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Abstract 

Boreal peatlands currently act as carbon sinks, but are projected to become carbon sources 

under climate change. Shifts in plant community composition alongside increased 

decomposition rates are potential mechanisms precipitating this change. My objective was to 

determine the decomposition potential of different peatland plant litters (Sphagnum 

magellanicum (peat moss), Carex magellanica (graminoid) and Chamaedaphne calyculata 

(woody shrub)) during short-term (48 hour) leaching and microbial decomposition (20 week) 

phases. The 48-hour leaching experiment measured mass loss and leachate chemistry of 

litters derived from plants grown under ambient and elevated CO2, while the 20-week 

experiment measured heterotrophic respiration and mass loss of litters incubated at 11.5, 15.5 

and 19.5 °C. In both experiments, Ch. calyculata and Ca. magellanica were more 

decomposable than S. magellanicum. My results suggest that decomposition rates under 

climate change will increase due to direct temperature effects as well as through potential 

shifts in plant communities.  

Keywords 

Carex magellanica, Chamaedaphne calyculata, climate change, community shift 

decomposition, leaching, Sphagnum magellanicum 
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1 Introduction 

1.1 The role of decomposition stages in the carbon cycle 

The terrestrial biosphere plays an important role in the global carbon cycle (Schimel, 

1995), with photosynthesis and decomposition as the two main processes of carbon 

cycling.  Approximately 1014 kg of carbon fixed from the atmosphere by photosynthesis 

every year (Nordlund, 2011) and most of this annual flux is returned back to the 

atmosphere through the respiration of soil heterotrophs through the process of 

decomposition (Field and Raupach, 2004).  Decomposition can be broadly defined as the 

process through which dead organic material is broken down into particles of 

progressively smaller size, until the structure can no longer be recognized and organic 

molecules are mineralized into H2O, CO2 and mineral constituents (Cotrufo et al., 2009).  

Decomposition is an important part of ecosystems because it replenishes the pool of plant 

available soil nutrients and releases photosynthetically produced carbon back to the 

atmosphere through the activity of soil organisms (Ebeling et al., 2014).  Thus, 

decomposition is a main determinant of carbon flow through an ecosystem (Swift et al., 

1979).  

The decomposition of plant litter undergoes several stages that include physical, chemical 

and biological transformations of organic material.  Arguably, the first phase of 

decomposition starts before the leaves (if considering leaf litter only) fall to the ground; 

the plant material undergoes chemical changes during senescence.  Once the organic 

material is in contact with the soil system, however, the first process is often leaching or 

other physical processes.  The leaching phase of decomposition is the removal of water-

soluble substances (Tukey, 1970).  During leaching, carbon (Jung et al., 2014) and 

nitrogen (Ibrahima et al., 1995) compounds are released from organic material and are 

made available for microbial use (Wang et al., 2014).  Fungi are the main initial 

decomposers of dead plant material, secreting enzymes that enable them to break the 

cuticle of dead leaves, or the suberized exterior of roots to gain access to the interior of 
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the plant organ (Chapin et al., 2011).  In the middle stages of decomposition, small 

detritivores break down organic matter into smaller pieces (Aerts, 1997), increasing 

surface area for microbial colonization and further decomposition.  These small 

detritivores also feed on fungi-altered plant litter, or feed on the fungi itself as a food 

source (Graça et al., 1993), yet they contribute very little to the decomposition of organic 

matter (Chapin et al., 2011).  In the latter stages of decomposition, humification occurs, 

where the carbon in organic residues is transformed and converted to humic substances 

through abiotic and biochemical processes (Guggenberger, 2005).  Humic substances are 

the base extractable portions of soil organic matter (Ertel and Hedges, 1984) and a major 

source of humic substances is the degradation of lignin by fungi (Aber and Mellilo, 1982; 

Dashtban et al., 2010).  As humic acids resist attack from microorganisms (Stevenson, 

1994), the humification of litter leads to large, dark-coloured and recalcitrant compounds 

that form soil humus (Lehmann and Kleber, 2015).  Plant litter entering the soil system 

can either be labile (easy to break down) or recalcitrant (harder to break down) (Moore et 

al., 2004), dictating decomposition rates.  For major portions of leaves and animals, over 

time, labile substances are scavenged, used and respired, while humic acids remain 

(Moore et al., 2004). 

1.2 Factors that affect the decomposition of plant litter 

There are four main factors affecting the decomposition of litter: moisture, temperature, 

eco-stoichiometric ratios of nutrients in litter and soil (typically considered as ‘litter 

quality’), and soil biota.  Moisture (soil moisture) can often be a limiting factor in 

microbial activity and therefore limit decomposition processes in dry ecosystems (Abera 

et al., 2012; Donnelly et al., 1990).  However, in some cases, very high soil moisture 

reduces decomposition rates (Delarue et al., 2011), because high soil moisture can also 

lead to anoxic conditions, which can diminish decomposition potential.  The effect of 

moisture on decomposition has been well documented; in general, decomposition rates 

have a unimodal relationship with soil moisture, being reduced at very high and very low 

moisture levels (Abera, et al., 2012; Conant et al., 2004; Delarue et al., 2011; Donnelly et 

al., 1990; Xu et al., 2016).  Soil moisture and sources of precipitation (rain, snow, dew, 



3 

 

fog etc.) also play an important role in the leaching phase of decomposition by removing 

water-soluble compounds from organic matter (Tukey, 1970). 

Decomposition rates are typically accelerated under elevated temperature as a result of 

increases in microbial enzymatic activity (Davidson and Janssens, 2006), but enzymatic 

rates rapidly decrease when the temperature rises above an optimum temperature for 

enzymatic activity (Coûteaux et al., 1995).  Temperature increases the longer-term 

decomposition of plant litter and soil organic matter through increased microbial Q10 

values (activity index) as demonstrated through several microcosm studies (Conant et al., 

2008; Paré et al., 2006).  Plant litter decomposition in the field has also shown a positive 

responsive to temperature, even over shorter time scales (e.g. one year) (Portillo-Estrada 

et al., 2016).  Elevated temperatures can also increase rates of plant litter leaching as 

shown by Whitworth et al. (2014), where dissolved organic carbon release through 

leaching was stimulated in a laboratory mesocosm experiment once the temperature was 

elevated.  Decomposition of the dissolved organic carbon by the microbial community 

was also increased with this temperature increase (Whitworth et al., 2014).  Both 

moisture and temperature are climate related variables (Li, 2007); as such, global 

decomposition rates vary with latitude and by ecosystem (Zhang et al., 2008).  However, 

both temperature and moisture are variables expected to change under future climate 

change scenarios (IPCC, 2013), with increased temperatures leading to potentially 

increased decomposition rates, and alterations in precipitation regimes leading to 

increases or decreases in soil moisture, depending on the ecosystem and geographic 

location (IPCC, 2013).  These effects will occur mainly through the changes in the 

biodiversity of microbial and animal communities and intensity of their activity and this 

depends largely on climate.  The effect of temperature and moisture on decomposition 

has been well documented (Abera, et al., 2012; Conant et al., 2004; Coûteaux et al., 

1995; Davidson and Janssens, 2006; Delarue et al., 2011; Donnelly et al., 1990; Xu et al., 

2016), but in general, the effects of biotic factors such as the structure of the microbial 

community on decomposition are less well known. 

Plant litter quality, and to a certain extent soil nutrient properties, affect decomposition 

rates through eco-stoichiometric regulation of the microbial community (Waring et al., 
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2014).  Differences in the forms of carbon (C), nitrogen (N), and stoichiometric ratios of 

compounds (e.g. C:N) in live and senesced plant tissue can influence rates of 

decomposition by affecting the belowground biota (Manzoni et al., 2008).  For example, 

lignin-to-nitrogen ratios have been argued to predict nitrogen mineralization (Stump and 

Binkley, 1993), and have been shown to correlate with the amount of decomposition that 

takes place, such that if the lignin-to-nitrogen ratio is high, the plant litter will not 

decompose well (Mellilo et al., 1982).  Lignin is the most recalcitrant form of carbon in 

plant litter (Swift et al., 1979); if plant litter contains large amounts of lignin, it is 

generally slow to decompose (Gessner et al., 2010). However, a small amount of lignin 

can also be degraded by UV light during the process of photodegredation (Austin and 

Ballaré, 2010).  The polyphenol-to-nitrogen ratio may also predict decomposition rates as 

well, since the plant litter with higher polyphenol-to-nitrogen ratios decomposed less 

relative to plant litter with lower polyphenol-to-nitrogen ratios (Lehmann et al., 1995).  If 

plant litter has a high concentration of phenols and/or tannins, it also tends to decompose 

slower compared to litter with a lower concentration of phenols (Sheffer et al., 2015).   

