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Abstract

There are problems concerning the set of root of a sequence of polynomials. A simple question

is to ask if the set of roots lies entirely in real numbers. Many approaches to answering this

question are known. The main object of this dissertation is to develop new tools for tackling the

above problem. In order to be able to apply the ideas we define a specific numerical sequence,

and then we consider the sequence of their minimal polynomials over the rational numbers.

The first step is to find a recursive way of defining the sequence of polynomials by using

the so-called Bézout matrices, which are a specific family of matrix polynomials. Having the

construction of minimal polynomials as the determinant of some Bézout matrix, we interpret

the roots of each polynomial as eigenvalues of the corresponding Bézout matrix. Then by using

a symmetric linearization of such matrix polynomial we can talk about the real roots.

Keywords: Matrix Polynomials, Linearization, Bézout Matrix.
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4.6 Symmetric Linearization of the Bézout Matrix . . . . . . . . . . . . . . . . . . 50

5 Concluding Remarks 54

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Largest Root of {pi} . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Distribution of Zeros of {pi} . . . . . . . . . . . . . . . . . . . . . . . 55
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Chapter 1

Introduction

In this chapter we introduce a sequence of numbers that is given recursively. We briefly de-

scribe the origin of this sequence. In order to do so we need to look at an ordinary differential

equation which is derived from Torricelli’s law for the leaky bucket. Torricelli’s law is a model

in fluid dynamics which gives the relation between the speed of fluid (flowing out) to the height

of the fluid (above the drainage hole) in the bucket.

Assume that we have a cylindrical bucket which contains some fluid. If there is a hole in the

bottom of the bucket, eventually the bucket will run out of water. In [3] the authors commented

on using the following very well-known model:

dy
dt

= −
√

y (1.1)

where y = h
H , i.e. the ratio of height of fluid to height of bucket. The authors applied the

Euler forward method to solve the model equation. Before talking about the outcome of Euler

forward method, we just recall the method quickly.

Euler forward method is a method for solving ordinary differential equation. For an ordinary

differential equation given by

y′(t) = f (t, y(t))

1



2 Chapter 1. Introduction

Figure 1.1: Cylindrical bucket with a drainage hole

and the initial condition y(t0) = y0, the method gives an approximation of the solution at a given

point. Choosing a value 4t for the size of each step, one can write tn = t0 + n 4 t, then one step

of the Euler method from tn to tn + 1 is given by

yn+1 = yn + 4t f (tn, yn)

where yn approximates the solution of the equation at tn.

Now let us get back to the model (1.1). Using the Euler forward formula and letting the bucket

be full in the beginning (or equivalently y0 = 1), we get

yn+1 = yn − 4t
√

yn.

For 4t = 1, we get y1 = 0 which means the bucket empties in just one step. Assuming 4t = 1
2

one can see y1 = 1
2 and calculating y3 gives a negative number which leads to a complex value

for y4. It turns out that for almost all choices of 4t except one family, eventually yn < 4t2 for

some integer n and therefore yn+1 < 0 which gives a complex yn+2.

Now letting 4t = 2
1+
√

5
implies

y1 = y0 − 4t
√

y0 = 1 −
2

1 +
√

5
· 1 =

√
5 − 1

1 +
√

5
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y2 = y1 − 4t
√

y1 =

√
5 − 1

1 +
√

5
−

2

1 +
√

5

√ √
5 − 1

1 +
√

5
= 0

which means the bucket empties in two steps. Considering 4t = 2

1+

√
7+2
√

5
one can see

y1 = y0 − 4t
√

y0 = 1 −
2

1 +

√
7 + 2

√
5
.1 =

√
7 + 2

√
5 − 1√

7 + 2
√

5 + 1

and then

y2 = y1−4t
√

y1 =

√
7 + 2

√
5 − 1√

7 + 2
√

5 + 1
−

2

1 +

√
7 + 2

√
5

√√√√√√√ √
7 + 2

√
5 − 1√

7 + 2
√

5 + 1
= 4

(√
7 + 2

√
5 + 1

)−2

finally

y3 = y2 − 4t
√

y2 = 4
(√

7 + 2
√

5 + 1
)−2

−
2

1 +

√
7 + 2

√
5

√
4

(√
7 + 2

√
5 + 1

)−2

= 0

Now we define a sequence {ui}, as

u1 = 1

ui+1 = 2 + ui + 2
√

ui f or i ≥ 2

In [3] the authors showed that in fact the above experimental result holds for any n.

Theorem 1.0.1 [3] Assume 4t = 2
1+
√

un
, then the bucket will be empty in n steps.

Proof We have

yn+1 = yn − 4t
√

yn. (1.2)

Now assume yn = (4t)2 fn and 1 = y0 = (4t)2 f0.

Hence we get (4t) = 1√
f0
. Now we can reformulate equation (1.2) as

(4t)2 fn+1 = (4t)2 fn − (4t)
√

(4t)2 fn

=⇒ (4t)2 fn+1 = (4t)2 fn − (4t)2
√

fn

Since (4t) , 0 then

fn+1 = fn −
√

fn (1.3)
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solving equation 1.3 for fn one gets

fn =

1 +
√

1 + 4 fn+1

2

2

On the other hand, we have yn = 0 if and only if fn = 0. The goal here is to find 4t such that

yn+1 = 0 and yn , 0. Hence by putting fn+1 = 0 in 1.3 and calculating f0 recursively we can get

4t. For example if we want the bucket to empty in one step then f2 = 0 so

f1 =

1 +
√

1
2

2

f0 =

1 +

√
1 + 4(1+

√
1

2 )2

2


2

=

1 +
√

5
2

2

.

This implies 4t = 2
1+
√

5
.

Now let uk be the number appearing under the square root in corresponding 4t, when bucket is

going to be empty in k steps. In order to be able to find the similar number in the case bucket

gets empty in k + 1 steps, we write

f0 =


1 +

√
1 + 4

(1+
√

uk

2

)2

2


2

=


1 +

√
2 + uk + 2

√
uk

2


2

This completes the proof.

Table 1.1 shows 4t = 2
1+
√

un
for 3 ≤ n ≤ 8 which is calculated using the following Maple code

(notice that all computation is performed exactly, floating point is used only for display):

1 Rem_Amount:= proc(n)

2 local(i, k, t, x, y);

3 u || 1 := 1; #The symbol || means concatenation.

4 for k from 2 to n do

5 u || k := u || (k-1)+2+2*sqrt(u || (k-1));

6 od;

7 t := 2/(1+sqrt(u || n));

8 y := 1;
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9 for i from 1 to n do

10 x := simplify(y-t*sqrt(y));

11 y := x;

12 od;

13 print(evalf(t));

14 print(evalf(u || n));

15 y;

16 end proc:

n un 4t yn+1

3 11.47213595 0.4558867802 0

4 20.24624429 0.3636639572 0

5 31.24540965 0.3035012194 0

6 44.42492836 0.2609193850 0

7 59.75533396 0.2290909432 0

8 77.21564883 0.2043476280 0

Table 1.1: Values of yn+1 for different values of 4t

Above results motivated us to investigate more about the sequence of {ui}. As the first step,

we see some experiments that were done (using Maple and Sage). From the recursive formula

of the sequence, one can see the fact that each un is algebraic over rational numbers (see def-

inition 2.2.3). Our experiments give us the idea to find the sequence of minimal polynomials

of {ui} in a constructive way (see definition 2.2.4). We also noticed that all roots of minimal

polynomials are real.

The main purpose of the study is not so much the study of the properties of the {ui}, but rather

developing new tools and applying them: this sequence provides a convenient challenge to

develop recursively-constructed eigenvalue problems. We will learn facts about the sequence,

but more importantly, we will develop a new method for proving that all the roots of a family

of polynomials are real, namely the construction of symmetric Bézout matrix polynomials and

using a symmetric linearization of such matrix polynomials expressed in the Lagrange basis.
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One purpose of this thesis is to test the utility of the block symmetric linearization of matrix

polynomials expressed in a Lagrange basis [1]. This block symmetrization was only published

in 2009, and is as yet relatively unused; there is no application yet in the literature of which we

are aware.

One simple possibility is that a block symmetric linearization of a symmetric matrix poly-

nomial might allow easy deduction of definiteness, i.e. that all of the non-linear eigenvalues of

the matrix polynomial are positive (or non-negative). Definiteness of a matrix polynomial is

an important property for many purposes: see e.g. [16].

We show in this thesis that, yes, the new block symmetric linearization can be helpful to de-

cide definiteness. Specifically, we look at a new recursively defined family of polynomials that

arises from a non-linear recurrence relation that generates a sequence containing nested square

roots, and show that they are all positive definite by using the aforementioned linearization.

Sequences of nested square roots have been of interest since Viéte (also known by the La-

tinized form Vieta) gave the formula (in 1593)

2
π

=

√
2

2
·

√
2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· · · .

