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Abstract

Impact craters are used as subjects for the remote study of a wide variety of surface

and subsurface processes throughout the solar system. Their populations and shape

characteristics are collected, often manually, and analysed by a large community of

planetary scientists. This research investigates the application of automated methods

for both the detection and characterization of impact craters on the Moon and Mars,

using machine learning techniques and digital elevation data collected by orbital

spacecraft. We begin by first assessing the effect of lunar terrain type variation on

automated crater detection results. Next, we develop a novel automated crater

degradation classification system for martian complex craters using polynomial profile

approximation. This work identifies that surface age estimations and crater statistics

acquired through automatic crater detection are influenced by terrain type, with unique

detection error responses. Additionally, we demonstrate an objective system that can

be used to automate the classification of crater degradation states, and identify some

potential areas of improvement for such a system.

Keywords: automated crater detection, Chebyshev polynomials, degradation,
digital elevation model, impact crater, machine learning, Mars, Moon, profile
approximation, topography
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Chapter 1

Introduction

1.1 Impact Cratering

Impact craters are basin-shaped features on a surface formed by a collision of an

asteroid, comet or meteoroid on that surface. The structures are ubiquitous throughout

the solar system, and are studied by a large community of planetary and earth

scientists. Impact craters (hereafter just ‘craters’) exhibit different expressions and

properties that depend on the pre-impact surface conditions, subsurface composition,

and parameters of the impact event such as energy and impact angle. Additionally,

they can be altered over time by surface processes which vary depending on celestial

body. Craters can be divided into main groups: simple and complex. These two groups

are separated by size; above a certain threshold, the crater transitions to a complex

shape with a central peak. This transition size for a given body is related to its

gravitational acceleration (Melosh, 2011). The anatomy of both a simple and complex

crater are shown in Figure 1.1.

1



Chapter 1. Introduction 2

Simple craters are bowl-shaped, with an uplifted rim that can be altered by

weathering or other modifying processes. The floor of the crater contains a mix of

breccia (broken fragments of target material held together in a matrix) and possibly

impact melt (target rock that was melted from the extreme heat of impact). Beyond

the rim of the crater, debris known as ejecta is deposited on top of the surrounding

terrain, with the thickness of the ejecta being inversely related to radial distance from

the rim (McGetchin, Settle, & Head III, 1973). This ejecta, while relatively thin for

smaller craters, can play a significant role in altering the landscape as the impact and

thus amount of excavated material becomes larger. Significantly large enough impacts

are known to form impact basins (hereafter referred to as ‘impact basins’ in full to

identify them from regular topographic depressions). These structures, such as the one

that formed the Orientale Basin, have diameters on the order of hundreds to thousands

of km, and often form concentric ring systems. Impact basins have an age-resetting

effect on the terrain surrounding them. Proximal craters will be entirely covered, while

craters that are further out will be significantly in-filled so as to fundamentally change

their expression. Craters which have been in-filled by either ejecta or lava, but still have

a visible raised rim, are known as ghost craters. Ghost craters can affect crater counts

and throw off age estimates.

The topographic expression of simple craters can be described to a lower degree as a

local region of concavity. The morphology changes for craters that have a diameter

larger than the transition size for its host body, which is around 15 km for the Moon, 7
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Figure 1.1: Cross-sectional diagrams of both a simple (a) and complex (c) crater (Osinski
& Pierazzo, 2012). (b) shows a WAC mosaic image of Sarabhai crater, a 8 km diameter
simple impact crater in Mare Serenitatis. Below (d) is Tycho, an 86 km diameter complex
crater in the southern lunar highlands. Note the presence of the structural central uplift
(SU) and terraced walls.

km for Mars and between 3 km and 5 km on Earth (Melosh & Ivanov, 1999). Complex

craters, which have diameters above the transition size, are structurally different from

their simple counterparts. In addition to the raised rim and ejecta features, complex

craters exhibit a significant central peak, or local topographic high at the center of the

crater. Additionally, complex craters can have terraced walls from collapse, which cause

the rim to take on a more polygonal shape over time as the crater is modified.

Quantities such as depth, circularity and continuity of the rim crest that describe the

shape of a crater can be affected over time by various modifying processes. This has

consequences for the automatic detection and measurement of these craters, as the

topographic rules and assumptions about a craters expression become less valid.
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The spatial and morphometric analysis of impact craters has proven over decades to

be a useful tool for answering a variety of questions in planetary science. Early work

established the use of impact crater studies in providing chronological information

about the lunar surface, laying the foundation for a stratigraphic history of the Moon

(Opik, 1960; Shoemaker, Hackman, & Eggleton, 1963; Hartmann, 1965). Additionally,

impact crater populations have helped constrain models of impactor populations

(Neukum, König, & Fechtig, 1975). Modern applications of impact crater morphometry

have revealed information about crater formation processes (Xiao, Zeng, & Komatsu,

2014), as well as surface (Bart, 2014) and subsurface (Pathare, Paige, & Turtle, 2005)

crustal compositions. An example of using crater morphometry to identify the presence

of ice is shown in Figure 1.2. The study and detection of impact craters is also relevant

to the field of space exploration and has been used to investigate autonomous

spacecraft landing systems (Leroy, Medioni, Johnson, & Matthies, 2001; Johnson,

Huertas, Werner, & Montgomery, 2008).

1.2 Crater Chronology

As mentioned previously, impact craters have been used as a tool to deduce the relative

ages of surface units since the 1960’s (Bland, 2003). Prior to the Apollo landings of the

late 1960’s and early 1970’s, it was highly desirable to form a lunar geologic record so

as to inform the landings and subsequent sample collection. Early work in lunar

chronology employed crater counting as a means to deduce relative ages. Resting on the

fundamental assumption that a pristine surface unit will have zero craters, this
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Figure 1.2: Plots of depth-to-diameter ratio of detected Martian craters as a function of
southern latitude, from (Stepinski et al., 2009). Grey dots are ‘shallow’ craters, black are
‘deep’, and the larger circles represent binned measurements. A steep drop-off in d/D is
measured around 38◦ S in all three areas; this is potentially correlated to a significant
increase in the presence of ground ice.

technique involves counting the densities of craters of varying size that are found on the

unit. By modelling and estimating the production rate, or rate at which craters of a

given size are formed on the surface, it is possible to extract the age. It is then possible

to calibrate these to absolute ages when compared against radiometrically dated

samples from the Apollo missions. While this calibration can only be performed for

bodies where physical samples have been obtained, more recent work has extended the

crater production function from the Moon to other bodies such as Mars by examining

impact rate and scaling law differences for the separate bodies. The crater density

above a certain diameter has historically been expressed by a power law relationship, of

the form

Ncum(D) = cDb (1.1)

where Ncum(D) is the cumulative number of craters with diameter larger than D, b is a
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value known as the size index, and c is a constant (Basaltic Volcanism Study Project,

1981). In (Neukum, 1983), the surface density of craters was related to the surface age

by the chronology function

N(D > 1) = 5.44 · 10−14(e6.93T − 1) + 8.38 · 10−4T (1.2)

where N(D > 1) is the number of craters with a diameter larger than 1 km normalized to

the counting area in sq. km, and T is the age of the surface in billions of years (Ga). For

lunar surface calculations using the above equation and an automated crater detection

system, it is imperative to understand the system’s responsiveness for craters above 1

km as this will have an effect on the calculated age. The chronology function is shown

in Figure 1.3.

Figure 1.3: (a) The lunar chronology function. (b) A sample size-frequency distribution
(SFD), showing isochrons for 3.0, 3.6, 3.8 and 4.0 Ga. These plots were generated using
CraterstatsII (Michael & Neukum, 2010).

A common method of representing crater density in a context of surface age is to use
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a size-frequency distribution. A SFD is a graphic representation of the density of craters

contained within a certain diameter bin, against diameter in a log-log plot. Equation

1.1 shows that one should expect a power-law relationship on the graph, with slope b.

However, various modifying processes affect crater densities, causing a deviation from

the perfect power law relationship (Williams, Pathare, & Aharonson, 2014). This effect

is strongest in the small-D regime. In addition, SFDs can be used to plot isochrons, or

lines of constant age on a SFD. For a given surface unit, an older age will mean a higher

crater frequency for a given diameter bin. This will push older isochrons (or surface

populations) to the right on the SFD plot. Comparison of these isochrons against the

results of a crater count gives both an idea of the surface’s age, as well as any modifying

processes that cause the crater count to deviate from an ideal distribution.

1.3 Research Objectives

This thesis will examine the role of automated image processing methods for impact

crater analysis. In doing so, it seeks to address the following questions:

1. Does lunar surface terrain type variation affect the results of automated crater

detection?

2. What influences systematic measurement error using automated measurement

systems?

3. How can the results of automated crater detection and measurement be applied to

other topics in crater studies?
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4. Can an objective crater degradation classifier be built using a polynomial profile

approximation method?

5. How can existing crater catalogues be used to improve automated crater

characterization methods?

6. Are automated methods alone currently sufficient for crater characterization?

The major research objectives are as follows:

1. To apply a topographic crater detection system to three distinct lunar surface

types; to compare the results against visual inspection of the surface to determine

detection efficiency as a function of crater size; to compare extracted radii and

depths against measured values to identify systematic measurement error; and to

build a crater chronology and bulk statistical description of the craters for each

unit type and compare them against previous results.

2. To build an automated, quantitative method for the degradation and interior

morphological classification of martian complex impact craters; to apply

polynomial approximation methods to the craters’ topographic profiles; to use the

approximations as discriminators in a classification model; and to identify the

classification accuracy of such an approach.

1.4 Thesis Organization

This thesis is presented in integrated article format. It contains two two papers that

demonstrate the use of automated image processing methods in planetary science.
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Chapter 1 introduces some background on impact craters and provides research topic

context. Additionally, it outlines the research objectives. Chapters 2 and 3 are two

individual but related studies. Chapter 2 presents a study on the effect of lunar terrain

type variation on automated crater detection and measurement. This work was

presented at the 47th Lunar and Planetary Science Conference in Houston, Texas.

Chapter 3 describes the development of an automated crater degradation state classifier

using polynomial profile approximations. Chapter 4 concludes the thesis, describing the

primary findings of the work and discussing future applications of automated digital

image processing in planetary science.



References

Bart, G. D. (2014). The quantitative relationship between small impact crater

morphology and regolith depth. Icarus , 235 , 130–135.

doi: 10.1016/j.icarus.2014.03.020

Basaltic Volcanism Study Project. (1981). Basaltic Volcanism on the Terrestrial Planets.

New York: Pergamon Press, Inc.

Bland, P. (2003). Crater counting. Astronomy and Geophysics , 44 (4), 4.21–4.21.

doi: 10.1046/j.1468-4004.2003.44421.x

Hartmann, W. K. (1965). Terrestrial and Lunar Flux of Large Meteorites in the Last

Two Billion Years. Icarus , 4 (2), 157–165.

doi: 10.1016/0019-1035(65)90057-6

Johnson, A. E., Huertas, A., Werner, R. A., & Montgomery, J. F. (2008). Analysis

of On-Board Hazard Detection and Avoidance for Safe Lunar Landing. Aerospace

Conference, 2008 IEEE , 1–9.

doi: 10.1109/AERO.2008.4526301

Leroy, B., Medioni, G., Johnson, E., & Matthies, L. (2001). Crater detection for

autonomous landing on asteroids. Image and Vision Computing , 19 (11), 787–792.

10



References 11

doi: 10.1016/S0262-8856(00)00111-6

McGetchin, T. R., Settle, M., & Head III, J. W. (1973). Radial thickness variation in

impact crater ejecta: implications for lunar basin deposits. Earth and Planetary

Science Letters , 20 (2), 226–236. doi: 10.1016/0012-821X(73)90162-3

Melosh, H. J. (2011). Planetary Surface Processes (1st ed.). Cambridge University Press.

doi: 10.1017/CBO9780511977848

Melosh, H. J., & Ivanov, B. A. (1999). Impact Crater Collapse. Annual Review of Earth

and Planetary Sciences , 27 (1), 385–415.

doi: 10.1146/annurev.earth.27.1.385

Michael, G., & Neukum, G. (2010). Planetary surface dating from crater size-

frequency distribution measurements: Partial resurfacing events and statistical age

uncertainty. Earth and Planetary Science Letters , 294 (3-4), 223–229.

doi: 10.1016/j.epsl.2009.12.041

Neukum, G. (1983). Meteoritenbombardement und Datierung Planetarer Oberflaechen

. Habilitation Dissertation for Faculty Membership, Univ. of Munich, 1–186.

Neukum, G., König, B., & Fechtig, H. (1975). Cratering in the earth-moon system:

Consequences for age determination by crater counting. Proc. Lunar Planet. Sci.

Conf. 6th, 2597–2620.

Opik, E. (1960). The Lunar Surface as an Impact Counter. Oxford Journal , 120 (5),

404–411.

Osinski, G. R., & Pierazzo, E. (2012). Impact Cratering: Processes and Products

(G. R. Osinski & E. Pierazzo, Eds.). Chichester, UK: John Wiley & Sons, Ltd.

Pathare, A. V., Paige, D. A., & Turtle, E. (2005, apr). Viscous relaxation of craters



References 12

within the martian south polar layered deposits. Icarus , 174 (2), 396–418.

doi: 10.1016/j.icarus.2004.10.031

Shoemaker, E., Hackman, R., & Eggleton, R. (1963). Interplanetary Correlation of

Geologic Time. Advances in the Astronautical Sciences , 8 , 70–89.

Stepinski, T. F., Mendenhall, M. P., & Bue, B. D. (2009). Machine cataloging of impact

craters on Mars. Icarus , 203 (1), 77–87.

doi: 10.1016/j.icarus.2009.04.026

Williams, J. P., Pathare, A. V., & Aharonson, O. (2014). The production of small

primary craters on Mars and the Moon. Icarus , 235 , 23–36.

doi: 10.1016/j.icarus.2014.03.011

Xiao, Z., Zeng, Z., & Komatsu, G. (2014). A global inventory of central pit craters on

the Moon: Distribution, morphology, and geometry. Icarus , 227 , 195–201.

doi: 10.1016/j.icarus.2013.09.019



Chapter 2

The Effect of Lunar Terrain Type

Variation on the Results of

Automated Crater Detection

2.1 Introduction

2.1.1 Automatic Crater Detection

Traditionally, impact craters were catalogued and measured manually, with visual

inspection of stereoscopic images or utilizing shadow sizes and viewing geometry. This

technique was hindered by low resolution imagery and inherent inconsistencies between

experts. Around the year 2000, researchers began searching for a fully automated

impact crater detection algorithm (CDA). An ideal CDA would be robust under

varying surface conditions, independent of lighting conditions or viewing geometry

13
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inherent to the data, and scale invariant. As planetary surface data became digitally

available, the fields of image processing and computer science lent their developments

to the task of crater detection. Early CDAs (Jahn, 1994; Honda et al., 2000; Alekseev,

Pyatkin, & Salov, 1993) worked on photographic imagery, using edge detection and the

Hough transform circular feature extraction tools in imagery. More complex systems

(Kim et al., 2005; Sawabe, Matsunaga, & Rokugawa, 2006) included machine learning

methods and image pipelines to improve their detection capabilities.

Newer systems have sought to improve the state of CDAs by using topographic data,

primarily in the form of digital terrain models (DTMs). There are two primary arguments

to be made for using elevation data: 1) impact craters manifest with a particularly

strong topographic signature, and such a signature can be uniquely detected, and 2)

this signature is independent of viewing conditions such as lighting or geometry. The

Mars Orbiter Laser Altimeter (MOLA) instrument aboard Mars Global Surveyor (MGS)

helped advance progress in the area of crater detection. Initially, 2-D line tracks of

elevation were used alongside edge detection schemes to assist in crater identification

(Kim, Muller, & Morley, 2000). Later systems (Michael, 2003; Kim, Muller, & Morley,

2004; Bue & Stepinski, 2007) were able to apply advanced image processing techniques

to DTMs, with varying results in different study areas. One particular system known

as the AutoCrat system (Stepinski, Mendenhall, & Bue, 2009) used a novel mixture of

image processing and machine learning to detect craters on the martian surface, using

a MOLA-derived DTM. The AutoCrat system combines topographic image processing

with machine learning to identify impact craters in a topographic dataset. This system,
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employed in this project, will be described in greater detail in the following chapters.

