
36 Chapter 2. Mandelbrot polynomials and matrices

Figure 2.12: All 2, 097, 151 roots of the Mandelbrot polynomial p22(z). These roots were
produced in MATLAB using our own ODE solver.

Chapter 3

Fibonacci-Mandelbrot polynomials and

matrices

3.1 Introduction

The Fibonacci sequence, which is Sequence A000045 of the Online Encyclopedia of Integer

Sequences [22] is a widely known sequence. It begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (3.1)

and is generated by the recursion

Fn = Fn−1 + Fn−2 (3.2)

with F0 = 0 and F1 = 1. There is a plethora of resources such as [16], [18], and the references

therein, that talk about the Fibonacci sequence which can be referred to if the reader wants to

learn more about the Fibonacci sequence.

37

38 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

3.1.1 Fibonacci-Mandelbrot polynomials

The Fibonacci-Mandelbrot polynomials are very similar to the Mandelbrot polynomials, de-

scribed in the previous chapter, but are slightly different. As a reminder, the recursion for the

Mandelbrot polynomials is

pn+1(z) = zp2
n + 1 , (3.3)

where p0 = 0. The Fibonacci-Mandelbrot polynomials, on the other hand, have the recursion

q0(z) = 0 , q1(z) = 1

qn+1(z) = zqn(z)qn−1(z) + 1, (3.4)

where n = 1, 2, 3, Instead of taking the polynomial from the previous iteration and squaring

it, we are multiplying the polynomials from the previous two iterations together. This is the

reason why it is called the Fibonacci-Mandelbrot polynomials.

Expanding Equation (3.4) using the monomial basis expansion, we can get the first few

polynomials:

q0(z) = 0

q1(z) = 1

q2(z) = 1

q3(z) = z + 1

q4(z) = z2 + z + 1

q5(z) = z4 + 2z3 + 2z2 + z + 1

q6(z) = z7 + 3z6 + 5z5 + 5z4 + 4z3 + 2z2 + z + 1

q7(z) = z12 + 5z11 + 13z10 + 22z9 + 28z8 + 28z7 + 23z6 + 16z5 + 10z4 + 5z3 + 2z2 + z + 1 .

(3.5)

3.2. Condition numbers and pseudozeros 39

Some properties of the Fibonacci-Mandelbrot polynomials include:

1. The leading and trailing coefficients are 1.

2. All coefficients are positive integers.

3. The polynomials are unimodular.

4. The next-to-leading coefficient is a Fibonacci number.

5. Put dn = deg qn. Then d1 = 0, d2 = 0, dn+1 = dn + dn−1 + 1 or dn = Fn − 1, where Fn is a

Fibonacci number (see Equation (3.2)).

6. The roots of qn(z) lead to periodic points of qn+1(z) = zqn(z)qn−1 + 1, of period n − 2. For

instance, q3(−1) = 0, q4(−1) = 1, q5(−1) = 1, and then repeats: qn(−1) = {0, 1, 1}.

7. The coefficients of qn grow doubly exponentially: O(φφ
n
), φ = 1+

√
5

2 � 1.618

3.2 Condition numbers and pseudozeros

Similar to the Mandelbrot polynomials, the absolute condition number of the roots is 1/q′n(z).

Figure 3.1 shows the minimum and maximum condition numbers of the roots of the Fibonacci-

Mandelbrot polynomials. The maximum condition numbers are represented by the circles, and

are computed by taking the reciprocal of the minimum value of
∣∣∣q′n(z)

∣∣∣. On the other hand, the

minimum condition numbers are represented by the crosses, and computed by taking the recip-

rocal of the maximum value of
∣∣∣q′n(z)

∣∣∣. Just as we have seen for the Mandelbrot polynomials,

the maximum condition number for the Fibonacci-Mandelbrot polynomials is also 1, which

means that the roots are well-conditioned. The slope for the line of best fit for the minimum

condition number for the Fibonacci-Mandelbrot polynomials is around −1.9, which is slightly

greater than −2. The line that is below the lines of best fit is for reference; it has a slope of −2.

Additionally, we can look at the pseudozeros of the Fibonacci-Mandelbrot polynomials by

plotting the contours at fairly small values of the polynomials and see where these contours lie

40 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.1: Minimum and maximum condition numbers of the roots for Fibonacci-Mandelbrot
polynomials.

with respect to the location of the roots. Figure 3.2 shows the roots of q15(z) with the contours

of |q15(z)| = 0.2 in red. Here, we can see that the contours that are visible encircles the roots

quite closely, which mean that the roots are well-conditioned. We can look closer into some

of the more interesting regions (that contain more red) of the roots of Fibonacci-Mandelbrot

polynomials, and reduce the size of the contour that we are looking into for these particular

regions. In Figure 3.3, we zoom into 4 different regions of the roots of q15(z), and plotted

|q15(z)| = 0.05 instead of |q15(z)| = 0.2.

3.3 Fibonacci-Mandelbrot matrices

Using Piers Lawrence’s idea of using supersparse companion matrices to compute the roots

of the Mandelbrot polynomials, pn(z), we can create analogous supersparse matrices for the

3.3. Fibonacci-Mandelbrot matrices 41

Figure 3.2: All 609 roots of q15(z) with |q15(z)| = 0.2 in red.

42 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

(a) (b)

(c) (d)

Figure 3.3: Different regions the Fibonacci-Mandelbrot polynomials where the roots are not as
well-conditioned with |q15(z)| = 0.05 in red.

3.3. Fibonacci-Mandelbrot matrices 43

Fibonacci-Mandelbrot polynomials, qn(z). We start with

M3 = [−1], (3.6)

in which the eigenvalue, −1, is the root of q3(z) = z + 1 and

M4 =

 0 1

−1 −1

 , (3.7)

where the eigenvalues, −1
2 ±

√
3i

2 , are the roots of q4(z) = z2 + z + 1. Also, note that

MT
4 =

 0 −1

1 −1

 (3.8)

also leads to a similar family. However, we decided to use Equation (3.7) so that the subdiago-

nal of these family of companion matrices will always be −1.

