
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-17-2016 12:00 AM

A comparison of solution methods for Mandelbrot-like A comparison of solution methods for Mandelbrot-like

polynomials polynomials

Eunice Y. S. Chan, The University of Western Ontario

Supervisor: Robert M. Corless, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Applied Mathematics

© Eunice Y. S. Chan 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Chan, Eunice Y. S., "A comparison of solution methods for Mandelbrot-like polynomials" (2016). Electronic
Thesis and Dissertation Repository. 4028.
https://ir.lib.uwo.ca/etd/4028

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=ir.lib.uwo.ca%2Fetd%2F4028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4028?utm_source=ir.lib.uwo.ca%2Fetd%2F4028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
We compare two different root-finding methods, eigenvalue methods and homotopy meth-

ods, using three test problems: Mandelbrot polynomials, Fibonacci-Mandelbrot polynomials,
and Narayana-Mandelbrot polynomials. For the eigenvalue methods, using both MATLAB and
Maple, we computed the eigenvalues of a specialized recursively-constructed, supersparse, up-
per Hessenberg matrix, inspired by Piers Lawrence’s original construction for the Mandelbrot
polynomials, for all three families of polynomials. This led us to prove that this construction
works in general. Therefore, this construction is genuinely a new kind of companion matrix.
For the homotopy methods, we used a special-purpose homotopy, in which we used an equiv-
alent differential equation to solve for the roots of all three families of polynomials. To solve
these differential equations, we used our own ode solver, based on MATLAB’s ode45 routine,
which has pole-vaulting capabilities. We had two versions of this ode solver: one in MATLAB,
and the other in C++ that implements Bailey’s ARPREC package.

Keywords: Root-finding, companion matrix, eigenvalues, homotopy, Mandelbrot polyno-
mials, Fibonacci-Mandelbrot polynomials, Narayana-Mandelbrot polynomials

i

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Robert
M. Corless, for his infinite wisdom and wonderful guidance. Without him, none of this would
have been possible.

I would also like to thank my parents for everything that they have done for me for the past
23 years.

Lastly, my heartfelt appreciation goes to everyone in the Department of Applied Mathe-
matics at Western University for making this such an enjoyable experience.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction 1
1.1 Conditioning . 2
1.2 Root-finding methods . 5

2 Mandelbrot polynomials and matrices 9
2.1 Mandelbrot polynomials . 9
2.2 Condition numbers and pseudozeros . 12
2.3 Mandelbrot matrices . 13

2.3.1 Using full matrices . 16
2.3.2 Using sparse matrices . 17

2.4 Homotopy method . 19
2.5 Pole-Vaulting . 22

2.5.1 Residues . 23
2.5.2 Distinctness . 25

2.6 Our custom ode solver . 27
2.6.1 Runge-Kutta Methods . 27

2.7 Accuracy of the roots . 31
2.7.1 Newton polishing . 32

2.8 Smallest roots . 33
2.9 Results for homotopy methods . 34

3 Fibonacci-Mandelbrot polynomials and matrices 37
3.1 Introduction . 37

3.1.1 Fibonacci-Mandelbrot polynomials . 38
3.2 Condition numbers and pseudozeros . 39
3.3 Fibonacci-Mandelbrot matrices . 40

3.3.1 Results . 46
3.4 Homotopy methods . 48

3.4.1 Distinctness . 54
3.4.2 Smallest roots . 55

iii

3.4.3 Results . 56

4 Narayana-Mandelbrot polynomials and matrices 59
4.1 Introduction . 59

4.1.1 Narayana’s cows sequence . 59
4.1.2 Narayana-Mandelbrot polynomials . 60

4.2 Condition numbers and pseudozeros . 61
4.3 Narayana-Mandelbrot matrices . 62

4.3.1 Results . 67
4.4 Homotopy methods . 70

4.4.1 Smallest roots . 72
4.4.2 Results . 75

5 Concluding Remarks 78
5.1 Future Work . 80

Bibliography 87

Curriculum Vitae 88

iv

List of Figures

1.1 Plots of all roots of the Mandelbrot (1.1a), Fibonacci-Mandelbrot (1.1b), and
Narayana-Mandelbrot (1.1c) polynomials, with cardioid in grey. 8

2.1 Plot of both mininum and maximum condition numbers against degree of the
Mandelbrot polynomials. 12

2.2 Roots of p15(z) with |p15(z)| = 0.1 in red. 13
2.3 Different regions the Mandelbrot polynomial with a degree of 16, 383, where

the roots are not as well-conditioned, with |p15(z)| = 0.01 in red. 14
2.4 All 32, 767 roots of p16(z), produced in Maple 2016. 16
2.5 Time taken for eigenvalue computation of Mandelbrot matrices. The slope of

the line of best fit is around 2.3. 17
2.6 Time taken for eigenvalue computation using sparse matrices. The slope of the

line of best fit is around 1.3. 19
2.7 Diagram demonstrating pole-vaulting technique (p is the pole, and ρ is the

radius of the semicircular arc). 22
2.8 Homotopy paths of p3(z) and contour where |p3(z)| = 1. 23
2.9 Plots of homotopy paths and contour |pn(z)| = 1 of the Mandelbrot polynomials

from n = 4 to n = 9. 24
2.10 Log-log plots of smallest roots sn of Mandelbrot polynomials (difference from

1/4) . 34
2.11 Time taken to compute roots of Mandelbrot polynomial using a homotopy

method. The line of best fit has a slope about 0.92. 35
2.12 All 2, 097, 151 roots of the Mandelbrot polynomial p22(z). These roots were

produced in MATLAB using our own ODE solver. 36

3.1 Minimum and maximum condition numbers of the roots for Fibonacci-Mandelbrot
polynomials. 40

3.2 All 609 roots of q15(z) with |q15(z)| = 0.2 in red. 41
3.3 Different regions the Fibonacci-Mandelbrot polynomials where the roots are

not as well-conditioned with |q15(z)| = 0.05 in red. 42
3.4 Image visualizations of inverses of Fibonacci-Mandelbrot matrices, where −1,

0 and 1 are black, grey, and white respectively, using Maple 2016. 47
3.5 Plots of eigenvalues using MATLAB’s eig routine. 48
3.6 Computed eigenvalues of n = 23, which has a degree of 28, 656 of the Fibonacci-

Mandelbrot matrices using Maple. 49
3.7 Time taken to compute eigenvalues of Fibonacci-Mandelbrot matrices. 49
3.8 Homotopy paths for q5 and contour where |q5(z)| = 1. 52

v

3.9 Plots of homotopy paths and contours |qn(z)| = 1 of the Fibonacci-Mandelbrot
polynomials from n = 6 to n = 11. 53

3.10 Log-log plots of smallest roots sn of Fibonacci-Mandelbrot polynomials (dif-
ference from 1/4). 55

3.11 Time taken to compute roots of qn(z) using homotopy methods. The line of
best fit has slope of 0.82. 57

3.12 Plot of all 3, 524, 577 roots of the Fibonacci-Mandelbrot polynomial q33(z).
The residuals were all smaller than 10−4. 58

4.1 Condition numbers of the roots of the Narayana-Mandelbrot polynomials, rn(z). 62
4.2 Roots of r21(z) with |r21(z)| = 0.1 in red. 63
4.3 Different regions the Narayana-Mandelbrot polynomials where the roots are

not as well-conditioned with |r21(z)| = 0.05 in red. 64
4.4 Roots of r27(z), which has a dimension of 18, 559. 68
4.5 Results MATLAB gives when evaluating the eigenvalues of M28 using recur-

sion from Equation (4.10), showing numerical artefacts. 69
4.6 Results Maple gives when evaluating the eigenvalues of M28 using recursion

from Equation (4.13), again showing numerical artefacts. 69
4.7 Time taken for computing the eigenvalues of the Narayana-Mandelbrot matrices. 71
4.8 Homotopy paths for r6(z) and contour where |r6(z)| = 1. 73
4.9 Plots of homotopy paths and contour |rn(z)| = 1 of the Narayana-Mandelbrot

polynomials from n = 7 to n = 12. 74
4.10 Smallest roots of the Narayana-Mandelbrot polynomials (difference from 1/4). 75
4.11 Time taken to compute roots of rn(z) using homotopy methods. 76
4.12 Roots of r36(z), which has a degree of 578, 948. 77

vi

Chapter 1

Introduction

In this thesis, we explore two different methods for finding roots of Mandelbrot-like problems:

eigenvalue methods and homotopy methods. We are interested in finding out which of the

two methods is better in solving multivariate polynomial systems, since there are many useful

applications such as computer aided geometric design (CAGD). However, instead of looking

into multivariate polynomials system for this thesis, we have decided to retract to a simpler

problem, which is only univariate, but with large degree. The three families of polynomi-

als that we explore are the Mandelbrot polynomials, Fibonacci-Mandelbrot polynomials, and

Narayana-Mandelbrot polynomials. The last two are new to this thesis.

The recursion for the Mandelbrot polynomials [19] is

p0 = 0

pn+1 = zp2
n(z) + 1 , (1.1)

where n = 0, 1, 2, Dario Bini et al. used the Mandelbrot polynomials to test their package

MPSolve (Multiprecision Polynomial Solver), which was originally presented in [3]. MPSolve

is a package for the approximation of the roots of a univariate polynomial using the Aberth

method. According to Bini’s personal website, they were able to compute around 4 million

roots of the Mandelbrot polynomials using their updated package, MPSolve 2.0 (see [4] for

more details).

1

2 Chapter 1. Introduction

The Fibonacci-Mandelbrot polynomials and Narayana-Mandelbrot polynomials are new

families of polynomials that are similar to the Mandelbrot polynomials. However, the recursion

for both of these families of polynomials are based on their respective sequences, Fibonacci se-

quence [22] and Narayana’s cows sequence [23]. The recursion for the Fibonacci-Mandelbrot

polynomials is

q0 = 0

q1 = 1

qn+1 = zqn(z)qn−1(z) + 1 , (1.2)

where n = 1, 2, 3, Similarly, the recursion for the Narayana-Mandelbrot polynomials is

r0 = 1

r1 = 1

r2 = 1

rn+1 = zrn(z)rn−2(z) + 1 , (1.3)

where n = 2, 3, 4,

1.1 Conditioning

Before looking into the two root-finding methods that we applied to our three families of

polynomials, we first should look at the condition numbers to see whether the roots of these

polynomials are well-conditioned. The following proofs were only done for the Mandelbrot

polynomials; however, similar arguments can be made for both the Fibonacci-Mandelbrot and

Narayana-Mandelbrot polynomials.

1.1. Conditioning 3

Consider the following for the Mandelbrot polynomials:

pn(z + ∆z) � pn(z) + p′n(z)∆z (1.4)

If ξn is a root of pn and ξn + ∆ξn is a root of pn + ∆pn,

0 = (pn + ∆pn) (ξn + ∆ξn)

=���
�:0pn(ξn) + p′n(ξn)∆ξn + ∆pn(ξn)

p′n(ξn)∆ξn = −∆pn(ξn)

∴
∆ξn

ξn
= −

1
ξn p′n(ξn)

·
∆pn(ξn)

1
, (1.5)

which means that our absolute condition number is 1/p′n(z) (see [8, Section 3.2.1]). Simi-

larly, our absolute condition numbers for the Fibonacci-Mandelbrot and Narayana-Mandelbrot

polynomials are 1/q′n(z) and 1/r′n(z), respectively.

We can also look at the pseudozeros of the Mandelbrot polynomials (see [8, Section 2.4])

to confirm the result that we have gotten from calculating the condition number. Studying the

pseudozeros will further help us understand what happens if the coefficients of the Mandelbrot

polynomials are somehow changed, such as by measurement error or numerical errors. Given

ε > 0, we can define the set of pseudozeros

Λε(pn) =
{
z : (pn + ∆pn) (z) = 0 & |∆pn| ≤ ε

}
(1.6)

Since

pn(z) + ∆pn(z) = 0 , (1.7)

this means that

|pn(z)| = |−∆pn(z)| ≤ ε (1.8)

4 Chapter 1. Introduction

by construction. Therefore,

Λε(pn) =
{
z : |pn(z)| ≤ ε

}
, (1.9)

which we can use to confirm the fact that the roots of the Mandelbrot polynomials are well-

conditioned and can be located accurately.

However, this is not the only way to do pseudozeros; we can also use polynomial bases

(which we will denote as φk(z)) to compute our pseudozeros. Given the weights αk ≥ 0, ε > 0,

and 0 ≤ k ≤ n, our set of pseudozeros can also be defined as

Λε =
{
z : |pn(z)| ≤ ε · B(z)

}
(1.10)

where ∆pn =
∑n

k=0 ∆ckφk(z), and each |∆ck| ≤ ε ·αk, and B(z) =
∑n

k=0 αk |φk(z)|. In the monomial

basis, B(z) grows exponentially in dn, doubly exponentially in n; essentially, small changes in

the coefficients force large changes in the value of pn(z). The same argument can be made for

both the Fibonacci-Mandelbrot and Narayana-Mandelbrot polynomials to show that their roots

are also well-conditioned (when the monomial basis is not used).