Perhaps surprisingly, such sequences are still generating new research results. See for in-

stance [13], [17] and [14].

This thesis proves that a certain sequence of polynomials that define the sequence of nested

square roots described in section 4.1 and section 4.4 is positive definite, thus demonstrating the

utility of the block symmetric linearization.

This thesis is structured as follows: chapter 2 is devoted to the basic notions of field theory

which provides the tools for our calculations. In chapter 3, we provide information about

matrix polynomials and the Bézout matrix. We also define the resultant and its applications
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to solving bivariate system of equations. In the last chapter the main results are presented,

namely finding a boundary of {ui}, minimal polynomials of {ui}, roots of minimal polynomials

and finally symmetric linearization of the Bézout matrix.



Chapter 2

Preliminaries

In this chapter we provide the preliminary definitions that will be needed in future chapters.

Here we just take a basic knowledge of ring theory and linear algebra for granted and invite the

reader to see [7] and [6] if needed.

The material in this chapter is organized such that the first two sections give general infor-

mation and definitions for Galois theory and the last two sections provide information for roots

of a family of polynomials and some algorithms to find them.

2.1 Basic Definitions

We recall that a field is commutative ring with identity with the property that every non zero

element has a multiplicative inverse.

Throughout the thesis, we denote the fields of rational numbers, real numbers and complex

numbers (resp.) by Q, R and C.

Theorem 2.1.1 If p is a prime, then the ring Zp is a field which is finite.

Example 2.1.1 Assume K is a field and x is an indeterminate. The rational function field of

the polynomial ring K[x], is denoted by K(x) and consists of all f (x)/g(x) such that g(x) , 0

and f (x), g(x) ∈ K[x].

8
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In general for a given polynomial p(x) ∈ F(x), where F is a field, it is not always the case

that all roots of p(x) lie in F. In order to study the roots of p(x) we need to find a field such

that it contains the roots. To see this better, we note that the roots of x2 − 2 ∈ Q(x) are ±
√

2

which are not rational numbers. However, there exists a field such that it contains both roots

and Q. The smallest field with this property is denoted by Q(
√

2). One can extend this idea to

the following definition.

Definition 2.1.1 Let F be a field and K be another field such that F ⊆ K. Let A be a subset

of K. Then the smallest subfield (with respect to inclusion) of K containing A and F, which is

the intersection of all subfields containing A and F, is denoted by F(A) and is called the field

generated by F and A. If A = {a1, · · · , an} be a finite set we denote F(A) by F(a1, · · · , an) and

call it finitely generated. Moreover if A = {a} we write F(a) instead of F(A) and we call it a

simple extension of F.

The above definition does not give F(a) concretely. There is a concrete description of F(A)

in general. We describe the idea for A = {a} and we mention that a similar argument can be

applied to any finite A ⊆ K case. We claim that

F(a) = {
f (a)
g(a)

: f (x), g(x) ∈ F[x], g(a) , 0}.

We note that F(a) is indeed the quotient field of F[a]. So it is enough to show that

F[a] = { f (a) : f (x) ∈ F[x]}.

In order to do so we define ϕa : F[x] −→ K such that ϕa( f (x)) = f (a). One can verify that ϕ

is indeed a ring homomorphism which is called the evaluation homomorphism at a. It is clear

that Im(ϕa) = { f (a) : f (x) ∈ F[x]} and hence it is a subring of K. Obviously if R ⊆ K be a

subring which contains F and a, then it contains f (a). Therefore we can see that any subring

of K which has F and a inside, should contain { f (a) : f (x) ∈ F[x]}. So

F[a] = { f (a) : f (x) ∈ F[x]}.

Since F(a) is the quotient field of f [a], we have proved our claim.



10 Chapter 2. Preliminaries

Theorem 2.1.2 Let F and K be fields, K ⊆ F and {a1, · · · , an} ⊆ F, then

K[a1, · · · , an] = { f (a1, · · · , an) : f ∈ F[x1, · · · , xn]}

and

K(a1, · · · , an) = {
f (a1, · · · , an)
g(a1, · · · , an)

: f , g ∈ F[x1, · · · , xn], g , 0}

2.2 Minimal Polynomials and Algebraic Extensions

We begin this section by providing the definition of field extensions and then we look at a

specific family of field extensions which is called algebraic extensions.

Definition 2.2.1 If K ⊆ F are fields, we say F is a field extension of K. We denote the extension

by F/K and we call K the base field.

It is well known that any field F is a vector space over any subfield of itself. So the following

definition will work.

Definition 2.2.2 If F/K is a field extension, then we call dimK(F) (as vector space), the degree

of the extension and we denote it by [F : K]. F is called a finite extension if the degree of F

over K is finite, otherwise it is called an infinite extension.

In this section we are interested in those extensions F/K for which any a ∈ F satisfies a

polynomial in K[x], i.e. there exists a polynomial f (x) ∈ K[x] such that f (a) = 0. In order to

understand these extensions better, we need some more formal definitions.

Definition 2.2.3 Assume K/F is a field extension and a ∈ F. We say a is algebraic over K if

there exists a polynomial in K[x] that satisfies at a. If a is not algebraic over K, it is called

transcendental over K. Moreover, if every element of F is algebraic over K, we say F is an

algebraic extension of K and F/K is said to be an algebraic extension.

If a ∈ F is algebraic over K, it satisfies a polynomial over K, but it is not necessarily the

smallest (with respect to degree) polynomial with such a property.
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Definition 2.2.4 Assume a is an algebraic element over K. The minimal polynomial of a over

K is the monic polynomial with smallest degree in K[x] that satisfies at a.

Example 2.2.1 It is clear that
√

2 satisfies x4 − 4 ∈ Q[x], so it is algebraic over Q. However,

x4 − 4 is not the minimal polynomial of
√

2 since it satisfies x2 − 2 which is of least degree (it

is irreducible over Q). As another example, i =
√
−1 is algebraic over Q with the minimal

polynomial, x2 + 1. On the other hand i is algebraic over C with minimal polynomial, x − i.

Example 2.2.2 It is not trivial that e is transcendental over Q. The first proof was given by

Hermite in 1873. In 1882, Lindemann showed that π is transcendental over Q. One can find

proofs for both cases in [12].

Theorem 2.2.1 [12] Let K/F be a field extension and α ∈ K be algebraic over F. Then

1. The minimal polynomial of α over F is irreducible over F.

2. If f (x), g(x) ∈ F[x], such that f (x) be the minimal polynomial of α over F, then g(α) = 0

if and only if f (x) divides g(x).

3. If the degree of minimal polynomial of α over F is n, then {1, α, α2, · · · , αn−1} is a basis

for F(α) over F . Hence [F(α) : F] = deg(p) where p is the minimal polynomial of α

over F.

Example 2.2.3 Let’s see if 3√5 is algebraic over Q[x] or not. Assume α =
3√5, now we have

α3 = 5

Hence

α3 − 5 = 0

This means α satisfies p(x) = x3 − 5 ∈ Q. On the other hand, x3 − 5 is irreducible, since

otherwise it must have a root in Q. If
a
b
∈ Q and gcd(a, b) = 1 be a root of p(x), then

(
a
b

)3 − 5 = 0 =⇒
a3

b3 − 5 = 0

then

a3 = 5b3 =⇒ 5 | a3 =⇒ 5 | a
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where a | b means a divides b. Let a = 5t, then

(5t)3 = 5b3 =⇒ 125t3 = 5b3 =⇒ 5 | b

which is absurd. Irreducibility of p(x) shows that, it is the minimal polynomial of 3√5 over Q.

The above argument can be applied in general to any prime q to see xn − q is irreducible over

rationals (alternatively one can apply the Eisenstein criterion [6] to see this). Hence

[Q( n
√

q) : Q] = n.

Theorem 2.2.2 Assume F/K is a finite extension. Then F is finitely generated and algebraic

over K.

Proof Let {α1, · · · , αn} be a basis for F over K. Clearly any a ∈ F can be written as

n∑
i=1

ciαi f or some ci ∈ K

hence

F = K(α1, · · · , αn).

If a ∈ F, then {1, a, · · · , an} is a dependent set over K (recall that dimK(F) = n). This implies,

there exists u1, · · · , un such that
n∑

i=1

uiai = 0

If

f (x) =

n∑
i=1

uixi = 0 ∈ K[x]

then f (a) = 0. Therefore a is algebraic over K.

The following theorem enables us to state the degree of a field extension in terms of extensions

of middle fields. Moreover, having this machinery, one can prove the converse of the previous

theorem.

Theorem 2.2.3 Assume F ⊆ L ⊆ K are fields and all extensions are finite. Then

[K : F] = [K : L] × [L : F].
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Proof Assume {αi}
n
i=1 and {β j}

m
j=1 are respectively bases for K/L and L/F. We claim that

B = {αiβ j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis for K/F. As the first step we show B spans K over F. For any element a in K, we

can write a as a combination of αi, i.e.

a =

n∑
i=1

aiαi f or some ai ∈ L.

