35 64.93 

Smithers  89.31 89.55 84.05 70.80 80.74 69.37 

Squamish 105.67 100.12 78.81 85.03 77.10 83.01 

Stewart 92.59 84.95 83.63 73.76 79.81 72.60 

Taylor 89.31 89.55 75.66 76.89 75.16 75.57 

Terrace 84.72 84.95 87.09 87.09 84.37 86.52 

Tofino 116.44 116.76 91.91 88.92 90.25 88.55 

Trail 83.54 83.77 86.03 85.19 83.64 83.87 

Ucluelet 116.44 116.76 86.41 84.17 85.65 84.97 

Burnaby 97.83 97.07 78.84 86.24 77.12 83.55 

Cloverdale 96.80 93.92 80.14 87.35 78.27 84.86 

Haney 96.80 93.92 78.82 75.57 77.16 73.58 

Ladner 98.84 96.03 81.68 84.14 79.48 81.80 

Langley 96.80 93.92 80.16 88.38 78.31 85.80 

New 

Westminster 

96.80 93.92 79.24 89.11 77.42 86.32 

North 

Vancouver 

97.83 94.98 79.41 80.33 77.53 78.71 

Richmond 97.83 94.98 83.74 85.24 81.45 82.30 

Surrey (88 Ave 

& 156 St) 

96.80 93.92 81.62 87.86 79.44 85.42 

Vancouver 97.83 94.98 80.55 85.16 78.65 82.63 

West Vancouver 97.83 98.10 80.58 58.82 78.66 57.96 

Vernon 93.66 89.55 82.68 70.07 80.39 69.43 

Victoria  

(Gonzales 

Heights) 

112.08 106.90 79.89 121.05 77.62 120.10 

Victoria (Mt 

Tolmie) 

112.08 112.38 79.89 81.64 77.63 79.17 

Victoria 112.08 106.90 79.87 120.79 77.59 120.40 

Williams Lake 87.04 83.77 77.88 69.57 76.61 68.89 

Youbou 109.38 80.10 85.51 84.31 83.10 82.52 

Athabasca 89.31 84.95 77.64 75.99 77.64 75.27 

Banff 97.83 80.10 84.89 66.37 84.77 66.18 

Barrhead 93.66 93.92 80.37 73.66 80.10 73.85 

Beaverlodge 84.72 84.95 77.65 73.32 77.18 73.02 

Brooks 101.82 102.10 91.45 87.50 92.20 87.09 

Calgary  99.85 98.10 87.48 101.28 87.93 99.34 

Campsie 93.66 93.92 80.45 74.81 80.07 74.75 

Camrose 89.31 88.42 83.48 79.97 83.30 79.40 
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Cardston 142.61 120.14 89.35 84.82 89.81 86.92 

Claresholm 131.71 107.83 88.80 102.43 89.39 101.75 

Cold Lake 89.31 87.28 80.11 76.85 79.70 76.03 

Coleman 123.10 112.38 87.83 89.77 87.89 93.76 

Coronation 85.89 86.13 88.03 79.02 88.47 82.29 

Cowley 141.20 142.30 88.44 108.10 88.69 108.36 

Drumheller 93.66 93.92 88.39 72.57 89.03 73.14 

Edmonton 94.72 94.98 81.69 78.44 81.62 78.57 

Edson 95.77 96.03 83.04 73.17 81.74 72.35 

Embarras 

Portage 

90.41 86.13 73.65 65.82 71.60 63.53 

Fairview 83.54 83.77 77.02 73.67 76.28 73.39 

Fort MacLeod 133.96 116.76 89.62 107.64 90.03 108.98 

Fort McMurray 83.54 83.77 74.15 74.74 73.22 73.09 

Fort 

Saskatchewan 

92.59 92.85 81.10 79.07 81.24 79.12 

Fort Vermillion 76.04 77.55 82.75 72.35 81.05 71.41 

Grande Prairie 96.80 92.85 78.07 83.24 77.36 83.02 

Habay 74.72 77.55 73.63 69.36 72.22 68.79 

Hardisty 84.72 84.95 86.36 75.72 86.51 76.74 

High River  113.84 114.15 87.95 108.37 88.53 108.84 

Hinton 95.77 96.03 82.40 71.68 80.74 70.03 

Jasper 95.77 80.10 81.70 71.36 80.31 67.24 

Keg River 74.72 77.55 74.09 68.49 73.24 67.83 

Lac la Biche 89.31 84.95 77.82 79.00 77.73 77.94 

Lacombe  89.31 89.55 85.19 71.66 85.04 72.57 

Lethbridge 127.87 115.03 89.97 101.23 90.52 104.48 

Manning 74.72 77.55 75.78 69.44 74.89 69.48 

Medicine Hat 103.76 98.10 94.81 83.01 95.29 83.34 

Peace River 79.88 80.10 77.18 69.38 76.35 68.67 

Pincher Creek 139.07 138.73 88.61 109.96 88.88 110.89 

Ranfurly 79.88 84.95 83.53 78.73 83.65 79.19 

Red Deer 89.31 89.55 85.35 76.92 85.19 76.85 

Rocky 

Mountain House 

92.59 84.95 83.41 70.61 83.36 69.63 

Slave Lake 85.89 86.13 77.81 92.88 77.34 92.54 

Stettler 84.72 84.95 85.31 79.14 85.63 79.39 

Stony Plain 94.72 94.98 81.27 75.58 81.17 75.98 

Suffield 106.61 99.11 91.50 83.89 92.32 85.36 

Taber 122.29 112.38 91.30 90.94 91.76 93.07 
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Turner Valley 113.84 114.15 87.87 107.30 88.25 106.84 