2.1.2 CDA Accuracy

The lack of a perfectly accurate and scale-invariant CDA has meant that each detection

system contains some error in its detection efficiency, measurement, or both. Whether

using a CDA for generating an age estimate or collecting bulk crater morphometric

characteristics, these errors are likely to affect the scientific validity of the end product in

some way. Many CDAs are compared directly against a set of craters that are manually-

labelled by a human expert, often in the form of a catalogue. This process provides a

good first order understanding of the CDA’s inaccuracy. However, it is also important

to control some of the testing variables in a manner to more broadly understand the

system’s accuracy and response to change. Some of these variables include geomorphic

unit, crater size regime, and elevation data type. While there have been many published

CDAs, achieving varied levels of success, there isn’t yet a consistent framework for the

objective evaluation of these systems (Salamunićcar & Lončarić, 2008). Different authors

use different test areas, catalogues of ground-truthed craters, and different statistical

measures of accuracy. A previous study using elevation data for Mars briefly examined

the effect of automated crater detection on four different geomorphic units: volcanic, sea

(planitia), and two plateaus (planum) (Yin, Xu, Li, & Liu, 2013). Significant differences

in the true and false detection rates were identified based on unit type.
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2.1.3 Purpose

This paper presents an in-depth evaluation of the AutoCrat system, using

high-resolution elevation data for the lunar surface unavailable at the time the system

was originally designed. As identified in previous work, there is a need for the objective

evaluation and cross-comparison of CDAs (Salamunićcar & Lončarić, 2008). As the

AutoCrat system is a particularly pure example of a topographic CDA (using only the

topography, and no optical data or template matching), it is investigated using three

different ‘characteristic’ lunar terrains to determine the robustness with varying surface

type. Detection results can be compared against true images of the terrain to identify

the strengths and weaknesses of a topographic approach to crater detection. As an

additional objective, the population statistics of detected craters is investigated. By

examining these statistics and their related accuracies, one can assess the validity of

using the results for surface unit dating, or extraction of bulk morphometric properties.

For the sake of comparison, this work does not involve a re-parametrization of the

original system, nor does it change the machine learning algorithm used in

discrimination. This will be further explained in Section 2.2.1.

We begin by explaining an overview of the project methodology. This includes a

thorough discussion of the data type chosen, as well as the motivation for choice of

study areas. Both the crater detection and discrimination systems will be described,

in addition to the statistical methods chosen for assessment of the results. Finally, the

crater detection and measurement results for the three study areas will be presented,
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and compared with similar systems previously used in the literature. Closing with a

discussion, we present themes on the dependency of terrain morphology on automated

crater detection.

2.2 Methods

2.2.1 Overview

This study applied a set of processing steps on three digital elevation models

representing topographically distinct regions of the lunar surface. These steps are

grouped and identified with bold letters in the flowchart shown in Figure 2.1. For the

sake of consistency, the processing and statistical analysis was replicated in all three

areas. One of the three study areas used a DTM with a different resolution; this is

further discussed in Section 2.2.2. The project is composed of five major steps: data

collection, initial processing, machine learning discrimination, measurement accuracy,

and detection efficiency assessment. Generally, each equal-area region was extracted

from a larger DTM and preprocessed (box a). Next, a basin detection routine is run on

the DTM, generating the preliminary crater candidates (box b). Using a discrimination

algorithm generated by a machine learning method (c), the subset of impact craters is

extracted from that set. Finally, corrections to the crater measurements are made (box

d) and accuracy assessment is undertaken on the members of the final catalogue (box

e).
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The statistical analysis of the crater detection output is compared for the three

study areas. Results such as detection efficiency and measurement accuracy are the

primary focus. Additionally, we can comment on the viability of the results for use in

both age estimation and population statistics. A combination of stratified sampling and

linear regression are used in performing these assessments.

The AutoCrat system is a two-stage crater detection and discrimination system,

using image processing operations on digital images representing elevation profiles of a

landscape. This system approaches automated crater detection from a different angle

than many other CDAs. In place of complicated systems that require constant

re-parametrization for different data sets and on different spatial scales, the AutoCrat

uses an impact crater’s unique topographic signature as the basis of its modus

operandi. In principle, a crater’s topographic signature is independent of lighting

conditions, viewing geometry or other instrument variation. Using some DTM image

processing techniques, the AutoCrat system can find even nested depressions while

operating under scale-invariance.

The primary crater finding algorithm, after operating on a DTM dataset, produces

a catalog of crater candidate positions, depths and radii, and some mathematical shape

descriptors. By seeking all nearly-circular depressions, the first portion of the system

seeks completeness through performing an exhaustive search. This should minimize the

number of false negative detections (missing craters). A second machine learning stage

then uses these quantities to assign a crater or non-crater label to each candidate. This
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Figure 2.1: Flowchart depicting the major steps of this project. Boxes with dashed
lines collect related steps. a: data collection and preprocessing b: crater detection and
categorization c: machine learning and training set generation d: measurement accuracy
and systematic error e: detection efficiency assessment
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part provides accuracy by refining the preliminary catalogue of depressions, or

minimization of false positives. A summarized description of these two steps will be

given in the following subsections. For a more detailed description of the algorithm and

its nuances, please consult (Stepinski et al., 2009). The two parts of the AutoCrat

system are shown in boxes b and c in Figure 2.1.

2.2.2 Study Areas and Data

Figure 2.2: Global lunar map in simple cylindrical projection. This map is a combination
of 3 optical mosaics consisting of imagery from the Wide Angle Camera (WAC), in
addition to colour elevation information from the LOLA instrument (red is high elevation,
blue is low). Each study area, demarcated by the white boxes, is roughly 90,000 km2.

In examining the robustness of a CDA, broad-scale terrain morphology has been

identified as a source of inconsistency in crater detection results (Li, Ling, Zhang, &

Wu, 2015). As such, it is necessary to apply a CDA to different types of terrain for a

more complete understanding of its performance. Additionally, for CDAs that also

make measurements on the craters they detect, it is necessary to understand the



Chapter 2. Crater Detection and Terrain Type 21

measurement response and variation with changing terrain. On the Moon, this includes

the two major terrain types that comprise the lunar surface dichotomy: the light-toned,

older, more heavily cratered highlands and the darker, younger maria. Additionally,

there are the ejecta blankets of large basins, which deposit enormous amounts of

material atop the surrounding terrain. These three terrain types collectively

characterize much of the Moon’s surface, while remaining distinct from each other

individually. They can be thought of as a ‘basis set’ of terrain morphologies. By

understanding the response of a CDA to these three units collectively, it can be

employed on a majority of the lunar surface in a predictable fashion.

Table 2.1: Details for the 3 selected study areas.

Area Name Central lon. (◦E) Central lat. (◦N) Area (104 km2) DTM Resolution (m/pix)

1 Mare Serentatis 18.9 27.0 9.00 52.8

2 Orientale Ejecta 287.1 -12.1 9.01 57.2

3 Southern Highlands 1.63 -56.9 9.02 100
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Study Area 1 - Mare Serenitatis

Figure 2.3: (a) Optical WAC mosaic of the Mare Serenitatis study area, at 100 m/pix.
(b) Colourized elevation from the LOLA instrument. (c) Slope map, derived from the
LOLA DTM.
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Mare Serenitatis is a ∼675 km diameter impact basin on the lunar nearside. It contains

a dark-toned surface unit, which together with other similar units on the moon are

collectively called ‘maria’. The southeastern edge of Mare Serenitatis was visited by

humans during the Apollo 17 mission in 1972. The maria, covering a total of about

17% of the lunar surface, are large basaltic plains that were emplaced by previous

volcanic activity (Head III & Wilson, 1992). Typically, mare are relatively flat on large

scales, with a more sparsely cratered surface. Previous mapping of Mare Serenitatis has

subdivided the mare into many regions with varying ages. Surface unit dating and

regional albedo differences imply that volcanism within the interior of the basin took

place for hundreds of million years after the formation of the basin, leading to surface

ages of roughly 3.4 - 3.8 Ga (Hiesinger, Jaumann, Neukum, & Head III, 2000).

In addition to craters, the surface of the mare can exhibit wrinkle ridges and

differences in tone. Few craters on the scale of tens of kilometres can be seen, as visible

in the optical image from Figure 2.3. As the spatial scale under study is made more

fine, both crater densities and local topographic variation increase. From a crater

detection perspective, this unit type should be simplest. This is because of the flat

pre-impact terrain and sparse cratering. In the chosen study area comprising of about

one quarter of the total area of Mare Serenitatis (Whitford-Stark, 1982), there are no

complex craters. Based on a study analysing the pulverization and overturning of the

mare regolith, the mare surface should have saturation of craters up to roughly

D = 200 m (Hartmann & Gaskell, 1997). This process is what gives the mare its

rugged surface on the decameter scale.
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Study Area 2 - Orientale Ejecta

Figure 2.4: (a) Optical WAC mosaic of the Orientale ejecta study area, at 100 m/pix.
(b) Colourized elevation from the LOLA instrument. (c) Slope map, derived from the
LOLA DTM.
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The Orientale Basin is a multi-ring impact structure on the western limb of the lunar

nearside. A well-preserved structure, it is thought to have formed at the end of the Late

Heavy Bombardment around 3.8 Ga ago (Spudis, Martin, & Kramer, 2014), a period of

intense cratering in the early solar system. Measuring around 930 km in diameter, the

impact basin’s formation into underlying highland material affected much of the

surrounding terrain, and lunar surface on the whole. The emplacement of ejecta on the

surrounding terrain caused a proximal age resetting by modifying the prebasin

population up to a distance of 2 basin radii from the center (Head III et al., 2010).

Additionally, Orientale can be used to distinguish the presence of two populations of

impactors, with the transition between the two occurring near the time the Orientale

Basin formed.

The study area for this project consists of the ejecta to the east and north of Orientale,

just outside the Cordillera Mountain ring. This is within the area of age resetting, but

since the study area extends significantly far in the radial direction from the center,

there is expected to be some local variation in the terrain as the ejecta emplacement is

non-uniform. As evident in the slope map in Figure 2.4(c), this terrain is more complex

than the mare areas. Significant undulations caused by ejecta and the pre-basin terrain

mean greater variation in slope on coarse scales. This will be a significant challenge for

the CDA. Large craters that were on the pre-basin terrain may still present topographic

expressions (as ghost craters), despite modification from the impact event.
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Study Area 3 - Southern Highlands

Figure 2.5: (a) Optical WAC mosaic of the Southern highlands study area, at 100 m/pix.
(b) Colourized elevation from the LOLA instrument. (c) Slope map, derived from the
LOLA DTM.
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The lunar highlands are the oldest terrains on the Moon. Lighter in colour than their

mare counterparts, they are primarily composed of anorthosite, an intrusive igneous

rock (Pieters, 1986). At higher elevation than the mare, they consist of the southern

portions of the lunar nearside, and a significant percentage of the farside. The

highlands have dense associations of impact craters, even in some areas achieving

complete empirical saturation (Hiesinger et al., 2000) (the addition of any new crater is

guaranteed to erase a pre-existing crater of comparable diameter). A state of empirical

saturation is challenging for extracting surface ages from crater counts. This is because

as new craters are formed, the total crater density for a given size range is unchanged,

while the underlying crustal rock is obviously still getting older. Additionally, complex

craters are most abundant in the highlands, with varying states of degradation. Many

complex craters have been partially superposed by other craters, often eliminating

significant portions of the rim.

The highlands study area is on the lunar nearside, towards the south pole. This study

area poses a challenge for a CDA, as it has the highest requirement of scale-invariance.

The presence of craters at a wide variety of diameters requires the system to be responsive

to both small simple craters, as well as large complex craters. Additionally, the age of

the surface indicates a larger array of crater degradation states - ranging from relatively

young and intact to significantly destroyed craters.
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Source Data

The data chosen for this study are reduced and gridded DTMs generated by the LOLA

instrument. These DTMs are freely available from the LOLA PDS Data Node at

imbrium.mit.edu. LOLA, a laser altimeter and passive infrared radiometer on board

the Lunar Reconnaissance Orbiter (LRO), is a time-of-flight laser altimeter which fires

pulses of 5 infrared lasers onto the lunar surface at a frequency of 28 Hz (Neumann,

2011). By using 5 spots to sample the ground, the instrument can collect both

along-track slope and across-track slope, in addition to measuring the

spacecraft-to-ground distance (which can be used to calculate absolute elevation). Since

the Moon does not have the notion of ‘sea level’, all elevations are measured relative to

the selenoid, or a perfect sphere of radius 1,737 km.

As the spacecraft travels, measurements from the 5 spots are collected and used to

construct a 2-D line of elevation along the spacecraft’s ground track. Over time, these

tracks have collected over the lunar surface. Due to LRO’s arrangement in a polar

orbit, the tracks are densest at the poles, and spaced most widely at the equator. From

these tracks, a minimum-curvature interpolation is performed to fill in the space

between tracks, providing a complete 3-D elevation model for the lunar surface. It is

important to note the mathematical method of generating the 3D surface, as this will

have an effect on the precision of the crater detection results. For any given pixel in the

DTM that does not contain a direct LOLA elevation measurement, a mathematical rule

is used to generate a value for that pixel that maintains a constant second surface
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derivative, and minimizes overall curvature. While this provides a smooth surface, it

makes assumptions about the surface that may not necessarily be true. In addition,

craters whose diameters are significantly smaller than the cross-track width may be

missed entirely.

To start, the appropriate DTM is selected from the repository. This project uses

gridded data record (GDR) DTMs, which have undergone higher-level processing which

includes binning, resampling and map projection. First, we located the appropriate

parent DTMs which contain the study areas. For the equatorial study areas, DTMs in

cylindrical map projection that span 45◦ of latitude and 90◦ of longitude were

downloaded. The study area in the southern highlands is found in a south polar

stereographic DTM. Next, the region of interest containing the study area was cropped

out with a mask in ArcGIS. The digital values in the raster were then converted to

elevations with respect to the selenoid by using a bulk raster calculation. Finally, the

DTM is exported as an ASCII text file, which allows it to be read by the Cratermatic

software. The DTM is now ready for crater detection.

For the sake of comparison with previous studies using DTMs of the martian surface

generated in a similar fashion (from the MOLA instrument), only LOLA data were chosen

for this study. Future work in automated crater detection can be expanded to DTMs

generated by other means and instruments. Further discussion of the consequences of

using laser altimetry data is discussed further on.
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2.2.3 Crater Detection

This section details the process of identifying the crater candidates from a topographic

landscape. Beginning with a DTM covering a region of interest, a series of image

processing tasks are used to extract and compile the basins that form the initial list of

candidates.

Crater Detection - findcraters

The first stage of the AutoCrat system uses a topographic basin finding routine called

findcraters, which is within the Cratermatic topography analysis toolkit. This

routine (box b in Figure 2.1) performs a series of image processing operations on a

topography dataset whose pixel values represent the elevation for that pixel; either

directly sampled from a LOLA track or via interpolation. Typically, identifying isolated

basins in a topographic landscape can be performed with the use of a watershed

algorithm (Meyer & Beucher, 1990), which segments the image into catchment basins.

This approach is unsuccessful in the case of nested basins, since the watershed

algorithm will simply combine the two into a single depression. The Cratermatic

system uses an image convolution to address this issue. Shown in Figure 2.6 is the

processing for a small sample region of the lunar surface.