Additionally, we need to look into the numerical stability of our recurrence relation. The

rounding errors made in the computation of the floating-point evaluation of the Mandelbrot

polynomials is, using the IEEE model [14]

fl(zp2
n + 1) = z · fl(pn)2(1 + δ1)(1 + δ2)(1 + δ3) + 1 · (1 + δ3) , (1.11)

where (1 + δ j) represents the rounding error (due to floating point numbers) that is introduced

when an arithmetic operation is performed. We can rewrite Equation (1.11) as

p̂n+1(z) = fl (pn+1(z)) = z · fl (pn(z))2 (1 + θ3) + (1 + θ1) . (1.12)

1.2. Root-finding methods 5

The notation θ3 is taken from [14]. It means that roughly 3 rounding errors,

|θn| ≤
nµ

1 − nµ
, (1.13)

where µ is machine precision. Knowing that the recursion for the Mandelbrot polynomials is

pn+1(z) = zp2
n(z) + 1, we get the following

p̂n+1(z) − pn+1(z) = zp̂2
n(z) (1 + θ3) + 1 + θ1 − zp2

n(z) − 1

= z (p̂n(z) + pn(z)) · (1 + θ3) · (p̂n(z) − pn(z)) + θ1

en+1 � 2zpn(z) · en (1 + θ3) + θ1 . (1.14)

Therefore,

en = (2z)n−1
· (pn−1(z) · pn−2(z) · · · p1(z)) e1 + O(θn) . (1.15)

From Equation (1.15), we are particularly interested in the (2z)n−1
· (pn−1(z) · pn−2(z) · · · p1(z))

part. Since we know that the largest root of the Mandelbrot polynomials is approximately

−2, substituting this into (2z)n−1, where n is, for example, 8, we get quite a large number,

which is around 16, 000. Therefore, we need to see whether (pn−1(z) · pn−2(z) · · · p1(z)) is

small enough to keep en small. Using Maple, we find that the computed values of (2z)n−1
·

(pn−1(z) · pn−2(z) · · · p1(z)) ranges from 0 to about 10, 000 when n = 8. Since our largest value

is less than 4n−1, this means that our recursion is mildly unstable: d2
n is an acceptable factor,

about what you would expect for a random polynomial.

1.2 Root-finding methods

One of the methods that we explored for root-finding is using eigenvalue methods, using these

three families of polynomials as test problems. For this method, we computed the eigenvalues

of companion matrices in order to solve for the roots of the polynomials. Instead of using

6 Chapter 1. Introduction

conventional companion matrix constructions, such as the ones found in [13], [8, Chapter 6],

and [6], we used a supersparse 1 recursively-constructed upper Hessenberg companion matrix,

inspired by Piers Lawrence. In his paper [9], he introduced this construction for the Mandelbrot

polynomials. We then used a similar construction for the Fibonacci-Mandelbrot polynomials

and Narayana-Mandelbrot polynomials. The surprising analogy between all three families of

supersparse companion matrices led us to prove that this construction works in general (proof

in Chapter 5), leading us to a genuinely a new kind of companion matrix that can offer better

numerically-conditioned for unimodular polynomials.

This new kind of companion matrix also fall into the class of Bohemian matrices, which

stands for BOunded HEight Matrix of Integers [11]. As will be seen later, the companion

matrices for these families of polynomials only contain elements {−1, 0} for the Mandelbrot

matrices, and {−1, 0, 1} for the Fibonacci-Mandelbrot and Narayana-Mandelbrot matrices.

The second method that we looked into for finding roots is homotopy continuation methods.

One early work about homotopy methods is [17], which claims that the amount of computa-

tional work is roughly proportional to the number of solutions. For each family of polynomials,

we used a special-purpose homotopy equivalent to a differential equation. Using the previous

roots as our initial conditions, the solutions of these differential equations end up being the

roots of the polynomial that we are trying to solve. When we first started, to solve these dif-

ferential equations, we used Shampine & Reichelt’s Odesuite in MATLAB (more specifically

ode45) [20]. However, because we needed to avoid singularities when integrating, we decided

to write our own ode solver (described in Chapter 2), which is very similar to MATLAB’s

ode45 routine, but has pole-vaulting capabilities. Realizing that we need to use multiple preci-

sion to compute the roots of higher iterations, we also implemented a version that uses Bailey’s

ARPREC package [2] in C++. Using homotopy methods, we were also able to look at the

smallest roots of the Mandelbrot, Fibonacci-Mandelbrot, and Narayana-Mandelbrot polyno-

mials.

1A matrix is supersparse if, it is sparse and its nonzero elements are drawn from a small set, e.g. {−1, 1}

1.2. Root-finding methods 7

Altogether, these two different methods for root-finding were tested in three families of

polynomials: Mandelbrot polynomials (Chapter 2), Fibonacci-Mandelbrot polynomials (Chap-

ter 3), and Narayana-Mandelbrot polynomials (Chapter 4). Figure 1.1 shows all of the roots

(overlaid on top of each other with the roots for the largest degree at the bottom) for each fam-

ily of polynomials, each with a grey cardioid to allow comparison of the size of the roots of

each family.

8 Chapter 1. Introduction

(a) Roots of Mandelbrot polynomials from n = 3
to n = 19.

(b) Roots of Fibonacci-Mandelbrot polynomials
from n = 4 to n = 30.

(c) Roots of Narayana-Mandelbrot polynomials
from n = 4 to n = 36.

Figure 1.1: Plots of all roots of the Mandelbrot (1.1a), Fibonacci-Mandelbrot (1.1b), and
Narayana-Mandelbrot (1.1c) polynomials, with cardioid in grey.

Chapter 2

Mandelbrot polynomials and matrices

2.1 Mandelbrot polynomials

Mandelbrot polynomials, which are used by Bini et al. [4, 3] as a test problem, are based on

the Mandelbrot set [19]

zn+1 = z2
n + c , (2.1)

where z0 = 0 and c is a complex constant. We can simplify Equation (2.1) by dividing every-

thing by c, removing the trivial root c = 0:

zn+1

c
= c

(zn

c

)2
+ 1 . (2.2)

From this, we can rename the variables in Equation (2.2) to get the Mandelbrot polynomial,

which is defined by the recurrence relation

p0(z) = 0

pn+1(z) = zp2
n(z) + 1 , (2.3)

where n = 0, 1, 2, 3,

9

10 Chapter 2. Mandelbrot polynomials and matrices

Expanding Equation (2.3) using the monomial basis expansion, the first six polynomials of

pn(z) are

p0(z) = 0

p1(z) = 1

p2(z) = z + 1

p3(z) = z3 + 2z2 + z + 1

p4(z) = z7 + 4z6 + 6z5 + 6z4 + 5z3 + 2z2 + z + 1

p5(z) = z15 + 8z14 + 28z13 + 60z12 + 94z11 + 116z10 + 114z9

+ 94z8 + 69z7 + 44z6 + 26z5 + 14z4 + 5z3 + 2z2 + z + 1 . (2.4)

A few noticeable properties of the Mandelbrot polynomials include [9]:

1. The degree of pn(z) for k > 0 is dn = 2n−1 − 1.

2. The roots of pn(z) are periodic points of the Mandelbrot set with period n.

3. The coefficients of pn(z) when expressed in the monomial basis are nonnegative integers.

Indeed pn(z) is unimodular 1.

4. Derivatives can be computed from the recurrence relation by p′0(z) = 0 and for all n ≥ 0

by

p′n+1(z) = pn(z)
(
pn(z) + 2zp′n(z)

)
.

5. pn(z) and p′n(z) can simultaneously be evaluated by their recurrence relations at a cost of

O(n) or O(ln dn) operations.

Proof of Property 1 From the recurrence relation, shown in Equation (2.3), it can easily be

1Polynomials that are unimodular have coefficients that increase to a unique maximum then decrease when the
terms are ordered by their degree.

2.1. Mandelbrot polynomials 11

seen that the degree of the polynomials is

dn = 2 · dn−1 + 1 . (2.5)

We can prove by induction that the degree of the Mandelbrot polynomials can be expressed as

dn = 2n−1 − 1 . (2.6)

First, we can substitute n = 1 into Equation (2.6):

d1 = 21−1 − 1

= 20 − 1

= 1 − 1 = 0 , (2.7)

which we can see from p1(z) in Equation (2.4) is true. Assuming when n = k, dk = 2k−1 − 1 is

true. Then, when n = k + 1,

dk+1 = 2 · dk + 1

= 2 · (2k−1 − 1) + 1

= 2 · 2k−1 − 2 + 1

= 2 · 2k−1 − 1

= 2k+1−1 − 1 (2.8)

which matches to Equation (2.6). This, therefore, proves that the degree of the Mandelbrot

polynomials is dn = 2n−1 − 1.

Sketch of Property 2 The roots of pn(z) are periodic points of the Mandelbrot set with pe-

riod n. For example, pn(−1) ∈ {0, 1}. Indeed, p2(−1) = 0, p3(−1) = 1, p4(−1) = 0, and the

cycle repeats after that.

12 Chapter 2. Mandelbrot polynomials and matrices

2.2 Condition numbers and pseudozeros

We will first look at the condition numbers of the roots of the Mandelbrot polynomials. As

mentioned in Chapter 1, the condition number for the roots is 1/p′n(z). Figure 2.1 shows

the log-log plot of both the minimum and maximum condition numbers against the degree

of the Mandelbrot polynomials. Here, the circles represent the maximum condition numbers,

in which the minimum
∣∣∣p′n(ξn)

∣∣∣, where ξn is a root of pn(z), were used to compute our condition

numbers. It can be seen that none of the condition numbers here exceed the value of 1. On

the other hand, the crosses are the minimum condition numbers. Looking at the line of best fit

running through these data points, some roots become better conditioned as the degree of the

polynomials increase. The slope of this line is around −2 (the lower line with a slope of −2 is

there for reference).

Figure 2.1: Plot of both mininum and maximum condition numbers against degree of the
Mandelbrot polynomials.

We can also plot the pseudozeros of the Mandelbrot polynomials by the plotting the con-

tours of pn(z) = ε, where ε is an arbitrarily small number. Figure 2.2 illustrates this idea: it

shows where the contours |p15(z)| = 0.1 lie. Most of the contours that surround each of the

2.3. Mandelbrot matrices 13

Figure 2.2: Roots of p15(z) with |p15(z)| = 0.1 in red.

roots are too small to be seen, meaning that these roots are well-conditioned. However, the

roots in which the contours that surrounds it can be seen are those roots that are not as well-

conditioned. Figure 2.3 shows |p15(z)| = ε, where ε = 0.01, in red, at the most interesting

parts of the Mandelbrot polynomials, where the contours can be seen in Figure 2.2, but has the

contour |p15(z)| = 0.01 plotted instead.

Knowing that the roots are well-conditioned, we can now look at two different methods in

solving the Mandelbrot polynomials: an eigenvalue method and a homotopy method.

2.3 Mandelbrot matrices

The Mandelbrot matrices, first thought of by Piers Lawrence [9], are recursively-constructed

upper Hessenberg matrices that only contains {−1, 0}, in which the eigenvalues are the roots of

14 Chapter 2. Mandelbrot polynomials and matrices

(a) (b)

(c) (d)

Figure 2.3: Different regions the Mandelbrot polynomial with a degree of 16, 383, where the
roots are not as well-conditioned, with |p15(z)| = 0.01 in red.

2.3. Mandelbrot matrices 15

the corresponding Mandelbrot polynomials. We begin our recursive matrices with

M2 =

[
−1

]
, (2.9)

which corresponds to p2(z). It is obvious that the eigenvalue of Equation (2.9) is −1, which is

clearly the root of p2(z) = z + 1. Let rn =

[
0 0 . . . 1

]
and cn =

[
1 0 · · · 0

]T

, where

the length of both vectors are dn = 2n−1 − 1. Then, our matrix construction is

Mn+1 =


Mn −cnrn

−rn 0

−cn Mn

 ,

for all n > 1. The first few Mandelbrot matrices are

M3 =


−1 0 −1

−1 0 0

−1 −1

 , (2.10)

and

M4 =



−1 0 −1 −1

−1 0 0

−1 −1

−1

−1 −1 0 −1

−1 0 0

−1 −1



. (2.11)

Evaluating the eigenvalues of both M3 and M4, we can see that the eigenvalues are the roots

of p3(z) and p4(z) respectively. We can show that pn(z) = det(zI − Mn) for all n > 0 using

induction and the Schur complement [24], which will be shown in Chapter 5.

16 Chapter 2. Mandelbrot polynomials and matrices

Figure 2.4: All 32, 767 roots of p16(z), produced in Maple 2016.

2.3.1 Using full matrices

Using Maple 2015, we were able to compute up to n = 16, which is 32, 767 roots using a

machine with 32 GB of memory, shown in Figure 2.4. Although the Mandelbrot matrices are

sparse, initially, for simplicity’s sake, we used full matrices in our eigenvalue computation.