The ‘quality’ or lability of carbon compounds alone will also affect decomposition 

through its effect on microbial growth and activity, because complex compounds 

(recalcitrant) are difficult for microbes to break down by microbes, while easily 

assimilated carbons (labile), such as glucose, can increase microbial growth and activity 

(Kane et al., 2014).  Polyphenol compounds are generally complex, large molecules, and 

considered recalcitrant.  Carbon lability is particularly important during the initial 

leaching phase of the decomposition process, whereas substrate C:N values may dictate 

decomposability at later mineralization and humification stages of decomposition (Aerts 

and de Caluwe, 1997; Coûteaux et al., 1995; Limpens and Berendse, 2003; Taylor et al., 

1989).  In general, for longer term decomposition, plant litter with a C:N ratio of less than 

30:1 tends to favour bacterial decomposition, while plant litter with a C:N ratio greater 

than 30:1 generally favours fungal decomposition (Moore et al., 2004).  However, this 

assumption does not incorporate the fact that some fruit residues such as with tomatoes, 

have C:N ratios less than 30:1 (Kulcu, 2014), while some grass litter, such as those in the 

Carex family, have C:N ratios greater than 30:1 (Aerts and deCaluwe, 1997). The 

traditionally held view on the effect of substrate on the microbial community is the 
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‘selective preservation’ model, where bacteria are responsible for decomposing labile 

biopolymers, such as proteins and carbohydrates, whereas fungi were primarily 

responsible for breaking down more recalcitrant biopolymers (Lehmann and Kleber, 

2015).  However, some literature suggests it is the accessibility of the compound to 

decomposers and catalytic enzymes that may be more important than its chemical 

structure in terms of decomposability (Dungait et al., 2012).  For instance, large amounts 

of soluble phenols can be released during the leaching process (Ibrahima et al., 2008), 

with a large portion of these incorporated as part of microbial biomass (Brant et al., 

2006).  However, some compounds released during the decomposition process may 

actually be anti-microbial.  For instance, compounds associated with the decomposition 

of Sphagnum moss species have been known to have anti-microbial action; compounds 

such as sphagnum acid (p-hydroxy-beta-(carboxymethyl)-cinnamic acid) and other 

phenolic compounds have an inhibitory effect on bacteria (Mellegård et al., 2009), and 

can lead to low decomposition rates (Verhoeven and Toth, 1995).  Humic acids such as 

oxifulvic acids also have anti-microbial action (Rensburg et al., 2000). 

While much focus has been placed on the effects of climate on decomposition rates, a 

recent focus towards trait-based ecology has highlighted how differences in plant species 

and their functional traits may play a greater role in decomposition dynamics than 

previously thought (Cornwell et al., 2008).  This is primarily through eco-stoichiometric 

regulation as described above, but also because labile compounds released from some 

plant litters can stimulate decomposition of more recalcitrant compounds, having an 

overall synergistic (greater than additive) effect on decomposition rates.  This process is 

referred to as a priming effect (Bingeman et al., 1953; Wild et al., 2014).  Priming effects 

are the apparent increase of soil organic carbon decomposition when a fresh labile 

organic carbon is supplied (Fontaine et al., 2004; Nottingham et al., 2012).  Microbial 

priming is a well characterized phenomenon with the microbial community (Kuzyakov et 

al., 2000), demonstrated in forest soils (Brant et al., 2006; Nottingham et al., 2012), 

agricultural soils (Bell et al., 2003), in peat, and on lignin (Hamer and Marschner, 2002).  

Increases in labile carbon inputs may arise from anthropogenic inputs (e.g. fertilizer, 

biochar), or through changes in plant communities, where increases in labile carbon from 

root exudates (Rhizopoulou and Wagner, 1998; Guenet et al., 2010) can increase 
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microbial respiration in the rhizosphere (Cheng et al., 1996) and increase decomposition 

of soil organic matter (Kuzyakov et al., 2000).  Alternatively, labile carbon released 

through the leaching process in conjunction with a plant community shift may also 

potentially contribute to the priming effect, because leaching produces a readily available 

source of carbon that microbial communities can use for growth and the decomposition 

of organic matter. 

1.3 Climate change: projections and possible 
consequences for litter quality and decomposition 

According to the Intergovernmental Panel on Climate Change (IPCC), atmospheric 

concentrations of CO2 have exceeded pre-industrial levels as a result of human activity 

(IPCC, 2013).  The IPCC also suggests that concomitant with global greenhouse gas 

emissions, the global mean temperature can increase between 0.3 °C and 4.8 °C in the 

next 50 to 100 years compared to the observed global mean temperature between 1985 

and 2005 (IPCC, 2013), with the magnitude of increase generally depending on latitude.  

Biological processes such as aboveground primary productivity and belowground 

decomposition have the potential to moderate or accelerate climate change through the 

uptake or release of CO2 on an ecosystem scale.  For instance, decomposition rates are 

typically accelerated under elevated temperature as a result of increases in microbial 

activity (Davidson and Janssens, 2006), increasing soil respiration and CO2 release rates. 

At the same time, climate change is expected to shift aboveground plant communities, as 

has been demonstrated under climate change experiments.  For instance, Grime et al.  

(2000) found that in response to increased temperatures, a decrease in grass biomass and 

changes in species composition were seen in early successional grasslands, but late 

successional grasslands were more resilient to climate change.  Most notably, Arctic 

ecosystems have experienced aboveground responses to climate change as well, and 

specifically, decreases in non-vascular plant abundance and increases in vascular plant 

abundance (Cornelissen et al., 2001; van Wijk et al., 2004).  More recently, in a 

laboratory manipulation using intact Boreal peatland plant and soil monoliths, Dieleman 

et al. (2015) found vascular plants (graminoids and woody shrubs) increased under 

elevated temperature and CO2 at the expense of non-vascular Sphagnum mosses.  These 
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above ground changes in biomass may inevitably lead to changes in litter quality inputs 

and decomposability to soil microbial communities. 

Another less-explored factor potentially influencing the decomposability of litters is the 

atmospheric CO2 condition plants to which are exposed to during growth.  Elevated CO2 

can increase non-structural carbohydrates, and decrease the organic N and total N content 

in many C3 plants (Körner and Miglietta, 1994; Poorter et al., 1997).  However, in the 

wetland grass Phragmites australis, while C:N ratios increased in living plant tissues 

upon exposure to elevated CO2, C:N ratios did not change in the litter due to the 

resorption of mobile carbohydrates during senescence (Milla et al., 2006).  Thus, it is 

currently unclear if there are consistent effects of elevated CO2 on litter quality among 

different plant species, particularly for peatland plants such as Sphagnum spp. 

(Siegenthaler et al., 2010).  Ultimately, changes in litter quality within and among plant 

species may be important drivers of longer-term decomposition dynamics in the context 

of climate change scenarios.  Understanding these interactive effects is particularly 

important in boreal and peatland systems, where the climate change factors are expected 

to be most pronounced (Frolking et al., 2011; IPCC, 2013), and where changes in 

decomposition dynamics have the greatest potential to feed back to climate systems. 

1.4 Boreal peatlands: a description and their role in the face 
of climate change scenarios 

Peat is a build-up of dead organic matter, the remains of plant that accumulate due to low 

decomposition (Rydin et al., 2013).  Boreal peatlands are characterized by cool 

temperatures (Gorham, 1991), high water tables (Gorham, 1991) and generally low 

nutrient conditions (van Breemen, 1995) leading to low productivity, but with even lower 

decomposition rates.  Sphagnum mosses are a dominant peat-forming plant and 

considered an ecosystem engineer of peatlands.  Sphagnum spp. generally keeps soil 

temperatures low, helps maintains a high water table, produces compounds which acidify 

the belowground system (van Breemen, 1995), as well as compounds inhibiting microbial 

activity through anti-microbial properties (Mellegård et al., 2009), and produces low 

quality litter (Hoorens et al., 2002); all of these factors contribute to low decomposition 

rates and create unfavourable conditions for vascular plants (Malmer et al., 1994).  Thus, 
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Sphagnum-dominated peatlands are generally resistant to shifts in plant communities 

(Dise, 2009).  Through these low decomposition rates, boreal peatland systems are 

important carbon sinks; approximately 30% of the Earth’s terrestrial soil organic carbon 

is stored in Boreal peatlands (Limpens et al., 2008), equating to approximately 113 Pg of 

C (Apps et al., 1993).  

