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Abstract 

Executive functions are important for learning rule-based (RB) categories, as well as non-

rule-based (NRB) categories (e.g., categories learned implicitly, without a verbal rule). 

However, executive functioning is known to decline with age, leading to age-related deficits 

in category learning. The current thesis examines RB and NRB category learning in older 

adults using category sets that vary in difficulty (e.g., rule complexity, number of stimulus 

dimensions, salience of stimulus dimensions). In Chapter 2, older adults and younger adults 

completed three category sets (simple single-dimensional RB, disjunctive RB, and NRB). 

Older adults learned the simple, single-dimensional rules quite well. In contrast to younger 

adults, older adults found complex disjunctive RB categories harder to learn than NRB 

categories because of the executive functioning demands associated with complex rule 

learning. In Chapter 3, I introduced a pre-training procedure prior to the disjunctive RB and 

NRB categorization task used in Chapter 2. This was done in an effort to reduce task 

demands, as to minimize age-related categorization deficits. Both RB and NRB category 

learning improved among older adults following pre-training, but the improvements to RB 

learning were more drastic, suggesting that executive functioning plays a heavier role in RB 

learning. In Study 1 of Chapter 4 I used a difficult, single-dimensional RB category set (i.e., 

the correct rule is based on the less salient stimulus dimension) and a NRB category set to 

further examine category learning in normal aging and to better understand the types of 

strategies used by older adults. Relative to younger adults, older adults struggled with 

learning both the RB and NRB category set because they used suboptimal rules during the 

RB task and a RB strategy during the NRB task. In Study 2 of Chapter 4, I used a pre-

training procedure to familiarize older adults with the stimulus dimensions of the RB 

category set, reducing the executive function demands of the task. Pre-training improved RB 

accuracy and the consistency with which older adults applied the rule. Across all studies, 

executive functioning abilities were associated with RB and NRB category learning. Overall, 

the results from this thesis help to better understand the locus of age-related categorization 

deficits and offer a method of reducing these deficits.  
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Chapter 1  

1 General Introduction 

The ability to distinguish between objects we encounter on daily basis and categorize 

them into meaningful groups is a fundamental cognitive process. A number of categories 

are acquired during childhood (e.g., shapes, animals, vegetables) but we continue to learn 

and acquire new categories throughout our lifetime. During adulthood, category learning 

plays an important role in both our professional and personal lives. For example, 

physicians may rely on categories to diagnose patients and engineers may rely on 

categories to determine whether a building is structurally sound. Likewise, we depend on 

categories when sorting laundry or filing bills and papers at home. Given the importance 

of category learning across our lifetime, it is important to understand how this cognitive 

process changes with age.  

1.1 Multiple Systems in Category Learning  

A large array of research on the cognitive processes involved in category learning has 

provided evidence that there are at least two separate category-learning systems. The 

COVIS model (Competition between Verbal and Implicit Systems) is a well-known 

version of these multiple systems theories (Ashby, Alfonso-Reese, Turken, & Waldron, 

1998; Maddox & Ashby, 2004; Miles & Minda, 2011; Minda & Miles, 2010), which 

assumes that categories are learned by an explicit verbal system and an implicit, 

nonverbal system (see Figure 1.1). The verbal system is considered to be the default 

learning system, which individuals use to place objects into categories for which there is 

a verbal rule (i.e., rule-based, or RB categories). For example, given a group of objects 

consisting of squares and circles, one could quickly master this category set by applying 

the verbal rule: “Category A items are square”. According to COVIS, the verbal system is 

mediated by the prefrontal cortex, the medial temporal cortex, the anterior cingulate 

cortex, and the head of the caudate (Zeithamova & Maddox, 2006). This system relies on  
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Figure 1.1: The key components of the COVIS theory of category learning. 

 

sufficient cognitive resources (e.g., executive functioning abilities: working memory and 

inhibitory control) to search for a rule, inhibit inappropriate rules, store rules, and apply 

them.  

COVIS also assumes that an implicit/nonverbal system learns non-rule-based (NRB) 

categories, also referred to as information integration (II) categories, which are categories 

for which no easily verbalizable rule exists. For example, consider a category in which 

most of the objects are large, most are round, and most are black. These objects share an 

overall similarity with each other, but there is no single feature to act as the rule. These 

types of categories may be learned by integrating two or more aspects of the stimulus at a 

pre-decisional stage (Ashby & Ell, 2001). Categorization responses are computed using 

overall similarity, visual processes, and procedural learning (Ashby, Maddox, & Bohil, 

2002; Miles & Minda, 2011). The system is mediated by sub-cortical structures in the tail 

of the caudate nucleus, it relies on a dopamine-mediated reward signal to learn, and it 
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does not depend as heavily on verbal working memory and controlled attention (Maddox, 

Ashby, & Bohil, 2003). 

In general, COVIS assumes that the two systems compete during learning. However, the 

system with the more successful strategy will eventually dominate performance (Ashby 

et al., 1998). For example, while adults are initially biased toward the verbal system, for 

some types of categories (e.g., information integration categories), a nonverbal based 

strategy may be more appropriate. In such a case, the nonverbal system would result in 

better categorization performance, and so would take over. That is, an individual would 

eventually switch from the verbal to nonverbal system. Maddox, Filoteo, Hejl, and Ing 

(2004) provided evidence for this verbal system dominance, showing that for a NRB 

category set (cannot simply be learned by applying a straight-forward rule), participants 

tended to use a RB strategy early in learning. However, as learning progressed, they 

eventually switched to a NRB strategy. Additional evidence for separate category 

learning systems, comes from research showing that NRB category learning is impaired 

when feedback is delayed (Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005) or 

when no feedback is given (Ashby, Maddox, & Bohil, 2002), whereas RB performance is 

not affected. These findings highlight how the availability and timing of dopamine 

release is important for NRB category learning. In contrast, RB category learning is 

impaired when participants are asked to learn RB categories while performing a 

concurrent task that interferes with verbal working memory (e.g., digit span task) or 

executive functioning. This results in impaired learning by the verbal system but intact 

learning by the nonverbal system (Miles & Minda, 2011; Minda, Desroches, & Church, 

2008; Zeithamova & Maddox, 2006). 

It is clear, that COVIS has provided strong support for the idea of multiple learning 

systems, helping to explain the factors that can differentially impact RB and NRB 

category learning. While developmental differences in category learning have been 

examined in early and middle childhood (Huang-Pollock et al., 2011; Minda et al., 2008; 

Rabi & Minda, 2014), category learning abilities have been extensively studied in 

younger adults. At the opposite end of the age spectrum, category learning abilities in 

older adulthood have only recently begun to receive attention. Quick and accurate 
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categorization is just as important later in life as it is earlier in life, and it is important to 

examine if and why age-related declines in category learning may appear in older 

adulthood. That being said, the current thesis will investigate how older adults learn 

categories, specifically focusing on how executive functions may impact RB and NRB 

category learning. 

1.2 Age-Related Changes in Strategy Selection 

Before reviewing the literature relevant to category learning in older adulthood, it is 

important to discuss how the decision strategies of older adults differ from those of 

younger adults because appropriate strategy use is crucial for successful category 

learning to occur. Previous research suggests that older adults prefer simpler, less 

cognitively demanding strategies over complex strategies in a range of tasks (e.g., 

Gigerenzer, 2003; Sanfey & Hastie, 1999). Thevenot, Castel, Danjon, Fanget, and Fayol 

(2013) demonstrated that older adults rely on retrieval strategies more frequently than 

calculation strategies when solving addition problems. Thevenot et al. suggested that 

older adults’ reliance on simpler strategies may reflect less efficient working memory 

processes, since active maintenance and application of complex strategies are more 

resource demanding. In addition to mental arithmetic, older adults have demonstrated a 

preference for simpler strategies in decision-making tasks (Chen & Sun, 2003; 

Gigerenzer, 2003; Johnson, 1990; Mata, Schooler, & Rieskamp, 2007; Sanfey & Hastie, 

1999), as well as in memory tasks (Dunlosky & Hertzog, 1998, 2000). Generally, age 

differences in strategy selection are associated with limitations in executive functions, 

like working memory and inhibition, which may influence which types of strategies can 

be applied. Given that older adults struggle with maintaining information in working 

memory and inhibiting irrelevant information, it follows that older adults may rely on 

simpler categorization strategies, relative to their younger counterparts. Category learning 

is a particularly useful cognitive process to study in order to gain more insight regarding 

the role of aging on strategy preference, because executive functions are important for 

learning certain types of categories.  
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1.3 Age-Related Changes in Executive Functioning 

Prior research has suggested that executive functioning may influence the types of 

strategies older adults can formulate and apply, which has important implications for 

category learning. Executive function can be thought of as a set of cognitive abilities, 

predominantly supported by the prefrontal cortex, which are responsible for goal-directed 

beahviour (Banich, 2009). The Miyake and Friedman model of executive functioning 

specifies that there are three core components of executive functioning: working memory 

updating, inhibitory control, and set-shifting (Miyake, Friedman, Emerson, Witzki, 

Howerter, & Wager, 2000). The relationship between age and executive function is best 

depicted by an inverted U-shaped curve (see Figure 1.2). Executive functioning increases 

across childhood, peaks in late adolescence or young adulthood, and decreases across 

older adulthood (Craik & Bialystok, 2006; Jurado & Rosselli, 2007; Zelazo, Craik, & 

Booth, 2004). Age-related changes in executive function have been attributed to frontal 

lobe function. This brain region is the last region to mature during childhood and among 

the first region to deteriorate during older adulthood (Brown & Park, 2003; Duncan, 

1995; Prull, Gabrieli, & Bunge, 2000; Raz et al., 2005; West, 1996; Zelazo et al., 2004). 

Behavioural research has also demonstrated age-related declines across the three key 

components of executive functioning. Older adults struggle with inhibiting responses, 

reflecting deficits in inhibitory control, where irrelevant information interferes with task 

relevant goals (Chao & Knight, 1997; Connelly & Hasher, 1993; Milham et al. 2002; 

Zacks et al., 2000). Another consequence of inefficient inhibitory processes is that 

irrelevant information enters working memory, creating interference (Hasher, Lustig, & 

Zacks, 2007; Hasher & Zacks, 1988). In addition to inhibitory control, age-related 

declines in working memory have also been associated with reduced processing speed 

(Salthouse, 1993, 1996), as well as an overall decrease in processing resources (working 

memory capacity) (Oberauer, Wendland, & Kliegl, 2003). The last key component of 

executive function, set-shifting, has also been shown to decline in older adulthood, 

reflecting difficulty switching between tasks or cognitive sets (Gunning-Dixon, & Raz, 

2003; Head, Kennedy, Rodrigue, & Raz, 2009; Rhodes, 2004). 
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Figure 1.2: Executive functioning across the lifespan. Based on research from Zelazo, 

Craik, and Booth, 2004; Craik and Bialystok, 2006; Jurado and Rosselli, 2007. 

 

1.4 The Role of Executive Function in Category 
 Learning 

Given the abundance of literature demonstrating that executive functioning declines with 

age, it follows that category learning which relies on executive functioning should also 

decline with age. The role of executive functions in category learning has been examined 

in a number of studies, involving populations other than older adults. In younger adults, 

research has shown that introducing a secondary concurrent task that taxes executive 

functioning interferes more with RB than NRB category learning (Filoteo, Lauritzen, & 

Maddox, 2010; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006). This suggests 

that the verbal system depends on executive functioning more heavily than the nonverbal 

system. Similarly, Minda and Rabi (2015) determined that temporarily reducing younger 

adults’ executive functioning via a cognitive resource depletion manipulation impaired 

RB learning but not NRB learning. Together, these studies demonstrate that executive 
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functions are used by the verbal system during RB category learning. While executive 

functions are particularly important for RB learning because they assist with the 

hypothesis testing process, research has demonstrated that executive functions may also 

be important for NRB learning, but for different reasons. In order to succeed in NRB 

learning, one must inhibit the dominant verbal system, and switch to the nonverbal 

system. While the NRB system does not rely on executive functioning to learn NRB 

categories, executive functioning may help to mediate the transition from the verbal to 

nonverbal system. In line with this hypothesis, a series of studies have demonstrated that 

executive functions may also be important for the operation of the nonverbal system. 

Studying populations with known executive functioning deficits, allowed researchers to 

test this hypothesis. Participants with frontal lobe damage were significantly less accurate 

than controls on both RB and NRB category learning and patients performed significantly 

worse on the Wisconsin Card Sorting Test, suggesting that these patients may have 

struggled with rule formation and the ability to switch between category learning systems 

(Schnyer et al., 2009). Additionally, children and sleep-deprived individuals have 

decreased executive function abilities and they also performed more poorly on RB and 

NRB categories relative to age-matched controls (Huang-Pollock et al., 2011; Maddox, 

Glass, Wolosin, Savarie, Bowen, & Matthews, 2009; Rabi, Miles, & Minda, 2015; Rabi 

& Minda, 2014).   

1.5 Category Learning in Older Adulthood 

Extensive research has been conducted involving category learning in childhood and 

young adulthood. However, relatively little research has been conducted involving 

category learning in older adulthood. Racine and colleagues (2006) were among the first 

to study RB category learning in older adulthood using a novel RB category set, finding 

that older adults performed more poorly than younger adults when complex rules were 

required to arrive at the correct categorization judgment. Davis, Love, and Maddox 

(2012) examined the ability of older adults to learn a rule-plus-exception category set, 

showing that older adults learned and applied the rule-following items quite well, but 

struggled with the exception items. This finding again suggests that task complexity 

impeded the ability of older adults to learn a RB category set at the same level as younger 
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adults. Maddox, Pacheco, Reeves, Zhu, and Schnyer (2010) also demonstrated that older 

adults struggled with learning a complex, conjunctive RB task, where participants were 

required to categorize stimuli into one of four categories. However, given that there were 

four category groups, it is difficult to determine whether older adults struggled due to the 

complex nature of the conjunctive RB category set, to difficulty keeping track of the four 

category options, or a combination of both. Although studies involving NRB learning are 

rather limited, prior research has also shown that older adults struggle with NRB category 

learning (Filoteo & Maddox, 2004; Maddox et al., 2010). Difficulties with NRB learning 

have been attributed to older adults struggling with consistently applying the task 

appropriate NRB strategy.  

1.6 Overview of Present Research 

The main goal of the present research is to examine changes in RB and NRB category 

learning that occur during older adulthood. Given that strategy use and executive 

functioning changes with age, these factors will also be considered in relation to category 

learning performance. Age-related category learning deficits have been reported in prior 

literature. For this reason, I will not only focus on better understanding why these deficits 

occur, but I will also focus on methods of reducing these deficits so that older adults can 

perform more like younger adults.   

The study presented in Chapter 2 examined category learning on three categorization 

tasks: one where a single-dimensional rule governed category membership, one where a 

multi-dimensional rule defined category membership, and one with a non-rule-based 

structure. The three category sets used were adapted from the Shepard, Hovland, and 

Jenkins’ (1961) classification tasks, which is a standardized category set that has been 

used in a number of studies across many different population types (e.g., younger adults, 

children, depressed individuals, monkeys). However, this widely accepted, well-studied 

category set has yet to be examined in older adults. Prior category learning studies 

involving older adults have typically included novel or less well-studied category sets, 

making it somewhat difficult to draw strong conclusions regarding the effects of healthy 

aging on category learning, due to possible confounds (e.g., feature salience, prior 

knowledge, unclear instructions, etc.) that come along with using novel category sets. 
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Additionally, prior research involving older adults has generally focused on examining 

either RB or NRB category learning alone, rather than in conjunction with one another, 

making it difficult to draw conclusions regarding the functioning of both category 

learning systems. Since executive functioning is thought to play an important role in both 

RB and NRB category learning, I will investigate the relationship between category 

learning performance and executive functioning (based on a series of measures tapping 

into working memory, inhibitory control, and set-shifting). This will provide additional 

insights regarding RB and NRB category learning deficits. By examining the executive 

functioning abilities within each age group separately, I will be able to determine whether 

individual differences in executive functioning help with learning RB and NRB 

categories. Based on prior literature demonstrating age-related declines in executive 

functioning (Gunning-Dixon, & Raz, 2003; Hasher, Lustig, & Zacks, 2007; Rhodes, 

2004; Zelazo, Craik, & Booth, 2004), it is hypothesized that older adults will struggle 

with complex RB learning and NRB learning, but not struggle with easy RB category 

learning. The single-dimensional RB category set in Chapter 2 is relatively 

straightforward and places minimal demands on executive functioning resources. 

Additionally, developmental research has demonstrated that children can learn easy, 

single-dimensional rules quite well. For these reasons, I expect that as rule complexity 

increases, the categorization performance of older adults will decrease relative to younger 

adults. Older adults may also struggle with learning the NRB category set, because it too 

requires executive functioning abilities to inhibit the verbal system and switch to the 

nonverbal system. Furthermore, stronger executive functioning abilities should be 

associated with better category learning performance.  

The study presented in Chapter 3 will be the first of its kind to examine a method of 

reducing category learning deficits in older adults through the use of a pre-training 

procedure which reduces the executive function demands of the categorization task. 

Older and younger adults will complete the hard RB task and the NRB task from Chapter 

2, with or without pre-training. By familiarizing participants with the stimulus 

dimensions in the category set, I expect that the cognitive deficits associated with normal 

aging can be minimized, if not overcome. More specifically, I expect that pre-training 

will improve both RB and NRB category learning in both older adults and younger 
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adults, but the benefits to RB learning may be more substantial. The reasoning behind 

this prediction is that RB learning heavily depends on executive functioning to take part 

in the hypothesis-testing process. On the contrary, executive functions are needed to 

transition to the nonverbal system, but are not central to actually learning NRB 

categories. In addition, pre-training involves describing the stimulus dimensions, which 

naturally promotes awareness of potential categorization rules, encouraging individuals to 

take part in RB category learning, more so than NRB category learning that is more 

implicit in nature and not dependent on verbalizable rules. Similar to the Chapter 2 study, 

I expect that stronger executive functioning abilities should be associated with better 

category learning performance. 

The goal of Study 1 presented in Chapter 4 is to determine how older adults will perform 

when learning a more complex single-dimensional RB category set, relative to a NRB 

category set. Simple, single-dimensional rules (e.g., circles belong in Category A) do not 

place must strain on executive functioning resources, and older adults can learn these 

rules quite well. I designed an experiment to determine whether increasing the 

complexity of the single-dimensional rule structure would impact the ability of older 

adults to learn the category set. If older adults struggle with learning the complex single-

dimensional RB category set, this would suggest that increasing RB task complexity 

influences performance. However, if older adults perform well on this category set, this 

may suggest that older adults can learn single-dimensional rules well (regardless of task 

complexity), but struggle to learn multi-dimensional rules which require binding features 

together into a complex rule (e.g., big circles and small squares belong in Category A). 

This might imply that older adults struggle particularly with binding information 

regarding stimulus dimensions together and maintaining this information in working 

memory.  

I used a different standardized, well-studied category set (from what was used in 

Chapters 2 and 3) to examine complex single-dimensional RB category learning and 

NRB category learning in older adults and younger adults. The category set used 

consisted of Gabor patch stimuli (sine-wave gratings) varying in line frequency (number 

of bands within the Gabor patch) and orientation (spatial orientation/angle of the lines in 
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the Gabor patch). In the RB category set, participants have to find a single-dimensional 

rule to correctly classify the stimuli on the basis of the frequency of the grating, while 

ignoring the more salient dimension of orientation. For the NRB category set, no easy to 

verbalize rule exists and instead the participant must combine information regarding both 

stimulus dimensions prior to the decision stage (reflecting implicit learning). This 

category set will be used because it is unfamiliar to participants. Unlike some prior 

category learning studies involving familiar stimuli, the current category set controlled 

for possible confounds introduced by extra knowledge participants have acquired. 

Additionally, this category set lends itself well to computational modeling of strategy use, 

providing a clearer picture of how older adults perform, beyond accuracy. Some of the 

category learning studies involving older adults conducted in the past have not included 

strategy analyses, making it difficult to truly determine how older adults solved a task. 

The current study will not only examine strategy differences between older adults and 

younger adults on a RB and NRB task, but will also examine individual differences in 

strategy selection, to better identify performance differences within the group of older 

adults. Based on the premise that older adults tend to rely on simpler, less complex 

strategies, I expect that older adults will struggle with both RB and NRB category 

learning because of difficulties identifying the correct strategy. That is, older adults may 

struggle with inhibiting the salient but irrelevant dimension in the RB category task, and 

they may struggle with switching to nonverbal strategy from the dominant, verbal system 

in the NRB category task. In line with prior studies in this thesis, I looked at executive 

functioning performance, to determine the relationship between executive functioning 

and category learning in older adulthood. I expected that stronger executive functioning 

abilities would be associated with both better RB and NRB category learning 

performance and strategy use. 

As cognitive aging is associated with declines in executive functioning resources, I 

examined whether reducing executive function task demands would improve the 

complex, single-dimensional RB performance of older adults. As discussed earlier, since 

executive functions play a larger role in RB category learning and pre-training naturally 

promotes RB learning, I was particularly interested in examining the influence of pre-

training on RB category learning. Aside from the pre-training study discussed in Chapter 
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3, this is the only other study to examine methods of reducing RB categorization deficits 

in older adults. In Study 2 of Chapter 4, I will investigate whether a new pre-training 

procedure will improve the RB accuracy and strategy use of both older adults and 

younger adults. Individuals (both older and younger adults) with higher executive 

functioning scores are expected to benefit more from pre-training, as they may be able to 

test hypotheses and rule out incorrect rules more easily.  
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Chapter 2  

2 Category Learning in Older Adulthood: A Study of the 
Shepard, Hovland, and Jenkins (1961) Tasks1 

The ability to categorize is a key aspect of cognition, which we rely on to group like 

objects together so that they can later be treated equivalently. Starting from infancy and 

continuing to older adulthood, we make categorization decisions to help organize the 

world around us. That is, children may rely on categorization when deciding whether 

some types of objects are dangerously hot (e.g., stove) or not (e.g., fridge), whereas older 

adults might rely on categorization to decide which types of medications are dangerous or 

safe. This being said, a principal question to examine is whether category learning 

abilities vary with age, and which factors are responsible for these changes.  

Developmental differences in category learning have been examined in early and middle 

childhood (Huang-Pollock et al., 2011; Minda et al., 2008; Rabi & Minda, 2014), and 

category learning abilities have been extensively studied in university-aged adults. At the 

opposite end of the age spectrum, category learning abilities in older adulthood have only 

recently begun to receive attention. Given the fact that quick and accurate categorization 

is just as important later in life as it is earlier in life, it is important to examine if and why 

age-related changes in category learning may appear in older adulthood.  

2.1 Parallels between Category Learning in Childhood and 
Older Adulthood 

Given the limited research on category learning in older adults, a better understanding of 

this topic may be obtained by examining category learning in children. On the surface, it 

may appear as though these two populations have little in common. In addition, there are 

also vast differences in semantic knowledge between these two groups, which prompt 

some caution in making comparisons and inferences between them. Despite these 

                                                 

1 Copyright © 2016 American Psychological Association.  Reproduced with permission. Rabi, R., & 

Minda, J. P. (2016). Category learning in older adulthood: A study of the Shepard, Hovland, and Jenkins 

(1961) tasks. Psychology and Aging, 31(2), 185-197. http://dx.doi.org/10.1037/pag0000071  
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differences, these groups do share some key similarities that can inform theorization. For 

example, research suggests that the prefrontal cortex develops later than other areas 

(Bunge & Zelazo, 2006; Kolb et al., 2012), and verbal working memory and executive 

functioning develop substantially during childhood and are related to these physical 

developments in the prefrontal cortex (Gathercole, 1999). As a result, children are often 

impaired relative to younger adults when learning categories that rely heavily on working 

memory and executive functioning abilities (Minda et al., 2008; Rabi & Minda, 2014). 

Similarly, research has shown that prefrontal brain regions atrophy with normal aging, 

which is associated with a reduction in executive functioning abilities (Greenwood, 2000; 

Grieve, Williams, Paul, Clark, & Gordon, 2007). Furthermore, one might expect that 

older adults should also be impaired when learning category sets that depend on working 

memory and executive functioning.  

Research by Minda and colleagues (2008) showed that children performed worse than 

younger adults on categories that were optimally learned by a complicated rule. However, 

children and younger adults performed similarly when learning non-rule-based family-

resemblance (FR) categories, which could be learned based on the overall similarity of 

the stimulus dimensions rather than via a rule. Interestingly, children were able to learn 

simple, single-dimensional rules about as well as younger adults, suggesting that children 

are capable of learning rules if they are easy to identify (i.e., do not heavily tax working 

memory and inhibitory control abilities). Along the same lines, Huang-Pollock et al. 

(2011) found that adults outperformed children on rule-based (RB) categories because 

children overly relied on suboptimal single dimensional rules when solving both category 

sets. Recent research by Rabi and Minda (2014) extended the results of Huang-Pollock et 

al. by showing that not only are children impaired at RB category learning compared to 

adults, but that these impairments are also related to their executive functioning abilities. 

That is, Rabi and Minda demonstrated that working memory and inhibitory control are 

associated with RB category learning, and as these abilities improved with age, so did RB 

category learning performance. Furthermore, given that prefrontal functioning changes 

with age and there are observed reductions in executive functioning abilities (Braver et 

al., 2001; Raz, 2000) it is reasonable to expect to see larger RB deficits in older adults 

compared to non-rule-based FR deficits.  
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2.2 Rule-Use in Older Adults 

Aside from developmental research on category learning, examining general rule-

learning abilities in older adults can help shed light on how and why category learning 

abilities change with age. The Wisconsin Card Sorting Test (WCST) has frequently been 

used to assess rule learning. In this task, participants learn to categorize multidimensional 

stimuli based on a single-dimensional rule (e.g., shape), using feedback to determine 

when to switch rules. Various studies have revealed that WCST performance tends to 

decline with age (Axelrod & Henry, 1992; Hayslip & Sterns, 1979; but see Gorlick, 

Giguère, Glass, Nix, Mather, & Maddox, 2013 for an exception). More specifically, 

Ridderinkhof et al. (2002) found that decrements in WCST performance could be 

attributed to the fact that older adults perseverated on previously correct sorting rules, 

even when provided with explicit cues (e.g., “shift to colour”) to aid learning. These 

findings suggest that older adults may struggle to use rules appropriately because of 

difficulties with hypothesis testing and set-shifting abilities. Along the same lines, 

Chasseigne, Mullet, and Stewart (1997) examined the effects of aging on multiple cue 

probability learning (i.e., learning the probabilistic relationship between cues and events) 

in older adults (65-75 and 76-90 years old) and younger adults. When there was a direct 

relationship between cues and events, all participants performed similarly. However, 

when the cue and event were inversely related to each other, younger adults outperformed 

older adults. Interestingly, in a second task where participants were explicitly told about 

the inverse relationship, 65-75 year-olds showed improved performance, but 76-90 year-

olds continued to show impairments. Furthermore, these findings suggest that older 

adults may find it difficult to use explicit rules in specific situations, possibly due to 

declining working memory abilities. That is, arriving at the inverse relationship would 

involve creating a verbal rule, which could be quite taxing on working memory.  

2.3 Category Learning in Older Adults 

While studies have clearly shown an age-related reduction in the propensity to use rules, 

research has also demonstrated more specific category learning deficits in older 

adulthood. For example, research conducted by Filoteo and Maddox (2004) examined the 

ability of younger adults and older adults to learn information-integration categories, 
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which are a subset of non-rule-based categories. One category set was defined by a linear 

boundary, thus making it comparable to a family resemblance category set, and the other 

was defined by a non-linear boundary. In both cases, younger adults performed better 

than the older adults. One reason was that younger adults were more adept at switching to 

an information integration strategy whereas older adults were more likely to use a rule-

based approach (which resulted in suboptimal performance).  