Let rn =

[
0 0 · · · 1

]
and cn =

[
1 0 · · · 0

]T

be row and column vectors of length

dn, where dn is the degree of the polynomial, qn(z). Then, our matrix construction would be

Mn+1 =


Mn (−1)dn+1cnrn−1

−rn 0

−cn−1 Mn−1

 (3.9)

for all n > 2. The first few Fibonacci-Mandelbrot matrices are

M5 =



0 1 1

−1 −1

−1

−1 −1


, (3.10)

44 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

and

M6 =



0 1 0 1 −1

−1 −1 0 0

−1 0 0

−1 −1

−1

−1 0 1

−1 −1



. (3.11)

Computing the characteristic polynomials for both Equations (3.10) and (3.11), they both

match the Fibonacci-Mandelbrot polynomials, q5(z) and q6(z), respectively. We can also con-

struct the Fibonacci-Mandelbrot matrices slightly differently: we can swap Mn and Mn−1, and

change rn and cn to the correct lengths. Thus, the recursion for this companion matrix is

Mn+1 =


Mn−1 (−1)dn+1cn−1rn

−rn−1 0

−cn Mn

 , (3.12)

where M3 and M4 are the same as above. Therefore, the next few Fibonacci-Mandelbrot ma-

3.3. Fibonacci-Mandelbrot matrices 45

trices using the recursion shown in Equation (3.12) are

M5 =



−1 1

−1

−1 0 1

−1 −1


, (3.13)

M6 =



0 1 −1

−1 −1

−1

−1 −1 0 0 1

−1 0 0 0

−1 0 1

−1 −1



, (3.14)

in which the characteristic polynomials of both M5 (Equation (3.13)) and M6 (Equation (3.14))

also match q5(z) and q6(z) respectively. It can be shown that qn(z) = det(zI −Mn) for all n > 3

using induction and the Schur complement [24], which will be shown in Chapter 5.

Unlike the Mandelbrot matrices, notice that the Fibonacci-Mandelbrot matrices contain

{−1, 0, 1}, whereas the Mandelbrot matrices contain just the values {0,−1}. What is also inter-

esting is that the inverses of these Fibonacci-Mandelbrot companion matrices have inverses that

are also supersparse, and only contain {−1, 0, 1} as well. For example, if we take the inverse of

46 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

M6 (Equation (3.11)) that follows the recursion found in Equation (3.9),

M−1
6 =



0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

−1 0 −1 −1 1 0 0

0 0 0 0 −1 0 0

−1 0 −1 0 0 −1 0

1 0 1 0 0 0 −1

−1 0 −1 0 0 0 0



. (3.15)

We can also use Maple to help us visualize the next few inverses, shown in Figure 3.4, where

−1 is black, 0 is grey, and 1 is white. It is obvious from these plots that there is clearly a pattern

for the inverses of the Fibonacci-Mandelbrot polynomials. More research is required to learn

more about the inverses of these companion matrices and will be left to future work.

3.3.1 Results

Using our first matrix construction (Equation (3.9)), MATLAB’s eig routine was able to com-

pute the eigenvalues of M22, which has a dimension of 17, 710, correctly (see Figure 3.5a).

However, it was not able to successfully compute the roots of q23(z) correctly, shown in Fig-

ure 3.5b. In MATLAB’s eig routine, the default for balanceOption is ‘balance’, which

enables balancing. In most cases, the balancing step improves the conditioning of the matrix

to produce more accurate results. However, in our case, it did not give us the correct results.

Therefore, we computed the eigenvalues once again with ‘nobalance’, but unfortunately,

produced the same (incorrect) results. Additionally, we did not attempt to solve for the eigen-

values of sparse matrices even though it is very likely that it can help us find more roots using

this method.

We also tried computing the eigenvalues of the Fibonacci-Mandelbrot matrices using both

Maple 2015 and Maple 2016. Surprisingly, the different versions of Maple gave us different

3.3. Fibonacci-Mandelbrot matrices 47

(a) M−1
7 (b) M−1

8

(c) M−1
9 (d) M−1

10

Figure 3.4: Image visualizations of inverses of Fibonacci-Mandelbrot matrices, where −1, 0
and 1 are black, grey, and white respectively, using Maple 2016.

48 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

(a) Computed eigenvalues of M22, which has a di-
mension of 17, 710.

(b) Computed eigenvalues computed of M23,
which has a dimension of 28, 656.

Figure 3.5: Plots of eigenvalues using MATLAB’s eig routine.

results. Maple 2015 actually gives us the results that we were expecting (see Figure3.6a),

whereas Maple 2016 gives us inaccurate results (see Figure 3.6b).

From Figure 3.7, we can see that the time complexity is around O(d2.3
n), which is very

similar to the time complexity that we computed when using the eigenvalue method on the

Mandelbrot matrices. As a reference, the top line has a slope of 3, which is the slope that we

expect our line of best fit to have.

3.4 Homotopy methods

We can also use homotopy methods to solve for the roots of the Fibonacci-Mandelbrot poly-

nomials. Consider the following homotopy:

Hn(ζ, τ) = ζqn−1(ζ)qn−2(ζ) + τ. (3.16)

Comparing this homotopy (Equation (3.16)) to the homotopy used for the Mandelbrot polyno-

mials (Equation (2.12)), we can see that they are quite similar. However, the main difference

3.4. Homotopy methods 49

(a) Using Maple 2015 (b) Using Maple 2016

Figure 3.6: Computed eigenvalues of n = 23, which has a degree of 28, 656 of the Fibonacci-
Mandelbrot matrices using Maple.

Figure 3.7: Time taken to compute eigenvalues of Fibonacci-Mandelbrot matrices.

50 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

is that the variable τ in the homotopy for the Mandelbrot polynomials is squared, whereas here

in Equation (3.16), is just simply τ. This is because the zeros when τ = 0 are simple at ζ = 0,

the roots of qn−1(ζ), and the roots of qn−2(ζ): we do not start at any double roots.

Similarly to the Mandelbrot polynomials, we can differentiate the right-hand side of Equa-

tion (3.16) with respect to τ to give us the following differential equation:

dζ
dτ

=
−1

qn(ζ)
, (3.17)

where we integrate 0 ≤ τ ≤ 1. Just as we did for the homotopy method used for the Mandelbrot

polynomials, we can use the zeros of ζqn−1(ζ)qn−2(ζ) as our initial conditions to help us find

the roots of qn(ζ).

Unfortunately, just as when solving the differential equations numerically for the Mandel-

brot polynomials, we encounter singularities along the real-axis when solving Equation (3.17)

for the Fibonacci-Mandelbrot polynomials. As an example for this case, we can look at the

singularities when n = 4. The differential equation for q4(z) is

dζ
dτ

=
−1

2ζ + 1
, (3.18)

where ζ(0) = 0 and ζ(0) = −1 (since it is the root of q3(z)). There are no roots for q2(z), so we

do not include q2(z) in our initial conditions. From Equation (3.18), it is obvious that we will

encounter a singularity when ζ = −1
2 . Also, since Equation (3.18) is separable, we can easily

find the value of τ when ζ = −1
2 , and check that τ lies on the real-axis between 0 and 1.

dζ
dτ

=
−1

2ζ + 1

(2ζ + 1) dζ = −dτ

ζ2 + ζ = −τ + C, where C is a constant . (3.19)

It is obvious that when ζ = 0 and τ = 0, our constant C = 0. To find the value of our constant

3.4. Homotopy methods 51

when ζ = −1 and τ = 0, we can substitute the corresponding values to Equation (3.19):

(−1)2 + (−1) = C

1 − 1 = C

C = 0. (3.20)

Therefore, when ζ = −1 and τ = 0, our constant C is also 0. Knowing that our constant C = 0,

we can now solve for τ when ζ = −1
2 to see at what value of τ we encounter a singularity for

Equation (3.18):

(
−

1
2

)2

+

(
−

1
2

)
= −τ

1
4
−

1
2

= −τ

−
1
4

= −τ

τ =
1
4
. (3.21)

This shows that we do in fact encounter a singularity if we integrate along the real-axis, which

means that we need to use the pole-vaulting technique described in the previous chapter (see

Section 2.5) in order to avoid the singularities.