On the other hand, any element of L can be written as a linear combination of the βis. In

particular each ai can be written in such a way. Hence

a =

n∑
i=1, j=1

ci jαiβ j f or some ci j ∈ F.

Now assume
n∑

i=1, j=1

di jαiβ j = 0

for some di js in F. The linear independency of β js implies that

n∑
i=1, j=1

di jαi = 0

for any j. Moreover the linear independency of αis implies di j = 0 for all i, j. So B is a basis

of K over F, therefore

[K : F] =| B |= n × m = [K : L] × [L : F].

At this point we want to present the converse of theorem 2.2.2. One can find a proof of it which

is based on induction, in [12].

Theorem 2.2.4 Let K/F be a field extension. If each αi be algebraic over F, then F(α1, · · · , αn)

is a finite field extension of F. Moreover we have

[F(α1, · · · , αn) : F] ≤
n∏

i=1

[F(αi) : F].

One good property of algebraic extensions is the transitivity in the sense of presence of a middle

extension.
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Theorem 2.2.5 Assume F ⊆ L ⊆ K are fields. If K/L is algebraic and L/F is algebraic, then

K/F is an algebraic extension.

Proof We have to show any α in K satisfies a polynomial p(x) in F[x]. Since α is algebraic

over L, f (α) = 0 for some

f (x) =

n∑
i=0

aixi

in L[x]. Now consider the field L′ = F(a1, · · · , an) over F which is finite by theorem 2.2.4. We

note that f (x) ∈ L′[x], so α is algebraic over L′. Thus

[L′(α) : F] = [L′(α) : L′] · [L′ : F] < ∞

On the other hand we have F(α) ⊆ L′(α) which implies finiteness of [F(α) : F] and this means

α is algebraic over F. This argument holds for any element of K. Hence K is algebraic over F.

Definition 2.2.5 A field F is called algebraically closed if any non-constant polynomial f (x)

in F[x] has a root in F.

Remark 2.2.1 The above definition is saying that a field F is algebraically closed if any poly-

nomial over F factors completely over F. There are equivalent definitions for algebraic closed

fields. One can also say that F is algebraically closed if for any algebraic extension K of F we

have F = K.

Definition 2.2.6 A field extension of F is called an algebraic closure of F if it is an algebraic

extension of F and algebraically closed. We denote the algebraic closure of F by F̄.

Example 2.2.4 It is well-known that C is an algebraic closure of R. However, One should

note that C is not an algebraic closure of Q, since it is not algebraic over the field of rational

numbers.

One can use Zorn’s lemma (see [6]) to prove the following important theorem.

Theorem 2.2.6 Every field F has an algebraic closure.

Although the algebraic closure of a field is not unique in general, it is unique up to isomor-

phism, i.e any two algebraic closures of a field F are isomorphic.
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2.3 Roots of Polynomials

We all learned how to solve a quadratic equation in high school. Although no one taught us

how to do the same thing for cubic or degree four equations at high school, but there we finally

learned that similar methods exist for solving these equations. For a long time, people were

wondering whether is it possible to extend the same idea for higher degree equations or not.

Before getting in to details about roots of polynomials let us provide formal definitions.

Definition 2.3.1 Assume K/F be a field extension and p(x1, · · · , xn) be a polynomial in F[x1, · · · , xn].

α1, · · · , αn ∈ K is called a root of p if p(α1, · · · , αn) = 0.

By solving a polynomial, we mean finding the set of roots of it. A univariate polynomial is

called solvable by radicals if it can be solved by a combination of the following operations:

• Operations of the field.

• Using n-th roots in the field for some positive integer (e.g. square root, third root and

etc.)

Ruffini was the first one who argued the fact that a general univariate polynomial of degree five

or higher is not solvable by radicals. Although his proof was not complete, one should admit

it was a great achievement at that time. Later in 1824, Abel gave a complete proof. However

the most prominent and inspiring proof was given by Galois. He not only proved the above

statement, but also he could solve some other geometric problems which were unsolved for

centuries. The results of his work these days is called Galois theory.

Knowing that degree five (and higher) univariate polynomials are (in general) unsolvable with

radicals, people were looking for other methods to solve the problem. Indeed there are differ-

ent approaches for any problem. In this special case one can use numerical methods to find

approximations of roots or use symbolic computations to find roots. It is worth mentioning that

there are methods combining these two approaches which are called hybrid methods.

As an example we can mention Gröbner Basis and the Buchberger algorithm (see [6] and
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[8]) as a method of solving polynomial equations, by reducing them to univariate polynomials

or to linear system. As a matter of fact, in many applications, in practice we just need an ap-

proximation of a root. However, there are some applications which need exact solutions.

All we have discussed until now is about solving one single equation. What if we have a

system of non-linear equations and we are interested in the set of solutions?

Though modern algebraic geometry uses the language of schemes ([10]), the classic alge-

braic geometry define varieties as the set of solution of a family of polynomials. Algebraic

geometers are interested in studying varieties and their properties. In some cases people want

to calculate the set of points of a variety which is equivalent of solving a system of non-linear

equations. There are relations between the number of variables in the non-linear systems and

the dimension of the corresponding geometric object. Thus, in dimensions higher than one we

want to be able to solve a system of multivariate polynomials over a field.

Again Gröbner basis is a powerful tool in solving a non-linear system of multivariate poly-

nomials. In the next section we will describe the related application of resultant in solving a

bivariate system of polynomials.

2.4 Solving Bivariate Polynomials

In this section we want to see a method which can be applied to solve a system of bivariate

equations. We do not claim that this is the most efficient one. In fact this method will be used

in the last chapter in order to calculate the desired minimal polynomials.

Definition 2.4.1 Assume two non-zero polynomials f (x) and g(x) are given in R[x], where R

is a UFD1. If

f (x) =

n∑
i=0

aixi and g(x) =

m∑
i=0

bixi

1Unique Factorization Domain, for a definition see [6].



then the Sylvester matrix of f and g which we denote by Sylx( f , g) is the m + n by m + n matrix



an an−1 · · · a1 a0

an an−1 · · · a1 a0

· · · · · · · · · · · ·

an · · · · · · a0

bm bm−1 · · · b1 b0

bm bm−1 · · · b1 b0

· · · · · · · · · · · ·

bm · · · · · · b0



Definition 2.4.2 For f (x), g(x) ∈ R[x], where R is a UFD, the resultant of f and g with respect

to x which is denoted by resx( f , g), is the determinant of the Sylvester matrix. resx(0, f ) = 0 for

non-zero f ∈ R[x] and by definition, resx( f , g) = 1 for non-zero constants in R.

Example 2.4.1 Using Maple built in functions, SylvesterMatrix and resultant, we calculate

them for two polynomials. We can find the resultant directly or by forming the Sylvester

matrix and computing its determinant.

> with(LinearAlgebra):

> f:=xˆ4-6*xˆ2+1;

f := x4 − 6 x2 + 1

> g:=xˆ5+2*xˆ3-x;

g := x5 + 2 x3 − x

> A:=SylvesterMatrix(f,g,x);
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A :=



1 0 −6 0 1 0 0 0 0

0 1 0 −6 0 1 0 0 0

0 0 1 0 −6 0 1 0 0

0 0 0 1 0 −6 0 1 0

0 0 0 0 1 0 −6 0 1

1 0 2 0 −1 0 0 0 0

0 1 0 2 0 −1 0 0 0

0 0 1 0 2 0 −1 0 0

0 0 0 1 0 2 0 −1 0


> Determinant(A);

784

> resultant(f,g,x);

784

One can see that the determinant of Sylvester matrix of two polynomials is equal to resultant

of them.

The resultant is also helpful in computing the greatest common divisors of two polynomials,

but here we are interested in its applications to solving system of equations.

We just recall that a solution of a system of n polynomials in m variables

f1(x1, · · · , xm) = 0

f2(x1, · · · , xm) = 0

...

fn(x1, · · · , xm) = 0
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over a field F is an m-tuple (α1, · · · , αm) in some field extension F such that it satisfies all

equations, i.e. for each i we have fi(α1, · · · , αm) = 0.

Theorem 2.4.1 (Sylvester’s Criterion) [8] Let f (x), g(x) ∈ R[x] where R is a UFD. Then f (x)

and g(x) have a non-trivial common factor if and only if resx( f , g) = 0.

Example 2.4.2 In this example we can see that for two polynomials f and g which have a

common factor x−1, the resultant of these two is zero.

> f := xˆ5-3*xˆ4+2*xˆ3+x-1;

f := x5 − 3 x4 + 2 x3 + x − 1

> g := xˆ6+xˆ5-2*xˆ4-xˆ2+x;

g := x6 + x5 − 2 x4 − x2 + x

> resultant(f,g,x);

0

One can have the following general fact about resultants for multivariate polynomial systems.