Other research examined rule-based category learning. Racine, Barch, Braver, and Noelle 

(2006) asked older adults (ages 66 to 82) and younger adults to learn a set of 

categorization tasks that varied in rule complexity. Results revealed that older adults 

performed similarly to younger adults when applying a simple, single-dimensional rule, 

but showed performance deficits when applying a more complicated rule. Racine’s 

findings converge nicely with Minda et al.’s (2008) developmental results. Similar to 

Racine and colleagues, Minda et al. (2008) also found that children struggled with 

learning complex rules, but performed similarly to younger adults when learning simpler, 

single-dimensional categorization rules. Maddox, Pacheco, Reeves, Zhu, and Schnyer 

(2010), also examined RB category learning in older adults (ages 60 to 81), paying 

special attention to strategy use differences in younger and older adults. Findings 

revealed that as a group, older adults showed RB deficits compared to younger adults. 

Computational modeling provided further insight into the types of strategies being used 

by older adults, revealing that older adults were marginally less likely to use the task 

appropriate strategy in the RB condition compared to younger adults. Among the older 

adults who did not use an explicit, hypothesis-testing strategy, these participants tended 

to rely on either a non-rule-based implicit strategy or guessing. Maddox et al. (2010) also 

showed that older adults who adopted the task appropriate strategy (i.e., a hypothesis-

testing strategy) in the RB condition performed similarly to younger adults using the task 

appropriate strategy. Additionally, Maddox et al. demonstrated that older adults who used 

the task appropriate strategy were also those who showed better inhibitory control (on the 

WCST and Stroop task) and working memory (on the digit span task) abilities. These 

findings are clearly in line with research showing the executive functioning abilities are 

closely tied to RB category learning (Miles and Minda, 2011; Minda et al., 2008) and 

tend to decline with age (Greenwood, 2000; Raz, 2000).  



23 

 

Another type of category learning that has been examined in older adults is rule and 

exception learning. Davis, Love, and Maddox (2012) asked older and younger adults to 

learn to categorize pictures of beetles on the basis of trial and error. Most of the beetles 

were rule-following items that could be categorized using a single dimensional rule. 

However, each category also contained an exception item. Davis and colleagues found 

that while both older and younger adults performed quite well on the rule-following items 

by the end of training, older adults were impaired at categorizing the exception items. In 

line with the findings of Racine and colleagues (2006), Davis et al. demonstrated that 

older adults could learn RB category sets, granted that the verbal rule was straightforward 

(e.g., beetles with pointy antenna go in Category A). However, older adults struggled 

more than younger adults, when they had to exert additional resources (e.g., hypothesis 

testing, working memory) to determine the exception to the rule. 

2.4 Changes in Executive Functioning with Age 

Given the limited number of studies investigating category learning in older adults, a 

useful next step would be to outline some of the factors that may impact category 

learning in older adults. One of the factors that are known to influence category learning 

is executive functioning. According to widely held views, the prefrontal cortex plays a 

key role in executive functioning. However, this brain region has also been shown to 

deteriorate with age (Uylings & de Brabander, 2002; van der Molen & Ridderinkhof, 

1998). Future research should closely examine the link between category learning deficits 

in older adults and executive functioning abilities, since many types of category learning 

tasks depend on executive functioning abilities like inhibitory control and working 

memory (Miyake, Friedman, Emerson, Witzki, Howerter, & Wager, 2000).  

2.4.1 Inhibitory Control 

Older adults have been shown to display deficits in a wide range of inhibition tasks. For 

example, prior research has shown that older adults find it more difficult to look away 

from an onset stimulus when the correct response is to look in the opposite direction 

(Butler et al., 1999; Olincy et al., 1997). Additionally, when older adults are required to 

stop their response when a target stimulus is presented (i.e., stop-signal task), they have 
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more difficulty withholding their response than younger adults (May & Hasher, 1998; 

Williams et al., 1999). With regards to the Stroop task, research has shown that older 

adults find it more difficult to suppress the word reading response to a colour word when 

asked to indicate the font colour of the word (Davidson, Zacks, & Williams, 2003; West, 

1999). Furthermore, these findings demonstrate that inhibitory processes are impaired in 

older adults, which may have an impact on how well older adults can learn categories. 

That is, reduced inhibitory control abilities may lead to more difficulty restricting access 

of irrelevant/salient information to working memory, as well as difficulty removing 

information from working memory that has been deemed irrelevant. 

2.4.2 Working Memory 

Age related decrements in working memory performance have also been documented. 

Research has revealed decreases in working memory in old age in both verbal and spatial 

working memory tasks (Bopp & Verhaeghen, 2005; Park et al., 2002). With regards to 

category learning, Lewandowsky (2011) found that working memory capacity mediated 

performance on RB tasks. As well, Maddox et al. (2010) found that digit span 

performance was associated with RB category learning in older adults. Based on prior 

research, we know that older adults are capable of learning simple, single-dimensional 

RB categories, but struggle to learn more complex RB categories (Racine et al., 2006). 

One might speculate that older adults struggled to learn the more complicated RB 

category set, because it placed more strain on their working memory capacity to test 

different rules, update the information, and maintain the complex rule in memory.  

2.5 Motivation for the Current Research 

The current study examined category learning in younger and older adults using an 

adapted version of the Shepard, Hovland, and Jenkins’ (1961) classification tasks 

(hereafter referred to as the SHJ tasks). This category set has been used in many studies 

across different population types (e.g., younger adults, children, depressed individuals, 

monkeys), but to our knowledge, it has yet to be examined in older adults. Because it has 

been used so extensively, performance on the SHJ tasks serves as an important 

benchmark for understanding category learning. It follows that performance on these 
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category sets should be examined in relation to normal aging. Among the six SHJ 

category sets, three (Type I, Type II, and Type IV) were of particular interest in the 

present study. Type I is considered an easy RB category set, where only one feature is 

used to indicate category membership, and participants can achieve perfect performance 

by using a single-dimensional rule. The rule that would result in perfect performance in 

Figure 2.1 is “Black shapes belong in Category A, white shapes belong in Category B” 

because the feature used to indicate category membership is colour. Previous research has 

demonstrated that the Type I category set is the easiest set to learn among younger adults 

and results in the highest performance (Nosofsky et al., 1994; Shepard et al., 1961). Type 

II is considered a hard RB category set, where two features are used to indicate category 

membership, and participants can achieve perfect performance using a disjunctive rule. 

The verbal rule that would result in perfect performance in Figure 2.1 would be “Black 

triangles and white squares belong in Category A, white triangles and black squares 

belong in Category B”. Therefore, neither colour nor shape is individually useful in 

assigning category membership, but the combination of colour and shape is. Type II is 

considered the second easiest set to learn out of the six category sets, despite the 

increased logical complexity of the rule. Type IV is considered a family resemblance 

category set, where all three features are used to indicate category membership. This 

means that the members of Category A have features in common with one another, for 

example in Figure 2.1, they are mostly large, mostly black, and mostly triangles, whereas 

Category B members are mostly small, mostly white, and mostly squares. This task can 

be learned by looking at the overall similarity of stimuli, and thus does not require the 

abstraction and use of a rule. However, the Type IV category set can also be construed as 

a rule-plus-exception category learning task because another possible method of 

achieving perfect performance is to memorize the exceptional outlying stimuli (in Figure 

2.1, this is the big white triangle and the small black square). The verbal rule would be 

“big shapes (except the white square), plus the small black triangle belong in Category A, 

and small shapes (except the black triangle), plus the large white square belong in 

Category B”. The Type IV category set is considered the third hardest to learn out of the 

six category sets.  
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Figure 2.1: Category learning tasks from Shepard, Hovland, and Jenkins (1961): Type I 

(easy rule-based), Type II (hard rule-based), and Type IV (non-rule-based). 

 

As mentioned earlier, performance on the SHJ tasks has been examined in many different 

populations, including children (Minda et al., 2008), monkeys (Smith et al., 2004), and in 

individuals with depression (Nadler, 2013). Additionally, SHJ tasks have been studied in 

relation to unsupervised category learning (Love, 2002), working memory capacity 

(Lewandowsky, 2011), and stimulus composition (Love & Markman, 2003; Mathy & 

Bradmetz, 2011). An important next step is to examine SHJ performance in older adults. 

Interestingly, in contrast to the Type II advantage typically found in SHJ studies, prior 

research has shown that children and monkeys actually find Type II harder to learn than 

Type IV (Minda et al., 2008; Smith et al., 2004). Minda and colleagues (2008) speculated 

that children struggled with Type II learning because the brain areas thought to mediate 

the explicit rule-based system and working memory are not fully developed in children. 

Similarly, Smith et al. (2004) suggested that monkeys struggled with Type II learning 

because of their smaller prefrontal cortex and lack of verbal abilities. 

Based on the research reviewed above, we expected that older adults will perform 

similarly to younger adults on Type I categories. However, we expect that older adults 

will struggle to learn Type II categories compared to younger adults, because executive 

function declines with age. Furthermore, since the disjunctive RB Type II category set 
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heavily relies on executive functioning abilities to test rules, inhibit incorrect rules, and 

maintain rules in working memory, older adults are expected to be at a disadvantage at 

learning this category set, relative to younger adults. Lastly, the Type IV category set can 

be learned via family resemblance or a complicated rule (i.e., rule-plus-exception). Given 

past research demonstrating that older adults struggle with learning rule-plus-exception 

categories (Davis et al., 2012) and the fact that stimulus dimensions in the Type IV 

category set are inter-correlated encouraging family-resemblance-based learning, it is 

expected that older adults will perform better on the Type IV category set relative to 

Type II because older adults are expected to have access to the cognitive processes that 

allow for family resemblance leaning strategies.  

In terms of the relationship between category learning and executive functioning abilities, 

it is expected that better executive function  (i.e., a larger working memory capacity and 

stronger inhibitory control abilities) will be associated with higher performance on the 

two rule-based category sets, Types I and II. Since the disjunctive RB category set is 

thought to rely most heavily on executive functioning, the strongest relationship with 

executive functioning abilities should occur for this category set.  

2.6 Method 

2.6.1 Participants 

Participants included 35 younger adults (M = 18.34 years; 8 males & 27 females) from 

the University of Western Ontario who participated for course credit and 34 older adults 

between the ages of 65 and 85 (M = 71.44 years; 6 males & 28 females) recruited from 

the Kiwanis Seniors’ Community Centre and the Boys & Girls Club recreational facility. 

Older adults received $20 for participating in the study. Participants were pre-screened to 

ensure that they were fluent in English, they were in good health, and they did not have 

vision or hearing impairments. Participants were excluded from the study if they 

indicated that they had a history of neurological disorders, psychiatric illness, substance 

abuse, a cerebral vascular event, head trauma, and/or any other neurological conditions. 
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2.6.2 Materials 

2.6.2.1 Category Learning Task 

Three category learning tasks were chosen from the original set of six created by 

Shepard, Hovland, and Jenkins (1961). In each category set there are three features 

(shape, size, and colour) that can have one of two dimensions (square or triangle, large or 

small, black or white), as shown in Figure 2.1. In each category set there are eight 

stimuli, and four belong in each of two separate categories. There were 80 trials (10 

blocks) total per category set. The Type I set was a single-dimensional category with one 

of the three features acting as the single-dimensional rule. The Type II set was a 

disjunctive rule category set with two of the three features relevant for the disjunctive 

rule. The Type IV set was a family resemblance category set in which each category 

member shared the majority of its features with the other category members and all the 

features were relevant. All category sets were counterbalanced across participants such 

that some participants were presented with a Type I set for which colour was the relevant 

dimensions, others were presented with a set for which size was the relevant dimension, 

and so on. 

2.6.2.2 Memory Tasks 

2.6.2.2.1 Digit Span 

Participants heard a recording of a two-digit number sequence at a rate of approximately 

one digit per second, and the participants were asked to repeat the sequence back to the 

experimenter in the same order. Participants heard three sequences at each sequence 

length and as long as they repeated at least one of them correctly they continued on to the 

next sequence length, for a maximum length of ten digits. The task was over once the 

participant was unable to repeat any of the sequences at a given length. The procedure for 

the backward digit span was the same as that for the forward digit span except that the 

participant was required to recall the digits in reverse order so that the last number was 

said first and the first number was said last, for a maximum of eight digits. The task was 

scored as the total number of correct responses. 
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2.6.2.3 Inhibitory Control Tasks 

2.6.2.3.1 Flanker Task 

A version of the Flanker task adapted from Botvinick, Nystrom, Fissel, Carter, and 

Cohen (1999) was used. A set of five arrows was presented in a row on the computer 

screen and participants were asked to indicate the direction of the central arrow (target). 

The target was flanked by two identical arrows on either side (distractors) that were either 

pointing in the same direction (congruent trial) or the opposite direction (incongruent 

trial) of the target arrow. The task consisted of 60 trials (30 congruent and 30 

incongruent) presented in randomized order. Prior to the experiment participants received 

five practice trials that were not analyzed. The difference in mean reaction time between 

correct responses on congruent and incongruent trials (i.e., a difference score) was used 

as a measure of inhibitory control. Larger difference scores were indicative of less 

efficient interference control.  

2.6.2.3.2 Simon Task 

In the Simon task, participants were first presented with a fixation cross in the center of 

the screen (Simon & Rudell, 1967). Immediately after the cross had disappeared, 

participants were instructed to press the left key in response to the red circle or the right 

key in response to a blue circle as fast as possible, regardless of stimulus location. The 

timing began with the onset of the stimulus, and the response terminated the stimulus. On 

congruent trials, the stimulus location was on the same side as the required response and 

on incongruent trials the stimulus location was on the opposite side of the required 

response. The whole task consisted of 64 trials (32 congruent trials and 32 incongruent 

trials) presented in randomized order to each participant. Prior to the experiment, 

participants received five practice trials that were not analyzed. Difference scores were 

calculated by computing the difference in mean reaction time between correct responses 

on congruent and incongruent trials. 

2.6.2.3.3 Stroop Task 

In the Stroop task (Stroop, 1935), participants were instructed to indicate, as quickly and 

accurately as possible, whether each word presented on the computer screen was written 
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in red, blue, green, or yellow ink using the properly labeled response buttons. Participants 

were instructed to ignore the meaning of the words and to focus on the ink colour only. 

The timing began with the onset of the word, and the response terminated the stimulus. 

Participants first completed 12 practice trials, with accuracy feedback after each trial. The 

actual task consisted of 72 trials without feedback: 24 congruent trials (i.e., “RED” in red 

ink), 24 incongruent trials (i.e., “RED” in blue ink) and 24 neutral trials (i.e., non-colour 

word names like “TREE”). Difference scores were calculated by computing the 

difference in mean reaction time between correct responses on congruent and incongruent 

trials. 

2.6.2.4 Wechsler Abbreviated Scale of Intelligence (WASI) Test 

Standardized scores on the WASI vocabulary and matrix reasoning sub-tests (Wechsler, 

1999) were used to calculate the Full Scale Intellectual Quotient. WASI subtests were 

used to provide estimates of verbal and nonverbal intelligence.  

2.6.3 Procedure 

Participants were tested individually across two testing sessions, approximately one week 

apart. Younger adults were tested in the Categorization Lab at the University of Western 

Ontario. Older adults were tested in a quiet room in the senior centre. Participants 

completed all three (Types I, II, and IV) SHJ category sets in one of three orders: I/II/IV, 

II/IV/I or IV/I/II. A pilot study with 52 university students confirmed that the order of the 

SHJ category sets did not have an effect on the categorization performance. Participants 

were told that they would be presented with abstract shapes and asked to classify them as 

belonging to category A or category B. Participants saw each stimulus one-at-a-time on 

the computer screen and were instructed to press the button labeled “A” or “B” to 

indicate whether each shape belonged in category A or B respectively. After responding, 

participants were given corrective feedback (the words “correct” or “incorrect” appeared 

above the stimulus object). Another trial began following this feedback. Stimuli were 

presented in random order within each block of eight and blocks were presented in an 

unbroken fashion. Following completion of the first category set, participants completed 

the second and third category set. Before completing the next two category sets, 
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participants were told that even though the objects would look the same as before, the 

category set is different and they should adopt a new strategy. Participants were told that 

they could take a break between category sets if they wished. 

During the second testing session, participants first completed three inhibitory control 

tasks: the Flanker task, Simon task, and Stroop task. Following the Stroop task, 

participants received a short break, after which they were administered the forward and 

backward digit span. Lastly, participants completed the WASI. Each testing session 

lasted approximately one hour. 

2.7 Results 

2.7.1 Category Learning 

The average categorization performance of younger and older adults across the three SHJ 

category sets is displayed in Figure 2.2. The learning curve of the younger adults is 

similar to one originally reported by Shepard et al. (1961), with the Type I category set 

having the highest performance, followed by Type II, and the Type IV category set. 

Similar to younger adults, older adults found Type I the easiest. However, unlike younger 

adults, older adults performed worse on Type II relative to Type IV. Learning curves for 

each age group and category set across learning blocks is displayed in Figure 2.3. A 3 

(category type: Type I, II, IV) x 2 (age: younger, older) x 10 (blocks) mixed ANOVA 

was conducted to further examine how younger and older adults learned the three 

category sets. If the sphericity assumption was violated, (p < .05, Mauchly’s test of 

sphericity), a Greenhouse-Geisser correction was performed. 

Results revealed a significant main effect of category type, F(2, 134) = 151.42, p < .001, 

η2 = .69, power = 1.00, as well as a main effect of age,  F(1, 67) = 111.45, p < .001, η2 = 

.63, power = 1.00. There was also a main effect of block, F(7, 439) = 72.15, p < .001, η2 

= .52, power = 1.00. Additionally, there was a significant interaction between category 

type and age group, F(2, 130) = 21.88, p = < .001, η2 = .25, power = 1.00, The Category  
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Figure 2.2: Average categorization performance of younger adults (YA) and older adults 

(OA) across the learning blocks. Error bars denote standard error of the mean. 

 

Type x Age Group interaction is of particular interest, because it demonstrates a 

crossover effect, where younger adults perform better on Type II compared to Type IV 

and older adults show the reverse effect, performing better on Type IV compared to Type 

II (see Figure 2.2). Lastly, there was a three-way interaction between age, category, and 

block, F(12, 763) = 3.93, p = < .001, η2 = .06, power = 1.00. In order to further explore 

the three-way type interaction, three separate analyses of variance were conducted (one 

for each of the three category sets). 

2.7.1.1 Type I Categorization Performance 

For the Type I (single-dimensional rule) category set, there was a main effect of age. The 

Type I categorization performance of older adults was significantly lower than younger 

adults, F(1, 67) = 12.20, p = .001, η2 = .99, power = .93. There was a significant main  
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Figure 2.3: Categorization performance of younger and older adults across learning 

blocks in each of the three category sets. Error bars denote the standard error of the mean. 

 

effect of block, F(4.4, 296) = 50.14, p < .001, η2 = .43, power = 1.00 [Greenhouse-

Geisser corrected], suggesting that learning occurred across the blocks. There was also a 

significant interaction between age and block, F(4.4, 296) = 2.93, p = .02, η2 = .04, power 

= .81, demonstrating that younger adults learned the Type I category set faster than older 

adults. 

2.7.1.2 Type II Categorization Performance 

For the Type II (disjunctive rule) category set, there was a main effect of age, F(1, 67) = 

103.34, p < .001, η2 = .61, power = 1.00, suggesting that younger adults outperformed 

older adults. There was also a main effect of block, F(7.3, 494) = 19.64, p < .001, η2 = 

.23, power = 1.00 [Greenhouse-Geisser corrected]. A significant age x block interaction 

was also found, F(7.3, 494) = 5.61, p < .001, η2 = .08, power = 1.00 [Greenhouse-Geisser 
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corrected], showing that younger adults learned the Type II category set faster than older 

adults.  

2.7.1.3 Type IV Categorization Performance 

For the Type IV (family resemblance) category set, there was a main effect of age, F(1, 

67) = 36.19, p < .001, η2 = .35, power = 1.00, with younger adults outperforming older 

adults. There was a main effect of block F(6.8, 454) = 17.73, p < .001, η2 = .21, power = 

1.00 [Greenhouse-Geisser corrected]. Lastly, there was a significant age x block 

interaction, F(6.8, 454) = 3.33, p = .002, η2 = .05, power = .96 [Greenhouse-Geisser 

corrected], suggesting that younger adults learned the Type IV category set faster than 

older adults.  

2.7.1.4 Order Effects 

To ensure that order effects were not present, three separate ANOVAs were conducted 

for each of the category sets, examining each of the three randomized orders (i.e., I/II/IV, 

II/IV/I or IV/I/II). This analysis was done to eliminate the possibility that some 

participants performed better on certain category sets than other participants, because 

they completed certain category sets first. There were no order effects for the Type I 

category set, F(2, 63) = .63, p = .54, the Type II category set, F(2, 63) = .36, p = .70, or 

the Type IV category set, F(2, 63) = .06, p = .94. This means that performance on the 

three category sets were not impacted by whether participants received Type I, Type II or 

Type IV, first, in the middle, or last.  

2.7.2 Strategy Analysis 

In addition to category learning performance, we were also interested in whether 

participants used a single-dimensional rule strategy in learning any of the three category 

sets. This is important to know because in many cases, what might appear to be moderate 

performance on the Type IV family resemblance category set might actually be a result of 

participants learning a suboptimal single-dimensional rule (e.g., attention to a single 

dimension in the Type IV category set would result in 75% correct). The same type of 

strategy analysis was performed by Minda et al. (2008) when examining SHJ learning in 

children. 
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For each participant, we identified the response made (either Category A or B) for each 

stimulus. Next, we calculated for each block the correlation between the value of each 

dimension (e.g., square or triangle) and the response. If a participant responded to a 

single dimension, then the correlation between stimulus and response would be 1.0 

regardless of which category that participant was learning. This analysis would indicate if 

a participant had adopted a single-dimensional rule, even if the rule was suboptimal. 

Following the correlational analysis, we counted how many participants displayed at least 

two blocks (including nonconsecutive blocks) of perfect rule-response correlations. As 

Table 2.1 shows, we typically observed single-dimensional responding only in Type I 

categories, with the exception of 4 older adults who never consistently applied a single-

dimensional rule-based strategy when completing the Type I category set. Zero younger 

adults and only 2 of the 34 older adults showed a single-dimensional performance-

dimension correlation for the Type II categories. The fact that older adults were 

performing at chance on Type II category set, yet the majority was not fit by a single-

dimensional rule, suggests that older adults frequently switched their strategies 

throughout the task. Given the fact that one could only achieve 50% by applying a single-

dimensional rule in the Type II category set, it makes sense that older adults did not 

consistently apply a single-dimensional rule, but rather switched rules to avoid negative 

feedback. Lastly, 8 of the 35 younger adults and 9 of the 34 older adults showed a single-

dimensional performance-dimension correlation for the Type IV category set, suggesting 

that roughly a quarter of participants (both younger and older adults) relied on single-

dimensional rules to learn the Type IV category set2. It should also be noted, that these 

participants were fit by a single-dimensional rule across at least two learning blocks, in 

the Type IV condition. The majority of these participants were fit by a single-dimensional  

                                                 

2
 Roughly 75% of both younger and older adults were not employing a single-dimensional rule in the Type 

IV category set. This analysis does not exclude the possibility that participants may have learned the Type 

IV categories via a multidimensional rule. However, given the low dimensionality of the FR categories, a 

multidimensional rule might be difficult to distinguish from family resemblance responding. We favor the 

conclusion that most older adults relied on a family resemblance strategy to solve the Type IV category set, 

because given their difficulty learning the Type II disjunctive rule-based category set, it is unlikely that 

older adults would successfully be able to apply a complex, multi-dimensional rule-based strategy when 

learning the Type IV category set.  
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Table 2.1: Percentage of Participants Using Single-Dimensional Rules  

________________________________________________________________________ 

        Age Group                         Type I                      Type II                   Type IV 

 
       Younger Adults                   100%                          0%                           23% 

       Older Adults                          88%                          6%                           26%          

 

Note. A total of 35 younger adults and 34 older adults completed the study. 

 

rule quite early in the task, and did not persist in using a single-dimensional strategy for 

more then two learning blocks, implying that they most likely used a family-resemblance 

based strategy for the remainder of the task3.  

2.7.3 Executive Functioning and IQ 

Mean scores of younger and older adults on the inhibitory control and working memory 

measures were compared. There was a significant difference between younger (M = 

57.41, SD = 55.26) and older adults (M = 1183.36, SD = 196.50) on the Stroop task, t(38) 

= - 3.6, p = .001. Younger adults (M = 19.45, SD = 2.90) outperformed older adults (M = 

17.73, SD = 2.77) on the forward digit span task, t(67) = 2.52, p = .014. Younger adults 

(M = 12.2, SD = 3.88) also outperformed older adults (M = 9.71, SD = 3.28) on the 

backward digit span task, t(66) = 2.88, p = .005. There was no significant difference 

between younger (M = 45.94, SD = 22.04) and older adults (M = 46.42, SD = 31.13) on 

the Flanker task, t(57) = - .07, p = .94. There was also no significant difference between 

younger (M = 38.72, SD = 30.24) and older adults (M = 56.80, SD = 48.17) on the Simon 

task, t(55) = -1.85, p = .07. 

To examine the relationship between category learning performance and executive 

functioning abilities in younger and older adults, correlational analyses were conducted. 

                                                 

3
 When a stricter criterion based on three learning blocks rather than two was used to identify single-

dimensional rule users, there was no evidence of single-dimensional rule use, suggesting that if subjects 

were using a single-dimensional rule in Type IV, they did not appear to use it consistently. 
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Average categorization performance across the last five learning blocks was correlated 

with the different measures of inhibitory control and working memory. For both younger 

and older adults, the only signification correlation found was between Type II 

categorization performance and backward digit span (see Tables 2.2 and 2.3). This 

suggests that having a larger working memory capacity is advantageous for learning Type 

II (complicated) RB category sets. Furthermore, the lack of correlations between 

executive functioning measures (Stroop, Flanker, and Simon) and Type I and Type II 

performance is not surprising, given the lack of variability in categorization performance 

scores. The majority of younger and older adults learned the Type I category set, with the 

exception of a few older adults. In contrast, most younger adults learned the Type II 

category set but few older adults did. No correlations were expected between Type IV 

categorization performance and executive functioning measures, since Type IV category 

learning is thought to rely less heavily on executive functioning compared to Types I and 

II. When controlling for age, partial correlations revealed that backward digit span 

correlated with both Type II (r = .318, p = .009) performance and Type IV performance 

(r = .260, p = .035). No other correlations were significant. The partial correlational 

analyses revealed that when age is controlled for, participants with greater working 

memory capacities perform better on the Type II and Type IV category sets.  

In order to examine more closely the relationship between category learning and digit 

span, we conducted a partial correlation to examine the relationship between Type II 

performance and backward digit span, controlling for forward digit span. For younger 

adults, the relationship was significant (r = .44, p = .009). For older adults, the 

relationship between Type II performance and backward digit span was no longer 

significant (r = .28, p = .10; two-tailed). This suggests that the lower performance on 

Type II categories by older adults may not be purely a result of a decline in working 

memory performance. 

A t-test was conducted to determine whether younger and older adults differed on IQ 

scores. Results showed that older adults (M = 117, SD = 14.4) had a significantly higher 

IQ score compared to younger adults (M = 109, SD = 7.5), t(49) = - 2.8, p = .007. 

However, this effect was driven by the fact that older adults performed much better on  
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Table 2.2: Intercorrelations among the study variables for younger adults 

________________________________________________________________ 
 

Variable                                              Type I              Type II             Type IV 

________________________________________________________________ 

1. Age (months)                                   .061     .165                  -.036 

2. Forward Digit Span                          .203                 -.053                    .253 

3. Backward Digit Span                       .132                   .325
†
                  .303  

4. Flanker Difference Score                 .031                  -.138                  -.104 

5. Simon Difference Score                   .012                  -.163                  -.176 

6. Stroop Difference Score                  -.186                   .024                   .301 

________________________________________________________________ 
 

Note. Age, inhibitory control and working memory measures were correlated with 

average Type I, Type II, and Type IV categorization performance over the last 5 learning 

blocks. 
†
p < .06 

 

 

Table 2.3: Intercorrelations among the study variables for older adults 

________________________________________________________________ 
 

Variable                                              Type I              Type II             Type IV 

________________________________________________________________ 

1. Age (months)                                   -.142    -.164       .105 

2. Forward Digit Span                           .014                 -.227                  .163 

3. Backward Digit Span                        .040                  .353*                 .252 

4. Flanker Difference Score                  .187                  .140                 -.281 

5. Simon Difference Score                    .289                 -.071                 -.236 

6. Stroop Difference Score                    .076                 -.171                 -.042 

________________________________________________________________ 

Note. Age, inhibitory control and working memory measures were correlated with 

average Type I, Type II, and Type IV categorization performance over the last 5 learning 

blocks. *p < .05 
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the Vocabulary sub-test of the WASI compared to younger adults, most likely due to 

increased life experience. This is not a concern, given that younger adults still 

outperformed older adults on all three SHJ category sets, ruling out the possibility that 

the IQ difference influenced category learning performance between the groups.  