Since we are not starting from double roots for the Fibonacci-Mandelbrot polynomials, this

means that we do not need to perturb our initial condition, which we had to do for the Man-

delbrot polynomials. Instead, we can simply use the zeros of ζqn−1(ζ)qn−2(ζ), as mentioned

before. This means we only will get one root from each initial condition, unlike in the Man-

delbrot polynomials, where we get 2 roots from the zeros of pn−1(ζ) (remember that we only

got 1 root from ζ = 0 for the Mandelbrot polynomials). As demonstrated in Figure 3.8, created

in MATLAB, we can see the homotopy paths taken from our initial points to our roots, ξ5. In

this figure, the root, ξ3 = −1, is indicated by a triangle, the roots, ξ4 = −0.5 ± 0.86603 . . .,

are diamonds, and ζ = 0 is a circle, and they each lead us to a root, ξ5, which are squares.

52 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.8: Homotopy paths for q5 and contour where |q5(z)| = 1.

The grey line that surround the roots is the contour, |q5(z)| = 1. Notice in this figure that three

singularities are avoided by pole-vaulting.

Figure 3.9 shows the homotopy paths of the Fibonacci-Mandelbrot polynomials from n = 6

to n = 11. To simplify the plots, all of the initial points are blue circles (instead of showing

where each initial point comes from), while the final points are red crosses. These plots clearly

show that only one root stems from each initial point, unlike the Mandelbrot polynomials, seen

in Figure 2.9. One can prove that the gcd of qn(z) and qn−1(z) is 1: they can have no roots in

common because each would be periodic with period n and n − 1 and hence a fixed point, but

there are no fixed points in this iteration.

3.4. Homotopy methods 53

(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

(e) n = 10 (f) n = 11

Figure 3.9: Plots of homotopy paths and contours |qn(z)| = 1 of the Fibonacci-Mandelbrot
polynomials from n = 6 to n = 11.

54 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

3.4.1 Distinctness

Just as we have seen with the homotopy paths for the Mandelbrot polynomials, the paths for

the Fibonacci-Mandelbrot polynomials also do not cross (see Figures 3.8 and 3.9). We can

also prove, just like in Section 2.5.2, that each initial value problem is unique as long as the

singularities are avoided. However, this time, we do not need to be concerned about the initial

condition, and can start with the zeros of ζqn−1(ζ)qn−2(ζ), since these are not double roots.

Just as we did for the Mandelbrot polynomials, letting our region R = C, we can find the

Lipschitz constant for the homotopy for the Fibonacci-Mandelbrot polynomials

| f (t, u) − f (t, v)| ≤ L |u − v| =

∣∣∣∣∣∣ −1
q′n(u)

−
−1

q′n(v)

∣∣∣∣∣∣
=

∣∣∣∣∣∣−q′n(v) + q′n(u)
q′n(u)q′n(v)

∣∣∣∣∣∣ . (3.22)

Let

q′n(v) = q′n(u + v − u)

= q′n(u) + q′′n (u)(v − u) + O(v − u) . (3.23)

Substituting Equation (3.23) into Equation (3.22), we get

L |u − v| =

∣∣∣∣∣∣−q′n(u) − q′′n (u)(v − u) + q′n(u) + O(v − u)
q′n(u)q′n(v)

∣∣∣∣∣∣
�
−q′′n (u)

q′n(u)q′n(v)
|v − u|

�
−q′′n (u)
(q′n(u))2 |v − u| . (3.24)

Therefore,

L =
−q′′n (u)
(q′n(u))2 . (3.25)

As mentioned in the previous chapter, as long as the path that we are taking is continuous, q′′n (z)

3.4. Homotopy methods 55

will always be bounded. Since we will be avoiding singularities (whenever q′n(z) = 0) using

our custom ode solver, we can ensure that L is in fact bounded, thus satisfying the Lipschitz

condition. Therefore, just like the Mandelbrot polynomials, the initial value problems that we

use for our homotopy will only give us one solution; hence, it is unique.

3.4.2 Smallest roots

Like the Mandelbrot polynomials, we can use our homotopy method to find the smallest roots

of the Fibonacci-Mandelbrot polynomials by using the smallest roots from the previous itera-

tion as our initial point for our differential equation. Again, we deduce that the smallest root

has the form

sn =
1
4

+ αRen−βRe ± iαImn−βIm . (3.26)

Shown in Figure 3.10, we can plot the real part (minus 1
4) and imaginary part of our smallest

root against n, the iteration of the polynomials, in a log-log plot to see what βRe and βIm are.

Similar to the Mandelbrot polynomials, βRe and βIm are 2 and 3 respectively, although (again)

we are not sure about how exact these values are.

(a) Real part (b) Imaginary part

Figure 3.10: Log-log plots of smallest roots sn of Fibonacci-Mandelbrot polynomials (differ-
ence from 1/4).

Therefore, like the smallest roots of the Mandelbrot polynomials, the smallest roots of the

56 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Fibonacci-Mandelbrot polynomials are

sn �
1
4

+
αRe

n2 ±
αIm

n3 . (3.27)

However, αRe and αIm are different: they are around 22.2 and 188.2 respectively.

3.4.3 Results

Using our own ode solver, described in Section 2.6, we were able to compute up to n = 33,

which is 3, 524, 577 roots, of order O(10−4) precision, using a machine with 32 GB of memory.

This is shown in Figure 3.12. We were actually able to compute more roots than we did for the

Mandelbrot polynomials using the same technique and same machine.

Figure 3.11 shows the time taken to compute the roots of the Fibonacci-Mandelbrot poly-

nomials using our homotopy method. Like the result that we got for the time complexity when

computing the roots of the Mandelbrot polynomials using our homotopy method, the slope

of the line of best fit is less than 1: the slope is around 0.82. The line above the data is for

reference as it has a slope of 1. As mentioned in the previous chapter, the value of less than 1

for the slope of our line of best fit does not make any sense; there is an overall lower bound of

O(dn log(dn)) for this method. Therefore, we believe that, like for the Mandelbrot polynomials,

it becomes easier to find the roots for higher iterations since the initial guess is closer to the

final result.