Figure 2.5 shows the time taken to compute the eigenvalues of the Mandelbrot matrices as the

dimension dn of the matrix increases. As you can see from the figure, the line fitted to the data

(the bottom red line) is not as steep as the reference line (the top line), which has a slope of 3.

In fact, the slope of the line of fit is around 2.3. Therefore, this method has a time complexity

of order less than O(d3
n). This fact is surprising because we expected this method to have a

time complexity of exactly O(d3
n). We believe that the time complexity calculated here is less

than what we expected because the algorithm effectively uses a divide and conquer approach

to solve for the eigenvalues due to the structure of these companion matrices, thus reducing the

time complexity. In detail, we believe (but have not proved) that the matrices reduce quickly,

2.3. Mandelbrot matrices 17

breaking into roughly equal halves.

Figure 2.5: Time taken for eigenvalue computation of Mandelbrot matrices. The slope of the
line of best fit is around 2.3.

Since we are using full matrices in our eigenvalue computations, this means that the space

complexity is quite large, O(d2
n), and since the matrices that we are working with are quite

sparse, most of the numbers that are stored would actually be zeros. Therefore, using the

sparse data type would help us save space when storing our matrices, and hopefully help us

compute more roots. However, computing eigenvalues using sparse data structures do present

some difficulties which will be discussed in the next subsection.

2.3.2 Using sparse matrices

To take advantage of the sparseness of the matrices when solving for the eigenvalues, we can

use MATLAB’s eigs routine, which uses Arnoldi iteration to solve for eigenvalues. Unlike

solving for eigenvalues using full matrices, we cannot solve for all of the eigenvalues at once.

Instead, we have to look at different regions and compute the eigenvalues that are in each region

of interest, and then piece all of the results together. This introduces some difficulties when

18 Chapter 2. Mandelbrot polynomials and matrices

trying to find all of the eigenvalues of the Mandelbrot matrices.

The first issue is determining what regions to look at that would help us compute our eigen-

values. Borrowing the idea from homotopy methods (which will be discussed later in this

chapter), we can use the roots from the previous iteration to help us locate the new roots. How-

ever, for matrices of higher dimensions, it becomes increasingly difficult to locate all of the

eigenvalues. Therefore, as the dimension of the matrices increases, the number of eigenval-

ues that need to be found at each region also increases. Also, since we are computing several

eigenvalues from each region, it means that we will end up getting duplicates. This introduces

another challenge of eliminating all of the duplicate eigenvalues that were computed, so that

each eigenvalue only appears once. Since these eigenvalues are computed numerically, the

eigenvalue duplicates may not necessarily be exactly the same. This imposes another chal-

lenge when comparing two results in determining whether they are in fact duplicates of each

other or whether they are distinct roots, but located near each other. Unfortunately, using this

routine, we were only able to compute all of the roots up to n = 13, which is only 4, 095 roots.

In the interest of time, we decided not to pursue this any further.

The time taken to compute these eigenvalues of the Mandelbrot polynomials using sparse

matrices can be seen in Figure 2.6. The slope of the line that passes through the data points is

around 1.3; the line above it is a reference for the steepness of a slope of 2. Although, here,

it shows that the time complexity is of order O(d1.3
n), which is less than the time complexity

when using full matrices, it does not seem quite correct. However, we are lacking some data

since we are only considering the time computed for up to n = 13. Once higher dimensions are

achieved using this method, the time complexity may increase; it might possibly have a higher

time complexity than the method that uses full matrices. Therefore, more research would need

to be done.

2.4. Homotopy method 19

Figure 2.6: Time taken for eigenvalue computation using sparse matrices. The slope of the line
of best fit is around 1.3.

2.4 Homotopy method

Consider this special-purpose homotopy

Hn(ζ, τ) = ζ(pn−1(ζ))2 + τ2 . (2.12)

When τ = 0, it is clear that the zeros of the homotopy is ζ = 0, and the zeros (twice) of

pn−1(z), which, in other words, are the roots ξn−1 of the previous polynomials. On the other

hand, when τ = 1, Hn(ζ, τ) is the same as our Mandelbrot polynomials, which means that the

roots of our homotopy are equivalent to the roots of pn(z). Therefore, by differentiating both

sides of Equation (2.12) with respect to τ, we obtain the following differential equation, which

20 Chapter 2. Mandelbrot polynomials and matrices

describes a path from the roots of ζ(pn−1(ζ))2 to the roots of pn(ζ), provided that p′n(ζ) , 0:

0 = Hn(ζ, τ)

0 =
d
dτ

Hn(ζ, τ)

=
dζ
dτ
· p2

n−1(ζ) + 2ζ · pn−1(ζ) · p′n−1(ζ)
dζ
dτ

+ 2τ

=
dζ
dτ

(
p2

n−1(ζ) + 2ζpn−1(ζ)
)

+ 2τ

= p′n(ζ)
dζ
dτ

+ 2τ . (2.13)

Thus,
dζ
dτ

= −
2τ

p′n(ζ)
, τ ∈ [0, 1] . (2.14)

However, since our initial conditions include the roots of the previous polynomial, ξn−1, it

means that we encounter a singularity when we first solve this differential equation numerically.

To reiterate, p′n(z) = pn−1(z)(pn−1(z)+2zp′n−1(z)), and since ξn−1 is a double root of zp2
n−1(z), this

means that p′n(ξn−1) = 0. Additionally, since ξn−1 is a double root, this also means that two new

roots ξn will stem from this one initial condition. In order to achieve this, we can use Taylor

series expansion to perturb our initial conditions so that our solutions will go on two different

paths, thus giving us two distinct solutions for each previous root. Let ζ = ξn−1 + aτ + O(τ2),

where τ is arbitrarily small. To find what the coefficient a is, we can do the following:

pn−1(ζ) = pn−1(ξn−1 + aτ)

pn−1(ξn−1 + aτ) = pn−1(ξn−1) + aτp′n−1(ξn−1) + O(τ2)

pn−1(ξn−1 + aτ) = aτp′n−1(ξn−1) + O(τ2) . (2.15)

Substituting this into the right hand side of Equation (2.12) and setting this expression to 0, we

get the following:

0 = (ξn−1 + aτ)(aτp′n−1(ξn−1))2 + τ2 + O(τ3) . (2.16)

2.4. Homotopy method 21

From here, we can collect the coefficients of powers of 2 for τ, and solve for a, which is

a = ±
1

p′n−1(ξn−1)

√
−1
ξn−1

. (2.17)

As we can see from Equation (2.17), a can either be positive or negative. This means that we

can perturb our initial conditions in two different directions. Instead of using

ζ(0) = ξn−1 , (2.18)

as our initial condition, we would use

ζ(τ) = ξn−1 +
τ

p′n−1(ξn−1)

√
−1
ξn−1

(2.19)

and

ζ(τ) = ξn−1 −
τ

p′n−1(ξn−1)

√
−1
ξn−1

, (2.20)

resulting in finding two different roots. Therefore, using this technique, we are able to perturb

our initial condition, ξn−1, to avoid the singularity that we encounter when τ = 0. This is

essentially the Puiseux expansion of ζ(τ):

ζ(τ) = ξn−1 ± aτ + O(τ2) (2.21)

and the reason we used τ2 instead of just simply τ in the homotopy.

Unfortunately, these are not the only singularities that we encounter when solving Equation

(2.14). As an example, we can look at the singularities that we encounter when n = 3. The

differential equation for p3(z) is
dζ
dτ

=
−2τ

3ζ2 + 4ζ + 1
, (2.22)

where the initial conditions are ζ(0) = 0,−1. Looking at Equation (2.22), it is quite obvious

22 Chapter 2. Mandelbrot polynomials and matrices

that we will encounter singularities when ζ(τ) = −1 and −1
3 , which is when τ � 0.3849. This

will give us problems when trying to integrate along the real τ-axis. Therefore, we need to use

some method, such as the pole-vaulting technique, in order to avoid these singularities.

2.5 Pole-Vaulting

The pole-vaulting technique is a way to avoid singularities by backing off from the pole slightly,

and then going in a semicircular arc in the complex τ-plane (see [8, Section 12.11.1]), also

visually shown in Figure 2.7. Our semicircular path can be defined as

τ = p − ρeiθ , (2.23)

where p is the location of our singularity (which is a pole), and ρ is the radius of our semicir-

cular arc (or mathematically, ρ = p − τ). From Equation (2.23), we can see that when θ = 0,

τ = p − ρ, and when θ = π, τ = p + ρ. This means that we will be hopping over the pole by

taking 0 ≤ θ ≤ π.

τ = 0 1
x
p

ρ

Figure 2.7: Diagram demonstrating pole-vaulting technique (p is the pole, and ρ is the radius
of the semicircular arc).

Therefore, our ordinary differential equation for pole-vaulting becomes

dζ
dθ

=
dζ
dτ

dτ
dθ

=
−2i(p − ρeiθ)ρe−iθ

p′n(ζ)
, θ ∈ [0, π]. (2.24)

Using this pole-vaulting technique, we can easily integrate Equation (2.22). Figure 2.8 shows

the paths (in black) that were taken to achieve the roots for p3(z). In the figure, the blue circles

are the starting points, ζ = 0 and ζ = ξ2 = −1, and the red crosses are the final roots, ξ3. The

2.5. Pole-Vaulting 23

grey line is the contour |p3(ζ)| = 1. Notice that in this figure, two of the final roots stem from

our initial point ζ = ξ2 = −1, and only one root comes from ζ = 0. This matches our previous

comment about needing to perturb our initial conditions so that we can get two separate paths

from this initial point. Figure 2.9 shows the homotopy paths of the Mandelbrot polynomials

from n = 4 to n = 9.

Figure 2.8: Homotopy paths of p3(z) and contour where |p3(z)| = 1.

2.5.1 Residues

Our discussion about pole-vaulting thus far only looks at the case where we are integrating in

a semi-circular arc above the real axis. However, we are also interested in knowing whether

integrating along a semi-circular path below the real-axis would give us the same result. To

determine whether there is any difference, we can compute the residues by integrating around

the pole (θ ∈ [0, 2π]), and see whether the z values when θ = 0 is the same as the z values

24 Chapter 2. Mandelbrot polynomials and matrices

(a) n = 4 (b) n = 5

(c) n = 6 (d) n = 7

(e) n = 8 (f) n = 9

Figure 2.9: Plots of homotopy paths and contour |pn(z)| = 1 of the Mandelbrot polynomials
from n = 4 to n = 9.

2.5. Pole-Vaulting 25

when θ = 2π. In MATLAB, using our own ode solver (which will be discussed later in this

chapter), the residues are of order O(10−2). Since this value is much smaller than the distance

from where we start integrating our differential equation in the complex plane to our pole, we

believe that it does not matter whether we use a pole-vaulting technique to integrate above or

below the real axis. We also used multiple precision to compute the residues to ensure that

the values that we computed for our residues were just simply due to the numerical technique

that was used. The residues computed with higher precision are O(10−5), which is less than the

value that we computed when using MATLAB, as expected. Therefore, this confirms that we

should be able to compute all of the roots of the Mandelbrot polynomials regardless of whether

we are integrating above or below the real axis.

2.5.2 Distinctness

From the paper [10], we learn that all of the roots in this family of polynomials are distinct.

To ensure that this statement is true, we need to make sure that the paths of integration of all

routes taken to find the roots do not cross, thus leading us to find all the roots without getting

any duplicates. To illustrate this, we can see that none of the homotopy paths cross in each

plot of Figure 2.9. However, this is not a strong enough argument to confirm that all paths

are distinct. We also need to prove uniqueness, which requires the Lipschitz condition in a

domain R to be satisfied in order for there to be at most one solution [5, Chapter 6.3]. We,

however, already know that the solutions of the differential equations are not unique if our

initial condition is ζ(0) = ξn−1, since it is a double root. Therefore, in place of ζ(0) = ξn−1

as our initial conditions, we will use our perturbed initial conditions (see Equations (2.19) and

(2.20)).