Among older adults, IQ was not correlated with average categorization performance over 

the last five blocks on the Type I (r = -.09, p = .62), Type II (r = .17, p = .34), or Type IV 

(r = .33, p = .06) category set. Among younger adults, IQ was not correlated with the 

average categorization performance over the last five blocks on the Type I (r = -.21, p = 

.24) and Type II (r = .28, p = .10) category set. Type IV did correlate with IQ in younger 

adults (r = .51, p = .002), though we made no specific prediction about this relationship 

and did not analyze it further. 

2.8 Discussion 

The current study examined the relationship between executive functioning and 

performance on three different types of category learning tasks: an easy RB task (Type I), 

a complex disjunctive RB task (Type II), and a FR task (Type IV). Category learning 

differences between younger and older adults revealed that while both age groups learned 

the Type I category set quite well, older adults struggled significantly more than younger 

adults when learning Type II. With the majority of younger adults learning the Type II 

category set, and almost all older adults performing at chance, it was clear that older 

adults had difficulty discovering the more complex rule. Younger adults also 

outperformed older adults on the Type IV category set, which required adopting an 

implicit, overall similarity type strategy.  

Findings from the current study share many similarities with findings from Minda et al.’s 

(2008) study examining SHJ learning in children. Contrary to prior research with younger 

adults usually showing a Type II advantage over Type IV (Nosofsky et al., 1994; Shepard 

et al., 1961; Smith et al., 2004), present findings along with those from Minda and 

colleagues (2008) have demonstrated a reversal in learning, with Type IV being learned 

significantly better than Type II by older adults and children. This reversal of the 

traditional SHJ ordering is quite interesting, and may shed some light on the role of the 
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prefrontal cortex and working memory on different types of category learning. Similar to 

our older adults, children in the Minda et al. (2008) study performed comparably well 

when learning the Type I category set because the rule was based on a simple, single-

dimensional rule. Even though the areas that mediate the explicit rule-based system are 

not fully developed in children (Bunge & Zelazo, 2006), the single-dimensional rule is 

easy to find and verbalize with a single proposition and places minimal demands on 

hypothesis testing and working memory abilities. We draw similar conclusions in regards 

to our findings with older adults. Functioning of the prefrontal cortex is known to decline 

with age, however, given the relative simplicity of the Type I rule, older adults are still 

able to learn this category set quite well. Even though younger adults (96% correct) 

performed significantly better than older adults (88% correct) on the Type I category set, 

older adults still demonstrated high performance on this category set. Older adults’ lower 

Type I performance relative to younger adults is most likely the result of a lapse in 

memory. Prior literature suggests that it is common for older adults to learn a task/rule 

fairly well, but at times experience dips in performance due to memory lapses (West, 

2001; West et al., 2002). Often referred to as transient goal neglect, older adults 

experience periods of active rule maintenance failure, rather than a difficulty actively 

maintaining the appropriate rule. Since there were eight trials per learning block, older 

adults periodically made one error during the learning block (i.e., which equates to 88% 

correct).  

Minda et al.’s (2008) findings offer an intriguing parallel to the present research. Similar 

to children in the Minda et al. study, older adults in our study demonstrated difficulty 

learning the Type II disjunctive rule-based category set. Minda et al. attributed children’s 

difficulty in learning the Type II category set to an under-developed explicit rule system. 

That is, Type II category learning requires more complex verbal rules, relative to the 

single propositional rule required in the Type I category set. As a result, children do not 

fully possess the executive functioning abilities required for learning this more complex 

category set. Working memory and executive functioning abilities are known to decline 

with age (Peters, 2006; West, 1996), which may have led to older adult’s difficulty 

learning the Type II category set in the current study. Along the same lines, Smith et al. 

(2004) found that Type II was the second easiest for young adults but were the second 
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most difficult category set for monkeys. They attributed this difficulty to the fact that 

monkeys have a much smaller prefrontal cortex and no verbal abilities, which are key for 

Type II learning. 

Lastly, the present results also differed from the findings of Minda and colleagues (2008) 

showing that younger adults and children performed similarly on the Type IV category 

set. The current study demonstrated that older adults significantly underperformed 

younger adults on Type IV, suggesting that the correspondence between younger children 

and older adults does not extend to every task. Minda et al. suggest that children and 

younger adults perform comparably on Type IV because family resemblance learning is 

mediated by areas that are equally developed in both children and adults. Our findings are 

in line with research by Filoteo and Maddox (2004) and Maddox et al. (2010) showing 

that older adults struggled with learning several varieties of non-rule defined category 

sets. Filoteo and Maddox suggested that older adults were more likely to adopt a rule 

strategy that was not optimal for learning information-integration categories.  Maddox et 

al. (2010) suggested that this deficit in FR category learning may be because older adults 

find it more difficult to transition from the default, explicit RB system to the implicit FR 

system. Furthermore, younger adults may have performed better than older adults on the 

Type IV category set in the current study because executive functioning abilities are 

required to inhibit the explicit RB system, and switch over to the implicit overall-

similarity based system. However, the Maddox et al. (2010) FR category set (four 

category sets with lines varying across length and orientation) was quite different from 

our category set (two category sets with shapes varying along three dimensions), so direct 

comparisons may not be possible, since it is also possible to learn our Type IV category 

set with a complicated rule rather than strictly through FR learning. Additionally, given 

that research has shown that implicit learning takes longer than explicit, RB learning 

(Ashby et al., 1998), it may be the case that older adults needed more time to discover the 

correct implicit-based strategy. If given more trials to complete, older adults may have 

begun to perform more similarly to younger adults. 

Our key finding is that older adults found the Type II categories (a complex, disjunctive 

rule) more difficult to learn than the Type IV categories (a family resemblance set). This 
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is contrary to findings examining category learning in younger adults, which has shown 

that Type IV is more difficult than Type II. The finding that older adults struggled more 

with the Type II category set highlights the fact that executive functioning may be 

responsible for the performance differences in category learning between younger and 

older adults. Results showed that among both younger and older adults, a larger working 

memory capacity (as measured by the backwards digit span) was associated with better 

Type II category learning performance. Additionally, when controlling for age, we found 

that that working memory capacity was associated with Type II and Type IV 

categorization performance. This suggests that working memory may be important for 

learning disjunctive rules, and possibly also for speeding up hypothesis testing so 

individuals can switch between systems. The fact that a relationship was not found 

between inhibitory control abilities and category learning can mean either of two things: 

inhibitory control is not necessary for learning certain types of categories or alternatively, 

that the lack of variability in categorization performance scores between each age group, 

masked important effects. Given a different category set with more variability in 

performance, where a subset of older adults were performing well and others were not, 

we might see a relationship between inhibitory control and category learning emerge. The 

current findings do suggest that Type II category learning may place a higher demand on 

working memory and not so much executive functioning abilities like inhibitory control. 

Overall, these results support previous research showing that older adults struggle with 

both RB and non-rule-based FR category learning (Davis, 2012; Filoteo and Maddox, 

2004; Maddox et al., 2010; Racine et al., 2006).  

It is possible that if additional learning trials were added to the Type II category set, older 

adults might have improved to a level that is comparable to younger adults. This would 

not have changed our interpretation of our results for two reasons. First, even with 

extended training, we would have still observed the reversal in rank order difficulty 

between Type II and Type IV. Second, our primary conclusion was that it is the reduced 

working memory capacity associated with cognitive aging that brings about the learning 

differences. This would still hold even if the additional trials allowed for eventual 

mastery of the category set. 
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In addition to the explicit (Types I and II) /implicit (Type IV) distinction often used to 

describe the SHJ category sets, Boolean complexity is another way of conceptualizing the 

different types of categories. That is, SHJ types can be considered from the perspective of 

mathematical logic, where Boolean complexity refers to the length of the shortest 

logically equivalent propositional formula. Furthermore, Feldman (2000) demonstrated 

that the subjective difficulty of the category set is directly proportional to its Boolean 

complexity, with Type I being the easiest, followed by Type II, and Type IV being the 

hardest.  That is, the Type I structure requires attention to only one dimension and is 

easiest to learn. Type II requires attention to two dimensions and is the next easiest to 

learn. Lastly, Type IV requires attention to all three dimensions and is considered by 

many to be the hardest to learn. Using this logic, Goodman et al. (2008) proposed a 

rational rules model that combines logical rule induction with Boolean complexity. This 

model predicts that Type II could be more difficult to acquire under certain conditions – 

when the participant or experimental setting favours unidimensional rules. This makes 

sense, as applying a unidimensional rule when learning the Type II category set would 

result in chance performance. That being said, with respect to Boolean complexity, it is 

quite impressive that older adults learned the harder Type IV category set better than the 

easier Type II category set. Even though our strategy analysis findings did not indicate 

that older adults were heavily relying on single-dimensional rules to learn the Type II 

category set, we suspect that older adults relied on single-dimensional rules more so than 

younger adults. The reason being that applying a single-dimensional rule during Type II 

learning would result in a large number of errors. It is unlikely that older adults would 

internalize this negative feedback and continue to apply a single-dimensional rule that 

resulted in numerous errors. The most logical alternative is that older adults applied 

single-dimensional rules during Type II learning, but frequently switched rules during the 

course of the task to avoid negative feedback.  

Weighing all possible conclusions, it seems more likely that the reason why older adults 

did not demonstrate a Type II advantage is because Type II learning places the heaviest 

demands on cognitive resources (i.e., working memory load) and it is not as intuitive as 

the other category sets. That is, Type I is relatively simple to learn because it involves 

identification of a straightforward single dimensional rule, placing minimal demands on 
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hypothesis testing and working memory abilities, and is encountered quite frequently in 

everyday life. Secondly, Type IV is considered the next easiest category set for older 

adults to learn because of its family resemblance structure, which is reminiscent of 

natural categories (Rosch & Mervis, 1975). Again, minimal working memory abilities are 

required to identify the overall similarity structure of the Type IV category set, realizing 

which features most of the category members have in common with each other. In 

contrast, Type II learning requires a high degree of verbal working memory to acquire 

and combine rules together to arrive at the correct rule. Due to declines in verbal working 

memory with normal aging, it is possible that the Type II category representation was not 

actively acquired and maintained in working memory in a manner which would allow 

older adults to apply the disjunctive rule accurately. This conclusion is consistent with 

theories of age-related impairment in working memory (Craik et al., 1990), stating that 

older adults struggle to test various rules and maintain this information in working 

memory. These findings suggest that small declines in working memory capacity relative 

to younger adults may have a big impact on the complex rule-based category learning 

abilities of older adults. It is clear that future research is required to identify the 

importance of working memory in older adults’ ability to learn disjunctive rule-based 

category sets. Given the fact that individuals of all ages rely on Type II, disjunctive rule-

based learning in day-to-day life, it is important to understand the cognitive mechanisms 

involved.  
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Chapter 3  

3 Improving Complex Rule-Based Category Learning 
Performance in Older Adults Through the Use of Pre-
Training 

On a daily basis, we continually make categorization judgments to help us organize the 

world around us. Being able to categorize promotes cognitive economy by reducing the 

amount of information that an individual needs to remember and learn about. The 

improved cognitive economy provided by categorization is particularly important for 

older adults to offset the decline in cognitive functioning that typically accompanies 

normal aging.  

A prominent theory that has been developed to explain how new categories are acquired 

and represented in the mind is the COVIS (COmpetition between Verbal and Implicit 

Systems) theory (Ashby et al., 1998; Maddox and Ashby, 2004; Minda and Miles, 2010). 

COVIS assumes that two cognitive systems are involved in learning categories. The 

verbal system uses executive functioning (i.e., working memory, inhibitory control) to 

learn rule-based (RB) categories that can be described using a verbal rule. For example, 

members of family X all have brown eyes. The nonverbal system learns non-rule-based 

(NRB) categories that cannot be described via a verbal rule, but rather is learned 

implicitly by identifying which objects share an overall similarity with each other. For 

example, most, but not all family members are tall, have blue eyes, and blonde hair. In 

this case, no one feature can act as a rule. Prior research has shown that enhancing 

executive functioning improves performance on RB categories (Nadler, Rabi, & Minda, 

2010; Rabi & Minda, 2014), while reducing/taxing executive functioning abilities impairs 

performance on RB categories (Minda & Rabi, 2015), leaving NRB categorization 

performance unaffected. Such findings illustrate that executive functioning is necessary 

for optimal RB learning and it is not as crucial for NRB category learning. Given that 

executive functions supported by the prefrontal cortex are necessary for RB category 

learning and show decrements with age, it is important to understand how category 

learning abilities change in older adulthood.  
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3.1 Aging and Categorization 

Although significant progress has been made with respect to our understanding of 

category learning in young adults, much less is known about how older adults learn 

categories. Among the limited research that has been conducted, findings have shown 

that older adults struggle with both RB and NRB category learning (Davis et al., 2012; 

Filoteo & Maddox, 2004; Maddox et al., 2010; Racine et al., 2006), with impairments in 

RB category learning increasing as rule complexity increases (e.g., learning rule-plus-

exception category structures; Davis, 2012). To better understand category learning 

deficits among older adults, a set of standardized and robust category learning 

experimental paradigms need to be used, since they are well understood. The category set 

created by Shepard, Hovland, and Jenkins (1961) is a widely used, standardized category 

set, consisting of both RB and NRB category structures that vary in complexity. While 

this category set has been used in studies involving a range of populations (e.g., young 

adults, children, individuals with depression, monkeys), in Chapter 2, Rabi and Minda 

(2016) were the first to examine the categorization abilities of older adults on the 

Shepard, Hovland, and Jenkins category set. Results revealed that older adults performed 

comparably to younger adults when learning a single-dimensional RB category set 

(termed Type I), however unlike younger adults, older adults found the complex RB 

(termed Type II) category set harder to learn than the family resemblance (termed Type 

IV) category set. The majority of younger adults learned the Type II category set quite 

well, but older adults performed at chance, suggesting that older adults struggled to 

discover the more complex rule. Rabi and Minda (2016) speculated that older adults 

struggled with learning the Type II complex RB category set because that particular 

category set placed the heaviest demands on working memory, which is a cognitive 

process known to decline with age (Bopp & Verhaeghen, 2005; Park et al., 2002).  

3.2 Understanding Rule-Based Category Learning   
 Deficits in Older Adulthood 

Two key questions emerge from the findings of Rabi and Minda (2016): Are declining 

executive functioning abilities to blame for the difficulties older adults experience when 

learning complex RB categories? Secondly, what can be done to improve the complex 
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RB category learning performance of older adults? To address the first question, 

neuropsychological research has shown that the same brain regions (i.e., the prefrontal 

cortex) that mediate executive function and in later age decline, are also recruited during 

RB category learning (Bharani, Paller, Reber, Weintraub, Yanar, & Morrison, 2015; 

Nomura & Reber, 2012). Additionally, behavioural research examining the effects of 

aging on working memory also provides support for the idea that increasing rule 

complexity places a heavier burden on the working memory abilities of older adults 

relative to younger adults. For example, a number of studies have shown that as working 

memory task complexity increases, the performance of older adults decreases relative to 

younger adults (Bopp & Verhaeghen, 2005; Oosterman, Boeschoten, Eling, Kessels, & 

Maes, 2014; Verhaeghen, Cerella, & Basak, 2006). As well, research has demonstrated 

that aging is associated with a decrease in the efficiency with which individuals can 

update the contents of working memory, with older adults requiring more effort to 

perform updating tasks relative to younger adults (De Beni & Palladino, 2004; Fiore, 

Borella, Mammarella, & De Beni, 2012). In relation to prior category learning findings, 

older adults may have struggled with complex rule learning because they found it 

difficult to test various rules and update their working memory with current rule 

information. During Type II category learning, it is critical that the participant does not 

give up on hypothesis testing after two dimensions have been scanned. Otherwise, the 

participant is unlikely to realize that there are two maximally diagnostic dimensions. That 

is, in order to formulate the complex Type II rule (e.g., black triangles and white squares 

belong in Category A), a participant must rule out all three single-dimensional rules, 

before moving on to testing two-dimensional rules. Older adults may have struggled with 

the ease with which they were able to test the various rules and remember which rules 

were unsuccessful.   

The inhibitory deficit hypothesis of cognitive aging purports that as individuals get older, 

it becomes more difficult to selectively maintain attention in situations with multiple 

competing stimuli (Hasher & Zacks, 1988; Hasher, Lustig, & Zacks, 2007; Healey, 

Campbell, & Hasher, 2008; Pettigrew & Martin, 2014). Recently activated but task 

irrelevant information has been shown to have a greater influence on older adults 

compared to younger adults. For example, older adults require significantly longer to 
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reject a lure from an irrelevant memory set relative to younger adults (Oberauer, 2001). 

Based on the inhibition deficit hypothesis, older adults may have struggled with complex 

rule learning because they had greater difficulty ignoring incorrect hypotheses compared 

to younger adults. In contrast to the inhibition deficit hypothesis that asserts that age-

related memory deficits may result from attending to too much information (a lot of 

which is irrelevant), the binding deficit hypothesis of aging proposes that age-related 

memory deficits may result form storing too little information. According to the binding 

deficit hypothesis, older adults struggle to bind together the different elements of a 

representation within working memory, so that the information can be stored successfully 

into a memory representation that can later be retrieved (Chalfonte & Johnson, 1996; 

Mitchell, Johnson, Raye, Mather, & D’Esposito, 2000). Support for this hypothesis 

comes from research showing that older adults are impaired at binding multiple items 

together at encoding, but not at encoding the individual items themselves. Chalfonte and 

Johnson (1996) compared feature memory and feature binding in younger and older 

adults, finding age-related deficits in feature binding (e.g., remembering object + colour 

combinations) but not in memory for individual features. The connection between age-

related binding deficits and category learning has not been made directly, but a plausible 

interpretation is that older adults may struggle to combine information from two 

dimensions in order to formulate the complex Type II rule.  

3.3 Minimizing Age-Related Changes in Rule-Based 
 Category Learning 

Aside from understanding why older adults struggle with complex RB learning, it is also 

important to understand what can be done to improve complex RB learning among older 

adults. Individuals rely on RB learning (of varying complexity) in everyday life, and it 

would be beneficial to develop a training protocol that would improve this type of 

learning in older adults. Despite age-related declines in working memory, numerous 

training studies have suggested that older adults are able to improve their working 

memory performance (Borella, Carretti, Riboldi, & De Beni, 2010; Brehmer, Westerberg, 

& Bäckman, 2012; Karbach & Verhaeghen, 2014; Richmond, Morrison, Chein, & Olson, 

2011). Research has yet to be conducted examining methods of improving categorization 
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performance in older adults. In fact, a recent study on category learning performance in 

older adults pointed out the need for future research to address ways older adults can be 

trained to improve performance on categorization tasks (Bharani et al., 2015). While this 

type of research remains to be done with older adults, it has been conducted with 

children. Minda, Desroches, and Church (2008) found that similar to older adults, 

children too struggled with complex rule learning. Since executive functioning abilities 

develop throughout childhood (Gathercole, 1999; Swanson, 1999), it is not surprising that 

children struggled to learn complex categorization rules. In an effort to improve the RB 

performance of children, Minda et al. (2008) reduced task demands with a pre-training 

task that familiarized children with the category exemplars prior to the category learning 

task. Results revealed that decreasing the categorization task demands for children 

resulted in more adult-like performance on the complex RB category set.  

3.4 The Current Study 

In attempt to improve the complex RB category learning abilities of older adults, the 

current study examined whether reducing task demands (via pre-training with 

categorization stimuli) would enable older adults to identify and apply complex rules in a 

similar manner to younger adults. While the Rabi and Minda (2016) study revealed that 

older adults showed greater impairments on Type II learning compared to Type IV 

learning, I was also interested in seeing whether pre-training would have any effect on 

Type IV learning since it depends less heavily on executive functioning. Both younger 

adults and older adults were randomly assigned to a category set (Type II or Type IV) 

and a condition (control or pre-train). The Type II and IV category sets were adapted 

from the Shepard, Hovland, and Jenkins’ (1961) classification tasks. Type II is 

considered a hard/complex RB category set, where two features are used to indicate 

category membership, and participants can achieve perfect performance using a 

disjunctive rule. The verbal rule that would result in perfect performance in Figure 1 

would be “Black triangles and white squares belong in Category A, white triangles and 

black squares belong in Category B”. Therefore, neither colour nor shape are individually 

useful in assigning category membership, but the combination of colour and shape is. 

Type IV is considered a family resemblance category set, where all three features are 
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used to indicate category membership. This means that the members of Category A have 

features in common with one another, for example in Figure 1, they are mostly large, 

mostly black, and mostly triangles, whereas Category B members are mostly small, 

mostly white, and mostly squares. This task can be learned by looking at the overall 

similarity of stimuli, and thus does not require the abstraction and use of a rule. However, 

the Type IV category set can also be construed as a rule-plus-exception category learning 

task because another possible method of achieving perfect performance is to memorize 

the exceptional outlying stimuli (in Figure 3.1, this is the big white triangle and the small 

black square). The verbal rule would be “big shapes (except the white square), plus the 

small black triangle belong in Category A, and small shapes (except the black triangle), 

plus the large white square belong in Category B”. The Type IV category set is 

considered harder to learn than the Type II category set.  

The Type II category learning task utilizes executive function resources to selectively 

attend to relevant dimensions, update and apply new hypotheses/rules, and inhibit 

incorrect rules. In addition, sufficient working memory resources are needed to verbalize 

and apply the rule. I attempted to reduce some of these task demands by familiarizing 

participants with the category exemplars. Prior to the category learning task, participants 

were asked to describe each of the category exemplars. This was done in an effort to 

familiarize participants with the fact the categories varied along three dimensions (size, 

shape, and colour), to speed up the hypothesis testing process, and to make it easier to 

encode and maintain information in working memory. Additionally, when completing 

this description activity, participants were told that each group of items belonged to one 

“category” of objects (i.e., Category A and B). While there was no explicit mention of the 

rule or the relationship between exemplars, this manipulation made participants aware 

that they would have to group the items into categories. By familiarizing participants with 

the exemplars, I hoped to reduce the overall processing load of the category learning task, 

so that older adults in particular, could better formulate the complex Type II rule. The 

current pre-train task was used for a number of reasons. First, prior research has used a 

similar pre-training paradigm with children (Minda et al., 2008). Secondly, the Rabi and 

Minda (2016) study did not find any order effects. That is, participants sequentially 

completed three different category sets (i.e., Type I, II, and IV) in various orders and the 
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Figure 3.1: Category learning tasks from Shepard, Hovland, and Jenkins (1961): Type I 

(easy rule-based), Type II (hard rule-based), and Type IV (non-rule-based). 

 

categorization performance of older adults who completed the Type II task first did not 

differ from those who completed it last. Older adults who completed the Type II task, 

last, in the Rabi and Minda study were exposed to two category sets (160 trials) before 

beginning the Type II task. This should have given older adults sufficient time to become 

familiar with the three different category dimensions. The fact that older adults did not 

benefit from completing the Type II category set last, suggests that passively viewing a 

large set of the categorization stimuli was not sufficient to improve Type II performance. 

Furthermore, in the current study, I included a more interactive pre-training task, where 

participants had to actively describe the stimuli, as to improve the efficiency of 

hypothesis testing and reduce working memory demands. Lastly, the aim of the pre-

training procedure was not to give participants the rule because I was interested in 

examining whether reducing task demands would enable older adults to better formulate 

the rule. That being said, the form of pre-training I used encouraged participants to 

describe the category exemplars, so that they could come to realize on their own that two 

out of the three features, in conjunction, were maximally diagnostic. The pre-training 

instructions and task itself did not encourage memorization, as participants were not 

instructed to study or memorize the items, and participants only briefly viewed the 

categorization stimuli as they described them.  
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In the present study, there are three main questions of interest. The first question is: can 

pre-training improve the Type II performance of older adults relative to baseline 

performance (i.e., Type II control performance)? It is expected that pre-training should 

improve the Type II performance of both younger adults and older adults. However, 

given that executive functions declines in older adulthood, I am particularly interested in 

examining within group effects, to determine the impact of pre-training versus no pre-

training in older adults. Since older adults performed at chance on the Type II category 

set in the Rabi and Minda (2016) study, I expected that pre-training should significantly 

boost the Type II performance of older adults. More specifically, pre-training should 

facilitate the hypothesis testing process, allowing older adults to complete the Type II 

category set more efficiently. Working memory training has proven successful to 

working memory performance in a number of studies and the present study will validate 

whether a similar form of pre-training will present benefits to complex RB category 

learning.  

The second question the present study set out to address was: can pre-training lead to a 

Type II advantage in older adults? In contrast to the Type II advantage (performance on 

Type II is better than Type IV) typically found in studies involving young adults, the 

Rabi and Minda (2016) showed a reversal in learning, with Type IV being learned better 

than Type II by older adults. I expected that in the current study, pre-training would be 

more beneficial to Type II learning compared to Type IV learning, since reducing 

executive functioning demands should help participants learn rules via the explicit/verbal 

system and be less beneficial to more implicit, Type IV category learning. Furthermore, I 

predicted that, similar to younger adults, pre-training would lead to a Type II advantage 

(relative to Type IV) among older adults. 

The third question of interest in the current study was: are executive functions important 

for Type II and Type IV category learning? Category learning is a core cognitive process 

that intersects with other cognitive process likes working memory, inhibitory control, and 

set shifting. Executive functioning is a critical component of the COVIS verbal system 

and RB category sets, like Type II, are learned best by the verbal system because they 

draw upon working memory, inhibitory control, rule selection and switching. Type IV is 
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most often learned by the nonverbal system, and relies less heavily on executive 

functions. For this reason, I expected that performance on executive functioning tasks 

would be associated with Type II performance and less so with Type IV performance.  

3.5 Method 

3.5.1 Participants 

Participants included 89 younger adults (M = 19.0 years, SD  = 2.0; 42 males & 47 

females) from the University of Western Ontario who participated for course credit and 

84 older adults between the ages of 63 and 88 (M = 73.4 years, SD = 6.6; 38 males & 46 

females). Among the older adults there 33 were in their 60s, 32 in their 70s, and 19 in 

their 80s. Older adults were recruited from senior community centres, senior exercise 

groups and from the University of Western Ontario alumni lecture series. Older adults 

received $20 for participating in the study. Participants were pre-screened to ensure that 

they were fluent in English, they were in good health, and had normal or corrected-to-

normal vision and hearing. Participants were excluded from the study if they indicated 

that they had a history of neurological disorders, psychiatric illness, substance abuse, a 

cerebral vascular event, head trauma, and/or any other neurological conditions. All 

participants included in the study had at least 20/30 corrected vision (0.18 logMAR 

equivalent, in line with prior cognitive aging research from Bharani et al., 2015) as 

determined by the Freiburg Visual Acuity and Contrast Test (FrACT; Bach, 2007). The 

education level of younger adults (M = 12.3 years, SD = 0.6) was significantly lower 

(t(162) = 7.76, p < .001)4 than that of older adults (M = 14.6, SD = 2.6) because our 

younger adult sample were still in university. Furthermore, their years of education is not 

likely to reflect their final education level. 

                                                 

4
 Data regarding education level was not collected from 4 younger adults and 5 older adults. 
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3.5.2 Materials 

3.5.2.1 Category Learning Task 

Two category learning tasks were chosen from the original set of six created by Shepard, 

Hovland, and Jenkins (1961). In each category set there are three features (shape, size, 

and colour) that can have one of two dimensions (square or triangle, large or small, black 

or white), as shown in Figure 3.1. In each category set there are eight stimuli, and four 

belong in each of two separate categories. There were 80 trials (10 blocks) total per 

category set. The Type II set was a disjunctive rule category set with two of the three 

features relevant for the disjunctive rule. The Type IV set was a family resemblance 

category set in which each category member shared the majority of its features with the 

other category members and all the features were relevant. Both category sets were 

counterbalanced across participants such that some participants were presented with a 

Type II set for which shape and size were the relevant dimensions, others were presented 

with a Type II set for which size and colour were the relevant dimensions, and so on. 