Similar to the homotopy method that we used when solving for the Mandelbrot polyno-

mials, we notice that for the Fibonacci-Mandelbrot polynomials that the accuracy decreases

as the iterations increase, in which we believe is caused by mild instability in the iteration we

use. Therefore, we need to to use higher precision in order to calculate higher iterations of

the Fibonacci-Mandelbrot polynomials. Once again, we used Bailey’s ARPREC package [2]

for arbitrary precision in C++. Using this package, we were able to compute up to n = 31

(1, 346, 268 roots) thus far within O(10−12) precision.

3.4. Homotopy methods 57

Figure 3.11: Time taken to compute roots of qn(z) using homotopy methods. The line of best
fit has slope of 0.82.

58 Chapter 3. Fibonacci-Mandelbrot polynomials and matrices

Figure 3.12: Plot of all 3, 524, 577 roots of the Fibonacci-Mandelbrot polynomial q33(z). The
residuals were all smaller than 10−4.

Chapter 4

Narayana-Mandelbrot polynomials and

matrices

4.1 Introduction

Using what we have learned from both the Mandelbrot and Fibonacci-Mandelbrot polynomials,

we have decided to apply this knowledge to the Narayana-Mandelbrot polynomials, which are

based on the Narayana’s cows sequence. We first learned of the Narayana sequence at the

Computational Discovery Conference 2016 in a talk by Neil J. A. Sloane.

4.1.1 Narayana’s cows sequence

Sequence A000930 of the Online Encyclopedia of Integer Sequences [23], Narayana’s cows

sequence, begins

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (4.1)

and can be generated by

S n+1 = S n + S n−2. (4.2)

59

60 Chapter 4. Narayana-Mandelbrot polynomials and matrices

This sequence is named after a 14th-century Indian mathematician, who proposed the problem

to compute the number of cows if a cow produces one calf every year, and in the beginning of

its fourth year, each calf produces one calf at the beginning of each year. Many references are

given in the OEIS, but see also [21].

4.1.2 Narayana-Mandelbrot polynomials

Similar to the Fibonacci-Mandelbrot polynomials, we can use the recursion from the sequence,

which in this case, is the Narayana’s cows sequence, to create our family of polynomials. The

Narayana-Mandelbrot polynomials have the recursion

r0(z) = 1

r1(z) = 1

r2(z) = 1

rn+1(z) = zrn(z)rn−2(z) + 1. (4.3)

where n = 2, 3, 4, Using the monomial expansion, we can get the first few Narayana-

Mandelbrot polynomials:

r0(z) = 1

r1(z) = 1

r2(z) = 1

r3(z) = z + 1

r4(z) = z2 + z + 1

r5(z) = z3 + z2 + z + 1

r6(z) = z5 + 2z4 + 2z3 + 2z2 + z + 1

r7(z) = z8 + 3z7 + 5z6 + 6z5 + 5z4 + 4z3 + 2z2 + z + 1. (4.4)

4.2. Condition numbers and pseudozeros 61

The Narayana-Mandelbrot polynomials share a few properties with the Fibonacci-Mandelbrot

polynomials such as

1. The leading and trailing coefficients are 1.

2. All coefficients are positive integers.

3. The polynomials are unimodular.

However, they do have some properties that are unique to this family of polynomials:

1. The next-to-leading coefficient is a number from the Narayana’s cows sequence.

2. Put dn = deg rn. Then d1 = 0, d2 = 0, and d3 = 0, then dn+1 = dn + dn−2 or dn = S n − 1,

where S n is a number from the Narayana’s cows sequence.

4.2 Condition numbers and pseudozeros

Like the other two families of polynomials that we have already seen, the absolute condition

number of the roots is the reciprocal of the derivative of our polynomial, rn(z). Figure 4.1

shows the condition numbers of the Narayana-Mandelbrot polynomials. The circles are our

maximum condition number, computed by using the minimum value of
∣∣∣r′n(z)

∣∣∣ evaluated at its

roots, ξn. It can be seen that the maximum condition number we encounter is 1, which occurs

every other iteration. The crosses, on the other hand, are the minimum condition numbers,

calculated by taking the reciprocal of the maximum value of
∣∣∣r′n(ξn)

∣∣∣. The slope of the line

running through these points is around −1.8, which is around the results (of around −2; lower

line shown as a reference) that we have been getting for the minimum condition numbers of

the roots for the Mandelbrot polynomials and the Fibonacci-Mandelbrot polynomials.

Just as we did previously for the other two families of polynomials, we can look at the

pseudozeros by plotting the contours of a small value and seeing how tightly they encircle the

roots. Figure 4.2 shows the roots of r21(z) with |r21(z)| = 0.1 in red. We can see from this figure

62 Chapter 4. Narayana-Mandelbrot polynomials and matrices

Figure 4.1: Condition numbers of the roots of the Narayana-Mandelbrot polynomials, rn(z).

that the contour around the root at −1 is quite large. However, considering that the contour

is not connected to nearby contours, this shows that the root is still well-conditioned, like the

rest of the roots shown here. Zooming into the regions that have visible contours from Figure

4.2 and reducing the value of the contour that we are plotting, we can have a closer look at

the contours and how closely they wrap around the root, shown in Figure 4.3. Since all of the

contours are very close to the roots where some of them not visible, we can see here that the

roots are in fact well-conditioned.

4.3 Narayana-Mandelbrot matrices

Like both the Mandelbrot and Fibonacci-Mandelbrot polynomials, we can produce recursively-

constructed supersparse companion matrices for the Narayana-Mandelbrot polynomials. Thus,

the Narayana-Mandelbrot companion matrix construction is as follows.

We start off the recursion with

M3 = [−1] , (4.5)

4.3. Narayana-Mandelbrot matrices 63

Figure 4.2: Roots of r21(z) with |r21(z)| = 0.1 in red.

64 Chapter 4. Narayana-Mandelbrot polynomials and matrices

(a) (b)

(c) (d)

Figure 4.3: Different regions the Narayana-Mandelbrot polynomials where the roots are not as
well-conditioned with |r21(z)| = 0.05 in red.

