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Abstract 

This study provides the first characterization of the Agaricomycetes of Ontario 

tallgrass prairies, assesses the influence of various environmental factors, and compares 

results of aboveground mushroom surveys with belowground high-throughput DNA 

sequencing. Overall, the Mycenaceae, Ceratobasidiaceae and Polyporaceae were the most 

abundant, and the Clavariaceae, Entolomataceae and Sebacinaceae the richest in species. 

Position along a transect (geographic region) was the primary factor differentiating 

Agaricomycete composition of sites whereas tillage history and soil organic carbon 

content were secondary. The Hygrophoraceae and Clavariaceae were associated with 

pristine sites, and Minimedusa spp. associated with tillage. The belowground method 

captured most of the minor clades found aboveground and several more unique ones. The 

aboveground method retrieved 74 species and the belowground method 256 OTUs, with 

only eight shared between them. 
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Chapter 1 - Introduction 

1 Introduction 

1.1 Agaricomycetes and their role in soils 

 The Agaricomycetes are a large class of fungi from the phylum Basidomycota, 

containing about one fifth of all species of fungi (Kirk et al. 2008). Globally, across all 

ecosystems, as well as within grasslands and shrublands specifically, the Agaricomycetes 

represent 50% of all fungal soil diversity (Tedersoo et al. 2014). The Agaricomycetes are 

distinct from the jelly fungi classes Tremellomycetes and Dacrymycetes in the 

subphylum Agaricomycotina, which are separated from distinct plant-disease fungi in the 

subphyla Pucciniomycotina (rusts) and Ustilaginomycotina (smuts) (Hibbett et al. 2014). 

Many species of Agaricomycetes produce conspicuous aboveground fruiting bodies or 

“mushrooms” in a diversity of forms, but some are more inconspicuous, either creating 

undistinguished soil crusts or fruiting belowground (Hibbett et al. 2014). The main 

component of all Agaricomycetes is their vegetative growth – networks of hyphae 

collectively called a mycelium. Hyphae are thread-like chains of cells that extend through 

their substrate – in grasslands, from aboveground plant litter, through upper humus 

layers, and into even deeper strata of soil (Jumpponen et al. 2010).  

Soil ecosystems are affected by Agaricomycetes in several ways. Ecologically, 

the Agaricomycetes span a diversity of guilds: saprotrophs of various substrates, plant 

pathogens, and partners in symbioses with plants, insects, and algae (Hibbett et al. 2014). 

These interactions influence nutrient cycling and shape the communities of other 

organisms. Saprotrophic fungi have major roles in decomposition and nutrient release 

from plant litter (Baere et al. 1993), although their presence and activities in grasslands 

are not as well studied as in woodlands (Griffith and Roderick 2008). Texture and 

stability of soil is improved by fungi. Mycelial nets can hold together the surface of soils 

(especially sandy ones) to prevent wind erosion, and hyphae release sticky exudates that 

aggregate soil particles, creating pore spaces that facilitate gas and water exchange and 

plant root growth (Went and Stark 1968, Caesar-TonThat and Cochran 2000). Certain 

members of the russuloid clade (Caesar-TonThat et al. 2001) and other Agaricomycetes 
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such as Rhizoctonia solani (Tisdall et al. 1997) are particularly effective at soil particle 

aggregation, increasing soil stability. Restored and remnant prairie sites have more 

aggregated soil particles than do agricultural sites(Jastrow 1987), suggesting that fungi 

and their activities differ between these ecosystems. 

1.2 Tallgrass prairies and agriculture 

At the centre of North America is a large triangular zone of grasslands known as 

the prairies. Prairies have minor or no woody cover, and are instead dominated by 

grasses, and a lesser coverage but high diversity of other herbaceous plants (Sims 1988). 

A prairie has been defined as having one tree or fewer per acre, while a semi-treed 

grassland ecosystem (e.g., oak savanna) may have up to 50% canopy cover by trees 

(Quinlan 2005). North American prairies can be split into three broad, simple groups: 

shortgrass, mixedgrass, and tallgrass (Sims 1988, Reaume 1993). Tallgrass prairies cover 

the central to eastern areas, where annual rainfall is higher than prairie regions to the 

west. In Canada this includes southern Manitoba and Ontario. Prairies in the two 

provinces are distinct from each other. Ontario tallgrass prairies receive more 

precipitation than any others in North America, which helps to account for the height of 

their grasses and high diversity of species (Quinlan 2005). It is likely the particularly wet 

conditions also encourage proliferation of fungal communities, more so than in drier 

prairies to the west. Unlike southwestern Manitoba, which is part of the Prairies ecozone, 

southwestern Ontario is actually classified as Mixedwood Plains, so Ontario prairies (and 

oak savanna mosaics) are a naturally sporadic but unique component across the Lake Erie 

Lowlands region (Ecological Stratification Working Group 1995, Barcza and Lebedyk 

2014). Sporadic prairies are also present in western Ontario (Quinlan 2005), although 

they were not assessed in this study.Prairie ecosystems developed hand-in-hand with 

disturbance events – particularly grazing and fires (Wells 1970, Gibson and Hulbert 

1987, Sims 1988). Large ungulates, especially bison, were keystone species in shaping 

tallgrass prairies by preventing trees from establishing in the Great Plains (Knapp et al. 

1999). Fires were ignited by lightning, First Nations peoples, and later to some extent by 

European farmers. Aboveground vegetation rapidly burns away, but native prairie plants 

can easily regenerate aboveground growth since they have energy stored in their deep 
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roots (Bock et al. 1986) while their meristems (growing points) are protected in the 

ground (Dalgleish and Hartnett 2009). These disturbances are necessary to prevent 

prairies from succeeding into woody ecosystems (particularly where precipitation is 

sufficient to encourage tree growth), and to maintain a high diversity of plant species (not 

allowing any one to become overly dominant over another).  

Prairie soils are naturally well supplied with nutrients and organic matter, because 

they have dense plant cover with fast turnover (herbaceous litter) and dense roots that 

allow for high microbial activity (Tate 1987). Prairies are ideal for agricultural use, since 

they are flat, treeless, and have rich soils. Since the 1830s when European homesteading 

of North America began (Sims 1988), and especially since the invention of the steel plow 

(Bock and Bock 1995), prairies were steadily converted to agricultural land at a massive 

scale. In addition to land conversion, Europeans introduced exotic invasive plants, 

reduced the size and frequency of fires, greatly reduced populations of large mammal 

grazers, and introduced domestic grazing species, impacting prairies in new ways (Bock 

and Bock 1995). 

The tallgrass prairies of North America are one of the most reduced and imperiled 

ecosystems in the world, with losses of 85-98% since European settlement (Noss et al. 

1995). In southern Ontario, an estimated 3% of fair to good quality tallgrass prairie 

remains; another 3% exists in poor condition and would require extensive restoration 

efforts (Barcza and Lebedyk 2014). Remnant patches continue to suffer from serious 

threats (succession into non-prairie ecosystems, conversion to agricultural land, and 

replacement of native prairie plants with alien invasives, particularly for smaller patches) 

and require active management to avoid further declines (Koper et al 2010). As of 2007, 

there are 21 plant species at risk in Canada that are found in Ontario tallgrass prairies 

listed in the Species at Risk Act and Endangered Species Act (Tallgrass Ontario 2013). 

These 21 species include colicroot (Aletris farinosa), dense blazing star (Liatris spicata), 

and willowleaf aster (Symphyotrichum praealtum), which were found in some of my 

research sites. 
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The presence of species at risk in prairies and the realization of the extent of loss 

of tallgrass prairies has led to increasing efforts to identify and conserve remnants, and 

regain some of the losses through restoration (e.g., in Ontario; Quinlan 2005). Depending 

on the condition of the site in question—whether it has been degraded, damaged, or 

destroyed—restoration may take the form of rehabilitation or complete reconstruction 

(Society for Ecological Restoration 2004). Rehabilitative restoration is the management 

of degraded natural areas to improve their quality. For tallgrass prairie sites, a 

combination of cattle grazing and controlled burns are ideal to create a shifting mosaic of 

disturbance (Fuhlendorf et al. 2006). Mowing and haying can also be used to create a 

similar effect, and other more intensive techniques such as herbicides, hand-pulling, and 

brush-cutting may be required to remove exotic and woody species (Quinlan 2005). 

Reconstructive restoration is conversion of anthropogenic or severely degraded sites back 

into a natural state. Agricultural land can be restored to tallgrass prairie through removal 

of exotic plants (through tillage and/ or herbicide use) and then seeding or planting plugs 

of native prairie plants. A reconstructed prairie will require ongoing management and 

rehabilitation for it to establish properly and retain its quality.  

1.3 Impacts to and conservation of soil fungi 

Impacts from previous agricultural land uses may be carried over in restored 

tallgrass prairies. Most agricultural systems are disturbed by regular soil tillage, have 

pesticides applied to them, and have declining soil organic matter and nutrients. 

Conversion of prairie to agricultural land leads to an initial dramatic drop in the first few 

years of soil organic matter, air space, aggregation, and water-holding capacity, and then 

a slow and steady rate of decline of these features, leading to degraded and less 

productive land (Laws and Evans 1949, Tate 1987). It is expected that reduced soil 

organic matter (measured experimentally as organic carbon) would have a strong impact 

on fungi in the soil, since increased carbon in soils is associated with promoted microbial 

activity (Martyniuk and Wagner 1978, Schnürer et al. 1985, Caesar-TonThat and 

Cochran 2000, Kjoller and Rosendahl 2014). Between fungi and bacteria in the soil, fungi 

are greater in biomass and nutrient cycling activity (Anderson and Domsch 1975).  
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In addition to reduced soil organic carbon, tillage reduces hyphal mass and 

hyphae lengths of arbuscular mycorrhizal fungi in agricultural soils (Kabir et al. 1998) 

and tillage would presumably damage non-AMF fungi (e.g., Agaricomyce hyphae) in the 

same way. Reduced organic carbon and damage to hyphal communities may explain why 

tillage has been linked with reduced diversity and altered composition of Agaricomycetes 

in an agricultural context (Lynch and Thorn 2006, Bahnmann 2009, Wong 2012). The 

importance of a site’s tillage history has not been addressed in the context of restored and 

remnant native prairie ecosystems. Restored prairies are often lower quality in terms of 

plant diversity and community composition when compared to remnant sites (Sluis 2002, 

Polley et al. 2005), which may correspond with lower-quality fungal communities as 

well. Given the negative effects of tillage on organic carbon, hyphae, and plant 

communities, restored prairies may have very different Agaricomycete communities than 

pristine remnants. 