3.5.2.2 Memory Tasks 

3.5.2.2.1 Digit Span 

Participants heard a recording of a two-digit number sequence at a rate of approximately 

one digit per second, and the participants were asked to repeat the sequence back to the 

experimenter in the same order. Participants heard three sequences at each sequence 

length and as long as they repeated at least one of them correctly they continued on to the 

next sequence length, for a maximum length of ten digits. The task was over once the 

participant was unable to repeat any of the sequences at a given length. The procedure for 

the backward digit span was the same as that for the forward digit span except that the 

participant was required to recall the digits in reverse order so that the last number was 

said first and the first number was said last, for a maximum of eight digits. The task was 

scored as the total number of correct responses. 
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3.5.2.2.2 Alpha Span 

In this verbal working memory task created by Craik (1986), participants listened to 

recorded lists of common one-syllable words ranging in length from two to eight words 

presented at the rate of one word per second, and repeated the words back in correct 

alphabetical order. Two lists were provided at each list length, for a total of 14 lists. 

Participants were asked to recall all 14 lists in alphabetical order, regardless of whether 

they made errors when repeating the lists. In the scoring system, points were awarded for 

each word recalled, but only if the word was either the first or last correct word in the 

recalled series, or was a member of a correct adjacent pair during recall. For example, if a 

list of five items is recalled correctly, the score is 5 points; if the correct recall sequence 

for a list of five items is “bed, hall, milk, queen, rose, stick” and the participant responds 

“bed, hall, rose, queen, stick”, he or she would receive 3 points. “Bed” is in the correct 

first place, “hall” is in the correct adjacent pair and “stick” is in the correct last place but 

neither “rose” nor “queen” is in a correct adjacent pair in the correct order. The alpha 

span score is the total number of points awarded across all presented lists. To encourage 

participants to keep trying even if they made mistakes, they were told at the start of the 

task that they may not be able to recall all the words in a list correctly, but to try their best 

and recall as many words as possible.  

3.5.2.3 Inhibitory Control Tasks 

3.5.2.3.1 Flanker Task 

A version of the Flanker task adapted from Botvinick, Nystrom, Fissel, Carter, and 

Cohen (1999) was used. The experiment was built using REALbasic 5.1. A set of five 

arrows was presented in a row on the computer screen and participants were asked to 

indicate the direction of the central arrow (target). The target was flanked by two 

identical arrows on either side (distractors) that were either pointing in the same direction 

(congruent trial) or the opposite direction (incongruent trial) of the target arrow. The task 

consisted of 60 trials (30 congruent and 30 incongruent) presented in randomized order. 

Prior to the experiment participants received five practice trials that were not analyzed. 
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The difference in mean reaction time between correct responses on congruent and 

incongruent trials (i.e., a difference score) was used as a measure of inhibitory control. 

Larger difference scores were indicative of less efficient interference control.  

3.5.2.3.2 Simon Task 

An adapted version of the Psychology Experiment Building Language (PEBL) 

computerized Simon task (Mueller, 2012; Simon & Rudell, 1967) was used. Participants 

were first presented with a fixation cross in the center of the screen. Immediately after the 

cross had disappeared, participants were instructed to press the left key in response to the 

red circle or the right key in response to a blue circle as fast as possible, regardless of 

stimulus location. The timing began with the onset of the stimulus, and the response 

terminated the stimulus. On congruent trials, the stimulus location was on the same side 

as the required response and on incongruent trials the stimulus location was on the 

opposite side of the required response. The whole task consisted of 64 trials (32 

congruent trials and 32 incongruent trials) presented in randomized order to each 

participant. Prior to the experiment, participants received five practice trials that were not 

analyzed. Difference scores were calculated by computing the difference in mean 

reaction time between correct responses on congruent and incongruent trials. 

3.5.2.3.3 Stroop Task 

An adapted version of the PEBL computerized Stroop task (Mueller, 2012; Stroop, 1935) 

was used. Participants were instructed to indicate, as quickly and accurately as possible, 

whether each word presented on the computer screen was written in red, blue, green, or 

yellow ink using the properly labeled response buttons. Participants were instructed to 

ignore the meaning of the words and to focus on the ink colour only. The timing began 

with the onset of the word, and the response terminated the stimulus. Participants first 

completed 12 practice trials, with accuracy feedback after each trial. The actual task 

consisted of 72 trials without feedback: 24 congruent trials (i.e., “RED” in red ink), 24 

incongruent trials (i.e., “RED” in blue ink) and 24 neutral trials (i.e., non-colour word 
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names like “TREE”). Difference scores were calculated by computing the difference in 

mean reaction time between correct responses on congruent and incongruent trials. 

3.5.2.4 Berg Card Sorting Test (BCST) 

Set shifting ability was assessed using the computerized PEBL abbreviated 64-card 

version of the Wisconsin Card Sorting Test (Mueller, 2012; Berg, 1948). The PEBL 

BCST-64 is highly correlated with the longer original version (perseverative errors 

r  =  .77, categories completed r  =  .86, Fox, Mueller, Gray, Raber & Piper, 2013). 

Participants were instructed to match each response card that appeared to one of the four 

reference cards at the top of the screen without being told how to match them. The 

objects on the cards differed in colour, shape, and number. Following each card 

placement, participants received feedback as to whether their response was correct or 

incorrect. After ten sequentially correct responses, the rule was changed without notice 

and the participants had to use the feedback to identify the new sorting rule. Participants 

completed 64 trials of this task. The dependent measures were the number of categories 

completed (the number of blocks of 10 consecutive correct matches) and the number of 

perseverative errors (an incorrect response to a changed/new category that would have 

been correct for the immediately preceding category). 

3.5.2.5 Wechsler Abbreviated Scale of Intelligence (WASI) Test 

Standardized scores on the WASI vocabulary and matrix reasoning sub-tests (Wechsler, 

1999) were used to calculate the Full Scale Intellectual Quotient. WASI subtests were 

used to provide estimates of verbal and nonverbal intelligence.  

3.5.3 Procedure 

3.5.3.1 Session 1 

Participants were tested individually across two testing sessions, approximately one week 

apart. Younger adults were tested in the Categorization Lab at the University of Western 

Ontario. Older adults were tested in the Categorization Lab at the University of Western 

Ontario or in a quiet room in the senior centre. Participants first completed the FrACT 
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vision test so that an objective measure of visual acuity could be obtained in addition to 

the participant’s subjective report of their vision. Next participants completed a rule-

based or information integration category learning task (this data were collected for the 

study in Chapter 4 which was not part of the current study). Following the category 

learning task, participants received a short break, after which they completed the BCST 

and the alpha span task.  

3.5.3.2 Session 2 

Participants were randomly assigned to one of four conditions: Type II control, Type II 

pre-training, Type IV control, and Type IV pre-training. Participants in the Type II and 

Type IV control conditions were given the category learning task instructions where they 

were told that they would be presented with abstract shapes and asked to classify them as 

belonging to category A or category B. Participants in the Type II and Type IV pre-

training conditions were familiarized with each of the 8 category exemplars prior to the 

category learning task. Participants were first shown the 4 category A exemplars and 

asked to describe each of the exemplars. Participants were then shown the 4 category B 

exemplars and asked to name each of the exemplars. For the category A exemplars the 

experimenter pointed to the first exemplar and said (for example), “This is a big black 

square, can you name the other members of category A?”. The participant was then 

required to name the other category A members and the category B members in the same 

manner and was corrected if he or she failed to name all of the features of any given 

exemplar (e.g., calling the next exemplar a white triangle instead of a small white 

triangle). The participant was then briefly shown the category A and category B 

exemplars simultaneously, with each category group labeled, and told “here are the 

members of category A and category B, now you can begin the categorization task”. As 

soon as the experiment finished saying the last statement, the final display was removed 

and the participant began the category learning task. It should be noted that while 

participants in the pre-training condition were familiarized with the category exemplars 

in the Type II or Type IV category set, the correct categorization strategy was not given 

to them. Instead the participant would need to take the next step and identify the correct 

strategy on their own using the information they obtained from the pre-training task. For 
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example, after viewing the Type II category exemplars, a participant in the pre-training 

condition would still need to formulate the disjunctive rule on their own by realizing 

which two of the three category features were part of the correct verbal rule. All 

participants (regardless of category type or condition) saw each stimulus one-at-a-time on 

the computer screen and were instructed to press the button labeled “A” or “B” to 

indicate whether each shape belonged in category A or B respectively. After responding, 

participants were given corrective feedback (the words “correct” or “incorrect” appeared 

above the stimulus object). Another trial began following this feedback. Stimuli were 

presented in random order within each block of eight and blocks were presented in an 

unbroken fashion.  There were a total of 80 trials (10 blocks total).  

Following completion of Type II or Type IV category set, participants completed the 

Flanker task, Simon task, and Stroop task. Following the Stroop task, participants 

received a short break, after which they were administered the forward and backward 

digit span. Lastly, participants completed the WASI. Each testing session lasted 

approximately one hour. 

3.6 Results 

A 2 age group (younger v. older) x category type (Type II vs. Type IV) x 10 block 

ANOVA was conducted to determine whether categorization performance in the control 

conditions were similar to that found by the Rabi and Minda (2016) study in Chapter 2. 

Older adults in the control conditions of our study had an average categorization 

performance of 54% in Type II and 60% in Type IV, similar to the 50% in Type II and 

60% in Type IV reported in the Rabi & Minda (2016) study. In line with the findings 

from Rabi and Minda (2016), we also found an age x category type interaction [F(1, 80) 

= 5.69, p = .019, partial η2 =.07], demonstrating that younger adults showed a Type II 

advantage and older adults showed a Type IV advantage in the control conditions. As 

shown in Figure 3.2, younger adults outperformed older adults across all of the different  
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Figure 3.2: Average categorization performance of younger adults and older adults 

across 10 learning blocks. Error bars denote the standard error of the mean. 

 

category sets and conditions5. The main goal of this study was to examine whether older 

adults given pre-training would show improved categorization performance relative to 

older adults in the control condition (i.e., baseline performance). For this reason, we were 

more interested in within age-group analyses, rather than between age-group analyses. 

That being said, we examined category learning performance by conducting two separate 

3-way ANOVAs: one for older adults and one for younger adults. 

3.6.1 Categorization Performance in Older Adults 

A 2 category type (Type II vs. Type IV) x 2 condition (Control vs. Pre-Train) x 10 block 

ANOVA was conducted. There were 21 older adults in Type II Control, 21 in Type II 

Pre-Train, 20 in Type IV Control, and 22 in Type IV Pre-Train. The main effects of 

                                                 

5
 Older adults (M = 115, SD = 14.3) had a significantly higher IQ score compared to younger adults (M = 

110, SD = 10.4), t(145) = 2.52, p = .01, confirming that younger adults were not outperforming older adults 

because of differences in IQ. The WASI was not administered to 12 older adults and 14 younger adults due 

to time limitations. 
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condition [F(1, 80) = 26.31, p < .001, partial η2 = .25] and block [F(9, 720) = 9.48, p < 

.001, partial η2 = .11] were significant and suggested better overall performance in the 

pre-train condition (M = .74) than in the control condition (M = .57), not accounting for 

category type, and that categorization accuracy improved over time.  There was no main 

effect of category type [F(1, 80) = .27, p = .60, partial η2 = .003] because the data were 

collapsed across condition, which washed out the strong effect of pre-training on 

categorization performance. The category type x condition interaction was significant 

[F(1, 80) = 5.84, p = .02, partial η2 = .07] but the block x category type [F(9, 720) = .29, 

p = .98, partial η2 = .004], block x condition [F(9, 720) = 1.28, p = .25, partial η2 = .016], 

and block x category type x condition [F(9, 720) = 1.66, p = .09, partial η2 = .02] 

interactions were not significant6.  

 

To further examine the significant category type x condition interaction, Bonferroni 

corrected pairwise post hoc comparisons were conducted. As shown in Figure 3.3A, older 

adults in the Type II pre-training (M = .79) condition performed significantly better than 

those in the Type II control (M = .54) condition (p < .001), suggesting that pre-training 

helped older adults with Type II category learning. In contrast, older adults performed 

only marginally better in the Type IV pre-training (M = .69) condition compared to the 

Type IV control (M = .60) condition (p = .06). These results indicate that while pre-

training was somewhat helpful for Type IV category learning, the benefits from pre-

training were more pronounced in Type II category learning. Additionally, older adults 

performed significantly better in the Type II pre-train (M = .79) condition compared to 

the Type IV pre-train (M = .69) condition (p = .039), indicating that pre-training was 

more effective for explicit, rule-based category learning compared to more implicit, 

family-resemblance-based category learning.  

 

Among older adults, IQ was not correlated with average categorization performance 

across the last five blocks in the Type II control [r = .35, p = .17], Type II pre-training [r  

                                                 

6
 Among older adults, age was not correlated with II control (r = -.30, p = .18), II pre-train (r = -.17, p = 

.45), IV control (r = -.21, p = .36), and IV pre-train (r = -.09, p = .67) performance. 
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Figure 3.3: Categorization performance of (A.) younger and (B.) older adults across 

learning blocks in each of the four conditions. Error bars denote standard error of the 

mean. 
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= .39, p = .12], Type IV control [r = .34, p = .18], and Type IV pre-training conditions [r 

= -.13, p = .57]. 

3.6.2 Categorization Performance in Younger Adults 

A 2 category type (Type II vs. Type IV) x 2 condition (Control vs. Pre-Train) x 10 block 

ANOVA was conducted. There were 22 older adults in Type II Control, 25 in Type II 

Pre-Train, 21 in Type IV Control, and 21 in Type IV Pre-Train. The main effects of 

category type [F(1, 85) = 12.02, p = .001, partial η2 = .12], condition [F(1, 85) = 57.1, p < 

.001, η2 = .40] and block [F(7, 594) = 23.2, p < .001, η2 = .21; Greenhouse-Geisser 

corrected] were significant, suggesting that Type II average categorization performance 

(M = .82) was better than Type IV (M = .74) performance (collapsed across condition 

type), pre-training overall performance (M = .87) was better than control performance (M 

= .69)  (collapsed across category type), and that categorization accuracy improved over 

time. The block x condition interaction was significant [F(7, 594) = 3.70, p = .001, partial 

η2 = .04;  Greenhouse-Geisser corrected], suggesting that performance remained 

relatively stable starting from the 6th block onwards in the pre-training conditions, 

whereas learning continued in the control conditions. The category type x condition [F(1, 

85) = 0.81, p = .37, partial η2 = .009], block x category type [F(7, 594) = 1.17, p = .32, 

partial η2 = .014; Greenhouse-Geisser corrected], and block x category type x condition 

[F(7, 594) = 1.25, p = .27, partial η2 = .015; Greenhouse-Geisser corrected] interactions 

were not significant. It is not surprising that the category type x condition interaction was 

not significant for younger adults even though it was significant for older adults, because 

younger adults greatly benefitted from pre-training in both the Type II (i.e., a 20% 

increase in Type II performance with pre-training) and Type IV (i.e., a 16% increase in 

Type IV performance with pre-training) conditions (see Figure 3.3B). Similar to older 

adults, it is clear from Figures 3.2 and 3.3B that younger adults performed better in the 

Type II pre-training condition compared to the Type IV pre-training condition. To 

confirm this apparent trend in the data, Bonferroni corrected pairwise comparisons 

confirmed that the Type II pre-training (M = .92) categorization performance of younger 
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adults was significantly better than their Type IV pre-training (M = .82) performance (p 

= .002)7.  

Among younger adults, IQ was not correlated with average categorization performance 

across the last five blocks in the Type II control [r = .04, p = .86], Type II pre-training [r 

= .14, p = .56] and Type IV pre-training conditions [r = .02, p = .94]. Performance in the 

Type IV control condition did correlate with IQ [r = .49, p = .03]. Rabi & Minda (2016) 

also found a correlation between Type IV performance and IQ in younger adults. We 

made no specific prediction about this relationship and did not analyze it further. 

However, given that this finding was replicated, it may be useful for future studies to 

further explore this relationship. 

3.6.3 Comparison of Pre-trained Older Adults and Younger Adult 
Controls 

While younger adults outperformed older adults across all category types and conditions, 

we were particularly interested in how older adults in the pre-train condition performed 

relative to younger adults in the control condition. Results revealed that for the Type II 

category set, the categorization performance of older adults in the pre-training condition 

(M = .79) did not significantly differ from that of younger adults in the control condition  

(M = .72), t(34) = 1.14, p = .26 (see Figure 3.4A). For the Type IV category set, the 

categorization performance of older adults in the pre-training condition (M = .69) also did 

not significantly differ from that of younger adults in the control condition (M = .66), 

t(41) = .93, p = .36 (see Figure 3.4B). Furthermore, pre-training made older adults 

perform at a level similar to that of younger adults in the control conditions. 

3.6.4 Strategy Analysis 

In order to better understand the categorization performance of younger adults and older 

adults, we conducted a strategy analysis to determine whether participants used a single-

dimensional rule strategy when learning the two category sets. This is important to know  

                                                 

7
 Bonferroni post-hoc tests also confirmed that younger adults performed significantly better in the Type II 

pre-train (M = .92) condition compared to Type II control (M = .72) condition (p < .001) and in the Type IV 

pre-train (M = .82) condition compared to Type IV control (M = .66) condition (p < .001). 
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Figure 3.4: Category learning performance of (A.) older adults in Type II pre-training 

and younger adults in Type II control and of (B.) older adults in Type IV pre-training and 

younger adults in Type IV control. Error bars denote the standard error of the mean. 
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because in many cases, what might appear to be moderate performance on the Type IV 

family resemblance category set might actually be a result of participants learning a 

suboptimal single-dimensional rule (e.g., attention to a single dimension in the Type IV 

category set would result in 75% correct). If a participant relied on a RB strategy when 

learning the NRB Type IV category set, this may indicate that they had difficulty 

transitioning from the verbal system to the nonverbal system. The same type of strategy 

analysis was performed by Minda et al. (2008) when examining SHJ learning in children. 

For each participant, we identified the response made (either Category A or B) for each 

stimulus. Next, we calculated for each block the correlation between the value of each 

dimension (e.g., square or triangle) and the response. If a participant responded to a 

single dimension, then the correlation between stimulus and response would be 1.0 

regardless of which category that participant was learning. This analysis would indicate if 

a participant had adopted a single-dimensional rule, even if the rule was suboptimal. 

Following the correlational analysis, we counted how many participants displayed at least 

two blocks (including nonconsecutive blocks) of perfect rule-response correlations. As 

Table 3.1 shows, for the Type II category set (control and pre-train conditions), no 

younger adults showed a single-dimensional performance-dimension correlation. In 

comparison, 2/21 older adults in the Type II control condition and no older adults in the 

Type II pre-training condition applied a single-dimensional rule. The fact that older 

adults were performing around chance in the Type II control condition, yet the majority 

was not fit by a single-dimensional rule, suggests that older adults frequently switched 

their strategies throughout the task. Given the fact that one could only achieve 50% by 

applying a single-dimensional rule in the Type II category set, it makes sense that older 

adults did not consistently apply a single-dimensional rule, but rather switched rules to 

avoid negative feedback. Pre-training appeared to eliminate the consistent use of single-

dimensional rules among older adults when learning the Type II category set. Lastly, 9/21 

younger adults and 5/20 older adults in the Type IV control condition applied a single-

dimensional rule across at least 3 blocks of trials. While a substantial portion of 

participants (bother younger and older adults) relied on single-dimensional rules to learn 

the Type IV category set, it should be noted that these participants were fit by a single-  
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Table 3.1: Percentage of participants using single-dimensional rules. 

________________________________________________________________________ 

       Age Group             II Control       II Pre-Train       IV Control       IV Pre-Train 

 
       Younger Adults          0%                    0%                   43%                  9.5% 

       Older Adults              9.5%                  0%                   25%                  14%     

________________________________________________________________________ 

 

dimensional rule in at least two learning blocks, not for the full duration of the task. The 

majority of these participants were fit by a single-dimensional rule early in the task, and 

did not persist in using a single-dimensional strategy for more then two learning blocks8. 

Furthermore, implying that they most likely used a family-resemblance based strategy for 

the remainder of the task. It should also be noted that the percentage of participants using 

a single-dimensional strategy in the Type IV condition dropped (more substantially for 

younger adults) when pre-training was introduced. Only 2/21 younger adults and 3/22 

older adults relied on single-dimensional rules in the Type IV pre-training condition9.  

3.6.5 Executive Functioning 

Younger adults generally performed better on the executive functioning tasks compared 

to older adults, with the exception being the digit span task and Flanker task where both 

age groups performed similarly (see Table 3.2). Scores on the executive functioning  

Table 3.2: Executive functioning performance of younger and older adults. 

                                                 

8
 When a stricter criterion based on three learning blocks rather than two was used, the percentage of older 

adult single-dimensional rule users dropped to 5% in Type II control, 5% in Type IV control, and 9% in 

Type IV pre-train. The percentage of younger adult single-dimensional rule users dropped from 43% to 

14% in the Type IV control condition when this stricter criterion was introduced.  

9
 This analysis does not exclude the possibility that participants may have learned the Type IV categories 

via a multidimensional rule. However, given the low dimensionality of the FR categories, a 

multidimensional rule might be difficult to distinguish from family resemblance responding. We favor the 

conclusion that most older adults relied on a family resemblance strategy to solve the Type IV category set, 

because given their difficulty learning the Type II disjunctive rule-based category set, it is unlikely that 

older adults would successfully be able to apply a complex, multi-dimensional rule-based strategy when 

learning the Type IV category set.  
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________________________________________________________________ 
 

Variable                                     Younger Adults                  Older Adults 

                                                        M         SD                       M          SD 

________________________________________________________________ 
 

Forward Digit Span                       19.3       3.3                     18.7        3.4 

Backward Digit Span                    11.4       3.4                     10.4        3.5 

Alpha Span                                    45.3       6.7                     37.4       8.8 

Flanker Difference Score              47.1      23.0                    46.8      43.8 

Simon Difference Score                30.8     35.7                     58.8      46.8 

Stroop Difference Score               62.5      76.6                   164.3    147.7 

BCST Categories Completed         4.1        0.8                       3.1        1.3 

BCST Perseveration Errors            7.1        2.3                       9.5        4.6 

________________________________________________________________ 

 

measures were correlated with average categorization performance across the last five 

learning blocks for older adults and younger adults separately10. In line with prior aging 

research, for the three inhibition tasks, response times that were more than 3,000 ms (for 

the Simon and Stroop task) and 2,000 ms (for the Flanker task) were removed as outliers, 

which eliminated less than 1% of trials for each age group across tasks (Langley, Vivas, 

Fuentes, & Bagne, 2005; Bugg, Jacoby, & Toth, 2008; Drueke, Boecker, Mainz, 

Gauggel, & Mungard, 2012). Additionally, outlying trials were removed from analyses of 

the inhibitory control data, defined as ≥3 SDs from each individual’s mean within each 

trial category (congruent, incongruent, and neutral). 

                                                 

10
 The scores of some participants were not included in the analyses because the task was not completed 

due to time limitations, computer error, or because the participant made too many errors on the task 

indicating a lack of understanding (this was in reference to the inhibition tasks where participants made 

errors on more than 50% of the incongruent trials and on the BCST where participants learned 0 

categories). Flanker data was missing from 7 older adults and 2 younger adults. Stroop data was missing 

from 7 older adults. Simon data was missing from 1 older adult. Alpha span data was missing from 3 older 

adults and 1 younger adult. BCST data was missing from 11 older adults and 1 younger adult. 
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3.6.5.1 Older Adults 

Among older adults, performance in the Type II control condition was correlated with 

alpha span and Simon task performance and marginally correlated with backward digit 

span (see Table 3.3). Performance in the Type II pre-training condition was correlated 

with forward digit span, backward digit span, and alpha span and was marginally 

correlated with Simon task performance11. Type II performance was most strongly 

correlated with the working memory measures, indicating that working memory plays an 

important role in learning complex rule-based categories. Type II performance was 

moderately correlated with inhibitory control measures suggesting that inhibition may 

play a role in complex rule-based category learning, but to a lesser degree compared to 

working memory abilities. The fact that Type II pre-training performance still correlated 

with working memory measures implies that individuals with better working memory 

abilities benefitted more from the pre-training task. Type IV control performance was 

correlated with forward digit span and marginally correlated with backward digit span 

and Stroop performance. This relationship is less clear, however these findings may 

suggest that better executive functioning abilities can assist with transitioning from the 

explicit rule-based system to the implicit system, which is useful for learning Type IV 

categories lacking a clear verbal rule. Type IV pre-training performance was marginally 

correlated with the number of categories completed on the BCST12. To control for age-

related changes in executive functioning within the older adult age group (e.g., 

differences between 65 & 85 year-olds), we conducted partial correlations on the 

significant correlations, controlling for age. Type II control performance was still  

                                                 

11
 There was an unexpected marginal positive correlation between Flanker difference score and Type II 

pre-training performance in older adults, implying that older adults who performed better in the Type II 

pre-training condition also took longer to respond to incongruent Flanker trials relative to congruent trials. 

However, this was most likely due to the speed-accuracy tradeoff, because the Flanker accuracy data 

revealed that higher Type II pre-training performance among older adults was associated with fewer errors 

on incongruent Flanker trials [r = -.52, p = .03]. After controlling for age, this relationship was still 

significant [r = -.53, p = .03]. 

12
 The accuracy data from the inhibition tasks was also examined in older adults. In addition to the 

correlation between Type II pre-training performance and incongruent errors on the Flanker task 

(mentioned earlier), there was a correlation between Type IV pre-train performance and incongruent errors 

on the Stroop task [r = -.62, p = .003]. After controlling for age, this relationship remained significant [r = -

.54, p = .014].   
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Table 3.3: Intercorrelations among the study variables for older adults. 

________________________________________________________________ 
 

Variable                                             II-Con        II-PT        IV-Con       IV-PT 

________________________________________________________________ 
 

Forward Digit Span                            .082           .537*        .525*          .320 

Backward Digit Span                         .400†         .613**      .405†          .367 

Alpha Span                                        .633**       .650**       .315            .286 

Flanker Difference Score                  -.009          .478†        -.161           -.366 

Simon Difference Score                    -.473*       -.436†       -.070           -.096 

Stroop Difference Score                    -.017          .230         -.445†         -.345 

BCST Categories Completed             .416           .354          .391            .415† 

BCST Perseveration Errors               -.248          -.351        -.102           -.070 

________________________________________________________________ 

Note. Executive functioning measures were correlated with categorization performance 

over the last 5 learning blocks. Two-tailed t-tests: ** p < .01, * p < .05, 
†
p < .07. 

Table 3.4: Intercorrelations among the study variables for younger adults. 

________________________________________________________________ 
 

Variable                                            II-Con        II-PT        IV-Con        IV-PT 

________________________________________________________________ 
 

Forward Digit Span                            .224          .181          .074            .199 

Backward Digit Span                         .272          .133          .345            .598** 

Alpha Span                                       -.070          .040           .364            .527* 

Flanker Difference Score                  -.152         .104           .096           -.132 

Simon Difference Score                    -.225         .185          .030             .312 

Stroop Difference Score                     .143         .398         -.138             .040 

BCST Categories Completed            -.198         .183           .004           -.420 

BCST Perseveration Errors                .213         -.042        -.307             .100 

________________________________________________________________ 

Note. Executive functioning measures were correlated with categorization performance 

over the last 5 learning blocks. Two-tailed t-tests: ** p < .01, * p < .05. 
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correlated with alpha span [r = .60, p = .005] and Simon scores [r = -.46, p = .039]. Type 

II pre-train performance was still correlated with backward digit span [r = .56, p = .025] 

and alpha span [r = .59, p = .016], but no longer correlated with forward digit span [r = 

.37, p = .16]. Type IV control performance was still correlated with forward digit span [r 

= .51, p = .032]. These findings suggest (aside from forward digit span) that differences 

in age did not influence the relationship between category learning and executive 

functioning among older adults. 