Theorem 2.4.2 (Fundamental Theorem of Resultants) [8] Let F̄ be an algebraically closed

field, and let

f (x1, · · · , xn) =

n∑
i=0

ai(x2, · · · , xn)xi
1,

g(x1, · · · , xn) =

m∑
i=0

bi(x2, · · · , xn)xi
1

be elements of F̄[x1, · · · , xn] of positive degrees in x1. Then if (α1, · · · , αn) is a common zero of

f and g, their resultant with respect to x1 satisfies

resx1( f , g)(α2, · · · , αn) = 0

Conversely if the above resultant vanishes at (α1, · · · , αn), then at least one of the following

holds:

1. an(α2, · · · , αn) = · · · = a0(α2, · · · , αn) = 0;



2. bm(α2, · · · , αn) = · · · = b0(α2, · · · , αn) = 0;

3. an(α2, · · · , αn) = bm(α2, · · · , αn) = 0;

4. There exists α1 ∈ F̄ such that (α1, · · · , αn) is a common zero of f and g.

The above result gives us a way to reduce some system of bivariate polynomials into solving

a univariate polynomial. In fact let f (x, y) and g(x, y) be two bivariate polynomials. Assume

there exists a solution for their system which we call (α1, α2). By the above theorem we have

resx( f , g)(α2) = 0. Thus in order to find (α1, α2) we can calculate resx( f , g) and find its roots.

For each root of the resultant, we can plug it in to the system and see if they have a common

root. Obviously this works if we have an efficient way to solve a univariate equation. The

following example illustrates this idea.

Example 2.4.3 Assume that polynomials f (x) = x2 − y2 − 1 and g(x) = x2 + yx − 7 are

given. We want to find all (α, β) such that it satisfies both f and g. In order to do so, we

first compute the resultant resx( f , g).

> with(LinearAlgebra):

> f := proc (x, y) options operator, arrow; xˆ2-yˆ2-1 end proc;

f := (x, y) 7→ x2 − y2 − 1

> g := proc (x, y) options operator, arrow; xˆ2+y*x-7 end proc;

g := (x, y) 7→ x2 + yx − 7

> R := resultant(f(x, y), g(x, y), x);

R := −13 y2 + 36

Having the resultant, we can find its roots which gives us all candidates for β.

> ysolve := [solve(R)];

ysolve := [−
6
√

13
13

,
6
√

13
13

]

It is time to check if we can find an α which completes β as a solution. By plugging in

the values of resultant in f , we find candidates for α.

> f(x, ysolve[1]);
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x2 −
49
13

> xsolve := [solve(f(x, ysolve[1]))];

xsolve := [
7
√

13
13

,−
7
√

13
13

]

The final step is to check the pairs formed from candidates for α and β, to find which

pair satisfies both equations.

> f(xsolve[2], ysolve[1]);

0

> g(xsolve[2], ysolve[1]);

0

> f(xsolve[1], ysolve[2]);

0

> g(xsolve[1], ysolve[2]);

0

This approach is combinatorially expensive in the number of variables. We will see a better

technique using eigenvectors.
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Matrix Polynomials

3.1 Basic Definition

3.1.1 Matrix Polynomial

Matrices are very useful in mathematics and its applications [9]. There are various types of

matrices. Among those, there are a family of matrices which instead of having numbers as

their entries, they have polynomials as entries. One of the applications of this family is finding

common roots of polynomials. We want to apply this method, so we will convert rootfinding

of a system of polynomial equations in two variables into a so-called nonlinear eigenvalue

problem and solve that by linearization. All of these concepts will be defined in this chapter.

Definition 3.1.1 A univariate matrix polynomial M(x) of degree n is defined as

M(x) =

n∑
i=0

Mixi (3.1)

where Mi are numerical matrices, i ≥ 0.

It is easy to see that any matrix polynomial is a matrix with univariate polynomials as entries.

This duality is simple, but is not useless.

Example 3.1.1 In this example we provide a matrix polynomial which is represented by a

matrix with polynomial entries. We use Maple to rewrite it as a polynomial with matrix

coefficients.

22
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> with(LinearAlgebra):

> with(MatrixPolynomialAlgebra):

> M:=<<xˆ2-2*x|x-1>,<x+3|xˆ3-1>>;

M :=


x2 − 2 x x − 1

x + 3 x3 − 1


> add(xˆi*A[i], i = 0..3);

x3A3 + x2A2 + xA1 + A0

where

> A[3]:= coeff(M,x,3);

A[3] :=


0 0

0 1


> A[2]:= coeff(M,x,2);

A[2] :=


1 0

0 0


> A[1]:= coeff(M,x,1);

A[1] :=


−2 1

1 0


> A[0]:= coeff(M,x,0);

A[0] :=


0 −1

3 −1
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3.1.2 Generalized Eigenvalues and Eigenvalue Problem

We recall that the eigenvalue problem for a matrix A is finding scalars λ and corresponding

vectors v such that they satisfy the following (if they exist):

Av = λv.

One can easily convert above expression to

(λI − A)v = 0.

In general one can form the determinant of (xI −A), which is a univariate polynomial in x, and

the roots of this polynomials are the eigenvalues. In practice finding the eigenvalues by above

method needs polynomial factorization which is problematic. There are numerical methods

that one can apply to get the eigenvalues. The most famous one among these methods is the

QR algorithm; see [4].

If we replace the identity matrix above with another matrix B, we may still be interested in

finding λ and v such that

Av = λBv.

Such a λ is called a generalized eigenvalue. There is another version of this notion, where

a pair (α, β) (that are not both zero) of field elements, is called a generalized eigenvalue of a

matrix pair (A,B) if there exists a non-zero vector v such that

αAv = βBv.

We may take |α|2 + |β|2 = 1 and Re(α) ≥ 0, without loss of generality. If β , 0, λ =
α

β
. If β = 0,

we say (A,B) has an infinite eigenvalue.

There is a similar (to QR) algorithm for solving the generalized eigenvalue problem numer-

ically, which is called the QZ algorithm; see [4].

Definition 3.1.2 A pair of matrices (A,B) where A,B ∈ Cn×n, is called a matrix pencil if they

define a generalized eigenvalue problem

(λB − A)v = 0
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and λ is called a generalized eigenvalue for the pencil (A,B) or equivalently (α, β) with |α|2 +

|β|2 = 1 and Re(α) ≥ 0.

It is not hard to see t is a generalized eigenvalue of the pencil (A,B) if and only if t is a root

of det(yB − A). So one can restate the generalized eigenvalue problem as finding roots of the

determinant of (yB − A).

The following definition presents formally the above notions and introduces some notations.

Definition 3.1.3 Assume A and B are two matrices. Then the set of eigenvalues of A which is

denoted by Λ(A), is the set

Λ(A) = {z : det(zI − A) = 0}

The set of generalized eigenvalues of the pair (A,B), is denoted by Λ(A,B) is

Λ(A,B) = {z : det(zB − A) = 0}

and finally the set of nonlinear eigenvalues of a matrix polynomial P(z) = zdAd + · · ·+ zA1 + A0

is denoted by Λ(P) and is given by

Λ(P) := {z : det(P(z)) = 0}.

A matrix polynomial, M, is called regular if det(M) is not identically zero and is called singular

otherwise. One should note that there exist pencils which are singular. As an example for

A =

0 0

0 1

 and B =

0 0

0 1

 then

det(zA − B) = det

0 0

0 z − 1

 = 0.

3.1.3 The Companion Pencil

One of the simplest and most useful matrix polynomials is the companion pencil, which we

introduce in this section. For simplicity we first define the companion pencil for an ordinary

polynomial.
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Definition 3.1.4 Let p(x) be a univariate polynomial over complex numbers. Writing p(x) as

p(x) =

n∑
i=0

aixi

we define the pencil (C0,C1) ∈ (Cn×n)2 as

C0 =



0 1

0 1
. . .

. . .

. . . 1

−a0 −a1 · · · · · · −an−1



C1 =



1

1
. . .

1

an



Note that if an = 1 (the polynomial is monic) then this is also called the Frobenius companion

pencil. There are others (Fiedler, [5]).

If (C0,C1) is the companion pencil of p(x), a simple calculation shows that

p(x) = det(C1x − C0).

We have similar definition for a matrix polynomial P(x).

Definition 3.1.5 Let P(x) be a matrix polynomial. That is, suppose

P(x) =

n∑
i=0

Aixi

where for each i, Ai ∈ Cn×n. Then we define the companion pencil (also known as a “lineariza-

tion” of the matrix polynomial) of P(x) as (C0,C1) ∈ (Cn×n)2 where
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C0 =



0 I

0 I
. . .

. . .

. . . I

−A0 −A1 · · · · · · −An−1



C1 =



I

I
. . .