Consider the following general initial value problem:

x′ = f (t, x), x(τ) = A . (2.25)

26 Chapter 2. Mandelbrot polynomials and matrices

We say that f satisfies a Lipschitz condition in a region R if there is a constant L ≥ 0 such

that [5, Chapter 6.2]

| f (t, u) − f (t, v)| ≤ L |u − v| , if (t, u), (t, v) ∈ R . (2.26)

Letting our region R = C ∼ S , where S is a small region surrounding each singularity, and

applying this definition to our homotopy for the Mandelbrot polynomials,

| f (t, u) − f (t, v)| ≤ L |u − v| =

∣∣∣∣∣∣ −2t
p′n(u)

−
−2t
p′n(v)

∣∣∣∣∣∣
=

∣∣∣∣∣∣−2t
(
p′n(v) − p′n(u)

)
p′n(u)p′n(v)

∣∣∣∣∣∣ . (2.27)

Defining

p′n(v) = p′n(u + v − u)

= p′n(u) + p′′n (u)(v − u) + O(v − u) , (2.28)

we get

L |u − v| =

∣∣∣∣∣∣−2t
(
p′n(u) + p′′n (u)(v − u) + O(v − u)

)
p′n(u)p′n(v)

∣∣∣∣∣∣
�
−2tp′′n (u)
p′n(u)p′n(v)

|v − u| . (2.29)

Therefore,

L =
−2tp′′n (u)
p′n(u)p′n(v)

. (2.30)

However, since p′n(u) ≈ p′n(v), we can rewrite Equation (2.30) as

L =
−2tp′′n (u)
(p′n(u))2 . (2.31)

2.6. Our custom ode solver 27

As long as we avoid the singularities, when p′n(z) = 0, we will be following a continuous path,

which means that the second derivative is bounded. From this, we know that L is also bounded,

thus satisfying the Lipschitz condition. Therefore, this shows that the solutions to our initial

value problems are in fact unique.

2.6 Our custom ode solver

When we first started, we used MATLAB’s ode45 routine to solve our differential equations

to find the roots of the Mandelbrot polynomials. However, instead of using the pole-vaulting

technique, we decided to integrate in the complex plane using a triangular pathway. We were

able to compute all of the roots up to n = 20, which is 524, 288 roots, until some pathways

diverged off to infinity when computing some of the roots when n = 21, due to the increased

density of the singularities. Therefore, we decided to write our own ode solver in MATLAB

(and eventually in C++) to solve these differential equations so that we can step around the

roots by using pole-vaulting. Although we could have used MATLAB’s ode45 routine for

the pole-vaulting technique, we did not want to compute all of the singularities as it becomes

computationally expensive for high degrees. Therefore, our ode solver is based on MATLAB’s

ode45 routine, which uses the Runge-Kutta-Fehlberg algorithm, but instead of terminating the

program when it reaches a singularity, it is able to step around the singularity using the pole

vaulting technique described in the previous section and continue integrating until it reaches

the final point, which in our case is τ = 1.

2.6.1 Runge-Kutta Methods

Euler’s method is the simplest method for solving an ordinary differential equation numerically.

However, it is not very accurate (or at least not accurate enough for our liking) since it is only

a first order method. To improve on this, we could use Taylor series expansion to increase the

order of our solution by using higher order derivatives. Since p′n(z), p′′n (z) and higher order

28 Chapter 2. Mandelbrot polynomials and matrices

approximations are also available in O(n), i.e. O(ln dn), flops, Taylor series methods could

well be viable for this problem. However, we decided to take another approach: to evaluate

the derivative function f (t, x(t)) more than once at different points, and then use a weighted

average of the values thus obtaining an approximation of the slope of the secant. This idea

gives what are called the Runge-Kutta (RK) methods, which we have found to be adequate for

our needs.

There are different RK methods in use [8, Chapter 13]. If we let the weights be bi, the time

step be h, and i = 1, 2, 3, . . . , s, the general form for an explicit Runge-Kutta methods is

xk+1 = x0 + h(b1k1 + · · · + bsks) = xk + h
s∑

i=1

biki , (2.32)

where the stages are

k1 = f (tk, xk)

k2 = f (tk + c2h, xk + a21k1)

k3 = f (tk + c3h, xk + a31k1 + a32k2)

...

ks = f
(
tk + csh, xk + as1k1 + as2k2 + · · · + as,s−1ks−1

)
, (2.33)

which can also be expressed as

ki = f

tk + cih, xk + h
i−1∑
j=1

ai jk j

 , (2.34)

Here, the ci and ai j are the weights of our previously computed values of k j, j < i. We can

conveniently summarize all of the coefficients in a tableau called a Butcher tableau, which has

2.6. Our custom ode solver 29

the following form:

c A

bT
=

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

, (2.35)

where A is a lower-triangular matrix with zeros as diagonal entries.

For robustness and to ensure quality of the solution, we need an adaptive step size scheme.

The goal of an adaptive step scheme is to take the largest stepsize possible while ensuring that

the absolute local truncation error is less than a tolerance given by the user for every step.

Here, we have decided to use the Runge-Kutta-Fehlberg method (RKF45) [12], which is a

fourth-order method with an error estimate of order O(h5). The Butcher tableau for the Runge-

Kutta-Fehlberg method, where the first row of coefficients at the bottom of the table gives the

fifth-order accurate method, and the last row gives the fourth-order accurate method, is

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

. (2.36)

30 Chapter 2. Mandelbrot polynomials and matrices

From Equation (2.36), we can see that the fourth-order approximation is

xi+1 = xi +
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5

k5 (2.37)

and our fifth-order approximation is

x̃i+1 = xi +
16

135
k1 +

6656
12825

k3 +
28561
56430

k4 −
9

50
k5 +

2
55

k6 . (2.38)

The local truncation error is

τi+1 = x̃i+1 − xi+1 . (2.39)

We can use the truncation error to help us calculate the size of the next step. By Taylor’s

theorem, our local truncation error is proportional to

τi+1 = khp+1 (2.40)

for some constant k and where p, in our case, is 4. So, we can multiply a scalar q with h to get

the following:

τi+1(qh) = kqphp

= qpkhp

= qpτi+1(h)

≈ qp (x̃i+1 − xi+1) . (2.41)

Therefore, to make

|τi+1(qh)| ≈ |qp (x̃i+1 − xi+1) | < tol , (2.42)

we want

q ≤
[

tol
|x̃i+1 − xi+1|

]1/p

, (2.43)

2.7. Accuracy of the roots 31

but in practice, we use

q ≤ 0.8
[

tol
|x̃i+1 − xi+1|

]1/p

. (2.44)

Therefore, the optimal step size for the next step is qh. This is a very primitive way of step-size

control, but has worked adequately for these problems, most notably because we may improve

the approximate answer by a Newton step on pn(z) = 0.

We can take advantage of the automation of the step sizes to help us locate singularities

that are in the way. In our ode solver, once the step size falls below a certain size, say 10−6, the

method will start integrating around the singularity using the Runge-Kutta-Fehlberg method

once again. As a reminder, the differential equation that is used to integrate around the singu-

larity is given as
dζ
dθ

=
dζ
dτ

dτ
dθ

=
−2i(p − ρeiθ)ρe−iθ

p′n(ζ)
, θ ∈ [0, π] ,

which can also be found as Equation (2.24). The problem that we encounter here is that we

actually do not know what p or ρ are since we do not know where the exact location of the

singularities are. Therefore, to estimate ρ, which is the distance that we are from the pole, we

can use Newton’s method

ρ = ζi −
p′n(ζi)
p′′n (ζi)

, (2.45)

since the denominator of our differential equation is just simply p′n(ζ), and we can easily cal-

culate p′n(ζi) and p′′n (ζi).

Once the semi-circular path is finished integrating (when θ = π), our ode solver continues

integrating along its original path until it reaches τ = 1.

2.7 Accuracy of the roots

To check for the accuracy of these roots, we can calculate the residuals by evaluating pn(ξn).

We expect that we can use Newton’s method to reduce the size of the residuals of each of the

roots, which will be discussed in the following subsection.

32 Chapter 2. Mandelbrot polynomials and matrices

2.7.1 Newton polishing

To improve on the accuracy of our roots, we expect that we can use Newton’s method to polish

the roots:

ξn = ξn −
pn(ξn)
p′n(ξn)

. (2.46)

We only polish each root once as we fear polishing the roots any more than that may cause the

roots to skip over to another root. However, Newton’s method may not actually give us better

results. As we can see from the paper [10] by Corless and Lawrence, Newton’s method has

problems when p′′n (z) is too large, which the authors found out when trying to find the largest

roots of the Mandelbrot polynomials.

The authors began with the observation that the largest root is quite close to, but slightly

closer to zero than, −2. In order to use Newton’s method, the derivatives need to be calculated,

which they found to be (at z = −2)

p′n(z) =
4n−1 − 1

3
, (2.47)

which resulted in the Newton estimate to be

zn � −2 +
3

4n−1 − 1
. (2.48)

However, the Newton estimate above is not quite right: the error of Equation (2.48) is O(4−n),

but the guess is already O(4−n) accurate, so taking a Newton step hardly improves this estimate.

Therefore, we need to look at the growth of higher derivatives. The Newton estimate is based

on the expansion

pn(−2 + ε) = pn(−2) + p′n(−2)ε +
1
2

p′′n (−2)ε2 + · · · , (2.49)

but neglects the terms of O(ε2), since they are usually benign. Using Maple’s rsolve, the

2.8. Smallest roots 33

second derivative of the Mandelbrot polynomial evaluated at −2 is

p′′n (−2) = −
1

27
42n +

(
1
3
−

k
9

)
4n −

8
27

, (2.50)

which exposes the problem with Newton’s method. Here, p′′n (−2) is O(ε−2), so we cannot

neglect the O(ε2) term in this case. In [10], the authors go on to find an analytical expression

for the largest magnitude real roots of the Mandelbrot polynomials, but we shall not need that

here.

2.8 Smallest roots

We can also use homotopy methods, as described above, to find the smallest roots, sn, of the

Mandelbrot polynomials by just simply using the smallest root from the previous iteration as

our starting point. We empirically deduce from our computations that that sn has the form:

sn =
1
4

+ αRen−βRe ± iαImn−βIm + h.o.t. (2.51)

We can plot the real (minus 1/4) and imaginary part of the smallest roots in a log-log plot,

shown in Figure 2.10 to compute βRe and βIm, which turn out to be, to the accuracy that we

use, 2 and 3 respectively. However, we are not sure that these are exact. Therefore, we can

approximate

sn �
1
4

+
αRe

n2 ±
αIm

n3 . (2.52)

Knowing what βRe and βIm are, we can compute αRe and αIm, which are approximately 9.869

and 58.81, respectively. Corless and Lawrence [10] conjectured that αRe is π2. This work does

not confirm that conjecture, but at least it does not contradict it, because π2 � 9.8696044

34 Chapter 2. Mandelbrot polynomials and matrices

(a) Real part (b) Imaginary part

Figure 2.10: Log-log plots of smallest roots sn of Mandelbrot polynomials (difference from
1/4)

2.9 Results for homotopy methods

We were able to compute in MATLAB, using our own ode solver, all the roots of the Man-

delbrot polynomials up to n = 22, which has a degree of 2, 097, 151 to the order of O(10−4)

precision (see Figure 2.12). However, according to Bini’s personal website, they were able to

solve for around 4 million roots, which is one more iteration that what we have computed.

The time that it took to compute the roots using a homotopy method can be seen in Figure

2.11. In this figure, the line of best fit that runs through the data points has a slope of around

0.92, which is less than 1 (the line above our data is a reference to show the steepness of a line

with a slope of 1). Computationally speaking, this does not make any sense. There is a lower

bound on the complexity of O(dn) because we have to output dn roots; further, evaluating a

residual at each root costs O(ln dn) flops, making an overall lower bound of O(dn ln dn). What

must be happening here is that the “constant” hidden by the O symbol is larger for the first few

n, and only is asymptotically constant. The roots are getting easier to find for larger dn.

As we compute the roots using our custom ode solver in MATLAB, we notice that we lose

accuracy as the iteration increases. We believe that the residuals are getting larger because of

the mild instability of the recurrence relation. Therefore, we need to use multiple precision in

order to compute the roots of higher iterations. We used David Bailey’s ARPREC package [2]

2.9. Results for homotopy methods 35

for arbitrary precision in C++. Unfortunately, the ARPREC package does not lend itself to

OpenMP parallelization since it is not entirely thread safe [1]. Despite this, we were able to

compute up to n = 19, which has a degree of 262, 143 thus far with the maximum residual of

O(10−11).

Figure 2.11: Time taken to compute roots of Mandelbrot polynomial using a homotopy method.
The line of best fit has a slope about 0.92.

36 Chapter 2. Mandelbrot polynomials and matrices

Figure 2.12: All 2, 097, 151 roots of the Mandelbrot polynomial p22(z). These roots were
produced in MATLAB using our own ODE solver.

Chapter 3

Fibonacci-Mandelbrot polynomials and

matrices

3.1 Introduction

The Fibonacci sequence, which is Sequence A000045 of the Online Encyclopedia of Integer

Sequences [22] is a widely known sequence. It begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (3.1)

and is generated by the recursion

Fn = Fn−1 + Fn−2 (3.2)

with F0 = 0 and F1 = 1. There is a plethora of resources such as [16], [18], and the references

therein, that talk about the Fibonacci sequence which can be referred to if the reader wants to

learn more about the Fibonacci sequence.