Boreal peatlands may be converted from being carbon sinks to carbon sources (Gong et 

al., 2013) and this could potentially exacerbate climate change.  Increased decomposition 

and CO2 release under warming could be one of the direct mechanisms underlying this 

change (Moore and Knowles, 1989), but shifts in plant communities may also indirectly 

lead to accelerated decomposition.  As suggested above, climate manipulation 

experiments have observed decreases in non-vascular plant (Sphagnum spp.) abundance, 

which produce recalcitrant litters and compounds, alongside increases in vascular plants, 

which produce more labile litters and root exudates.  For instance, Dieleman et al. (2015) 

found a decrease in Sphagnum cover alongside an increase in Carex cover (a graminoid) 

and woody shrub biomass in an experimental manipulation of boreal peatlands under 

warming, while elevated CO2 increased Carex cover even further compared to ambient 

CO2.  Weltzin et al. (2003) observed a decrease in graminoid cover and an increase in 

shrub cover following a decrease in water-table and increase soil temperature (Weltzin et 

al., 2003) in an experimental bog peatland and an increase in graminoid cover with a 

water table increase in an experimental fen peatland.  This community shift from mosses 

to graminoids and other vascular plant species has been documented in a similar field 

experiment under warming for five years (Buttler et al., 2015). 

Changes in plant community composition for peatlands under climate change – 

specifically shifting from non-vascular Sphagnum mosses to vascular plants species such 

as graminoids – may have implications for decomposition rates and carbon loss.  

Sphagnum spp. litter decomposes slower than the graminoid (e.g. Carex spp.) litter and 

woody shrub species litter; these vascular plants replace Sphagnum spp. litter (Moore et 

al., 2007) under climate change scenarios in boreal peatlands.  Further, Sphagnum moss 

is known to release during its decomposition, anti-microbial and water soluble-phenolic 

compounds (Mellegård et al., 2009; Rasmussen, 1994) that the microbial community has 
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a difficult time metabolizing (i.e. recalcitrant material) (Frey et al., 2013).  Ericaceous 

shrubs contain high lignin content (Schellekens et al., 2012) and high concentrations of 

phenolic compounds in their leaves (Williams et al., 1998), yet can still be highly 

decomposable (Moore et al., 2007), while graminoids tend to contain carbon compounds 

of lower molecular weight (i.e. more labile) than either mosses or woody shrubs.  Litter 

C:N ratios are thought to be a predictor of long-term decomposition rates for peatland 

plants, and Sphagnum mosses have relatively high C:N ratios (Limpens and Berendse, 

2003; Moore et al., 2007; Wang and Moore, 2014), whereas graminoids (e.g. Carex 

(Aerts and de Caluwe, 1997)) and woody shrubs (Taylor et al., 1989) have lower C:N 

ratios.  Finally, alongside shifts in plant community structure and composition, it is 

currently unclear how litter quality for an individual species will change under elevated 

temperature and CO2, especially in the context of peatlands.  Elevated CO2 has not been 

shown to alter litter quality for Sphagnum mosses, nor alter its decomposability 

(Siegenthaler et al., 2010), but this has not been extensively studied. The effect of 

elevated CO2 on the litter quality of graminoids and shrubs has not been extensively 

studied as well. 

1.5 Thesis rationale and objectives 

In this study, I investigated two aspects of decomposition dynamics among peatland 

plants using 1) a short-term leaching experiment looking at the decomposition dynamics 

of three representative boreal peatland species grown under ambient and elevated levels 

of atmospheric CO2 for one year, and 2) a longer-term decomposition experiment where 

litter from these same plant species was incubated at three temperatures.  The plant litter I 

used was from Sphagnum magellanicum Brid., Carex magellanica Lam. (Boreal bog 

sedge), and Chamaedaphne calyculata (L.) Moench (leatherleaf).  Short-term leaching 

experiments for plant litters are lacking in general, so this study was meant to 

characterize the leaching phase and leachate products for these three boreal peatland 

plants grown under ambient and elevated CO2.  Leaching is a very important stage of 

plant litter decomposition.  The leaching phase is a rapid, abiotic process where 5-10 % 

of mass loss can occur over short time frames (360 hours) (Ibrahima et al., 2008).  Thus, 

investigating the products of plant leachates as substrate for microbial activity will give 



10 

 

insight into longer-term decomposition dynamics (Davis et al., 2006), nutrient cycling 

and plant productivity (Fenner et al., 2007) and the potential for microbial priming 

effects (Brant et al., 2006).  In the longer-term study, I investigated the decomposition 

dynamics of these same plant species over 20 weeks; they were incubated at 11.5 °C, 

15.5 °C and 19.5 °C under ambient CO2 (430 ppm) to examine how decomposition rates 

differ under future climate change temperature scenarios. 

The overall objective on my thesis was to understand potential changes in peatland 

decomposition dynamics given expected plant community shifts under climate change.  

My specific objectives were to: 

1) compare decomposition dynamics of three peatland plant litters during leaching 

and microbial decomposition phases, 

2) examine whether plants grown under elevated CO2 differed in their initial C:N 

ratios, and whether this influenced leaching dynamics, 

3) examine temperature effects on decomposition rates of three peatland plant litters, 

and 

4) compare heterotrophic respiration rates as a measure of microbial activity among 

different plant litters. 

1.6 Thesis hypotheses and predictions 

I predicted that during leaching, plant species would differ in their rates of decomposition 

as measured by mass loss, the amount of soluble carbon leached, and in the lability of this 

carbon.  Specifically, I predicted that Ca. magellanica and Ch. calyculata litter would 

have a higher decomposability (as measured by mass loss and dissolved organic carbon 

in leachate) compared to S. magellanicum litter during leaching.  I also predicted that Ca. 

magellanica and Ch. calyculata would have a larger proportion of labile carbon 

compounds compared to S. magellanicum, because Sphagnum mosses are known to have 

more complex phenolic compounds and complex, anti-microbial compounds.  For the 

same reasons, I predicted that Ca. magellanica and Ch. calyculata litter would experience 

more mass loss than S. magellanicum litter during the subsequent longer-term 

decomposition phases, and that the microbial community would be less active during S. 
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magellanicum decomposition (as measured by system heterotrophic respiration rates), 

than for the vascular species litters.  Finally, I predicted that increased temperature would 

increase the decomposition of all three plant species litters and this would be measureable 

through increased mass loss and heterotrophic respiration rates. 
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2 Materials and Methods 

2.1 Growing conditions of vegetation 

Prior to my research outlined here, large, intact, and fully-vegetated peat-soil monoliths 

were collected from a nutrient-poor fen near White River, Ontario and brought to the 

Biotron Institute for Experimental Climate Change Research at Western University, 

where they were exposed to ambient and future climate scenarios for 18 months (see 

Dieleman et al., 2015; 2016a; 2016b and Lindo, 2015).  These monoliths contained live 

representative peatland plants including Carex magellanica Lam. (Boreal bog sedge), 

Chamaedaphne calyculata (L.) Moench (leatherleaf), and Sphagnum spp. dominated by 

Sphagnum magellanicum Brid. (other Sphagnum spp. were <20% of total peat surface 

area).  This vegetation was clipped at the end of the second growing season and air dried 

for six months.  Litter samples of Ca. magellanica, Ch. calyculata, and S. magellanicum 

were pooled from individual mesocosms among temperature and hydrology (low water 

table and high water table) treatments, but were kept separate for ambient (430 ppm) and 

elevated (750 ppm) CO2 growing conditions to examine whether litter quality was 

affected by elevated atmospheric CO2. 