I

An


One can see that

det(P(x)) = det(xC1 − C0)

We will see this equality in section 3.4. Note that there are other linearizations.

3.2 Bézout Matrix

In this section we want to introduce the Bézout matrix for two polynomials. Let f (x) and g(x)

be two polynomials of degree m and n respectively:

f (x) =

m∑
i=0

aixi

g(x) =

n∑
i=0

cixi

The Cayley quotient of f and g is defined as follows, where d = max(m, n):

C(x, y) =
f (x)g(y) − g(x) f (y)

x − y

Since x = y obviously makes

f (x)g(y) − g(x) f (y) = 0
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then x − y is a factor of the numerator.

Hence, we can write the Cayley quotient as:

d∑
i=1

d∑
j=1

bi jxi−1y j−1

The Bézout matrix is the following d × d matrix:

B = (bi j)d×d

Then

C(x, y) =

[
1 x x2 · · · xd−1

]
B



1

y

y2

...

yd−1


Example 3.2.1 Let’s construct the Bézout matrix in different ways. For a given pair of

polynomials we form the Cayley quotient and then construct the Bézout matrix from it. On

the other hand we can use the built in function for the Bézout matrix in Maple with different

options.

> with(LinearAlgebra):

> f := randpoly(x, degree = 2);

f := −7 x2 + 22 x − 55

> g := randpoly(x, degree = 3);

g := −94 x3 + 87 x2 − 56 x

> C := simplify(expand(f*subs(x = y, g)-subs(x = y, f)*g)/(x-y));

658 x2y2 − 2068 x2y − 2068 xy2 + 5170 x2 + 6692 xy + 5170 y2 − 4785 x − 4785 y + 3080

> d := max(degree(f, x), degree(g, x));

d := 3
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> Bez := Matrix(d, d, (i, j) -> coeff(coeff(C, x,d-i), y, d-j));

B2 :=


−658 2068 −5170

2068 −6692 4785

−5170 4785 −3080


> B1:=BezoutMatrix(f,g);

B1 :=


4778 −3553 0

−1459 4778 0

−7 22 −55


> B2:=BezoutMatrix(f,g, method = symmetric);

B2 :=


−658 2068 −5170

2068 −6692 4785

−5170 4785 −3080


Remark Obviously the above example shows different matrices for the corresponding Bézout

matrix to a fixed pair of polynomials. However, one can easily verify that the determinants of

the matrices are equal up to a constant.

We note that we are looking at Cayley quotient in monomial basis. We are able to write the

Cayley quotient in the Lagrange basis and construct a similar Bézout matrix. This will be

investigated in the next section (see [15]).

3.3 Bézout Matrix in Lagrange Basis

As we mentioned in the previous section, it is possible to write the Cayley quotient in a La-

grange basis. This has some computational benefits. In [15] Shakoori described the Bézout

matrix in Lagrange basis. What we are presenting here is a brief discussion of her paper and

we encourage the reader to see [15] for more details.

We defined the Bézout matrix using the Cayley quotient.

C(x, y) =
f (x)g(y) − f (y)g(x)

x − y
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Recall that d = max(deg( f ), deg(g)). It is not hard to see that C(x, y) is a polynomial in terms

of x and also in y of degree at most d − 1. Indeed one can write the Cayley quotient as:

C(x, y) =

[
1 x x2 · · · xd−1

]
B



1

y

y2

...

yd−1


where B is the corresponding Bézout matrix for f and g.

A closer look gives the idea of interpolating the polynomials xi and yi for 0 ≤ i ≤ d − 1. In

order to do so we set two sets of nodes, namely X = {x1, · · · , xd} and Y = {y1, · · · , yd}. We also

write Li(x) (Li(y) resp.) i.e.

Li(x) =
∏

0≤ j≤d
i, j

x − x j

xi − x j

for the i-th Lagrange polynomial for xi (yi resp). So after all, we can have interpolation for

each xi and yi. One can write the interpolations as follow:



1

x

x2

...

xd−1


=



1 1 · · · 1

x1 x2 · · · xd

x2
1 x2

2 · · · x2
d

...
... · · ·

...

xd−1
1 xd−1

2 · · · xd−1
d





L1(x)

L2(x)

L3(x)
...

Ld(x)


In the above expression the middle matrix is the transpose of well-known Vandermonde matrix.

One can write a similar expression for row matrix of xis:

[
1 x x2 · · · xd−1

]
=

[
L1(x) L2(x) L3(x) · · · Ld(x)

]


1 x1 · · · xd−1
1

1 x2 · · · xd−1
2

1 x3 · · · xd−1
3

...
... · · ·

...

1 xd · · · xd−1
d





Now we can get back to write the Cayley quotient in the Lagrange basis, by replacing the

appropriate matrices we wrote above. Hence

C(x, y) =

[
L1(x) L2(x) L3(x) · · · Ld(x)

]
VXBVT

Y



L1(y)

L2(y)

L3(y)
...

Ld(x)


where

VX =



1 x1 · · · xd−1
1

1 x2 · · · xd−1
2

1 x3 · · · xd−1
3

...
... · · ·

...

1 xd · · · xd−1
d


We call BL = VXBVT

Y the Bézout matrix in Lagrange basis. We do not compute it this way,

however, except as demonstration.

Example 3.3.1 The following Maple code outputs the Bézout matrix for a pair of polynomials

(p, f ) where p is a univariate polynomial in x, and f is a polynomial derived from the relation

between ui and ui+1 such that f (ui, ui+1) = 0. In chapter 4 we will talk about f in more detail.

1 with(LinearAlgebra):

2 ##This function returns Bezout matrix based on monomial basis, for the

input p which is a polynomial and f (which is fixed).

3 bez :=proc(p)

4 local f, B, n, c, i, j;

5 f := (y-2)ˆ2-2*x*y+xˆ2;

6 n := max(degree(f), degree(p));

7 B := Matrix(n); ##It is a blank square matrix of size n.

8 c := simplify(expand((f*(eval(p, x = s))-p*(eval(f, x = s)))/(x-s)));

9 ##This loop assigns coefficients of Cayley quotient to B.

10 for i from 0 to n-1 do

11 for j from 0 to n-1 do

12 B[i+1, j+1] := coeff(coeff(c, x, i), s, j);
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13 od;

14 od;

15 B;

16 end proc:

1 BezL := proc (p, r)

2 local v, vT, BM, BL, m, n;

3 BM := bez(p);

4 m := degree(p);

5 if nops(r) = m then

6 v := VandermondeMatrix(<r>);

7 vT := Transpose(v);

8 BL := Multiply(v, Multiply(BM, vT));

9 else

10 return (0);

11 end if;

12 end proc:

> BezL(390*xˆ2-1508*x+1409, [2, 4]);
−52 y2 + 510 y − 604 −832 y2 + 6750 y − 6938

−832 y2 + 6750 y − 6938 −1612 y2 + 16110 y − 19304


In [15] using above discussion, Shakoori proved the following efficient way of computing the

Bézout matrix in Lagrange basis.

Theorem 3.3.1 [15] For two bivariate polynomials f and g by their values at some known

points, the Bézout matrix in Lagrange basis is defined by

BL
i j =

f (xi)g(y j) − f (y j)g(xi)
xi − y j

i f i , j and 0 ≤ i, j ≤ d

BL
ii = f ′i gi − fig′i 0 ≤ i ≤ d.

where fi = f (xi), gi = g(xi), f ′i = f ′(xi) and g′i = g′(xi). Moreover, the null vectors of BL may

be parametrized by the Lagrange basis polynomials evaluated at the common roots of f and g.

Shakoori also introduced an effective method for calculating the values of the derivatives of f

and g using their values on a set of points. Here we just briefly present her results.
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Assume we have a polynomial p(x) of degree n and set of distinct nodes {x0, · · · , xn}. If we

denote the values of p on xi by pi and the values of p′ by p′i , then we can compute the values

of the derivative using the following formula:

D



p0

p1
...

pn


=



p′0

p′1
...

p′n


where

Dii =
∑
i, j

1
xi − x j

Di j =
∏
k, j
k,i

(xi − xk)/
∏
k, j

(x j − xk)

3.4 Linearization of a Matrix polynomial

We already introduced matrix polynomials and their generalized eigenvalues. We are inter-

ested in studying the set of non-linear eigenvalues which is called the spectrum of the matrix

polynomial. Normally we have no control on the degree of the given matrix polynomial. It

would be helpful if we could use a linear matrix polynomial, i.e. a matrix polynomial of the

form Ax − B (where A and B are numerical matrices) such that the spectra of Ax − B and the

original matrix polynomial are the same.