Our current knowledge about Agaricomyceteson the prairies is very limited, so 

exploring this group may bring new perspectives to prairie ecology, conservation, and 

restoration. On a global scale, grassland fungi are not well studied. An exception is 

Europe, where in recent decades they have been extensively examined (O’Hanlan and 

Harrington 2011) due to conservation concerns surrounding losses of native grassland to 

mechanized agriculture (Griffith and Roderick 2008). Fungi are susceptible to threats 

such as habitat loss, pollution, and climate change, like any other organism, and their 

conservation requires strong baseline survey and ecology data (Arnolds 1989, 

Courtecuisse 2001). A plethora of grassland mushroom surveys have been carefully 

documented from Ireland (Mitchel 2010), south Wales (Rotheroe 2001), Scotland 

(Newton et al. 2003), the Netherlands (Arnolds 1989), as well as eastern European 

countries such as Slovakia (Adamčík and Kautmanová 2005). The collection of these 

baseline scientific datasets has allowed for the development of applied conservation 

initiatives: systems to classify grassland quality using mushroom indicator taxa (e.g., the 

waxcap grassland “CHEGD profile” system from Rotheroe et al. 1996), several national 

species at risk “red lists”, as well as a continental red list from the European Council for 

Conservation of Fungi (which was proposed to the EU Habitat Committee but they voted 

to delay a decision, Bohlin 2004; and later produced as a reference book for conservation 
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agencies, Dahlberg and Croneborg 2006). At an international scale, there has been a push 

for fungi to be more included in biodiversity conservation initiatives, which are usually 

dominated by plant and animal concerns at the expense of other taxa (Watling 1995, 

Minter 2011). Consequently, the International Union for the Conservation of Nature 

developed fungal focus groups, which would include the Agaricomycetes in the 

“mushroom, bracket, and puffball specialist group” (Vilano et al. 2012) 

In North America, data for fungi in grasslands are scarce. Fungi of forests on the 

west coast have been well-studied in the past from a biodiversity conservation 

perspective (Castellano et al. 1999) and survey data of mushroom-forming fungi are 

available for many parks and conservation areas (e.g., Polach 1992, Dewsbury 2006), but 

often these data exclude grasslands entirely, or else combine them with all other 

ecosystems in the area as one large, vague, list. The two fungal-related reports produced 

by the International Biological Program (1964-1974) studied grassland soil and 

coprophilous (dung) fungi, but focused on moulds and microfungi, not Agaricomycetes 

(none are mentioned in Christensen and Scarborough 1969, only four are listed in 

Wicklow and Angel 1974). Surveys specific to grasslands in Canada are rare, and 

probably mostly exist in smaller nature-group publications, separate from the rigor and 

accessibility of scientific peer-reviewed journals (e.g., in Saskatchewan mixedgrass 

prairie; Hay 2013). Checklists and surveys produced by mycological societies from 

mushroom forays usually take place only in woodlands where mushrooms are large and 

more common (in my experience, and noted from Europe by Griffith and Roderick 

2008). Foray events may or may not include collection of voucher specimens for long-

term storage that could later be used for sequencing and confirming identifications, and 

usually do not attempt to collect abundance data. Recent studies using molecular high-

throughput sequencing techniques may offer useful insights into the diversity of 

Agaricomycetes in tallgrass prairie soils, but are usually focused on addressing other 

research interests besides characterizing the ecosystem and often cannot provide survey 

lists at the species level (Penton et al. 2013, Jumpponen and Jones 2014).  
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1.4 Aboveground and belowground surveys of fungal 
diversity 

Fungal diversity has been estimated to be six times greater than that of plants 

(Hawksworth 1991), but this estimate has steadily climbed higher (Hawksworth and 

Rossman 1997, Blackwell 2011) to a plant-fungi ratio of 1:17 equating to 6 million 

species (Taylor et al. 2014). In contrast, almost all of the world’s fungi have not yet been 

described. Previously, the number of described fungi was estimated to be less than 5% of 

estimated global diversity (Hawksworth and Rossman 1997). Many more fungi have been 

described since then, but global diversity estimates have increased dramatically, lowering 

the percentage of described fungi to only 2% of estimated global diversity (Taylor et al. 

2014). 

Fungal diversity has been studied via surveys of aboveground fruiting bodies 

(mushrooms) (detailed methods are described by Rossman et al. 1998 and Lodge et al. 

2004), culturing from environmental samples (e.g., Thorn et al. 1996), or else otherwise 

directly observing features using a microscope (e.g., arbuscular mycorrhizal spores by 

Stover et al. 2012, or ectomycorrhizal root sheath morphotypes by Matsuda et al. 2013). 

A major drawback to these methods is the limited diversity they can uncover. Standard 

dilution plating methods from soil samples overrepresent easily culturable species with 

high spore production – usually Penicillium and Aspergillus spp. (e.g., Martyniuk and 

Wagner 1978). Soil sieving and selective protocols methods were developed to improve 

soil culturing results (Thorn et al. 1996), but they did not capture as much diversity as 

cloning and sequencing methods used a decade later on the same soil (Lynch and Thorn 

2006). Mushroom surveys face a number of drawbacks. Fruiting body production is 

variable and sometimes sporadic, meaning committed sampling effort is required over 

several years to begin to approach a complete survey for an area (Straatsma et al. 2001). 

Consideration must also be made for differences in longevity of fruiting bodies, fruiting 

periodicity/ annual fluctuations, and successional changes (Lange 1991, Watling 1995). 

Mushroom taxonomy is still in transition from traditional morphological species concepts 

to modern ones utilizing genetic information. Currently defined morpho-species often 

represent several undefined “cryptic” species (e.g., even in well-known edibles; 
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Dentinger and Suz 2014). The process of sorting artificial taxa based on morphological 

characters into phylogenetic groups that represent evolutionary relationships is ongoing 

(Moncalvo et al. 2002). 

The development of high-throughput sequencing (HTS) has revolutionized the 

study of fungal diversity in environmental samples, since it can produce large numbers of 

sequences from samples containing genetic material from hundreds of species (Shokralla 

et al. 2012). Older sequencing methods could produce only one sequence for one genetic 

specimen at a time (Sanger et al. 1977). Methods of HTS are similar to previous 

techniques involving DNA extraction from soils and PCR amplification using fungal-

specific primers, but instead of labor-intensive cloning and culturing, PCR amplicons 

with mixed DNA can be sent directly for sequencing, returning hundreds of sequences 

(Lindahl et al. 2013). A greater diversity of fungi than was previously known has been 

exposed by HTS, particularly species that are otherwise difficult or impossible to find by 

culturing or fruiting body surveys. Fungal diversity in soil is increasingly being examined 

using HTS (e.g., Penton et al. 2013, Jumpponen and Jones 2014).  

High-throughput sequencing has also been criticized for a number of reasons. It is 

not able to distinguish inactive and dormant microbes from active ones, and therefore 

ecological conclusions from these data are questionable (Klein 2015). Sequences alone 

are useless for ecological interpretation without sequences from identified reference 

cultures and (mushroom) specimens to compare with. Despite suggestions to name new 

species using sequences alone (Kõljalg et al. 2013), tangible samples are still required for 

naming new species (Blackwell 2011) and Latin binomials remain standard for non-

microbial scientists, the public, and legislative bodies (Hibbett 2016). Therefore, 

mushroom and culture studies (and the collections they contribute to) are still vital and 

useful to the field of mycology as a whole (Peay 2014). Aboveground fruiting body 

surveys are also unique in the possibility for amateur mycologists and other interested 

members of the public (citizen scientists) to contribute, allowing for community 

involvement and education that is usually not feasible in mycological research. 
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There has been interest in comparing results of different types of surveys to 

determine their degree of similarity. Usually there is a large disparity between the results 

of molecular methods, culture-based approaches, and mushroom surveys (Griffith and 

Roderick 2008). Results of aboveground mushroom data do not match root tip 

genotyping of ectomycorrhizal species (Gardes and Bruns 1996, Horton and Bruns 2001). 

In the same way, molecular methods (cloning) do not match soil culturing (Hunt et al. 

2004, Thorn et al. 1996 vs. Lynch and Thorn 2006) or aboveground mushroom surveys 

(in a hemlock forest; Porter et al. 2008). Depending on the survey type, certain taxa may 

be missed entirely, such as litter-decomposing fungi missed by soil analysis excluding 

litter material and inconspicuous fungi missed by fruiting body surveys (Porter et al. 

2008). Comparisons of taxa common between two survey types, especially at the species 

level, often show contrasting relative abundances (high in one and low in the other) 

(Gardes and Bruns 1996). No published examples can be found in which aboveground 

and belowground methods were compared in grasslands, or in which mushroom survey 

results were compared with those of high-throughput sequencing. 

1.5 Objectives 

1. Characterize Ontario’s tallgrass prairies by compiling a list of Agaricomycetes 

and examining overall abundance and distribution of taxa in this group. 

2. Assess how certain factors relate to Agaricomycete composition: geographic 

region, soil characteristics, vascular plants, and tillage history. 

3. Compare two methods of documenting Agaricomycete diversity: aboveground 

fruiting body collection and belowground soil molecular analysis. 

1.6 Hypotheses and predictions 

I hypothesized tillage history would be the strongest determining factor for 

Agaricomycete composition (abundance across Agaricomycete taxa) in tallgrass prairies. 

My prediction was that my statistical analyses would separate the data first by tillage 

history (separating pristine and tilled sites from one another). I predicted tillage history 

would be correlated with organic carbon and plant measures of site quality (native 
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species richness and adjusted cover-weighted floristic quality index score). I 

hypothesized that organic carbon and plant diversity would be associated with fungal 

diversity, so I predicted I would find positive correlations between these variables and 

richness of Agaricomycetes across my sites. 

More specifically in regards to tillage effects, I hypothesized the differences 

between sites would be driven by taxa believed to be tillage-sensitive: either tillage-

associated (higher abundance in tilled sites than pristine ones) or pristine-associated 

(higher presence in pristine sites than tilled ones). I predicted the Clavariaceae, 

Hygrophoraceae, Entolomataceae, and Polyporaceae would be pristine-associated and the 

Cantharellales incertae sedis minor clade (Minimedusa spp.) and the Lachnellaceae 

would be tillage-associated (based on Rotheroe et al. 1996 and Bahnmann 2009). 

When comparing aboveground and belowground results, I hypothesized there 

would be relatively little correspondence. The degree of overlap would be particularly 

low at the taxonomic level of species, but greater at higher taxonomic levels such as 

family. I predicted that species present in both aboveground and belowground survey 

types would show contrasting abundances (high in one survey but low in the other). I also 

predicted that I would find taxa unique to each method, such as litter decomposers unique 

to the aboveground survey and inconspicuous taxa (such as crusts and non-mushroom-

forming soil propagules) unique to the belowground survey. that species with high 

abundance in one method will be of low abundance in another. There will be certain taxa 

unique to each method – such as litter decomposers in the aboveground method and hard 

to find taxa (such as crusts and non-mushroom soil propagules) in the belowground 

method. 
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Chapter 2 – Materials and Methods 

2 Materials and Methods 

2.1 Site descriptions 

This project combines data from three studies (this study, Chokroborty-Hoque 

2011, and Catomeris 2015), covering a total of fifteen prairie sites across southern 

Ontario (Figure 2.1). Together, these sites encompass a wide variety of land-use histories, 

management, and natural landscape features. 

 

Figure 2.1 Map of 15 tallgrass prairie study sites across five geographic regions of 

southern Ontario. 

Pristine sites are indicated with an asterisk (*) whereas all other sites were recently tilled. 

An apostrophe (’) indicates the site was only surveyed for mushrooms (no soil sampling). 
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2.1.1 Herb-Gray Parkway 

 The Herb-Gray Parkway is a major highway construction project started in 2008 

to improve traffic flow between Windsor and Detroit (Ontario Ministry of Transportation 

2016). Honouring the 2007 Endangered Species Act, the Ontario Ministry of 

Transportation (MTO) restored tallgrass prairie and oak savannah surrounding the 

parkway and transplanted to these sites plant species at risk that would have been lost in 

the construction process (Rt. Hon. Herb Gray Parkway Project Team 2014). Four of these 

Final Restoration Sites (FRS) located in Windsor and containing tallgrass prairie habitat 

were chosen for soil sampling and mushroom surveys: FRS #23, FRS #32, FRS #27, and 

FRS #28. Soils in the Windsor region were developed on thin deposits of sand over the 

Essex Clay Plain, a flat till plain between Lake Erie and Lake St. Clair, and additional 

clay was deposited about 13,000 years BP (Chapman and Putnam 1984). Ontario tallgrass 

prairie is typically found in sandy regions, although the additional clay in the Windsor 

area meant that pasture fields were the predominant agricultural land use until drainage 

was later introduced and the land could be tilled for crops (Chapman and Putnam 1984). 

 FRS #23 is located just south of the E.C. Row Expressway, east of Matchette 

Road (42.273° N 83.069° W). In 2014 it was classified Fresh-Moist Tallgrass Prairie, 

with some portions of Gray Dogwood Thicket Swamp and Savannah (Balsdon and 

Snyder 2015). Its tillage history is uncertain, but it is believed to be a remnant prairie. 

Aerial photographs show that it has remained flat grassland at least since 1951, with 

possible mowing for hay and pasture (cattle grazing) preventing surrounding woodland 

from encroaching (United States Geological Survey 1951). 