2.2 Litter analyses 

Three subsamples of 0.5 g plant litter for each plant species grown at ambient and 

elevated CO2 were analysed for total carbon (C) and total nitrogen (N) using an Elios 

Ultra CNS analyzer by the Ontario Ministry of Natural Resources and Forestry analytical 

laboratory in Sault Ste. Marie, Ontario, Canada.  Plant litter C:N ratios were calculated 

from these values.  Residual moisture in air-dried plant litter samples was measured 

gravimetrically on three subsamples of each plant species following oven-drying at 60 °C 

for 48 hours to allow for standardized weights to be used in subsequent experiments. 
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2.3 Leachate experiment 

Ten replicates of 1 g (absolute dry weight equivalent) Ca. magellanica and Ch. 

calyculata, and 0.5 g S. magellanicum litter from each ambient and elevated CO2 growing 

condition were leached in 50 mL of de-ionized water in 250 mL mason jars over 48 h (3 

plant litters × 2 CO2 treatments × 10 replicates = 60 leachates).  During the leaching 

phase, CO2 flux (respiration) was monitored to ensure there was no microbial 

decomposition occurring (all values were not significantly different from zero indicating 

no microbial decomposition - data not shown).  Following the 48 h leaching, samples 

were vacuum-filtered through a 0.45 µm polyethersulfone membrane filter and the 

leached litter was dried at 60 °C for 48 hours to calculate mass loss using the following 

equation: 

Mass loss = initial dry weight – final dry weight  × 100 

   initial dry weight 

The absolute volume of leachate from each sample was recorded and split into two 

aliquots; one aliquot was processed within 48 hours for dissolved organic carbon (DOC), 

and specific UV absorbance at 254 nm (SUVA254), while the other aliquot was frozen at  

-20 °C for analysis of dissolved organic nutrients (available N and P).  Post-leached litter 

samples were sent for analysis of total C and N content to the Ontario Ministry of Natural 

Resources and Forestry analytical laboratory in Sault Ste. Marie, Ontario, Canada as 

described above. 

2.4 Leachate analysis 

Dissolved organic carbon (DOC) in leachate was measured using the wet persulfate 

oxidation method on an Aurora 1030 total organic carbon analyzer (OI Analytical, 

Texas); this determines the amount of DOC in liquid by measuring the infrared 

absorbance of CO2 gas evolved by the oxidation reaction.  The standards used for the 

calibration were potassium hydrogen phthalate (KHP) in 1 mg/L, 10 mg/L, and 100 mg/L 

concentrations, and interference of compounds in the oxidation reaction was assessed 
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using two samples of 200 µL of 1000 ppm KHP stock solution during each run – 

recovery of KHP solution was > 85% suggesting no interference. 

To assess the quality of DOC compounds dissolved in leachate, I measured the specific 

UV absorbance at 254 nm (SUVA254) following EPA methods (415.3), which determines 

the amount of total organic carbon in source and drinking waters. I used a SpectraMax 

M2 spectrofluorometer to measure the UV absorbance at 254 nm, and methods specified 

by Weishaar et al. (2003).  Absorbance at 254 nm was divided by the total DOC 

concentration of the same sample, and multiplied by 100 to account for absorbance units 

and spectrofluorometer path length (Weishaar et al., 2003).  These SUVA values indicate 

the amount of aromatic carbon compounds in the leachate, where higher values denote 

more aromatic, recalcitrant carbon compounds, while lower values denote more aliphatic, 

labile compounds (Hansson et al., 2010).  The remaining leachate was analyzed for 

soluble available N (NH4
+, NO2

-/NO3
-) and P (PO4

3-) using colorimetric methods (Keeney 

and Nelson, 1982; Olsen and Summers, 1982) on a SEAL analytical AA3 continuous 

flow nutrient autoanalyzer. For ammonium determination, the indo-phenol blue method 

was used (Keeney and Nelson, 1982) concurrently with the hydrazine reduction method 

of nitrate / nitrite.  For phosphate determination, ortho-phosphate was analysed using the 

fluoride method (Olsen and Summers, 1982). 

2.5 Litterbag decomposition experiment 

The same litters from plants grown under ambient CO2 for S. magellanicum, Ca. 

magellanica, and Ch. calyculata were used to create five litterbags each of each litter 

type, with 0.5 g of plant litter (3 plant types × 3 temperatures × 5 replicates = 45 litterbag 

mesocosms).  Litterbags were 7 cm x 7 cm, constructed using 1 mm nylon flyscreen 

mesh.  All litter weights were recorded to three decimal places and subsequently 

corrected for water content.  Residual moisture in air-dried plant litter samples was 

measured to allow for standardized weights to be used.  Litterbags were incubated in 

mesocosms surrounded by humified peat collected from the original nutrient-poor fen 

near White River, ON during August 2015.  Several 25 cm3 cubes of peat below the 

living Sphagnum layer (approximately 15 cm) were removed from the fen and stored at 4 

°C in the Biotron Advanced Facility for Climate Change Research at Western University 
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until November 2015.  Prior to mesocosm construction, this peat was homogenized by 

hand and large, woody roots were removed.  Mesocosms were constructed in 500 mL 

Mason jars with 150 g wet weight of peat; litterbags were inserted vertically in the centre 

of the peat (each side had approximately 75 g wet weight of homogenized peat 

surrounding the litterbag). 

Mescosoms were incubated at 11.5 °C, 15.5 °C and 19.5 °C with 60% relative humidity 

inside Biotron rooftop biomes for 20 weeks.  Moisture content of each mesocosm was 

maintained gravimetrically by measuring any moisture loss and was replenished each 

week to maintain microbial activity.  Microbial (heterotrophic) respiration was measured 

on mesocosms weekly using a LiCor Infrared Gas Analyzer (IRGA) with a multiplexer.  

Mesocosms were individually sealed and the multiplexer switched between them 

throughout the respiration measurement cycle.  The headspaces of the mesocosms were 

purged of accumulated CO2 for 45 seconds and CO2 concentration was measured from 

the peat for 90 seconds.  Microbial respiration is taken as the CO2 flux over this period 

and presented as (mg CO2/g soil/week). Litterbags were removed from the peat after 20 

weeks, rinsed with tap water to remove residual peat and the plant litter was dried at 60 

°C for 48 hours. After this, the dry weight of the litter was measured.  Total mass loss of 

each litterbag was measured after 20 weeks incubation using the following equation: 

Mass loss = initial dry weight – final dry weight  × 100 

   initial dry weight 

I used the mass loss to estimate the decomposition co-efficient (k) using the equation Lt = 

L0 × e–kt , where L0= mass at time zero, Lt = mass at time t, t = time of incubation and k = 

the decomposition constant.  The inverse of k gives an estimate of the mean residence 

time (in years) of the different plant litters.  At the end of the experiment, C:N ratios for 

the decomposed litter and peat was measured using methods described above.  Here, 

because of low amounts of litter remaining after the experiment, litter for each plant type 

within temperature treatments were combined and three subsamples were sent for 

analyses for a total of 27 peat and 27 litter subsamples. 
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2.6 Statistical analyses 

2.6.1 Leaching experiment 

Two-way factorial ANOVA was used to test for significant differences between litter 

type and CO2 conditions for all variables (pre- and post-litter total %C, total %N, C:N, 

mass loss, [DOC], SUVA254, total available N and P).  All variables were tested for 

parametric assumptions and statistical assumptions were met by applying transformations 

as necessary; DOC values were square root transformed, and log10-transformed data were 

used for C:N ratios.  Changes in the average pre- and post-leached litter total %C, total 

%N and C:N values are presented, but were not statistically analyzable because different 

litter samples were used for the pre- and post-leaching analyses.  However, I calculated 

the propagation of standard error for these changes to estimate significance. 

2.6.2 20-week litterbag decomposition experiment 

When examining differences in mass loss over the twenty week experiment, I tested for 

significant differences using a two-way ANOVA for mass loss of litter, decomposition 

constants, mean residence time for litter, total %C, total %N and C:N ratios of litter and 

peat after 20 weeks. Total %N and total C:N were square-root transformed. I used a 

repeated measures two-way ANOVA for weekly CO2 evolution (heterotrophic 

respiration), with litter type and temperature as factors.  The mean residence time of plant 

litters were square root transformed prior to analysis by two-way ANOVA.  