Definition 3.4.1 [9] Let

P(x) =

n∑
i=0

Aixi

be a regular (i.e. its determinant in not identically zero) m×m matrix polynomial. An mn×mn

linear matrix polynomial S1x + S0 is called a linearization of P(x) ifP(x) 0

0 Im(n−1)

 = E(x)(S1x + S0)F(x)

for some mn × mn matrix polynomial E(x) and F(x) with non-zero constant determinants.
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Assume P(x) is a given matrix polynomial of degree n. So we can write P(x) as:

P(x) = Anxn + · · · + A1x + A0.

In the simplest case if An is a non-singular matrix, we can form the companion matrix for

A−1
n Anxn + · · · + A−1

n A1x + A−1
n A0

i.e.

Cp =



0 I 0 · · · 0

0 0 I · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 I

−A−1
n A0 −A−1

n A1 −A−1
n A2 · · · −A−1

n An−1


Having Cp we can verify that xI − Cp is a linearization for P(x), using

F(x) =



I 0 0 · · · 0

−xI I 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · I 0

0 0 · · · −xI I


and

E(x) =



Bn−1(x) Bn−2(x) · · · B0(x)

−I 0 · · · 0

0 −I · · ·
...

...
...

. . .
...

0 0 · · · −I 0


where B0(x) = I and Bt+1(x) = xBt(x) + An−t−1 for 0 ≤ t ≤ n − 2 and formingP(x) 0

0 Im(n−1)

 F(x) =

An 0

0 Im(n−1)

 E(x)(Ix − Cp).

Obviously the linearization of a matrix is not unique. More precisely having a linearization

Ax − B we can find many more linearizations by applying transformations. In other words for



any non-singular C and D, C(Ax − B)D is a linearization again. In particular, if we use the

following transformations:

C =



I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

0 0 · · · 0 An


And D = I (of appropriate size) then

C(Ix − Cp)D = x



I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

. . .
...

0 0 · · · I 0

0 0 · · · 0 An


−



0 I 0 · · · 0

0 0 I · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 I

−A0 −A1 · · · −An−2 −An−1


The above matrix polynomial is the companion pencil of P(x) which we already introduced in

section 3.1.3

Example 3.4.1 For the given matrix polynomial we calculate Cp and then compare the de-

terminants of p and xI−Cp. We also do the same thing for C1x−C0.

> with(LinearAlgebra):

> A2 := RandomMatrix(3, 3, generator = 1 .. 10);

A2 :=


10 9 10

1 7 6

6 1 6


> Determinant(A2);

220

> A1 := RandomMatrix(3, 3, generator = 1 .. 10);



A1 :=


7 1 7

3 3 8

6 10 7


> A0 := RandomMatrix(3, 3, generator = 1 .. 2);

A0 :=


1 1 1

2 1 1

2 2 1


> P := A2*xˆ2+A1*x+A0;

P :=


10 x2 + 7 x + 1 9 x2 + x + 1 10 x2 + 7 x + 1

x2 + 3 x + 2 7 x2 + 3 x + 1 6 x2 + 8 x + 1

6 x2 + 6 x + 2 x2 + 10 x + 2 6 x2 + 7 x + 1


> Cp :=<<ZeroMatrix(3)|IdentityMatrix(3)>

> ,<Multiply(-A2ˆ(-1), A0)| Multiply(-A2ˆ(-1), A1)>>>;

Cp :=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

21
55 2/11 6

55 − 6
55

64
55

53
55

7
22

7
22 1/11 9

22
47
22

7
11

−169
220 −25

44 −16
55 −211

220 −701
220 −123

55


> Determinant(P);

220 x6 + 46 x5 − 594 x4 − 373 x3 − 30 x2 + 10 x + 1

> D := Determinant(x*IdentityMatrix(6)-Cp);

D := x6 +
23 x5

110
−

27 x4

10
−

373 x3

220
−

3 x2

22
+ x/22 +

1
220
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> 220*D;

220 x6 + 46 x5 − 594 x4 − 373 x3 − 30 x2 + 10 x + 1

> C0 :=<<ZeroMatrix(3)|IdentityMatrix(3)>,<-A0|-A1>>>;

C0 :=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 −1 −1 −7 −1 −7

−2 −1 −1 −3 −3 −8

−2 −2 −1 −6 −10 −7


> C1 := DiagonalMatrix([IdentityMatrix(3), A2]);

C1 :=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 10 9 10

0 0 0 1 7 6

0 0 0 6 1 6


> Determinant(C1*x-C0);

220 x6 + 46 x5 − 594 x4 − 373 x3 − 30 x2 + 10 x + 1

As we can see in the previous example, the linearization and the original matrix have the same

determinant and this is not a coincidence. It is always the case.

For more details about linearizations see [9] or [11].



38 Chapter 3. Matrix Polynomials

3.5 Linearization with Lagrange Basis

So far we defined linearizations in the monomial basis. In this section we want to talk about a

linearization in a Lagrange basis.

Suppose P(x) to be a matrix polynomial of degree n which is given in monomial basis.

P(x) = Anxn + · · · + A1x + A0

Let’s have n + 1 sample nodes for writing P(x) in Lagrange basis. Assuming x0, · · · , xn to be

distinct points, the values of P(x) over these points will be shown by Pi, i.e. Pi = P(xi). Now

Lagrange polynomials are presented as

Li(x) =

n∏
j=0, j,i

x − x j

xi − x j

It is convenient to define

ωi =

n∏
j=0, j,i

1
xi − x j

.

Then P(x) in Lagrange polynomial will be

P(x) =

n∑
i=0

Li(x)Pi

Amiraslani in his Ph.D. dissertation [2], calculated the companion pencil for P(x) in Lagrange

basis:

xC1 − C0 =



(x − x0)I 0 · · · 0 −P0

0 (x − x1)I · · · 0 −P1
...

...
. . .

...
...

0 0 · · · (x − xn)I −Pn

ω0I ω1I · · · ωnI 0
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which is a linearization for P(x) (see [1]).

Amiraslani et al. in [1] introduced a matrix A as

A =



ω−1
0 P0 0 · · · 0 0

0 ω−1
1 P1 · · · 0 0

...
...

. . .
...

...

0 0 · · · ω−1
n Pn 0

0 0 · · · 0 −I


such that

(xC1 − C0)A =



x−x0
ω0

P0 0 · · · 0 P0

0 x−x1
ω1

P1 · · · 0 P1
...

...
. . .

...
...

0 0 · · ·
x−xn
ωn

Pn Pn

P0 P1 · · · Pn 0


The resulting matrix is block symmetric. We use this fact in the next chapter.



Chapter 4

A Sequence of Symmetric Bézout Matrix

Polynomials

4.1 Introduction

In this chapter we state the main results. The first observation for the sequence of uis is that all

of the terms are algebraic over Q. This fact is stated formally in section 4.2. In section 4.3 a

lower and upper bound for uis is presented. Section 4.4 is devoted to a constructive approach

for finding the sequence of minimal polynomials. Having minimal polynomials, showing that

“the roots of minimal polynomials are all real” is the subject of section 4.5 and finally section

4.6 is devoted to finding symmetric linearization of the Bézout matrix.

Before getting in to details let us recall the definition of the sequence of uis.

u1 = 1

un+1 = 2 + un + 2
√

un (4.1)

It is easy to see that the first few terms in the sequence are:

u1 = 1

u2 = 5

40
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u3 = 7 + 2
√

5

u4 = 9 + 2
√

5 + 2
√

7 + 2
√

5 (4.2)

By looking at these numbers, one might guess the degree of minimal polynomial of each ui over

Q. We will find the degrees by considering a tower of field extensions over rational numbers,

in section 4.3.

4.2 {ui} is Algebraic over the set of Rational Numbers

In this section we want to show that all uis are algebraic over Q. For this reason we can look at

field extensions generated by ui over Q for all i ≥ 2.

Theorem 4.2.1 For each i, ui is algebraic over Q.

Proof The proof is by induction on i. We first show that u3 is algebraic over rational numbers.

We can do as below:

u3 = 7 + 2
√

5 =⇒ u3 − 7 = 2
√

5 =⇒ (u3 − 7)2 = 20

Hence

u2
3 − 14u3 + 29 = 0

So u3 satisfies

x2 − 14x + 29 = 0.

Now assume that ui is algebraic over Q for some i ≥ 3. Consider the extensions below:
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Q

Q(ui)

Q(ui)(ui+1) = Q(ui, ui+1)

By our assumption, we know that Q(ui)/Q is an algebraic extension.

On the other hand, we have

ui+1 = 2 + ui + 2
√

ui

=⇒ (ui+1 − 2 − ui)2 = 4ui

=⇒ ((ui+1 − 2) − ui)2 = 4ui

=⇒ (ui+1 − 2)2 − 2(ui+1 − 2)ui + u2
i − 4ui = 0

=⇒ (ui+1 − 2)2 − 2ui+1ui + u2
i = 0

So ui+1 satisfies (x − 2)2 − 2xui + u2
i = 0. Thus ui+1 is algebraic over Q(ui). By induction

assumption Q(ui)/Q is algebraic. Now Theorem 2.2.5 tells us ui+1 is algebraic over Q.