37

38 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

3.1.1 Fibonacci-Mandelbrot polynomials

The Fibonacci-Mandelbrot polynomials are very similar to the Mandelbrot polynomials, de-

scribed in the previous chapter, but are slightly different. As a reminder, the recursion for the

Mandelbrot polynomials is

pn+1(z) = zp2
n + 1 , (3.3)

where p0 = 0. The Fibonacci-Mandelbrot polynomials, on the other hand, have the recursion

q0(z) = 0 , q1(z) = 1

qn+1(z) = zqn(z)qn−1(z) + 1, (3.4)

where n = 1, 2, 3, Instead of taking the polynomial from the previous iteration and squaring

it, we are multiplying the polynomials from the previous two iterations together. This is the

reason why it is called the Fibonacci-Mandelbrot polynomials.

Expanding Equation (3.4) using the monomial basis expansion, we can get the first few

polynomials:

q0(z) = 0

q1(z) = 1

q2(z) = 1

q3(z) = z + 1

q4(z) = z2 + z + 1

q5(z) = z4 + 2z3 + 2z2 + z + 1

q6(z) = z7 + 3z6 + 5z5 + 5z4 + 4z3 + 2z2 + z + 1

q7(z) = z12 + 5z11 + 13z10 + 22z9 + 28z8 + 28z7 + 23z6 + 16z5 + 10z4 + 5z3 + 2z2 + z + 1 .

(3.5)

3.2. Condition numbers and pseudozeros 39

Some properties of the Fibonacci-Mandelbrot polynomials include:

1. The leading and trailing coefficients are 1.

2. All coefficients are positive integers.

3. The polynomials are unimodular.

4. The next-to-leading coefficient is a Fibonacci number.

5. Put dn = deg qn. Then d1 = 0, d2 = 0, dn+1 = dn + dn−1 + 1 or dn = Fn − 1, where Fn is a

Fibonacci number (see Equation (3.2)).

6. The roots of qn(z) lead to periodic points of qn+1(z) = zqn(z)qn−1 + 1, of period n − 2. For

instance, q3(−1) = 0, q4(−1) = 1, q5(−1) = 1, and then repeats: qn(−1) = {0, 1, 1}.

7. The coefficients of qn grow doubly exponentially: O(φφ
n
), φ = 1+

√
5

2 � 1.618

3.2 Condition numbers and pseudozeros

Similar to the Mandelbrot polynomials, the absolute condition number of the roots is 1/q′n(z).

Figure 3.1 shows the minimum and maximum condition numbers of the roots of the Fibonacci-

Mandelbrot polynomials. The maximum condition numbers are represented by the circles, and

are computed by taking the reciprocal of the minimum value of
∣∣∣q′n(z)

∣∣∣. On the other hand, the

minimum condition numbers are represented by the crosses, and computed by taking the recip-

rocal of the maximum value of
∣∣∣q′n(z)

∣∣∣. Just as we have seen for the Mandelbrot polynomials,

the maximum condition number for the Fibonacci-Mandelbrot polynomials is also 1, which

means that the roots are well-conditioned. The slope for the line of best fit for the minimum

condition number for the Fibonacci-Mandelbrot polynomials is around −1.9, which is slightly

greater than −2. The line that is below the lines of best fit is for reference; it has a slope of −2.

Additionally, we can look at the pseudozeros of the Fibonacci-Mandelbrot polynomials by

plotting the contours at fairly small values of the polynomials and see where these contours lie

40 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.1: Minimum and maximum condition numbers of the roots for Fibonacci-Mandelbrot
polynomials.

with respect to the location of the roots. Figure 3.2 shows the roots of q15(z) with the contours

of |q15(z)| = 0.2 in red. Here, we can see that the contours that are visible encircles the roots

quite closely, which mean that the roots are well-conditioned. We can look closer into some

of the more interesting regions (that contain more red) of the roots of Fibonacci-Mandelbrot

polynomials, and reduce the size of the contour that we are looking into for these particular

regions. In Figure 3.3, we zoom into 4 different regions of the roots of q15(z), and plotted

|q15(z)| = 0.05 instead of |q15(z)| = 0.2.

3.3 Fibonacci-Mandelbrot matrices

Using Piers Lawrence’s idea of using supersparse companion matrices to compute the roots

of the Mandelbrot polynomials, pn(z), we can create analogous supersparse matrices for the

3.3. Fibonacci-Mandelbrot matrices 41

Figure 3.2: All 609 roots of q15(z) with |q15(z)| = 0.2 in red.

42 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

(a) (b)

(c) (d)

Figure 3.3: Different regions the Fibonacci-Mandelbrot polynomials where the roots are not as
well-conditioned with |q15(z)| = 0.05 in red.

3.3. Fibonacci-Mandelbrot matrices 43

Fibonacci-Mandelbrot polynomials, qn(z). We start with

M3 = [−1], (3.6)

in which the eigenvalue, −1, is the root of q3(z) = z + 1 and

M4 =

 0 1

−1 −1

 , (3.7)

where the eigenvalues, −1
2 ±

√
3i

2 , are the roots of q4(z) = z2 + z + 1. Also, note that

MT
4 =

 0 −1

1 −1

 (3.8)

also leads to a similar family. However, we decided to use Equation (3.7) so that the subdiago-

nal of these family of companion matrices will always be −1.

Let rn =

[
0 0 · · · 1

]
and cn =

[
1 0 · · · 0

]T

be row and column vectors of length

dn, where dn is the degree of the polynomial, qn(z). Then, our matrix construction would be

Mn+1 =


Mn (−1)dn+1cnrn−1

−rn 0

−cn−1 Mn−1

 (3.9)

for all n > 2. The first few Fibonacci-Mandelbrot matrices are

M5 =



0 1 1

−1 −1

−1

−1 −1


, (3.10)

44 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

and

M6 =



0 1 0 1 −1

−1 −1 0 0

−1 0 0

−1 −1

−1

−1 0 1

−1 −1



. (3.11)

Computing the characteristic polynomials for both Equations (3.10) and (3.11), they both

match the Fibonacci-Mandelbrot polynomials, q5(z) and q6(z), respectively. We can also con-

struct the Fibonacci-Mandelbrot matrices slightly differently: we can swap Mn and Mn−1, and

change rn and cn to the correct lengths. Thus, the recursion for this companion matrix is

Mn+1 =


Mn−1 (−1)dn+1cn−1rn

−rn−1 0

−cn Mn

 , (3.12)

where M3 and M4 are the same as above. Therefore, the next few Fibonacci-Mandelbrot ma-

3.3. Fibonacci-Mandelbrot matrices 45

trices using the recursion shown in Equation (3.12) are

M5 =



−1 1

−1

−1 0 1

−1 −1


, (3.13)

M6 =



0 1 −1

−1 −1

−1

−1 −1 0 0 1

−1 0 0 0

−1 0 1

−1 −1



, (3.14)

in which the characteristic polynomials of both M5 (Equation (3.13)) and M6 (Equation (3.14))

also match q5(z) and q6(z) respectively. It can be shown that qn(z) = det(zI −Mn) for all n > 3

using induction and the Schur complement [24], which will be shown in Chapter 5.

Unlike the Mandelbrot matrices, notice that the Fibonacci-Mandelbrot matrices contain

{−1, 0, 1}, whereas the Mandelbrot matrices contain just the values {0,−1}. What is also inter-

esting is that the inverses of these Fibonacci-Mandelbrot companion matrices have inverses that

are also supersparse, and only contain {−1, 0, 1} as well. For example, if we take the inverse of

46 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

M6 (Equation (3.11)) that follows the recursion found in Equation (3.9),

M−1
6 =



0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

−1 0 −1 −1 1 0 0

0 0 0 0 −1 0 0

−1 0 −1 0 0 −1 0

1 0 1 0 0 0 −1

−1 0 −1 0 0 0 0



. (3.15)

We can also use Maple to help us visualize the next few inverses, shown in Figure 3.4, where

−1 is black, 0 is grey, and 1 is white. It is obvious from these plots that there is clearly a pattern

for the inverses of the Fibonacci-Mandelbrot polynomials. More research is required to learn

more about the inverses of these companion matrices and will be left to future work.

3.3.1 Results

Using our first matrix construction (Equation (3.9)), MATLAB’s eig routine was able to com-

pute the eigenvalues of M22, which has a dimension of 17, 710, correctly (see Figure 3.5a).

However, it was not able to successfully compute the roots of q23(z) correctly, shown in Fig-

ure 3.5b. In MATLAB’s eig routine, the default for balanceOption is ‘balance’, which

enables balancing. In most cases, the balancing step improves the conditioning of the matrix

to produce more accurate results. However, in our case, it did not give us the correct results.

Therefore, we computed the eigenvalues once again with ‘nobalance’, but unfortunately,

produced the same (incorrect) results. Additionally, we did not attempt to solve for the eigen-

values of sparse matrices even though it is very likely that it can help us find more roots using

this method.

We also tried computing the eigenvalues of the Fibonacci-Mandelbrot matrices using both

Maple 2015 and Maple 2016. Surprisingly, the different versions of Maple gave us different

3.3. Fibonacci-Mandelbrot matrices 47

(a) M−1
7 (b) M−1

8

(c) M−1
9 (d) M−1

10

Figure 3.4: Image visualizations of inverses of Fibonacci-Mandelbrot matrices, where −1, 0
and 1 are black, grey, and white respectively, using Maple 2016.

48 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

(a) Computed eigenvalues of M22, which has a di-
mension of 17, 710.

(b) Computed eigenvalues computed of M23,
which has a dimension of 28, 656.

Figure 3.5: Plots of eigenvalues using MATLAB’s eig routine.

results. Maple 2015 actually gives us the results that we were expecting (see Figure3.6a),

whereas Maple 2016 gives us inaccurate results (see Figure 3.6b).

From Figure 3.7, we can see that the time complexity is around O(d2.3
n), which is very

similar to the time complexity that we computed when using the eigenvalue method on the

Mandelbrot matrices. As a reference, the top line has a slope of 3, which is the slope that we

expect our line of best fit to have.

3.4 Homotopy methods

We can also use homotopy methods to solve for the roots of the Fibonacci-Mandelbrot poly-

nomials. Consider the following homotopy:

Hn(ζ, τ) = ζqn−1(ζ)qn−2(ζ) + τ. (3.16)

Comparing this homotopy (Equation (3.16)) to the homotopy used for the Mandelbrot polyno-

mials (Equation (2.12)), we can see that they are quite similar. However, the main difference

3.4. Homotopy methods 49

(a) Using Maple 2015 (b) Using Maple 2016

Figure 3.6: Computed eigenvalues of n = 23, which has a degree of 28, 656 of the Fibonacci-
Mandelbrot matrices using Maple.

Figure 3.7: Time taken to compute eigenvalues of Fibonacci-Mandelbrot matrices.

50 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

is that the variable τ in the homotopy for the Mandelbrot polynomials is squared, whereas here

in Equation (3.16), is just simply τ. This is because the zeros when τ = 0 are simple at ζ = 0,

the roots of qn−1(ζ), and the roots of qn−2(ζ): we do not start at any double roots.

Similarly to the Mandelbrot polynomials, we can differentiate the right-hand side of Equa-

tion (3.16) with respect to τ to give us the following differential equation:

dζ
dτ

=
−1

qn(ζ)
, (3.17)

where we integrate 0 ≤ τ ≤ 1. Just as we did for the homotopy method used for the Mandelbrot

polynomials, we can use the zeros of ζqn−1(ζ)qn−2(ζ) as our initial conditions to help us find

the roots of qn(ζ).

Unfortunately, just as when solving the differential equations numerically for the Mandel-

brot polynomials, we encounter singularities along the real-axis when solving Equation (3.17)

for the Fibonacci-Mandelbrot polynomials. As an example for this case, we can look at the

singularities when n = 4. The differential equation for q4(z) is

dζ
dτ

=
−1

2ζ + 1
, (3.18)

where ζ(0) = 0 and ζ(0) = −1 (since it is the root of q3(z)). There are no roots for q2(z), so we

do not include q2(z) in our initial conditions. From Equation (3.18), it is obvious that we will

encounter a singularity when ζ = −1
2 . Also, since Equation (3.18) is separable, we can easily

find the value of τ when ζ = −1
2 , and check that τ lies on the real-axis between 0 and 1.

dζ
dτ

=
−1

2ζ + 1

(2ζ + 1) dζ = −dτ

ζ2 + ζ = −τ + C, where C is a constant . (3.19)

It is obvious that when ζ = 0 and τ = 0, our constant C = 0. To find the value of our constant

3.4. Homotopy methods 51

when ζ = −1 and τ = 0, we can substitute the corresponding values to Equation (3.19):

(−1)2 + (−1) = C

1 − 1 = C

C = 0. (3.20)

Therefore, when ζ = −1 and τ = 0, our constant C is also 0. Knowing that our constant C = 0,

we can now solve for τ when ζ = −1
2 to see at what value of τ we encounter a singularity for

Equation (3.18):

(
−

1
2

)2

+

(
−

1
2

)
= −τ

1
4
−

1
2

= −τ

−
1
4

= −τ

τ =
1
4
. (3.21)

This shows that we do in fact encounter a singularity if we integrate along the real-axis, which

means that we need to use the pole-vaulting technique described in the previous chapter (see

Section 2.5) in order to avoid the singularities.