Heterotrophic respiration (mg CO2/g soil/week) values were log10 transformed prior to 

analysis.  Mass loss percent and decomposition constants were not transformed prior to 

analysis, because they were approximately normal.  Decomposition constants (k) were 

described for mass loss over 20 weeks and divided by five to get the decomposition 

constant for one month.  These monthly decomposition constants were extrapolated for 

the decomposition constants for one year.  Changes in the average pre- and post-leached 

litter total C, total N and C:N values are presented, but were not statistically analyzable 

because different litter samples were used for the pre- and post-leaching analyses. 

However, I calculated the propagation of error for these changes using the standard error 

of the average for pre- and post-leached litter for total %C, total %N and C:N values.  
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3 Results 

3.1 Leaching experiment 

3.1.1 Litter analysis 

Total %C (TC), total %N (TN) and C:N ratios of litters prior to leaching were 

significantly different between plant species (TC F2,12 = 431.9, P < 0.001; TN F2,12 = 

977.7, P < 0.001; C:N F2,12= 882.6, P < 0.001) (Fig. 3.1A, C, E).  In pre-leached litters, 

total %C was significantly lower in all plant species grown under elevated CO2, except 

for Ca. magellanica (F1,12 = 28.9, P < 0.001) (Fig. 3.1A).  Total %N in pre-leached litters 

was also significantly lower in plants grown under elevated CO2 (F1,12 = 20.3, P < 0.001), 

and also only significantly lower for the vascular plant species (plant × CO2 interaction: 

F2,24= 8.1, P = 0.006) (Fig. 3.1C).  Changes in total %C and %N led to a significant CO2 

effect (F1,12 = 18.9, P < 0.001) and plant × CO2 interaction (F2,24 = 17.8, P < 0.001) for the 

C:N ratio of pre-leached litters whereby C:N increased in Ca. magellanica when grown 

under elevated CO2 but there were no differences among Ch. calyculata and S. 

magellanicum (Fig. 3.1E). 

Total %C, total %N and C:N ratios of litters follow leaching were also significantly 

different between plant species (TC F2,12 = 108.7, P < 0.001; TN F2,12 = 93.8, P < 0.001; 

C:N F2,12 = 72.5 P < 0.001) (Fig. 3.1B, D, F).  Total %C was significantly greater in Ch. 

calyculata compared to Ca. magellanica and S. magellanicum, however, Ch. calyculata 

grown under elevated CO2 demonstrated non-significant reductions in total C while Ca. 

magellanica and S. magellanicum demonstrated non-significant increases in total C under 

elevated CO2 leading to a significant plant × CO2 interaction (F2,24 = 5.9, P = 0.008) (Fig. 

3.1B).  Total %N in post-leached litters was significantly lower for plants grown under 

elevated CO2 (F1,12 = 6.6, P = 0.02) (Fig. 3.1D), leading to a significant overall increase in 

C:N ratios (F1,12 = 5.6, P = 0.03), although this trend was not significant within plant 

types (Fig. 3.1D).  
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Figure 3-1 Percent total carbon (C), percent total nitrogen (N) and C:N content of 

plant litter pre- and post-leaching after 48 hours for three different species of boreal 

peatland plants grown under ambient (430 ppm) and elevated (750 ppm) 

atmospheric CO2. 

Values are reported as means (n=10) ± SEM. Means with the same lower case letter are 

not significantly different based on Tukey HSD comparisons. 
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Differences between pre- and post-leached litter for total C, total N and C:N ratios were 

not statistically comparable, but demonstrated that all three plant species had reduced 

total C and near equivalent total N values after leaching (Table 3.1).  These minor 

changes resulted in differences between plant species in the directional change of C:N 

values; S. magellanicum and Ch. calyculata had decreased C:N following leaching, while 

Ca. magellanica showed increases in C:N values (Table 3.1). 

For mass loss during the 48 hour leaching period, there was a significant effect of plant 

type (F2,54 = 92.3, P < 0.001), a significant effect of CO2 (F1,54 =33.4, P < 0.001), and a 

significant two-way interaction between CO2 level and plant type (F2,54  = 5.1, P = 0.009).  

Mass loss between all three plant species was significantly different where Ch. calyculata 

displayed the greatest amount of mass loss, and S. magellanicum the lowest; all species 

demonstrated reduced mass loss when they were grown under elevated CO2, but this was 

only significant for Ca. magellanica (Fig. 3.2A). 

3.1.2 Leachate analysis 

Regardless of whether plants were grown under ambient or elevated CO2, S. 

magellanicum released the least amount of dissolved organic carbon (DOC), while Ch. 

calyculata released the highest amount of DOC (F2,54 = 81.3, P < 0.001) (Fig. 3.2B).  For 

SUVA254 values, there was a significant effect of plant type (F2,54 =132.3, P < 0.001), 

whereby the SUVA254 index of compounds released from the vascular plants was 

significantly lower compared to the SUVA254 index of S. magellanicum (Fig. 3.2C).  

Vascular plants grown under elevated CO2 had significantly reduced SUVA254 index 

values (F1,54 = 4.6, P = 0.037) compared to ambient CO2 grown vascular plants (Fig. 

3.2C).  For dissolved phosphorus in leachate, the vascular plants released more 

phosphorus compared to S. magellanicum, though this was not significant.  All plant 

species had reduced phosphorus leaching after being grown under elevated CO2 (F1,54 = 

9.45, P = 0.003) (Fig. 3.3A).  Nitrate/nitrite levels from litter leachate were all below the 

detection limit of the instrument.  Leached ammonium levels were highly variable for all 

plant litter types and not detected for any Ca. magellanica or Ch. calyculata grown under 

elevated CO2.  Low, but detectable NH4
+-N levels of S. magellanicum were consistently   
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Table 3-1 Change in total %C, total %N, and C:N following 48 hours leaching of 

three plant species litters grown under ambient (430 ppm) and elevated (750 ppm) 

atmospheric CO2 with associated error propagation. 

 

Change in 

Total C (%) 

Change in 

Total N (%) 
Change in C:N 

Sphagnum - ambient -4.17 (±0.4) -0.18 (±0.1) +7.44 (±3.7) 

Sphagnum - elevated -2.68 (±0.6) -0.03 (±0.1) +3.31 (±2.1) 

Carex - ambient -3.40 (±0.9) +0.05 (±0.1) -1.33 (±6.8) 

Carex - elevated -2.16 (±0.2) +0.07 (±0.0) -4.12 (±3.1) 

Chamaedaphne - ambient -1.70 (±0.1) -0.14 (±0.1) +3.42 (±0.8) 

Chamaedaphne - elevated -2.39 (±0.2) -0.06 (±0.1) +2.44 (±1.8) 

  



21 

 

 

 

Figure 3-2 Mass loss (%), dissolved organic carbon (DOC)(ppm) and lability of 

leachates as measured by specific UV absorbance at 254 nm (SUVA254). 

Results of 48 hours of leaching for three peatland plant litters grown under ambient and 

elevated CO2: A) percent mass loss of litter, B) total dissolved organic carbon in leachate, 

and, C) lability of leachate as measured by specific UV absorbance at 254 nm (SUVA254).  

Vertical bars are means (n=10) ± SEM.  Means with the same lower case letter are not 

significantly different based on Tukey HSD comparisons. 
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Figure 3-3 Available phosphate (PO4
3--P) and available nitrogen (NH4

+-N) in 

leachate of three boreal peatland plant litters following 48 hours of leaching.   

Values are means (n=10) (± SEM) reported in mg/L or parts per million (ppm).  Means 

with the same lower case letter are not significantly different based on Tukey HSD 

comparisons.  
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recorded, as were for Ch. calyculata grown under ambient CO2 (plant effect: F2,54 = 19.9, 

P < 0.001; plant × CO2 interaction: F2,54 = 13.6, P < 0.001) (Fig. 3.3B). 