 FRS #32 is just north of Chappus Street and east of Matchette Road (42.272° N 

83.070° W), only about 100 m south from FRS #23. In fall 2009, prior to brush cutting 

and herbicide application to remove unwanted woody vegetation and invasive species, it 

was classified as Mineral Cultural Thicket (Balsdon and Snyder 2015). In 2014 the site 

had been altered enough to be re-classified as Forb Meadow Marsh, with some Dry-Moist 

Old Field Meadow on the eastern edge (Balsdon and Snyder 2015). The site is believed to 

be another prairie remnant (B. Macdonell, pers. comm., 22 September 2015), and aerial 
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photography confirms this. It appears that haying, mowing, or pasture use prevented the 

site from succeeding into a forest community. 

 FRS #27 is in the south end of Windsor, south of Hwy 3 and west of the Howard 

Ave Diversion (42.229° N 82.994° W). The site was a fallow agricultural field (tilled and 

harrowed, but not seeded) until 2011. Since then, prairie species were sod-transplanted 

and inter-seeded, invasive species were managed with herbicide and manual removal, and 

the site was allowed to succeed naturally into a Dry-Fresh Old Field Meadow (Balsdon 

and Snyder 2015). Prior to transplanting and seeding, the site was already in a state of 

natural recovery, and included a few rare or at-risk prairie plant species. Soil sampling 

was conducted on areas of land undisturbed by transplanting and seeding, while 

mushroom surveys were conducted across the entire site. 

 FRS #28 is adjacent to FRS #27, east off the Howard Avenue Diversion, which 

separates the two sites (42.228° N 82.993° W). It is split in two by the Howard Ave 

Connector and a parking lot. Both the north-east and south-west parts were surveyed for 

mushrooms, but soil could be sampled within the north-east half only, on land 

undisturbed by transplants. Like FRS #27, this site was tilled agricultural land until 2011, 

at which point it underwent identical invasive species management and restoration 

efforts, over the same time period. In 2014 the site was assessed as Dry-Fresh Old Field 

Meadow vegetation community (the same community type as FRS #27) (Balsdon and 

Snyder 2015). 

2.1.2 Ojibway Prairie Provincial Nature Reserve 

 The Ojibway Prairie Provincial Nature Reserve (OPPNR) is owned by the Ontario 

Ministry of Natural Resources and is one of five sites in Windsor collectively referred to 

as the Ojibway Prairie Complex (Ojibway Nature Centre 2015). It is a large (100 ha), 

roughly P-shaped block of land located at the south-east corner of Matchette and 

Titcombe Rd. The OPPNR consists mostly of tallgrass prairie and oak savannah, 

although micro-landscape variations exist, including shrubby zones and wet fern-

dominated areas. Two areas of open grassland 300 m apart were chosen to sample for soil 
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within this prairie (OPC1: 42.263° N 83.071° W, and OPC2: 42.261° N 83.068° W), and 

mushroom surveys were conducted in the same general areas. 

 The Ojibway Prairie Complex has a long and interesting history (Ojibway Nature 

Centre 2011). It has consistently escaped development: from early French settler 

farmsteads in the mid-18th century to major industrial proposals that never came to pass 

due to the depression in the 1930s. In 1961 the City of Windsor set the land aside as a 

natural park. Since then, appreciation for the ecological aspects of the park increased, 

neighbouring acquisitions were added, and legal protections of the land were made 

stronger. The two sampling sites in OPPNR are, as far as can be known, remnant tallgrass 

prairie and undisturbed from tillage activity. 

2.1.3 Walpole Island First Nation 

 Walpole Island First Nation is located just north of Lake St. Clair and contains 

five distinct sampling sites. Tallgrass prairies are amenable to the naturally occurring soil 

conditions in this region - a deltaic sand plain (Chapman and Putnam 1984). The 

availability of these sites is due to the community’s environmental ethic (Beckford et al. 

2010), and their allowing the lands to be accessed for research. Unless otherwise stated, 

tillage history and dominant plants mentioned here are sourced from site descriptions by 

Stover et al. (2012), who conducted fungal-plant research at the same sites. 

Silphium prairie is a high quality prairie remnant located near the northern point 

of the island (42.628° N 82.502° W). It is dominated by native grasses (Indian grass, big 

and little bluestem) and herbaceous plants such as prairie dock (Silphium 

terebinthinaceum). Some mature oaks are present, and invasive reed grass encroaching 

from the south is being actively managed. 

 Sandpits field is located just southeast of Silphium prairie (42.627° N 82.502° W), 

and is an old field that was tilled from 2002 to 2006. It is covered with thick, tall 

vegetation, consisting primarily of goldenrod and sweet and regular clover. This site is 

representative of a low quality, early successional prairie after agricultural disturbance, 

although a controlled burn was conducted in 2000 (Turner 2001). 
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 Mike’s field (42.580° N 82.494° W) is an old field that was tilled for corn 

cropping until 1990. Burns were conducted since then, but the site was otherwise left 

undisturbed and allowed to revegetate. The vegetation is heavily dominated by 

goldenrod, with some sweet clover and horsetails. 

 Eliza’s prairie is located near the centre of the island (42.580° N 82.489° W). It is 

a privately owned field that was tilled in 1940 but has since successfully recovered as a 

quality tallgrass prairie. Panic grass is the dominant plant cover. There is also good cover 

of small rushes and sedges. There are sporadic woody shrubs, as well as a couple of oaks 

and some aspen encroachment from the mature forest surrounding the site. 

 Pottowatomi prairie is located in the south-centre part of the island (42.550° N 

82.500° W) with agricultural disturbance noted in some areas from 1943 air photos. It is 

dominated by native plants such as little bluestem and panic grass, as well as dense 

blazing star. A few very tall cottonwood trees are present. Except for a human-

constructed soil ridge, the site is high quality tallgrass prairie and appears to be 

undisturbed. Soil organic carbon measurements in this study suggest previous disturbance 

effects were minimal to none. The site has doubtlessly been burned in the past, including 

a controlled burn that was conducted in the spring of 2000 (Turner 2001). 

2.1.4 Dutton-Dunwich 

 Located in the township of Dutton-Dunwich (south of Hwy 401 half-way between 

London and Chatham-Kent), this remnant tallgrass prairie covers two miles of abandoned 

rail line right-of-way (42.643° N 81.536° W). The prairie is managed in a partnership 

between the West Elgin Nature Club and Elgin County Stewardship Council. Despite 

much of the soil being covered with gravel, the site contains many characteristic or rare 

native prairie plants (such as big bluestem, Indian grass, blazingstar, gray-headed 

coneflower, compass plant), and is subjected to periodic prescribed burns. These site 

details are from the Naturally Elgin webpage about the prairie (Naturally Elgin 2012). 

The site was used for additional mushroom surveys only; no soil samples were collected. 

A small area east of the road not occupied with ditch, gravel, or aspen forest consists of 

an apparently undisturbed prairie remnant, and was the most productive part of this site 
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for prairie mushrooms. The township of Dutton-Dunwich is on the eastern edge of the 

Bothwell Sand Plain, deposited by the early Thames River during the retreat of the 

Wisconsin ice sheet (Chapman and Putnam 1984). 

2.1.5 Norfolk County 

 Two sites with different ownership but similar natural features were sampled in 

Norfolk County. Both are relatively recent restorations from previous tilled cropland and 

have particularly sandy soils. The sandy soils are typical of the Norfolk Sand Plain, 

which developed as deltaic deposits in the glacial lakes Whittlesey and Warren (Chapman 

and Putnam 1984). 

 DeMaere prairie is located east of the township of Walsingham, south of 

Highway 24 (42.685° N 80.464° W). The property was used as a tobacco farm until 2003 

and then for soy and corn crops until 2010 when the Nature Conservancy of Canada 

acquired the site and restored it to tallgrass prairie (McPhee et al. 2015). The vegetation 

consists of a mixture of species from the 2010 restoration seed mix and naturally 

occurring vegetation (both native and exotic), as well as planted sapling pines and oaks. 

The site is bordered by forest to the east and west, a sand hill separating it from cropland 

to the south, and by Highway 24 to the north. Soil sampled from this site was used, and 

subsequent mushroom surveys were conducted. 

 The other Norfolk County site is a prairie restoration by Mary Gartshore and Peter 

Carson on their property west of Walsingham, about 10 km west from the DeMaere site 

on Highway 60/24 (42.641° N 80.572° W). The land was used as a tobacco farm since 

the 1930s until restoration work began by Gartshore and Carson in 1991/92 (P. Carson, 

pers. comm. 10 July 2015). It was restored gradually over many years by applying native 

seed mixes in 1 m strips, totaling 39 rows across the site. Prescribed burns and herbicide 

were used as needed (about 15 times from 1991 to 2015) to manage the site for woody 

encroachment and invasive species. A few individuals of staghorn sumac and oaks were 

retained. There are sandy dune-like areas similar to DeMaere prairie. The site was used 

for additional mushroom surveys only; no soil samples were taken for this study. The 
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landowners report finding a large diversity of mushrooms on their restoration after rainy 

weather. 

2.1.6 Blair Flats 

 The RARE Charitable Research Reserve Cambridge was founded in 2001 and 

currently includes more than 900 acres of land representing a wide diversity of natural 

ecosystems (Craig et al. 2014). The organization is based in Cambridge, whereas their 

properties are located east of there, in the Township of North Dumfries. The Blair Flats 

(43.384° N 80.373° W) are a part of the reserve with a 60+ year history of corn-soy crop 

rotations, but in 2009 the eastern half was allowed to naturalize and in 2010 the western 

half was planted to tallgrass prairie (Germain et al. 2013, Craig et al. 2014). Prior to 

restoration, the site had been sprayed with glyphosate and plowed, leaving bare soil on 

which the seed mix of 24 native grasses and forbs were broadcast over the field (Drystek 

& MacDougall 2014). The site recently underwent a prescribed burn with 80% coverage 

in April 2015, and future burns are planned on a 5 to 7 year timeline (J. Quinn 2016, pers. 

comm. 22 February). The vegetative cover includes a strong display of native prairie 

species (an abundance of goldenrod, big bluestem, and Indian grass, as well as a diversity 

of native broad-leaved plants). The soil in this region was developed from floodplains 

formed by the spillway through the till plain when the Wisconsin ice sheet was receding 

(Chapman and Putnam 1984). 

2.2 Field sampling 

2.2.1 Soil sampling design 

Soil was collected by Sarah Allan from each prairie by arranging six 1 × 1 m plots 

to capture maximum variety across the landscape. Five soil cores 20 cm deep and 2.5 cm 

in diameter were taken from each plot and combined into one bag. The top layer of litter 

was removed from each core. An additional core was taken at each plot for soil 

composition analysis and combined into one bag across the six plots for the entire site 

(Figure 2.2). The soil corer was cleaned using a cloth and 70% ethanol to prevent soil 

from mixing between sampling plots. Bags of soil were kept on ice packs in a cooler 
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while in the field until they could be transferred into a -20°C freezer for long-term 

storage. 

Sequence data from Walpole sites in June and October 2009 (Silphium, Sandpits, 

Mike’s, Eliza’s, and Pottawatomi) were derived from soil collected in the field by 

Aniruddho Chokroborty-Hoque with a very similar design - two transects with three plots 

located randomly along each (Chokroborty-Hoque 2011). Sequence data from DeMaere 

prairie were derived from soil collected by Catriona Catomeris in June and October 2014. 

The sampling design consisted of a transect of 8 blocks, with three samples taken from 

each block (Catomeris 2015). All other soil was collected by Sarah Allan in June/July 

and October 2014 (Walpole Island could be sampled only in October) (Table 2.1). 

 

Figure 2.2 Field sampling design and the resulting bags of soil. 

 

Table 2.1 Soil sampling of prairie sites by three researchers from 2009 to 2014.  

Principal soil sampler: A = Aniruddho Chokroborty-Hoque, C = Catriona Catomeris, and 

S = Sarah Allan. Dutton-Dunwich and Mary & Peter’s prairie were not sampled for soil. 

Sites are organized by geographic location, from west to east. 