4.3. Narayana-Mandelbrot matrices 65

just as we did for the Fibonacci-Mandelbrot matrices. Since r4(z) is the same as q4(z), we could

use the same matrix which we used for the Fibonacci-Mandelbrot matrices:

M4 =

 0 1

−1 −1

 . (4.6)

The reason why we chose to have M4 in this formation for the Fibonacci-Mandelbrot matrices

is so that our sub-diagonal in our companion matrices are always −1. In this case, we have

decided to take the transpose of M4 from the Fibonacci-Mandelbrot matrices instead. Thus, for

the Narayana-Mandelbrot matrices,

M4 =

 0 −1

1 −1

 (4.7)

Since the Narayana-Mandelbrot polynomials take its rn(z) and rn−2(z) polynomials in its re-

cursion, it means that we will be taking Mn and Mn−2 in order to construct the next matrix.

Therefore, we also need

M5 =


0 0 −1

1 0 −1

0 1 −1

 (4.8)

as well. Note that we can also use Equation (4.6) for our recursion for M5 as well so that

M5 =


0 0 −1

−1 0 1

0 −1 −1

 (4.9)

also works. Letting rn =

[
0 · · · 0 1

]
and cn =

[
1 0 · · · 0

]T

, where the lengths of

66 Chapter 4. Narayana-Mandelbrot polynomials and matrices

these vectors are of dn, our construction becomes

Mn+1 =


Mn −cnrn−2

−rn 0

−cn−2 Mn−2

 . (4.10)

As you can see, these matrices are also upper Hessenberg, and the construction of these ma-

trices are quite similar to the construction of the Fibonacci-Mandelbrot matrices: the main

difference is that the matrix in the lower right corner is Mn−2 instead of Mn−1. For this partic-

ular construction, the value in the upper right corner is always −1 and is not dependent on the

dimension of our matrix, since the number of −1 on the sub diagonal is always even (proof in

Chapter 5 will show the relationship between the elements in the subdiagonal and the element

in the upper right corner). If we used M4 from Equation (4.6) and M5 from Equation (4.9) for

our construction so that the subdiagonal only consisted of −1, then the element in the upper

right corner would be dependent on the dimension of the matrix.

The following are the next few Narayana-Mandelbrot matrices using the construction from

Equation (4.10):

M6 =



0 0 −1 −1

1 0 −1

1 −1

−1

−1 −1


(4.11)

4.3. Narayana-Mandelbrot matrices 67

and

M7 =



0 0 −1 0 −1 −1

1 0 −1 0 0

1 −1 0 0

−1 0 0

−1 −1

−1

−1 0 −1

1 −1



. (4.12)

4.3.1 Results

Using MATLAB, we were only able to compute up to n = 27, which has a dimension of

18, 559 roots, shown in Figure 4.4. Comparing to this result to the other matrices that we have

computed the eigenvalues of previously, there is quite a huge difference in the dimension of

the roots. For the Mandelbrot matrices, we were able to solve up to 32, 767 roots, whereas for

the Fibonacci-Mandelbrot matrices, we were able to solve up to 28, 656 roots for one of our

recursive companion matrices. For these two families of matrices, the main problem was the

lack of memory that the machine that we were using has (32 GB). However, for the Narayana-

Mandelbrot matrices, we actually encounter some problems when evaluating the eigenvalues

of M28.

In Figure 4.5, it shows the eigenvalues that MATLAB finds when evaluating M28: on the

left is the full plot, and on the right is zoomed-in to the portion where the roots of r28(z) should

reside. As mentioned in the previous chapter, we can also switch Mn and Mn−2 around with the

correct corresponding rn and cn. As we saw in the previous chapter, this could potentially help

us compute either more or less (correct) eigenvalues. The recursion for the matrix construction

68 Chapter 4. Narayana-Mandelbrot polynomials and matrices

Figure 4.4: Roots of r27(z), which has a dimension of 18, 559.

4.3. Narayana-Mandelbrot matrices 69

(a) Overall results (b) Zoomed version of results.

Figure 4.5: Results MATLAB gives when evaluating the eigenvalues of M28 using recursion
from Equation (4.10), showing numerical artefacts.

(a) Overall results (b) Zoomed version of results.

Figure 4.6: Results Maple gives when evaluating the eigenvalues of M28 using recursion from
Equation (4.13), again showing numerical artefacts.

70 Chapter 4. Narayana-Mandelbrot polynomials and matrices

becomes

Mn+1 =


Mn−2 −cn−2rn

−rn−2 0

−cn Mn

 , (4.13)

using the same M3, M4, and M5. This time, using Maple 2016 to solve the eigenvalues of M28

based on the recursion in Equation (4.13), we can see that this also fails to give us the correct

roots for r28(z). In an attempt to improve on this result, we tried to increase the number of digits

used to compute the eigenvalues of this matrix. Unfortunately, we were unable to retrieve any

results for this as it overloaded the CPU of the machine that we used. Note that we did not use

Maple 2015, which we saw was able to compute the eigenvalues of the Fibonacci-Mandelbrot

matrices correctly up to n = 23, to solve for the eigenvalues of the Narayana-Mandelbrot

matrices.

We also recorded the time it takes in MATLAB to compute the eigenvalues of the Narayana-

Mandelbrot matrices (using the recursion in Equation (4.10)). The slope running through the

points in the figure is around 2.3, which is what we have been getting for the time of the

other two matrices. The estimated time complexity of O(d2.3
n) is less than the expected time

complexity of O(d3
n). To show this, there is a line above our line of best fit, as a reference.

4.4 Homotopy methods

Similar to our previous two families of polynomials, we can use homotopy methods to solve

for the roots of the Narayana-Mandelbrot polynomials. Consider the following homotopy:

Hn(ζ, τ) = ζrn−1(ζ)rn−3(ζ) + τ, (4.14)

which is very similar to the homotopy used for the Fibonacci-Mandelbrot polynomials (Equa-

tion (3.16)). When τ = 0, the zeros of Hn(ζ, 0) are ζ = 0, the zeros of rn−1(ζ) and the zeros of

rn−3(ζ). When τ = 1, it is the same equation as Equation (4.3); thus, the zeros of Hn(ζ, 1) are

4.4. Homotopy methods 71

Figure 4.7: Time taken for computing the eigenvalues of the Narayana-Mandelbrot matrices.

the zeros of rn(z). Differentiating the right-hand side of Equation (4.14) with respect to τ, as

we did for the Equation (3.16), we get the following differential equation

dζ
dτ

=
−1

r′n(ζ)
, τ ∈ [0, 1] , (4.15)

which has essentially the same form as Equation (3.17). Unfortunately, just as with the other

two families of polynomials, we do encounter singularities when integrating along the real axis.

This could be seen in the previous chapter when we computed the location of the singularities

for q4(z) = z2+z+1. (Note that r4(z) = q4(z).) Therefore, we again need to use the pole-vaulting

technique described in Section 2.5 to avoid the singularities.