Valleyview 96.80 91.76 78.24 81.66 77.55 81.36 

Begreville 83.54 84.95 82.85 81.93 82.97 82.85 

Vermillion 78.62 84.95 82.75 72.35 81.05 71.41 

Wagner 85.89 86.13 77.25 90.68 76.60 88.65 

Wainwright 84.72 84.95 86.06 76.23 86.10 76.93 

Wetaskiwin 89.31 88.42 83.50 75.78 83.25 75.59 

Whitecourt 92.59 86.13 81.31 74.00 80.38 74.51 

Wimborne 89.31 89.55 86.25 79.76 86.44 79.27 

Assiniboia 106.61 99.11 95.51 97.39 95.29 94.45 

Battrum 114.71 104.05 93.38 95.76 93.85 95.09 

Biggar 115.58 94.98 87.04 84.42 87.26 83.23 

Broadview 91.51 96.03 91.44 92.49 91.18 91.32 

Dafoe 85.89 86.13 88.63 82.10 87.96 81.78 

Dundurn 101.82 96.03 89.45 88.55 89.37 87.44 

Estevan 105.67 102.10 93.56 91.72 93.40 90.01 

Hudson Bay 85.89 86.13 81.53 82.24 80.60 77.93 

Humboldt 88.18 88.42 87.39 82.22 86.52 81.63 

Island Falls 93.66 83.77 74.75 70.33 73.33 69.11 

Kamsack  89.31 89.55 85.96 77.16 85.69 78.03 

Kindersley 112.96 96.03 90.93 99.09 91.51 96.80 

Lloydminster 90.41 89.55 85.17 76.45 84.84 77.83 

Maple Creek 112.08 94.98 95.29 84.13 95.60 83.56 

Meadow Lake 98.84 89.55 81.05 74.87 80.40 74.41 

Melfort  84.72 84.95 84.89 77.12 83.79 76.42 

Melville 89.31 89.55 90.59 85.36 89.98 85.53 

Moose Jaw 95.77 102.10 93.03 92.72 92.93 91.59 

Nipawin 87.04 87.28 80.42 82.59 79.93 78.65 

North Battleford 118.98 96.03 86.69 84.66 86.55 84.56 

Prince Albert 87.04 87.28 83.77 82.21 82.85 80.79 

Qu'Applelle 91.51 91.76 93.21 89.22 92.27 88.63 

Regina 91.51 99.11 92.95 90.06 92.36 89.82 

Rosetown 112.08 99.11 89.18 87.78 89.61 87.17 

Saskatoon 97.83 92.85 87.59 89.03 87.48 86.87 

Scott 113.84 94.98 87.85 72.83 87.85 71.66 

Strasbourg 91.51 91.76 91.71 85.75 91.30 85.44 

Swift Current 111.18 104.05 94.45 94.69 94.53 93.98 

Uranium City 93.66 84.95 75.11 69.83 72.50 68.67 

Weyburn 97.83 98.10 94.04 94.11 93.65 92.55 
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Yorkton 89.31 89.55 89.17 83.31 88.62 84.06 

Beausejour 90.41 90.66 81.89 78.53 80.92 78.90 

Boissevain 106.61 102.10 90.34 82.45 90.07 82.75 

Brandon 98.84 99.11 89.54 85.31 89.19 84.73 

Churchill 112.96 105.01 85.93 91.33 86.17 91.82 

Dauphin 89.31 89.55 85.04 80.63 84.77 81.29 

Flin Flon 93.66 83.77 75.02 72.62 73.65 71.05 

Gimli 89.31 89.55 80.56 69.15 80.18 68.74 

Island Lake 93.66 86.13 73.46 65.45 72.26 63.75 

Lac du Bonnet 85.89 86.13 80.15 74.64 79.37 73.89 

Lynn Lake 93.66 86.13 76.05 73.15 74.53 73.04 

Morden 101.82 102.10 86.92 64.89 86.36 65.05 

Neepawa 93.66 93.92 87.54 72.82 87.34 73.08 

Pine Falls 88.18 88.42 79.19 75.78 78.60 75.39 

Portage la 

Prairie 

95.77 96.03 85.98 82.13 85.67 82.36 

Rivers 95.77 96.03 89.84 80.78 89.54 80.76 

Sandilands 89.31 89.55 82.51 80.49 81.78 79.56 

Selkirk 92.59 90.66 82.19 78.36 81.40 79.52 

Split Lake 98.84 88.42 77.15 78.35 76.49 77.08 

Steinbach 89.31 89.55 82.22 77.01 81.87 77.28 

Swan River 87.04 83.77 82.60 75.49 82.12 77.78 

The Pas 93.66 86.13 77.03 76.33 75.89 74.67 

Thompson 98.84 84.95 75.96 69.08 74.96 69.02 

Virden 95.77 96.03 90.71 80.78 90.45 80.76 

Winnipeg 94.72 94.98 83.23 76.62 82.41 75.68 

Ailsa Craig 104.72 100.12 95.82 91.72 95.21 90.19 

Ajax 106.61 98.10 94.91 88.32 92.73 87.15 

Alexandria 89.31 89.55 91.36 76.03 89.13 74.76 

Alliston 81.12 84.95 90.74 84.42 89.50 85.80 

Almonte 90.41 90.66 88.10 80.88 86.12 79.66 

Armstrong 73.37 77.55 74.54 68.60 72.98 66.01 

Arnprior 85.89 86.13 86.51 80.80 84.37 79.26 

Atikokan 73.37 77.55 77.79 71.21 76.14 70.65 

Aurora 93.66 93.92 91.80 79.29 90.49 80.19 

Bancroft 79.88 80.10 87.65 64.19 85.24 60.48 

Barrie 81.12 84.95 90.17 78.89 88.75 80.09 

Barriefield 96.80 97.07 87.80 86.75 85.63 84.94 

Beaverton 84.72 84.95 90.06 79.05 88.48 78.84 

Belleville 92.59 92.85 92.66 88.66 90.50 85.91 
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Belmont 100.84 97.07 98.76 91.67 97.09 89.54 