  HA HB OA OB HC HD SI SA MI EL PO DM BF 

2009-Jun       A A A A A   

2009-Oct       A A A A A   

2014-Jun/Jul S S S S S S      S S 

2014-Oct S S S S S S S S   S S C S 
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2.2.2 Mushroom collection 

I conducted mushroom surveys at least once in the fall and once in the summer 

(Table 2.2). All sites with soil sampling were also surveyed for mushrooms, with the 

exception of Mike’s Field, which could not be accessed for logistical reasons. Two 

additional sites were surveyed for mushrooms that were not sampled for soil: Dutton-

Dunwich prairie remnant and Mary & Peter’s prairie restoration (Table 2.2). A GPS was 

used to begin surveys near soil-sampling plots, but the remaining cover of each site was 

surveyed in a wandering design (as opposed to sampling plots – for maximal coverage) 

for approximately one hour each visit. Fruiting bodies were counted, genetic individuals 

estimated (based on proximity and known fruiting patterns for different taxa – e.g. 

clusters, fairy rings), and a voucher specimen was collected for sequencing of each 

morpho-species (conservatively estimated in the field). Each voucher was given a 

specimen code, photographed, and notes were taken on ecology, ephemeral identification 

features (such as smell, colour, and cap shape), and GPS location. Vouchers were 

normally small enough to fit into fishing tackle-box cells, otherwise larger containers 

were used (to avoid cross-contamination, only one cell or container was used per 

specimen). Mushrooms were preserved using a food dehydrator and stored in labelled 

paper packets for subsequent lab sequencing and more accurate identification. 

Table 2.2 Mushroom sampling over three periods from Oct 2014 through Oct 2015. 

Collection visits are indicated by “+”. Mike’s field was not surveyed for mushrooms. 

Sites are organized by geographic location, from west to east. 

  HA HB OA OB HC HD SI SA EL PO DD MP DM BF 

2014-Oct             + + + +         

2015-Jun/Jul + + + + + + + + + + + + + + 

2015-Oct + + + + + + + + + + + + + + 

2.3 Soil sieving 

 Soil from each plot was weighed to 20 g and combined with 100 mL of 0.1 M 

sodium pyrophosphate in a clean jar. The mixture was shaken vigorously and allowed to 

sit for 5-10 min to break apart soil colloids before being re-agitated and poured over three 
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stacked sieves with pore sizes of 1.18 mm, 0.25 mm, and 0.053 mm, then washed with 

deionized water. The sieving technique allows for the capture of plant debris, fungal 

hyphae, rhizomorphs, and sclerotia, while removing spores, such as the abundant asexual 

spores of ascomycetous and zygomycetous molds (Thorn et al. 1996, Lynch and Thorn 

2006). Plant roots (including any fungi that may be present on their surfaces) were picked 

from the top, coarse sieve with forceps and placed in a Falcon tube. Dark organic matter 

was separated from sand and silt and scooped from the middle sieve and pipetted with a 

broad tip from the lowest, fine sieve, and added to the Falcon tube until approximately 5 

mL was obtained. Sieves were rinsed with deionized water and cleaned using 70% 

ethanol between each sample to prevent mixing of soil material between samples. 

2.4 Molecular protocols 

 Soil organic matter was lyophilized and ground with liquid nitrogen using a 

mortar and pestle until a floury texture was reached, whereas mushroom samples were 

bead-beaten to assist physically in cell wall lysis. Bead beating was carried out in a 

FastPrepFP120 machine (Bio101, Qbiogene, Inc., Carlsbad, CA, USA) at a setting of 4.0 

for 30 sec. Molecular methods from this point forward were similar for both soil and 

mushroom specimens. Sequencing was attempted on at least one voucher of each 

mushroom morpho-species. DNA extraction was carried out using a Zymo Research Soil 

Microbe DNA MicroPrep kit for soil, and a Thermo Scientific GeneJET Plant Genomic 

DNA Purification Mini Kit for mushrooms. The concentration of eluted DNA was 

determined using a Thermo Scientific Nanodrop2000 Spectrophotometer. 

 PCR reactions were conducted using a total volume of 25 µL; for soil: 1.0 to 

3.0 µL template DNA (at ~20 ng/µL), 12.5 µL ToughMix (Quanta Biosciences), 3 µL 

each for the forward and reverse primers, and 0.5 µL loading dye; for mushrooms: 0.5 to 

1 µL template DNA (at ~20 ng/µL), 12.5 µL FroggaMix (FroggaBio), and 1.25 µL each 

of the forward and reverse primers. For soil samples, a newly developed primer set was 

used (LSU200-F (AACKGCGAGTGAAGMGGGA)/LSU481-R 

(TCTTTCCCTCACGGTACTTG)) which targets ca. 250 bases at the LSU D1 region of 

ribosomal DNA which is useful for retrieving and identifying a wide range of fungi, 

particularly Agaricomycetes (Asemaninejad et al. 2016). For mushrooms, the ITS8F 
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(AGTCGTAACAAGGTTTCCGTAGGTG) and LR3-mod 

(GGTCCGTGTTTCAAGACGGG) primer pair was used (Vilgalys and Hester 1990, 

Dentinger et al. 2010). Gene regions amplified for mushrooms and soil overlapped so that 

comparisons could be made between aboveground and belowground surveys; different 

primers were used because Illumina sequencing requires short sequences (here ca. 250 

bases) whereas mushrooms could be used to obtain longer sequences (here ca. 1,250 

bases) including the LSU region covered by the soil primers as well as the ITS region 

standard for mushroom sequencing. The longer mushroom sequences were useful for 

finer-scale identifications, but were reduced to only the overlapping region with soil 

sequences for aboveground-belowground shared species comparisons. Soil templates 

were PCR amplified in a Biometra T1 Thermocycler with a start of 94 °C for 2 min, then 

30 cycles of 94 °C for 30 sec, 60 °C for 30 sec, 72 °C for 18 sec, and after cycling, 

holding at 4 °C. Mushroom templates were PCR amplified in a MWG Biotech Primus96 

thermocycler starting with 94 °C for 1 min, then 30 cycles of 94 °C for 30 sec, 58 °C for 

30 sec, 72 °C for 1 min 30 sec, and after cycling an extension time of 72 °C for 7 min 

before holding at 4 °C. PCR products were checked for contamination and successful 

amplification via gel electrophoresis using agar-agar gels in 1× TAE buffer and a BIO-

RAD Power-Pac 3000 to supply electrical charge. 

Soil PCR products were pooled for each site (six initial plots pooled to one tube), 

lyophilized, and rehydrated before being submitted for paired-end Illumina MiSeq high-

throughput sequencing at the London Regional Genomics Centre (Robarts Research 

Institute). Mushroom PCR products were cleaned using a BioBasic EZ-10 Spin Column 

PCR Products Purification Kit and submitted for Sanger sequencing (Sanger et al. 1977). 

Because of the length of the mushroom sequences desired, mushroom PCR products 

needed to be submitted for sequencing four times using different primers to obtain a 

portion of the total sequence length each time, and were later assembled (using 

Geneious 8.0.5) to obtain the full sequence. Full mushroom sequences represented a 

partial sequence of the SSU (18S) rRNA gene, complete sequences for the ITS1, 5.8S, 

and ITS2 rRNA genes, and a partial sequence of the LSU (28S) rRNA gene. The four 

primers were: ITS8F, LS1R(-mod) (CTTAAGTTCAGCGGGTAGTCC), LS1-mod 

(GGACTACCCGCTGAACTTAAG), and LR3-mod (Vilgalys and Hester 1990, Hausner 
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et al. 1993, Dentinger et al. 2010). All sequencing was carried out at the London 

Regional Genomics Centre (Robarts Research Institute, London, Ontario, Canada).  

2.5 Mushroom identification 

Sequences were assembled and checked for errors using Geneious 8.0.5. 

Assembled sequences were queried through the NCBI GenBank database using their 

Basic Local Alignment Search Tool for nucleotide sequences (blastn) to check for 

assembly errors, find nearby matches, and assist in identification. 

Mushrooms were identified using macro- and micro-morphological features, as 

well as occasional chemical tests and ecological information to navigate taxonomic keys. 

Specimens were kept for long-term storage at the University of Western Ontario’s 

herbarium (UWO), and specimen photos and data were made available online 

(http://mushroomobserver.org/species_list/show_species_list/652) though 

MushroomObserver.org (Wilson and Hollinger 2016). 

2.6 Vegetation metrics 

 Custom lists of plant species and percent cover were created for each site using 

GPS to survey only the areas of soil sampling plots with a buffer of few metres. I 

performed these surveys in October 2015. After completing surveys, the Universal 

Floristic Quality Assessment (FQA) Calculator provided data for southern Ontario flora, 

which were needed to calculate site metrics derived from the plant species lists (Freyman 

et al. 2015, Oldham et al. 1995). Three metrics were chosen for this study: total and 

native species richness (TSR, NSR), adjusted cover-weighted Floristic Quality Index 

(FQI), and mean coefficient of wetness.  

 Total species richness was calculated as a simple count of the total number of 

plant species present within each site’s survey area. Native species richness includes only 

native species (excluding alien ones). The decision for defining species as native or alien 

is sometimes debated, but Oldham et al. (1995) was used as the standard for this study. 
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 Floristic Quality Assessment metrics are based on coefficients of conservatism, 

which are assigned to each plant species in a region. These scores are based on each 

plant’s sensitivity to degradation and tendency to be present in high quality or pristine 

ecosystems (Taft et al. 1997). The scores range from 0 to 10, with lower scores belonging 

to plants well adapted to degradation, middle scores for species common in many 

communities, and higher scores for plants increasingly limited to natural areas. Several 

metrics can be derived from C-scores, of which adjusted cover-weighted FQI was chosen 

for this study. The metric of adjusted cover-weighted FQI does not reduce its score for 

sites with naturally fewer species that are actually high quality (e.g., bogs), takes percent 

cover into account so that the effect of missing rare species is not as large, and does not 

exclude non-native species, which slightly inflates the score (Miller and Waldrop 2006). 

This is the most fitting metric given that plant surveys were conducted briefly over a 

small area, rather than being detailed inventories of an entire site. Adjusted cover-

weighted FQI (���� ) is calculated as follows: 

���� = 	100 	
γ̅
10	 √�

√� + �� 

Where 
�̅ represents mean cover-weighted coefficient of conservatism, � is the native 

species richness, and � is alien species richness.  

 Plants can be assigned coefficients of wetness – a similar concept to coefficients 

of conservatism. Mean coefficient of wetness is the standard measure used to assess 

hydrology of a site based on its vegetative composition. It is calculated by dividing the 

sum of wetness coefficients for each plant species present on the site by the total species 

richness of the site. In the United States, wetness coefficient scores are based on nominal 

categories (obligate wetland, ±facultative wetland, ±facultative, ±facultative upland, and 

upland) from national lists of wetland plants (Reed 1988). These can easily be converted 

into ordinal values from +5 (upland) to 0 (facultative) to -5 (obligate wetland) (Taft et al. 

1987). Southern Ontario plants have been assigned scores by the same system (Oldham et 

al. 1995). 
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2.7 Soil analyses 

 Approximately 125 g of soil from each site’s bulk composition bag was weighed 

into tins and dried in a drying oven at 50 °C for 48 hours. The coarse dried soil was used 

for pH measurements. Remaining soil was gently ground and sieved at 1 mm, re-dried at 

100 °C for 24 h, and stored in a desiccator with 454 g Drierite (VWR) before being used 

for organic carbon and texture measurements. 

2.7.1 pH 

 The procedure for soil pH measurement described by Thomas (1996) was 

followed, with some minor modifications. A VWR SympHony pH meter model SB20 

with a calomel electrode was calibrated using reference solutions (VWR) of pH 7.00, 

4.01, and 10.01. Soil and deionized water were combined at a 1:1 ratio (20.0 g soil and 

20.0 mL water) in a beaker with a magnetic stirrer. This was repeated three times for each 

site to account for soil and instrumental variation. The electrode was rinsed with 

deionized water between readings. 