\

4.3 Boundary of {ui}

In this section we want to find the upper and lower bound for un.

Theorem 4.3.1 If n ≥ 5, then

un ≥ (n + 1)2 − 5.

Proof We can prove this statement by using induction on n.

Let n = 5. One can see that

u5 = 31.24 ≥ (5 + 1)2 − 5 = 36 − 5 = 31
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which holds for i = 5.

Now assume the statement is true for some k ≥ 5. i.e.

uk ≥ (k + 1)2 − 5.

We want to show that

uk+1 ≥ (k + 2)2 − 5.

For showing this, we have:

uk+1 = 2 + uk + 2
√

uk ≥ 2 + (k + 1)2 − 5 + 2
√

(k + 1)2 − 5.

Now we want to show that the last term is greater that (k + 2)2 − 5

2 + (k + 1)2 − 5 + 2
√

(k + 1)2 − 5 − (k + 2)2 + 5 ≥ 0

2 + (k2 + 2k + 1) − 5 + 2
√

(k + 1)2 − 5 − (k2 + 4k + 4) + 5 ≥ 0

2
√

(k + 1)2 − 5 − 2k − 2 ≥ 0 (4.3)

Since 2
√

(k + 1)2 − 5 − 2k − 2 = 0 has only one positive root which is less than 5 and it is

ascending, equation 4.3 holds for k ≥ 5.

\

Theorem 4.3.2 If n ≥ 5, then

un ≤
5
4

n2.

Proof The proof is by induction on n.

Let n = 5. One can see that

u5 = 31.24 ≤
5
4

(5)2 = 31.25

Assume that the statement is true for some k ≥ 5. i.e.

uk ≤
5
4

k2.

We want to show that

uk+1 ≤
5
4

(k + 1)2.
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We know that

uk+1 = 2 + uk + 2
√

uk ≤ 2 +
5
4

k2 + 2k

√
5
4
.

Now we claim that

2 +
5
4

k2 + 2k

√
5
4
≤

5
4

(k + 1)2.

We have:

5
4

(k + 1)2 − 2 −
5
4

k2 − 2k

√
5
4
≥ 0

5
4

(k + 1)2 −
5
4

(
2
5
4

+ k2 +
2k√

5
4

) ≥ 0

5
4

((k + 1)2 −
8
5
− k2 −

4k
√

5
) ≥ 0

k2 + 2k + 1 −
8
5
− k2 −

4k
√

5
≥ 0

So

−
3
5
− k(

4
√

5
− 2) ≥ 0 (4.4)

We easily can see that 2.84 is the root of equation 4.4. So for k ≥ 3, equation 4.4 is true and

we are done.

\

4.4 Minimal Polynomials of {ui}

In the previous sections we showed that uis are algebraic over Q. In this section we want

to explicitly find their minimal polynomials. More precisely, we will construct the minimal

polynomials recursively. We show that the recursive minimal polynomial of ui+1 is the re-

sultant of minimal polynomial of ui and an auxiliary polynomial. By 4.1 we can construct

f (x, y) = (y − 2)2 − 2yx + x2 such that (ui, ui+1) satisfies it.
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Now we want to apply the fundamental theorem of resultants (theorem 2.4.2) assuming F = Q,

then F̄ = Q̄ (a fixed algebraic closure of Q) and

f (x, y) = (y − 2)2 − 2yx + x2

and

g(x, y) = pi(x, y)

and (α1, α2) = (ui, ui+1), then applying the theorem gives us

resx( f (x, y), pi(x))(ui+1) = 0 =⇒ q(ui+1) = 0

where q(y) is the resultant of f and pi with respect to x.

We recall that resultant is the the determinant of the Bézout matrix (see section 3.2).

Since q(ui+1) = 0, pi+1 must divide q(y). On the other hand, we know

deg(q(y)) ≤ deg( f ) · deg(pi) = 2 · deg(pi)

We claim that, pi+1 = Cq(y) where C is a constant. In order to show this, we only need to show

deg(pi+1) = deg(q(y))

As we have seen above, pi+1|q(y), which means

deg(pi+1) ≤ deg(q(y)) ≤ 2 · deg(pi)

So, it is enough to show

deg(pi+1) = 2 · deg(pi)

Consider the diagram of field extensions, below:

Q

Q(ui) Q(ui+1)

Q(ui, ui+1)

n

2
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It is not hard to see that Q(ui, ui+1) = Q(
√

ui), as follows:

We know that

ui =
√

ui
2 ∈ Q(

√
ui)

and

ui+1 = 2 + ui + 2
√

ui ∈ Q(
√

ui)

So we can see that Q(ui, ui+1) ⊆ Q(
√

ui)

Now for the other inclusion:

√
ui =

(ui+1 − 2 − ui)
2

=
1
2

ui+1 −
1
2

ui − 1 ∈ Q(ui, ui+1)

So

Q(
√

ui) ⊆ Q(ui, ui+1).

Hence we can write the above diagram as

Q

Q(ui) Q(ui+1)

Q(
√

ui)

n

2

We know that for any simple extension1 (See definition 2.1.1) of Q such as Q(ui), [Q(ui) : Q] is

equal to degree of minimal polynomial of ui over Q. Also we know, Q(ui, ui+1) = Q(ui)(ui+1) is

a simple extension of Q(ui), since the minimal polynomial of ui+1 over Q(ui) is f (ui, y), which

is of degree 2, we have

[Q(ui, ui+1) : Q(ui)] = 2.

Let deg(pi) = n, then [Q(ui) : Q] = n. From chapter 2 we know

[Q(
√

ui) : Q] = [Q(ui, ui+1) : Q] = [Q(ui, ui+1) : Q(ui)] · [Q(ui) : Q] = 2n

1a field extension with one generator.
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Form the other side of the diagram,

2n = [Q(
√

ui) : Q] = [Q(
√

ui) : Q(ui+1)] · [Q(ui+1) : Q] (4.5)

Assume [Q(ui+1) : Q] = t. This implies that the degree of pi+1 is t. By equation (4.5), t divides

2n. We want to show that t = 2n.

Assume the contrary statement i.e. t < 2n, so t is at most n. Now if

pi+1(x) = xt + ct−1xt−1 + ... + c0

then

pi+1(ui+1) = (ui+1)t + ct−1(ui+1)t−1 + ...+ c0 = (2 + ui + 2
√

ui)t + ct−1(2 + ui + 2
√

ui)t−1 + ...+ c0 = 0

(4.6)

On the other hand, A = {1,
√

ui,
√

ui
2, ...,

√
ui

2n−1} is a basis for Q(
√

ui) (as a Q vector space).

After simplifying equation 4.6, (and replacing ut
i by lower powers if necessary) we obtain a

linear combination of some elements of A which is equal to zero, and the leading term has a

non zero constant coefficient, which is in contradiction with linearly in-dependency of A, so

we are done.

The above argument is a constructive proof for the following theorem which gives us a re-

cursive formula for the sequence of {pi} for i ≥ 2.

Theorem 4.4.1 for each i ≥ 4 the minimal polynomial of ui, pi is given as

pi(y) = resx( f (x, y), pi−1(x)).

Moreover the degree of each pi is 2i−2 if i ≥ 3.

4.5 Roots of Minimal Polynomials

According to our experimental results for minimal polynomials of uis in Maple, we see that all

roots of minimal polynomials of uis are real (we checked up to degree 512), see Table 4.1. We
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i ui Degree of pi ] of Real Roots of pi Largest Root of pi

1 1 1 1 1

2 5 1 1 5

3 11.47213595 2 2 11.47213595

4 20.24624429 4 4 20.24624429

5 31.24540965 8 8 31.24540965

6 44.42492836 16 16 44.42492836

7 59.75533396 32 32 59.75533396

8 77.21564883 64 64 77.21564883

9 96.79013589 128 128 96.79013589

10 118.4665315 256 256 118.4665315

11 142.2349978 512 512 142.2349978

Table 4.1: Experimental results for {pi} for i ≤ 11

also can see the roots of minimal polynomials from p3 to p6 in the Figure 4.1 as an observation

to see how the roots are. In this section, we will take more careful look at this observation.

Assume that p(y) = pi is the minimal polynomial of ui. We have

p(y) = resx( f , pi−1)

where f is the auxiliary polynomial which we defined in previous section.

On the other hand,

resx( f , pi−1) = C det(BezoutMatrixx( f , pi−1))

So the roots of p(y) are the roots of determinant of a Bézout matrix. Hence, studying the roots

of the determinant gives sufficient information about roots of p.

We need to take a closer look at BezoutMatrix( f , pi−1). It is easy to see that BezoutMatrix( f , pi−1)

which we will show that by B(y), has the following construction:

B(y) = B2y2 + B1y + B0,
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Figure 4.1: Roots of minimal polynomials of the sequence of {ui}

where Bis are real numerical matrices.