Big Trout Lake 91.51 91.76 74.63 74.20 73.92 73.67 

CFB Borden 81.12 84.95 90.43 79.99 89.13 81.32 

Bracebridge 83.54 83.77 87.34 73.96 85.29 73.28 

Bradford 84.72 84.95 91.50 74.38 90.17 76.33 

Brampton 93.66 93.92 93.65 85.19 92.36 84.99 

Brantford 89.31 91.76 97.97 85.59 96.33 85.67 

Brighton 103.76 98.10 93.75 94.91 91.64 91.59 

Brockville 93.66 93.92 87.88 85.93 85.74 84.24 

Burk's Falls 83.54 83.77 84.21 69.13 82.12 68.39 

Burlington 95.77 96.03 95.04 88.61 93.88 87.05 

Cambridge 83.54 84.95 96.53 86.70 94.90 85.90 

Campbellford 90.41 90.66 73.84 76.72 72.47 75.01 

Cannington 84.72 84.95 90.76 80.38 89.15 79.53 

Carleton Place 90.41 90.66 87.36 74.14 85.26 73.51 

Cavan 93.66 93.92 91.63 83.66 90.00 82.43 

Centralia 102.80 99.11 95.52 86.56 94.74 85.26 

Chapleau 74.72 77.55 78.83 87.09 77.05 85.46 

Chatham 92.59 92.85 98.31 92.83 96.75 90.49 

Chesley 97.83 98.10 90.79 80.66 89.62 80.99 

Clinton 102.80 99.11 95.01 87.47 93.67 86.51 

Coboconk 83.54 83.77 88.72 80.86 86.90 80.47 

Cobourg 108.46 99.11 94.05 80.41 91.82 79.00 

Cochrane 83.54 83.77 75.89 77.10 73.59 76.67 

Colborne 105.67 99.11 93.11 90.21 91.22 86.78 

Collingwood 88.18 88.42 88.16 76.37 87.60 81.91 

Cornwall 90.41 90.66 89.67 79.05 87.86 78.31 

Cornunna 96.80 97.07 96.92 91.50 96.21 90.66 

Deep River 83.54 83.77 83.43 71.40 80.83 69.77 

Deseronto 92.59 92.85 89.77 95.93 87.88 93.05 

Dorchester 97.83 97.07 98.79 87.08 97.05 85.97 

Dorion 88.18 88.42 76.21 91.29 75.10 87.77 

Dresden 92.59 92.85 97.91 90.08 96.78 88.90 

Dryden 73.37 77.55 76.63 70.25 75.29 69.14 

Dunnville 91.51 96.03 97.02 96.12 95.13 94.22 

Durham 93.66 93.92 91.67 85.32 90.42 86.57 

Dutton 96.80 97.07 98.64 88.88 97.22 87.73 

Earlton 94.72 94.98 76.83 79.77 74.45 77.97 

Edison 78.62 78.83 96.91 94.69 96.21 93.43 
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Elmvale 84.72 84.95 89.00 78.73 87.83 79.44 

Embro 97.83 98.10 95.66 87.07 94.62 86.12 

Englehart 90.41 90.66 76.79 75.73 74.43 75.58 

Espanola 91.51 91.76 80.99 85.02 80.09 83.11 

Exeter 102.80 99.11 95.37 91.20 94.58 89.66 

Fenelon Falls 84.72 84.95 89.07 83.60 87.32 81.90 

Fergus 84.72 84.95 94.85 75.19 93.29 77.31 

Forest 101.82 98.10 95.81 91.72 95.24 90.19 

Fort Erie 95.77 96.03 97.10 100.99 95.11 100.15 

Fort Erie 

(Ridgeway) 

95.77 96.03 96.90 100.99 94.95 100.16 

Fort Frances 78.62 78.83 79.34 75.18 77.97 74.23 

Gananoque 96.80 97.07 85.73 91.59 83.94 91.18 

Geraldton 73.37 77.55 74.16 83.00 73.00 81.72 

Glencoe 92.59 92.85 98.67 87.62 97.20 86.44 

Goderich 104.72 105.01 94.25 79.27 93.24 82.59 

Gore Bay 88.18 93.92 83.87 83.81 82.88 82.42 

Graham 73.37 77.55 74.65 79.18 73.46 78.28 

Gravenhurst 

(Muskoka 

Airport) 

83.54 84.95 88.72 74.27 86.67 74.37 

Grimsby 95.77 96.03 95.28 90.68 94.04 89.57 

Guelph 81.12 84.95 95.40 84.72 93.93 85.57 

Guthrie 81.12 84.95 89.94 79.30 88.42 80.55 

Haileybury 93.66 93.92 77.72 73.22 75.31 72.60 

Haldimand 

(Caledonia) 

89.31 93.92 95.46 88.32 94.47 86.72 

Haldimand 

(Hagersville) 

91.51 96.03 97.05 88.35 95.81 87.00 

Haliburton 83.54 83.77 86.77 76.50 84.95 75.06 

Halton Hills 

(Georgetown) 