Since the roots are periodic, as mentioned previously when listing properties of the Narayana-

Mandelbrot polynomials, we do have to be mindful since we will encounter some duplicate

roots when using the previous roots as our initial conditions for our differential equation (Equa-

tion (4.3)). Using n = 6 as an example, it can be seen that our initial condition for our differ-

72 Chapter 4. Narayana-Mandelbrot polynomials and matrices

ential equation
dζ
dτ

=
−1

r′6(z)
=

−1
5z4 + 8z3 + 6z2 + 4z + 1

(4.16)

would be 0, the roots of r3(z) = z+1 and the roots of r5(z) = z3 + z2 + z+1. It can easily be seen

that the root of r3(z) is −1. The roots of r5(z) are not as easy, but still fairly simple to evaluate:

ξ5 = −1,±i. From this, you can see that we start from −1 twice, since −1 is the root of both

r3(z) and r5(z). Therefore, we can use the same technique (shown in Section 2.4) to perturb

our initial conditions for these double roots so that the paths can go off in separate directions

to find the two roots that stem from that single point.

In Figure 4.8, we can see the paths taken from our initial points to our roots ξ6, which

are represented by the squares. The circle represents our initial condition ζ = 0, the cross

represents ξ3 and the diamonds represent ξ5. It can be seen in this figure that there are two

pathways that come out from −1, marked with both a cross and a diamond. The plot also has

the contour |r6(z)| = 1 in grey.

We also plotted the homotopy paths of the following 6 iterates, shown in Figure 4.9. To

simplify the plots, instead of showing which roots each initial condition comes from, all initial

points are represented by circles, and the final roots are represented by crosses. From these

plots, it can be seen, from the two pathways coming out from one point, that there are other

points where the double roots occur, not just at −1.

4.4.1 Smallest roots

We can compute the smallest roots of the Narayana-Mandelbrot polynomials using the ho-

motopy method described previously. Figure 4.10a shows the real part of the smallest roots

minus 1/4, while Figure 4.10b shows the imaginary part of the smallest roots of the Narayana-

Mandelbrot polynomials. Like the Mandelbrot and Fibonacci-Mandelbrot polynomials, we

4.4. Homotopy methods 73

Figure 4.8: Homotopy paths for r6(z) and contour where |r6(z)| = 1.

74 Chapter 4. Narayana-Mandelbrot polynomials and matrices

(a) n = 7 (b) n = 8

(c) n = 9 (d) n = 10

(e) n = 11 (f) n = 12

Figure 4.9: Plots of homotopy paths and contour |rn(z)| = 1 of the Narayana-Mandelbrot poly-
nomials from n = 7 to n = 12.

4.4. Homotopy methods 75

deduced that the smallest roots have the form

sn =
1
4

+ αRen−βRe ± iαImn−βIm . (4.17)

Similar to the smallest roots of both the Mandelbrot and the Fibonacci-Mandelbrot polynomials

the slopes of the real part and the imaginary part are around −2 and −3 respectively, which

means that βRe = 2 and βIm = 3.

Knowing what the β’s are, we can now find what the values of our α’s by multiplying

n2 or n3 to the corresponding real part minus 1/4 or the imaginary part of the smallest roots

respectively. From doing so, the smallest roots seem to be

sn �
1
4

+
39.2
n2 ±

409.5
n3 . (4.18)

(a) Real part (b) Imaginary part

Figure 4.10: Smallest roots of the Narayana-Mandelbrot polynomials (difference from 1/4).

4.4.2 Results

We used both MATLAB and David Bailey’s ARPREC package in C++ to compute the roots of

the Narayana-Mandelbrot polynomials using the homotopy method described above. We only

76 Chapter 4. Narayana-Mandelbrot polynomials and matrices

used our own ode solver (details in Section 2.6) in MATLAB to give us a rough idea of what

the time complexity of computing the roots of the Narayana-Mandelbrot polynomials using a

homotopy method, since it was able to give us results a lot quicker compared to our C++ code,

which uses multiple precision. However, we knew that we would eventually have to use the

multiple precision package written in C++ in order to compute the roots of higher degrees.

Therefore, we decided not to pursue computing a large number of roots using our ode solver in

MATLAB.

Figure 4.11: Time taken to compute roots of rn(z) using homotopy methods.

Figure 4.11 shows the amount of time it takes to compute the roots of the Narayana-

Mandelbrot polynomials using a homotopy method in MATLAB, using our own ode solver.

Similar to the other families of polynomials, the slope of the line running through our data

points is around 0.9, which is less than 1. As mentioned before, this is impossible as the ho-

motopy method has a lower limit of O(dn ln dn), and we believe that the “constant” is hidden in

the O, and that it decreases for higher iterates.

Using Bailey’s ARPREC package [2], we were able to compute up to n = 36, which is a

degree of 578, 948, thus far, with O(10−9) precision, shown in Figure 4.12.

4.4. Homotopy methods 77

Figure 4.12: Roots of r36(z), which has a degree of 578, 948.

Chapter 5

Concluding Remarks

In this thesis, we explored two different methods for finding the roots of three families of

polynomials: Mandelbrot, Fibonacci-Mandelbrot, and Narayana-Mandelbrot polynomials. For

the first method, we found the roots of the polynomials by computing the eigenvalues of a

supersparse, recursively-constructed companion matrix. Piers Lawrence first introduced this

construction for the Mandelbrot matrices, and we have applied a new, similar construction to

both the Fibonacci-Mandelbrot and the Narayana-Mandelbrot matrices, thus creating a new

kind of companion matrix. For our second method, we used new homotopy methods to find

the roots of the families of polynomials.

Comparing the two methods that we explored, homotopy methods are clearly superior in

both time and space complexity. As mentioned in our discussions in our previous chapters,

the time complexity of the eigenvalue method appeared to be around O(d2.3
n), whereas the time

complexity that we computed for the homotopy method appear to be around O(d0.9
n). Of course

in reality, this should have a lower bound of O(dn log dn), which is still less than the time

complexity of solving for eigenvalues.

When we say f (d) = O(dn) as d → ∞, we could mean that there exists a nonzero constant

κ such that

lim
d→∞

f (d)
dn = κ . (5.1)

78

79

(This is a simple definition, maybe the simplest, of the order symbol). In fact, we are using

“soft-oh,” which allows logarithms: there exists a nonzero constant κ and a power β such that

lim
d→∞

f (d)
dn lnβ d

= κ . (5.2)

Experimentally, we try to estimate κ by looking at the value of f (d) for “large” d: say, d = D.

lim
d→∞

f (d)
dn

?
=

f (D)
Dn (5.3)

We do not know if D is “large enough” to actually uncover κ accurately, though. For instance,

f (d) = 10−12 · d2 + 100 · d (5.4)

will look like O(d) for d less than, say, 1012. Similarly,

10−6 · d ln d + 100 · d (5.5)

will look like O(d) for d < e106
.