If we find a linearization, A1y − A0, for B(y), their determinant is just different by a constant

coefficient. Hence, det(A1y − A0) and det(B(y)) have exactly the same roots. So it is a good

idea to work with a linearization of B(y) instead of B(y) itself.

The simplest linearization can be achieved when B2 is invertible. If that is the case, then

we have the following linearization:

yI − Cp

where

Cp =

 0 I

−B−1
2 B0 −B−1

2 B1


Theorem 4.5.1 For each pi the corresponding Bézout matrix has an invertible leading coeffi-

cient.

Proof Let us fix pi and B(y) be its corresponding Bézout matrix which is of the form

B(y) = B2y2 + B1y + B0
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We want to show that B2 is invertible. In the previous section, we showed that the degree of pi

is 2i−2 and size of the Bézout matrix is 2(i−2) × 2(i−2). Now assume B2 is not invertible. Then

it is not a full rank matrix. This is equivalent with saying that B2 has a row which is a linear

combination of the other rows, so with elementary row operations we can make a zero row in

B2 and this will not change the degree of the determinant of B(y). On the other hand, if there

is a row without y2 in B(y), then

deg(det(B(y)) ≤ 2 × 2i−2 − 1

which is a contradiction. So B2 is invertible.

The above discussion says that det(BezoutMatrix) and det(yI − Cp) have the same roots or

equivalently roots of pi are roots of det(yI −Cp) (for appropriate Cp) which are eigenvalues of

Cp.

Up to now, we have reduced our original problem to the problem of showing eigenvalues of

Cp are real. However, Cp is not a symmetric matrix. So our next step is finding another lin-

earization which is symmetric, so that we can talk about eigenvalues or generalized eigenvalues

easier.

4.6 Symmetric Linearization of the Bézout Matrix

So far, we used Bézout matrix in monomial basis for our linearization, but let us find a lin-

earization of Bézout matrix using Lagrange basis. In this basis we can see the Bézout matrix

becomes a symmetric matrix.

Let us use y0,y1,y2 as nodes, then B′i = B(yi) for 0 ≤ i ≤ 2. Assume `i(y)s for 0 ≤ i ≤ 2 are

Lagrange polynomials for yis, see section 3.3. Then we have

B(y) = `2(y)B′2 + `1(y)B′1 + `0(y)B′0
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According to [1], we have:

yC1 − C0 =



(y − y0)I 0 0 −B′0
0 (y − y1)I 0 −B′1
0 0 (y − y2)I −B′2
ω0I ω1I ω2I 0


where

ω j =

2∏
k=0,k, j

1
y j − yk

as a linearization for B(y).

The authors also introduced a matrix A as follows:

A =



ω−1
0 B′0 0 0 0

0 ω−1
1 B′1 0 0

0 0 ω−1
2 B′2 0

0 0 0 −I


such that (yC1 − C0)A is the following block symmetric matrix:

(yC1 − C0)A =



y−y0
ω0

B′0 0 0 B′0
0 y−y1

ω1
B′1 0 B′1

0 0 y−y2
ω2

B′2 B′2
B′0 B′1 B′2 0


Having yC1 − C0 as linearization we can write:

det(B(y)) = det(yC1 − C0)

p(y) = det(B(y)) = det(yC1 − C0)

Let

h(y) = p(y). det(A)
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So h and p have the same roots, then

h(y) = p(y). det(A) = det(yC1 − C0). det(A) = det((yC1 − C0)A)

(yC1 − C0)A is block symmetric and if the blocks are symmetric, then it will be a symmetric

matrix. We can have symmetric blocks if we construct the Bézout matrix from the beginning

using Lagrange basis.

So from now on, we will assume (yC1 − C0)A is symmetric.

(yC1 − C0)A =



y−y0
ω0

B′0 0 0 B′0
0 y−y1

ω1
B′1 0 B′1

0 0 y−y2
ω2

B′2 B′2
B′0 B′1 B′2 0


=



y
ω0

B′0 0 0 B′0
0 y

ω1
B′1 0 B′1

0 0 y
ω2

B′2 B′2
B′0 B′1 B′2 0


−



y0
ω0

B′0 0 0 B′0
0 y1

ω1
B′1 0 B′1

0 0 y2
ω2

B′2 B′2
B′0 B′1 B′2 0


Which is equal to

y



1
ω0

B′0 0 0 B′0
0 1

ω1
B′1 0 B′1

0 0 1
ω2

B′2 B′2
B′0 B′1 B′2 0


−



y0
ω0

B′0 0 0 B′0
0 y1

ω1
B′1 0 B′1

0 0 y2
ω2

B′2 B′2
B′0 B′1 B′2 0


After simplifying we have:

(yC1 − C0)A = y



B̂0 0 0 B′0
0 B̂1 0 B′1
0 0 B̂2 B′2

B′0 B′1 B′2 0


−



B̃0 0 0 B′0
0 B̃1 0 B′1
0 0 B̃2 B′2

B′0 B′1 B′2 0


= yP −Q

where

B̃i =
yi

ωi
B′i
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and

B̂i =
1
ωi

B′i

also P and Q are symmetric.

Now assume that λ is a generalized eigenvalue of yP −Q. Then we have Qu = λPu where u is

a non-zero eigenvector.

Taking complex conjugate of both sides of Qu = λPu, we have:

λ∗Pu∗ = Qu∗ (4.7)

Now we pre-multiply Qu = λPu by (u∗)T to obtain:

λ(u∗)T Pu = (u∗)T Qu

λ(PT u∗)T u = (QT u∗)T u

λ(Pu∗)T u = (Qu∗)T u

λ(Pu∗)T u = (λ∗Pu∗)T u = λ∗(Pu∗)T u

Thus,

(λ − λ∗)(Pu∗)T u = 0

Now if (Pu∗)T u is non-zero, then λ = λ∗ which means λ is real. So we have proved the follow-

ing theorem.

Theorem 4.6.1 Any generalized eigenvalue λ of yP −Q, which has an eigenvector u such that

(u∗)T Pu , 0, is real.

If the condition of the above theorem holds for the linearization of a Bézout matrix, it means

that all roots of the corresponding minimal polynomial are real. In the case that the condition

fails, it may be because of having Pu = 0. This only happens if u is an infinite eigenvalue.

Since we do not care about infinite eigenvalues, this case is OK as well.

Corollary 4.6.2 All roots of the minimal polynomial of uk are real.
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Concluding Remarks

In this dissertation, we defined a sequence. We showed that all elements of the sequence are

algebraic over rational numbers. Then we used a sequence of symmetric Bézout matrix in

order to get the sequence of minimal polynomials for our original sequence. Furthermore, by

interpreting the set of roots of each minimal polynomial to the set of eigenvalues of the corre-

sponding Bézout matrix, we were be able to show that all roots of the minimal polynomials of

the original sequence are real.

It seems reasonable to ask what else can be done by using the ideas presented in this disserta-

tion. We briefly state some problems which may be solved by presented methods.

5.1 Future Work

There are still open questions using the method of converting the original question to a non-

linear eigenvalue problem. We present some of the interesting one below.

5.1.1 Largest Root of {pi}

The first observation about the roots of pis is that un is the largest root of pn for each n. This

looks reasonable to ask if it can be interpreted as a question related to eigenvalue problem. In

fact we have no idea why uis are largest roots at all.

54
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5.1.2 Distribution of Zeros of {pi}

Another interesting question is if one can find intervals such that each of them contains a root

of a fixed pi. More precisely let p = pi for some i be of degree n and α1, · · ·αn are its real roots.

The goal is to find (a j, b j) for 1 ≤ j ≤ n such that α j ∈ (a j, b j). The interesting part would be

the fact if one can convert it to eigenvalue problem or one of its variants.

Assume that all roots of pi lies in the interval (a, b). One can partition the (a, b) and ask about

the distribution of the roots in each partition. We did some experiments for pi for 5 ≤ i ≤ 8

which is presented in Figures 5.1, 5.2, 5.3 and Figure 5.4. According to these figures, surpris-

ingly, we can see that the largest root which is ui, is somehow isolated from the other roots.

This can be an interesting question to work on.

5.1.3 Recursion Between Bézout Matrices

We gave a constructive method to find the sequence of minimal polynomials which uses a

sequence of Bézout matrices. Each Bézout matrix is constructed from two polynomial. Thus

to get a Bézout matrix one have to calculate the previous ones. Another possibility is that there

may be a relation between the Bézout matrices. If one figures out the relation between the

sequence of Bézout matrices, then it is feasible to construct Bézout matrices from previous

ones .
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Figure 5.1: Distribution of zeros of p5
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Figure 5.2: Distribution of zeros of p6
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Figure 5.3: Distribution of zeros of p7



5.1. FutureWork 59

Figure 5.4: Distribution of zeros of p8
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