85.89 86.13 93.79 84.41 92.56 84.34 

Hamilton 95.77 96.03 96.53 77.34 95.10 77.35 

Hanover 97.83 98.10 92.93 81.38 91.57 81.84 

Hastings 90.41 90.66 92.45 88.02 90.29 85.02 

Hawkesbury 90.41 90.66 90.72 78.91 88.40 77.60 

Hearst 74.72 77.55 75.92 76.82 73.83 75.63 

Honey Harbour 88.18 88.42 89.06 62.54 86.90 64.06 

Hornepayne 74.72 77.55 76.36 78.09 74.44 77.13 

Huntsville 83.54 83.77 85.16 72.80 83.33 71.47 

Ingersoll 97.83 98.10 97.84 83.84 96.28 83.02 
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Iroquois Falls 89.31 86.13 76.81 75.85 74.31 75.01 

Jellicoe 73.37 77.55 74.09 75.04 73.10 71.45 

Kapuskasing 78.62 78.83 76.14 74.85 73.73 73.62 

Kemptville 90.41 90.66 89.67 80.56 87.49 79.72 

Kenora 78.62 78.83 77.70 77.25 76.75 75.33 

Killaloe 83.54 83.77 86.07 90.88 83.48 87.83 

Kincardine 104.72 105.01 93.34 84.87 92.27 85.52 

Kingston 96.80 97.07 90.48 74.38 89.09 76.33 

Kinmount 83.54 83.77 87.96 80.36 86.32 78.67 

Kirkland Lake 90.41 88.42 77.08 76.39 74.60 76.40 

Kitchener 85.89 86.13 94.17 84.08 93.23 83.86 

Lakefield 87.04 87.28 89.23 85.64 87.89 83.34 

Lansdowne 

House 

79.88 80.10 73.65 68.62 72.57 68.83 

Leamington 96.80 97.07 98.42 87.12 96.89 85.40 

Lindsay 87.04 87.28 89.61 83.60 87.99 81.90 

Lion's Head 97.83 98.10 86.18 80.95 85.32 80.14 

Listowel 96.80 97.07 93.40 78.09 92.45 78.73 

London 103.76 97.07 97.09 91.31 95.95 88.93 

Lucan 104.72 100.12 95.75 86.56 95.01 85.26 

Maitland 93.66 93.92 87.83 85.93 85.70 84.24 

Markdale 90.41 90.66 89.97 78.77 88.99 78.93 

Markham 102.80 93.92 93.32 81.20 91.94 81.26 

Martin 73.37 77.55 75.73 68.87 74.47 68.74 

Matheson 90.41 88.42 76.96 76.39 74.50 76.40 

Mattawa 79.88 80.10 81.34 72.43 79.31 71.15 

Midland 88.18 88.42 89.14 73.87 87.11 75.68 

Milton 92.59 92.85 94.13 87.32 93.03 85.94 

Milverton 92.59 92.85 94.77 79.73 93.61 80.14 

Minden 83.54 83.77 86.95 76.50 85.31 75.06 

Mississauga 98.84 93.92 94.16 87.37 92.96 85.98 

Mississauga 

(Port Credit) 

98.84 93.92 94.17 87.38 92.95 85.99 

Mitchell 99.85 98.10 95.11 83.03 93.98 83.69 

Moosonee 83.54 83.77 75.36 78.16 73.86 75.67 

Morrisburg 90.41 90.66 92.06 78.67 89.82 78.40 

Mount Forest 90.41 90.66 94.01 90.75 92.40 87.90 

Nakina 73.37 77.55 73.87 74.88 72.49 74.08 

Nanticoke 

(Jarvis) 

92.59 98.10 96.78 86.95 95.67 85.94 
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Nanticoke (Port 

Dover) 

95.77 98.10 96.91 89.26 95.81 87.38 

Napanee 92.59 92.85 91.94 95.93 89.69 93.05 

New Liskeard 92.59 92.85 78.08 72.23 75.71 72.32 

Newcastle 108.46 98.10 94.72 94.02 92.55 91.64 

Newcastle 

(Bowmanville) 

109.38 98.10 94.84 91.19 92.61 89.24 

Newmarket 87.04 87.28 91.67 79.29 90.34 80.19 

Niagara Falls 92.59 92.85 96.00 90.30 94.04 88.99 

North Bay 82.34 82.56 81.88 71.61 79.65 71.58 

Norwood 90.41 90.66 92.58 88.96 90.34 87.04 

Oakville 98.84 97.07 94.94 87.32 93.72 85.94 

Orangeville 84.72 84.95 93.62 83.28 92.10 83.03 

Orillia 83.54 84.95 88.84 79.33 87.61 80.56 

Oshawa 106.61 98.10 94.85 88.32 92.64 87.15 

Ottawa 90.41 90.66 87.83 82.35 86.30 82.26 

Owen Sound 97.83 98.10 89.02 77.88 88.01 78.51 

Pagwa River 74.72 77.55 75.69 74.09 73.84 73.59 

Paris 90.41 91.76 97.41 85.59 95.84 85.67 

Parkhill 104.72 100.12 95.75 91.72 95.15 90.19 

Parry Sound 88.18 88.42 84.55 75.95 83.53 76.76 

Pelham 

(Fonthill) 

91.51 91.76 96.64 90.32 94.72 89.49 

Pembroke 83.54 83.77 84.45 73.40 82.22 72.04 

Penetanguishene 88.18 88.42 87.49 72.00 86.51 74.04 

Perth 90.41 90.66 89.79 82.66 87.38 80.57 

Petawawa 83.54 83.77 83.67 70.54 81.14 69.53 

Peterborough 90.41 90.66 90.25 85.07 88.70 83.04 

Petrolia 96.80 97.07 96.23 91.72 95.68 90.20 

Pickering 

(Dunbarton) 