3.6.5.2 Younger Adults 

There were no correlations between Type II performance (control or pre-training) and 

executive functioning measures. Type IV pre-train performance was correlated with 

backward digit span and alpha span (see Table 3.4). This suggests that among younger 

adults who received pre-training, those with stronger working memory abilities were 

better able to remember the individual exemplars allowing them to more easily identify 

the overall similarity structure of the Type IV category set13. 

3.7 Discussion 

The current study examined older and younger adults’ complex RB (Type II) and family-

resemblance (Type IV) category learning ability. In line with findings from the Rabi and 

Minda (2016) study, in the control conditions, older adults were more successful at 

learning Type IV categories compared to Type II and younger adults were more 

successful at learning Type II categories compared to Type IV. Furthermore, the present 

study confirmed the existence of a Type IV advantage in older adults and a Type II 

advantage in younger adults. The fact that older adults struggled more with the Type II 

category set suggests that executive functioning may be responsible for the performance 

differences in category learning between younger and older adults. I reduced the 

executive function demands associated with the category learning tasks in the current 

study by familiarizing participants with the category exemplars. While I minimized 

                                                 

13
 The inhibitory control accuracy data of younger adults revealed that Type IV pre-training performance 

was also correlated with incongruent errors on the Simon task [r = -.49, p = .026]. 
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categorization task demands in my study, given that executive functioning abilities 

decline in older adulthood, I still expected younger adults to outperform older adults in 

the pre-train conditions. Nonetheless, my primary aim of this study was to determine 

whether pre-training would improve Type II performance relative to baseline (control 

performance) and for that reason, I compared categorization performance within each age 

group. In support of my predictions, I found that older adults in the Type II pre-training 

condition performed significantly better than those in the Type II control condition, 

demonstrating that pre-training helped older adults with Type II category learning. 

Furthermore, the implementation of a short pre-training session allowed older adults to 

the learn the Type II category set quite well, performing at almost 80% correct, compared 

to the near chance performance seen in the Type II control condition.  

On the contrary, older adults performed only marginally better in the Type IV pre-

training condition compared to Type IV control condition, signifying that while pre-

training was helpful in Type IV learning, the benefits to Type II learning were greater. 

These findings are comparable to research by Minda et al. (2008), showing that 

familiarizing children with category exemplars improved their RB categorization 

performance. These results suggest that familiarizing older adults with the category 

exemplars aided their ability to test more complex rules, by reducing the working 

memory demands of the task, allowing the explicit RB system to operate optimally. 

Minda et al. (2008) also found that pre-training did not significantly improve family-

resemblance performance in children but it did improve family-resemblance performance 

in young adults. Like young adults in the Minda et al. (2008) study, older adults in the 

Type IV condition may have benefitted to a small extent from pre-training because it 

helped to reinforce the association between the features and category labels, helping older 

adults to pick up on the overall similarity between category exemplars in each group. 

Younger adults in the current study significantly benefitted from pre-training during both 

Type II and Type IV category learning. Similar to older adults, it appears that reducing 

task demands enabled younger adults to better learn both category sets. That is, pre-

training may have sped up the hypothesis testing process helping younger adults to 

identify the complex rule more quickly during Type II learning. Additionally, in line with 

predictions from COVIS, pre-training may have improved Type IV learning by helping 
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participants to transition from the verbal RB system to the nonverbal implicit system used 

to learn Type IV categories. That is, the verbal system is considered the default category 

learning system, in that individuals tend to use it during initial learning, but may switch 

to the nonverbal system when the verbal system is unsuccessful. Therefore, in the present 

study, pre-training may have facilitated the switch from the verbal to nonverbal system. 

In line with my predictions, I also found that pre-training led to a Type II advantage in 

older adults, which was absent when pre-training was not administered (control 

condition). In younger adults, the Type II advantage, which was evident in the control 

condition, remained when pre-training was introduced. More specifically, for both older 

and younger adults, pre-training led participants to perform better on the Type II category 

set compared to the Type IV category set. This finding suggests that pre-training may 

have been more effective for RB Type II category learning which relies on executive 

functioning compared to more implicit family-resemblance-based Type IV category 

learning. Based on the finding that both older adults and younger adults performed 

significantly better on the Type II category set following pre-training compared to no-

pre-training, one might speculate that pre-training encouraged participants to memorize 

the category exemplars. However, due to a number or reasons, this possibility is unlikely. 

First, following pre-training, both older adults and younger adults performed better on the 

Type II category set compared to the Type IV category set. Participants in the pre-train 

conditions were given identical instructions (were asked to describe either the Type II 

category exemplars or the Type IV category exemplars), so if individuals were 

memorizing category exemplars, there should not have been significant performance 

differences on the Type II and IV category sets. The fact that a Type II advantage 

emerged among older and younger adults, suggests that pre-training assisted participants 

with testing rules and ultimately formulating the complex rule. Secondly, participants 

were not instructed to “study” or “memorize” the category exemplars, rather they were 

told to describe them. Lastly, participants only viewed the category exemplars for a very 

brief period of time. Essentially, they viewed the category exemplars as they described 

them, after which they began the category learning task. Participants were not given extra 

time to look at the category exemplars after they finished describing them. All that being 

said, it seems unlikely that participants relied on memorization strategies to learn the 
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category exemplars. Especially given that the working memory abilities of older adults 

decline with age, it seems improbable that they could memorize all the category 

exemplars after just viewing them for a brief period of time. In addition to ruling out 

memorization strategies as an extraneous reason for why performance differences may 

have occurred, IQ and age of older adults was also ruled out as variables that may have 

influenced performance.  

Single-dimensional rule strategy use was also considered as a factor that may have 

impacted performance on the Type II and Type IV category set. That is, I wanted to 

determine whether changes in categorization performance among older and younger 

adults could be explained by the inappropriate use of single-dimensional rules in the 

Type II and Type IV category set. The present findings showed that almost 10% of older 

adults in the Type II control condition relied on a single-dimensional rule across at least 

two learning blocks compared to 0% of older adults in the Type II pre-train condition. No 

younger adults relied on a single-dimensional strategy when learning the Type II category 

set, regardless of condition. These findings suggest that among older adults, pre-training 

eliminated single-dimensional strategy use during Type II learning. Based on the low 

Type II performance of older adults in the control condition, it is evident that more than 

10% of older adults struggled with identifying the correct rule. Given the fact that one 

could only achieve 50% by applying a single-dimensional rule in the Type II category 

set, it seems likely that rather than consistently apply a single-dimensional rule, older 

adults in the Type II control condition switched between different single-dimensional 

rules throughout the task to avoid negative feedback. This resulted in low Type II 

performance because older adults failed to identify the complex rule. In the Type IV 

category set, a subset of both younger and older adults relied on single-dimensional rules 

during the Type IV categorization task. However, the proportion of participants relying 

on single-dimensional rules during Type IV learning, decreased in both age groups 

following pre-training, possibly suggesting that pre-training helped participants to 

transition from the verbal to nonverbal system.  

While my main point of interest was in comparing pre-train to control performance in 

each age group separately, I also examined how the pre-train performance of older adults 
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compared to the categorization performance of younger adults. Younger adults 

outperformed older adults across all of the study conditions, and for this reason I 

examined how the pre-train performance of older adults compared to the control 

performance of younger adults. Results revealed that for both the Type II and Type IV 

category set, the pre-train performance of older adults did not significantly differ from the 

control performance of younger adults. This suggests that pre-training may have reduced 

the executive function demands of the categorization task enough so that older adults 

could perform at a similar level to younger adults. This finding converges nicely with 

prior research showing that completing a secondary task that taxes executive functions 

either concurrently or prior to RB category learning interferes with the categorization 

performance of younger adults (Maddox & Ashby, 2004; Miles, Matsuki, & Minda, 

2014; Minda & Rabi, 2015; Zeithamova & Maddox, 2007). Therefore, it appears that 

learning RB categories via the verbal system depends on having access to working 

memory and other executive functions, and so by increasing task demands (as shown by 

prior research), RB performance in turn will suffer. In comparison, the present findings 

demonstrate that by reducing task demands (via pre-training), RB performance can be 

improved. Additionally, fMRI research has shown that areas of the prefrontal cortex are 

more active during RB category learning compared to NRB category learning (Nomura & 

Reber, 2008). Together, this research illustrates that executive functions are used by the 

verbal system during RB category learning and greater recruitment of executive functions 

are needed for successful RB category learning. 

Executive functioning performance was also measured in the present study to further 

examine the relationship between category learning accuracy and executive functioning. 

While some executive function measures were marginally correlated with category 

learning performance, I was most interested in the strongest correlates of performance. 

Most notably, when controlling for the age of older adults, Type II control performance 

was significantly correlated with alpha span and Simon task performance and Type II 

pre-train performance was significantly correlated with backward digit span, alpha span, 

and Flanker task accuracy in older adults. These findings suggest that, independent of the 

age of older adults; complex RB category learning is associated with working memory 

and inhibitory control abilities. The fact that reducing task demands via pre-training did 



82 

 

not eliminate the relationship between executive functioning and Type II learning, 

suggests that having strong executive functioning abilities may have allowed older adults 

to benefit more from pre-training. These findings are supported by prior research 

showing that, in comparison to young adults, individuals with weaker working memory 

abilities (e.g., children, monkeys) struggle with Type II category learning (Minda et al., 

2008; Smith et al., 2004). That is, older adults with stronger working memory and 

inhibitory control abilities may have been able to better extract the complex rule 

following the pre-training task, inhibit competing rules, and store the correct rule in 

working memory. Among older adults, better Type IV control performance was 

associated with forward digit span and better Type IV pre-train performance was 

associated with accuracy on the Stroop task. While not as many executive function 

measures correlated with Type IV performance compared to Type II performance, the 

fact that some did, suggests that executive functioning may also be somewhat important 

for NRB category learning. The nonverbal system is thought to operate independently of 

executive functions, however recent research suggests that executive functions may be 

useful in transitioning from the verbal (dominant/default system) to nonverbal system 

(Nomura & Reber, 2012; Miles et al., 2014; Schnyer et al., 2009). Additionally, the 

prefrontal cortex has been shown to play an important role not only in executive 

functioning but also in mediating the transition between the categorization systems. 

Furthermore, it may be that older adults with stronger executive function abilities were 

able to reject the verbal system more quickly and switch to the optimal, nonverbal system 

when learning the Type IV category set. In comparison, among younger adults, only 

Type IV pre-train performance was correlated with executive function measures 

(backward digit span, alpha span, and Simon task accuracy). Given that Type II 

performance did not correlate with executive functioning in younger adults is not 

particularly surprising, since younger adults learned this category set quite well and 

executive function skills operate optimally during young adulthood and start to decline in 

older adulthood. Since Type IV category learning is generally considered to be a more 

difficult category set to learn relative to Type II, the correlation between Type IV pre-

train performance and executive functions in younger adults may signify that stronger 

executive functions helped facilitate the switch to the nonverbal system.  
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The findings from the present study provide support for both the inhibition deficit 

account and the binding deficit account of cognitive aging. In support of the inhibition 

deficit view, pre-training may have reduced the amount of task irrelevant information 

older adults encountered, allowing them to perform better on the Type II task. The 

binding hypothesis also provides an explanation for the current findings, in that pre-

training familiarized older adults with the category exemplars enough so that they could 

bind together the different elements and formulates the categorization rule within 

working memory. Future research may benefit from further exploring which account of 

cognitive aging better explains the differences in category learning performance seen 

among younger and older adults. It may be the case that older adults not only encode and 

store too much irrelevant information, but they also struggle with binding task relevant 

information together. 

In summary, the difficulty older adults in the present study experienced when learning the 

Type II category set in the control condition supports prior literature showing that the rule 

complexity metric predicts categorization performance (Minda et al., 2008; Rabi & 

Minda, 2016; Racine, 2006). One of the most important contributions of the current work 

was that I established that pre-training in older adults could be used to attenuate well-

established age-related RB category learning deficits. Additionally, I showed that 

executive function abilities are associated with the ability of older adults to learn Type II 

and Type IV categories, suggesting that working memory and inhibitory control may be 

important for learning RB categories and for switching systems in order to learn NRB 

categories. Categorization not only helps individuals’ structure and organize the world 

around them, but it is the foundation for processing, remembering, and incorporating new 

information. For this reason, it is important to understand the cognitive processes 

involved in categorization and how they change with age. In the current study, pre-

training was able to considerably improve complex RB category learning, providing 

support for the effectiveness of working memory training with older adults. Quite 

possibly, current technology can be used to assist with RB category learning, reducing 

executive function demands among older adults. For example, many older adults require 

regular medication but struggle to kept track of medication-related information using RB 

categories. With new technology (e.g., phone apps), older adults can store their 
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medication information in their phone (e.g., size, shape, and colour of the pill, time of 

day pill should be consumed, and proper dosage) in organized categories, familiarizing 

the individual with their medical information and increasing medical adherence. My 

results highlight the difficulty older adults encounter when learning complex RB 

categories and provide a potential solution to improve learning. This is an important first 

step and future research on this topic can shed light on alternative methods for enhancing 

category learning performance among older adults. 
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Chapter 4 

4 Towards a Better Understanding of Category Learning 
in Older Adulthood: Insights from Strategy Analysis 

Categorization is a fundamental cognitive process, which we rely on to make decisions 

on a daily basis. For example, when we discover new produce at the grocery store and 

attempt to determine whether it is a fruit or vegetable or when we try to distinguish weeds 

from desirable plants in our garden we are making categorization judgments. Given the 

importance of this decision-making process, it is essential that we understand the 

cognitive processes underlying categorization. Despite the plethora of research examining 

category learning in young adults and children, relatively little research has been 

conducted on category learning in older adults. This is important, because if significant 

differences in performance are found between younger and older adults, this would 

suggest that aging influences the ability of individuals to learn categories.  

Both behavioural and neuroimaging research has provided support for the COVIS theory 

of category learning, which assumes that new categories are acquired by two cognitive 

systems (Ashby et al., 1998; Maddox and Ashby, 2004; Minda and Miles, 2010; Nomura 

et al., 2008; Nomura & Reber, 2012). The explicit, verbal category learning system is 

mediated by the prefrontal cortex and relies on working memory and executive functions 

to learn categories that can be defined by an easily verbalizable rule (i.e., rule-based (RB) 

categories). This system is assumed to be the dominant or default approach for learning 

new categories in adults (Ashby et al., 1998). The implicit, non-verbal or non-rule-based 

(NRB) system relies on associative learning mechanisms to learn categories that lack an 

easily verbalizable rule. The nonverbal system is mediated by subcortical structures in the 

tail of the caudate nucleus and category learning using this system is thought to take 

place gradually and does not rely heavily on executive functioning. The two category 

learning systems have been proposed to be in competition with one another and executive 

functions may assist with transitioning from the default verbal system to the nonverbal 

system. Furthermore, executive functions are important for RB category learning because 
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it assists with rule testing, identification, and application. Additionally, while the NRB 

system does not rely on executive functioning to learn NRB categories, executive 

functioning may help to mediate the transition from the verbal to nonverbal system.   

4.1 RB and NRB Category Learning in Older  
 Adulthood 

A key finding reported in the cognitive aging literature is that deficits in RB category 

learning become more pronounced as rule complexity increases. Racine and colleagues 

(2006) found a large performance deficit among older adults when the rule was complex, 

which they suggested was due to a need for enhanced cognitive control. In order to test 

the hypotheses that rule-forgetting may contribute to older adults’ difficulty learning RB 

categories, Racine et al. provided external rule reminders in a prompt condition. Results 

revealed that older adults did not display any benefit of prompts. Furthermore, older 

adults in the Racine et al. study could report the rule at the end of the task, but displayed 

difficulties applying the rule under conditions that had high cognitive control 

requirements. This suggests that age-related deficits in RB learning are not specifically 

due to rule forgetting, but may possibly be due to difficulties with rule application.  

Maddox et al. (2010) also examined complex RB category learning in older adults using 

a conjunctive RB task, where participants were required to assign stimuli (lines varying 

in length and angle) to one of four categories. Findings showed that relative to younger 

adults, older adults struggled with RB category learning. Similarly, Davis, Love and 

Maddox (2012) found that older adults struggled with category learning when the optimal 

strategy involved rule-plus-exception learning. That is, older adults found it difficult to 

learn exception items relative to rule-following items in the RB category set. In support 

of prior research, a recent study by Rabi and Minda (2016) also showed that older adults 

struggled with learning complex RB categories requiring the integration of two stimulus 

dimensions but performed quite well when learning relatively simple single-dimensional 

RB categories. 

It is evident from reviewing the category learning literature that older adults find it 

difficult to learn complex categorization rules (Davis et al., 2012; Maddox et al., 2010; 
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Rabi & Minda, 2016; Racine et al., 2006). Additionally, Rabi and Minda (2016) have 

shown that older adults perform quite well when learning simple, single-dimensional 

categorization rules. The question which remains is: how do older adults perform when 

learning complex single-dimensional RB categories? More specifically, the complex RB 

tasks used in past studies involved combining two stimulus dimensions together to arrive 

at a complex rule. Is it the case that older adults struggle with combining information 

together into a complex rule? Or is it that older adults struggle with any RB task (single-

dimensional or multi-dimensional) that places strain on their executive functioning 

resources? A newly published study by Bharani, Paller, Reber, Weintraub, Yanar, and 

Morrison (2016) examined RB category learning in older adults using a more 

complicated single-dimensional RB category set. Event-related potentials (ERPs) were 

monitored as participants categorized Gabor patches varying in spatial frequency and 

spatial orientation. Bharani and colleagues found that older adults struggled with RB 

learning relative to younger adults, supporting the idea that taxing executive function 

resources is responsible for the category learning deficits seen in older adults. 

Additionally, ERP findings revealed that older adults who successfully learned the rule 

displayed larger frontal ERPs compared to younger adults. In comparison, low-

performing older adults’ frontal activity did not significantly differ from that of younger 

adults. This increase in frontal activity in high-performing older adults’ suggests that 

recruitment of prefrontal resources may have improved performance. Moreover, Bharani 

et al. concluded that the increase in frontal activity seen in high-performing older adults 

occurred because they recruited the additional circuitry needed to learn the category set 

despite age-related neural deterioration. 

In addition to RB category learning, NRB category learning has also been examined in 

older adults, most notably with the information-integration (II) category set. These 

categories are learned by the nonverbal/implicit system by integrating information from 

two or more dimensions at some pre-decisional stage (Ashby & Waldron, 1999). Filoteo 

and Maddox (2004) examined II category learning in older and younger adults. Results 

revealed that older adults learned the II category set less well than younger adults, 

suggesting that aging can negatively influence not only RB category learning, but II 

category learning too. Maddox et al. (2010) also found that older adults were impaired at 
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II category learning relative to younger adults. While older adults were no less likely than 

younger adults to use the task appropriate II strategy, older adults still showed II deficits. 

Maddox et al. suggested that this II deficit in older adults was due to their less consistent 

application of the task appropriate II strategy. From a neuroscience perspective, the II 

deficit seen among older adults makes sense since structural and functional declines in 

the striatum have been documented (Gabrieli, 1996; Li, Lindenberger, & Sikstrom, 

2001). These declines are likely associated with age-related deficits in implicit, 

procedural-based learning (Park et al., 2002; Salthouse, Atkinson, & Berish, 2003).  

4.2 Executive Functioning in Normal Aging 

To better understand the relationship between category learning and aging, it is important 

to examine how executive functions change with age. Executive functions are important 

during RB learning to assist with hypothesis testing, rule identification, maintenance and 

application. As well, executive functions may be important to NRB learning to assist with 

transitioning from the dominant verbal system to the nonverbal system. The prefrontal 

cortex plays a key role in executive functioning, however, this brain region has been 

shown to deteriorate with age. For example, the prefrontal cortices show large volumetric 

declines in white and gray matter, associated with aging (Gunning-Dixon & Raz, 2003; 

Raz et al., 2000, 2005).  

Executive function is composed of three related, but separable components: working 

memory, inhibitory control, and set-shifting (Miyake, Friedman, Emerson, Witzki, 

Howerter, and Wager, 2000). Aging research has demonstrated that working memory 

performance declines with advancing age (Bopp & Verhaeghen, 2005; Craik & 

Bialystok, 2006; Park et al., 2002; Verhaeghen & Salthouse, 1997), suggesting that older 

adults are less able to effectively process and temporarily store information. Age-related 

declines in working memory abilities have specific implications for RB category 

learning. To adequately identify the correct categorization rule, working memory is 

needed to maintain and update rules that have been tested in memory. A decrease in 

working memory capacity may result in older adults maintaining less information about 

the category set and thus relying on suboptimal strategies to learn the RB category set. 

Several different hypotheses have been proposed to account for age-related declines in 
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working memory. Processing/attentional resources hypotheses propose that aging 

depletes the cognitive resources available for processing information (Belleville, 

Rouleau, & Caza, 1998; Craik et al., 1990; Dobbs & Rule, 1989; Just & Carpenter, 1992). 

Speed of processing hypotheses propose that age-related working memory deficits can be 

explained in terms of a general slowing of information processing (Salthouse, 1994, 

1996; Verhaeghen & Salthouse, 1997). Inhibitory deficit hypotheses propose that a lack 

on inhibitory control may explain age-related deficits, because individuals fail to suppress 

irrelevant information in working memory (Hasher & Zacks, 1988; Healey, Campbell, & 

Hasher, 2008; Lustig, May, & Hasher, 2001; Oberauer, 2001; Pettigrew & Martin, 2014).  

The inhibitory deficit hypothesis highlights that inhibitory control is another cognitive 

process which declines with age with prior research showing that older adults have a 

reduced ability to suppress irrelevant information (De Beni et al., 2007; Dempster, 1992; 

Persad et al., 2002). With regards to category learning, inhibitory control may be 

important for inhibiting incorrect (and possibly salient) rules during RB learning and for 

inhibiting the verbal system in favour of the nonverbal system during NRB learning. The 

fact that older adults have difficulty stopping irrelevant information from entering 

working memory may mean that older adults rely on suboptimal rules when learning RB 

categories and have difficulty transitioning to the nonverbal system when learning NRB 

categories. 

The third executive function component, set-shifting, has also been shown to decline in 

healthy aging. Compared to younger adults, older adult display more difficulty shifting 

attention between two tasks. Ridderinkhof and colleagues (2002) have demonstrated that 

older adults struggle with the Wisconsin Card Sort Test (WCST), even when given 

explicit shift cues to change rules. Older adults may perseverate on previously correct 

sorting rules more frequently than younger adults because they struggle with hypothesis 

testing and rule shifting (Arbuckle & Gold, 1993; Hartman, Bolton, & Fehnel, 2001; Raz, 

2000; Ridderinkhof et al., 2002). A set-shifting deficit could have a number of 

consequences for category learning. If one is unable to switch between different rules the 

individual may struggle with identifying the correct rule in a RB category set, because 

they keep testing previously used rules or rules that are more salient to them. With 
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relation to NRB category learning, a set-shifting deficit may impact one’s ability to 

switch from the verbal to nonverbal system. Moreover, the individual may be 

perseverating on a rule, even though the rule does not work very well in the context of the 

NRB category learning task.  

4.3 The Current Research 

Two studies were conducted to examine the effects of cognitive aging and executive 

functioning on category learning. The limited research that has been done on category 

learning has focused on examining complex, multi-dimensional (e.g., conjunctive or 

disjunctive RB category sets) RB category learning in older adults. More research is 

needed to better understand single-dimensional RB category learning, as well as NRB 

category learning in older adults. We used an extremely well studied category learning 

paradigms for examining RB and NRB category learning. In the task, participants divided 

Gabor patches (see Figure 4.1) varying in spatial frequency (number of lines in the patch) 

and spatial orientation (the angle of lines in the patch) into two category groups, based on 

trial-by-trial feedback. This category learning paradigm was used for a number of 

reasons. The stimulus dimensions of Gabor patches are separable and have clear verbal 

labels. Gabor patches are novel stimuli which participants do not have prior experience 

with, eliminating any bias participants may enter the study with. The Gabor stimuli are 

numerous and variable enough that it is unlikely that participants could rely on 

memorization strategies to categorize the stimuli. Prior category learning studies 

involving older adults have used novel categorization tasks or less well researched 

categorization tasks, making it somewhat more difficult to draw certain conclusions. 

Countless studies have been done using this category learning paradigm, allowing us to 

compare the present study findings with a number of different studies (e.g., Bharani et al., 

2016; Filoteo, Maddox, Ing, & Song, 2007; Huang-Pollock et al., 2011; Maddox, Ashby, 

& Bohil, 2003; Maddox, Ashby, Ing, & Pickering, 2004; Miles, Matsuki, & Minda, 2014; 

Minda & Rabi, 2015; Nadler, Rabi, & Minda, 2010; Rabi & Minda, 2014; Zeithamova & 

Maddox, 2006). Lastly, the current category learning paradigm lends itself well to 

computational modeling of strategy use, giving us 
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Figure 4.1: An example of a Gabor patch 

 

insight into the specific strategies individuals use to learn novel categories. 

In Study 1, single-dimensional RB category learning and NRB category learning in older 

adults and younger adults was investigated. Bharani and colleagues (2016) examined RB 

category learning in older adults using the Gabor patch stimuli and I wanted to confirm 

and extend their findings by also examining NRB category learning in older adults. While 

RB and NRB category learning have been examined separately in different studies 

involving older adults, more research is needed comparing RB and NRB performance in 

older adults. Study 1 will shed light on how both the verbal and nonverbal system 

functions in older adults when learning a standardized category set. Additionally, 

executive function measures will be administered to better understand the relationship 

between category learning and executive functioning in normal aging.   

In Study 2, the ability of older adults and younger adults to learn the same RB category 

set presented in Study 1 was investigated, but this time participants received pre-training 

prior to beginning the RB category learning task. During pre-training, participants 

verbally described a sample of Gaussian blur stimuli and upon starting the category 

learning task, viewed stimuli where the dimensions were more apparent, before 

transitioning to more difficult stimuli. Category learning deficits have been demonstrated 
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in the aging literature, but aside from the pre-training study carried out in Chapter 3, what 

is lacking is an examination of methods of improving the category learning abilities of 

older adults. This shortcoming is addressed in Study 2, by examining the impact of 

reducing task demands via pre-training on single-dimensional RB category learning in 

older adults. Similar to Study 1, executive functioning performance was also measured to 

provide additional insights into the role of executive functioning in RB category learning. 

4.4 Study 1 

The goal of the first study was to examine single-dimensional RB category learning in 

older adults. Past studies that have identified RB category learning deficits in older adults 

have used category sets which require a complex, multi-dimensional rules to solve (i.e., 

the correct rule requires combining information along at least two stimulus dimensions). 

Comparably little research has examined single-dimensional RB category learning in 

older adults. Aside from simple single-dimensional rules, which older adults are quite 

good at learning (Rabi & Minda, 2016), we were interested in examining how older 

adults would learn a more complex single-dimensional RB category set. If older adults 

struggle with complex single-dimensional RB category learning, this would suggest that 

taxing executive functions in general is responsible for RB category learning deficits. 

However, if older adults perform well on the complex, single-dimensional RB category 

set, this would suggest that the age-related category learning deficit is limited to learning 

multi-dimensional rules requiring the integration of two dimensions because the 

integration aspect of rule learning is particularly taxing for older adults. We used a RB 

category set where the frequency of lines in the Gaussian blur was the correct rule, but 

the orientation of the lines in the Gaussian blur was the more salient dimension. 