The first step in crater detection is to apply an image convolution called a

C-transform. This transform is similar to a Gaussian blur, and acts to smooth the

DTM, removing depressions below a specific size λ, where λ0 = 5 pixels. This blurring
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Figure 2.6: A sample abbreviated image processing sequence for the Cratermatic system.
Using an input DTM, the image is blurred at different spatial scales to separate nested
depressions. Craters detected in each blurred landscape are recombined for the final
catalog. Not all blurred landscapes are shown for the sake of simplicity.
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smooths the landscape emphasizing depressions on the order of size λ. This helps to

identify nested depressions by ignoring depressions that are significantly larger or

smaller. After finding an anchor pixel around which all points are concave up, the

algorithm incorporates other pixels belonging to the crater region, stopping after a

slope threshold. The centroid is identified as the center-of-mass of the crater (as the

profile can be non-circular), and a polar function is used to represent the rim shape. A

Fourier expansion is used to build the polar function. Coefficients derived from the

Fourier expansion are used to describe the shape; a perfect circle would have all but the

first coefficients equal to zero. Therefore we can use the coefficients to describe

deviations from a perfect circle. Two particularly useful quantities derived from the

coefficients are m2, which describes the elongation of the crater shape, and m3, which

describes its ‘lumpiness’.

When the preliminary crater catalogue is produced, the crater locations are given in

the image space. For example, the catalogue will list one depression in the set as an

entry of the form {# ID, x, y, r, area, depth, m2, m3}. Coordinate conversions are then

performed on the catalogue to translate each centroid in x and y image space to a

planetocentric latitude and longitude, and to convert the radius to meters.

Stratified Sampling

The final step before categorizing the basins as crater or non-crater is to perform a

size-based sampling on the preliminary results. The purpose of these sampling sets is
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twofold and will be explained in greater detail in Section 2.2.5. Due to the uneven

detection distribution as a function of crater size, special care must be taken to sample

appropriately over the range of possible crater sizes in the landscape. To assess

measurement accuracies as a function of crater size, the craters need to be split up into

groups based on their diameters. We start by dividing craters into three major groups:

small craters (D<300 m), intermediate craters (300 m<D<4 km), and larger diameter

craters (D > 4km)(Melosh, 2011). From there, the intermediate class of craters is split

into three 1-kilometre sized groups between 1 and 4 km. The crater size categories are

shown below in Table 2.2.

Table 2.2: The six size-based crater classes. Craters are separated into classes based on
their diametric size to perform a stratified sampling and build the training sets.

Class A B C D E F

Diameter D<300m 300m≤D<1km 1km≤D<2km 2km≤D<3km 3km≤D<4km D≥4km

The Cratermatic system works on iteratively larger radius scales, doubling the

radial pixel size for the Gaussian convolution each round. After reaching a size limit

which is dictated by the smaller dimension of the input image, the algorithm combines

all the detected basins from each scale and outputs a catalogue identifying the basin

location and quantities related to its size and shape. As mentioned previously, this is

(ideally) an exhaustive list of depressions, a subset of which will consist of only the true

craters. In the next section, we describe how machine learning can be used to extract

this subset.
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2.2.4 Crater Discrimination

The cadence of successful space missions over the past few decades has dramatically

increased the wealth of data that is available for many solar system objects. This large

amount of data has proven challenging to analyse in a time-efficient and thorough

manner. Not only is there simply too much to look at, but often the nature of the

analysis is quite complex and thus difficult for a human analyst to complete in

significant enough amounts over reasonable timescales. Advancements and techniques

in artificial intelligence and automated data analysis can be invaluable tools for such

tasks. Previously, machine learning has been applied to problems in planetary science

such as automated geologic mapping (Stepinski, Ghosh, & Vilalta, 2007) and surface

unit annotation (Ghosh, Stepinski, & Vilalta, 2010). In the context of automated crater

detection, machine learning can be used as a powerful tool for devising a set of rules to

discriminate craters from non-crater depressions.

Training Set Construction

In order to later instruct the machine learning algorithm how to discriminate crater

from non-crater, it is necessary to build training sets for each study area, consisting of

examples of both craters and non-craters. The training sets also provide an opportunity

to study the measurement accuracy of the system; this is elaborated on later in Section

2.2.5. For each study area, the list of crater candidates including their category

assigned from Table 2.2 is generated. Next, 20 members from each available size class
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Figure 2.7: Graphic representation of the training set generation process. Each basin
that was selected via sampling is hand labeled as a crater or non-crater by overlaying the
rim on both optical and elevation data in JMARS.

are selected to begin constructing the training sets for each area. Each training set is

then exported to JMARS for visualization. Starting at the top of the list, each crater is

superimposed on optical data sets (primarily NAC image strips and WAC global

mosaics) and inspected. For the high-resolution NAC images, the incidence angle search

parameter is restricted to higher angles - typically between 45◦ and 80◦ to accentuate

topography. The candidate is then hand labelled as either crater or non-crater. It is

important to note here that individual craters of all types are labeled a crater,

including secondaries (craters formed by the impact of ejecta from another crater) and

ghost craters (craters heavily mantled by lava or other materials, leaving a faint rim).

As long as it represents one single crater, it is counted. Differentiating between crater

types is left for future work, and is also discussed further in Section 2.4.
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After each category has had its 20 craters labelled, additional craters from the

preliminary catalogue are added as necessary to provide equal numbers of true and false

craters. This is necessary as the basin-detection algorithm typically finds more

non-craters than craters (the degree to which this happens is a function of the

category), and thus balancing of the training set is necessary to improve the robustness

of the discrimination process. Exhaustive sampling of the larger crater categories (E

and F) occurred in study area 1, where large diameter craters aren’t as populous. After

manual labelling and any additions to the list, the training sets for study areas 1-3 had

143, 133 and 128 members respectively.

Decision Tree

As mentioned previously, machine learning in this context can generate a set of

discrimination rules to separate crater from non-crater. These rules, when structured

together, form the basis of a classification model. Fundamentally, this involves using a

set of quantified characteristics for which an impact crater will have some set of

identifying values. The pertinent values for this project are the quantities produced by

the Cratermatic algorithm: depth, diameter, depth-to-diameter ratio, and two

quantities derived from the Fourier coefficients described in Section 2.2.3 that are used

to describe the rim shape. The AutoCrat system uses a specific type of machine

learning algorithm, known as a decision tree classifier, to build the set of discriminatory

rules. This algorithm, called J48, is an open source Java implementation of the C4.5

algorithm (Quinlan, 1993). The algorithm is available through the Waikato

Environment for Knowledge Analysis (WEKA), an open source software suite
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containing many tools for data mining (Hall et al., 2009).

In principle, the J48 algorithm works by finding attributes that most effectively split

the data into different classes. Given n examples, the training set can be expressed as a

set S = (s1, s2, ..., sn). Each sample si in the training set contains m attributes, in the

form (x1,i, x2,i, ..., xm,i) with one of the attributes being the class to which the sample

belongs. In this project, the set S is the training set with si being a single basin, either

crater or non-crater. The xj represent attributes for a single crater such as depth,

diameter, and the shape descriptors, as well as class. The decision tree is constructed

by generating nodes at each point where the data is effectively split by a single

attribute. The best attribute is chosen by having the highest normalized information

gain, which is a statistical quantifier of the level of purity in a group when split a

particular way. After splitting on a node, the algorithm works iteratively, splitting

again and again until all samples from the set have reached the end of the tree. These

endpoints are called “leaves”. The decision tree for study area 3 is shown in Figure 2.8.

Each decision tree was implemented as a MATLAB algorithm to assign a crater or

non-crater status to the original catalogue. This allows for the assignment of classes to

thousands of crater candidates in a very short time frame, in a process hereafter called

‘pruning’. As with other remote sensing classification methods, it is possible to quantify

the effectiveness of the classification model in doing its work. For example, confusion

matrices and other performance metrics can be generated from the training sets. This is

covered in Section 2.3.1.
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Figure 2.8: Decision tree built using the training set for the Southern Highlands study area. This tree was generated using the
J48 machine learning algorithm in the WEKA software suite. Nodes are ellipses and leaves are rectangles. At each node, the
numbers in parenthesis represent the number of instances reaching the leaf (green) /the number of misclassified instances at
the leaf (red).
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2.2.5 Accuracy Assessment

The AutoCrat system is a crater detection and measurement system. To understand the

scientific conclusions drawn from the population statistics built using the measurements,

it is useful to note the general measurement error and uncertainty as a function of terrain

type and crater size. As mentioned previously, the training sets for each area serve two

purposes: to build the classification model and to assess measurement error. In this

section we break down how the training sets and pruned crater catalogue will be used to

assess different kinds of accuracy.

Measurement Accuracy

In Section 2.2.4, the process for assembling a training set is described. Each crater

candidate in the training set is manually labeled a crater or non-crater. In addition, we

can make measurements in the case where the candidate is a true crater. As two of the

most common descriptors of an impact crater are its diameter and depth, it is

important to compare the AutoCrat’s measurements with ‘true’ values. For each crater

in the training sets that was assigned to the crater class, its diameter and depth were

measured manually. These measurements were made against the WAC GLD100 DTM

available on the LROC Quickmap at http://target.lroc.asu.edu/q3/. Diameters

were measured as an average of the N-S and E-W directions in cases where there existed

obliquity or significant pre-impact surface gradients. Depths are measured as maximum

elevation differences from rim crest to floor, in the same fashion as they are reported by

the AutoCrat system. Additionally, any other notable and prominent properties of the
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crater (such as being particularly inclined, or a ghost/buried crater) are recorded.

After collection of all manual measurements, it is possible to use simple linear

regression to relate the measured values by hand (representing ‘true’ values) with the

detected values provided by the CDA. This linear regression is used later to correct

depths and diameters and provide a more accurate catalogue for use in analysing the

bulk statistics. For the linear regression, the y-intercept is fixed to zero in each study

area. This is to prevent unphysical measurements such as negative depths or radii from

arising after correction. The results of the linear regression are described in Section

2.3.2.

Detection Efficiency

The detection efficiency describes the sensitivity of the CDA to variations in crater size

and terrain type. A perfectly efficient system will be invariant to changes in crater

size, location, state of degradation, or other modification. Understanding the detection

efficiency revolves around three primary measurements: the number of true positive

detections (detection of a true crater), false positive detections (crater detections that

do not correspond to an impact feature), or false negatives (missed true craters). To

succinctly express the detection performance as a function of radius, metrics have been

derived that combine the three quantities together (Shufelt & Mckeown, 1993). They are

the detection percentage DET , the quality factor Q, and the branching factor B, shown

below.
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DET = 100 · TP/(TP + FN) (2.1)

Q = 100 · TP/(TP + FP + FN) (2.2)

B = FP/TP (2.3)

The detection percentage, DET , has been renamed to prevent confusion with the

diameter, D. DET gives an understanding of the CDAs capability to exhaustively find

craters, neglecting false positives or ‘over-detection’. Including the FP rate allows us to

calculate the quality factor Q. This value is increased by exhaustively finding the

craters, but is reduced by the detection of non-craters. It gives a more complete picture

of the CDA’s performance and can be used as a threshold for practical application of

the results (Kim et al., 2005). The branching factor B expresses the tendency for

over-detection in the system, and is a measure of the number of false craters detected

for every true detection.

These quantities are associated with specific uses of the results of wide-scale crater

detection and measurement. For example, if the results of the automated crater

detection are being used to be able to discern secondaries or different types of craters,

completeness is particularly important, so the detection percentage is valued. If crater

densities are being measured to generate a relative age, completeness above a specific
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diameter with minimal FPs is important, and so the quality factor is the best

descriptor. Those collecting bulk crater shape parameters may be concerned with only

a set of true craters (regardless of how complete the set is), and so a low branching

factor is considered priority. A perfectly ideal system should have very high values for

DET and Q with a low B value.

Since the total number of detections in each study area is high, to measure the values

for TP, FP and FN, we subdivide each study area into nine equal-area portions, roughly

100 km x 100 km. Two of these study areas are chosen at random, and an exhaustive

vetting of the crater detection results is performed within each. First, all detections

whose centroids fall within that subarea area are loaded into JMARS. Next, each crater

is manually inspected over WAC and NAC images, and is labelled with TP or FP. This

is performed for all craters inside the box. Next, we count the FNs - craters that missed

detection. As crater populations become increasingly dense as diameter is reduced, we

set a minimum diameter of 600 m for false negatives. While this sets a lower limit for

calculating DET and Q, it does not affect B. Additionally, it is below the diameter

threshold for the age calculation for lunar surface units in (Neukum, 1983). Due to low

populations of large craters in some study areas, all FNs with D > 5 km are recorded.

2.3 Results

In all three areas, considerable numbers of impact craters were detected. As expected,

their size distributions generally reflected the terrain type, but with varying response in
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terms of sensitivity. Table 2.3 shows a total of over 34000 craters detected between the

three areas. The crater discrimination process removed between one third to four fifths

of the initial detected basins, depending on the area. Mare Serenitatis had the most

detected craters, and the ejecta of Orientale the least.

Figure 2.9: Automated crater detection results for study areas 1-3 (L to R, respectively).
These maps show the complete crater catalogues after pruning. Background imagery is
a 100 m/pix WAC mosaic.

Figure 2.10: Post-pruning cumulative distribution function (CDF) for the three study
areas.

The large numbers of crater detections in Mare Serenitatis is somewhat counter-

intuitive at first. This is because the Mare areas are typically younger in age than

the highlands, and should thus be less heavily cratered. This paradox is resolved when
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looking at the size-frequency distribution of craters in the area. There is a correlation

between small-D detections and flat areas with minimal slope variation. This is evident

in Figures 2.9 and 2.10, which show large populations of sub-kilometre diameter craters

in study area 1. Visible as well are small-crater abundances in other flat areas, including

the floors of larger craters in study area 3.

Table 2.3: Numerical crater detection results for each study area.

Initial detections Post-pruning Post/initial (%) Diameter range (km) Depth range (m) Crater area (% of total)

Area 1 29264 6237 21.3 0.530 - 15.255 12 - 1675 4.67

Area 2 2318 1031 44.5 0.559 - 26.957 36 - 3228 4.99

Area 3 2771 1831 66.1 0.474 - 44.259 16 - 3215 20.21

The smallest craters which can be detected reliably are on the order of D ≈ 600 m.

While craters with depths in the tens of meters were detected, the smallest reliable

depth measurements could only be made for craters with D > 1 km. However, the local

surface conditions and location of the crater with respect to LOLA ground tracks is also

important in assessing the detectability of the crater. For all study areas, impact

craters with D < 300 m did not survive the crater discrimination process. Upon

inspection, it was found that the only candidates at this size were small basins formed

along the linear direction of the LOLA tracks (shown in Figure 2.11. As the ground

tracks make directly-sampled measurements of the surface elevation, the resolution is

much higher on the track, and lower in the between-track areas where interpolation is

used. This causes small ‘basins’ to form where there is a small but significant region of

surface concavity along the track direction. These are then classified as basins by the

findcraters algorithm. This effect is strongest in flatter areas, which resulted in the
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Figure 2.11: Small basins detected by Cratermatic. Note the vertically-linear
arrangement. These basins do not survive the crater discrimination process, and are
artefacts caused by the laser altimetry data type.

most detections in Mare Serenitatis. While these detections dominated the initial

results, they did not survive the pruning process. This is because they did not satisfy

the depth-to-diameter restrictions implemented by the decision tree.

2.3.1 Detection Performance

Measurement Accuracy

The results of the automated crater depth and radius measurement show a strong

correlation to ‘true’ measured values from the training sets. The AutoCrat system’s

ability to make accurate measurements was dependent on terrain and size. For a simple

bowl crater on flat pre-impact terrain, there is little systematic error in measurement -

in this case, it would be limited to the inherent error in the DTM. As crater size
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decreases, or the pre-impact and surrounding terrain becomes more complex, the

measurement error increases. Depth measurement accuracy suffers more as craters

become smaller, since a crater a few hundred meters across will have a depth on the

order of tens of meters or less, approaching the resolvable limit for z-axis variation.

Table 2.4: Linear regression results for radius and depth in all three study areas. These
fits were used to correct the values of the pruned crater catalogue. The true values are
measured manually and are used to corrected the detected values.