106.61 98.10 94.93 88.32 92.77 87.15 

Picton 98.84 99.11 89.60 88.56 87.86 86.99 

Plattsville 90.41 91.76 96.38 86.94 94.93 86.15 

Point Alexander 83.54 83.77 83.34 71.40 80.72 69.77 

Port Burwell 96.80 97.07 98.50 90.94 97.11 90.10 

Port Colborne 95.77 96.03 97.01 98.57 95.07 101.61 

Port Elgin 104.72 105.01 91.44 84.87 90.27 85.52 

Port Hope 108.46 98.10 94.07 92.73 91.84 90.70 

Port Perry 93.66 93.92 91.33 78.93 89.91 78.76 

Port Stanley 96.80 97.07 98.88 91.66 97.37 89.53 
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Prescott 93.66 93.92 88.91 86.75 86.82 84.94 

Princeton 90.41 91.76 97.46 84.73 95.90 84.14 

Raith 73.37 77.55 75.39 78.70 74.27 78.05 

Rayside-Balfour 

(Chelmsford) 

94.72 94.98 80.52 81.50 79.32 80.01 

Red Lake 74.72 77.55 75.92 72.92 74.50 70.00 

Renfrew 83.54 83.77 86.21 84.59 83.96 82.49 

Richmond Hill 102.80 93.92 92.34 79.29 91.11 80.19 

Rockland 89.31 89.55 88.46 78.10 86.84 76.35 

Sarnia 96.80 97.07 95.72 99.88 94.95 97.81 

Sault Ste. Marie 89.31 93.92 83.98 93.49 82.51 89.80 

Schreiber 88.18 88.42 76.57 95.79 75.22 91.33 

Seaforth 102.80 98.10 95.22 87.47 93.88 86.51 

Simcoe 92.59 94.98 96.56 99.51 95.47 95.66 

Sioux Lookout 73.37 77.55 75.04 70.13 73.62 67.20 

Smiths Falls 90.41 90.66 89.97 83.79 87.64 82.79 

Smithville 91.51 91.76 96.85 93.92 94.71 92.16 

Smooth Rock 

Falls 

79.88 80.10 75.77 76.62 73.48 76.10 

South River 79.88 83.77 83.53 69.13 81.34 68.39 

Southampton 102.80 103.08 91.44 84.28 90.24 84.83 

St. Catherines 95.77 96.03 96.52 96.97 94.34 93.73 

St. Mary's 100.84 97.07 95.72 82.32 94.63 82.51 

St. Thomas 97.83 97.07 98.74 91.66 97.24 89.53 

Stirling 89.31 89.55 92.37 90.70 90.10 87.35 

Stratford 97.83 94.98 95.37 82.32 94.25 82.51 

Strathroy 99.85 97.07 96.21 91.72 95.62 90.19 

Sturgeon Falls 83.54 83.77 81.85 69.33 79.69 69.46 

Sudbury 95.77 96.03 80.44 81.09 79.26 80.35 

Sundridge 79.88 83.77 83.74 69.13 81.58 68.39 

Tavistock 96.80 94.98 95.48 86.65 94.37 86.17 

Temagami 85.89 86.13 78.65 75.50 76.66 74.37 

Thamesford 97.83 98.10 97.77 84.12 96.22 83.19 

Thedford 104.72 100.12 95.71 91.72 95.12 90.19 

Thunder Bay 88.18 88.42 76.99 88.77 75.82 85.60 

Tillsonburg 93.66 93.92 98.14 78.75 96.58 78.80 

Timmins 83.54 83.77 77.50 77.91 74.95 75.90 

Timmins 

(Porcupine) 

85.89 86.13 77.67 80.25 75.11 78.11 

Etobicoke 102.80 93.92 95.32 90.43 93.30 89.37 
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North York 102.80 93.92 95.02 85.44 92.94 84.53 

Scarborough 102.80 97.07 95.04 88.32 92.94 87.15 

Toronto 101.82 93.92 95.33 87.65 93.29 86.61 

Trenton 96.80 97.07 93.61 103.76 91.50 98.92 

Trout Creek 79.88 83.77 83.09 69.13 80.83 68.39 

Uxbridge 91.51 91.76 91.71 82.69 90.29 83.21 

Vaughan 

(Woodbridge) 

102.80 93.92 93.11 81.30 91.79 82.08 

Vittoria 96.80 97.07 97.79 90.45 96.49 88.73 

Walkerton 99.85 100.12 92.87 81.98 91.54 82.53 

Wallaceburg 92.59 94.98 96.81 94.69 96.25 93.43 

Waterloo 85.89 86.13 94.05 82.80 93.11 82.99 

Watford 96.80 97.07 96.16 91.72 95.59 90.19 

Wawa 88.18 88.42 78.36 81.76 76.93 82.22 

Welland 92.59 92.85 96.65 90.93 94.74 89.72 

West Lorne 96.80 97.07 98.64 88.88 97.24 87.73 

Whitby 106.61 98.10 94.80 88.32 92.60 87.15 

Whitby 

(Brooklin) 