3.2 20-week litterbag decomposition experiment 

3.2.1 Litter and peat measures 

After the 20-week litterbag experiment, peat substrate showed no significant effects of 

litter plant type or temperature treatment on peat C:N and peat %N, but there was a 

minor, but significant effect of plant type on peat %C, where peat from Ca. magellanica 

litterbag mesocosms had significantly greater %C than Ch. calyculata (F2, 18 = 3.7, P = 

0.04) (Table 3.2).  For the litters themselves, %C, %N and C:N were all significantly 

influenced by plant litter type (Table 3.2).  Specifically, total %N was lowest in S. 

magellanicum and Ca. magellanica, and highest in Ch. calyculata (F2,18 = 87.8, P < 

0.001), total C was lowest in S. magellanicum and highest in Ch. calyculata with total C 

for Ca. magellanica intermediate between S. magellanicum and Ch. calyculata (F2,18 = 

1034.2, P < 0.001), while C:N was highest in S. magellanicum and Ca. magellanica, and 

it was lowest in Ch. calyculata (F2,18 = 50.1, P < 0.001). Percent C was also significantly 

affected by temperature, whereby %C was greater under 11.5 °C compared to 15.5 °C 

and 19.5 °C (F2,18 = 10.6, P < 0.001).  In addition, there was a minor but significant plant 

× temperature interaction effect, where increases in %C at lower temperatures were only 

seen for Ch. calyculata (F4,18 = 3.1, P = 0.043).  Differences between pre- and post-20 

week decomposition for plant litter and peat for %C, %N and C:N ratios was not 

statistically comparable, but demonstrated that all three plant species had decreased total 

C and near equivalent %N values after incubation (Table 3.2), whereas peat substrates 

increased in %C (Table 3.2).  The C:N decreased in all plant litter types during the 

incubation study, as well as in the peat.  

3.2.2 Decomposition measures 

Decomposition was described through percentage mass loss, decomposition constant (k) 

and mean residence time in years.  The percentage mass loss was significantly different 
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Table 3-2 The percent total C, %N and C:N before and after 20-week microbial 

decomposition experiment, and the change in %C, %N, and C:N following 20 weeks 

of decomposition for the three plant litters. 

  Carbon (%) Nitrogen (%) C:N 

 Initial 

S. magellanicum 49.138 (±0.11) 1.158 (±0.00) 42.416 (±0.02) 

Ca. magellanica 48.186 (±0.11) 0.856 (±0.02) 56.320 (±1.11) 

Ch. calyculata 52.561 (±0.02) 1.668 (±0.02) 31.508 (±0.29) 

Peat  44.699 (±0.21) 1.265 (±0.07) 35.618 (±1.85) 

 After 20-weeks incubation 

S. magellanicum 45.600 (± 0.11) 1.098 (± 0.03) 41.751 (±1.00) 

Ca. magellanica 47.542 (± 0.08) 1.015 (± 0.05) 47.922 (±2.61) 

Ch. calyculata 52. 256 (± 0.23) 2.019 (± 0.08) 26.227 (±1.08) 

Peat  46.162 (± 0.08) 1.366 (± 0.02)  34.009 (±0.55) 

 Associated change after 20-week incubation 

S. magellanicum -3.534 (± 0.22)  -0.061 (± 0.03) -0.664 (± 1.17) 

Ca. magellanica -0.644 (± 0.19) 0.159 (± 0.07) -8.397 (± 3.72) 

Ch. calyculata -0.305 (± 0.25) 0.350 (± 0.10) -5.281 (± 1.38) 

Peat  1.463 (± 0.29)  0.101 (± 0.09)  -1.609 (± 2.40) 

Values are reported as means (n=3) (± SEM) for initial and final values, or mean with 

associated error propagation for change in litter.  Peat from the mesocosm experiment 

was assessed for %C, %N and C:N as a baseline comparison. 
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among the three different plant species where S. magellanicum lost the least amount of 

mass, and Ch. calyculata lost the most amount of mass (F2,36 = 58.3, P < 0.001) (Fig. 3.4) 

and this was consistent across all temperature treatments.  Increasing temperature 

increased the percent mass loss of vascular plant species litters (Ca. magellanica and Ch. 

calyculata), but not for S. magellanicum (F2,36 = 5.8, P = 0.006), leading to an overall 

significant plant × temperature interaction (F4, 36 = 3.6, P = 0.014).  Specifically, Ca. 

magellanica and Ch. calyculata had significantly greater mass loss compared to litters 

incubated under 19.5 °C compared to 11.5 °C.  Similarly, because decomposition 

constant and mean residence times are derived from mass loss data, S. magellanicum had 

the lowest decomposition constants and highest mean residence time of the three plant 

species, but values were not significantly different under different temperature 

treatments.  The vascular plant species Ch. calyculata and Ca. magellanica were not 

significantly different in decomposition constant and mean residence time, with Ch. 

calyculata having the greatest k value and lowest residence time (plant effect: F2,36 = 

37.4, P < 0.001) (Table 3.3). Increased temperatures significantly increased 

decomposition constants and decreased mean residence time for vascular plant species 

and were lowest at 11.5 °C (temperature effect: F2, 36 = 6.2, P = 0.005) (Table 3.3). 

However, mean residence time was not significantly different between 15.5 °C and 19.5 

°C (temperature effect: F2, 36 = 6.2, P = 0.005) (Table 3.3). 

3.2.3 Weekly respiration 

Respiration rates were variable through time for all three plants and temperatures (F18, 630 

= 7.6, P < 0.001) with a notable spike in temperature during week 15, in which 

temperatures were 5 °C above normal.  This temperature anomaly was caused by 

unseasonably warm outside air temperatures and the biomes could not regulate the 

internal temperature.  Data presented are for re-analysed data with this time point 

removed; statistical trends in respiration rates were unchanged, but minor differences in 

significant were detected; thus the results are presented with week 15 omitted from the 

data set.  Mesocosms containing different litter from the three plant species were not 

significantly different in respiration rate (F2, 35 = 0.7, P = 0.500) (Fig. 3.5).  Temperature 

was the main contributing factor affecting decomposition rates across all mesocosms   
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Figure 3-4 Mass loss (percent of original dry weight) for peatland plants at three 

different temperatures following 20 weeks incubation. 

Values are means (n=5) (± SEM) reported.  Means with the same lower case letter mean 

that they are not significantly different based on Tukey HSD comparisons. 
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Table 3-3 Average decomposition constants (k) and mean residence time (1/k) for S. 

magellanicum, Ca. magellanica and Ch. calyculata incubated at 11.5, 15.5 and 19.5 

°C. 

Decomposition constant (year-1) 

  Temperature 
    11.5°C 15.5°C 19.5°C 

 S. magellanicum 0.562 (± 0.07) 0.415 (± 0.04) 0.410 (± 0.04) 

 Ca. magellanica 0.902 (± 0.13) 1.047 (± 0.08) 1.422 (± 0.08) 

 Ch. calyculata 1.028 (± 0.05) 1.191 (± 0.09) 1.658 (± 0.30) 

Mean residence time (years) 

 S. magellanicum 1.888 (± 0.20) 2.505 (± 0.26) 2.574 (± 0.34) 

 Ca. magellanica 1.201 (± 0.17) 0.979 (± 0.08) 0.714 (± 0.05) 

  Ch. calyculata 0.981 (± 0.04) 0.859 (± 0.07) 0.676 (± 0.10) 

Values are reported as means (n=5) (± SEM). 
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Figure 3-5 Respiration through time for the three plant species incubated at 11.5, 

15.5 and 19.5 °C. 

Values are reported as means (± SEM).  
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containing the three different plant litter species.  Specifically mesocosms incubated at 

19.5 °C had greater respiration compared to mesocosms at both the 15.5 °C and 11.5 °C 

temperature treatments (F2, 35 = 24.9, P < 0.001).  This trend was significant across all 

weeks, with the exception of week 2 where the 15.5 °C mesocosms had similar 

respiration rates as 19.5 °C, and week 18 where the 11.5 °C mesocosms had similar 

respiration rates as the 15.5 °C mesocosms (temperature × time: F34, 595 = 3.4, P < 0.001).  

There was a significant plant litter × temperature × time interaction were the difference 

between temperature treatments becomes more pronounced through time in Ch. 

cayculata versus Ca. magellanica versus S. magellanicum plant litters (F68, 595 = 1.5, P = 

0.005) (Fig. 3.5 A, B, C).  
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4 Discussion 

Decomposition is an important ecosystem process because it replenishes soil nutrients 

available to plants and releases carbon fixed through photosynthesis back to the 

atmosphere through the activity of soil organisms (Ebeling et al., 2014).  Consequently, 

decomposition is a main determinant of carbon flow through an ecosystem (Swift et al., 

1979) and a key ecosystem process expected to be affected by future climate scenarios. 