Area Linear fit R2

Mare Serenitatis
Radius rtrue = 1.0013 · rdet 0.9739
Depth dtrue = 0.8906 · ddet 0.9618

Orientale Ejecta
Radius rtrue = 0.9758 · rdet 0.9858
Depth dtrue = 0.9500 · ddet 0.9828

Southern Highlands
Radius rtrue = 0.8775 · rdet 0.9970
Depth dtrue = 0.7416 · ddet 0.9220

Table 2.4 shows the results of the linear fitting and correction. These fits show a

very strong correlation to true values, which allows for a bulk correction to be made to

all values. In general, the system is over-estimating radii and depths. There is a slightly

weaker correlation for depth measurements - this is most noticeable in the Southern

Highlands. This is likely caused by the way the CDA defines crater profiles. The

routine that is adding pixels to the crater adds pixels in a cellular automata-like

fashion, as long as each added pixel satisfies some criteria related its local topography.

In some areas, this process is causing an over-reach of the crater profile, especially in

areas where there is a non-uniform surface gradient nearby, such as a steep hill near the

rim of the crater. Thus, crater depths are being measured systematically deeper than

they should be. This also affects the radius measurements; this is discussed further in
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Section 2.4.

An additional issue in automated crater measurement arises when trying to assign a

radius value to a crater with non-perfect circularity, or one that is superposed on terrain

with a significant pre-impact slope. While the fraction of lunar craters that form elliptical

geometries is quite low (around 5%) (Bottke Jr., Love, Tytell, & Glotch, 2000), there is a

significant fraction of craters that form on sloped terrain. This effect is particularly strong

in the sub-km regime. As this deforms the standard circular expression of a crater, the

radial distance from centroid to rim can change as a function of azimuthal angle. While

the Cratermatic system uses a clever polar expansion to model the non-perfect circular

rim, the returned radius is calculated using the total pixel area, as follows:

Rcrater =

√
Acrat(pix)

π
∗ res (2.4)

where Acrat is the crater area in pixels and res is the DTM resolution. This gives the

radius of an equal-area crater with perfect circularity. As mentioned in Section 2.2.5,

the radii collected in the accuracy assessment stage were averages of the N-S and E-W

radii for craters with any significant non-circularity or incline. Therefore, the

goodness-of-fit of the linear regression for radius is affected by this dissonance in

measurement technique. Standardization of measurements is a great benefit of

automating processes, but it is important to examine the appropriateness of the

measurement method for a variety of cases.
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It was not possible to collect reliable depth measurements at all size scales. Sub-km

diameter craters could not have their depth measurements compared reliably against

the WAC GLD100 DTM, and thus the automatically detected depths were not useful

for determining a systematic measurement error. For that reason, craters with D < 1

km are not included in the analysis of bulk crater statistics such as depth-to-diameter

ratio.

Decision Tree Accuracy

The purpose of the decision tree is to analyse the quantitative characteristics of each

detected basin, and decide whether the basin should be categorized as an impact crater.

The basis for its judgement is a set of rules that it constructs after being provided a

training set of examples. While an ideal decision tree working with a perfectly

representative dataset would generate perfect classification results, there are factors

that can cause less-than-ideal classification, and impurities in the results.

Misclassification can have different root causes. There may be limitations in the size of

training set or number of attributes provided. Additionally, the wide variety of crater

forms (that also vary with size) may not be fully represented in the training set.

Finally, there is the chance that some training set members are incorrect; this is more

likely as the craters become very small and difficult to differentiate from other

topographic expressions. Misclassification of craters ultimately affects the distribution

of TP, FP and FN quantities.



Chapter 2. Crater Detection and Terrain Type 49

Many measures that exist to quantify the performance of both supervised and

unsupervised classification schemes in remote sensing image analysis can be applied to

decision trees as well. Some simpler measures include the TP and FP rates, or the ratio

of true or false classifications to the total number in a given class, respectively. We can

use additional measures such as the precision, F-measure and Kappa statistics. The

precision of a classification system describes the number of accurate decisions per

classification (Buckland & Gey, 1994). Combining the precision and TP rate gives the

F-measure, which is the harmonic mean of the two values. The harmonic mean is the

reciprocal of the arithmetic mean of the reciprocals, which in this case is equivalent to

2·Precision·TP Rate/(Precision+TP Rate). Finally, for each decision tree, we can

define the Kappa statistic. This number quantifies the agreement between the classifier

and the training set, minus the probability that the agreement occurred by chance. For

the sake of comparison, these metrics are divided into two tables representing all

‘crater’ class (Table 2.5) and ‘non-crater’ class (Table 2.6) assignments for the three

study areas.

Table 2.5: Detailed accuracy statistics for ‘crater’ class, for each study area.

Crater Class Statistics
Study Area TP Rate FP Rate Precision F-Measure Kappa
Mare Serenitatis 0.891 0.023 0.961 0.925 0.880
Orientale ejecta 0.973 0.186 0.867 0.917 0.800
Southern highlands 0.953 0.203 0.824 0.884 0.750

Of primary concern is the ability of the system to label true craters. Table 2.5 shows

trends in accurate crater labelling. Using the F-measure as a first order accuracy metric,

we see that positive crater identification is most successful in the mare areas, and becomes
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Table 2.6: Detailed accuracy statistics for ‘non-crater’ class, for each study area.

Non-crater Class Statistics
Study Area TP Rate FP Rate Precision F-measure Kappa
Mare Serenitatis 0.977 0.109 0.935 0.956 0.880
Orientale ejecta 0.814 0.027 0.960 0.881 0.800
Southern highlands 0.797 0.047 0.944 0.864 0.750

more challenging as the terrain becomes more complex, with worst performance in the

highland areas. Upon deeper inspection, the TP rate for Mare Serenitatis is significantly

lower than for either other study area, despite having a very low FP rate. The nature of

the distribution of craters in Figure 2.10 can be invoked to explain this. As crater size

decreases, more craters are detected for each study area. This increase is the steepest

for Mare Serenitatis, and even while sub-km detections are the most reliable in this area

out of the three study areas, the detection reliability is still diminished as crater size

diminishes. However, the exceptionally low FP rate more than compensates for this in

calculating the F-measure.

Quality Measures

As described in Section 2.2.5, each study region was subdivided into nine equal-area

subareas for a more complete study of the crater detection results. Within these subareas,

every detection was labelled as a true or false positive. Additionally, all missed craters

(false negatives) with a diameter greater than 600 m that could be identified using NAC

imagery were labelled. These results could then be quantified using the quality metrics

described previously. Images of the subarea analysis are shown in Figure 2.12.
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Figure 2.12: Assessment of crater detection in six sub-areas. Each sub-area is 100 x 100
km. Green crater profiles represent true positive detections, yellow are false positive, and
red are false negative with D > 600 m.

Starting at 600 m (the smallest diameter for which FNs were counted), DET , Q
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and B are calculated using the tallied values for TP, FP and FN detections. These

quantities were then re-calculated repeatedly with the minimum diameter increasing in

200 m increments, up to D = 5 km. For D = 5 km, all TP, FPs and FNs were counted

for the study area to guarantee a sufficient sample size. These three quantities are then

plotted in Figure 2.13. For practical applications, a critical value for Q has been identified

as 80% (Kim et al., 2005). There is a general convergence towards this value in all three

study areas around D = 50 pix (roughly D = 2.9 km for study areas 1 and 2, and D = 5

km for area 3), with Mare Serenitatis achieving this value earlier, at D = 30 pix. The

branching factor, which ideally should be low, converges to below 0.2 at around D = 30

pix.

Figure 2.13: The three performance metrics DET (solid line), Q (dashed line) and B
(dotted line) as a function of crater radius in pixels. Mare Serenitatis is represented in
blue, Orientale in green, and the Southern highlands in red.

The crater detection efficiency demonstrated a differential response to size sensitivity.

In Mare Serenitatis, a reasonably satisfactory quality factor Q was established, even

when close to the detection limit. The system was able to consistently pick up sub-km



Chapter 2. Crater Detection and Terrain Type 53

craters, and was primarily limited by the nature of the LOLA data. Multiple craters that

superpose one another, especially on or very near a LOLA ground track, often fooled the

system into thinking it was a singular basin. An example of this is shown in Figure

2.14. However, for crater sizes below 20 pixels, this area had a higher B value, indicating

more false positive detections. An alternative way to analyse the contribution of FNs

is by examining the vertical separation between DET and Q in Figure 2.13. A larger

separation between the lines indicates a greater detraction to the quality by FNs.

Figure 2.14: A false positive detection in Mare Serenitatis. (a) The Cratermatic detection
result (b) The feature, as seen in LROC NAC optical imagery (c) The feature as seen in
the raw LOLA DTM.

2.3.2 Crater Statistics

Automation allows us to perform a relatively simple (and sometimes complex) task

much more quickly and consistently than a human analyst. Measuring the depths and

diameters of a dozen craters is likely better done manually, but if the emphasis is on

collecting the same information for thousands of craters, an automated approach is

preferable. In addition to speed, automation also provides a consistency that human

experts can lack; the subjective expertise of a manual count can be detrimental to the
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results, especially when comparing counts between different experts.

In addition to identifying craters in a topographic landscape, this project also

collected bulk measurements. These measurements consist of a craters’ centroid

position on the landscape, the radius and depth, and a few rim shape descriptors. Of

particular importance here are the radius and depth, which are used in calculating the

depth-to-diameter (d/D) ratio for craters. This quantity was first examined in the mid

1960’s as a method of understanding crater scaling laws - how depth and diameter

relate as crater size changes (Baldwin, 1965). For each study area, all pruned craters

with diameters above 1 km were corrected using the regression corrections outlined in

Table 2.4, and then included in a histogram. The minimum diameter restriction is due

to the inability to accurately measure depths for craters in classes A and B using the

GLD100 DTM. This histogram is shown in Figure 2.15.

Figure 2.15: Histogram of the depth-to-diameter ratio for all pruned craters with D > 1
km.
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As mentioned previously, crater counting has an important role in deducing age

differences between different surface units. Using the crater detection results, a SFD (as

shown in Figure 1.3) was plotted for the 3 study areas. This plot is shown in Figure

2.16.

Figure 2.16: SFD for each study area, plotted using CraterstatsII (Michael & Neukum,
2010). Three isochrons representing crater populations for 3.4, 3.8 and 4.0 Ga old surfaces
are plotted as solid grey lines. Crater frequencies are binned in pseudo-logarithmic fashion
(18 bins per decade).
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2.4 Discussion

2.4.1 Comparison With Other Published Work

Automated CDAs using a variety of methods and data sources have been investigated

prior to this study. Their results have often been published using similar performance

metrics as those used in this project. For the purpose of putting these results into

context, it is important to directly compare the results (both in measurement quality

and detection efficiency) with some of these other systems.

AutoCrat for Martian Craters (Stepinski 2009)

The project described in this chapter applied the AutoCrat system to high-resolution

LOLA laser altimetry data for the Moon. At the time this system was created, laser

altimetry data was only readily available for Mars (LRO’s orbital insertion was one

month after the publication of the AutoCrat paper). We can thus do a direct

comparison between the results of Stepinski et al., 2009 (henceforth referred to as

Step09) and this study.

The primary data source used in Step09 is MOLA altimetry data, collected and

processed in much the same way as LOLA data. The resolution of the dataset is 128

ppd, which equates to 463 meters per pixel at the equator. This is roughly eight times

coarser than the LOLA data used in study areas 1 and 2, and 4.6 times the resolution

of that used in study area 3. Using this coarse elevation data, the author’s result was a

minimum detectable crater size of D ≥ 2.5 km, with reliable depth measurements for
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craters with D ≥ 5 km. Additionally, Step09 lists future application of the system by

stating “[u]sing a DTM with resolution of 100 m, the AutoCrat is expected to catalog

craters with D ≥ 500 m and to obtain a reliable values [sic] of depths for craters with

D ≥ 1 km”. This is remarkably close to the limits identified in this study. In the most

successful unit type (mare), craters with D ≥ 600 m were reliably detected, and depths

were reliable for craters D ≥ 1 km. However, for the more complex areas like the ejecta

of Orientale, or heavily cratered units like the highlands, these limits were not so

applicable. Similarly to the results of this study, the Martian craters detected in Step09

found a systematic overestimation of both radius and depth, and could successfully

account for these overestimations by applying a linear fit to the values. From Table 2.4,

the average overestimation of the value for diameter and depth is 10% and 14%,

compared with 15% and 30% from Step09.

Table 2.7: Comparison of performance metrics with other published values. * The values
listed for the three study areas here are for craters with D ≥ 4 km.

Study DET (%) Q (%) B Reference
Mare Serenitatis* 100 100 0 This study
Orientale Ejecta* 92 80 0.17 This study

Southern Highlands* 79 76 0.05 This study
Bue 74 61 0.29 (Bue & Stepinski, 2007)

Barlow 75 75 N/A (Barlow, 1988)
Barata 64 31 1.65 (Barata, Alves, Saraiva, & Pina, 2004)
Kim 88 78 0.15 (Kim et al., 2005)
Li 87 82 0.07 (Hui Li, Jihao Yin, & Zetong Gu, 2014)

It is also possible to directly compare the detection performance metrics listed in

Section 2.2.5 with other published values. Table 2.7 displays the values for DET , Q

and B. The values listed for each study area apply to craters with a diameter of 4 km
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or larger, corresponding to class F craters. The choice of 4 km for these values is to

provide the quantities after they have stabilized, as they change rapidly approaching

the detectable size limit. The system performs in a manner that is often superior to

previous systems, but with variation and shortcomings associated with unit type. The

high branching factor B in Orientale indicates the systems inability to discriminate crater

from non-crater basin in this area. The highlands region does not suffer as much from

this problem, but the lower Q value indicates that missing craters are driving up the

FN value, so completeness is an issue in this region. The system excels in mare areas

for larger craters, and even for craters of much smaller size, as can be seen tracking the

metrics in Figure 2.13.

2.4.2 Scientific Integrity of Results

As mentioned previously, CDAs are used to generate crater counts and crater

morphometry statistics on large scales, collecting information on a scale that would be

time-inefficient for a human analyst. Systematic inaccuracies in an automated CDA can

have an affect on the scientific integrity of the results. For example, knowledge of the

total detection efficiency would be crucial for performing an automated crater count of

very small craters, perhaps in trying to date a small unit such as an impact melt sheet

or crater ejecta blanket. The same applies with making size measurements, as inherent

error has to be corrected before comparing values.
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Size-frequency Distribution and Crater Counting

To determine the age of a surface unit, or compare the ages of two separate units,

crater counts can be used to build a size-frequency distribution (described in detail in

Chapter 1). The SFD, a plot of the cumulative crater frequency per square kilometer

against crater diameter, is usually displayed in a log-log graph. SFDs for the three

study areas are shown in Figure 2.16. Isochrons, representing distributions that

correspond to particular unit ages, are plotted as well. An ideally perfect crater count,

including only primary craters on a limited surface in question, should adhere perfectly

to the isochron representing the unit’s age. Since CDAs are (at present) imperfect

systems, there are deviations from the isochron that represent inconsistencies in the

system. Also, large enough count areas will eventually cover units of different ages.

This effect is particularly important in Mare Serenitatis; this is discussed in Section 2.2.

Mare Serenitatis, represented with blue boxes in Figure 2.16, closely follows the shape

of its nearest isochrons. With ages ranging from 3.4 to 3.8 Ga, the SFD falls in the 3.5 -

3.6 Ga region of the plot. With no significantly large deviations, it begins to slowly round

off as the minimum diameter is reached. This turnover effect is caused by the inability

to resolve small craters, and is an observational bias (Basaltic Volcanism Study Project,

1981). As a SFD moves from the lower left to the upper right of the plot, it increases

in age. As expected, the next SFD is for study area 2, the ejecta of Orientale. As this

impact occurred roughly 3.8 Ga ago, it would be expected that the ejecta blanked, forming

without any superposed craters, should show a crater distribution that reflects this age.
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The SFD for study area 2 is heavily modified from an expected distribution. Below 3-4

km, there is a paucity of craters in the distribution. Analysis of the detection efficiency

in previous sections has shown that this is just a shortcoming of the detection system,

resulting in false negatives. Around D = 8 km, a kink is visible in the distribution. This

is likely a manifestation of buried craters being detected. Even with ejecta infilling the

underlying craters, their topographic expression was still significant enough so as to be

classified. Further evidence for the detected presence of buried craters is provided in the

following subsections. Finally, the distribution again deviates towards lower densities as

the crater diameter regime is increased. The Southern Highlands, as the oldest unit, is

the right-most SFD on the plot. Building SFDs of very heavily cratered units for the

purpose of age dating is tricky, as the unit will eventually adopt a state of cratering

equilibrium. In this case, as cratering continues, the destruction of other craters will

leave the relative distribution unchanged. For this reason, any age determined from a

SFD in an area that has reached crater density equilibrium is to be taken as a lower limit

to the age of the unit (Richardson, 2009). The SFD for the highlands can be most closely

associated with an age of 3.9 - 4.0 Ga. This SFD also experiences a negative deviation

from expected densities at larger diameters. Larger complex craters, especially those

with partially destroyed rims, were not adequately detected and thus under-represented

in the plot.