102.80 94.98 94.64 88.32 92.42 87.15 

White River 73.37 77.55 76.74 71.75 75.30 66.32 

Wiarton 97.83 98.10 87.38 93.09 86.67 91.33 

Windsor 96.80 97.07 97.05 97.11 96.01 94.25 

Wingham 99.85 100.12 93.26 90.20 92.38 89.84 

Woodstock 93.66 93.92 97.72 87.30 96.12 86.51 

Wyoming 96.80 97.07 96.08 91.75 95.53 90.21 

Acton-Vale 79.88 83.77 90.33 94.23 89.60 94.86 

Alma 79.88 83.77 86.29 80.51 85.38 79.84 

Amos 79.88 80.10 77.08 73.27 74.75 73.71 

Asbestos 83.54 83.77 90.06 84.25 89.33 85.14 

Alymer 90.41 90.66 87.98 81.02 86.03 79.99 

Baie-Comeau 109.38 100.12 88.56 89.89 87.66 90.56 

Beauport 102.80 91.76 88.09 89.29 87.14 89.99 

Bedford 90.41 90.66 90.16 85.65 89.52 85.73 

Beloeil 85.89 86.13 90.72 86.48 89.53 86.36 

Brome 85.89 86.13 90.46 91.17 89.73 91.04 

Brossard 89.31 91.76 91.38 84.33 90.18 83.78 

Buckingham 89.31 89.55 87.30 78.12 85.74 76.06 

Campbell's Bay 79.88 80.10 85.46 74.96 83.20 73.21 

Chambly 89.31 89.55 90.90 85.88 89.68 86.03 

Coaticook 87.04 83.77 91.09 81.68 90.49 82.77 
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Contrecoeur 92.59 92.85 90.02 90.55 88.69 90.61 

Cowansville 90.41 90.66 90.51 92.57 89.78 93.48 

Deux-

Montagnes 

85.89 86.13 91.03 82.90 89.31 82.32 

Dolbeau 83.54 83.77 85.12 78.25 84.44 77.41 

Drummondville 79.88 83.77 89.13 93.93 88.16 93.83 

Farnham 90.41 86.13 90.03 88.31 89.40 89.24 

Fort-Coulonge 79.88 80.10 84.55 73.40 82.45 72.04 

Gagnon 95.77 88.42 90.44 85.25 90.12 86.22 

Gaspe 124.71 98.10 95.77 100.85 93.37 100.53 

Gatineau 90.41 90.66 87.74 81.01 86.20 79.19 

Gracefield 79.88 80.10 85.23 70.49 83.35 69.65 

Granby 83.54 83.77 90.45 90.10 89.72 91.08 

Harrington-

Harbour 

135.44 120.14 105.49 101.66 105.06 101.51 

Havre-St-Pierre 124.71 112.38 97.38 93.65 96.12 94.59 

Hemmingford 89.31 89.55 89.28 86.17 88.56 87.06 

Hull 90.41 90.66 87.78 81.95 86.24 81.44 

Iberville 90.41 90.66 90.01 88.48 89.35 89.04 

Inukjuak 133.96 109.68 98.88 94.80 98.12 95.81 

Joliette 84.72 84.95 88.45 80.96 87.53 80.05 

Kuujjuaq 119.82 109.68 114.99 120.43 114.26 115.20 

Kuujjuarapik 128.64 105.01 86.97 84.27 86.68 82.22 

La-Malbaie 104.72 98.10 88.33 99.21 87.47 99.04 

La-Tuque 83.54 83.77 85.97 68.52 85.60 69.55 

Lac-Megantic 83.54 83.77 91.54 74.67 91.25 76.29 

Lachute 89.31 89.55 90.55 76.71 88.40 75.68 

Lennoxville 79.88 80.10 91.10 80.26 90.23 83.19 

Lery 89.31 91.76 89.30 82.37 88.20 82.09 

Loretteville 102.80 90.66 87.57 86.38 86.81 86.84 

Louiseville 92.59 92.85 88.08 78.48 87.35 77.57 

Magog 83.54 83.77 91.14 87.70 90.29 88.17 

Malartic 79.88 80.10 77.46 73.14 75.07 73.61 

Maniwaki 78.62 78.83 84.13 75.25 82.06 73.24 

Masson 89.31 89.55 88.37 78.12 86.69 76.33 

Matane 109.38 109.68 88.50 94.42 87.89 94.50 

Mont-Joli 109.38 102.10 88.41 84.89 87.12 85.45 

Mont-Laurier 77.34 77.55 85.07 75.19 83.19 73.55 

Montmagny 104.72 97.07 89.09 88.56 87.92 89.16 

Beaconsfield 89.31 91.76 89.59 73.95 88.29 75.31 
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Dorval 89.31 91.76 90.02 96.00 88.70 95.07 

Laval 89.31 91.76 90.78 83.40 89.37 82.63 

Montreal 89.31 91.76 90.85 57.83 89.78 57.66 

Montreal-Est 89.31 91.76 90.52 85.44 89.16 85.16 

Montreal-Nord 89.31 91.76 90.65 82.10 89.22 82.01 

Outremont 89.31 91.76 90.88 56.75 89.78 56.77 

Pierrefonds 89.31 91.76 89.98 75.17 88.43 76.24 

St-Lambert 89.31 91.76 91.83 78.38 90.42 78.56 

St-Laurent 89.31 91.76 89.89 88.35 88.63 87.63 

Ste-Anne-de-

Bellevue 

89.31 91.76 89.61 70.34 88.10 72.69 

Verdun 89.31 91.76 91.42 72.23 90.18 72.81 

Nicolet 

(Gentilly) 