Participants would need to inhibit the more salient dimension in favor of the correct, but 

less-salient stimulus dimension in order to learn this complex, single-dimensional RB 

task. In line with the findings of Bharani and colleagues (2016), it was expected that 

younger adults would outperform older adults on the RB category set, since this type of 

category learning places demands on executive functions, which are known to decline 

with healthy aging (Gunning-Dixon & Raz, 2003; Raz et al., 2000, 2005). 
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NRB category learning was also examined in older and younger adults, which provided 

an important point of comparison between RB and NRB category learning using the same 

type of categorization stimuli (i.e., Gaussian blurs). Based on prior findings showing that 

older adults struggle with NRB category learning (Filoteo & Maddox, 2004; Maddox et 

al., 2010) it was expected that older adults in the present study would struggle with NRB 

category learning. We reasoned that older adults would have more difficulty compared to 

younger adults, because executive functioning is needed to transition from the verbal to 

nonverbal system. Given the popularity of the Gaussian blur category paradigm it is 

surprising that, to my knowledge, no other studies have examined NRB category learning 

in older adults using this paradigm. By investigating NRB category learning in the 

current study I will be able to better understand how older adults learn implicit-based 

category sets for which no easily verbalizable rule exists. 

In addition to measuring accuracy-based performance on the RB and NRB category 

learning tasks, computational modeling was also used to examine strategy use among 

older adults and younger adults. Since it is possible for different strategies to result in 

similar categorization performance scores, it is important to examine whether the types of 

strategies older adults use differ from that of younger adults. It is expected that relative to 

younger adults, older adults will rely on suboptimal rules (i.e., rule based on the more 

salient but incorrect stimulus dimension - orientation) in the RB condition. With regards 

to NRB category learning, relative to younger adults, it is expected that older adults 

would rely on RB strategies more so than NRB strategies because they may have 

difficulty switching from the dominant verbal system to the nonverbal system. 

To better understand differences in categorization performance between older and 

younger adults, we also examined the executive functioning performance of participants 

using a number of tasks that tap into working memory, inhibitory control, and set-shifting 

abilities. If RB and NRB category learning involves executive processes, then 

categorization performance should be associated with executive function measures.  
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4.4.1 Method 

4.4.1.1 Participants 

Participants included 64 younger adults (M = 18.4 years, SD  = 0.61; 27 males & 37 

females) from the University of Western Ontario who participated for course credit and 

55 older adults between the ages of 63 and 88 (M = 73.4 years, SD = 6.1; 27 males & 28 

females)14. Among the older adults there were 20 in their 60s, 24 in their 70s, and 11 in 

their 80s. Older adults were recruited from senior community centres, senior exercise 

groups and from the University of Western Ontario alumni lecture series. Older adults 

received $20 for participating in the study. Participants were pre-screened to ensure that 

they were fluent in English, they were in good health, and had normal or corrected-to-

normal vision and hearing. Participants were excluded from the study if they indicated 

that they had a history of neurological disorders, psychiatric illness, substance abuse, a 

cerebral vascular event, head trauma, and/or any other neurological conditions. All 

participants included in the study had at least 20/30 corrected vision (0.18 logMAR 

equivalent) (in line with prior cognitive aging research from Bharani et al., 2015) as 

determined by the Freiburg Visual Acuity and Contrast Test (FrACT; Bach, 2007). The 

education level of younger adults (M = 12.2 years, SD = 0.5) was significantly lower 

(t(113) = 7.05, p < .001)15 than that of older adults (M = 14.5 years, SD = 2.6) because 

my younger adult sample were still in university so their years of education is not likely 

to reflect their final education level. 

4.4.1.2 Materials 

Category Learning Task 

For the category learning task, participants classified sine-wave gratings that varied in 

spatial frequency and orientation. 80 stimuli were generated for each category set (Ashby 

                                                 

14
 Of the 64 younger adults, 49 subjects also participated in the Chapter 3 study and 15 subjects were 

newly recruited. Of the 55 older adults, 51 subjects also participated in the Chapter 3 study and 4 subjects 

were newly recruited to keep the sample size of the conditions relatively equal. 

15
 Data regarding education level was not collected from 4 older adults. 



101 

 

and Gott, 1988; Zeithamova and Maddox, 2006), with 40 stimuli in each category. We 

randomly sampled 40 values from a multivariate normal distribution described by each 

category’s parameters (shown in Table 4.1). The resulting category structures for RB and 

II category sets are illustrated in Figure 4.2. We then used the PsychoPy package (Peirce, 

2007) to generate sine wave gratings corresponding to each coordinate sampled from the 

distributions above. For both category sets sine wave grating frequency was calculated as 

f = 0.25 + (xf /50) cycles per stimulus and orientation was calculated as o = xo × (π/20) 

degrees. 

Digit Span 

Participants heard a recording of a two-digit number sequence at a rate of approximately 

one digit per second, and the participants were asked to repeat the sequence back to the 

experimenter in the same order. Participants heard three sequences at each sequence 

length and as long as they repeated at least one of them correctly they continued on to the 

next sequence length, for a maximum length of ten digits. The task was over once the 

participant was unable to repeat any of the sequences at a given length. The procedure for 

the backward digit span was the same as that for the forward digit span except that the 

participant was required to recall the digits in reverse order so that the last number was 

said first and the first number was said last, for a maximum of eight digits. The task was 

scored as the total number of correct responses. 

Alpha Span 

In this verbal working memory task created by Craik (1986), participants listened to 

recorded lists of common one-syllable words ranging in length from two to eight words 

presented at the rate of one word per second, and repeated the words back in correct 

alphabetical order. Two lists were provided at each list length, for a total of 14 lists. 

Participants were asked to recall all 14 lists in alphabetical order, regardless of whether 

they made errors when repeating the lists. This was done to provide a finer grain measure 

of working memory performance. In the scoring system, points were awarded for each 

word recalled, but only if the word was either the first or last correct word in the recalled  
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Table 4.1: Distribution parameters for rule-based and information integration category 

sets.    

________________________________________________________________________ 

Category Structure                          µf                µo              
2

f                        
2

o            cov f, o            

 

Rule-defined  

 Cat. A    280   125   75   9,000 0 

 Cat. B    320   125   75  9,000           0 

 

 Non-rule-defined 

 Cat. A     268   157   4,538  4,538  4,351 

 Cat. B    332    93   4,538  4,538  4,351 

________________________________________________________________________ 

Note. Dimensions are in arbitrary units; see the materials section for a description of the 

scaling factors. The subscripted letters o and f refer to orientation and frequency, 

respectively. 

 

 

Figure 4.2: (A) Category structure for the rule-based category set. Each light circle 

represents a stimulus from Category A and each dark circle represents a stimulus from 

Category B. The line shows the optimal boundary between the stimuli. The six sine-wave 

gratings demonstrate examples of the actual stimuli seen by participants. (B) Category 

structure for the information-integration category set. 
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series, or was a member of a correct adjacent pair during recall. For example, if a list of 

five items is recalled correctly, the score is 5 points; if the correct recall sequence for a 

list of five items is “bed, hall, milk, queen, rose, stick” and the participant responds “bed, 

hall, rose, queen, stick”, he or she would receive 3 points. “Bed” is in the correct first 

place, “hall” is in the correct adjacent pair and “stick” is in the correct last place but 

neither “rose” nor “queen” is in a correct adjacent pair in the correct order. The alpha 

span score is the total number of points awarded across all presented lists. To encourage 

participants to keep trying even if they made mistakes, they were told at the start of the 

task that they may not be able to recall all the words in a list correctly, but to try their best 

and recall as many words as possible.  

Flanker Task 

A version of the Flanker task adapted from Botvinick, Nystrom, Fissel, Carter, and 

Cohen (1999) was used. The experiment was built using REALbasic 5.1. A set of five 

arrows was presented in a row on the computer screen and participants were asked to 

indicate the direction of the central arrow (target). The target was flanked by two 

identical arrows on either side (distractors) that were either pointing in the same direction 

(congruent trial) or the opposite direction (incongruent trial) of the target arrow. The task 

consisted of 60 trials (30 congruent and 30 incongruent) presented in randomized order. 

Prior to the experiment participants received five practice trials that were not analyzed. 

The difference in mean reaction time between correct responses on congruent and 

incongruent trials (i.e., a difference score) was used as a measure of inhibitory control. 

Larger difference scores were indicative of less efficient interference control.  

Simon Task 

An adapted version of the Psychology Experiment Building Language (PEBL) 

computerized Simon task (Mueller, 2012; Simon & Rudell, 1967) was used. Participants 

were first presented with a fixation cross in the center of the screen. Immediately after the 

cross had disappeared, participants were instructed to press the left key in response to the 

red circle or the right key in response to a blue circle as fast as possible, regardless of 
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stimulus location. The timing began with the onset of the stimulus, and the response 

terminated the stimulus. On congruent trials, the stimulus location was on the same side 

as the required response and on incongruent trials the stimulus location was on the 

opposite side of the required response. The whole task consisted of 64 trials (32 

congruent trials and 32 incongruent trials) presented in randomized order to each 

participant. Prior to the experiment, participants received five practice trials that were not 

analyzed. Difference scores were calculated by computing the difference in mean 

reaction time between correct responses on congruent and incongruent trials. 

Stroop Task 

An adapted version of the PEBL computerized Stroop task (Mueller, 2012; Stroop, 1935) 

was used. Participants were instructed to indicate, as quickly and accurately as possible, 

whether each word presented on the computer screen was written in red, blue, green, or 

yellow ink using the properly labeled response buttons. Participants were instructed to 

ignore the meaning of the words and to focus on the ink colour only. The timing began 

with the onset of the word, and the response terminated the stimulus. Participants first 

completed 12 practice trials, with accuracy feedback after each trial. The actual task 

consisted of 72 trials without feedback: 24 congruent trials (i.e., “RED” in red ink), 24 

incongruent trials (i.e., “RED” in blue ink) and 24 neutral trials (i.e., non-colour word 

names like “TREE”). Difference scores were calculated by computing the difference in 

mean reaction time between correct responses on congruent and incongruent trials. 

Berg Card Sorting Test (BCST) 

Set shifting ability was assessed using the computerized PEBL abbreviated 64-card 

version of the Wisconsin Card Sorting Test (Mueller, 2012; Berg, 1948). The PEBL 

BCST-64 is highly correlated with the longer original version (perseverative errors 

r  =  .77, categories completed r  =  .86, Fox, Mueller, Gray, Raber & Piper, 2013). 

Participants were instructed to match each response card that appeared to one of the four 

reference cards at the top of the screen without being told how to match them. The 

objects on the cards differed in colour, shape, and number. Following each card 
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placement, participants received feedback as to whether their response was correct or 

incorrect. After ten sequentially correct responses, the rule was changed without notice 

and the participants had to use the feedback to identify the new sorting rule. Participants 

completed 64 trials of this task. The dependent measures were the number of categories 

completed (the number of blocks of 10 consecutive correct matches) and the number of 

perseverative errors (an incorrect response to a changed/new category that would have 

been correct for the immediately preceding category). 

Wechsler Abbreviated Scale of Intelligence (WASI) Test 

Standardized scores on the WASI vocabulary and matrix reasoning sub-tests (Wechsler, 

1999) were used to calculate the Full Scale Intellectual Quotient. WASI subtests were 

used to provide estimates of verbal and nonverbal intelligence.  

4.4.1.3 Procedure 
 

Session 1 

Participants were tested individually across two testing sessions, approximately one week 

apart. Younger adults were tested in the Categorization Lab at the University of Western 

Ontario. Older adults were tested in the Categorization Lab at the University of Western 

Ontario or in a quiet room in the senior centre. Participants first completed the FrACT 

vision test so that an objective measure of visual acuity could be obtained in addition to 

the participant’s subjective report of their vision.  

Next participants completed the RB or II category learning task. They were given initial 

instruction that they would be seeing a “crystal ball” on the screen and their job was to 

determine whether that crystal ball belonged to the blue wizard category or the green 

wizard category (see Figure 4.3). They were instructed to press the key labeled “green” to 

make a green wizard response and to press the key labeled “blue” to make a blue wizard 

response. Participants were told they would receive feedback after every response, and 

that they should use this feedback to help them learn to make as many correct responses 

as possible. Participants were presented with four blocks of the 80 stimuli, 320 trials in  
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Figure 4.3: An example of a correct trial in the categorization task. Feedback was 

presented after each response (“correct” or “incorrect”). 

 

 

total. Within a block, the order of presentation of all 80 stimuli in the category set was 

randomized. On each trial, participants saw the crystal ball in the center of the screen and 

a blue wizard and green wizard in the upper left and upper right corner of the screen. 

Upon making a response, feedback was delivered in the space between the stimulus and 

the two wizards. The word “correct” or “incorrect” was presented after each response. 

Following the category learning task, participants received a short break, after which they 

completed the BCST and the alpha span task.  

Session 2 

Participants completed either the Type II or Type IV Shepard, Hovland, and Jenkins 

category set (this data were collected for the study in Chapter 3 which was not part of the 

current study). Following completion of Type II or Type IV category set, participants  
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completed the Flanker task, Simon task, and Stroop task. Following the Stroop task, 

participants received a short break, after which they were administered the forward and 

backward digit span. Lastly, participants completed the WASI. Each testing session 

lasted approximately one hour. 

4.4.2 Results 

4.4.2.1 Category Learning Accuracy 

The RB and II categorization performance of younger adults and older adults was 

calculated for each 80-trial block. The resulting RB and II learning curves are presented 

in Figure 4.4. A 2 (age group: older vs. younger) x 2 (category type: RB vs. II) x 4 

(learning block) ANOVA was conducted. Results revealed a main effect of age group 

[F(1, 115) = 52.85, p < .001, partial η2 = .315], category type [F(1, 115) = 18.51, p < 

.001, partial η2 = .139] and block [F(2.7, 306) = 37.14, p < .001, partial η2 = .244; 

Greenhouse-Geisser corrected]. The age group x block interaction [F(2.7, 306) = 4.98, p 

= .003, partial η2 = .042; Greenhouse-Geisser corrected] and the category type x block 

interaction [F(2.7, 306) = 9.56, p < .001, partial η2 = .077; Greenhouse-Geisser corrected] 

were significant. The age group x condition interaction [F(1, 115) = 1.32, p = .253] and 

the three-way interaction [F(2.7, 306) = .49, p = .687] were not significant. In order to 

further explore the effects of age within each category type of the category type x block 

interaction, we conducted two separate ANOVAs (one for the RB category set and one 

for the II category set). 

A 2 (age group) x 4 (block) ANOVA was carried out on RB categorization performance 

and revealed a main effect of age group [F(1, 58) = 27.07, p < .001, partial η2 = .318], 

suggesting better overall RB performance for the younger (M = .78) than the older (M = 

.63) adults. There was also a main effect of block [F(2.6, 150) = 34.1, p < .001, partial η2 

= .370; Greenhouse-Geisser corrected], indicating that participants learned across the 

study. The age group x block interaction was marginally significant [F(2.6, 150) = 2.74, p 

= .054, partial η2 = .045; Greenhouse-Geisser corrected], suggesting the two groups 

differed slightly more later in learning compared with earlier in learning. 
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Figure 4.4: Categorization performance of younger adults and older adults across 

learning blocks in (A) the RB category set and (B) the II category set. Error bars denote 

the standard error of the mean. 
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A 2 (age group) x 4 (block) ANOVA was also carried out for II categorization 

performance and revealed a main effect of age group [F(1, 57) = 27.45, p < .001, partial 

η2 = .325], suggesting better overall II performance for the younger (M = .68) than the 

older (M = .57) adults. There was also a main effect of block [F(3, 171) = 6.26, p < .001, 

partial η2 = .099], indicating that participants learned across the study. The age group x 

block interaction was significant [F(3, 171) = 2.76, p = .044, partial η2 = .046], 

suggesting the two groups differed to a larger extent later in learning compared with 

earlier in learning. 

IQ scores were also examined to determine whether categorization performance was 

associated with performance on the WASI. Among older adults, IQ was not correlated 

with average categorization performance on the RB category set [r = .28, p = .18] and the 

II category set [r = .26, p = .21]. Similarly, among younger adults, IQ was not correlated 

with average categorization performance on the RB category set [r = -.16, p = .38] and 

the II category set [r = .25, p = .18]. In addition, the IQ scores of older adults (M = 115, 

SD = 14.7) did not significantly differ from the IQ scores of younger adults (M = 113, SD 

= 10.4), t(111) = .88, p = .38, suggesting that younger adults were not outperforming 

older adults because they had significantly higher IQ scores. The WASI was not 

administered to 5 older adults and 1 younger adult due to time limitations. 

The age of older adults was also considered, and it was determined that age was not 

correlated with RB categorization performance [r = .12, p = .54] in older adults, but was 

marginally correlated with II categorization performance [r = -.37, p = .052]. 

4.4.2.2 Computational Modeling  

The accuracy-based analyses of the categorization data suggested that older adults 

struggled relative to younger adults when learning both RB and II category sets. While 

accuracy data are a useful measure of overall categorization performance, it provides 

little information about the types of decisions strategies that participants use to learn the 

category set. Qualitatively different strategies can result in similar accuracy rates among 

participants. For example, applying a single-dimensional RB strategy can result in 

reasonable categorization performance when applied in the information integration 
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category set (i.e., up to 70% correct), which is comparable to what might be seen by 

participants employing procedural-based II strategies. For these reasons, we fit a set of 

decision bound models to each block of each participant’s data (for details see Ashby and 

Maddox, 1992; Maddox and Ashby, 1993; Miles et al., 2014; Rabi and Minda, 2014). 

These models work by comparing the actual response of the participant to the response 

they would have given had they used a specific type of strategy. The model is considered 

to fit the participant’s data when the model’s predicted response corresponds with the 

participant’s categorization response.  

 

Two specific RB models were applied to the data. The first is the single-dimensional 

frequency model, which assumes each participant’s performance was based on a single-

dimensional rule along the frequency dimension with a fixed intercept. The second is the 

single-dimensional orientation model, which assumes a single-dimensional rule along the 

orientation dimension with the intercept as a free parameter. A second class of models is 

consistent with the assumption that performance is based on the two-dimensional, 

information-integration boundary with a fixed intercept and slope. A third class of 

models is the random responder model (“guessing model”), which assumes that the 

participant guessed or applied different strategies across trials within a block. I fit two 

random responder models that assumed no dimensional strategy (one assumed that 

participants randomly responded A or B with equal probability for each response and the 

other assumed unequal probability). These models were fit to each subject’s data by 

maximizing the log likelihood. Model comparisons were carried out with the AIC index, 

which penalizes a model for the number of free parameters (Ashby and Maddox, 1992). 

For every participant, at every block, the class with the best fitting strategy (i.e., the one 

with the lowest AIC value) was identified. For the RB category set, the single-

dimensional frequency model was the optimal model and for the II category set, the two-

dimensional II model was the optimal model.   

 

The proportion of older adults and younger adults who were best fit by the optimal model 

for the category set that they learned is shown in Figure 4.5. Panel A shows that for both 

older adults and younger adults, RB category learning improved over time, evidenced by  

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00035/full#B6
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00035/full#B6
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00035/full#B16
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00035/full#B25
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00035/full#B6
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Figure 4.5: The proportion of participants, by block, whose data were fit by the optimal 

model. (A) shows data from participants who learned the RB category set and (B) shows 

the data from participants who learned the II category set. 
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an increase in the number of participants fit by the optimal RB model across learning 

blocks. However, a larger proportion of younger adults were using the optimal RB 

strategy compared to older adults. A 2 –test comparing the frequency of optimal RB 

strategy users with other strategy users during the final learning block, confirmed that 

younger adults were more likely to use the task appropriate strategy in the RB condition 

compared to older adults [2(1) = 9.82, p = .002]. Table 4.2 displays the proportion of 

participants best fit by each type of model, showing that by the final RB learning block, 

33% of older adults were best fit by the guessing model (compared to only 3% of 

younger adults). Aside from not applying the correct strategy during the RB task, the 

overall categorization performance of older adults could also have been lower because 

they took longer to transition to the correct strategy compared to younger adults. For 

example, Table 4.2 shows that 11% of older adults were using a suboptimal rule based on 

orientation during block 3 but by block 4 no older adults relied on an orientation based 

strategy. Results supported this line of thought, showing that older adults (M = 2.1) 

applied the optimal RB strategy across significantly fewer blocks than younger adults (M 

= 3.5), F(1, 58) = 17.46, p < .001, partial η2 = .231. Use of the correct strategy was 

associated with categorization performance, in that the number of blocks in which a 

participant used the optimal RB strategy significantly predicted final block categorization 

performance in both older adults [R2 = .535, F(1, 25) = 28.74, p < .001] and younger 

adults [R2 = .388, F(1, 31) = 19.63, p < .001]. 

 

For the II category set, Panel B shows that among younger adults, the proportion fit by 

the optimal II model increased over learning blocks, however very few older adults 

applied a procedural-based II strategy across blocks. A 2 –test comparing the frequency 

of optimal II strategy users with other strategy users during the final learning block, 

confirmed that younger adults were more likely to use the task appropriate strategy in the 

II condition compared to older adults [2(1) = 8.51, p = .004]. As shown in Table 4.2, 

aside from using the optimal II strategy (45%), a subset of younger adults also used a RB 

frequency strategy (39%), as well as guessing (16%) during the final learning block. In 

comparison, only 11% of older adults applied an II strategy when learning the II category 

set. The large majority of older adults adopted a rule based on frequency during II  
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Table 4.2: Number of participants fit by each class of decision bound models. 

________________________________________________________________________ 

Model 

________________________________________________________________________ 

Category        Frequency              Orientation                     II                        Random    

                                 OA        YA               OA        YA             OA         YA           OA       YA 

 

              Block 1          0.41       0.82             0.00       0.00             0.00        0.00          0.59     0.18 

              Block 2          0.44       0.79             0.04       0.00             0.00        0.03          0.52     0.18 

              Block 3          0.59       0.88             0.11       0.00             0.00        0.03          0.30     0.09 

              Block 4          0.67       0.97             0.00       0.00             0.00        0.00          0.33     0.03 

            

 

  

              Block 1          0.43      0.58              0.04       0.03             0.14        0.23          0.39     0.16 

              Block 2          0.64      0.55              0.04       0.06             0.00        0.29          0.32     0.10 

              Block 3          0.54      0.45              0.04       0.03             0.14        0.42          0.28     0.10 

              Block 4          0.61      0.39              0.03       0.00             0.11        0.45          0.25     0.16 

________________________________________________________________________ 

 

Note. Random refers to a model based on guessing. The optimal model is shown in bold. 

 

 

 

learning (61% by block 4), with the remaining older adults applying a suboptimal rule 

based on orientation (3%) or guessing (25%) during the final learning block. Not 

surprisingly based on the findings reported in Table 4.2, older adults (M = .40) applied 

the optimal II strategy across significantly fewer blocks than younger adults (M = 1.4), 

F(1, 57) = 10.62, p = .002, partial η2 = .157. Given that procedural-based II category 

learning generally takes longer to master compared to RB learning (i.e., transitioning 

from the default explicit RB system to the implicit system), it seems reasonable that 

RB   

II 
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fewer participants were fit by the optimal model during II category learning compared to 

RB learning. Interestingly, use of the correct strategy was associated with the 

categorization performance of younger adults but not older adults. That is, the number of 

blocks in which a participant used the optimal II strategy significantly predicted final 

block categorization performance in younger adults [R2 = .450, F(1, 29) = 23.70, p < 

.001] but not older adults [R2 = .00, F(1, 26) = .003, p = .96]. However, frequent use of a 

RB strategy across blocks was predictive of final block performance on the II task in 

older adults [R2 = .451, F(1, 26) = 21.32, p < .001]. 

 

4.4.2.3 Categorization accuracy among task appropriate strategy    
users 

To examine whether older adults’ general accuracy deficit in average categorization 

performance resulted form using a non-task appropriate strategy, I examined average 

categorization performance only for older adults and younger adults who adopted the task 

appropriate strategy in the final block. In the RB task, for those individuals using the task 

appropriate strategy, the average categorization performance of older adults (M = .68) 

still significantly differed from that of younger adults (M = .78) [t(48) = 3.61, p = .001], 

suggesting that older adults were applying the RB strategy less consistently than younger 

adults. To confirm this prediction, the AIC model fit values of older adults and younger 

adults who used the task appropriate strategy in the RB category set were compared. The 

smaller the fit, the better the rule describes the data. A t-test comparing the RB model fit 

value of older adult and younger adult learners was significant [t(48) = 5.13, p > .001], 

confirming that older adults were less consistent in the application of their RB strategy.  

In the II category learning task, for those individuals using the task appropriate strategy, 

the average categorization performance of older adults (M = .60) significantly differed 

from that of younger adults (M = .74) [t(15) = 4.40, p = .001]16. However, given that only 

3 older adults applied an II strategy when learning the II category set (the majority 

                                                 

16
 For both the RB task and the II task, results were equally significant when final block categorization 

performance was examined rather than average categorization performance. 
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applied a RB strategy), this small sample of older adults using the appropriate strategy 

precluded us from drawing strong conclusions. 

4.4.2.4 Executive Functioning  

To examine the relationship between RB and II category learning and executive 

functioning, average categorization performance was correlated with the various 

executive functioning measures in older and younger adults (see Tables 4.3 and 4.4)17. 

Among older adults, RB performance was correlated with the number of categories 

completed in the BCST and marginally correlated with backward digit span. When 

controlling for the age of older adults, RB performance remained significantly correlated 

with BCST [r = .48, p = .02] but was no longer correlated with BDS [r = .28, p = .20]. 

The RB performance of younger adults was not correlated with any of the executive 

functioning measures. Among older adults, II performance was marginally correlated 

with backward digit span18. After controlling for age, since as mentioned earlier II 

performance was marginally correlated with the age of older adults, II performance was 

significantly correlated with backward digit span [r = .41, p = .038]. The II performance 

of younger adults was correlated with the number of categories completed in the BCST. 

These findings suggest that working memory and task switching may be important for 

both RB and II category learning. 

 

                                                 

17
 The scores of some participants were not included in the analyses because the task was not completed 

due to time limitations, computer error, or because the participant made too many errors on the task 

indicating a lack of understanding (this was in reference to the inhibition tasks where participants made 

errors on more than 50% of the incongruent trials and on the BCST where participants learned 0 

categories). Flanker data was missing from 3 older adults and 3 younger adults. Stroop data was missing 

from 6 older adults. Simon data was missing from 1 older adult. Alpha span data was missing from 2 older 

adults and 15 younger adults. BCST data was missing from 7 older adults. 

18
Accuracy data was also considered for the inhibition measures (i.e., number of errors on incongruent 

trials). The II performance of older adults was found to correlate with accuracy on the Simon task [r = -.39, 

p = .047]. That is, better II performance was associated with fewer errors on incongruent trials in the Simon 

task. However, after controlling for the age of older adults, this relationship was no longer significant [r = -

.28, p = .16] No other accuracy data correlated with the categorization performance of older and younger 

adults. 



116 

 

Table 4.3: Intercorrelations among the study variables for older adults. 

______________________________________________________ 
 

Variable                                              RB             II 

______________________________________________________ 

 

Forward Digit Span                            .337              -.051         

Backward Digit Span                         .347†            .354†       

Alpha Span                                         .231                      .237       

Flanker Difference Score                  -.041              .054         

Simon Difference Score                     .159                    -.038        

Stroop Difference Score                    -.044              .100          

BCST Categories Completed             .462*               .150  

BCST Perseveration Errors               -.233              -.282          

______________________________________________________ 

Note. Executive functioning measures were correlated with average categorization 

performance. Two-tailed t-tests: * p < .05, 
†
p < .075. 

Table 4.4: Intercorrelations among the study variables for younger adults. 

______________________________________________________ 
 

Variable                                              RB             II 

______________________________________________________ 

 

Forward Digit Span                            .184              -.144         

Backward Digit Span                         .022            .237       

Alpha Span                                         .059                      .022       

Flanker Difference Score                   .129             -.036 

Simon Difference Score                    -.082                    -.188        

Stroop Difference Score                    -.018              -.120          

BCST Categories Completed            -.070               .366*  

BCST Perseveration Errors                .003              -.058          

______________________________________________________ 

Note. Executive functioning measures were correlated with average categorization 

performance. Two-tailed t-tests: * p < .05. 