Depth-to-diameter Relationship

Figure 2.15 shows the results of the bulk collection of depth-to-diameter values for all

craters with D > 1 km. This lower size limit was dictated by the ability to accurately
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measure depths in the WAC GLD100 DTM. All depths and diameters had already been

corrected following the linear regression procedure outlined in Section 2.2.5 and the

values given in Table 2.4. To first order, the histogram shows a relationship between

d/D and unit type - craters formed on the highlands are generally deeper than mare

craters. The modal bins for the Southern Highlands and Mare Serenitatis were 0.10 and

0.04, respectively. This relative result is in agreement with previous work on the d/D

relationship for lunar craters (Kalynn, Johnson, Osinski, & Barnouin, 2013). While not

entirely understood, this is likely to be an effect related to target material strength

(Senft & Stewart, 2007). As surface materials in the highlands are composed of

overlapping layers of regolith (loose material ejected from impacts) collected over time,

they form a less cohesive target than would a thinner regolith layer over top stronger

mare basalts. Additionally, the plot shows an sharp peak for Mare Serenitatis in the

low d/D regime. This result is likely a convolution of detection bias as well as the

physical nature of the craters. As can be seen in CDF shown in Figure 2.10, the

sensitivity of the system results in around 90% of detections in this study area with

D < 1 km. At small scales, craters are more substantially modified by infilling

processes which reduce their total depth. Also, many smaller craters are likely to be

secondaries, which form shallower craters as a result of their slower impact velocity

(which is by necessity less than the escape velocity for the body). These factors affect

the ability to measure the depth accurately at small sizes.

The Orientale Ejecta study area also manifests interestingly on the d/D histogram.

The only bimodal distribution, it contains peaks at d/D = 0.08, 0.14. The distribution
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is heavily skewed towards the deeper side of the histogram. Unlike the skewed

distribution of measurements in the mare area, this is likely caused by systematic

measurement effects. The impact that formed the Orientale Basin impacted a surface

type that would have been similar to the highland, throwing large amounts of

heterogeneous ejecta on the surrounding landscape. This material should thus have a

consistency that is not too dissimilar to the highland material. By a basic argument of

the target material consistency, we would expect a similar d/D distribution. Figure 2.4

shows the highly undulating terrain in the Orientale study area, with great topographic

variation at many length scales. Craters forming on these slopes form inclined basins,

where the downslope rim is at a significantly different elevation than the upslope rim.

As the crater-region growing process adds pixels, it searches for pixels with a positive

gradient from the anchor point. This causes an overreach in the diameter measurement,

which has a lowering effect on the d/D value. However, in regions where the crater is

on a severely sloped pre-impact surface, the overreach also significantly increases the

depth of the crater, more than offsetting the diameter overreach. The net result is an

inflated value for d/D.

Buried Craters in Orientale Ejecta

The SFD for the Orientale ejecta study area is discussed in Section 2.4.2. This

discussion details the presence of a kink in the SFD, showing an inflated presence of

craters in the area of D = 8 km. This surplus is thought to be a result of buried

craters, which were significantly large as to survive partial burial by the ejecta



Chapter 2. Crater Detection and Terrain Type 63

emplaced during the impact that formed the Orientale basin. It is also possible that the

first mode at d/D = 0.08 in the distribution is related to this kink. A crater with a

diameter of 8 km and d/D = 0.15 (near the larger mode) should have a depth of 1200

m. The same crater, if it were part of the d/D = 0.08 population, would have a depth

of 640 m. The discrepancy between these two depths is 560 m.

Previous work has quantified the volume of ejecta generated by the impact. The

study area in this project is contained within a region between the Cordillera ring (the

outermost circular ridge formed by the basin) with radius RCR = 465 km, and 3RCR.

The volume of ejecta within this region has been given as 2.9 ·106 km3 (Fassett, Head III,

Smith, Zuber, & Neumann, 2011). While the thickness scales with radial distance through

a power law, we can use a crude approximation to determine the average thickness over

the area. Treating the total area as an annulus bounded by the concentric circles formed

by RCR and 3RCR, the total area can be calculated as 8πR2
CR = 5.43 · 106 km3. Dividing

the volume of the ejecta by the area yields an average ejecta thickness tavg = 534 m.

This value is quite close to the depth discrepancy identified in Figure 2.15, and provides

evidence for the significant detection of buried craters in this region. Detection and

characterization of buried craters using automated methods can have useful application

in verifying quantitative models of ejecta emplacement.
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2.5 Conclusion

Automated crater detection systems are tasked with the challenge of identifying and

measuring impact craters under a wide variety of conditions. Surface unit type, crater

morphology (related to size, degradation/modification state), crater density and data

type all play a role in determining the effectiveness of these solutions. By applying an

elevation-based CDA to high resolution data for different lunar surface types, we find:

1. Different lunar surface units have an effect on the results of automated crater

detection. These differences include detection efficiencies, minimum detectable

crater size, and accuracy of crater measurements. Mare units provide the best

performance, with quality decreasing as crater saturation equilibrium is

approached.

2. The AutoCrat system can be used to quickly and accurately generate SFDs that

reflect relative ages between units. Absolute ages can be approached as detection

quality improves. However, the balance of false positives and false negatives tends

to underestimate absolute unit ages.

3. Bulk crater statistics can be collected efficiently with an incorporation of systematic

measurement error. The results of bulk statistics collection is a convolution between

the population quantities in question, and inherent detection biases.

4. The results of bulk statistics collection can be used to verify models of crater

formation, ejecta emplacement, and other cratering processes.
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While imperfect, progress by many researchers has been made to improve these

systems and begin to more broadly introduce their use in crater studies. The choice of

using an automated system versus a manual count must be made by weighing factors

such as the counting area, minimum crater size desired in the count, or the specificity of

measurements to be made. However, automated systems will become more useful

moving forward as new datasets become available. The CaSSIS instrument on board

ExoMars Trace Gas Orbiter (TGO), which will insert into Mars orbit in October 2016,

will greatly expand the wealth of terrain information we have about the planet. The

imaging system will be able to generate stereo pair images of the surface at high quality

at a resolution of 6 meters. This will allow for many crater counts and characterization

at more fine scales.

There is still work to be done in improving CDAs. Aside from simply improving

detection capabilities, their measurement capabilities will need expansion. As there are

many ways to quantify the morphology of a crater, it will be important to create

standards for measurement that can be adhered to, so that measurements made by

different systems can be directly compared. Comparative studies of impact crater

detection on terrestrial worlds and icy satellites are also important for working towards

a more complete solution. Ultimately, the task of crater detection and characterization

can be incorporated with geologic mapping and unit annotation to improve automated

methods in planetary science and exploration.
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Chapter 3

Automated Martian Crater

Degradation Classification Using

Chebyshev Polynomial

Approximations

3.1 Introduction

3.1.1 Crater Degradation

Impact craters are a ubiquitous surface feature in the solar system with a wide variety

of scientific applications. The identification and measurement of impact craters can be

used for estimating surface unit ages, and has been the primary tool for such a task for

decades. Their presence on many different bodies exhibiting a spectrum of different

73
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ambient surface conditions and processes allows for the study of impact crater

morphology over time. Modification of the crater’s morphology can act to affect the

quantities that are used to represent craters, in addition to the precision with which

those measurements can be made. For highly degraded terrestrial impact structures,

even a quantity as fundamental as the diameter can vary between authors by a factor of

two (Grieve, 1998).

Early work established the use of studying the ‘freshness’ of defining morphologic

characteristics for lunar craters as metrics for crater modification and relative age

determination (Pohn & Offield, 1970; Head III, 1975; Wood, Head III, & Cintala,

1977). This idea works from an assumption that a newly formed crater will exhibit

morphologic characteristics that are either less present or completely subdued in a

crater that has been considerably modified over time. By studying the degree to which

these characteristics are present, some authors began to devise ordinal systems of crater

classification (McGill & Wise, 1972; Arvidson, 1974). These systems divided craters

into classes based on morphology expressions that were noticeable in the datasets

available at the time, which were primarily optical in nature. Thus, the examination of

these expressions were prone to inconsistencies such as resolution limitations, viewing

geometry and lighting conditions. Barlow (2004) describes a semi-quantitative

classification scheme incorporating multiple datasets to distinguish crater preservation

based on characteristics such as relative depth and the morphology of the rim, ejecta,

and crater interior. This classification amalgamated optical, topographic and thermal

information in its decision-making process.
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More recent work has provided large-N statistics to crater preservation information.

A recent global database of martian impact craters, complete to D ≥ 1 km, also

addressed the problem of preservation state classification (Robbins & Hynek, 2012b).

This catalogue, consisting of over 384,000 craters, identifies positions, interior and

exterior morphologic information, and modification state with identifying morphologic

expressions such as channels or gullies. Additionally, each entry is assigned a confidence

factor, which expresses the analysts assessment of the feature’s likelihood of being an

impact crater and not another type of circular depression. Measurements were made

with both optical data from the global THermal EMission Imaging System (THEMIS)

Daytime IR mosaics (Christensen et al., 2004) and Mars Orbiter Laser Altimeter

(MOLA) topographic datasets (Zuber et al., 1992), with both circular and elliptical

rim-shape fitting. The crater preservation class was assigned similarly to previous work

- by analysing the ‘freshness’ of the crater’s morphology. The judgement criteria are

shown in Table 3.1.

As can be seen in Table 3.1, there are four primary criteria used in the catalogue for

assessing crater degradation. These are relative depth, rim, ejecta, and interior state.

The author chooses relative depth as a way to account for pristine crater morphology

variations at different latitudes. Instead of comparing the depth to a global average, the

author uses equatorial or polar averages for comparison, depending on the latitude of the

crater (Robbins & Hynek, 2012b).
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Table 3.1: Crater degradation classification criteria from (Robbins & Hynek, 2012a).

Relative Depth Rim Ejecta Interior Rankd Class

<1/4 (1) Rimless (1) None (1)
Mostly Infilled/

Highly Modifiedb (1)
4-6 (3-4) 1

1/4 - 1/2 (2) Slightly Elevated (2) None (1)
Significant Deposits/

Modificationb (2)
7-9 (5-6) 2

1/2 - 3/4 (3)
Some Degradation/
Modificationb (3)

Some Erosion/
Modification (2)

Some Infilling/
Modificationb (3)

10-13 (7-9) 3

>3/4 (4) Sharpc (4) Pristine (3) Pristine (4) 14-16 (10-11) 4

aCraters are classified with three morphologic characteristics and the relative depth from topography
(if available). The corresponding rank is converted to a preservation class. The majority of craters in a given
class will have characteristics from that row, but that is not always the case. It is possible - if highly unlikely
- for a crater to have, for example, a “Sharp” rim while having no ejecta and being mostly infilled.
bModification includes: Gullying/dissection, fracturing, lava flows, ice flows, mass wasting (e.g., from the
rim), superimposed cratering, etc.
cDoes not necessarily mean “pristine” (i.e., can have a small crater superimposed or a very small bit of
modification)

dParenthetical values are if depth information is not present.

Internal Crater Morphology

In addition to providing the degradation class, the catalogue also provides a description

of the internal crater morphology. These morphologic identifiers, originally described in

(Barlow & Bradley, 1990), describe the presence of distinct features within the crater

rim. They are indicated by shorthand abbreviations, starting with ‘Cpx’ for complex

craters, and then appending a morphology descriptor. These features include flat floors

(CpxFF), central peaks (CpxCPk), central pits (CpxCPt), summit pits (CpxSuPt), and

unclassifiable (CpxUnc). An example of each of these morphologies is shown in Figure

3.2. These morphologies are fundamentally related to, and affected by crater

modification. Flat floor craters, for example, can be formed by the infilling of a material

that is exogenous to the impact crater’s formation such as wind-blown material or lava.
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Figure 3.1: An example of a crater from each preservation class, from (Robbins & Hynek,
2012b). All imagery is THEMIS Day IR. (a) A 23 km diameter crater in the pristine
class (4), located at 16.50◦N 11.49◦E. Note the sharp rim, central pit, and pristine ejecta.
(b) A 44 km diameter class 3 crater located at 14.79◦N 9.63◦E. This crater shows some
infilling, as well as subsequent cratering on the ejecta blanket. (c) A 65 km diameter
class 2 crater, located at 15.27◦S 9.79◦E. This crater shows substantial infilling, as well
as minimal expression of the rim and ejecta. (d) A 38 km diameter class 1 crater, centred
at 39.33◦S 15.25◦E. This crater has no raised rim, and is heavily infilled. Ejecta texture
is no longer visible.
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Figure 3.2: An example of a crater from each interior morphology class, from (Robbins &
Hynek, 2012b). All imagery is THEMIS Day IR. (a) A 30 km diameter crater exhibiting
a central peak (CpxCPk), or localized topographic high near the crater center. This
crater is located at 26.31◦N 28.12◦E. (b) A 38 km diameter central pit (CpxCPt) located
at 14.68◦N 20.67◦E. (c) A 28 km diameter crater with a flat floor morphology (CpxFF),
located at 8.81◦N 35.82◦E. (d) A 19 km diameter summit pit crater (CpxSuPt), centred
at 15.24◦N 16.45◦E. The summit pit, located at the crater center, is differentiated from
a central pit by the raised topography on which the pit is situated.
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Processes of Crater Modification

The processes which modify an impact crater are dependent on the parent body on

which it is located. By extension, the variety of modified crater morphologies is related

to the number of degrees of freedom in the surface and subsurface environment of the

body. For example, a body that has no atmosphere will not possess craters that exhibit

aeolian (wind-driven) modification. However, the same body might experience more

rapid degradation from subsequent small impacts and even smaller scale micrometeorite

ablation due to a lack of protection from the atmosphere. This subsection details some

of the primary methods that modify a crater’s topographic signature.

One of the most common processes of crater modification is from bombardment.

This is described as the destruction of a crater profile by the superposition of other

craters over top of it. Additionally, bombardment can cause infilling by ejecta

emplacement inside a neighbouring crater, which reduces its depth. In more extreme

cases, the ejecta of a significantly large nearby impact can cause severe modification by

depositional blanketing. Generally, meteoritic bombardment has been shown to soften

topography and reduce the pristine profile of craters (Ross, 1968). This process is

dominant on surfaces not protected by any considerable atmosphere; on Mars, the effect

would be less important than on the Moon or another airless world. A second

consequence of bombardment is the seismic shaking of material caused by nearby

impacts. By shaking loose material from less stable slopes, this would have a net effect

of marginally increasing the crater diameter, while also reducing its depth through
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infilling.

On Mars, and in environments with a significant enough atmosphere for wind to be

present, aeolian erosion can modify a crater’s signature. For arid, cold desert

environments like those on Mars, aeolian activity dominates the environment (Kumar,

Head, & Kring, 2010). Aeolian modification rounds out sharp features such as the

crater rim. Additionally, it deposits material delivered by wind into the crater, reducing

the depth profile. Other modification processes active on Mars are from periglacial and

volcanic sources. Modification of craters occurs at higher latitudes and polar regions,

where the presence of ground ice causes a gradual shallowing of the crater profile over

time (Pathare, Paige, & Turtle, 2005). For volcanic modification, extrusive volcanism

can infill, partially destroy or completely bury impact structures. This is applicable to

craters near the volcanic provinces. Fluvial degradation of impact craters in the

martian highlands has also been proposed to explain morphometry related to crater

infilling (Forsberg-Taylor, Howard, & Craddock, 2004).