2.7.2 Organic carbon 

 The loss-on-ignition method from Nelson & Sommers (1996) was used. Crucibles 

were heated in a muffle furnace at 400 °C for 2 h, cooled in a desiccator with Drierite for 

30 min, and dry weights recorded to 0.001 g. Soil was weighed at 2.000 ± 0.001 g and 

recorded as pre-ignition weight. Soil samples were ignited in the muffle furnace at 400 

°C for 16 h to remove organic carbon. They were allowed to cool for 2 h before opening 

the oven and being placed in the desiccator for 30 min to cool to room temperature. Post-

ignition soil plus crucible weights were recorded. Percent organic carbon was calculated 

for each site as: 

�������	������	% = ����	���� ���	!���ℎ − ��$ 	���� ���	!���ℎ 
���	���� ���	!���ℎ % 100% 

2.7.3 Texture 

Texture was assessed using the Finger Assessment of Soil Texture method as 

described in the Ecological Land Classification for Southern Ontario field guide (Lee et 
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al. 1998). Sand, silt, and clay were estimated using qualitative tests such as forming a ball 

or ribbon, as well as feel, taste, and shine tests. 

2.8 Geographic region – position on a transect 

Broad geographic regions of belowground-sampled sites were translated into one-

dimensional values for inclusion in multivariate statistics by creating a diagonal transect 

across the map (Figure 2.3). Neither latitude nor longitude alone were able to represent 

location of sites as well as the position on a transect. A preliminary analysis of correlation 

coefficients on a PCA biplot found position on a transect explained 0.509 of the first axis, 

whereas latitude and longitude only explained 0.345 and 0.382 percent of the variation 

respectively. Latitudinal values misrepresent the distance between Walpole and Norfolk 

sites, whereas longitudinal values misrepresent the distance between the Cambridge and 

Norfolk sites (Figure 2.3). Other methods of distance measurement were not explored. 

 

Figure 2.3 Map showing positions of soil-sampled sites on a diagonal transect. 

The diagonal transect is indicated in red. Yellow circles represent areas where several 

sites were relatively near to one another. Position on the transect for each group of sites is 

indicated with a yellow number. 
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2.9 Sequence and phylogenetic analysis 

A pipeline (created by Greg Gloor from Biochemistry, Western University), 

which incorporated several software programs, was used to process raw sequence data. 

PANDAseq was used to overlap forward and reverse fastq raw sequence reads, with a 

minimum overlap of 30 nucleotides (Andre et al. 2012). UCLUST was used to cluster 

sequences into identical sequence units (ISUs, 100% similarity) then into species-level 

operational taxonomic units (OTUs) at 97% similarity and to choose a centroid seed OTU 

sequence (the most common sequence in each OTU cluster) (Edgar 2010). This 97% 

cutoff is stricter than the 99% level of genetic difference discovered between yeast 

species in the D1-D2 region of the LSU(25S) rRNA (Peterson and Kurtzman 1991) 

because our amplicons include only the most variable portion of that region.  Only ISUs 

and OTUs over 1% abundance were kept, and retained ISU and OTU sequence reads 

were mapped back onto the sites. UCHIME was used to check for and remove chimera 

sequences (Edgar et al. 2011). Data from three separate Illumina MiSeq runs were 

processed separately and then combined: A. Chokroborty-Hoque’s Walpole site soils 

from 2009, C. Catomeris’ DeMaere prairie soils from 2014, and S. Allan’s 2014 soils 

from other prairies in this study. Subsequently, the OTU_tag_mapped file was checked in 

Microsoft Excel for low reads within sites and any reads less than 0.1% of the sum of the 

site were considered absent (0). A cutoff of 0.1% was used instead of 0.01% because 

when data are combined from multiple sequencing runs the output becomes messier and a 

more stringent cutoff is required (pers. comm. Greg Gloor, Department of Biochemistry, 

Western University, May 2015).  

Sequences of OTUs were coarsely identified using the sequence classifier from 

the Ribosomal Database Project (RDP) (Wang et al. 2007) as Agaricomycetes, other 

fungi (other Basidiomycota, Ascomycota, Glomeromycota, or Zygomycota), 

Amoebozoa, Animalia, Viridiplantae, or other Eukaryota. A neighbour-joining 

phylogenetic tree (Saitou and Nei 1987) was produced for all OTUs, and the clade 

containing mostly Agaricomycetes was extracted.  Sequences within this clade that had 

been classified as non-Agaricomycetes by RDP and sequences classified as 

Agaricomycetes that were outside of the Agaricomycetes clade in the tree were separately 
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queried against GenBank sequences to check their matches 

(http://www.ncbi.nlm.nih.gov/blast/), and only true Agaricomycetes were retained. 

OTUs of Agaricomycetes were queried to identify each to genus or family 

taxonomic levels. Species-level identifications were applied only when query cover and 

percent identity were each greater than or equal to 98%, without competing species 

names in this range. Species-identified OTUs should be interpreted with caution; a 

reference table was produced for these OTUs including the accession numbers of the 

closest matches (Appendix A). OTUs were placed in major (ca. order level) and minor 

(ca. family level) clades based on their query IDs. To visualize the clades, particularly for 

placing the OTUs with weak matches, neighbour-joining trees with 100 bootstrap 

replications were produced. Clade-groupings of OTUs, in addition to individual OTUs, 

were used for subsequent analyses. 

2.10  Statistical methods 

Agaricomycete OTU (fungal) richness and abundances were determined by 

combining multiple sampling events (i.e., wells in sequence runs, usually representing 

seasons) to obtain one value for each OTU per site. OTUs were further combined as 

needed for minor or major clade analyses. To examine community composition across all 

sites, belowground high-throughput sequence data was used. Pie charts were produced to 

display relative abundances of major and minor clades, a bar chart was produced to 

display richness of OTUs in minor clades, and a ranked list of OTUs by abundance was 

produced, all using Microsoft Excel. The ranked list of dominant OTUs was produced by 

combining the 10 most abundant OTUs from each site into a list of 70 different OTUs 

across all 13 sites with belowground data. To rank the OTUs, read counts were converted 

into relative abundances and summed across sites for each OTU. 

To determine the relative importance of environmental variables in determining 

Agaricomycete composition, belowground high-throughput data were manipulated using 

R (RStudio Team 2013). High-throughput soil sequencing data were centre log-ratio (clr) 

transformed to scale the data and proceed with ratio (abundance) analyses (Gloor 2015). 

The compositions package in R (van den Boogaart and Tolosana-Delgado 2008) was 
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used to prepare data to produce the outputs described in this paragraph. A dendrogram 

grouping sites by abundance in dominant minor clades was produced using the Euclidian 

distance measure (dist) and ward.D2 hierarchical clustering (hclust), with associated 

relative abundance bars plotted below each site. A compositional biplot was produced 

using principal component analysis (PCA) via the prcomp function, including a scree 

barplot to show eigenvalues of each axis. Environmental variables were treated as 

metadata for each site and correlated to each axis as correlation coefficients using the cor 

function and Kendall’s tau as the method, which is not dependant on linearity of either 

dataset (Kendall 1938). 

Tillage-sensitive minor clades were examined by comparing relative abundance 

of reads from tilled sites to pristine sites. These were considered using Walpole sites 

alone (reduces sample size, but removes geographic autocorelation of sites as a 

confounding effect) and across all sites (leaves the sample size as large as possible for 

this study, but the confounding effect of geography remains). Minor clades were selected 

as tillage-sensitive only if the effect was strong (ca. 5 times greater abundance in tilled 

sites than pristine sites or vice versa) and only if the trend was true when examining the 

data both ways (if the trend was consistent between all sites and Walpole sites alone). 

Rare taxa present in only one site were not considered candidates for being included in 

the list of tillage-sensitive taxa, but absences of taxa from all tilled or all pristine sites did 

not necessarily disqualify them from being considered tillage-sensitive, since absence in 

one direction may indicate an extreme effect.  

 Environmental variables of sites were visualized as bar charts and tables using 

Microsoft Excel and interpreted with differences between tilled and pristine sites in mind. 

Sites designated “pristine” were never tilled or tilled for a brief period more than 60 years 

ago (Pottawatomi and Eliza’s prairie) whereas sites designated as “tilled” were used for 

agriculture much more recently (within four to eight years prior to sampling dates). 

Relationships between OTU richness of sites and environmental variables were explored 

by producing regressions (scatter plot trendlines) using Microsoft Excel. These were 

considered exploratory only, not as inferences of statistical significance, given the lack of 

independence between sites (sites are autocorrelated by geographic region clusters). 



29 

 

 

 

Aboveground and belowground comparisons of abundance and richness in minor 

clades were visualized using doughnut charts produced using Microsoft Excel. Potential 

OTU-mushoom matching pairs were found by producing a neighbour joining tree, and 

then confirmed as 100% identical by alignment using MUSCLE in MEGA6 to check for 

any dissimilar base pairs (Edgar 2004). To visualize the degree of shared species overlap 

between the two methods, area-proportional Venn diagrams were produced using the 

venneuler package in R (Wilkinson 2011). Comparisons of abundance of shared species 

and their occurrence across sites were visualized through a table and side to side bar 

charts produced in Microsoft Excel. 
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Chapter 3 - Results 

3 Results 

3.1 Sequence recovery 

Combined datasets consisted of 529,259 individual sequence units (ISUs), from 

which the pipeline identified and removed 22,577 as possibly chimeric and 492,352 

singletons; the remaining 14,330 were clustered at 97% similarity into 1,275 operational 

taxonomic units (OTUs).  Removing read counts <0.1% of the total reads from each site 

did not result in the loss of all reads for any OTU (all OTUs were retained despite 

reducing the dataset). Manual filtering of OTUs using RDP, a neighbor-joining tree, and 

GenBank querying left 281 OTUs of Agaricomycetes (see Appendix B). Some OTUs 

from the Cantharellales did not group with other Agaricomycetes in the neighbour-

joining tree, but were retained because RDP identified them as belonging to the class. 

The total of 281 OTUs was further reduced to 256 OTUs after removing nitrogen-treated 

plot data from DeMaere prairie, leaving only untreated control plots (the full dataset was 

used for a separate project – Catomeris 2015). The 256 OTUs were used for statistical 

analyses, but the 281 OTUs are included in Appendix B as a full species list. 

A total of 149 collections of fruiting bodies representing 74 morphospecies of 

Agaricomycetes were collected, and attempts were made to extract, amplify, and 

sequence rDNA from 92 of the collections. Thirty-six collections were successfully 

sequenced and assembled for the full ca. 1300 bp region (ITS8-F to LR3). Of the 

remaining 56 collections attempted for sequencing, seven returned mixed product 

sequences, 18 sequences contained insertions-deletions, and the 31 other collections did 

not reach the sequencing stage for a variety of reasons (more than half of these 

collections were small mushrooms where some step failed and there was no material left 

to try again). Of the 74 morphospecies, 30 were identified to species level (or in five 

cases, identified to a species group), 39 to genus level (or two genera in one case), and 

five were considered different unknowns (could not be identified even to family level) 

(see Appendix C). 
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3.2 Community composition 

3.2.1 Major and minor clade representation 

The 256 OTUs were grouped into 19 major clades and are displayed in a 

phylogenetic context (Figure 3.1). OTU-rich clades included the Tricholomatoid, 

Agaricoid, and Clavarioid clades, and the Cantharellales, all containing greater than 20 

OTUs. Conversely, the Jaapiales, Corticiales, Atheliales, Thelephorales, and 

Trechisporales each contained fewer than 5 OTUs. By far the Agaricales was the most 

OTU-rich order in the Agaricomycetes, here containing six major clades and 131 OTUs – 

just over half of the total OTUs. Finer-scale groupings were produced by splitting the 19 

major clades into 55 minor clades (Figure 3.2). The most OTU-rich minor clades were 

the Clavariaceae, Entolomataceae, Polyporaceae sensu lato, Sebacinaceae, and 

Hygrophoraceae. 

 When considering major clades by abundance (measured by OTU sequence reads) 

the Tricholomatoid clade and Cantharellales contain ca. 50% of total read abundance. 