117 

 

In addition to accuracy data, I was also interested in the relationship between strategy use 

and executive functioning. I compared the executive functioning performance of 

participants using task appropriate and inappropriate strategies. It is noteworthy that for 

both the RB task [t(25) =.29, p = .78] and the II task [t(26) =.29, p = .77], age did not 

differ as a function of strategy among older adult participants. For the RB task, forward 

digit span [t(25) = 2.0, p = .05], backward digit span [t(25) = 2.3, p = .03], and BCST 

[t(21) = 3.6, p = .002] performance (number of categories completed) was significantly 

better among older adults using the task appropriate RB strategy compared to older adults 

using a task inappropriate strategy (appropriate vs. inappropriate strategy: forward digit 

span [M = 18.9 vs. M = 16.4], backward digit span [M = 10.8 vs. M = 8.0], and BCST 

categories completed [M = 3.4 vs. M = 1.7]). No other comparisons were significant (all p 

values > .20) for older adults in the RB condition. I did not compare executive 

functioning performance and strategy use among younger adults in the RB condition, 

because only one younger adult used a task inappropriate strategy during the final RB 

learning block. As well, I did not compare executive functioning performance and 

strategy use among older adults in the II condition, because only three older adults used 

the optimal II strategy. Among younger adults in the II condition, Flanker task accuracy 

[t(29) = 1.9, p = .066] and BCST performance (number of perseveration errors) [t(29) = 

1.7, p = .09] was marginally better among younger adults using the task appropriate 

strategy (appropriate vs. inappropriate strategy: Flanker errors on incongruent trials [M 

=1.0 vs. M = 2.3] and BCST perseveration errors [M = 5.9 vs. M = 6.9]). No other 

comparisons were significant (all p values > .19). 

4.4.3 Discussion 

Study 1 compared the ability of older adults and younger adults to learn RB and NRB 

categories. In line with my predictions, younger adults performed significantly better than 

older adults on both the RB and NRB category learning task. IQ was not responsible for 

RB and NRB performance differences between age groups and within age groups, ruling 

out the possibility that IQ was influencing category learning abilities. When the age of 

older adults was considered, age did not correlate with the RB performance of older 

adults and was marginally correlated with NRB performance, suggesting that among 
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older adults, getting older may be associated with declines in the functioning of the 

nonverbal system.  

In the present study, model-based analyses were used to better understand the RB and 

NRB category learning deficits seen among older adults. Younger adults were more 

likely to use the task appropriate strategy in the RB condition compared to older adults. 

Results revealed that random responding (i.e., guessing) accounted for older adult’s 

poorer performance. This finding is comparable to that of Bharani et al. (2016) who also 

found that a subset of older adults performed below 60% accuracy on the RB task. While 

a subset of older adults in the present study were best fit by guessing models during the 

final block of the RB task, I suspect that this was because older adults were frequently 

switching rules during the task, rather than because they were randomly responding. 

Applying the incorrect, but more salient rule based on the orientation of the lines in the 

Gaussian blur, would result in frequent negative feedback. In line with this theory, when 

describing their strategy at the end of the task, a large majority of older adults reported 

starting with the orientation of the lines, but switched after receiving feedback. As a 

result, it seems likely that older adults kept switching rules to avoid negative feedback, 

but never arrived at the correct rule. Bharani and colleagues (2016) also suggested that 

what might have appeared as random responding among the low-performing older adults, 

may actually have been a result of frequent strategy shifts. Aside from not applying the 

task appropriate strategy during the RB task, analyses suggest that older adults struggled 

with the task because they took longer to transition to the correct strategy compared to 

younger adults. Older adults applied the task appropriate RB strategy across significantly 

fewer blocks compared to younger adults. Furthermore, it took older adults longer to 

complete the hypothesis testing process relative to younger adults.  

For the NRB category set, again younger adults were more likely to use the task 

appropriate strategy compared to older adults. The large majority (64% by the final 

learning block) of older adults adopted a RB strategy during II learning. Additionally, 

older adults applied the optimal NRB strategy on fewer blocks than younger adults. 

Model-based analyses confirmed that for younger adults, frequent use of the NRB 

strategy predicted better categorization performance. In contrast, for older adults, 
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frequent use of a RB strategy was significantly associated with categorization accuracy. 

Interestingly, while older adults struggled to identify the task appropriate NRB strategy, 

they managed to identify and consistently apply a RB strategy, even though it was a less 

effective strategy. Maddox et al. (2010) also established that younger adults showed a 

performance advantage relative to older adults on the NRB task. Conversely, Maddox et 

al. found that both age groups relied on the appropriate NRB strategy, but that older 

adults may have been less consistent in their strategy use which runs counter to the 

present findings that older adults relied on RB strategies more frequently in the NRB 

category set. However, the present research is in line with earlier research by Huang-

Pollock and colleagues (2011), who showed that children relied on RB strategies during a 

NRB categorization task. Given the parallels between children and older adults (both age 

groups show reduced executive function abilities relative to younger adults; Carver, 

Livesey, & Charles, 2001; Craik & Bialystok, 2006; Dempster, 1992; Gathercole, 

Pickering, Ambridge, & Wearing, 2004), this finding may suggest that executive 

functioning plays an important role in category learning.   

The categorization performance of older adults and younger adults who adopted the task 

appropriate RB strategy in the final learning block was also examined. The categorization 

performance of older adults still significantly differed from younger adults, suggesting 

that older adults were applying the RB strategy less consistently than younger adults. 

Model fit values confirmed that older adults were less consistent in the application of the 

task appropriate RB strategy compared to younger adults. These findings suggest that 

older adults struggle with single-dimensional RB learning, and even when they do apply 

the appropriate RB strategy, they struggle to apply it consistently. In the NRB task, 

among those using the task appropriate strategy, the categorization performance of older 

adults also significantly differed from younger adults. However, very few older adults 

relied on a NRB strategy in the NRB task, limiting the conclusions that can be drawn. 

The executive function abilities of older adults and younger adults were considered. 

When controlling for the age of older adults, the RB performance of older adults was 

correlated with BCST performance. To further explore the relationship between RB 

category learning and executive functioning in older adults, I compared the executive 
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functioning performance of older adults using task appropriate and inappropriate 

strategies. Age did not differ as a function of strategy use among older adults, indicating 

that appropriate RB strategy use was not driven by the age of the older adult participant. 

Results revealed that forward digit span, backward digit span and BCST performance 

was significantly better among older adults using the task appropriate RB strategy 

compared to older adults using a task inappropriate strategy. These findings imply that 

executive function abilities (specifically set-shifting and working memory) are important 

when learning RB categories in older adults, which is in line with the COVIS theory of 

category learning (Filoteo, Lauritzen, & Maddox, 2010; Nomura & Reber, 2008). The 

RB performance of younger adults was not correlated with any of the executive 

functioning measures. Younger adults performed very well on the RB task with nearly 

everyone adopting the correct RB strategy. Given their high categorization accuracy and 

well-developed executive function abilities, it is not surprising that categorization 

performance did not correlate with executive function measures in younger adults.  

For the NRB category set, after controlling the age of older adults, NRB performance was 

significantly correlated with backward digit span, suggesting that stronger working 

memory abilities are associated with better NRB performance. Given that a large subset 

of older adults relied on a RB strategy in the NRB category set, this finding may imply 

that working memory is needed to apply a RB strategy in the NRB category set. To few 

older adults utilized a NRB strategy to compare task appropriate vs. inappropriate 

strategy use in the NRB task. The NRB task is considered more difficult to learn and is 

also thought to require more time to learn. For this reason, there was more variability in 

the NRB performance of younger adults. The NRB performance of younger adults was 

correlated with BCST performance, which is consistent with prior literature (e.g., 

Maddox et al., 2010) and suggests that set-shifting abilities are important from shifting 

from the verbal to nonverbal system. When strategy use was taken into account, Flanker 

and BCST performance were marginally better among younger adults using the task 

appropriate strategy compared to younger adults using the task inappropriate strategy. 

This again suggests that set-shifting and possibly inhibitory control may be important for 

inhibiting the dominant verbal system, and switching to the nonverbal system. 
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4.5 Study 2 

Study 1 demonstrated that younger adults outperformed older adults on both the RB and 

NRB category sets. Since executive functions are known to play a key role in learning 

RB categories, I was particularly interested in examining whether pre-training would 

reduce RB category learning deficits in older adults. While executive functioning has also 

been linked to NRB learning, it has more so been associated with the transition between 

systems (verbal to nonverbal) and does not seem to be strongly associated with the actual 

learning of implicit, NRB categories. The average categorization performance of older 

adults in Study 1 was 63%, compared to 78% in younger adults, with a number of older 

adults relying on guessing strategies (which may reflect constant rule switching which 

resembles “guessing-like” performance). For this reason, the focus of Study 2 was on 

improving the performance of older adults on the complex single-dimensional RB 

category set through a pre-training procedure aimed at reducing executive function task 

demands. In Study 2, pre-training involved two phases. Participants viewed sample 

Gabor patches presented in pairs, taken from the category set. They were asked to 

verbally describe each of the Gabor patches. The second phase of pre-training involved 

asking participants to complete a small set of trials from an easier version of the RB 

categorization task. During these 20 trials the Gabor patches were presented in the same 

manner as in Study 1 (i.e., you see the Gabor patch, make a response, and receive 

feedback). The only difference being that Category A and B stimuli sat farther away from 

the optimal decision boundary (the frequency rule). Furthermore, variation in the 

frequency dimension was a little easier to detect. Next, participants completed the 

complex single-dimensional RB category set presented in Study 1. By familiarizing 

participants with the stimuli prior to categorization, as well as presenting them with easier 

category exemplars before moving to more difficult category exemplars, it was expected 

that older adults would perform better on the complex RB categorization task. This is 

because, providing pre-training should reduce the executive function demands of the task. 

By verbally describing the stimuli, participants should become familiar with the fact that 

the Gabor patches vary along two dimensions: frequency and orientation. This would in 

turn, allow participants to inhibit the incorrect but more salient rule more easily, and 

update this information in their working memory. Likewise, by having participants 
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categorize the easier category exemplars first, this should allow them to rule out different 

hypothesis testing strategies more easily.  

While prior studies have examined RB category learning in older adults, the pre-train 

study described in Chapter 3, is the only other study to examine methods for improving 

RB categorization performance in older adults. The Chapter 3 study looked at the impact 

of pre-training on both multi-dimensional RB and NRB category learning. The present 

study will not only confirm the effects of pre-training on the RB categorization 

performance of older adults, but will also extend my Chapter 3 findings by examining a 

new category set (i.e., single-dimensional RB category set) and provide information 

regarding the types of categorization strategies used by both older adults and younger 

adults following pre-training. Yes the RB categorization performance of older adults may 

improve following pre-training, but it is often difficult to differentiate whether this 

change in performance is due to a change in strategy type or due to more consistent use 

of the appropriate strategy. Computational modeling of strategy use will help tease apart 

which factor is influencing categorization performance. To provide further insights into 

individual differences in RB categorization performance among older adults, 

performance on a series of executive function measures was also examined. With regards 

to this relationship, two possibilities exist. Among older adults, those with stronger 

executive functioning abilities would benefit more so from pre-training allowing them to 

formulate and apply the rule more quickly. Conversely, older adults may benefit from 

pre-training regardless of executive functioning, suggesting that pre-training reduced 

categorization task demands enough so that participants could perform well on the task 

regardless of execution functioning abilities. 

4.5.1 Method 

4.5.1.1 Participants 

Participants included 31 younger adults (M = 18.6 years, SD  = 0.85; 18 males & 13 

females) from the University of Western Ontario who participated for course credit and 

26 older adults between the ages of 63 and 88 (M = 72.6 years, SD = 7.03; 9 males & 17 
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females)19. Among the older adults there were 12 in their 60s, 9 in their 70s, and 5 in 

their 80s. Older adults were recruited from senior community centres, senior exercise 

groups and from the University of Western Ontario alumni lecture series. Older adults 

received $20 for participating in the study. Participants were pre-screened to ensure that 

they were fluent in English, they were in good health, and had normal or corrected-to-

normal vision and hearing. Participants were excluded from the study if they indicated 

that they had a history of neurological disorders, psychiatric illness, substance abuse, a 

cerebral vascular event, head trauma, and/or any other neurological conditions. All 

participants included in the study had at least 20/30 corrected vision (0.18 logMAR 

equivalent) as determined by the Freiburg Visual Acuity and Contrast Test (FrACT; 

Bach, 2007). The education level of younger adults (M = 12.3 years, SD = 0.74) was 

significantly lower (t(26.7) = 4.47, p < .001)20 than that of older adults (M = 14.9 years, 

SD = 2.8) because my younger adult sample were still in university so their years of 

education is not likely to reflect their final education level. 

4.5.1.2 Materials 

The category learning task and executive functioning measures were identical to what 

was used in Study 1. 

4.5.1.3 Procedure 

Session 1 

Participants were tested individually across two testing sessions, approximately one week 

apart. Younger adults were tested in the Categorization Lab at the University of Western 

Ontario. Older adults were tested in the Categorization Lab at the University of Western 

Ontario or in a quiet room in the senior centre. Participants first completed the FrACT 

                                                 

19
 Of the 31 younger adults, 26 subjects also participated in the Chapter 3 study and 5 subjects were newly 

recruited. Of the 26 older adults, 25 subjects also participated in the Chapter 3 study and 1 subject was 

newly recruited to keep the sample size of the conditions relatively equal. 

20
 Data regarding education level was not collected from 1 older adult. 
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vision test so that an objective measure of visual acuity could be obtained in addition to 

the participant’s subjective report of their vision.  

 

Next participants completed the RB category learning task. Prior to the categorization 

task, participants received pre-training in an effort to minimize task demands and 

familiarize participants with the stimulus dimensions. At the beginning of pre-training, 

participants were shown eight crystal ball sine-wave gratings with varying frequency and 

orientation. The eight crystal ball stimuli were presented in pairs of two (side by side), to 

encourage participants to compare sine-wave gratings with each other (see Figure 4.6). 

Participants were instructed to describe each of the crystal balls aloud. The eight crystal 

ball stimuli were chosen to have a range of frequency and orientation values. Following 

the description stage of pre-training, participants began the RB categorization task. The 

categorization task was similar to Study 1 except that twenty crystal ball images were 

presented before the standard 320 trials, which were considered easier to categorize (i.e., 

members of category A and B were more easy to distinguish from one another) than the 

remaining 320 trials. Initial training with easier stimuli should facilitate RB learning, by 

reducing the likelihood that older adults will rely on salient but irrelevant rules (i.e., a 

rule based on the orientation of the lines). The logic for starting with easier trials was 

based on prior research showing that best way to learn a difficult cognitive task is to 

 

 

Figure 4.6: Sample crystal ball sine wave gratings seen by participants during the pre-

training stage of the category learning task. 
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begin with easy examples, and then transition to more difficult examples (Squires, 

Hunkin, & Parkin, 1997; Wilson, Baddeley, Evans, & Shiel, 1994; Ahissar & Hochstein, 

1997). The category structure and distribution parameters for the easier rule-based 

category set are presented in Figure 4.7 and Table 4.5. The frequency parameter was 

altered so that Category A and B stimuli were slightly more distinct from each other 

along the frequency dimension (i.e., the varying frequency of the lines were more 

apparent). As well, variation along the orientation dimension was decreased, so that the 

orientation dimension was slightly less salient. Eighty stimuli were created using the 

same protocol as described in Study 1, and 20 stimuli were randomly sampled to be used 

during the beginning 20 trials of the category learning task.  

Following the category learning task, participants received a short break, after which they 

completed the BCST and the alpha span task.  

Session 2 

Participants completed either the Type II or Type IV Shepard, Hovland, and Jenkins 

category set (this data were collected for the study in Chapter 3 which was not part of the 

current study). Following completion of Type II or Type IV category set, participants 

completed the Flanker task, Simon task, and Stroop task. Following the Stroop task, 

participants received a short break, after which they were administered the forward and 

backward digit span. Lastly, participants completed the WASI. Each testing session 

lasted approximately one hour. 

4.5.2 Results 

4.5.2.1 Category Learning Accuracy 

Given that declines in executive functioning are associated with normal aging, I expected 

that following pre-training, younger adults would still outperform older adults on the RB 

task even though task demands were reduced. For this reason, I was primarily interested 

in examining how pre-training performance compared to control performance among 

older adults and younger adults separately. The learning curves are presented in Figure 
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Figure 4.7: The easy rule-based category structure. Twenty stimuli were randomly 

sampled and presented to participants at the start of the category learning task. The 

vertical line separating Category A and Category B represents the strategy that 

maximizes categorization accuracy. Points on the left are members of Category A and 

points on the right are members of Category B. 

 

 

 

Table 4.5: Distribution parameters for categorization stimuli used during the first 20 

trials.   

________________________________________________________________________ 

Category Structure                          µf                µo              
2

f                        
2

o            cov f, o            

 

 Cat. A    270   125   75   5,000  0 

 Cat. B    330   125   75  5,000            0 

________________________________________________________________________ 

Note. Dimensions are in arbitrary units; see the materials section for a description of the 

scaling factors. The subscripted letters o and f refer to orientation and frequency, 

respectively.  



127 

 

4.8. RB pre-training data were compared with RB control data (this data were taken from 

Study 1) by carrying out a 2 (condition: pre-train vs. control) x 4 (block) ANOVA for 

each age group. Among older adults, there was a main effect of condition; participants in 

the pre-train condition (M = 0.70) performed significantly better than those in the control 

condition (M = 0.63) [F(1, 51) = 4.76, p = .03, partial η2 = .085]. A main effect of block 

was also found, indicating that categorization accuracy improved over time, [F(2.5, 129) 

= 14.28, p < .001, partial η2 = .219; Greenhouse-Geisser corrected]. The group x block 

interaction was not significant [F(2.5, 129) = 0.24, p = .84, partial η2 = .005; Greenhouse-

Geisser corrected], indicating that older adults in both conditions demonstrated learning 

across trials. It should be noted that among older adults, age was correlated with average 

categorization performance on the RB pre-train task [r = -.56, p =.003], indicating that 

performance declines were associated with being older.  

A 2 (condition: pre-train vs. control) x 4 (block) ANOVA was carried out for younger 

adults. There was a main effect of condition [F(1, 61) = 5.47, p = .02, partial η2 = .082], 

indicating that participants in the pre-train condition (M = 0.82) performed significantly 

better than those in the control condition (M = 0.77). A main effect of block was also 

found, [F(2.2, 136) = 43.41, p < .001, partial η2 = .416; Greenhouse-Geisser corrected], 

indicating that learning occurred across blocks. Lastly, the block x condition interaction 

was significant [F(2.2, 136) = 4.19, p = .014, partial η2 = .064; Greenhouse-Geisser 

corrected]. Bonferroni post-hoc comparisons indicated that younger adults in the pre-

training condition performed significantly better than younger adults controls on blocks 1 

(Mpre-train = .76, Mcontrol = .68; p = .007) and block 2 (Mpre-train = .83, Mcontrol = .75, p = 

.007) but not during blocks 3 (Mpre-train = .84, Mcontrol = .81, p = .32) and 4 (Mpre-train = .86, 

Mcontrol = .85, p = .57). These findings suggest that pre-training effects emerged early on, 

helping younger adults to discover and apply the rule more successfully than those 

participants in the control condition. IQ was correlated with the average RB pre-train 

performance of older adults [r = .47, p = .02]. IQ was not correlated with the average RB 

pre-train performance of younger adults [r = .22, p = .26]. Additionally, older adults (M = 

116, SD = 14.3) had a significantly higher IQ score compared to younger adults (M = 

107, SD = 11.5), t(50) = 2.51, p = .012, confirming that younger adults were not  
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Figure 4.8: Average proportion of correct responses to stimuli in the pre-train and 

control condition as a function of trial block among (A) older adults and (B) younger 

adults. Error bars denote standard error of the mean. 
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outperforming older adults because of differences in IQ. The WASI was not administered 

to 3 older adults and 2 younger adults due to time limitations. 

4.5.2.2 Computational Modeling 

For insight into the response strategies used by older and younger adults, I fit decision 

bound models to each block of each participant’s data (for details please see Study 1). 

The proportion of older adults and younger adults who were best fit by the optimal model 

for the category set that they learned is shown in Figure 4.9. Panel A and B shows that 

the proportion of participants fit by the optimal RB model increased over time for both 

older adults and younger adults. A 2 –test comparing the frequency of optimal RB 

strategy users with other strategy users during the final learning block was conducted. 

Among older adults, the proportion fit by the task appropriate strategy was not 

significantly higher among pre-trained participants compared to control participants 

[2(1) = 1.36, p = .24], suggesting that performance differences were a result of strategy 

consistency rather than appropriate strategy use. AIC model fit values of older adults who 

used the task appropriate strategy in the control and pre-train conditions were examined. 

Older adults in the pre-train condition had significantly better model fit values than older 

adults in the control condition [t(37) = 2.02, p = .05], suggesting that those in the pre-

train condition applied the RB strategy more consistently. Nearly all of the younger 

adults were fit by the task appropriate strategy by the final learning block (97% of control 

participants and 100% of pre-trained participants). Tables 4.6 and 4.7 displays the 

proportion of older adults and younger adults best fit by each type of model. Table 4.6 

shows that 4% of older adults in block 2 and 11% of OAs in block 3 relied on the 

suboptimal orientation RB strategy, whereas no older adults in the pre-training condition 

relied on the suboptimal orientation strategy. In comparison, the majority of younger 

adults in both conditions adopted the correct RB strategy, with no younger adults relying 

on the suboptimal orientation strategy (see Table 4.7).  

 

Use of the correct strategy was associated with categorization performance in the pre-

train condition, in that the number of blocks in which a participant used the optimal RB 

strategy significantly predicted final block categorization performance in older adults [R2  
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Figure 4.9: The proportion of participants, by block, whose data were fit by the optimal 

model. (A) shows data from older adults and (B) shows the data from younger adults. 
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Table 4.6: Number of older adults fit by each class of decision bound models  

________________________________________________________________________ 

 

Model 

________________________________________________________________________ 

Category        Frequency               Orientation                      II                      Random    

                                  C         PT                 C         PT                 C          PT              C        PT 

  

   Block 1          0.41       0.54             0.00       0.00             0.00        0.08          0.59     0.38 

      Block 2          0.44       0.65             0.04       0.00             0.00        0.04          0.52     0.31 

              Block 3          0.59       0.81             0.11       0.00             0.00        0.00          0.30     0.19 

              Block 4          0.67       0.81             0.00       0.00             0.00        0.00          0.33     0.19 

________________________________________________________________________ 

 

Note. Random refers to a model based on guessing. The optimal model is shown in bold.  

 

Table 4.7: Number of younger adults fit by each class of decision bound models 

________________________________________________________________________ 

 

Model 

________________________________________________________________________ 

Category        Frequency               Orientation                      II                      Random    

                                  C         PT                 C         PT                 C          PT              C        PT 

  

   Block 1          0.82       0.87             0.00       0.00             0.00        0.00          0.18     0.13 

      Block 2          0.79       1.00             0.00       0.00             0.03        0.00          0.18     0.00 

              Block 3          0.88       1.00             0.00       0.00             0.03        0.00          0.09     0.00 

              Block 4          0.97       1.00             0.00       0.00             0.00        0.00          0.03     0.00 

________________________________________________________________________ 

 

Note. Random refers to a model based on guessing. The optimal model is shown in bold.  

RB   

RB   
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= .682, F(1, 24) = 51.55, p < .001]. The number of blocks in which a participant used the 

optimal RB strategy did not predict final block categorization performance in younger 

adults [R2 = .001, F(1, 29) = .015, p = .90]. However this was likely due to the fact that 

the large majority (87%) of younger adults applied the appropriate strategy across all 4 

blocks, with the remaining participants applying the appropriate strategy across all 3 

blocks. 

To determine whether categorization performance in the two conditions differed among 

appropriate strategy users only, I examined average categorization performance only for 

older adults who adopted the task appropriate strategy in the pre-train and control 

conditions. Results revealed that for older adults using the task appropriate strategy, 

average categorization performance in the pre-train condition (M = .74) was marginally 

better than the performance of older adults in the control condition (M = .68) [t(37) = 

1.85, p = .07], suggesting that pre-training helped older adult learners better apply the 

categorization rule compared to learners in the control condition. This analysis was not 

conducted for younger adults, since nearly all younger adults used the task appropriate 

strategy during the final block.  

4.5.2.3 Executive Functioning 

In order to better understand RB pre-train performance, average categorization accuracy 

was correlated with the executive functioning performance of older adults and younger 

adults21. The intercorrelations between RB performance and executive function scores 

are presented in Table 4.8. Among older adults, RB pre-train performance was 

marginally correlated with alpha span [r = .39, p = .057]. However, after controlling for 

the age and IQ of older adults, the relationship between RB pre-train performance and 

alpha span was no longer significant [r = .26, p = .26]. No other executive function  

                                                 

21
 The scores of some participants were not included in the analyses because the task was not completed 

due to time limitations, computer error, or because the participant made too many errors on the task 

indicating a lack of understanding (this was in reference to the inhibition tasks where participants made 

errors on more than 50% of the incongruent trials and on the BCST where participants learned 0 

categories). Flanker data was missing from 2 older adults. Stroop data was missing from 1 older adult and 1 

younger adult. Digit span data was missing from 2 younger adults. Alpha span data was missing from 1 

older adult. BCST data was missing from 3 older adults. 
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Table 4.8: Intercorrelations between rule-based pre-train performance and executive 

functioning scores for older adults and younger adults. 

____________________________________________________ 

 

Variable                                               OA                  YA        

____________________________________________________ 

 

Forward Digit Span                             .318           .245 

Backward Digit Span                          .217        -.009 

Alpha Span                                          .386†       .089 

Flanker Difference Score                   -.192          -.191 

Simon Difference Score                     -.245               -.194 

Stroop Difference Score                     -.182           .102 

BCST Categories Completed              .123            .159 

BCST Perseveration Errors                 .188          -.286 

____________________________________________________ 

Note. Executive functioning measures were correlated with average categorization 

performance. Two-tailed t-tests: †p < .06. 

 

 

measures correlated with the RB pre-train performance of older adults, suggesting the 

possibility that pre-training may reduce task demands enough so that older adults can 

perform well on the task, regardless of executive function abilities. Among younger 

adults, executive function measures did not correlate with RB pre-train performance. 

When accuracy on the inhibition tasks was considered (rather than reaction time 

differences), no additional measures correlated with categorization performance in older 

adults, however, accuracy on the Flanker task (the number of errors made on incongruent 

trials) was correlated with RB pre-train performance in younger adults [r = -.40, p = .02]. 

That is, higher RB pre-train performance was associated with making fewer errors on 

incongruent Flanker trials among younger adults. 
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Aside from accuracy data, I was also interested in examining the relationship between 

strategy use and executive functioning. I compared the executive functioning 

performance of participants using task appropriate and inappropriate strategies in the RB 

pre-train task. Age differed significantly across participant’s whose data were bit fit by 

the task appropriate (M = 71.3) strategy or task inappropriate (M = 78.2) strategy [t(25) 

=.29, p = .78] suggesting that among older adults, getting older was associated with 

increased reliance on task inappropriate strategies. IQ also differed significantly across 

participant’s whose data were best fit by the task appropriate (M = 118) strategy or task 

inappropriate (M = 100) strategy [t(21) = 2.18, p = .04]. In terms of the executive 

function measures, Simon task performance (reaction time difference score) was 

significantly better (i.e., lower reaction time difference score) among older adults using 

the task appropriate [M = 53.22] RB strategy compared to older adults using a task 

inappropriate [M = 110.58] strategy, t(24) = 2.24, p = .03. No other comparisons were 

significant (all p values > .20) for older adults. I did not compare executive functioning 

performance and strategy use among younger adults in the RB pre-train condition, 

because all of the younger adults used a task appropriate strategy during the final learning 

block. 