3.1.2 Crater Profile Modelling

The topographic analysis of impact crater profiles is a useful tool for advancing our

knowledge on their morphologies at all scales and crater states. Previously, work has

been done to ascribe mathematical representations to crater profiles. A straightforward

example of this would be using a mathematical function to model the crater surface

height z(r) as a function of radial distance r from the crater center. One of the earlier
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applications of using a mathematical model was to describe the scaling relationship

between crater depth and diameter (Pike, 1977). For modelling the crater profile,

previous work had used various polynomial expansions or hyperbolic representations to

model the crater shape (Craddock & Howard, 2000; de Vet & de Bruyn, 2007). A

typical polynomial expansion of one variable can be represented as a linear sum:

z(r) ≈ f(x) =
M∑
n=0

CnTn(x) (3.1)

where Tn(x) is the chosen polynomial of degree n (also called the basis function), Cn is

the nth coefficient, and M is the total approximation order. Choosing a basic polynomial

expansion, where the basis functions are powers of x, and expanding out this sum to

degree M results in the full polynomial:

z(r) ≈ f(x) = a0 + a1x+ a2x
2 + ...+ aMx

M (3.2)

Representations using this ordinary choice of polynomial suffer as they are not directly

comparable across studies, or even across individual craters. This is because the basis

functions in this representation are not orthogonal. Orthogonal basis functions are those

which have zero correlation between one another. This means that modifying one of the

terms, or changing the degree of expansion (M) does not affect the other terms. For

this reason, a different set of polynomials must be used to create a standardized and

internally consistent system for representing crater topographic profiles.
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Chebyshev Polynomials

Recent work on standardizing the quantitative representation of craters has improved

our ability to represent crater profiles. The novel application of a different set of

mathematical objects, called Chebyshev polynomials of the first kind (Chebyshev,

1854) (furthermore just ‘Chebyshev polynomials’), has made significant progress in

crater profile representation (Mahanti et al., 2014). Chebyshev polynomials are a

sequence of polynomials that are defined recursively through the following relationship:

Tn+1(x) = 2xTn(x)− Tn−1(x) (3.3)

with T0 = 1 and T1 = x. The first 9 polynomials, corresponding to an approximation

order M = 8, are listed in Appendix B. These polynomials are particularly well suited

to the problem of crater profile representation for few reasons. First, the basis functions

are orthogonal, allowing for direct comparison between functions for different craters,

even with different expansion orders. This also results in a reduced minimum mean

squared error in the approximation (Mahanti et al., 2014). Also, when scaling the x-axis

to be limited to the domain x ∈ [−1, 1], all Chebyshev polynomials have a maximum

value of +1 and a minimum value of -1 in this interval, simplifying the computation.

Since it is not computationally possible to have a truly infinite sum of Chebyshev

terms, it is necessary to select an order of approximation. The topographic information

that cannot be accurately represented due to the limited approximation order is known

as the truncation error. The previous study using Chebyshev expansions for lunar
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Figure 3.3: (a) Plinius, a roughly 43 km diameter complex lunar impact crater located at
15.4◦N, 3.7◦E. The green line denotes the direction of the extracted profile in (b). (b) A
scaled plot of the crater profile (black), alongside three Chebyshev profile approximations.
As the order of approximation increases from M = 4 (red) to M = 32 (blue), the
approximation error is reduced.

crater profile reconstruction found that choosing an approximation order of M = 16 was

sufficient for representing, characterizing and classifying craters (Mahanti et al., 2014).

By scaling the distance axis to x ∈ [−1, 1], we can also directly compare coefficients

across craters. The coefficients correspond to weighting factors that represent the

amount of each contribution from their respective basis function. A larger coefficient

indicates a larger contribution from that coefficient’s basis function. This process and

how it is used in crater profile reconstruction is shown in Figure 3.4.

The coefficients derived from a Chebyshev polynomial expansion of crater

topography have been shown to directly relate to crater morphologic characteristics

such as depth-to-diameter relationship, local surface gradient, crater profile asymmetry,
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Figure 3.4: A general diagram of how crater profile reconstruction relates to basis
functions and coefficients. Each basis function, shown on the left as Tn(x), has a weighted
contribution to the final profile that is related to its coefficient Cn(x).

and central peak height (Mahanti et al., 2014). These relationships are a direct result of

the symmetry and extrema properties of Chebyshev polynomials. For example,

Chebyshev polynomials alternate as even (symmetric) and odd (antisymmetric)

functions. Since only odd functions pass through the origin (i.e. have a value of zero

there), we can use the combination of even Chebyshev coefficients to learn about the

crater profile at x = 0. Since these characteristics are modified by the processes that

cause crater degradation, it should therefore be possible to use the extracted Chebyshev

expansion coefficients to quantify crater degradation.
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Table 3.2: List of Chebyshev coefficients and coefficient combinations, with their
interpreted topographical indications (Mahanti et al., 2014).

Coefficient
Equation
(M=16)

Interpretation

C0 - Avg. crater profile
C1 - Local topographic gradient
C2 - Depth (1st order approx)
C3 - Asymmetry in rim shape
C4 - Central peak height (1st order)
I1 C0 − C2 + C4 − C6 + ... Elevation at x = 0
I2 C0 + C4 + C8 + C12 + C16 Central peak height (2nd order)
I3 C0 − C1 + C2 − C3 + ... Crater elev. at left-hand extreme
I4 C0 + C1 + C2 + C3 + C4 + ... Crater elev. at right-hand extreme
I5 2 · (C2 + C6 + C10 + C14) Depth (2nd order)

Ĩ5 I5/D Depth-to-diameter ratio

3.1.3 Purpose

The purpose of this paper is to propose a standardized and quantitative method for the

automated preservation classification of martian complex impact craters. Using MOLA

topographic data for the martian surface, a standardized method will be described for

extracting and modelling the 2-D profiles of complex impact craters on Mars. The results

of this numerical modelling will be used to build a classification model for assigning

a preservation state quantity to the craters. This process will be automated using a

catalogue of input craters, whose locations are provided from Robbins and Hynek (2012b).

This system should provide an objective and efficient method for assigning a preservation

class, which has historically been only semi-quantitative at best. Additionally, predicting

the general interior morphology (flat-floored, central pit, or other descriptors) by the

same means will be investigated. This work should provide a stepping-off point for the

development of a more complete and accurate automated crater classification system.
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3.2 Methods

Figure 3.5: Flowchart of the major steps for this project.

This section will describe the four primary elements of the project methodology:

1. Data collection.

2. Pre-processing and training set construction.

3. Profile extraction and polynomial approximation.

4. Building the classification models and evaluation of results.
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3.2.1 Study Area and Data

As mentioned previously, the global crater catalogue in (Robbins & Hynek, 2012b) is

complete for craters with D ≥ 1km. The topographic measurements made for craters in

this catalogue were made using the highest resolution global DTMs available for Mars.

These are the MOLA Mission Experiment Gridded Data Records (MEGDR) raster

topographic maps of the martian surface, at 128 pixels per degree. The locations and

size measurements provided in the catalogue are similarly made using this dataset. This

choice dictates our use of the MOLA 128 ppd topography dataset for this project. To

compare our polynomial approximations with the degradation classes assigned by the

original authors, it is important to use the same source data. The Chebyshev profile

approximation described in (Mahanti et al., 2014) was applied to lunar craters with

diameters in the range 100 m ≤ D ≤ 145 km, using two different elevation data sources.

Since this study uses lower resolution data for the martian surface, we choose to set the

minimum crater size to D ≈ 10 km. This is because MOLA data has been shown to

reproduce crater morphology down to this size with satisfactory fidelity (Robbins &

Hynek, 2013).

The authors of the catalogue used in this study have provided a very convenient online

database searching tool. The search interface (http://craters.sjrdesign.net/) has a

selectable list of crater data that can be exported to a CSV file. The primary selections

used for the craters in this study were a minimum diameter of D ≈ 10 km, and for all

measurements (diameter, location) to be made against the MOLA topography data set.
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Additionally, all information relating to crater morphology was selected for inclusion in

exported catalogue.

Figure 3.6: Global map of Mars in simple cylindrical projection. Visualized data is
MOLA Colourized Elevation. The study area is outlined by the white box.

The chosen study area for this project encompasses around 1.27 · 107 km2 of the

martian surface (roughly 9% of Mars’ surface area), over equatorial and mid-latitude

regions. This area, shown in Figure 3.6, encompasses three primary areas: Arabia Terra

in the north, Terra Sabaea to the east, and Noachis Terra to the south. These areas consist

primarily of rugged, high-relief terrain that is dated to the early and middle Noachian

period of Mars’ history (Tanaka et al., 2014). Noachian units are thought to be some of

the oldest units on Mars. These units are interpreted as being undifferentiated materials

of impact, volcanic, fluvial, and basin origin that are moderately to heavily degraded.

However, this unit is also interspersed with more recent impacts that superpose the

surface. These impacts are interpreted as being upturned and ejecta target rocks, which

may be modified over time by fluvial-lacustrine and aeolian processes. Robbins’ catalogue
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lists 3,274 craters with D > 10 km within the study area, some of which will belong to

this unit, but most will be much older with varying levels of degradation.

3.2.2 Pre-processing and Training Set Selection

After acquiring the full crater catalogue, some pre-processing steps are applied to

improve the quality of the results. First, the set is split into two halves: one

corresponding to the northern section of the study area (Arabia Terra) and the other to

the southern section (Noachis Terra/Terra Sabaea). This is to ensure ultimately that

an even number of craters from each region go into building the training sets. Next, as

mentioned in Section 3.1.1, we examine the confidence factor assigned to each crater

entry. Each crater was assigned a confidence factor by the authors, from 1 to 4, with 1

being non-confidence and 4 being complete confidence in the structure being a true

impact crater. For this study, we remove all craters from the list that have a confidence

factor < 3. We also remove any craters that do not have a degradation state assigned,

or that were missing topographic data. The final check is to remove craters whose

elevation profile lines are going to extend beyond the extents of the DTM - this is

explained further in Section 3.2.3. To prepare the DTM, we crop our region of interest

from the larger tile DTMs, and export them as ASCII raster files.

After pre-processing the craters down to a list that is appropriate for this study, we

next select our training set. This list is a sub-selection of craters that will be used to

train the classification model to recognize craters in the different degradation classes. To
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acquire a near-random sampling of craters in each of the four degradation classes, we

employ a stratified sampling technique. The classification model works best when each

crater class is represented in as even proportions as possible, so we are limited by the class

with the smallest number of craters - this is class 4, the ‘pristine’ class. Twenty members

of each class from each area are selected using the stratified sampling. A second stratified

sampling is then done to build a training set for the interior morphology descriptor. After

exporting the collective training set (including the members from both areas), we then

move onto the profile extraction and approximation.

3.2.3 Profile Extraction and Approximation

The classification model used to determine degradation class values is built by using

Chebyshev polynomial coefficients as discriminators. To extract these coefficients, we

develop a two-step process in MATLAB (code shown in Appendix B). The two steps

include profile extraction, and then polynomial fitting. The main steps of this method

are shown in Figure 3.7.

Topographic Profile Extraction

The Chebyshev polynomial expansion is used to model the true topographic profile

using reconstructed basis functions. The first necessary step is to define a consistent

way to extract a 2-D profile for the crater. Craters can exhibit a variety of

morphologies, often possessing asymmetry in some form. This means that crater

profiles of a given radial length can be quite different as the azimuthal angle is varied.

To be consistent with the method described in Mahanti (2014), we constrain all profiles
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Figure 3.7: Profile extraction and approximation process. (a) Crater is identified by
catalogue values for location and radius. (b) Line of greatest slope (white/red dashed
line) through crater center and length 4·Rcrater is identified. (c) Topographic profile is
extracted, with domain scaled to [-1,1]. (d) Profile is approximated using Chebyshev
polynomial expansion. (e) Chebyshev coefficients are retrieved from the expansion.
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to be in the direction of greatest surface gradient outside the crater, with a profile

length of 2 · Rcrater from the crater center. This results in a profile of total length

4 ·Rcrater.

Once all craters are loaded into the landscape, a circle of points with radius

2 · Rcrater is defined around the crater centroid. Each point and its opposing member

(diametrically opposite) are then used to calculate the slope along the line that

connects them. This is done iteratively over all 100 lines (lines are separated by θ = π
50

)

to identify the line with greatest slope. Once the point pair has been identified, it is

necessary to generate a line between the two points to create the profile. To build a line

in a discretized coordinate system (such as a raster map), we employ Bresenham’s line

algorithm (Bresenham, 1963). We then save the line points for each crater profile.

Generating the profile involves combining the line points with the DTM landscape.

At each point along a crater’s profile line, the elevation value is extracted from the DTM.

As mentioned in Section 3.2.2, it is important that all profile points lie within the DTM

- this justifies the removal of craters near edges or with significantly long profile lines.

Finally, the distance scale is normalized so the range lies between -1 and 1, for the reasons

described in Section 3.1.2. We now have our scaled topographic profiles for the craters,

and can perform the polynomial approximation.
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Chebyshev Polynomial Fitting

Once the elevation profile is extracted and scaled, we can apply a polynomial

approximation to the function that represents the height of the surface, z(r), as a

function of radial distance r. This is done with the help of the Chebfun toolbox

(http://www.chebfun.org/), an open-source MATLAB package for numerical function

computation (Driscoll, Hale, & Trefethen, 2014). The Chebfun toolbox includes a

polynomial fitting tool that can be used to overload MATLAB’s default tool, replacing

the ordinary polynomial choice with Chebyshev polynomials. The polynomial fitting

works through a least-squares approximation method. This is done by minimizing the

square of the difference between the polynomial values and the values corresponding to

our crater profile, z(r). The coefficients Cn (where 0 ≤ n ≤ M) are varied to minimize

this value. The set of coefficients which satisfy this condition are chosen for the

polynomial approximation. After running the polynomial fit, we store the coefficients

for each crater as well as plotting the approximated profile.

3.2.4 Crater Classification

With the coefficients of each crater retrieved from the polynomial fit, the final step is to

create a classification model for the degradation state using the coefficients as

discrimination attributes and the classes from Robbins’ catalogue as the training set

values. As mentioned in Section 3.1.2, the reconstructed Chebyshev coefficients have

been shown to be directly correlated to crater topographic characteristics. Additionally,

careful combination of related coefficients can be employed to expand the number and
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accuracy of morphology descriptors. Therefore, we should be able to use these

coefficients as a quantitative means for describing crater topography and assigning a

classification scheme.

The J48 statistical classifier constructs the decision tree using the attributes for each

crater. This algorithm identifies which attributes best sort the training set (and at which

value) by varying these values and examining the ‘purity’ of the result. This tree assigns

a preservation class value to each crater by comparing its attribute values (coefficients)

against these values. The resulting set of rules is then applied to the entire catalogue in

the form of a decision tree. To run the statistical classifier, we import the training sets

(one for degradation and one for interior morphology) into WEKA, an open source suite

of machine learning tools (Hall et al., 2009). The training sets consist of a list of each

crater with the attributes to be used as discriminators. The first attributes are standard

size descriptors from the catalogue: depth d, diameter D, and depth-to-diameter ratio

d/D. In addition, we import the 17 Chebyshev coefficients retrieved from the polynomial

approximation: C0, C1...C16. Additionally included are the coefficient combinations that

have been also been shown to relate to morphology: I1, I2, ...I5, Ĩ5. Finally, the value to

be predicted (degradation class or interior morphology indicator) is included. The J48

classifier is then run on each of the training sets.
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3.3 Results

Topographic information retrieved from the Chebyshev polynomial coefficients served as

a discrimination framework for assessing both crater degradation class, as well as major

interior morphologic characteristics. The models were compared against values assigned

by expert analysts and published in a global martian crater catalogue. Two separate

classification models were built; the classification results of each are discussed separately

in this section.

3.3.1 Degradation Class Model

The primary goal of this project is to demonstrate a standardized, quantitative method

for automatically classifying the degradation state of complex martian impact craters.