This trend is paralleled by the minor clades that are associated with those major clades 

containing ca. 50% of total abundance: the Mycenaceae (Tricholomatoid), 

Ceratobasidiaceae (Cantharellales), and Polyporaceae sensu lato (Polyporales) (Figure 

3.3). 

 Minor clades with the highest diversity tended to have relatively low read 

abundance, sitting in the lowest quarter (compare Figure 3.2 with Figure 3.3). The 

Clavariaceae (Clavarioid major clade) had the highest diversity among minor clades (22 

OTUs) but represented only 1.5% of read abundance. Similarly, the Entolomataceae had 

the second highest diversity (18 OTUs) but only 1.9% read abundance, and the 

Sebacinaceae with third highest diversity (16 OTUs) had only 2.3% of the read 

abundance. 
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Figure 3.1 Phylogeny of major clades of Agaricomycete OTUs from remnant and 

restored prairies in southern Ontario. 

The tree shows 19 major clades and 256 OTUs. The number of OTUs present in each 

major clade is shown numerically and by scaled branch tips. The topology is based on 

a number of sources compiled and arranged by Hibbett et al. (2014), as well as Binder 

et al. (2010) for approximate Atheliales placement, and Dentinger et al. (2016) for 

Clavarioid placement. 
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Figure 3.2 Distribution of OTUs among minor clades of Agaricomycetes from 

restored and remnant tallgrass prairies in southern Ontario. 

Corresponding major clade groupings are indicated with brackets to the left of minor 

clade names. 
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Figure 3.3 Relative abundance of sequence reads in A. major and B. minor clades. 

The percent relative abundance of each clade is indicated in brackets after the name. 

All 19 major clades and the most abundant 20 minor clades (≥ 1%) are displayed. 
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3.2.2 Dominant OTUs 

The 10 OTUs with the highest total reads from each site were combined into a list 

of 70 different OTUs across all 13 sites. The top 10 OTUs from this list contain just over 

50% of the total relative abundance from this list (Table 3.1). The most abundant OTU, 

Ceratobasidiaceae sp. 1, was present in the five Walpole sites only. The second OTU, 

Minimedusa polyspora, was present across all sites to varying degrees, except for Mike’s 

field where it was absent. The third OTU, Mycena epiptygeria sp. 1, was highly abundant 

in all the Walpole sites but was also present with lower abundance in both Ojibway 

prairie sampling areas. The fourth OTU, Mutinus elegans, had the highest abundance of 

any OTU in any one site (DeMaere prairie) and had low abundance in some others. The 

fifth OTU, Hypochicium sp., was again only present in Walpole sites. Similar trends of 

local or broad distribution emerge when scanning down the remainder of the list (Table 

3.1). 

Dominant OTUs tended to be from minor clades of low or moderate richness: 

OTU_1 Ceratobasidiaceae sp. 1 from the Ceratobasidiaceae (six OTUs), OTU_9 

Minimedusa polyspora from the Cantharellales incertae sedis minor clade (two OTUs, 

both Minimedusa spp., but the minor clades in the Cantharellales ranged from one to only 

six OTUs), OTU_5 Mycena epiptygeria sp. 1 from the Mycenaceae (7 OTUs), and 

OTU_0 Mutinus elegans from the Phallaceae (3 OTUs) (Table 3.1 and Figure 3.2). 

Similarly, minor clades with the highest diversity tended to have relatively low read 

abundance, sitting in the lowest quarter (Figure 3.2 and Figure 3.3). This shows the 

importance of examining both abundance and richness. 
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Table 3.1 A ranked list of compiled top 10 most abundant OTUs from each of 13 study sites. 

Key to abundance: “***” >20%; “**” >5%; “*” >1%; “ ' ” >0.1%; where percentages represent relative abundance values per site 

across this list of 70 OTUs. Blanks represent zeroes or near zeroes (≤0.1%) that may or may not actually be present (low read counts 

are not dependable in high-throughput sequencing data). 

Key to sites: HA,B,C,D = FRS #23,32,27,28 Herb-Gray Parkway (Windsor); OA,B = Ojibway Prairie Areas 1 and 2 (Windsor); SI = 

Silphium, SA = Sandpits, MI = Mike's field, EL = Eliza's prairie, PO = Pottawatomi (Walpole); DM = DeMaere (Norfolk); BF = Blair 

Flats (Cambridge). Sites are ordered by geographic location, from west to east. 

Rank OTU name HA HB OA OB HC HD SI SA MI EL PO DM BF   

1 OTU_1 Ceratobasidiaceae sp1             *** *** ** *** ***      

2 OTU_9 Minimedusa polyspora ** * * * *** ** ' *   ' ' * ***  

3 OTU_5 Mycena epiptygeria sp1     * '     *** ** *** *** ***      

4 OTU_0 Mutinus elegans ' ' '                 ***    

5 OTU_12 Hypochnicium sp             ** ** ** ** **      

6 OTU_101 Russulales sp1 *** ** * '           *        

7 OTU_15 Marasmiaceae sp3             * ** * ** *      

8 OTU_21 Hygrocybe conica group sp3 **   * '     **              

9 OTU_47 Tricholomataceae sp3   *     * **   '       * **  

10 OTU_19 Mycena sp2             * ** ** * *      

11 OTU_22 Gomphales sp3 ** * * **       '   * * * *  

12 OTU_17 Hyphodontia sp1             ** * ** * '      

13 OTU_160 Hygrocybe conica group sp2 * ** * *   ' '       *      

14 OTU_35 Sebacinaceae sp2         * **   '       * **  

15 OTU_376 Fomitopsidaceae sp * * ** *     * ' ' * *   *  

16 OTU_189 Hymenogastraceae sp ' ' *       * ** * * *      

17 OTU_200 Tricholomataceae sp2 *   ' **                 *  
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Rank OTU name HA HB OA OB HC HD SI SA MI EL PO DM BF   

18 OTU_14213 Entoloma sp3 * * * * * ** ' '     *   *  

19 OTU_80 Lachnellaceae sp   '     * *           ' **  

20 OTU_404 Hygrocybe flavescens/chlorophana     **                      

21 OTU_7123 Clitocybe sp *   ' **                 *  

22 OTU_242 Pholiota tuberculosa * * * '   **             *  

23 OTU_93 Coprinellus sp2 * * * ' *         '   ' *  

24 OTU_137 Typhula phacorrhiza         ** *                

25 OTU_127 Thelephoraceae sp1   ' * *     ' * ' * *      

26 OTU_225 Pluteaceae sp1   '     * **                

27 OTU_245 Amanita populiphila   ** '                      

28 OTU_447 Russula putida       **                    

29 OTU_238 Clavaria sp4     ** * *         *        

30 OTU_480 Lactarius sp   * **                      

31 OTU_274 Pluteaceae sp3           **   '            

32 OTU_8677 Entoloma sp10   '     ' **   '       ' *  

33 OTU_6038 Psathyrella sp   * ' '   *           ' *  

34 OTU_60 Suillus cavipes             ** ' ' * *      

35 OTU_869 Auriculariaceae sp6 * *     *         '        

36 OTU_36 Hyphodontia sp3   ' * '             ' * *  

37 OTU_347 Limonomyces roseipellis *     **                    

38 OTU_286 Inocybe squamata   **                        

39 OTU_311 Hygrocybe conica group sp4 ' * *             * '      

40 OTU_2491 Boletales sp '   * *     '              

41 OTU_5877 Hygrophoraceae sp '   ' **     '     ' '      

42 OTU_247 Gymnopilus sp   **           '            

43 OTU_1087 Cantharellales sp1         ' **           *    

44 OTU_61 Clavariaceae sp3         * *           *    
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Rank OTU name HA HB OA OB HC HD SI SA MI EL PO DM BF   

45 OTU_1367 Coprinellus sp1                       ' **  

46 OTU_7077 Cortinarius sp4 ' * ' *             '      

47 OTU_7800 Hypholoma sp               ' ' * **      

48 OTU_487 Russula sp     **                      

49 OTU_326 Pluteaceae sp4         * *                

50 OTU_435 Clavaria fuscata * *                        

51 OTU_1083 Thelephorales sp   * **                      

52 OTU_425 Sclerogaster minor *     *             '      

53 OTU_488 Vascellum sp *     *           ' '      

54 OTU_150 Cuphophyllus pratensis *           *              

55 OTU_1164 Mycena galopus             ' ' ' ' *      

56 OTU_796 Ceratobasidiaceae sp5         * *         '      

57 OTU_784 Lyophyllaceae sp2 ' ' ' ' '     ' * ' '      

58 OTU_552 Typhulaceae sp2     **                      

59 OTU_4467 Inocybe perlata   **                        

60 OTU_236 Russulales sp3       '           * '      

61 OTU_638 Hodophilus sp     *                      

62 OTU_939 Polyporales sp5             ' ' * '        

63 OTU_174 Serendipita vermifera sp2             ' ' * ' '      

64 OTU_79 Athelia bombacina                       *    

65 OTU_7309 Sistotrema sp3             ' * ' ' '      

66 OTU_481 Entoloma sp7         *                  

67 OTU_7322 Pluteaceae sp6         *                  

68 OTU_550 Pluteaceae sp9         *                  

69 OTU_49 Mycena adscendens                       *    

70 OTU_51 Sistotrema athelioides                       *    
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3.3 Geographic region and tillage effects 

3.3.1 Dendrogram and biplot analyses 

In the dendrogram analysis, sites tended to cluster by geographic regions, while 

the influence of other environmental variables appeared to be weak (Figure 3.4). The five 

Walpole Island sites clustered together and showed remarkably similar compositions 

despite varying agricultural histories and aboveground vegetation. Sites geographically 

near to each other on a similar scale in west Windsor were all pristine and showed similar 

compositions. The remaining four sites were all tilled, but clustered together despite 

being far apart geographically and having very different soil textures - the two east 

Windsor sites and the two remaining individual sites at the far southeast (DeMaere) and 

northeast (Blair Flats) edges of this study.  

Walpole sites were dominated by the Mycenaceae and Ceratobasidiaceae, with 

moderate representation of Polyporaceae sensu lato. West Windsor sites were dominated 

by the Hygrophoraceae, again with moderate representation of Polyporaceae sensu lato. 

East Windsor sites and the other two sites much farther east (DeMaere and Blair Flats) 

were dominated by the Sebacinaceae. The two east Windsor sites also had strong 

representation from the Ceratobasidiaceae. 

The dendrogram topology was fairly stable, since the dataset reduced to the top 15 

minor clades (Fig. 3.8) remained nearly identical to dendrograms produced using all 55 

minor clades or all 256 OTUs individually (data not shown). Some otherwise not-

apparent patterns of dominance at the OTU level can be seen in Table 3.1. Blair Flats and 

east Windsor sites had a strong component of OTU_9 Minimedusa polyspora 

(Cantharellales incertae sedis) and DeMaere prairie was dominated (with over 50% of 

total reads) by OTU_0 Mutinus elegans (Phallaceae). The minor clades containing these 

OTUs would have dramatically shifted relative abundances in those specific sites were 

the minor clades not removed in the process of reducing this dataset from 55 to 15 minor 

clades. 
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Figure 3.4 Cluster dendrogram and relative abundance bar plots for 13 prairie 

sites in southwestern Ontario. 

Sites are organized by transformed compositional data for the 15 most abundant minor 

clades. Sites tended to cluster by geographic regions, indicated above relative 

abundance bars (Norf = Norfolk County; Cam = Cambridge). Walpole sites were 

dominated by the Mycenaceae and Ceratobasidiaceae, west Windsor sites were 

dominated by the Hygrophoraceae, and east Windsor sites and other eastern sites were 

dominated by the Sebacinaceae. 