4.5.3 Discussion 

Study 2 extended the results of Study 1 by examining a method for improving single-

dimensional RB performance among older adults. A pre-training procedure was used 

where participants were familiarized with the categorization stimuli prior to beginning 

the categorization task. Older adults in the pre-train condition performed significantly 

better on the RB category set relative to older adults in the control condition. Unlike 

Study 1, age and IQ were associated with categorization accuracy and strategy use on the 

RB pre-train task among older adults, indicating that declines in categorization 

performance were associated with being older and having a lower IQ. However, this 

finding is consistent with Maddox and colleagues (2010) who found that among older 

adults, the older the individual was, the more likely they would be using a task 

inappropriate strategy. While IQ differences may partly explain within group differences 

(for older adults) in RB pre-train performance, it does not explain between group 
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differences. That is, older adults had significantly higher IQ scores compared to younger 

adults, confirming that younger adults were not performing better on the RB task because 

they had higher IQ scores. Similar to older adults, younger adults in the pre-train 

condition also performed significantly better than those in the control condition. These 

findings suggest that pre-training may improve single-dimensional RB category learning 

in both older and younger adults. These findings are in line with prior research showing 

that taxing executive functions needed to learn a RB category set interfered with RB 

learning (Miles, Matsuki, and Minda, 2014). It follows that reducing executive function 

demands would then improve RB learning, which is what the current findings show. 

However, further research is needed to better understand the potential relationship 

between age, IQ, and RB pre-train performance among older adults. Since a major 

component of the WASI IQ test involves verbal reasoning, this may suggest that older 

adults with better verbal reasoning skills are more likely to benefit from pre-training, as 

pre-training involves verbally describing the categorization stimuli. As mentioned, more 

research is needed in this area. 

Like Study 1, computational modeling was used in Study 2 to better understand the types 

of strategies older and younger adults applied. Among older adults, the proportion fit by 

the task appropriate strategy was not significantly higher among pre-trained participants 

compared to control participants, suggesting that performance differences were a result of 

strategy consistency/application rather than appropriate strategy use. Examination of 

model fit values confirmed that older adults in the pre-train condition had significantly 

better model fit values than older adults in the control condition, suggesting that those in 

the pre-train condition applied the RB strategy more consistently. Additionally, 4% of 

older adults in block two and 11% of older adults in block three relied on the suboptimal 

orientation RB strategy, whereas no older adults in the pre-training condition relied on 

the suboptimal orientation strategy during any of the learning blocks. Further support for 

the notion that pre-training improved rule application, is that for older adults using the 

task appropriate strategy, average categorization performance in the pre-train condition 

was marginally better than the performance of older adults in the control condition. This 

suggests that pre-training helped older adult learners better apply the categorization rule 

compared to learners in the control condition. These findings suggests that pre-training 
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may have allowed older adults to better inhibit salient but irrelevant rules, so that they 

could focus on consistently applying the task appropriate rule. Nearly all of the younger 

adults were fit by the task appropriate strategy by the final learning block in both the pre-

train and control conditions, suggesting that similar to older adults, pre-training improved 

rule application rather than rule identification (i.e., identification of the task appropriate 

RB strategy). 

When controlling for the age and IQ of older adults, RB pre-train accuracy did not 

correlate with executive function measures in older adults. When taking into account 

strategy use rather than accuracy, Simon task performance was significantly better among 

older adults using the task appropriate strategy compared to older adults using a task 

inappropriate strategy. This suggests that inhibitory control may be important for older 

adults to inhibit irrelevant rules. Since RB pre-train accuracy was not correlated with 

executive function measures, and task-appropriate strategy use was only associated with 

inhibitory control abilities, this may suggest that pre-training reduced executive function 

task demands enough, so that older adults could perform relatively well on the RB task, 

regardless of executive functioning. Among younger adults, RB pre-train accuracy was 

correlated with Flanker task performance, suggesting that have stronger inhibitory control 

abilities may better assist with RB learning in younger adults. 

4.6 General Discussion 

In two studies, I explored category learning in older adults and younger adults. In Study 

1, I examined single-dimensional RB category learning and NRB category learning in 

older adults and younger adults. Younger adults outperformed older adults on both the 

RB and NRB category set. Strategy analyses revealed that older adults struggled with RB 

learning relative to younger adults because they relied on guessing more frequently (most 

likely indicating frequent strategy shifts rather than random responding) and they also 

took longer to identify and apply the task appropriate RB strategy. Additionally, when 

taking into consideration task appropriate strategy users only, older adults still performed 

more poorly than younger adults, indicating that older adults applied the RB strategy less 

consistently than younger adults. Older adults performed more poorly on the NRB 
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category set relative to younger adults because they relied on RB strategies more 

frequently than the optimal NRB strategy.  

Executive function abilities were also assessed. RB accuracy among older adults was 

associated with set-shifting abilities. As well, applying the task appropriate RB strategy 

was associated with better working memory and set-shifting abilities. The RB 

performance of younger adults was not associated with executive functioning. NRB 

accuracy was associated with working memory abilities in older adults and set-shifting in 

younger adults.  

In Study 2, my goal was to improve single-dimensional RB category learning in older 

adults by reducing the executive function demands of the categorization task via pre-

training. Older adults struggled with both RB and NRB category learning in Study 1, but 

since RB learning depends so heavily on executive functions and executive functions are 

known to decline with age, I was particularly interested in examining RB category 

learning in older adulthood. Both older adults and younger adults benefitted from pre-

training, performing better on the RB category set following pre-training compared to no-

pre-training. Age and IQ were associated with RB pre-train performance in older adults 

and these variables require further investigation in future studies to understand the 

connection between age, intelligence and category learning abilities. Strategy analyses 

revealed that older adults performed better in the pre-train condition relative to the 

control condition because they applied the RB strategy more consistently. RB pre-train 

accuracy was not associated with executive functioning in older adults, but using the task 

appropriate RB strategy was associated with better inhibitory control abilities among 

older adults. RB pre-train accuracy was associated with inhibitory control in younger 

adults. Furthermore, even following pre-training, it was beneficial for older and younger 

adults to have strong inhibitory control abilities to complete the hypothesis testing 

process involved in RB learning. However, given that working memory and set-shifting 

abilities were not associated with RB performance, suggests that pre-training may have 

reduced executive function task demands enough, so that older adults with varying 

executive functioning abilities could perform relatively well on the RB task. 
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In line with prior aging research, I too found that older adults struggled with RB and 

NRB category learning (Filoteo & Maddox, 2004; Maddox et al., 2010; Rabi & Minda, 

2016; Racine et al., 2006). However, in contrast with the majority of prior research 

involving more complex RB category sets, I was able to show that older adults also 

struggled with learning a difficult single-dimensional RB category set which is consistent 

with the only other study to examine RB category learning in older adults using this 

paradigm. The findings from Study 1 demonstrated that older adults also struggled with 

single-dimensional rule learning, confirming that any RB tasks that places heavy 

demands on executive functions may lead to category learning deficits in older adults. In 

extension of these findings I also examined NRB learning in older adults, which has yet 

to be examined using this standardized category learning paradigm. Study 1 findings 

showed that older adults also struggle with NRB learning. The present findings are 

consistent with the COVIS model, which posits that humans have an initial bias towards 

the verbal, RB system. Only once this bias has been overcome, can individuals transition 

to the nonverbal system to learn NRB categories. In Study 1, older adults were unable to 

overcome this bias, resulting in poor RB learning because of frequent strategy shifts and 

poor NRB learning due to a reliance of RB strategies.  

Results from a developmental category learning study are also consistent with our 

findings. Compared to young adults, Huang-Pollock and colleagues (2011) found that 

children’s performance on a RB categorization task was hindered by their persistent use 

of a rule based on a more salient, but incorrect stimulus dimension. Older adults in the 

present study were best fit by a guessing model, however, I propose that although their 

categorization responses resembled guessing, older adults were actually frequently 

shifting categorization strategies. While children and older adults both seem to struggle 

with learning difficult, single-dimensional rules, it appears that older adults were better 

able to make use of negative feedback, and at least attempt to switch strategies in an 

effort to improve categorization accuracy. In contrast, due to executive function 

limitations, children in the Huang-Pollock et al. study may have relied on a suboptimal 

but salient rule, regardless of feedback. In the NRB task, Huang-Pollock et al. found that, 

similar to older adults in Study 1 of my thesis, children frequently relied on a RB strategy 

and had difficulty transitioning to a NRB strategy. Likewise, research using this category 
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learning paradigm has shown that patients with prefrontal lesions are also impaired at 

both RB and NRB category learning (Schnyer et al., 2009). Given that children, patients 

with prefrontal lesions, and older adults all have reduced executive function abilities, it 

makes sense that these population of individuals struggle with category learning.  

The finding that older adults in Study 1 relied on a RB strategy when learning both 

category sets is grounded in prior research showing that older adults tend to use simpler, 

less cognitively demanding strategies (Mata, Schooler, & Rieskamp, 2007). As shown in 

Study 1, working memory and set-shifting are important for learning RB categories and 

switching between systems. If some older adults have reduced working memory and set-

shifting abilities, it makes sense that their category learning abilities would be impaired. 

RB learning follows a hypothesis testing approach, which is faster than the trial-and-error 

associative process involved in NRB category learning. Additionally RB learning 

involves the use of verbalizable rules that are easier to communicate, while NRB learning 

does not lend itself well to formulating verbal rules. For these reasons, it is not 

particularly surprising that older adults chose to adopt a RB strategy rather than a NRB 

strategy when learning the NRB category set. An individual categorizing according to a 

single dimension could achieve up to 70% correct on the NRB category set, so it may 

have been more adaptive for older adults to apply a RB strategy, even though it is not as 

effective as a well-applied NRB strategy.  

The Chapter 3 study clearly showed that pre-training led to significant improvements in 

complex RB learning involving a multi-dimensional, disjunctive rule in both older and 

younger adults. Aside from the Chapter 3 study, to my knowledge, study 2 of this chapter 

is the only other study to examine a method for improving RB learning in older adults 

using pre-training. The findings from these two pre-training studies suggest that pre-

training is a useful method for improving both complex single-dimensional and multi-

dimensional RB category learning. However, it appears that pre-training differentially 

assists with RB learning, depending on the type of rule involved. The Chapter 3 study 

demonstrated that compared to the performance of older adults in the control condition, 

pre-training considerably improved the RB performance of older adults. Additionally, in 

contrast to those in the control condition, no older adults consistently relied on single-
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dimensional rules when learning the RB category set following pre-training. The large 

majority of older adults in Chapter 3 went from near chance performance in the control 

condition, to relatively strong RB performance following pre-training. Furthermore, pre-

training appeared to assist older adults with identifying the appropriate complex, 

disjunctive RB strategy. In contrast, in Study 2 of this chapter, pre-training did not 

significantly change the frequency of older adults using the correct RB strategy, but 

rather increased the consistency with which older adults applied the correct RB strategy. 

That is, pre-training in Study 2 led older adults to apply the appropriate RB strategy more 

consistently, resulting in significantly better RB performance. Furthermore, it appears 

that pre-training assists with rule identification when older adults are learning a complex, 

multi-dimensional RB category set, and pre-training assists with rule 

application/consistency when older adults are learning a complex, single-dimensional 

category set. Older adults can learn single-dimensional rules, as evidenced by prior 

research (Rabi & Minda, 2016), but when the single-dimensional RB category set is more 

difficult, older adults may struggle with applying the appropriate rule, possibly due to 

temporary lapses in memory (Racine et al., 2006).  

Most of the prior aging work has focused solely on identifying category learning deficits 

in older adults, and now research is needed to better understand methods for reducing 

these deficits, beyond the two studies discussed in this thesis. Prior category learning 

research involving younger adults has examined factors that impair RB performance, and 

recently the attention has switched to examining factors that improve RB performance in 

younger adults (e.g., Noh, Yan, Bjork, & Maddox, 2016; Miles, Matsuki, and Minda, 

2014). Future research should look into whether factors that improve RB performance in 

younger adults (e.g., blocking exemplars by category during category learning), also 

provide the same benefits in older adults.  

Additionally, in Study 2, the benefits of pre-training were only examined relative to RB 

learning and not NRB learning. NRB learning is considered more difficult for not only 

older adults, but younger adults as well (e.g., Huang-Pollock et al., 2011; Morrison et al., 

Reber, Bharani, & Paller, 2015; Zeithmova & Maddox, 2006). Perfect NRB performance 

is possible, but this would require a larger set of trials since the implicit associative 
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learning process is quite time consuming (Helie, Waldschmidt, & Ashby, 2010). This is 

especially the case for older adults, because it appears as though they have a greater 

initial bias towards the verbal system relative to younger adults, suggesting that they 

would need more time to perform better. Furthermore, future studies should consider 

whether lengthening categorization training improves the NRB performance of older 

adults, and if so, whether a form of pre-training may lead to further improvements in 

NRB learning. It is plausible that pre-training may enable older adults to rule out RB 

strategies more quickly, facilitating the switch to the nonverbal system.  

Based on the pattern of findings across two studies, it can be concluded that older adults 

struggle with learning complex, single-dimensional RB categories and these deficits can 

be reduced by introducing pre-training prior to category learning. Additionally, I showed 

that NRB category learning is impaired in older adults because they struggle to inhibit 

output from the dominant, verbal system in favor of the nonverbal system. These findings 

suggest that any categorization task that taxes executive demands past a certain limit, will 

lead to category learning deficits in older adults relative to younger adults. Pre-training 

may have some merit in reducing these deficits, however future research is needed using 

a range of different pre-training procedures.   
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Chapter 5 

5 General Discussion 

To date, research involving category learning has centered primarily on examining the 

categorization performance of younger adults and children. Research involving category 

learning in older adults is still in its infancy, highlighting the need to better understand 

how this core cognitive process changes with age. The present research investigated how 

older adults learn RB and NRB categories, as well as provided insight regarding methods 

of improving category learning in older adults. The first study demonstrated that older 

adults, like younger adults, performed quite well when learning an easy, single-

dimensional RB category set. In contrast to younger adults, older adults found complex, 

disjunctive RB categories more difficult to learn than NRB, family-resemblance 

categories. Furthermore, the complex RB task appeared to be the most difficult for older 

adults to learn because it placed the heaviest demands on working memory, which is 

known to decline with healthy aging. The second study was aimed at reducing age-related 

deficits in category learning. Older adults benefitted from a reduction in the executive 

functioning demands of the categorization task via pre-training when learning a complex 

RB task, and to some extent when learning a NRB, family-resemblance category set as 

well. The third study further explored how task complexity interacted with RB and NRB 

category learning, by examining more complex single-dimensional RB category learning 

(relative to the single-dimensional RB category set used in Study 1) and NRB category 

learning (involving the II category set). Additionally, strategy analyses were conducted to 

shed light on the approaches older adults took when learning categories relative to 

younger adults. Findings from Study 3 demonstrated that older adults struggle with 

learning complex rules which place demands on executive function resources, regardless 

of the category structure (i.e., single-dimensional vs. multi-dimensional rules). Also, 

older adults struggle with NRB learning because they have difficulty switching from the 

verbal system to the nonverbal system, and rely on RB strategies instead of more optimal 

NRB strategies. The fourth study focused on reducing single-dimensional RB deficits in 

older adults via pre-training, demonstrating that familiarizing older adults with stimulus 

dimensions improved single-dimensional RB learning. In contrast to Study 2, where pre-
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training improvements were a result of better rule identification, in Study 4, pre-training 

improvements were a result of better rule application.  

5.1 Implications for Category Learning in Older 
 Adulthood  

Prior research has shown that older adults struggle to learn complex RB categories. More 

specifically, relative to younger adults, older adults find it difficult to learn conjunctive 

RB (uses the logical relation ‘and’ to relate stimulus attributes; e.g., large and shiny items 

belong in category A) category sets (e.g., Maddox et al., 2010; Racine et al., 2006). 

Additionally, Davis and colleagues (2012) have shown that older adults also struggle 

with learning rule-plus-exception category sets, where older adults performed well on 

rule-following items, but struggled to learn exception items. Another important form of 

complex RB category learning, which had not been examined until the current thesis is 

disjunctive RB learning (uses the logical relation ‘or’ to relate stimulus attributes; e.g., 

small items or shiny items belong in category A). Chapter 2 of this thesis confirmed and 

extended prior research involving category learning in older adulthood, by showing that 

older adults also struggle with learning complex rules with a disjunctive rule structure. 

Increasing rule complexity places greater demands on the maintenance and manipulation 

processes in working memory, making it difficult for older adults to identify and apply 

the appropriate rule. Study 1 in Chapter 4 of this thesis demonstrated that older adults 

struggle with learning single-dimensional rules, when task complexity is increased. That 

is, prior research by Rabi and Minda (2016/Chapter 2) has shown that older adults can 

learn simple, single-dimensional rules quite well (e.g., white objects belong in category 

A), and Study 1 in Chapter 4 confirmed that single-dimensional RB learning is impaired 

when a more difficult single-dimensional rule structure is used. Furthermore, any RB 

categorization task (single-dimensional or multi-dimensional), which places demands on 

executive functions, can result in RB category learning deficits among older adults. The 

first study in Chapter 4 also demonstrated that older adults relied on guessing more 

frequently than younger adults, most likely reflecting frequent changes in strategy use. 

These findings provide support for the COVIS theory of category learning, which 

assumes that the verbal system is mediated by the prefrontal cortex and relies on 
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executive functions to learn categories that can be defined by a rule. Given that the 

prefrontal cortex is the brain region most disrupted by healthy aging, which is associated 

with reduced executive function abilities (Greenwood, 2000; Grieve, Williams, Paul, 

Clark, & Gordon, 2007), it follows that older adults should find it difficult to learn 

complex, RB categories. Findings from Bharani and colleagues (2015) support this line 

of thinking by showing that recruitment of prefrontal resources was associated with better 

RB performance among older adults. Older adults who successfully learned the RB 

category set showed larger frontal ERPs compared with younger adults, suggesting that 

increased neural activity was required to maintain high cognitive function.  

Although rather limited, prior research has also shown that older adults struggle with 

learning NRB categories (Filoteo & Maddox, 2004; Maddox et al., 2010). In line with 

these findings, Chapter 4 demonstrated that older adults struggled with learning a NRB 

(information-integration) category set. Additionally, Chapter 2 demonstrated that older 

adults found NRB (family-resemblance) category learning challenging, but not as 

challenging as complex RB learning, which places heavier demands on executive 

functions. The fact that older adults struggle with NRB learning in addition to RB 

learning, suggests that executive functioning may be important for NRB learning as well. 

For example, Chapter 4 revealed that older adults struggled to learn the NRB category 

set, because they relied on a RB strategy. This shows that older adults found it difficult to 

switch from the dominant, verbal system to the nonverbal system, and instead attempted 

to use rules to learn the NRB category set. These data also provide support for the 

COVIS theory of category learning, which assumes that the verbal system is the 

dominant system used during initial learning. Individuals only switch to the nonverbal 

system when it is clear that no acceptable rule exists. The current thesis suggests that 

older adults had difficulties testing possible rules, and continued on with hypothesis 

testing, rather than switching to the nonverbal system. It is possible that given more trials, 

older adults may have been able to test enough rules to realize that no acceptable rule 

existed, and that a NRB strategy needed to be used instead.  

Further support for the role of executive functions in RB and NRB category learning 

comes from Chapters 2, 3, and 4 showing that higher executive function abilities were 
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associated with stronger RB and NRB performance in older adults. That is working 

memory, inhibitory control, and set-shifting are all important cognitive processes 

involved in RB and NRB category learning. Even following pre-training, Chapter 3 

findings revealed that among older adults, stronger executive functioning abilities were 

still associated with better RB and NRB categorization performance. These data suggest 

that having strong executive functioning abilities may have allowed older adults to 

benefit more from pre-training. The relationship between categorization performance and 

executive functioning was weaker among younger adults, but still present, suggesting that 

younger adults had sufficient executive function abilities to perform well on the 

categorization tasks. These results are in line with cognitive aging theories, which 

propose that older adults have: difficulty inhibiting irrelevant information (Hasher, 

Lustig, & Zacks, 2007; Hasher & Zacks, 1988; Milham et al. 2002), reduced processing 

speed (Salthouse, 1994, 1996) and a smaller working memory capacity (Oberauer, 

Wendland, & Kliegl, 2003). Executive functions are required to carry out hypothesis 

testing, inhibit incorrect rules, maintain the current rule in memory, and for switching 

between category learning systems. Furthermore, age-related declines in executive 

functioning may help to explain category learning deficits among older adults.  

5.2 Implications for the Usefulness of Pre-Training in 
 Category Learning 

Older adults show clear deficits when learning RB and NRB categories. Prior research 

has focused on examining these deficits, but has yet to examine methods of reducing age-

related category learning deficits. Chapters 3 and 4 focused on minimizing category 

learning deficits in older adults, by minimizing task demands via pre-training. Older 

adults in Chapter 2 greatly struggled with learning complex, disjunctive rules, performing 

near chance. This low performance signifies that older adults were unable to identify the 

correct, disjunctive rule during the course of the category learning task. Chapter 3 

findings showed that familiarizing older adults with the stimulus dimensions by asking 

them to verbally describe category exemplars, resulted in improved RB performance 

relative to a control condition. The NRB performance of older adults also improved 

following pre-training, but only marginally. These findings signify that while pre-training 
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was helpful in Type IV learning, the benefits to Type II learning were greater. The 

second study in Chapter 4 examined the effects of pre-training in single-dimensional RB 

category learning. During pre-training, participants verbally described a set of category 

exemplars and began the category learning task with easier trials, to jumpstart the 

hypothesis testing process. Chapter 4 showed that following pre-training, older adults 

performed significantly better on the RB task relative to control performance. Strategy 

analyses confirmed that this improvement in RB performance was due to more consistent 

application of the appropriate RB strategy. Furthermore, the research presented in this 

thesis is the first to shown that pre-training can have significant benefits for RB category 

learning in older adults.  In multi-dimensional RB learning (e.g., disjunctive rule 

learning), pre-training enabled older adults to better identify the rule. In contrast, when 

learning a single-dimensional RB category set, pre-training enabled older adults to better 

apply the correct rule more consistently. Additionally, Chapter 3 showed that pre-trained 

older adults performed similar to younger adults in the control condition for both the RB 

and NRB category learning task. This demonstrates that by reducing executive function 

task demands via pre-training, older adults are able to perform at a level similar to 

younger adults, who generally have strong executive functioning abilities. The current 

findings have important implications for understanding ways of improving older adults’ 

ability to acquire new information. That is, encouraging older adults to describe key 

features of new items or information, may help familiarize them with the information, 

and allow them to recall the information more easily. Furthermore, the present findings 

not only benefit older adults by highlighting a manner in which categories can be learned 

more easily, but also benefit health care professionals and other professionals who 

educate older adults, by providing them with suggestions on how to present new 

information. In line with current pre-training findings, prior research has shown that older 

adults have a decreased capacity to process multiple pieces of information (Stevens, 

2003) and benefit from learning manageable chunks of information. Additionally, 

research involving medical adherence in older adults, suggests that patient education 

strategies should be tailored to account for age-related changes in cognitive functioning 

(Speros, 2009; Zhang, Swartzman, Petrella, Gill, & Minda, 2016). For example, key 

points should be reinforced, so that the patient will become familiarized with the 
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information and complex information should be broken down into simpler points, as not 

to overwhelm the patient. Older adults make complex judgments and categorization 

decisions on a daily basis, whether it involves driving, judgments of personal health 

status, or financial decision-making. For this reason, it is important to understand why 

older adults may struggle with learning new information, and how this difficulty can be 

overcome. The present findings highlight that in relation to category learning, pre-

training involving familiarization with concept dimensions can promote better RB 

category learning.  

5.3 Relations to Prior Category Learning Research 
 Involving Different Populations 

Additional support for the role of executive functions in category learning comes from 

research involving a range of populations. Developmental research has shown that young 

children have difficulty learning RB categories relative to adults, because the neural 

systems that mediate the verbal system are not yet fully developed in early childhood 

(Huang-Pollock et al., 2011; Minda et al., 2008; Rabi, Miles, & Minda, 2015). Rabi and 

Minda (2014) examined the relationship between RB category learning and executive 

functioning in children ranging from age four through adolescence. Results revealed that 

categorization performance improved with age and stronger working memory and 

inhibitory control abilities were associated with better RB categorization performance. 

Huang-Pollock and colleagues (2011) also showed that children struggle with NRB 

category learning because they rely on RB strategies more frequently than younger adults 

and have greater difficulty transitioning to a NRB approach. Comparative research has 

shown that monkeys struggle with RB category learning, because they rely on single-

dimensional rules too frequently and fail to learn more complicated rules (Smith et al., 

2004). Such categorization performance deficits have been attributed to the fact that 

monkey’s lack the language and executive function resources needed to represent 

complex rules and hypotheses succinctly and store them for testing and possible 

acceptance or rejection. These findings provide support for the results from the current 

thesis by emphasizing how, across development and across species, reduced executive 
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functioning resources negatively impact category learning abilities, similar to what is 

found among older adults.  

Aside from research involving children and non-human primates, many studies involving 

younger adults have also examined the importance of executive functioning in category 

learning. More specifically, studies have investigated how taxing executive function 

resources negatively influences category learning abilities. For example, research has 

shown that asking participants to complete a task that engages executive functions while 

concurrently completing a RB categorization task interferes with RB categorization 

performance (Filoteo, Lauritzen, & Maddox, 2010; Minda et al., 2008; Waldron & 

Ashby, 2001; Zeithamova & Maddox, 2006). Similarly, prior to category learning, 

reducing participants’ executive functioning via a resource depletion manipulation 

interferes with RB category learning (Minda & Rabi, 2015). With regards to NRB 

category learning, Miles, Matsuki and Minda (2014) found that continuously taxing the 

executive function resources of younger adults resulted in a decreased likelihood of using 

a NRB categorization strategy, suggesting that when executive functions were 

unavailable, the transition to the nonverbal system was hindered. Furthermore, younger 

adults generally perform quite well on RB and NRB category learning tasks, but when 

their executive function resources are compromised, their performance begins to 

resemble that of older adults. In the Miles et al. (2014) study, continuously taxing the 

executive function resources of younger adults seems to mirror the executive function 

abilities of older adults. This explains why younger adults struggled to switch from the 

dominant verbal system to the nonverbal system, similar to what was found in the current 

thesis. Moreover, pre-training may reduce the executive function demands of the 

categorization task just enough so that older adults can perform more similarly to 

younger adults. Taken collectively, these research findings illustrate the executive 

functioning resources are required by both the verbal and nonverbal system. Also, 

cognitive and contextual variables that interfere with executive functions have negative 

effects on category learning abilities.  
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5.4 Future Directions 

While limited research exists on the topic of category learning in older adulthood, 

progress is being made towards understanding age-related categorization deficits. The 

current study examined category learning in healthy, active older adults between the ages 

of 63 and 88. Future research would benefit from examining category learning in a 

broader sample of older adults (e.g., with varying activity levels), to better understand 

how category learning abilities change with age and varying backgrounds. Additionally, 

the age range of older adults in the current study was quite broad. Future research should 

more closely examine category learning among young-old (ages 60 to 69), middle-old 

(ages 70 to 79) and old-old (ages 80+) adults. The prefrontal cortex is a brain region 

known to play an important role in RB learning and transition between categorization 

systems. Most neuroimaging studies involving category learning have been conducted 

with younger adults and for this reason, future research would benefit from examining 

prefrontal activation during both RB and NRB category learning in older adults. Since 

older adults often struggle with NRB category learning it would be interesting to see 

whether neuroimaging research could shed light on this finding. Additionally, since the 

majority of older adults in the Chapter 4 study failed to adopt a NRB strategy in the NRB 

category learning task, future research should examine methods of facilitating the switch 

to the nonverbal system among older adults. This may involve giving older adults more 

training trials, since implicit learning by the nonverbal system is known to take longer 

than explicit learning by the verbal system. The pre-training procedures used in Chapters 

3 and 4 successfully improved the categorization performance of older adults. However, 

future studies should examine alternative pre-training methods to determine whether 

categorization performance can be improved using different techniques, which reduce the 

executive function demands of the task.  

5.5 Conclusions 

The findings of the current studies are compatible with past research showing age-related 

deficits in RB and NRB category learning and extend this research by showing that older 

adults struggle with learning disjunctive rules. Additionally strategy analyses findings 

highlight that older adults tend to use suboptimal rules when learning RB categories and 
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rely on RB strategies when learning NRB categories, likely a result a reduced executive 

functioning resources. To counteract reduced executive functioning abilities associated 

with aging, a pre-training procedure was introduced which improved the category 

learning performance of older adults. This is the first series of studies to examine a 

method of improving age-related categorization deficits in older adults, demonstrating 

that declines in categorization performance can be overcome by reducing executive 

function demands.  
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