91.51 91.76 88.35 86.01 87.52 82.49 

Nitchequon 85.89 86.13 90.16 88.14 89.42 89.96 

Noranda 83.54 83.77 76.43 76.97 73.90 80.42 

Perce 130.18 120.14 96.85 100.02 94.40 100.29 

Pincourt 89.31 91.76 89.68 76.36 88.28 76.91 

Plessisville 83.54 83.77 89.61 80.91 88.57 81.12 

Port-Cartier 116.44 104.05 89.37 90.79 88.07 91.82 

Povungnituk 134.70 109.68 110.71 114.17 109.53 112.17 

Ancienne-

Lorette 

102.80 90.66 88.19 92.94 87.32 92.98 

Levis 102.80 90.66 88.24 93.65 87.37 96.41 

Quebec 102.80 90.66 88.22 96.62 87.35 97.77 

Sillery 102.80 90.66 89.11 96.61 88.07 98.68 

Ste-Foy 102.80 90.66 88.22 98.19 87.36 100.77 

Richmond 79.88 80.10 90.17 91.68 89.44 91.66 

Rimouski 109.38 102.10 88.07 96.29 86.87 95.77 

Riveiere-du-

Loup 

107.54 100.12 88.37 86.96 87.12 86.21 

Roberval 83.54 83.77 85.86 87.53 84.89 87.22 

Rock-Island 90.41 83.77 91.16 80.93 90.52 81.78 

Rosemere 89.31 89.55 90.72 83.37 89.25 82.30 

Rouyn 83.54 83.77 76.43 76.89 73.90 80.06 

Salaberry-de-

Valleyfield 

89.31 91.76 89.62 77.46 88.16 77.08 

Schefferville 91.51 91.76 104.64 97.90 103.19 98.18 

Senneterre 79.88 80.10 79.38 64.00 77.16 64.67 

Sept-Iles 116.44 104.05 90.10 74.47 88.99 75.87 

Shawinigan 83.54 83.77 86.64 65.73 86.16 68.50 
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Shawville 83.54 83.77 85.91 75.92 83.71 74.57 

Sherbrooke 79.88 80.10 90.15 83.73 89.43 84.84 

Sorel 92.59 92.85 88.61 85.22 87.68 84.78 

St-Felicien 83.54 83.77 84.72 80.00 84.04 79.06 

St-Georges-de-

Cacouna 

107.54 100.12 88.32 106.45 87.07 106.34 

St-Hubert 89.31 91.76 91.35 98.90 90.16 99.15 

St-Hubert-de-

Temiscouata 

107.54 89.55 88.62 100.57 87.26 99.58 

St-Hyacinthe 83.54 83.77 90.58 87.17 89.44 87.40 

St-Jerome 85.89 86.13 89.37 77.35 87.88 76.17 

St-Jovite 81.12 81.34 87.00 61.96 85.67 59.84 

St-Nicolas 98.84 91.76 88.02 83.68 87.24 85.52 

Ste-Agathe-des-

Monts 

83.54 83.77 87.81 88.24 86.51 85.71 

Sutton 90.41 90.66 91.19 81.22 90.38 82.62 

Tadoussac 105.67 102.10 88.47 156.66 87.24 153.36 

Temiscaming 79.88 80.10 80.00 62.34 77.65 64.78 

Thedford Mines 85.89 83.77 90.19 76.54 89.27 77.73 

Thurso 89.31 89.55 88.41 78.10 86.79 76.35 

Trois-Rivieres 92.59 92.85 87.91 84.75 87.30 86.40 

Val-d'Or 79.88 80.10 78.07 71.33 75.67 71.78 

Varennes 89.31 89.55 90.29 95.87 89.08 94.56 

Vercheres 92.59 92.85 90.08 90.89 88.90 89.76 

Victoriaville 83.54 83.77 89.30 78.92 88.41 78.86 

Ville-Marie 89.31 89.55 78.52 75.84 76.21 75.41 

Waterloo 83.54 83.77 90.40 90.94 89.68 91.42 

Windsor 79.88 80.10 90.15 86.05 89.42 86.65 

Alma 105.67 98.10 95.14 87.41 94.03 89.24 

Bathhurst 97.83 98.10 93.31 96.07 91.53 93.82 

Campbellton 102.80 94.98 90.31 92.48 88.64 92.24 

Edmundston 93.66 87.28 89.27 79.21 87.75 78.72 

Fredericton 90.41 87.28 91.36 80.41 90.12 79.93 

Gagetown 103.76 89.55 93.87 82.01 92.70 81.46 

Grand Falls 91.51 87.28 90.32 78.57 88.31 77.12 

Moncton 112.96 100.12 95.30 92.01 94.11 91.70 

Oromocto 99.85 88.42 91.30 79.75 89.96 80.89 

Sackville 107.54 99.11 96.92 96.29 95.50 96.93 

Saint John 102.80 103.08 92.81 81.42 92.09 82.46 

Shippagan 117.29 112.38 94.38 94.58 92.81 93.48 
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St. Stephen 109.38 91.76 94.14 65.80 92.63 67.35 