 

 The PCA biplot analysis complemented the dendrogram and relative abundance 

bar plot results by showing position on a transect (geographic region) as a primary factor, 

but revealed tillage (and organic carbon) as secondary factors and other variables as 

having much less influence (Figure 3.5). Principal component 1 explained 40.5% of the 

variation in the dataset and was most strongly correlated with position on a transect 

(60.1%; Table 3.2). Walpole sites are tightly clustered in the left half of the biplot, while 

Windsor and the two easternmost sites are spread out over the right half. Principal 

component 2 explained 27.1% of the variation and is most strongly correlated with tillage 

and organic carbon (71.4% and 52.7% for tillage and organic carbon respectively; Table 

3.2). There is a clean division between pristine and tilled sites on the biplot. Mike’s field, 

Sandpits, and all the other tilled sites were placed in the bottom half of the plot, whereas 

other pristine Walpole sites and the pristine Windsor ones were placed in the top half. 
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Principal components beyond the second were not examined, as the explained variance 

rapidly dropped (as seen in the scree plot in Figure 3.5). There were no other strong 

(>0.5) correlation coefficients in the environmental variables analysis (Table 3.2). 

 Minor clades associated with pristine sites (through higher read abundance 

values) were the Mycenaceae and Physalacriaceae (Walpole); Thelephoraceae and 

Polyporaceaceae sensu lato (generally); and Cortinariaceae, Lyophyllaceae, and 

Hygrophoraceae (west Windsor). Minor clades associated with tilled sites are the 

Ceratobasidiaceae (also associated with Walpole) and especially the Sebacinaceae (which 

was more associated with east Windsor and farther east sites – DeMaere and Blair Flats).
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Figure 3.5 PCA biplot and associated scree plot for 13 prairie sites in southwestern Ontario based on transformed 

compositional data for the top 15 most abundant minor clades. 

PC1 (40.5%) was associated with position on a transect (geographic region) (60.1%; Table 3.2) and PC2 (27.1%) was associated with 

tillage and organic carbon (71.4%, 52.7%; Table 3.2). Minor clades are abbreviated to their first three letters. Explained variance 

rapidly dropped after the first two component axes, as is evident in the scree plot (histogram). 
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Table 3.2 Environmental variable correlation coefficients associated with the 

principal components (PC) in the PCA biplot analysis. 

Correlation coefficients >0.5 in PC1 and PC2 were highlighted. Position on a transect 

(geographic region) explained most of the variance compared with other variables for 

PC1, whereas tillage and correlated organic carbon explained the most variance for PC2. 

Dominant influences are not as easily discerned for later PCs. Tillage: 0 = tilled, 1 = 

pristine; TSR = total species richness (plants); NSR = native species richness (plants); 

adj-cw-FQI = adjusted cover-weighted Floristic Quality Index; Wetness = wetness score; 

OrgC = percent organic carbon; PosTrans = position on a transect (geographic region).  

  Tillage TSR NSR adj-cw-FQI Wetness OrgC pH PosTrans 

PC1 -0.204 -0.038 -0.229 -0.127 0.273 -0.200 -0.309 -0.509 

PC2 0.714 0.076 0.229 0.091 0.200 0.527 -0.091 -0.324 

PC3 -0.204 -0.114 -0.267 0.127 0.018 0.055 0.236 -0.370 

PC4 -0.510 -0.343 -0.381 -0.091 -0.055 -0.164 0.164 0.277 

PC5 0.357 -0.038 0.114 0.164 0.127 0.382 0.345 0.092 

 

3.3.2 Tillage-sensitive minor clades 

Minor clades predicted or found to be sensitive to tillage in one direction or 

another (with much higher relative abundance in either tilled or pristine sites) are 

presented in Figure 3.6. Nine minor clades were pristine-associated: Boletaceae, 

Russulales unknown family, Agaricaceae, Hygrophoraceae, Clavariaceae, Suillaceae, 

Corticiaceae, and (to some degree) Entolomataceae and Polyporaceae sensu lato. Four 

minor clades were tillage-associated: Cantharellales incertae sedis (Minimedusa spp.), 

Tulasnellaceae, Hydnodontaceae, and Lachnellaceae. Minor clades that were present 

across many sites were more amenable to supporting conclusions; these were the 

Hygrophoraceae, Clavariaceae, Entolomataceae, Polyporaceae sensu lato, and 

Cantharellales incertae sedis. The Cantharellales incertae sedis clade (Minimedusa spp.) 

was present in many pristine sites, but despite this it was much more abundant in tilled 

sites. 
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Figure 3.6 Stacked bar charts showing tillage sensitive minor clades in Walpole sites alone and across all sites. 

P = predicted to be pristine-associated, T = predicted to be tillage-associated. WT,WP;AT,AP = number of sites the minor clade 

was present in across: WT = tilled sites in Walpole, WP = pristine sites in Walpole, AT = all tilled sites, AP = all pristine sites. 
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3.4 Exloration of environmental variables 

3.4.1 Tillage history association with soil and vegetation metrics 

Soil organic carbon tended to be lower at tilled sites than pristine ones (Figure 

3.7). Soil pH did not vary meaningfully between sites; most sites were close to the overall 

average of pH 6.55 with the exception of OA, which was much more acidic than OB, 

sampled from just 300 m away at the same site (Figure 3.8). Soil texture did not show 

any trends by geographic region or between tilled and pristine sites (Table 3.3). 

Generally, tilled sites had lower native than total species richness, but native 

richness values were not necessarily lower for tilled sites than pristine ones. DeMaere 

was recently tilled but had the highest native richness of any site at 15, while the pristine 

FRS23 (HA) had a relatively low native richness of eight. Adjusted cover-weighted 

floristic quality index scores helped to separate pristine and tilled sites better, but not for 

every site. FRS27 and 28 (HC and HD) were recently tilled, but their scores became 

inflated above other pristine Windsor sites by their low richness values. Mean wetness 

coefficient scores showed a range of 2.44 (wettest -1.51; dryest 0.93). Wetness was 

apparently not associated with geographic region or agricultural history, meaning it 

would be useful as an independent environmental factor. Raw data from plant surveys of 

sites is displayed in Appendix D. 
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Figure 3.7 Soil percent organic carbon for 12 prairie sites in southwestern Ontario. 

Error bars represent standard deviation across four lab measurements from one composite 

bag of soil per site. Sites are arranged geographically, from west to east. Mike’s field was 

excluded. Pristine sites had higher organic carbon than tilled ones. 

 

 

Figure 3.8 Soil pH measured at 12 prairie sites in southwestern Ontario. 

Error bars represent standard deviation across three lab measurements from one 

composite bag of soil per site. Sites are arranged geographically, from west to east.  
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Table 3.3 Soil texture measured at 12 prairie sites in southwestern Ontario 

An asterisk marks pristine (as opposed to recently tilled) sites. Sites are listed in 

geographic order from west to east. Mike’s field was excluded. There were no apparent 

trends between soil texture and geographic region or tillage history. 

Region Site Soil Texture 

West Windsor HA* Loam 

West Windsor HB* Loamy Sand 

West Windsor OA* Sand 

West Windsor OB* Silty Sand 

East Windsor HC Silty Clay 

East Windsor HD Silty Clay 

Walpole SI* Loam 

Walpole SA Silty Sand 

Walpole EL* Loam 

Walpole PO* Clay Loam 

Norfolk DM Loamy Sand 

Cambridge BF Silty Clay Loam 

Table 3.4 Vegetation metrics for 12 prairie sites in southwestern Ontario. 

An asterisk marks pristine (as opposed to recently tilled) sites. Sites are listed in 

geographic order from west to east. Mike’s field was excluded. See 2.6 Vegetation 

metrics for detailed descriptions and Appendix D for plant survey raw data. 

 HA* HB* OA* OB* HC HD SI* SA EL* PO* DM BF 

total 

species 

richness 

8 11 14 8 12 8 13 6 12 11 16 7 

native 

species 

richness 

8 11 12 8 8 5 13 2 12 11 15 6 

adjusted 

cover-

weighted 

FQI 

27.8 19.6 53.5 58.6 45.6 36.9 81.0 9.5 30.5 49.9 35.9 29.5 

mean 

Wetness 

coefficient 

0.80 0.24 -0.57 0.93 0.20 -0.79 0.87 -0.45 -0.97 -1.51 0.81 0.06 
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3.4.2 Regressions of environmental variables and OTU richness 

OTU richness values were calculated per-sample as average counts from each 

sampling event (different seasons), which were then averaged for each site. Walpole data 

from 2009 were excluded because plant surveys conducted in 2009 did not use the same 

methods as in this study (therefore the data are not comparable) and additional soil 

collected for pH and organic carbon measurements were no longer available. The first six 

of eight plots were used to determine OTU richness at DeMaere prairie (to be even with 

all other sites, which had only six plots). Richness values ranged from 16.5 to 38.0 across 

the 12 sites considered here, allowing for a window of comparison against environmental 

variables (Figure 3.9). 

Regressions between OTU richness (of Agaricomycete OTUs only, but here also 

called “fungal richness”) and the six measured environmental variables (plant total and 

native species richness, adjusted cover-weighted FQI, wetness score, soil organic carbon, 

and soil pH) are displayed with trendlines in Figure 3.10. Soil organic carbon had the 

strongest relationship with fungal richness of any environmental variable (R2 = 0.28) 

(Figure 3.10 e). Plant measures had the next strongest relationships with fungal richness 

(R2 = 0.13 to 0.19) (Figure 3.10 a,b,c).  

Mean wetness coefficient had little relation to fungal richness based on the high 

degree of scatter and low R2 value (0.02) (Figure 3.10 d). Similarly to mean wetness 

coefficient, soil pH was poorly related to fungal richness (R2 = 0.01) (Figure 3.10 f). The 

OA site was removed since it was an outlier, with unusually high richness (38 OTUs) and 

an unusually acidic pH value (4.9) (perhaps due to the presence of woody vegetation 

nearby, including a large oak, hosting additional mycorrhizal species). 
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Figure 3.9 OTU richness (per-sample) for 12 prairie sites. 

Pristine sites tended to have higher richness values than tilled ones. Only data from the 

first six of eight plots at DeMaere prairie (DM) were used, since all other sites had only 

six plots. Sites are organized by geographic location, from west to east. 
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Figure 3.10 Regressions of OTU richness against environmental variables for 12 

prairie sites in southwestern Ontario, grouped by geographic region. 

The environmental variables are: plant a) total and b) native species richness, c) 

adjusted cover-weighted floristic quality index, d) mean wetness coefficient, d) soil 

organic carbon, and e) soil pH. Trend lines with their associated equation and R2 values 

are included. OTU richness values were calculated per-sample (season) and then 

averaged for each site. Soil organic carbon had the strongest relationship with fungal 

richness (R2 = 0.28). Geographic regions: WW = West Windsor (HA, HB, OA, OB); 

EW = East Windsor (HC, HD); WA = Walpole (SI, SA, EL, PO); NF = Norfolk (DM); 

CA = Cambridge (BF). 
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3.5 Comparisons of aboveground and belowground 
survey results 

3.5.1 Minor clade comparisons by OTU richness and abundance 

Certain minor clades showed high richness and abundance by either the 

aboveground or belowground surveys, others were present in both surveys but had lower 

richness and abundance, and a few minor clades were unique only to the aboveground 

survey whereas many more minor clades were unique to the belowground survey (Figure 

3.11). The five minor clades with the highest OTU richness were the same as the five 

minor clades with the highest abundance. These minor clades were the Entolomataceae, 

Hygrophoraceae, Mycenaceae, Clavariaceae, and Polyporales sensu lato. The richest 

minor clades unique to the belowground method were the Sebacinaceae, Gomphales cf., 

and Pluteaceae, and the most abundant were by far the Ceratobasidiaceae followed by the 

Hymenochaetaceae, Physalacriaceae, and Cantharellales incertae sedis (Minimedusa 

spp.). The richest and most abundant minor clades unique to the aboveground survey 

were the Tubariaceae and Nidulariaceae. 

The belowground survey captured most of the minor clades found aboveground 

and many more unique minor clades. Of the 55 minor clades found in the belowground 

survey, 38 (over half) were unique. The minor clades unique to the belowground survey 

represent 52.7% of the richness and 47.7% of the abundance found by that survey. In 

contrast, only 22 minor clades were found aboveground and only five (less than a 

quarter) were unique. The minor clades unique to the aboveground survey represent only 

10.8% of the richness and 8.3% of the abundance. Both above and belowground surveys 

captured representatives from a wide diversity of Agaricomycete taxa across 60 

collective minor clades. 
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Figure 3.11 Doughnut charts comparing A) richness of species or OTUs and B) 

abundance of individuals or reads, in minor clades between aboveground and 

belowground surveys. 