Using a training set of 160 craters, representing 40 craters from each class over the

study area, a classification model was built to be able to automatically assign a crater

degradation class using a list of Chebyshev polynomial coefficients as input. The

training set size was limited by the class with the smallest number of representatives -

this was the pristine class. The model produced by the J48 statistical classifier was

applied to all craters in the study area, with the resulting degradation class compared

against the expert-provided class.

The overall accuracy for the degradation classification system was 70.1%. At first

glance, we see a variation in the system’s ability to discriminate crater degradation.

Pristine craters are very well matched, and the most degraded are classified with
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Table 3.3: Degradation class assignment results for the classification model. The number
of instances listed is from the original catalogue.

Degradation Class # of Instances Diameter Range (km) Accuracy (%)
1 2009 8.7-425.4 75.6
2 463 9.7-156.7 65.5
3 507 9.8-112.6 50.7
4 36 10.1-31.8 96.8

reasonable accuracy of around 76%. For the two intermediate classes, the detection

accuracy is not as high, with class 3 having the lowest accuracy at around 51%.

Interestingly enough, by separating the confusion matrix (shown in Table 3.4) into two

halves for the predicted class (the halves can be though to represent two broad classes -

‘degraded’ and ‘well-preserved’), the total error is greatly reduced. Classes 1 and 2 have

many false classifications that are in class 2 or 1, respectively. Similarly, classes 3 and 4

tend to have the highest number of errors within them as well.

Table 3.4: Confusion matrix for the degradation class assessment.

Predicted Class
1 2 3 4 Total

1 1518 469 21 1 2009
2 92 304 54 13 463
3 16 82 257 152 507
4 0 0 1 35 36

Reference
(Catalog)
Class

Total 1626 855 333 201

3.3.2 Interior Morphology Model

In addition to crater degradation state, Robbins’ catalogue also includes information on

the morphology of the craters, including their interiors, ejecta (if present), and other

features. This extra information was used to try and build a similar model for some
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interior morphologic phenomena including central peaks, central and summit pits, and

flat floors.

Table 3.5: Interior morphology assignment results for the classification model. The
number of instances listed is from the original catalogue. CpxUnc is unclassified, CpxCpk
is central peak, CpxCpt is central pit, CpxFF is flat-floored, and CpxSuPt is summit pit.

Interior Morphology # of Instances Diameter Range (km) Accuracy (%)
CpxUnc 684 9.0 - 182.5 51.8
CpxCPk 214 9.6 - 112.6 35.0
CpxCPt 182 10.0 - 177.5 59.3
CpxFF 1859 8.7 - 425.4 40.0

CpxSuPt 76 10.2 - 65.8 80.2

The overall accuracy of the interior morphology classifier with M = 16 was 44.5%.

This is significantly lower than the degradation classifier. Once again, there is variation

within the different classes. The summit pit class had a significantly higher accuracy

(∼80%) when compared against the other four classes. Most other accuracies are spread

between 35% and 60%. The central pit and unclassified classes were higher than the

central peak and flat floor classes.

Table 3.6: Confusion matrix for the interior morphology class assessment.

Predicted Class
CpxUnc CpxCPk CpxCPt CpxFF CpxSuPt Total

CpxUnc 354 78 67 157 28 684
CpxCPk 26 75 33 13 67 214
CpxCPt 7 25 108 5 37 182
CpxFF 572 289 159 743 96 1859

Reference
(Catalog)
Class

CpxSuPt 0 11 3 1 61 76
Total 959 478 370 919 289

The confusion matrix for the morphology classifier, shown in Table 3.6, generally

depicts a lack of consistency in identifying morphology types. Other than the summit pit

craters (whose classification performance will be discussed in Section 3.4), there seems
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to also be a trend in confusion between unclassified and flat-floored craters, as well as

central peak and summit pit craters.

3.4 Discussion

This system was designed to use Chebyshev coefficients from a polynomial

approximation as quantitative discriminators for classification models. These models

were used to assign both a crater degradation classification which quantified the

preservation state of the crater, as well as describe any features that exist interior to

the crater. There was a very notable difference in the performance of this system in

performing the two classifications. Some reasons for this will be described in this

section. In addition, we discuss the crater profile extraction methodology.

3.4.1 Efficiency of Crater Profile Extraction

The method described in Section 3.2.3 was created as an efficient means for extracting

and approximating crater profiles. This process, written in MATLAB, can be found in

Appendix A. The process was capable of generating a set of crater profiles in orders of

magnitude less time than would be possible with manual collection. There are,

however, a few elements of this process that are worth mentioning, as they have an

effect on the resulting crater profile. The first pertains to how the profiles are

generated. To identify the line of greatest gradient, a circle consisting of one hundred

points is generated around the crater centroid. The opposing point pairs are used to
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identify slopes, with the greatest being picked. Since the points are separated by the

same angular distance ( π
50

), the spacing between points changes as a function of the

crater radius. This creates an inconsistency identifying the line of greatest slope when

scaling crater size, which is likely to affect the standardized nature of such a method.

By choosing only the line associated with the greatest external surface gradient, we

also neglect information provided by the asymmetry of profiles selected in different

directions. Sometimes, asymmetry in a single-line profile can be useful for assessing

degradation (for example, if one section of rim is mantled by lava) but it is more likely

that we are losing more than gaining. It would thus be desirable going forward to

devise a standardized method for considering or amalgamating crater profiles in many

directions. This could include averaging a second profile that is orthogonal to the

direction of the one already chosen based on gradient. A more comprehensive system

might average a large number of profiles, drawn at even angular separations. Whichever

method is chosen would need to maintain a standardized approach.

The order of approximation for the Chebyshev polynomial fit plays a significant role

in the process. As with other polynomial expansions (or Fourier expansions), higher

degree terms correspond to high-frequency components in the reconstructed profile. For

an impact crater, this would correspond to sharp changes in topography such as a rim,

or terracing inside the crater. As mentioned previously, an order of approximation

M = 16 was chosen as previous work has shown it to be sufficient in reproducing crater

topography while minimizing reconstruction error (differences in the true crater profile
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shape and the reconstructed shape). While this may have been sufficient for a

degradation classification system, the high-frequency components are necessary for

determining internal morphology. Computational efficiency must also considered when

choosing the reconstruction order. The polynomial fitting function has O(n(log n)2)

complexity. If we were to double the reconstruction order from 16 to 32, this would

result in over triple the runtime. For large crater catalogues, consideration of this

choice is necessary.

3.4.2 Degradation Classification Performance

This project demonstrated that Chebyshev polynomial coefficients can be used to

quantitatively assess crater degradation states on large scales in an efficient manner.

However, the results were not perfect in an absolute nor internally consistent sense.

The primary problem pertains to a difference in accuracy based on degradation class.

Table 3.4 identifies a trend in terms of misclassified craters. Classes 1 and 2 share most

misclassifications within themselves, and the same applies with classes 3 and 4. It may

therefore be useful at this approximation order to reduce the four classes into two by

combination, considering the new classes as ‘degraded’ and ‘well-preserved’. This would

improve the accuracies of those two classes to 96.4% and 82.0% respectively. Merging

together just classes 2 and 3 into a ‘moderately preserved/degraded’ class would result

in a new accuracy of 71.8%, so that no class would have an accuracy below 70%. These

results are shown in Table 3.7. It can be reasoned that the number of discrete

degradation classes that can accurately be resolved is a function of the approximation
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order.

Table 3.7: Degradation classification results for class combinations. The original 4 class
results are listed, as well as the 3 class (degraded, moderately preserved/degraded, well
preserved) and 2 class combination (degraded, preserved).

Number of Classes Description Average Accuracy (%)
4 classes 1,2,3,4 72.2
3 classes 1,2+3,4 81.4
2 classes 1+2,3+4 89.2

Inspection of the results reveals a few trends related to crater misclassification. For

craters that were catalogued as being in class 3 (lightly degraded), but ended up being

classified as classes 1 or 2, it seems that pre-impact local topography plays a role in

confusing the model. Craters with a highly-significant pre-impact slope were often

classified one or two classes below their assigned value. Additionally, newer craters that

formed in the ejecta blankets of much larger craters were also subject to this effect.

Examples of both cases are shown in Figures 3.8 and 3.9, respectively.

Section 3.4.1 discusses that higher-ordered coefficients are related to

higher-frequency spatial information. The crater degradation processes that area active

in this region, described in Section 3.1.1, tend to subdue sharp features and flatten the

crater interior. These processes emphasize low spatial frequency components over time.

This may explain the system’s advantage in identifying degraded craters more

accurately than pristine craters (on the whole).

The unusually high detection accuracy for class 4 (pristine) craters is likely a mixture
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Figure 3.8: (a) A THEMIS image of a 14 km crater, catalogued as degradation class 3
but misclassified as class 1. (b) The 2-D profile and Chebyshev reconstruction of the
crater, showing a significant pre-impact slope.

Figure 3.9: (a) A THEMIS image of a 13 km crater, catalogued as degradation class
3 but misclassified as class 1. This crater is in the ejecta blanket of Cerulli, a 130 km
diameter crater to the north. (b) The 2-D profile and Chebyshev reconstruction of the
crater, showing a good reconstruction despite misclassification.

of purity in cataloguing and an ‘artefact’ of the machine learning process. Even with

large study areas such as the one chosen in this project, there are not many craters that
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are assigned with a pristine designation. This results in nearly-exhaustive sampling of

these craters in the training set. The training set is then perfectly representative of the

population on the whole, which returns a high accuracy. However, strict uniformity in

assigning craters as ‘pristine’ results in a very reliable crater set, which in theory should

result in a set of discrimination attributes with minimum variation.

3.4.3 Interior Morphology Classification Performance

Assessment and classification of interior crater morphology is a task that should be

feasible through the application of an automated method. This project attempted to

assign a morphology label to crater candidates using the first 17 Chebyshev coefficients

and combinations of the coefficients that represent the crater’s shape. The results

shown in Tables 3.5 and 3.6 show relatively weak performance with identifying crater

morphologies. This is for some features likely related to the approximation order.

Choosing an order of M = 16 does not sufficiently reproduce some of the features, like

the central pit. This is represented in Figure 3.10.

This case is likely to explain misclassified instances of summit pits as central peaks

as well. Summit pit features, being a special case for central peak craters, are not being

fully resolved. Smoothing out the summit pit, but keeping lower frequency spatial

information, would cause the crater to resemble a central peak crater. However, this

effect should not be the case for flat-floored crater misclassifications, since they are low

frequency features. Therefore, we can look to the coefficients as culprits. It is likely
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Figure 3.10: (a) A THEMIS image of a 20 km diameter crater with a central pit, located
at 30.35◦N, 18.60◦E. The pit is visible in the crater center. (b) The extracted topographic
profile (blue line) and reconstructed Chebyshev approximation (red dashed line). The
central pit, noticeable as the dip in the elevation profile, is distinctly missing from the
approximation.

that to describe some of these features, it is necessary to define some new coefficient

combinations that better represent some of these features. This, in addition to more

robust profile collection which was previously described, is likely to improve the

accuracy of the results.

Certain processes that significantly affect the craters were cause for misclassification

as well. For example, the presence of a nearby crater that formed later and caused

infilling of ejecta affected the classification results. Shown in Figure 3.12, a heavily

degraded crater was misclassified as a result of a nearby, more recent impact. This

crater, given a flat floor designation in the catalogue, has had a large portion of its flat

floor mantled by the ejecta of a nearby crater that impacted its rim. This ejecta has a
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Figure 3.11: (a) A THEMIS image of a 21 km diameter crater with a central peak,
located at 22.09◦N, 8.71◦E. The peak is visible in the crater center. (b) The extracted
topographic profile (blue line) and reconstructed Chebyshev approximation (red dashed
line). This crater, listed in the source catalogue as unclassified (CpxUnc), exhibits a
strong central uplift signature with a small summit pit when viewed as a 2D profile.

rougher topographic signature than the smooth flat floor. When examining the profile

in Figure 3.12(b), we see the interior of the crater is rough, caused by the overlying

ejecta. The rim of the newer crater is also included in the profile, causing a sharp peak

around Rscaled = −0.9. This resulted in an ‘unclassified’ designation from the model.

Potential catalogued misclassifications are also likely responsible for some confusion in

creating an accurate classification model. This is not necessarily the fault of the expert

analysts; the set of possible crater morphologies is very large and there can be some

ambiguity in assigning a class. An example of this is shown in Figure 3.11. Here, we have

a degraded crater with multiple superposed impacts on its rim. This crater, originally

given an unclassified designation, shows a strong central peak signature, especially when
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Figure 3.12: (a) A THEMIS image of a heavily degraded 42 km crater located at 18.95◦N,
20.81◦E, catalogued as CpxFF (flat floor) but given an ‘unclassified’ designation by the
model. The south-west rim of the crater is superposed by a very pristine 11 km crater.
(b) The 2-D profile and Chebyshev reconstruction of the crater, showing a rough interior
topography.

viewed as a linear elevation profile. These instances, which may be incorrectly labelled in

the catalogue, affect the purity of the training set and reduce the accuracy of the model.

3.5 Conclusion

The current state of crater degradation state classification is dominated by the manual

process of human experts assigning class values using a variety of datasets. The

subjectivity introduced by an expert’s scrutiny can also incorporate inconsistency to the

classification process. In addition, manual classification is tremendously time-inefficient.

As new datasets are generated for other planetary bodies, a standardized and

automated method for classifying crater morphology would become quite useful. This

project applied an automated crater topography extraction and modelling process to
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the problem of crater degradation assessment. The conclusions of this work include:

1. Polynomial reconstructions of crater topography can be efficiently extracted from

topographic datasets in a standardized fashion.

2. Automated crater characterization systems can use the breadth and scope of

existing crater catalogues to improve and assess their accuracy.

3. Using a Chebyshev polynomial expansion of order M = 16, craters can be divided

into three classes ‘pristine’, ‘moderately preserved/degraded’, and ‘heavily

degraded’ with accuracies of over 70% and as high as 96% if using a 2-class split.

4. Accurate description of crater interior morphology using the same method is not

achievable at the same order, and requires polynomial approximation of a higher

order to represent fine spatial detail with high fidelity.

5. Further refinement of standardized crater profile definition, as well as shape

descriptors, is necessary for a more accurate automated classifier.

Expert assessment of crater degradation is not a process that relies solely on

topography information. As such, it is believed that a more complete system could be

developed that fuses multiple datasets together. This system would assign a

preservation state based not only on topography, but perhaps using optical and thermal

information as well. These more complete systems will improve the output from

machine learning tools, and provide for a more robust system. Ultimately, the results

will help researchers who are interested in extracting a specific class of craters, as they
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seek to build more accurate models of crater modification and the surface processes

that cause it.
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Chapter 4

Conclusions

4.1 Major Findings

This project sought to apply automated image processing methods to the study of

impact craters and their bulk morphological characteristics for the Moon and Mars.

This first study (Chapter 2) analysed how varying lunar terrain types affects the results

of bulk crater detection and measurement, building from previous work and recently

developed tools (Bue & Stepinski, 2007; Stepinski, Mendenhall, & Bue, 2009; Yin, Xu,

Li, & Liu, 2013; Salamunićcar & Lončarić, 2008). The second (Chapter 3) developed

the first fully-automated quantitative crater degradation classifier and applied it to

martian complex craters. This system used polynomial approximations to model crater

topographic profiles, and built a classification model using the coefficients of this

approximation and expert-assigned degradation classes as a training set. This project

drew from a large body of work on crater cataloguing, topographic analysis and

degradation state classification (Robbins & Hynek, 2012; Barlow, 1988, 1995; Mahanti,

113
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Robinson, Humm, & Stopar, 2014). Both projects seek to further the use of automated

and quantitative methods for common processes in planetary science studies.

The major findings from the projects are as follows:

1. Automated systems that use topographic data to detect and measure craters are

affected both in detection efficiency and measurement accuracy by the type of

surface unit to which they are applied. Understanding surface type variation

dependency is necessary for interpreting the integrity of the detection results.

2. Bulk impact crater statistics (such as morphometry) collected through automated

means will be composed of a mixture of true population values, inherent detection

biases and systematic measurement errors.

3. Despite these variations in robustness, automated collection of crater statistics can

provide valuable information on crater populations, and the results can be used to

inform models of crater scaling laws and ejecta emplacement.