Since we are using full matrices in order to compute our eigenvalues, this means that our

space complexity for this method is O(d2
n). On the other hand, for the homotopy method, the

space complexity is O(dn), although it might even be doable in constant space. We do realize

that this comparison is somewhat unfair, since we can reduce the space complexity of our eigen-

value method by using sparse matrices seeing that these companion matrices are supersparse.

However, evaluating these eigenvalues using MATLAB’s eigs routine to take advantage of

the sparseness of the matrices does come with some challenges, such as determining which

regions to look at to evaluate the roots, and removing all of the duplicates once we collect all

the results together. Due to time constraints, we decided not to look very closely into using

sparse matrices to compute our roots; thus, more research would be needed to be done for a

80 Chapter 5. Concluding Remarks

fairer comparison between the two methods.

5.1 Future Work

Of the three families of polynomials that we have studied in this thesis, only the Mandelbrot

polynomials have been studied before (very extensively, one might add). Much is already

known about the roots of the Mandelbrot polynomials and the properties of the Mandelbrot set

(see [19, Chapter 4]). However, very little is known about both the Fibonacci-Mandelbrot and

Narayana-Mandelbrot polynomials, since they are both completely new families of polynomi-

als based on the Mandelbrot polynomials and the Fibonacci and Narayana sequences respec-

tively. Therefore, exploring these polynomials further and learning more about the roots of

these families of polynomials would be an interesting extension of this work. At MICA 2016,

Joachim von zur Gathen suggested to us that these may have applications in random number

generation or in primality testing for cryptography.

Additionally, the companion matrix construction first introduced by Piers Lawrence for the

Mandelbrot matrices, which we have extended to the Fibonacci-Mandelbrot and Narayana-

Mandelbrot matrices, is genuinely a completely new kind of companion matrix. We can prove

that the construction is valid by using induction and the Schur determinantal formula. The

surprising analogy between all three families of supersparse companions led us to conjecture

and prove the following.

Theorem 5.1.1 Suppose a(z) = det(zI − A), b(z) = det(zI − B), and both A and B are upper

Hessenberg matrices with nonzero subdiagonal entries, and

α =
1(∏da−1

j=1 a j+1, j

) (∏db−1
j=1 b j+1, j

) (5.6)

is the reciprocal of the product of the subdiagonal entries of A and B, and da = degz a and

db = degz b, so the dimension of A is da × da and the dimension of B is db × db. Suppose both

5.1. FutureWork 81

da and db are at least 1. Then if

C =


A −αc0carb

−ra 0

−cb B

 (5.7)

where ra =

[
0 0 · · · 1

]
of length da, cb =

[
1 0 · · · 0

]T

of length db, we have

c(z) = det (zI − C) = z · a(z)b(z) + c0. (5.8)

Remark Proving this theorem automatically proves the validity of the constructions of the

supersparse companion matrices for pn, qn, and rn.

Remark Starting with a polynomial c(z), we see that there are potentially many such a(z) and

b(z). This freedom may be quite valuable or, it may be an obstacle.

Proof Partition

zI − C =

 C11 C12

C21 C22

 (5.9)

where C22 = zI − B is nonsingular if z is not an eigenvalue of B, i.e. b(z) , 0. Later we will

remove this restriction. Also,

C21 =


1

 (5.10)

is db × (da + 1) and has only one nonzero element, which is a 1 in the upper right corner. Next,

C12 =


αc0

 (5.11)

82 Chapter 5. Concluding Remarks

is (1 + da) × db and again has only one nonzero element, αc0 in the upper right corner. [In fact,

c0 can be zero.] This leaves

C11 =



zI − A

0
...

0

0

1 z


(5.12)

which is da + 1 by da + 1.

The Schur factoring is

 C11 C12

C21 C22

 =

 I C12

0 C22


 C11 − C12C−1

22 C21 0

C−1
22 C21 I

 (5.13)

with the computation of the Schur complement C11 −C12C−1
22 C21 going to do most of the work

in the proof. The Schur determinantal formula [15] is then

det C = det (C22) det
(
C11 − C12C−1

22 C21

)
. (5.14)

We have the following propositions.

0. zI − A and zI − B are upper Hessenberg because A and B are.

1. The first da columns of C−1
22 C21 are zero.

2. The final column of C−1
22 C21 is the solution, say ~v, of (zI − B)~v = e1. Again, zI − B is

nonsingular.

3. By Cramer’s rule, the final entry in ~v, say v, is

v =

det
(
C22 ←−

db
e1

)
det (C22)

(5.15)

5.1. FutureWork 83

where the notation M←−
k
~v means replace the kth column of M with the vector ~v [7].

4. Since C22 = zI − B is upper Hessenberg,

C22 ←−
db

e1 =



∗ ∗ ∗ · · · ∗ 1

−b21 ∗ ∗ · · · ∗ 0

−b32 ∗
...

...

−b43
. . .

. . . ∗ 0

−bdb,db−1 0



. (5.16)

Laplace expansion about the final column gives

det
(
C22 ←−

db
e1

)
= (−1)db−1(−1)db−1

db−1∏
j=1

b j+1, j

=

db−1∏
j=1

b j+1, j. (5.17)

Therefore,

v =

∏db−1
j=1 b j+1, j

b(z)
(5.18)

because det C22 = det (zI − B) = b(z) by hypothesis.

5. Now

C12C−1
22 C21 =



αc0





∗

...

∗

v


=



αc0v


(5.19)

is da + 1 by da + 1 and has its only nonzero entry, αc0v, in the upper right corner.

84 Chapter 5. Concluding Remarks

6. The Schur complement is therefore



zI − A

−αc0v

0
...

0

0 · · · 0 1 z


(5.20)

and we compute det
(
C11 − C12C−1

22 C21

)
by Laplace expansion on the last column:

det
(
C11 − C12C−1

22 C21

)
= − (−1)daαc0v det



−a21 ∗ ∗ · ∗

−a32 ∗ ∗

−a43
...

. . .

−ada,da−1


+ z det (zI − A)

= − (−1)daαc0v
da−1∏
j=1

(
−a j+1, j

)
+ z · a(z)

=αv
da−1∏
j=1

a j+1, j · c0 + z · a(z)

=α ·

(∏db−1
j=1 b j+1, j

)
b(z)

·

da−1∏
j=1

a j+1, j

 · c0 + z · a(z)

=
c0

b(z)
+ z · a(z) (5.21)

by the definition of α.

5.1. FutureWork 85

Therefore by the Schur determinantal formula

det (zI − C) = det (C22) det
(
C11 − C12C−1

22 C21

)
= b(z)

(
c0

b(z)
+ z · a(z)

)
= z · a(z)b(z) + c0. (5.22)

Since the left hand side is a polynomial as is the right hand side, the formula will be true

even if b(z) = 0, by continuity.