Further, decomposition processes have the potential to feedback on climate change 

through the release of CO2 on an ecosystem scale.  Since decomposition rates are 

typically increased under elevated temperature as a result of increases in microbial 

activity (Davidson and Janssens, 2006), increasing soil respiration and CO2 release rates 

(Anderson, 1991; Billings et al., 1982).  My work has shown that indeed decomposition 

rates are accelerated under warming through increased microbial activity.  At the same 

time, a potential consequence of future climate changes, specifically warming and 

atmospheric CO2 enrichment, is a shift in plant community composition (Dieleman et al., 

2015).  My work suggests that these shifts have the potential to affect decomposition 

rates, particularly during the early stages of leaching.  Lastly, although growth at elevated 

CO2 levels resulted in altered litter quality for all three peatland plant species, it had a 

negligible effect on the decomposability of plant litter during the leaching phase.  

4.1 Decomposition processes - leaching 

The leaching phase of decomposition as a short-term, abiotic process is often overlooked 

in decomposition studies; yet, a considerable amount of mass loss can occur during this 

phase (Ibrahima et al., 2008).  Depending on the plant species, boreal peatland plants in 

this study lost between 2 and 12% of the original dry weight, with much of loss was 

attributable to dissolved organic carbon compounds being released into the leachate.  

Mass loss during leaching is mainly due to losses in soluble carbons (organic acids, 

sugars), and some amino acids, which can provide an energy source for microbes, and 

alter the leaf litter chemistry for subsequent microbial decomposition (Hicks et al., 1991; 

Jung et al., 2014).  However, the quantity and ‘quality’ of this soluble carbon compounds 

differed among vascular (i.e. graminoid and woody shrub) and non-vascular plant types 

(i.e. Sphagnum moss).  Dissolved organic carbon (DOC) was the main component of the 
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litter leachate and closely matched trends in mass loss, with more mass loss and DOC 

released from vascular plant species, in particular Ch. calyculata.  At the same time, 

vascular litter leachate was found to be more labile in nature.  Placed within a climate 

change scenario, where plant community compositional shifts from mosses to graminoids 

and woody shrubs have been observed under experimental climate change in both the 

field (Weltzin et al., 2000) and the lab (Dieleman et al., 2015), we would expect a shift to 

more decomposable litters and greater labile carbon release into the soil system. 

Plant community compositional shifts under future climate change scenarios are expected 

to have cascading effects on belowground dynamics, specifically accelerating 

decomposition rates through more decomposable litters.  This may cause synergistic 

effects with the microbial community and their response to labile DOC inputs.  Soluble, 

low molecular weight (or labile) compounds released during the leaching phase of 

decomposition are easily incorporated into microbial biomass (high carbon use 

efficiency) (Brant et al., 2006; Conant et al., 2011). These compounds may also increase 

microbial metabolism through the decomposition of soil organic matter (Blagodatskaya et 

al., 2011) and may stimulate the microbial community to accelerate the decomposition of 

recalcitrant soil organic matter (Wang et al., 2015).  These two scenarios can increase 

soil respiration rates and ultimately CO2 release to the atmosphere.  The input of labile 

substrates can also increase the release of methane (CH4) from the microbial community 

in peat (Ye et al., 2015). Methane is more potent than CO2 for causing a greenhouse gas 

effect (Forster et al., 2007).  The greater amounts of more labile DOC released from 

vascular plant species have the potential to stimulate microbial growth and activity, 

potentially priming microbes for decomposition of more recalcitrant carbon substrates 

(Guenet et al., 2010; Wang et al., 2015).  Thus, soluble C inputs to the microbial 

community associated with aboveground plant shifts may contribute to a potentially 

important mechanism converting boreal peatlands from a carbon sink to a carbon source 

in the future. 
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4.2 Changes in peatland plant litter chemistry during 
leaching 

Alongside shifts in plant communities under future climate scenarios, increases in 

atmospheric CO2 levels may potentially alter leaf litter chemistry, further affecting litter 

decomposition rates. I saw an increase in the C:N ratio for Ca. magellanica plant litter 

derived from plant growth under elevated CO2, mainly resulting from a proportional 

reduction in N concentration.  While the same result has been seen before with other 

Carex species grown under elevated CO2 (Hoorens et al., 2002), it may not be reflective 

of long term trends for changes in litter chemistry under elevated CO2.  For instance, after 

three years, C:N ratios for Carex grown under elevated CO2 were not significantly 

different from those of Carex grown under ambient CO2 (Schappi and Korner, 1997).  In 

addition, elevated C:N ratios in green leaves may not necessarily correspond to elevated 

C:N ratios in plant litter for Carex (Schappi and Korner, 1997).  In other vascular wetland 

plants, such as Phragmites australis, the absence of an elevated CO2 effect on C:N ratios 

of plant litter was due to the resorption of mobile carbohydrates during senescence (Milla 

et al., 2006).  Coinciding with these changes in C:N, all my plants species grown under 

elevated CO2 experienced reduced mass loss during leaching, DOC release during 

leaching was unaffected by CO2 growing, and there was a slight reduction in SUVA254 

values for Ch. calyculata grown at elevated CO2, indicating a trend towards greater 

lability.  

Elevated atmospheric CO2 may bring about changes to plant nutrients themselves.  While 

studying grassland, forest and cropland ecosystems, Feng et al. (2015) observed an 

overall decrease in nitrogen acquisition and plant litter nitrogen throughout the course of 

the 11-year study under elevated CO2, although this was not due to changes in resorption 

efficiency.  Rather, the decreases in nitrogen acquisition and N concentration were 

attributed to decreased Rubisco demand, which translated into decreased whole-plant N 

demand under elevated CO2 (Feng et al., 2015).  Similarly, in a peatland system under 

five years of warming, nutrient resorption efficiency for woody deciduous shrubs, a 

graminoid, and a forb were not significantly affected (Aerts et al., 2007).  Nutrient levels 

(available N and P) in leachate were very low (negligible in available N), Available P 
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showed a trend which matched rates of mass loss in litter species and litters from plants 

grown under elevated CO2. However, the trend was not significant.  This trend, however, 

suggests that available P released during leaching is simply proportional to the mass loss. 

Overall, C:N ratios of litter were not a predictor of leaching mass loss in my study.  

Generally, if plant detritus has a high C:N ratio, the decomposition rate will be low; if 

plant detritus has a low C:N ratio, the decomposition rate will be high (Enríquez et al., 

1993).  Based on this observation alone, one would expect that Ca. magellanica would 

decompose the slowest, and that Ch. calyculata would decompose the fastest.  However, 

this was not observed, and may indicate that the leaching phase of decomposition and 

DOC dynamics in Boreal peatlands are governed by other factors, and likely the 

solubility of C compounds.  

4.3 Trends for longer-term decomposition and 
mineralization of litter under elevated temperatures 

Increasing temperatures are expected to increase microbial decomposition rates (Conant 

et al., 2008; Paré et al., 2006; Sierra, 2012).  Different litters will decompose at different 

rates due to variation among species in the proportions of labile versus recalcitrant 

material (Moore et al., 2007; Verhoeven and Toth, 1995).  For instance, woody, 

evergreen shrubs contain more lignin compared to graminoids.  Graminoids contain more 

cellulose compared to evergreen shrubs, but the two have roughly the same amount of 

water-soluble sugars.  Sphagnum spp. litters contain acidic chemicals (e.g. galacturonic 

acid, sphagnum acid), anti-microbial compounds (e.g. sphagnan) (Hájek et al., 2011), and 

other decay-resistant phenolic compounds (Verhoeven and Liefveld, 1997).  These 

compounds slow decomposition rates (van Breemen, 1995); Sphagnum spp. litter is also 

typically nutrient poor.  Sphagnum spp. litter is known to decompose slowly (Moore et 

al., 2007; Verhoeven and Toth, 1995, van Breemen, 1995, Verhoeven and Liefveld, 

1997), but the surprising result was the lack of temperature effect on Sphagnum 

magellanicum litter mass loss over the 20-weeks incubation period. 