Since we are not starting from double roots for the Fibonacci-Mandelbrot polynomials, this

means that we do not need to perturb our initial condition, which we had to do for the Man-

delbrot polynomials. Instead, we can simply use the zeros of ζqn−1(ζ)qn−2(ζ), as mentioned

before. This means we only will get one root from each initial condition, unlike in the Man-

delbrot polynomials, where we get 2 roots from the zeros of pn−1(ζ) (remember that we only

got 1 root from ζ = 0 for the Mandelbrot polynomials). As demonstrated in Figure 3.8, created

in MATLAB, we can see the homotopy paths taken from our initial points to our roots, ξ5. In

this figure, the root, ξ3 = −1, is indicated by a triangle, the roots, ξ4 = −0.5 ± 0.86603 . . .,

are diamonds, and ζ = 0 is a circle, and they each lead us to a root, ξ5, which are squares.

52 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.8: Homotopy paths for q5 and contour where |q5(z)| = 1.

The grey line that surround the roots is the contour, |q5(z)| = 1. Notice in this figure that three

singularities are avoided by pole-vaulting.

Figure 3.9 shows the homotopy paths of the Fibonacci-Mandelbrot polynomials from n = 6

to n = 11. To simplify the plots, all of the initial points are blue circles (instead of showing

where each initial point comes from), while the final points are red crosses. These plots clearly

show that only one root stems from each initial point, unlike the Mandelbrot polynomials, seen

in Figure 2.9. One can prove that the gcd of qn(z) and qn−1(z) is 1: they can have no roots in

common because each would be periodic with period n and n − 1 and hence a fixed point, but

there are no fixed points in this iteration.

3.4. Homotopy methods 53

(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

(e) n = 10 (f) n = 11

Figure 3.9: Plots of homotopy paths and contours |qn(z)| = 1 of the Fibonacci-Mandelbrot
polynomials from n = 6 to n = 11.

54 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

3.4.1 Distinctness

Just as we have seen with the homotopy paths for the Mandelbrot polynomials, the paths for

the Fibonacci-Mandelbrot polynomials also do not cross (see Figures 3.8 and 3.9). We can

also prove, just like in Section 2.5.2, that each initial value problem is unique as long as the

singularities are avoided. However, this time, we do not need to be concerned about the initial

condition, and can start with the zeros of ζqn−1(ζ)qn−2(ζ), since these are not double roots.

Just as we did for the Mandelbrot polynomials, letting our region R = C, we can find the

Lipschitz constant for the homotopy for the Fibonacci-Mandelbrot polynomials

| f (t, u) − f (t, v)| ≤ L |u − v| =

∣∣∣∣∣∣ −1
q′n(u)

−
−1

q′n(v)

∣∣∣∣∣∣
=

∣∣∣∣∣∣−q′n(v) + q′n(u)
q′n(u)q′n(v)

∣∣∣∣∣∣ . (3.22)

Let

q′n(v) = q′n(u + v − u)

= q′n(u) + q′′n (u)(v − u) + O(v − u) . (3.23)

Substituting Equation (3.23) into Equation (3.22), we get

L |u − v| =

∣∣∣∣∣∣−q′n(u) − q′′n (u)(v − u) + q′n(u) + O(v − u)
q′n(u)q′n(v)

∣∣∣∣∣∣
�
−q′′n (u)

q′n(u)q′n(v)
|v − u|

�
−q′′n (u)
(q′n(u))2 |v − u| . (3.24)

Therefore,

L =
−q′′n (u)
(q′n(u))2 . (3.25)

As mentioned in the previous chapter, as long as the path that we are taking is continuous, q′′n (z)

3.4. Homotopy methods 55

will always be bounded. Since we will be avoiding singularities (whenever q′n(z) = 0) using

our custom ode solver, we can ensure that L is in fact bounded, thus satisfying the Lipschitz

condition. Therefore, just like the Mandelbrot polynomials, the initial value problems that we

use for our homotopy will only give us one solution; hence, it is unique.

3.4.2 Smallest roots

Like the Mandelbrot polynomials, we can use our homotopy method to find the smallest roots

of the Fibonacci-Mandelbrot polynomials by using the smallest roots from the previous itera-

tion as our initial point for our differential equation. Again, we deduce that the smallest root

has the form

sn =
1
4

+ αRen−βRe ± iαImn−βIm . (3.26)

Shown in Figure 3.10, we can plot the real part (minus 1
4) and imaginary part of our smallest

root against n, the iteration of the polynomials, in a log-log plot to see what βRe and βIm are.

Similar to the Mandelbrot polynomials, βRe and βIm are 2 and 3 respectively, although (again)

we are not sure about how exact these values are.

(a) Real part (b) Imaginary part

Figure 3.10: Log-log plots of smallest roots sn of Fibonacci-Mandelbrot polynomials (differ-
ence from 1/4).

Therefore, like the smallest roots of the Mandelbrot polynomials, the smallest roots of the

56 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Fibonacci-Mandelbrot polynomials are

sn �
1
4

+
αRe

n2 ±
αIm

n3 . (3.27)

However, αRe and αIm are different: they are around 22.2 and 188.2 respectively.

3.4.3 Results

Using our own ode solver, described in Section 2.6, we were able to compute up to n = 33,

which is 3, 524, 577 roots, of order O(10−4) precision, using a machine with 32 GB of memory.

This is shown in Figure 3.12. We were actually able to compute more roots than we did for the

Mandelbrot polynomials using the same technique and same machine.

Figure 3.11 shows the time taken to compute the roots of the Fibonacci-Mandelbrot poly-

nomials using our homotopy method. Like the result that we got for the time complexity when

computing the roots of the Mandelbrot polynomials using our homotopy method, the slope

of the line of best fit is less than 1: the slope is around 0.82. The line above the data is for

reference as it has a slope of 1. As mentioned in the previous chapter, the value of less than 1

for the slope of our line of best fit does not make any sense; there is an overall lower bound of

O(dn log(dn)) for this method. Therefore, we believe that, like for the Mandelbrot polynomials,

it becomes easier to find the roots for higher iterations since the initial guess is closer to the

final result.

Similar to the homotopy method that we used when solving for the Mandelbrot polyno-

mials, we notice that for the Fibonacci-Mandelbrot polynomials that the accuracy decreases

as the iterations increase, in which we believe is caused by mild instability in the iteration we

use. Therefore, we need to to use higher precision in order to calculate higher iterations of

the Fibonacci-Mandelbrot polynomials. Once again, we used Bailey’s ARPREC package [2]

for arbitrary precision in C++. Using this package, we were able to compute up to n = 31

(1, 346, 268 roots) thus far within O(10−12) precision.

3.4. Homotopy methods 57

Figure 3.11: Time taken to compute roots of qn(z) using homotopy methods. The line of best
fit has slope of 0.82.

58 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.12: Plot of all 3, 524, 577 roots of the Fibonacci-Mandelbrot polynomial q33(z). The
residuals were all smaller than 10−4.

Chapter 4

Narayana-Mandelbrot polynomials and

matrices

4.1 Introduction

Using what we have learned from both the Mandelbrot and Fibonacci-Mandelbrot polynomials,

we have decided to apply this knowledge to the Narayana-Mandelbrot polynomials, which are

based on the Narayana’s cows sequence. We first learned of the Narayana sequence at the

Computational Discovery Conference 2016 in a talk by Neil J. A. Sloane.

4.1.1 Narayana’s cows sequence

Sequence A000930 of the Online Encyclopedia of Integer Sequences [23], Narayana’s cows

sequence, begins

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (4.1)

and can be generated by

S n+1 = S n + S n−2. (4.2)

59

60 Chapter 4. Narayana-Mandelbrot polynomials and matrices

This sequence is named after a 14th-century Indian mathematician, who proposed the problem

to compute the number of cows if a cow produces one calf every year, and in the beginning of

its fourth year, each calf produces one calf at the beginning of each year. Many references are

given in the OEIS, but see also [21].

4.1.2 Narayana-Mandelbrot polynomials

Similar to the Fibonacci-Mandelbrot polynomials, we can use the recursion from the sequence,

which in this case, is the Narayana’s cows sequence, to create our family of polynomials. The

Narayana-Mandelbrot polynomials have the recursion

r0(z) = 1

r1(z) = 1

r2(z) = 1

rn+1(z) = zrn(z)rn−2(z) + 1. (4.3)

where n = 2, 3, 4, Using the monomial expansion, we can get the first few Narayana-

Mandelbrot polynomials:

r0(z) = 1

r1(z) = 1

r2(z) = 1

r3(z) = z + 1

r4(z) = z2 + z + 1

r5(z) = z3 + z2 + z + 1

r6(z) = z5 + 2z4 + 2z3 + 2z2 + z + 1

r7(z) = z8 + 3z7 + 5z6 + 6z5 + 5z4 + 4z3 + 2z2 + z + 1. (4.4)

4.2. Condition numbers and pseudozeros 61

The Narayana-Mandelbrot polynomials share a few properties with the Fibonacci-Mandelbrot

polynomials such as

1. The leading and trailing coefficients are 1.

2. All coefficients are positive integers.

3. The polynomials are unimodular.

However, they do have some properties that are unique to this family of polynomials:

1. The next-to-leading coefficient is a number from the Narayana’s cows sequence.

2. Put dn = deg rn. Then d1 = 0, d2 = 0, and d3 = 0, then dn+1 = dn + dn−2 or dn = S n − 1,

where S n is a number from the Narayana’s cows sequence.

4.2 Condition numbers and pseudozeros

Like the other two families of polynomials that we have already seen, the absolute condition

number of the roots is the reciprocal of the derivative of our polynomial, rn(z). Figure 4.1

shows the condition numbers of the Narayana-Mandelbrot polynomials. The circles are our

maximum condition number, computed by using the minimum value of
∣∣∣r′n(z)

∣∣∣ evaluated at its

roots, ξn. It can be seen that the maximum condition number we encounter is 1, which occurs

every other iteration. The crosses, on the other hand, are the minimum condition numbers,

calculated by taking the reciprocal of the maximum value of
∣∣∣r′n(ξn)

∣∣∣. The slope of the line

running through these points is around −1.8, which is around the results (of around −2; lower

line shown as a reference) that we have been getting for the minimum condition numbers of

the roots for the Mandelbrot polynomials and the Fibonacci-Mandelbrot polynomials.

Just as we did previously for the other two families of polynomials, we can look at the

pseudozeros by plotting the contours of a small value and seeing how tightly they encircle the

roots. Figure 4.2 shows the roots of r21(z) with |r21(z)| = 0.1 in red. We can see from this figure

62 Chapter 4. Narayana-Mandelbrot polynomials and matrices

Figure 4.1: Condition numbers of the roots of the Narayana-Mandelbrot polynomials, rn(z).

that the contour around the root at −1 is quite large. However, considering that the contour

is not connected to nearby contours, this shows that the root is still well-conditioned, like the

rest of the roots shown here. Zooming into the regions that have visible contours from Figure

4.2 and reducing the value of the contour that we are plotting, we can have a closer look at

the contours and how closely they wrap around the root, shown in Figure 4.3. Since all of the

contours are very close to the roots where some of them not visible, we can see here that the

roots are in fact well-conditioned.

4.3 Narayana-Mandelbrot matrices

Like both the Mandelbrot and Fibonacci-Mandelbrot polynomials, we can produce recursively-

constructed supersparse companion matrices for the Narayana-Mandelbrot polynomials. Thus,

the Narayana-Mandelbrot companion matrix construction is as follows.

We start off the recursion with

M3 = [−1] , (4.5)

4.3. Narayana-Mandelbrot matrices 63

Figure 4.2: Roots of r21(z) with |r21(z)| = 0.1 in red.

64 Chapter 4. Narayana-Mandelbrot polynomials and matrices

(a) (b)

(c) (d)

Figure 4.3: Different regions the Narayana-Mandelbrot polynomials where the roots are not as
well-conditioned with |r21(z)| = 0.05 in red.

4.3. Narayana-Mandelbrot matrices 65

just as we did for the Fibonacci-Mandelbrot matrices. Since r4(z) is the same as q4(z), we could

use the same matrix which we used for the Fibonacci-Mandelbrot matrices:

M4 =

 0 1

−1 −1

 . (4.6)

The reason why we chose to have M4 in this formation for the Fibonacci-Mandelbrot matrices

is so that our sub-diagonal in our companion matrices are always −1. In this case, we have

decided to take the transpose of M4 from the Fibonacci-Mandelbrot matrices instead. Thus, for

the Narayana-Mandelbrot matrices,

M4 =

 0 −1

1 −1

 (4.7)

Since the Narayana-Mandelbrot polynomials take its rn(z) and rn−2(z) polynomials in its re-

cursion, it means that we will be taking Mn and Mn−2 in order to construct the next matrix.