\

As we have seen in Chapter 3, we are also interested in the inverses of these companion ma-

trices. For the Fibonacci-Mandelbrot matrices, we noticed that the inverses of the companion

matrices are also supersparse, containing only elements in {−1, 0, 1}. We are also interested in

looking at the inverses for other companion matrices that follow this construction, particularly

the Mandelbrot and Narayana-Mandelbrot matrices, to see whether they are also supersparse,

and if any patterns that emerge.

We can also demonstrate this construction on Newton’s example polynomial x3 − 2x − 5.

We see that x3 − 2x − 5 = x(x2 − 2) − 5 = x(x −
√

2)(x +
√

2) − 5, and companion matrices

for x −
√

2 and x +
√

2 are just [+
√

2] and [−
√

2] respectively. Thus a companion matrix for

Newton’s polynomial is 
√

2 5

−1

−1 −
√

2

 (5.23)

For unimodular polynomials, such companion matrices will be of lower height than the Frobe-

nius or Fiedler [13] companions, and may offer better numerical condition.

We have now established that if c(z) = z · a(z)b(z) + c0 and A and B are upper Hessenberg

86 Chapter 5. Concluding Remarks

companion matrices for the polynomials a(z) and b(z) respectively, then

C =


A −αc0carb

−ra 0

−cb B

 (5.24)

is a companion matrix for c(z). One wonders immediately about a corresponding linearization,

LC, strong or otherwise, for the matrix polynomial (A,B,C,C0 ∈ C
n×n)

C(z) = zA(z)B(z) + C0 . (5.25)

Suppose LA is a block upper Hessenberg linearization for A, LB for B. Some very preliminary

experiments, where LA and LB were block upper Hessenberg with all blocks I, so α = 1, find

that indeed

LC =



LA −C0

−I 0

−I
LB


(5.26)

is a (strong) linearization for C(z), in the examples we tried. This extension to matrix polyno-

mials will be interesting for applications, if the process is numerically stable (which it might

be at least for some problems).

Bibliography

[1] David H. Bailey. A thread-safe arbitrary precision computation package (full documen-
tation). http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf, 2016.

[2] David H. Bailey, Xiaoye S. Li, and Brandon Thompson. Arprec: An arbitrary precision
computation package. http://crd.lbl.gov/˜dhbailey/dhbpapers/arprec.pdf,
2002.

[3] Dario A. Bini and Giuseppe Fiorentino. Design, analysis, and implementation of a mul-
tiprecision polynomial rootfinder. Numerical Algorithms, 23(2-3):127–173, 2000.

[4] Dario A. Bini and Leonardo Robol. Solving secular and polynomial equations: A multi-
precision algorithm. Journal of Computational and Applied Mathematics, 272:276–292,
2014.

[5] G. Birkhoff and G. C. Rota. Ordinary Differential Equations. John Wiley & Sons, New
York, 1978.

[6] John P. Boyd. A Fourier companion matrix (multiplication matrix) with real-valued ele-
ments: Finding the roots of a trigonometric polynomial by matrix eigensolving. Numeri-
cal Mathematics: Theory, Methods and Applications, 6(04):586–599, 2013.

[7] David Carlson, Charles R. Johnson, David Lay, and A. Duane Porter. Gems of exposition
in elementary linear algebra. The College Mathematics Journal, 23(4):299–303, 1992.

[8] Robert M. Corless and Nicolas Fillion. A graduate introduction to numerical methods.
Springer Science & Business Media, 2014.

[9] Robert M. Corless and Piers W. Lawerence. Mandelbrot polynomials and matrices. In
preparation.

[10] Robert M. Corless and Piers W. Lawrence. The largest roots of the Mandelbrot polyno-
mials. In Computational and Analytical Mathematics, pages 305–324. Springer, 2013.

[11] Robert M. Corless and Steven E. Thornton. The Bohemian eigenvalue project. Poster
presentation at ISSAC, will be appearing in CCA, 2016.

[12] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and
their application to some heat transfer problems. http://ntrs.nasa.gov/archive/
nasa/casi.ntrs.nasa.gov/19690021375.pdf, 1969.

87

88 BIBLIOGRAPHY

[13] Miroslav Fiedler. A note on companion matrices. Linear Algebra and its Applications,
372:325–331, 2003.

[14] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Siam, 2002.

[15] Leslie Hogben and Robert Reams. Partitioned matrices. In Handbook of Linear Algebra,
pages 10–1 – 10–10. Chapman and Hall/CRC, 2006.

[16] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1997.

[17] T. Y. Li, Tim Sauer, and J. A. Yorke. The cheater’s homotopy: an efficient procedure
for solving systems of polynomial equations. SIAM Journal on Numerical Analysis,
26(5):1241–1251, 1989.

[18] George Markowsky. Misconceptions about the golden ratio. The College Mathematics
Journal, 23(1):2–19, 1992.

[19] Heinz-Otto Peitgen and Peter H. Richter. The beauty of fractals: images of complex
dynamical systems. Springer Science & Business Media, 2013.

[20] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM journal
on scientific computing, 18(1):1–22, 1997.

[21] Neil J. A. Sloane. My favorite integer sequences. In Sequences and their Applications,
pages 103–130. Springer, 1999.

[22] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically
at https://oeis.org, 2016. Sequence A000045.

[23] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically
at https://oeis.org, 2016. Sequence A000930.

[24] Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science
& Business Media, 2006.

Curriculum Vitae

Name: Eunice Chan

Post-Secondary Western University
Education and London, Ontario
Degrees: 2015 - Present M.Sc. Applied Mathematics

2011-2015 B.Sc. Applied Mathematics

Honours and Winner of Best Poster Prize
Awards: Computational Discovery Conference 2016

London, Ontario

Winner of “Distinguished Poster Award”
ISSAC 2016
Waterloo, Ontario

Western Graduate Research Scholarship (WGRS)
2015-present

Related Work Research Assistant
Experience: Western University (Applied Mathematics)

2015 - present

Research Assistant
Western University (MEDICI)
2016 - present

Teaching Assistant
Western University
2015 - present

List of poster presentations:

1. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices” (Poster),
Computation Discovery Conference, (2016).

89

90 BIBLIOGRAPHY

2. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices” (Poster),
ISSAC, (2016).

List of talks 1:

1. E. Y. S. Chan, R. M. Corless, “Fibonacci-Mandelbrot polynomials and matrices”, SONAD,
(2016).

2. E. Y. S. Chan, R. M. Corless, “Narayana, Mandelbrot, and a new kind of companion
matrix”, MICA, (2016).

1The underlined name was the speaker.