Both Ca. magellanica and Ch. calyculata showed greater mass loss at 19.5 °C versus 

15.5 °C and 11.5 °C.  This has been demonstrated previously in both the lab (Thormann 
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et al., 2004) and in the field (Trofymow et al., 2002), although mass loss did not differ 

between temperature treatments for S. magellanicum litter.  The lack of temperature 

response effect on Sphagnum spp. decomposition has been reported in a field study 

across a latitudinal gradient where graminoid litter showed increasing mass loss in more 

southern locations, but Sphagnum spp. litter mass loss remained the same across the 

gradient (Breeuwer et al., 2008); decomposition of vascular plants and Sphagnum mosses 

was influenced by different factors, possibly differences in moisture holding capacity of 

litters.  Graminoids have been shown to be more sensitive to decomposition by microbes 

at higher temperatures compared to Sphagnum moss (Thormann et al., 2004).  While 

decomposition reactions happen faster at higher temperatures (Sierra, 2012), and 

reactions involving recalcitrant materials are more responsive to changes in temperatures 

(Sierra, 2012), it is possible that the environmental conditions of Sphagnum spp. litter are 

not optimal for microbial communities, possibly due to the Sphagnum spp. litter releasing 

anti-microbial compounds with its decomposition (Mellegård et al., 2009).  For mass loss 

percent, Ca. magellanica lost a similar amount of mass compared to Ch. calyculata in my 

litterbag study; this is consistent for field studies of graminoids and woody evergreen 

shrubs (Moore et al., 2007).  

Decomposition constants (k) and mean resident time (1/k) were expressed on a per year 

basis, suggesting that 1 g of Ch. calyculata and Ca. magellanica litter takes 8 - 14 months 

to decompose, while the same amount of S. magellanica takes two or more years.  Moore 

et al. (2007) used litterbags of similar species as our study, and demonstrated that 

decomposition constants (k) were greatest in Ch. calyculata, intermediate in Carex spp., 

and lowest in Sphagnum spp. over the first five years of decomposition.  The 

decomposition constants for S. magellanica, Ca. magellanica and Ch. calyculata in the 

ambient temperature biome (11.5 °C) were much lower than the decomposition constants 

for these same plants decomposing in the field (Moore et al., 2007).  This result is not 

surprising, however, because the Biomes at Western University were kept at 60% relative 

humidity and at a constant temperature matching the average growing season temperature 

for the boreal zone throughout the day, while environmental conditions in the field are 

more variable. 
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Heterotrophic respiration in this experiment was strongly affected by temperature in all 

plant litter mesocosms, suggesting increasing temperature stimulated microbial activity.  

In another microcosm experiment, there was increased respiration at higher temperatures, 

even when litter was placed on different substrates (Wetterstedt et al., 2010).  While 

highly variable, during most instances, respiration from the 19.5 °C mesocosms was 

higher than respiration from the mesocosms incubated at 11.5 °C and 15.5 °C.  Given the 

small amount of litter proportional to the surrounding peat, respiration from microbes in 

the surrounding peat could have overwhelmed any respiration attributable to plant type 

alone.  However, there was a subtle trend of heterotrophic respiration becoming more 

pronounced through time in Ch. calyculata versus Ca. magellanica versus S. 

magellanicum plant litters.  Combined with the mass loss data for S. magellanicum, the 

respiration data suggesting microbial activity was not negatively affected by the addition 

of S. magellanicum litter.  Rather, the microbes were more likely involved in 

decomposition of the peat versus the litter. 

During the 20-week experiment, both leaching and microbial mineralization were taking 

place.  I estimate that leaching accounted for a maximum of 10 - 24% of the mass loss 

occurring during the 20-week incubation (Ibrahima et al., 2008); mass losses for the 20-

week experiment were much greater (20 – 50%) than the mass loss that occurred during 

the 48-hour leaching experiment (2 – 12%).  Leaching represents very preliminary 

decomposition dynamics for the three Boreal peatland plants.  Thus, the trends over 20 

weeks would be a better representation of the longer term decomposition dynamics, and 

are in line with previous literature (Moore et al., 2007).  However, microbial 

mineralization still represents decomposition of relatively labile substrates (Berg and 

McClaugherty, 2008), thus decomposition constant and mean residence time does not 

take into account slower decomposition phases of persistent humic materials (Moore et 

al., 2004). 

4.4 Implications of decomposition dynamics for Boreal 
peatlands 

Several studies have now demonstrated a shift in plant community composition under 

future climate scenarios, specifically non-vascular to vascular plant species under 



36 

 

increased temperature and elevated atmospheric CO2 (Buttler et al., 2015; Dieleman et 

al., 2015; Weltzin et al., 2003).  Alongside this, litter inputs are likely to change in 

peatlands, with cascading effects to microbial communities, the primary decomposers, in 

soils.  My results broadly show that for both the leaching phase and longer-term 

mineralization stage, a plant community shift from Sphagnum mosses to graminoids and 

shrubs in a Boreal peatland would increase carbon loss from the ecosystem at both stages.  

Mechanistically, this is through greater soluble carbon compounds being leached, as well 

as greater decomposability of litters by microbes.  In addition, vascular plant 

decomposition products are more labile, which could ‘prime’ the decomposition of peat 

in the ecosystem (Ye et al., 2015), stimulating further decomposition.  While I was not 

able to examine the microbial community response to different carbon substrates during 

leaching, Frey et al. (2013) noted that microbial use efficiency decreased along a gradient 

from more labile (e.g. glucose) to more recalcitrant (e.g. phenol, oxalic acid) substrates, 

which was exacerbated under warmer conditions.  A low microbial use efficiency means 

that the compound is not well incorporated into microbial biomass and more assimilated 

carbon is respired to the atmosphere through metabolic processes (Frey et al., 2013).  

This suggests that under future warmer environmental conditions, CO2 emissions from 

decomposition in peatlands could increase through several mechanisms; directly through 

increased microbial metabolism, but also indirectly through high metabolic costs of 

decomposing recalcitrant material, as well as through shifts to more labile inputs of 

carbon. 

4.5 Future directions 

An obvious extension of the work I demonstrate here is to explore how microbial 

communities are influenced or utilize different decomposition substrates and products.  

For instance, I show that vascular plants release more DOC during the short-term 

leaching phase of decomposition, and that this DOC is highly labile.  I also show that 

microbial activity increases under elevated temperatures, but that this does not 

necessarily equate to greater decomposition rates for all types of plant litters.  In an 

experiment by Frey et al. (2013) forest soils were provided with carbon compounds of 

different lability (glucose, glutamic acid, phenol and oxalic acid), and incubated these 
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soils at three different temperatures.  They found that the microbial use efficiency (the 

efficiency at which microbes convert carbon substrates to biomass) decreased along a 

gradient from more labile (e.g. glucose) to more recalcitrant (e.g. phenol, oxalic acid) 

substrates.  Furthermore, this trend of reduced microbial use efficiency was more 

pronounced under elevated temperatures, but only for the recalcitrant substrates (i.e. not 

glucose).  Two similar studies could be performed as a follow-up to the work I present 

here.  First, as Frey et al. (2013) did not perform their experiment on peat, I would 

propose to repeat their experiment using homogenized peat as the basal soil. 

In a second experiment, I would suggest to use the direct leachate products as the carbon 

substrates for microbial use.  Ultimately complete characterization of the leachates would 

be ideal, as we do not know the chemical composition of the leachates beyond their 

aromaticity (SUVA254).  A full characterization would be expensive and time consuming, 

but illuminating in understanding carbon losses from plant litters and DOC composition 

in peatlands, in general.  Examples of potential analyses could be FTIR analysis (Fourier 

Transform Infrared Spectroscopy), or GC-MS (gas chromatography-mass spectrometry). 

In both these proposed experiments, microbial carbon use efficiency would be calculated 

using the following equation:  

dBC / (dBC + ΣCO2-C) 

where dBC is the amount of substrate C incorporated into microbial biomass, and ΣCO2-C 

is the cumulative amount of respiration lost through time.  As this equation highlights, the 

production of CO2 is used alongside measures of microbial biomass (as measured through 

chloroform fumigation).  As the production of CO2 increases per unit biomass with 

reduced microbial use efficiency, this emphasizes the significance of decomposition and 

microbial processes as key components of understanding global carbon cycles and 

climate change. 
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