Therefore, we also need

M5 =


0 0 −1

1 0 −1

0 1 −1

 (4.8)

as well. Note that we can also use Equation (4.6) for our recursion for M5 as well so that

M5 =


0 0 −1

−1 0 1

0 −1 −1

 (4.9)

also works. Letting rn =

[
0 · · · 0 1

]
and cn =

[
1 0 · · · 0

]T

, where the lengths of

66 Chapter 4. Narayana-Mandelbrot polynomials and matrices

these vectors are of dn, our construction becomes

Mn+1 =


Mn −cnrn−2

−rn 0

−cn−2 Mn−2

 . (4.10)

As you can see, these matrices are also upper Hessenberg, and the construction of these ma-

trices are quite similar to the construction of the Fibonacci-Mandelbrot matrices: the main

difference is that the matrix in the lower right corner is Mn−2 instead of Mn−1. For this partic-

ular construction, the value in the upper right corner is always −1 and is not dependent on the

dimension of our matrix, since the number of −1 on the sub diagonal is always even (proof in

Chapter 5 will show the relationship between the elements in the subdiagonal and the element

in the upper right corner). If we used M4 from Equation (4.6) and M5 from Equation (4.9) for

our construction so that the subdiagonal only consisted of −1, then the element in the upper

right corner would be dependent on the dimension of the matrix.

The following are the next few Narayana-Mandelbrot matrices using the construction from

Equation (4.10):

M6 =



0 0 −1 −1

1 0 −1

1 −1

−1

−1 −1


(4.11)

4.3. Narayana-Mandelbrot matrices 67

and

M7 =



0 0 −1 0 −1 −1

1 0 −1 0 0

1 −1 0 0

−1 0 0

−1 −1

−1

−1 0 −1

1 −1



. (4.12)

4.3.1 Results

Using MATLAB, we were only able to compute up to n = 27, which has a dimension of

18, 559 roots, shown in Figure 4.4. Comparing to this result to the other matrices that we have

computed the eigenvalues of previously, there is quite a huge difference in the dimension of

the roots. For the Mandelbrot matrices, we were able to solve up to 32, 767 roots, whereas for

the Fibonacci-Mandelbrot matrices, we were able to solve up to 28, 656 roots for one of our

recursive companion matrices. For these two families of matrices, the main problem was the

lack of memory that the machine that we were using has (32 GB). However, for the Narayana-

Mandelbrot matrices, we actually encounter some problems when evaluating the eigenvalues

of M28.

In Figure 4.5, it shows the eigenvalues that MATLAB finds when evaluating M28: on the

left is the full plot, and on the right is zoomed-in to the portion where the roots of r28(z) should

reside. As mentioned in the previous chapter, we can also switch Mn and Mn−2 around with the

correct corresponding rn and cn. As we saw in the previous chapter, this could potentially help

us compute either more or less (correct) eigenvalues. The recursion for the matrix construction

68 Chapter 4. Narayana-Mandelbrot polynomials and matrices

Figure 4.4: Roots of r27(z), which has a dimension of 18, 559.

4.3. Narayana-Mandelbrot matrices 69

(a) Overall results (b) Zoomed version of results.

Figure 4.5: Results MATLAB gives when evaluating the eigenvalues of M28 using recursion
from Equation (4.10), showing numerical artefacts.

(a) Overall results (b) Zoomed version of results.

Figure 4.6: Results Maple gives when evaluating the eigenvalues of M28 using recursion from
Equation (4.13), again showing numerical artefacts.

70 Chapter 4. Narayana-Mandelbrot polynomials and matrices

becomes

Mn+1 =


Mn−2 −cn−2rn

−rn−2 0

−cn Mn

 , (4.13)

using the same M3, M4, and M5. This time, using Maple 2016 to solve the eigenvalues of M28

based on the recursion in Equation (4.13), we can see that this also fails to give us the correct

roots for r28(z). In an attempt to improve on this result, we tried to increase the number of digits

used to compute the eigenvalues of this matrix. Unfortunately, we were unable to retrieve any

results for this as it overloaded the CPU of the machine that we used. Note that we did not use

Maple 2015, which we saw was able to compute the eigenvalues of the Fibonacci-Mandelbrot

matrices correctly up to n = 23, to solve for the eigenvalues of the Narayana-Mandelbrot

matrices.

We also recorded the time it takes in MATLAB to compute the eigenvalues of the Narayana-

Mandelbrot matrices (using the recursion in Equation (4.10)). The slope running through the

points in the figure is around 2.3, which is what we have been getting for the time of the

other two matrices. The estimated time complexity of O(d2.3
n) is less than the expected time

complexity of O(d3
n). To show this, there is a line above our line of best fit, as a reference.

4.4 Homotopy methods

Similar to our previous two families of polynomials, we can use homotopy methods to solve

for the roots of the Narayana-Mandelbrot polynomials. Consider the following homotopy:

Hn(ζ, τ) = ζrn−1(ζ)rn−3(ζ) + τ, (4.14)

which is very similar to the homotopy used for the Fibonacci-Mandelbrot polynomials (Equa-

tion (3.16)). When τ = 0, the zeros of Hn(ζ, 0) are ζ = 0, the zeros of rn−1(ζ) and the zeros of

rn−3(ζ). When τ = 1, it is the same equation as Equation (4.3); thus, the zeros of Hn(ζ, 1) are

4.4. Homotopy methods 71

Figure 4.7: Time taken for computing the eigenvalues of the Narayana-Mandelbrot matrices.

the zeros of rn(z). Differentiating the right-hand side of Equation (4.14) with respect to τ, as

we did for the Equation (3.16), we get the following differential equation

dζ
dτ

=
−1

r′n(ζ)
, τ ∈ [0, 1] , (4.15)

which has essentially the same form as Equation (3.17). Unfortunately, just as with the other

two families of polynomials, we do encounter singularities when integrating along the real axis.

This could be seen in the previous chapter when we computed the location of the singularities

for q4(z) = z2+z+1. (Note that r4(z) = q4(z).) Therefore, we again need to use the pole-vaulting

technique described in Section 2.5 to avoid the singularities.

Since the roots are periodic, as mentioned previously when listing properties of the Narayana-

Mandelbrot polynomials, we do have to be mindful since we will encounter some duplicate

roots when using the previous roots as our initial conditions for our differential equation (Equa-

tion (4.3)). Using n = 6 as an example, it can be seen that our initial condition for our differ-

72 Chapter 4. Narayana-Mandelbrot polynomials and matrices

ential equation
dζ
dτ

=
−1

r′6(z)
=

−1
5z4 + 8z3 + 6z2 + 4z + 1

(4.16)

would be 0, the roots of r3(z) = z+1 and the roots of r5(z) = z3 + z2 + z+1. It can easily be seen

that the root of r3(z) is −1. The roots of r5(z) are not as easy, but still fairly simple to evaluate:

ξ5 = −1,±i. From this, you can see that we start from −1 twice, since −1 is the root of both

r3(z) and r5(z). Therefore, we can use the same technique (shown in Section 2.4) to perturb

our initial conditions for these double roots so that the paths can go off in separate directions

to find the two roots that stem from that single point.

In Figure 4.8, we can see the paths taken from our initial points to our roots ξ6, which

are represented by the squares. The circle represents our initial condition ζ = 0, the cross

represents ξ3 and the diamonds represent ξ5. It can be seen in this figure that there are two

pathways that come out from −1, marked with both a cross and a diamond. The plot also has

the contour |r6(z)| = 1 in grey.

We also plotted the homotopy paths of the following 6 iterates, shown in Figure 4.9. To

simplify the plots, instead of showing which roots each initial condition comes from, all initial

points are represented by circles, and the final roots are represented by crosses. From these

plots, it can be seen, from the two pathways coming out from one point, that there are other

points where the double roots occur, not just at −1.

4.4.1 Smallest roots

We can compute the smallest roots of the Narayana-Mandelbrot polynomials using the ho-

motopy method described previously. Figure 4.10a shows the real part of the smallest roots

minus 1/4, while Figure 4.10b shows the imaginary part of the smallest roots of the Narayana-

Mandelbrot polynomials. Like the Mandelbrot and Fibonacci-Mandelbrot polynomials, we

4.4. Homotopy methods 73

Figure 4.8: Homotopy paths for r6(z) and contour where |r6(z)| = 1.

74 Chapter 4. Narayana-Mandelbrot polynomials and matrices

(a) n = 7 (b) n = 8

(c) n = 9 (d) n = 10

(e) n = 11 (f) n = 12

Figure 4.9: Plots of homotopy paths and contour |rn(z)| = 1 of the Narayana-Mandelbrot poly-
nomials from n = 7 to n = 12.

4.4. Homotopy methods 75

deduced that the smallest roots have the form

sn =
1
4

+ αRen−βRe ± iαImn−βIm . (4.17)

Similar to the smallest roots of both the Mandelbrot and the Fibonacci-Mandelbrot polynomials

the slopes of the real part and the imaginary part are around −2 and −3 respectively, which

means that βRe = 2 and βIm = 3.

Knowing what the β’s are, we can now find what the values of our α’s by multiplying

n2 or n3 to the corresponding real part minus 1/4 or the imaginary part of the smallest roots

respectively. From doing so, the smallest roots seem to be

sn �
1
4

+
39.2
n2 ±

409.5
n3 . (4.18)

(a) Real part (b) Imaginary part

Figure 4.10: Smallest roots of the Narayana-Mandelbrot polynomials (difference from 1/4).

4.4.2 Results

We used both MATLAB and David Bailey’s ARPREC package in C++ to compute the roots of

the Narayana-Mandelbrot polynomials using the homotopy method described above. We only

76 Chapter 4. Narayana-Mandelbrot polynomials and matrices

used our own ode solver (details in Section 2.6) in MATLAB to give us a rough idea of what

the time complexity of computing the roots of the Narayana-Mandelbrot polynomials using a

homotopy method, since it was able to give us results a lot quicker compared to our C++ code,

which uses multiple precision. However, we knew that we would eventually have to use the

multiple precision package written in C++ in order to compute the roots of higher degrees.

Therefore, we decided not to pursue computing a large number of roots using our ode solver in

MATLAB.

Figure 4.11: Time taken to compute roots of rn(z) using homotopy methods.

Figure 4.11 shows the amount of time it takes to compute the roots of the Narayana-

Mandelbrot polynomials using a homotopy method in MATLAB, using our own ode solver.

Similar to the other families of polynomials, the slope of the line running through our data

points is around 0.9, which is less than 1. As mentioned before, this is impossible as the ho-

motopy method has a lower limit of O(dn ln dn), and we believe that the “constant” is hidden in

the O, and that it decreases for higher iterates.

Using Bailey’s ARPREC package [2], we were able to compute up to n = 36, which is a

degree of 578, 948, thus far, with O(10−9) precision, shown in Figure 4.12.

4.4. Homotopy methods 77

Figure 4.12: Roots of r36(z), which has a degree of 578, 948.

Chapter 5

Concluding Remarks

In this thesis, we explored two different methods for finding the roots of three families of

polynomials: Mandelbrot, Fibonacci-Mandelbrot, and Narayana-Mandelbrot polynomials. For

the first method, we found the roots of the polynomials by computing the eigenvalues of a

supersparse, recursively-constructed companion matrix. Piers Lawrence first introduced this

construction for the Mandelbrot matrices, and we have applied a new, similar construction to

both the Fibonacci-Mandelbrot and the Narayana-Mandelbrot matrices, thus creating a new

kind of companion matrix. For our second method, we used new homotopy methods to find

the roots of the families of polynomials.

Comparing the two methods that we explored, homotopy methods are clearly superior in

both time and space complexity. As mentioned in our discussions in our previous chapters,

the time complexity of the eigenvalue method appeared to be around O(d2.3
n), whereas the time

complexity that we computed for the homotopy method appear to be around O(d0.9
n). Of course

in reality, this should have a lower bound of O(dn log dn), which is still less than the time

complexity of solving for eigenvalues.

When we say f (d) = O(dn) as d → ∞, we could mean that there exists a nonzero constant

κ such that

lim
d→∞

f (d)
dn = κ . (5.1)

78

79

(This is a simple definition, maybe the simplest, of the order symbol). In fact, we are using

“soft-oh,” which allows logarithms: there exists a nonzero constant κ and a power β such that

lim
d→∞

f (d)
dn lnβ d

= κ . (5.2)

Experimentally, we try to estimate κ by looking at the value of f (d) for “large” d: say, d = D.

lim
d→∞

f (d)
dn

?
=

f (D)
Dn (5.3)

We do not know if D is “large enough” to actually uncover κ accurately, though. For instance,

f (d) = 10−12 · d2 + 100 · d (5.4)

will look like O(d) for d less than, say, 1012. Similarly,

10−6 · d ln d + 100 · d (5.5)

will look like O(d) for d < e106
.

Since we are using full matrices in order to compute our eigenvalues, this means that our

space complexity for this method is O(d2
n). On the other hand, for the homotopy method, the

space complexity is O(dn), although it might even be doable in constant space. We do realize

that this comparison is somewhat unfair, since we can reduce the space complexity of our eigen-

value method by using sparse matrices seeing that these companion matrices are supersparse.