Woodstock 85.89 86.13 91.26 85.77 90.69 85.30 

Amherst 107.54 98.10 97.34 94.76 95.99 96.57 

Antigonish 103.76 104.05 105.45 113.76 104.45 113.46 

Bridgewater 108.46 105.01 95.16 86.04 94.83 85.40 

Canso  111.18 110.59 106.79 105.74 105.75 105.97 

Debert 104.72 98.10 97.39 94.47 96.78 93.55 

Digby 104.72 105.01 93.16 82.96 92.98 83.41 

Greenwood 103.76 104.05 92.12 84.23 92.59 84.12 

Dartmouth 107.54 107.83 96.64 92.87 96.23 93.26 

Halifax 107.54 107.83 96.63 92.70 96.22 93.11 

Kentville 103.76 104.05 95.18 77.31 94.44 78.81 

Liverpool  110.28 110.59 94.07 87.22 94.82 85.77 

Lockeport 109.38 109.68 93.20 84.23 93.66 84.12 

Louisburg 113.84 114.15 96.67 92.57 96.26 93.00 

Lunenburg 110.28 110.59 94.37 86.04 95.19 85.40 

New Glasgow 104.72 105.01 104.12 113.37 102.55 114.05 

North Sydney 108.46 108.76 111.60 113.20 110.31 112.72 

Pictou 104.72 105.01 103.61 106.52 102.12 105.53 

Port 

Hawkesbury 

121.47 121.80 107.22 110.69 106.08 110.39 

Springhill 105.67 98.10 97.93 93.54 96.78 94.21 

Stewiacke 104.72 100.12 97.75 100.32 97.26 100.13 

Sydney 108.46 108.76 113.61 113.90 112.11 114.05 

Tatamagouche 104.72 105.01 101.00 97.73 99.35 95.96 

Truro 102.80 98.10 97.61 93.65 97.12 95.19 

Wolfville 103.76 104.05 95.40 89.90 94.62 90.07 

Yarmouth 105.67 105.96 92.93 90.26 93.31 90.78 

Charlottetown 109.38 105.96 103.04 101.82 101.36 102.53 

Souris 103.76 107.83 105.72 107.80 104.05 106.67 

Summerside 116.44 109.68 98.37 98.30 97.09 95.31 

Tignish 123.91 115.03 97.98 97.54 96.79 94.87 

Argentia 122.29 122.62 114.04 116.93 114.64 111.51 

Bonavista 117.29 129.77 114.10 126.53 113.83 121.27 

Buchans 109.38 109.68 112.92 116.60 111.50 114.97 

Cape Harrison 109.38 109.68 119.09 124.85 119.66 124.43 

Cape Race 144.69 145.09 112.81 150.44 113.14 146.17 

Channel-Port 

aux Basques 

115.58 125.05 109.11 114.40 108.43 111.40 

Corner Brook 121.47 105.01 110.08 125.45 109.06 98.13 
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Gander 109.38 109.68 112.93 105.06 111.90 106.82 

Grand Bank 121.47 121.80 114.21 124.64 114.61 121.32 

Grand Falls 109.38 109.68 114.14 106.67 112.55 105.74 

Happy Valley - 

Goose Bay 

85.89 91.76 111.96 99.56 111.33 97.27 

Labrador City 89.31 89.55 94.73 81.77 94.04 82.83 

St. Anthony 131.71 132.07 113.07 120.91 112.98 121.14 

St. John's 126.30 125.05 113.12 112.43 113.23 113.14 

Stephenville 123.91 107.83 108.96 123.91 108.14 112.95 

Twin Falls 89.31 89.55 102.22 101.86 100.98 102.70 

Wabana 122.29 122.62 114.56 113.03 114.86 111.61 

Wabush 89.31 89.55 93.86 81.96 93.60 82.98 

Aishihik 87.04 87.28 65.08 66.08 63.74 65.33 

Dawson 78.62 78.83 66.75 60.74 65.15 62.00 

Destruction Bay 109.38 109.68 64.58 65.75 63.30 64.95 

Snag 78.62 78.83 64.58 71.08 63.27 69.00 

Teslin 76.04 82.56 67.67 67.76 65.73 66.63 

Watson Lake 83.54 83.77 67.66 62.92 66.12 62.04 

Whitehorse 87.04 87.28 67.14 77.08 65.48 75.04 

Aklavik 109.38 98.10 76.81 87.70 75.84 85.30 

Echo Bay/Port 

Radium 

102.80 103.08 84.11 90.89 83.55 90.27 

Fort Good Hope 112.08 93.92 77.34 67.34 76.22 68.57 

Fort Providence 83.54 83.77 73.83 73.03 72.13 73.54 

Fort Resolution 88.18 88.42 74.03 68.31 71.85 68.16 

Fort Simpson 90.41 88.42 72.48 69.91 71.12 70.26 

Fort Smith 90.41 88.42 73.42 66.79 71.08 65.64 

Hay River 83.54 83.77 73.39 65.84 71.26 66.36 

Holman 130.18 131.31 95.48 113.96 95.27 113.63 

Inuvik 112.96 98.10 78.29 84.35 77.20 83.79 

Mould Bay 115.58 107.83 109.74 105.53 107.29 103.10 

Norman Wells 115.58 93.92 76.16 78.20 75.10 75.60 

Rae-Edzo 96.80 97.07 76.87 72.33 75.44 73.95 

Tungsten 93.66 93.92 68.51 66.64 67.40 66.39 

Yellowknife 96.80 97.07 76.82 70.73 74.92 70.62 

Alert 123.10 122.62 122.50 128.19 121.23 128.50 

Arctic Bay 104.72 105.01 112.16 112.29 109.98 110.21 

Arviat/Eskimo 

Point 

112.96 107.83 94.72 119.50 94.65 114.31 

Baker Lake 103.76 104.05 101.41 111.52 101.46 109.33 
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Cambridge Bay 103.76 104.05 100.63 101.53 100.88 102.84 

Chesterfield 

Inlet 

105.67 105.96 102.17 105.04 102.80 103.60 

Clyde River 133.96 120.14 108.19 111.23 105.46 109.25 

Coppermine 95.77 96.03 90.76 91.34 90.58 89.34 

Coral Harbour 140.50 117.61 105.24 105.62 104.99 104.82 

Eureka 115.58 105.01 122.43 114.53 119.80 114.36 

Iqaluit 122.29 107.83 121.32 121.05 118.72 113.64 

Isachsen 133.96 109.68 120.45 140.97 119.04 138.26 

Nottingham 

Island 

140.50 125.05 108.77 130.75 107.41 125.53 

Rankin Inlet 109.38 109.68 100.23 109.56 100.83 106.61 

Resolute 117.29 117.61 113.97 111.07 112.46 110.98 

Resolution 

Island 

156.60 157.03 128.70 141.41 128.79 139.73 
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