4. Polynomial approximations of 2-D crater topographic profiles can be used to build

an automated, objective crater degradation classifier.

5. Automated systems can be trained and guided by catalogues and other databases

of expert-assigned crater descriptors.

6. Until more complete and robust systems for the automated detection and

characterization of craters are developed, a semi-autonomous approach to image

processing and analysis in planetary science remains the optimal approach.
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4.2 Motivation for Automated Planetary Image

Processing

The two papers contained in this work are fundamentally linked by their application of

the concept of ‘automation’ to orbital data for planetary bodies. Automation of image

processing tasks has not been restricted to orbital imagery, as work has been done for

decision-making autonomy for landed assets such as rovers (Francis, 2014). In addition

to building complicated image correction procedures (Chien & Mortensen, 1996), the

automation of some analytical tasks in planetary science such as feature identification,

measurement, annotation, or classification provides some important benefits. These

include:

1. Efficiency - Digital image processing techniques can perform many tasks in rapid

sequential order through batch processing

2. Standardization - Automated systems rely on a set of hard-wired rules for operating,

and are thus not subject to the inconsistencies that would arise from a human

analyst

3. Repeatability - Repeating the analysis using an automated method will yield

identical results

For crater counting and measurement, points 1 and 3 are the most applicable. Crater

densities become high as crater size decreases or count area increases, and thus the time

required to perform a manual count also drastically increases. Also, craters could be
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measured in an imprecise fashion or missed altogether when identified manually. The

second point is most applicable to automated classification of crater degradation. While

a manual crater degradation assessment can integrate information from different data

sets that current automated processes cannot, it is also prone to inconsistencies that

arise from different analysts performing the classification. An automated process relying

entirely on consistently-extracted quantitative image information would resolve this issue.

4.3 Future Work

The last major finding enumerated in Section 4.1 posits that semi-autonomous

approaches to image analysis in planetary science are the best analytical approach at

the moment. This statement should not be interpreted as capitulation of the pursuit of

full autonomy. Autonomous approaches suffer from inherent biases related to their

particular approach; this often results in some form of dependence on the subject area,

data type, or operating scale. Careful study of these biases can be used to improve

autonomous systems that are used for many different tasks. Some potential future

applications of the previously described work would be to expand the systems to other

bodies. For example, it would be valuable to develop crater detection and

characterization systems that work for icy satellites, in addition to terrestrial bodies.

Developing more complete systems by integrating data fusion methods could also

greatly increase their accuracy and scope.

One of the most valuable returns from using autonomous approaches is the
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standardization and objectivity that they provide. Looking forward, it will be necessary

when refining older methods or defining new approaches to carefully describe a

standardized methodology for whichever task is being automated. By starting with

simpler tasks such as data processing and handling, autonomy can be scaled up to more

complex tasks. Eventually, machine learning and autonomy could be applied to all

stages of the scientific method, from hypothesis formulation to experimentation and

modelling (Mjolsness & DeCoste, 2001).

The continued cadence of robotic space exploration has begun a new age of solar

system science, where tremendous amounts of data are being generated and returned to

Earth every day. This wealth of data provides an opportunity for developing automated

methods and systems that can be used going forward to increase both the efficiency

of data analysis and science return. Although contemporary applications are relatively

humble, further development could lead to a future where fully autonomous systems

become the primary agents of exploration, engaging in the study of phenomena around

the solar system and rapidly accelerating our understanding of the forces that shape our

cosmic neighbourhood.
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Appendix A

MATLAB Algorithms and Decision
Trees

Mare Serenitatis Decision Tree

1 c o p y f i l e ( ’ f u l l s e r e n . dat ’ , ’ f u l l s e r e n p r u n e . dat ’ )
2 ca ta l og = ’ f u l l s e r e n p r u n e . dat ’ ;
3 cat = csvread ( ca ta l og ) ;
4

5 f o r i = 1 : s i z e ( cat , 1 ) ;
6 i f cat ( i , 3 ) > 0 .087524 ,
7 cat ( i , 6 ) = 2 ;
8 e l s e
9 i f cat ( i , 3 ) <= 0.023431 ,

10 cat ( i , 6 ) = 1 ;
11 e l s e
12 i f cat ( i , 1 ) > 1511 .930804 ,
13 cat ( i , 6 ) = 1 ;
14 e l s e
15 i f cat ( i , 3 ) > 0 .035994 ,
16 cat ( i , 6 ) = 2 ;
17 e l s e
18 i f cat ( i , 4 ) > 0 .066479 ,
19 cat ( i , 6 ) = 2 ;
20 e l s e
21 cat ( i , 6 ) = 1 ;
22 end
23 end
24 end
25 end
26 end
27 end
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28

29 dlmwrite ( ’ f u l l s e r e n p r u n e . dat ’ , cat , ’ d e l i m i t e r ’ , ’ , ’ , ’ p r e c i s i o n ’
, 16)

Orientale Ejecta Decision Tree

1 c o p y f i l e ( ’ f u l l o r i e n t . dat ’ , ’ f u l l o r i e n t p r u n e . dat ’ )
2 ca ta l og = ’ f u l l o r i e n t p r u n e . dat ’ ;
3 cat = csvread ( ca ta l og ) ;
4

5

6 f o r i = 1 : s i z e ( cat , 1 ) ;
7 i f cat ( i , 3 ) > 0 .113858 ,
8 i f cat ( i , 4 ) > 0 .066541 ,
9 cat ( i , 6 ) = 1 ;

10 e l s e
11 cat ( i , 6 ) = 2 ;
12 end
13 e l s e
14 i f cat ( i , 2 ) <= 85 ,
15 i f cat ( i , 3 ) > 0 .064734 ,
16 cat ( i , 6 ) = 2 ;
17 e l s e
18 cat ( i , 6 ) = 1 ;
19 end
20 e l s e
21 i f cat ( i , 1 ) < 8385 .661148 ,
22 cat ( i , 6 ) = 1 ;
23 e l s e
24 i f cat ( i , 1 ) > 11066.868596 ,
25 cat ( i , 6 ) = 1 ;
26 e l s e
27 cat ( i , 6 ) = 2 ;
28 end
29 end
30 end
31 end
32 end
33

34 dlmwrite ( ’ f u l l o r i e n t p r u n e . dat ’ , cat , ’ d e l i m i t e r ’ , ’ , ’ , ’ p r e c i s i o n
’ , 16)

Southern Highlands Decision Tree

1 c o p y f i l e ( ’ f u l l h i g h l a n d . dat ’ , ’ f u l l h i g h l a n d p r u n e . dat ’ )
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2 ca ta l og = ’ f u l l h i g h l a n d p r u n e . dat ’ ;
3 cat = csvread ( ca ta l og ) ;
4

5

6 f o r i = 1 : s i z e ( cat , 1 ) ;
7 i f cat ( i , 3 ) <= 0.077041 ,
8 i f cat ( i , 3 ) <= 0.031953 ,
9 cat ( i , 6 ) = 1 ;

10 e l s e
11 i f cat ( i , 2 ) <= 78 ,
12 cat ( i , 6 ) = 2 ;
13 e l s e
14 cat ( i , 6 ) = 1 ;
15 end
16 end
17 e l s e
18 i f cat ( i , 5 ) <= 0.022989 ,
19 cat ( i , 6 ) = 2 ;
20 e l s e
21 i f cat ( i , 1 ) <= 2420.103697 ,
22 cat ( i , 6 ) = 2 ;
23 e l s e
24 i f cat ( i , 5 ) > 0 .061309 ,
25 cat ( i , 6 ) = 1 ;
26 e l s e
27 i f cat ( i , 5 ) > 0 .028318 ,
28 cat ( i , 6 ) = 2 ;
29 e l s e
30 cat ( i , 6 ) = 1 ;
31 end
32 end
33 end
34 end
35 end
36 end
37

38

39

40 dlmwrite ( ’ f u l l h i g h l a n d p r u n e . dat ’ , cat , ’ d e l i m i t e r ’ , ’ , ’ , ’
p r e c i s i o n ’ , 16)



Appendix B

Crater Degradation Classification

Crater Profile Extraction and Chebyshev Fitting

1 %{
2 This rout ine , when given a DTM and ca ta l og o f c r a t e r cand idate s

in the format {ID , x c , y c , r , depth} i s des igned to
automat i ca l l y ex t r a c t the c r a t e r s 2−D topo p r o f i l e and
perform a Chebyshev polynomial r e c o n s t r u c t i o n o f the p r o f i l e .

I t i d e n t i f i e s the l i n e o f g r e a t e s t g rad i en t going through
the cente r o f the c r a t e r to a r a d i a l d i s t anc e o f 2R ( t o t a l
l i n e l ength 4R) .

3

4 This so f tware uses two e x t e r n a l f u n c t i o n s : Bresenham ’ s l i n e
a lgor i thm ( by Aaron Wetzler ) and and over loaded P o l y f i t
f unc t i on from the Chebfun package ( Oxford/Chebfun Developers )
.

5

6 Written by Ian Pritchard , 2016 .
7 %}
8 %% Read in the cata log , DTM, and i n i t i a l i z e v a r i a b l e s
9

10

11 cat = dlmread ( ’ a r a b i a c a t a l o g . txt ’ , ’ , ’ , 1 , 0 ) ;
12 fu l ld tm = dlmread ( ’ arabia dtm . txt ’ , ’ ’ , 6 , 0 ) ;
13 r e s = 0 . 4 6 3 ;
14 c i r c s = c e l l (1 , s i z e ( cat , 1 ) ) ;
15

16 %% Calcu la te a l l per imeter po in t s f o r each c r a t e r
17 f o r row = 1 : s i z e ( cat , 1 )
18 r = cat ( row , 4 ) / r e s ;
19 x c = cat ( row , 3 ) ;
20 y c = cat ( row , 2 ) ;
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21 c i r c p o i n t s = [ ] ;
22 f o r th = 0 : p i /50 : (2∗ pi−(p i /50) )
23 xunit = 2∗ r ∗ cos ( th ) + x c ;
24 yunit = 2∗ r ∗ s i n ( th ) + y c ;
25 c i r c p o i n t s = [ c i r c p o i n t s ; xunit yunit ] ;
26 c i r c p o i n t s = round ( c i r c p o i n t s ) ;
27 hold on
28 p lo t ( yunit , xunit ) ;
29 s e t ( gca , ’ x a x i s l o c a t i o n ’ , ’ top ’ , ’ y a x i s l o c a t i o n ’ , ’ l e f t ’ , ’

xd i r ’ , ’ normal ’ , ’ yd i r ’ , ’ r e v e r s e ’ )
30 end
31 c i r c s {1 , row} = c i r c p o i n t s ;
32 end
33

34 %% Calcu la te h i ghe s t g rad i en t po int p a i r s
35

36 s l o p e s = c e l l (1 , s i z e ( cat , 1 ) ) ;
37 maxindices = ze ro s (1 , s i z e ( cat , 1 ) ) ;
38 l i n e p a i r s = c e l l (1 , s i z e ( cat , 1 ) ) ;
39

40 f o r j = 1 : l ength ( c i r c s )
41 p o i n t p a i r s = c i r c s { j } ;
42 p o i n t p a i r s = round ( p o i n t p a i r s ) ;
43 s l ope = ze ro s (50 ,1 ) ;
44 f o r k = 1 : ( l ength ( p o i n t p a i r s )−50)
45 e l ev1 = fu l ld tm ( p o i n t p a i r s (k , 1 ) , p o i n t p a i r s (k , 2 ) ) ;
46 e l ev2 = fu l ld tm ( p o i n t p a i r s ( k+50 ,1) , p o i n t p a i r s ( k+50 ,2) ) ;
47 s l ope (k , 1 ) = abs ( ( e l ev2 − e l ev1 ) / ( s q r t ( ( ( p o i n t p a i r s ( k

+50 ,1)−p o i n t p a i r s (k , 1 ) ) ˆ2) +(( p o i n t p a i r s ( k+50 ,2)−
p o i n t p a i r s (k , 2 ) ) ˆ2) )∗ r e s ) ) ;

48 s l o p e s {1 , j } = s lope ;
49 end
50 [ s t e epe s t , ind ] = max( s l ope ) ;
51 maxindices (1 , j ) = ind ;
52 p o i n t l i s t = c i r c s {1 , j } ;
53 maxpts = p o i n t l i s t ( maxindices (1 , j ) , : ) ;
54 maxpts = [ maxpts ; p o i n t l i s t ( maxindices (1 , j ) +50 , : ) ] ;
55 l i n e p a i r s {1 , j } = maxpts ;
56 end
57

58 %% Use maximum i n d i c e s to bu i ld l i n e with Bresenham ’ s a lgor i thm .
59 l i n e p o i n t s = {} ;
60

61 f o r n = 1 : l ength ( l i n e p a i r s )
62 maxpts2 = l i n e p a i r s {1 ,n } ;
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63 [ x , y ] = bresenham ( maxpts2 (1 , 1 ) , maxpts2 (1 , 2 ) , maxpts2 (2 , 1 ) ,
maxpts2 (2 , 2 ) ) ;

64 map = p lo t (y , x , ’ or ’ ) ;
65 l i n e p o i n t s {1 ,n} = [ x , y ] ;
66 end
67 saveas (map , ’ circmap . jpg ’ ) ;
68

69 hold o f f
70 %% Build 2−D p r o f i l e s us ing l i n e s , normal ize to between −1,1
71

72 p r o f i l e s = c e l l (1 , s i z e ( cat , 1 ) ) ;
73 c o e f f s = ze ro s (1 , 17 ) ;
74 c o e f f s l i s t = [ ] ;
75

76 f o r c ra t = 1 : l ength ( l i n e p o i n t s )
77 p r o f i l e p t s = l i n e p o i n t s {1 , c r a t } ;
78 f o r i = 1 : l ength ( p r o f i l e p t s ) ;
79 p r o f i l e p t s ( i , 3 ) = (−1+( i −1)∗2/( s i z e ( p r o f i l e p t s , 1 )−1) ) ;
80 p r o f i l e p t s ( i , 4 ) = fu l ld tm ( p r o f i l e p t s ( i , 1 ) , p r o f i l e p t s ( i

, 2 ) ) ;
81 end
82 p r o f i l e s {1 , c r a t } = p r o f i l e p t s ;
83 f i g u r e ( ’ v i s i b l e ’ , ’ o f f ’ )
84 t o p o l i n e = p lo t ( p r o f i l e p t s ( : , 3 ) , p r o f i l e p t s ( : , 4 ) , ’ LineWidth ’

, 2 ) ;
85 hold on
86 %% Cheb f i t t i ng
87 p r o f i l e p t s = p r o f i l e s {1 , c r a t } ;
88 f = p o l y f i t ( p r o f i l e p t s ( : , 3 ) , p r o f i l e p t s ( : , 4 ) ,16 , domain (−1 ,1) )

;
89 c h e b f i t p l o t = p lo t ( f , ’−−r ’ , ’ LineWidth ’ , 2 ) ;
90 x l a b e l ( ’ Sca led Radial Distance ’ , ’ FontSize ’ , 16)
91 y l a b e l ( ’ E levat ion (m) ’ , ’ FontSize ’ ,18)
92 l egend ({ ’ E l evat ion P r o f i l e ’ , ’ Chebyshev Approximation ’ } , ’

FontSize ’ ,14 , ’ Locat ion ’ , ’ no r theas t ’ )
93 saveas ( c h e b f i t p l o t , [ num2str ( cat ( crat , 1 ) ) ’ . jpg ’ ] ) ;
94 hold o f f
95 c o e f f s = c h e b c o e f f s ( f ) ;
96 c o e f f s = c o e f f s ’ ;
97 c o e f f s = [ cat ( crat , 1 ) c o e f f s ] ;
98 c o e f f s l i s t = [ c o e f f s l i s t ; c o e f f s ] ;
99 end

100

101 dlmwrite ( ’ c h e b y s h e v c o e f f s . csv ’ , c o e f f s l i s t , ’ d e l i m i t e r ’ , ’ , ’ , ’
p r e c i s i o n ’ , 8 )
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List of Chebyshev Polynomials, M=8

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x
T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1
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