However, evaluating these eigenvalues using MATLAB’s eigs routine to take advantage of

the sparseness of the matrices does come with some challenges, such as determining which

regions to look at to evaluate the roots, and removing all of the duplicates once we collect all

the results together. Due to time constraints, we decided not to look very closely into using

sparse matrices to compute our roots; thus, more research would be needed to be done for a

80 Chapter 5. Concluding Remarks

fairer comparison between the two methods.

5.1 Future Work

Of the three families of polynomials that we have studied in this thesis, only the Mandelbrot

polynomials have been studied before (very extensively, one might add). Much is already

known about the roots of the Mandelbrot polynomials and the properties of the Mandelbrot set

(see [19, Chapter 4]). However, very little is known about both the Fibonacci-Mandelbrot and

Narayana-Mandelbrot polynomials, since they are both completely new families of polynomi-

als based on the Mandelbrot polynomials and the Fibonacci and Narayana sequences respec-

tively. Therefore, exploring these polynomials further and learning more about the roots of

these families of polynomials would be an interesting extension of this work. At MICA 2016,

Joachim von zur Gathen suggested to us that these may have applications in random number

generation or in primality testing for cryptography.

Additionally, the companion matrix construction first introduced by Piers Lawrence for the

Mandelbrot matrices, which we have extended to the Fibonacci-Mandelbrot and Narayana-

Mandelbrot matrices, is genuinely a completely new kind of companion matrix. We can prove

that the construction is valid by using induction and the Schur determinantal formula. The

surprising analogy between all three families of supersparse companions led us to conjecture

and prove the following.

Theorem 5.1.1 Suppose a(z) = det(zI − A), b(z) = det(zI − B), and both A and B are upper

Hessenberg matrices with nonzero subdiagonal entries, and

α =
1(∏da−1

j=1 a j+1, j

) (∏db−1
j=1 b j+1, j

) (5.6)

is the reciprocal of the product of the subdiagonal entries of A and B, and da = degz a and

db = degz b, so the dimension of A is da × da and the dimension of B is db × db. Suppose both

5.1. FutureWork 81

da and db are at least 1. Then if

C =


A −αc0carb

−ra 0

−cb B

 (5.7)

where ra =

[
0 0 · · · 1

]
of length da, cb =

[
1 0 · · · 0

]T

of length db, we have

c(z) = det (zI − C) = z · a(z)b(z) + c0. (5.8)

Remark Proving this theorem automatically proves the validity of the constructions of the

supersparse companion matrices for pn, qn, and rn.

Remark Starting with a polynomial c(z), we see that there are potentially many such a(z) and

b(z). This freedom may be quite valuable or, it may be an obstacle.

Proof Partition

zI − C =

 C11 C12

C21 C22

 (5.9)

where C22 = zI − B is nonsingular if z is not an eigenvalue of B, i.e. b(z) , 0. Later we will

remove this restriction. Also,

C21 =


1

 (5.10)

is db × (da + 1) and has only one nonzero element, which is a 1 in the upper right corner. Next,

C12 =


αc0

 (5.11)

82 Chapter 5. Concluding Remarks

is (1 + da) × db and again has only one nonzero element, αc0 in the upper right corner. [In fact,

c0 can be zero.] This leaves

C11 =



zI − A

0
...

0

0

1 z


(5.12)

which is da + 1 by da + 1.

The Schur factoring is

 C11 C12

C21 C22

 =

 I C12

0 C22


 C11 − C12C−1

22 C21 0

C−1
22 C21 I

 (5.13)

with the computation of the Schur complement C11 −C12C−1
22 C21 going to do most of the work

in the proof. The Schur determinantal formula [15] is then

det C = det (C22) det
(
C11 − C12C−1

22 C21

)
. (5.14)

We have the following propositions.

0. zI − A and zI − B are upper Hessenberg because A and B are.

1. The first da columns of C−1
22 C21 are zero.

2. The final column of C−1
22 C21 is the solution, say ~v, of (zI − B)~v = e1. Again, zI − B is

nonsingular.

3. By Cramer’s rule, the final entry in ~v, say v, is

v =

det
(
C22 ←−

db
e1

)
det (C22)

(5.15)

5.1. FutureWork 83

where the notation M←−
k
~v means replace the kth column of M with the vector ~v [7].

4. Since C22 = zI − B is upper Hessenberg,

C22 ←−
db

e1 =



∗ ∗ ∗ · · · ∗ 1

−b21 ∗ ∗ · · · ∗ 0

−b32 ∗
...

...

−b43
. . .

. . . ∗ 0

−bdb,db−1 0



. (5.16)

Laplace expansion about the final column gives

det
(
C22 ←−

db
e1

)
= (−1)db−1(−1)db−1

db−1∏
j=1

b j+1, j

=

db−1∏
j=1

b j+1, j. (5.17)

Therefore,

v =

∏db−1
j=1 b j+1, j

b(z)
(5.18)

because det C22 = det (zI − B) = b(z) by hypothesis.

5. Now

C12C−1
22 C21 =



αc0





∗

...

∗

v


=



αc0v


(5.19)

is da + 1 by da + 1 and has its only nonzero entry, αc0v, in the upper right corner.

84 Chapter 5. Concluding Remarks

6. The Schur complement is therefore



zI − A

−αc0v

0
...

0

0 · · · 0 1 z


(5.20)

and we compute det
(
C11 − C12C−1

22 C21

)
by Laplace expansion on the last column:

det
(
C11 − C12C−1

22 C21

)
= − (−1)daαc0v det



−a21 ∗ ∗ · ∗

−a32 ∗ ∗

−a43
...

. . .

−ada,da−1


+ z det (zI − A)

= − (−1)daαc0v
da−1∏
j=1

(
−a j+1, j

)
+ z · a(z)

=αv
da−1∏
j=1

a j+1, j · c0 + z · a(z)

=α ·

(∏db−1
j=1 b j+1, j

)
b(z)

·

da−1∏
j=1

a j+1, j

 · c0 + z · a(z)

=
c0

b(z)
+ z · a(z) (5.21)

by the definition of α.

5.1. FutureWork 85

Therefore by the Schur determinantal formula

det (zI − C) = det (C22) det
(
C11 − C12C−1

22 C21

)
= b(z)

(
c0

b(z)
+ z · a(z)

)
= z · a(z)b(z) + c0. (5.22)

Since the left hand side is a polynomial as is the right hand side, the formula will be true

even if b(z) = 0, by continuity.

\

As we have seen in Chapter 3, we are also interested in the inverses of these companion ma-

trices. For the Fibonacci-Mandelbrot matrices, we noticed that the inverses of the companion

matrices are also supersparse, containing only elements in {−1, 0, 1}. We are also interested in

looking at the inverses for other companion matrices that follow this construction, particularly

the Mandelbrot and Narayana-Mandelbrot matrices, to see whether they are also supersparse,

and if any patterns that emerge.

We can also demonstrate this construction on Newton’s example polynomial x3 − 2x − 5.

We see that x3 − 2x − 5 = x(x2 − 2) − 5 = x(x −
√

2)(x +
√

2) − 5, and companion matrices

for x −
√

2 and x +
√

2 are just [+
√

2] and [−
√

2] respectively. Thus a companion matrix for

Newton’s polynomial is 
√

2 5

−1

−1 −
√

2

 (5.23)

For unimodular polynomials, such companion matrices will be of lower height than the Frobe-

nius or Fiedler [13] companions, and may offer better numerical condition.

We have now established that if c(z) = z · a(z)b(z) + c0 and A and B are upper Hessenberg

86 Chapter 5. Concluding Remarks

companion matrices for the polynomials a(z) and b(z) respectively, then

C =


A −αc0carb

−ra 0

−cb B

 (5.24)

is a companion matrix for c(z). One wonders immediately about a corresponding linearization,

LC, strong or otherwise, for the matrix polynomial (A,B,C,C0 ∈ C
n×n)

C(z) = zA(z)B(z) + C0 . (5.25)

Suppose LA is a block upper Hessenberg linearization for A, LB for B. Some very preliminary

experiments, where LA and LB were block upper Hessenberg with all blocks I, so α = 1, find

that indeed

LC =



LA −C0

−I 0

−I
LB


(5.26)

is a (strong) linearization for C(z), in the examples we tried. This extension to matrix polyno-

mials will be interesting for applications, if the process is numerically stable (which it might

be at least for some problems).

Bibliography

[1] David H. Bailey. A thread-safe arbitrary precision computation package (full documen-
tation). http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf, 2016.

[2] David H. Bailey, Xiaoye S. Li, and Brandon Thompson. Arprec: An arbitrary precision
computation package. http://crd.lbl.gov/˜dhbailey/dhbpapers/arprec.pdf,
2002.

[3] Dario A. Bini and Giuseppe Fiorentino. Design, analysis, and implementation of a mul-
tiprecision polynomial rootfinder. Numerical Algorithms, 23(2-3):127–173, 2000.

[4] Dario A. Bini and Leonardo Robol. Solving secular and polynomial equations: A multi-
precision algorithm. Journal of Computational and Applied Mathematics, 272:276–292,
2014.

[5] G. Birkhoff and G. C. Rota. Ordinary Differential Equations. John Wiley & Sons, New
York, 1978.

[6] John P. Boyd. A Fourier companion matrix (multiplication matrix) with real-valued ele-
ments: Finding the roots of a trigonometric polynomial by matrix eigensolving. Numeri-
cal Mathematics: Theory, Methods and Applications, 6(04):586–599, 2013.

[7] David Carlson, Charles R. Johnson, David Lay, and A. Duane Porter. Gems of exposition
in elementary linear algebra. The College Mathematics Journal, 23(4):299–303, 1992.

[8] Robert M. Corless and Nicolas Fillion. A graduate introduction to numerical methods.
Springer Science & Business Media, 2014.

[9] Robert M. Corless and Piers W. Lawerence. Mandelbrot polynomials and matrices. In
preparation.

[10] Robert M. Corless and Piers W. Lawrence. The largest roots of the Mandelbrot polyno-
mials. In Computational and Analytical Mathematics, pages 305–324. Springer, 2013.

[11] Robert M. Corless and Steven E. Thornton. The Bohemian eigenvalue project. Poster
presentation at ISSAC, will be appearing in CCA, 2016.

[12] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and
their application to some heat transfer problems. http://ntrs.nasa.gov/archive/
nasa/casi.ntrs.nasa.gov/19690021375.pdf, 1969.

87

88 BIBLIOGRAPHY

[13] Miroslav Fiedler. A note on companion matrices. Linear Algebra and its Applications,
372:325–331, 2003.

[14] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Siam, 2002.

[15] Leslie Hogben and Robert Reams. Partitioned matrices. In Handbook of Linear Algebra,
pages 10–1 – 10–10. Chapman and Hall/CRC, 2006.

[16] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1997.

[17] T. Y. Li, Tim Sauer, and J. A. Yorke. The cheater’s homotopy: an efficient procedure
for solving systems of polynomial equations. SIAM Journal on Numerical Analysis,
26(5):1241–1251, 1989.

[18] George Markowsky. Misconceptions about the golden ratio. The College Mathematics
Journal, 23(1):2–19, 1992.

[19] Heinz-Otto Peitgen and Peter H. Richter. The beauty of fractals: images of complex
dynamical systems. Springer Science & Business Media, 2013.

[20] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM journal
on scientific computing, 18(1):1–22, 1997.

[21] Neil J. A. Sloane. My favorite integer sequences. In Sequences and their Applications,
pages 103–130. Springer, 1999.

[22] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically
at https://oeis.org, 2016. Sequence A000045.

[23] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically
at https://oeis.org, 2016. Sequence A000930.

[24] Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science
& Business Media, 2006.

Curriculum Vitae

Name: Eunice Chan

Post-Secondary Western University
Education and London, Ontario
Degrees: 2015 - Present M.Sc. Applied Mathematics

2011-2015 B.Sc. Applied Mathematics

Honours and Winner of Best Poster Prize
Awards: Computational Discovery Conference 2016

London, Ontario

Winner of “Distinguished Poster Award”
ISSAC 2016
Waterloo, Ontario

Western Graduate Research Scholarship (WGRS)
2015-present

Related Work Research Assistant
Experience: Western University (Applied Mathematics)

2015 - present

Research Assistant
Western University (MEDICI)
2016 - present

Teaching Assistant
Western University
2015 - present

List of poster presentations:

1. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices” (Poster),
Computation Discovery Conference, (2016).

89

90 BIBLIOGRAPHY

2. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices” (Poster),
ISSAC, (2016).

List of talks 1:

1. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices”, SONAD,
(2016).

2. E. Y. S. Chan, R. M. Corless, “Narayana, Mandelbrot, and a new kind of companion
matrix”, MICA, (2016).

1The underlined name was the speaker.

	A comparison of solution methods for Mandelbrot-like polynomials
	Recommended Citation

	tmp.1472222621.pdf.aFlvX