Aboveground and belowground minor clade proportions are represented by outer and 

inner doughnuts respectively. Red lines denote the split from shared to unique minor 

clades (only found in one survey type). The group “other unique” contains minor 

clades unique to one survey or the other with <20% richness or abundance values, and 

the number of families contained therein are indicated (“a” for above, “b” for below). 

The belowground survey retrieved many more unique minor clades than the 

aboveground survey. 
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3.5.2 Species-level overlap between the two survey types 

Eight pairs of identical sequences (each pair consisting of one derived from a 

mushroom fruiting body collected during this study and the other from a soil-derived 

OTU sequence) were detected (Figure 3.12). These eight shared species represent 3.1% 

of the OTU richness and 10.8% of mushroom species richness. 

  

 

Figure 3.12 Neighbour joining tree of shared mushroom-OTU sequences. 

Given the limited mushroom sequencing success rate, these numbers can be 

extrapolated to find the expected degree of overlap by the following equation: 
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The expected number of shared species is 16, representing 6.3% of OTU richness and 

21.6% of mushroom species richness. These statistics were visualized as area-

proportional Venn diagrams (Figure 3.13). 

 

Figure 3.13 Area-proportional Venn diagrams of a) observed and b) expected 

shared species richness between aboveground and belowground surveys. 

3.5.3 Shared species abundance and occurrence 

Species found in high abundance by one survey type may not exhibit a similar 

abundance in the other (Figure 3.14). In three of the eight shared species, there was a 

pronounced disparity between aboveground and belowground abundances. Cotylidia 

undulata and Entoloma cf. tubaeforme were found in the highest abundance (of the eight 

shared species) aboveground but among the lowest belowground, and Clavaria  cf. acuta 

had the highest relative abundance of the eight shared species belowground but the 

lowest of the eight aboveground. 
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Figure 3.14 Correspondences between number of aboveground mushroom 

individuals and belowground reads across the eight shared species. 

Often high or low abundance by one survey type does not positively correlate with 

similar abundance by the other survey type. 

There is no apparent pattern as to whether species will be found by one survey 

type or another at any one site – sometimes species were found by both survey types at a 

site, but more often they were only found by one survey type or the other (Table 3.5). 

Arrhenia cf. griseopallida and Clavaria cf. acuta were never found at the same site using 

both survey types. Cotylidia undulata was found by both survey types, but only at one 

site. The Vascellum sp. was found at two sites by both survey types as well as four other 

sites by one survey type or the other. 

Table 3.5 Occurrence of species in both the aboveground and belowground survey 

types across thirteen tallgrass prairie sites. 

“A” represents an aboveground and “B” represents a belowground occurrence at a site. 

  HA HB OA OB HC HD SI SA MI EL PO DD MP DM BF 

Arrhenia cf. griseopallida A                   A     B   

Clavaria cf. acuta     B B B     A   B           

Clavaria cf. fragilis   B               A           

Cotylidia undulata                           AB   

Entoloma incanum   B B B           AB A         

Entoloma cf. tubaeforme AB A                 A         

Hygrocybe conica group B B B B   B B A     AB A       

Vascellum sp. B     B     A     AB AB   A     
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4 Discussion 

4.1 Significance of environmental variables 

4.1.1 Geographic region 

Contrary to my hypothesis, geographic region was the most important factor (not 

tillage history) for determining Agaricomycete composition. Sites did not spread across 

the biplot in order of positions along the diagonal transect (which would be correlated 

with latitudinal or longitudinal order), suggesting that no there is no broad gradient effect 

connecting my geographic regions. Between the most southern and most northern sites in 

this study, the latitudinal difference is ca. 125 kilometres – not enough for latitudinal 

climate effects to be a factor. At this broad scale, all sites in this study are fairly close 

(southern Ontario; mixedwood plains ecozone, Ecological Stratification Working Group 

1995). Instead, the geographic region effect in this study probably represents local 

underlying edaphic (patchy soil type distribution) or climate variables (e.g., lake effects). 

Peay et al. (2016) argue against the “everything is everywhere and the environment 

selects” hypothesis, suggesting that patterns of fungal community distributions may be 

related to spatial dispersal of fungal spores being more limited than previously believed. 

This may have also been an important factor in community compositions being distinctly 

different between the geographic regions in my study. 

Global biogeography of fungi is mainly determined by mean annual precipitation 

and distance from the equator (latitude), but different fungal groups prefer specific soil 

conditions – especially in regards to pH, calcium, and phosphorus (Tedersoo et al. 2014). 

Global drivers may not necessarily be relevant at a regional scale, such as my study 

where latitude and pH are not important. A regional study of British grasslands showed 

numerous edaphic factors played a role in soil microbial composition, including pH, 

nitrogen, phosphorus, and carbon, especially carbon-nitrogen ratios (deVries et al. 2012). 

A study of fungal biogeography at a regional scale in alpine grasslands found moisture to 

be important to other fungal classes, but not the Agaricomycetes (Pellissier et al. 2014). 

Soil texture may play a role, but does not always explain differences between regions 

(e.g., Sandpits with sandy soil and Pottowatomi with clayey soil, both in Walpole, still 
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had very similar community composition). It is possible the driving force behind 

differences in community composition between regions in my study has to do with 

underlying parent material and soil minerals that were not measured (such as calcium, 

phosphorus, and nitrogen). 

4.1.2 Tillage and soil organic carbon 

I had hypothesized that tillage would the the most important factor in determining 

Agaricomycete composition. Tillage was actually second most important, as it was 

overshadowed by position on a transect (geographic region). Tillage has long been 

known to decrease soil organic carbon (Laws and Evans 1949) and so it is not surprising 

that I found the two to be correlated. Others have found that increased soil organic carbon 

is related to increased fungal activity (Martyniuk and Wagner 1978, Schnürer et al. 1985, 

Caesar-TonThat and Cochran 2000, Kjoller and Rosendahl 2014). My findings suggested 

greater soil organic carbon is also associated with greater fungal diversity.  

Although tillage and organic carbon were correlated, tillage had a stronger 

influence than organic carbon. In a similar study in an agroecosystem context, Bahnmann 

(2009) also found tillage to be a stronger driver of community composition than soil 

organic matter. The two variables have different biological relevance, since tillage is a 

form of intense, acute disturbance whereas soil organic carbon depends on multiple 

factors that are continually in action (plant growth, death, and incorporation into the soil). 

Tillage breaks apart hyphae and reduces colonization ability (Wardle 1995) whereas soil 

organic matter is an important energy source for most fungi (even mutualists feed on it – 

Griffith and Roderick 2008). 

 Since my study was observational, not experimental, it is important to consider 

that there may be underlying reasons why my pristine sites are pristine and tilled sites are 

tilled. For example, Liang and colleagues (2012) acknowledge that their prairie sites had 

sandy soils while their crop sites had heavy clay soils. Reviewing soil textures from my 

site descriptions (Section 2.1 – pg 11), pristine sites and tilled sites both contain a range 

of clayey to loamy to sandy soils. Within Walpole alone, pristine sites were more loam to 

clay-loam textured than tilled sites. Pristine sites may have been too wet for agriculture 
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(due to location and clayey soils) and sandier soils may have been preferred for tillage. 

This is not the case when comparing wetness values across all sites (summing wetness 

scores separately for pristine and tilled sites produces almost equal values). Pristine 

Walpole sites were somewhat wetter in total (especially Pottowatomi), but between 

Sandpits and Silphium (which were adjacent to one another) it is actually the pristine 

Silphium that has a higher positive wetness score (indicating dryer conditions). A 

previous study using the same Walpole island sites and including more rigorous 

vegetational surveys produced similar wetness scores (Stover et al. 2012). Soil pH was 

not very different between tilled sites and pristine ones and neither was soil texture; only 

soil organic carbon was correlated with tillage, as discussed earlier. There is no evidence 

for any factors considered in my study other than tillage (and correlated organic carbon) 

accounting for fungal community differences between tilled and pristine sites. 

4.1.3 Tillage-sensitive taxa 

As predicted, the Hygrophoraceae and Clavariaceae were pristine-associated. The 

two families are particularly well represented as they were present across many sites – 

both tilled and pristine. Half of my Hygrophoraceae minor clade consists of Hygrocybe 

OTUs, so it is comparable to Bahnmann’s (2009) Hygrocybe minor clade and the many 

Hygrocybe spp. mentioned in studies of the British Isles (e.g., Rotheroe 2001, Newton et 

al. 2003, Mitchel 2010). The Clavariaceae family in my study is treated as a distinct 

phylogenetic clade the same way as the clavarioid clade from Bahnmann (2009), so the 

two are directly comparable. European fruiting body surveys probably exclude crust-like 

and agaric Clavariaceae (since these members are difficult to identify as Clavariaceae 

without sequencing), and it is possible that clavarioid members of the Clavulinaceae 

(Cantharellales) may be incorrectly included, but the Clavariaceae probably coincide well 

between European studies and mine. Along with Hygrocybe spp., the Clavariaceae are 

considered sensitive to fertilizer and agricultural disturbance in European studies 

(Rotheroe et al. 1996, Arnolds 1989). In Bahnmann (2009), the Hygrocybe minor clade 

was absent in agriculturally active (conventional and no till) sites but present in 

historically and never-tilled sites. Similarly, the clavarioid clade was highly abundant in 
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historically and never-tilled sites and of relatively low abundance in agriculturally active 

ones.  

Newton and colleagues (2003), in mushroom surveys of 511 grassland sites in 

Scotland, found richness of Hygrocybe taxa to be correlated with Clavariaceae taxa (but 

not with other CHEGD taxa such as Entoloma spp.). Birkebak and colleagues (2013) note 

in their overview of the Clavariaceae that Clavariaceae and Hygrophoraceae members are 

often found together in the same habitat and often near each other – grasslands in Europe 

and forests in North America (incidentally, according to my study, they are also found 

together in North American grasslands, not just North American forests) – supporting 

their belief that these two groups both have the same unknown nutritional mode. It makes 

sense that both of these families would prefer pristine sites over recently tilled ones. 

Contrary to my prediction, the Entolomataceae showed mixed results and did not 

appear to be pristine-associated. Results for the Entoloma minor clade from Bahmann 

(2009) were also mixed – its highest abundance was in never-tilled sites, but it was also 

moderately abundant in agriculturally active sites (conventional and no till), and absent in 

historically tilled sites. Newton and colleagues (2003) examined occurrence of CHEGD 

taxa across sites and found Entoloma taxa tended to cluster with themselves and not be 

correlated with richness of any other families. The Entolomataceae remain a highly 

diverse but ecologically mysterious (saprotrophic, or at least believed to be) family of 

grassland mushrooms. 

The Polyporaceae also did not show trends as being pristine-associated, despite 

my prediction. Although Bahnmann (2009) did not find any of the Polyporales in 

agriculturally active (conventional and no till) sites, the Polyporales were found in both 

historically and never tilled sites. To some extent, the historically tilled sites in 

Bahnmann (2009) are probably similar to the tilled sites in my study, and never tilled 

sites in Bahnmann (2009) are similar to the pristine ones in my study. All of these types 

of sites where the Polyporaceae were found have perennial vegetation cover and lots of 

litter, which is probably the most important factor for determining presence of the 

Polyporaceae (not soil disturbance). 
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As predicted, the Cantharellales incertae sedis minor clade (Minimedusa spp.) 

was tillage-associated. The genus Pneumatospora was present in all of the KBS site types 

in Michigan, but its abundance was by far the highest in actively conventionally tilled 

sites (Bahnmann 2009). The most abundant OTU in that study was noted as matching 

well with sequences of Pneumatospora obcoronata, which was also highly abundant 

from a previous study in the same site (Lynch and Thorn 2006). The current preferred 

synonym is Minimedusa obcoronata which may be OTU_9652 Minimedusa sp. but is 

also very similar to the second most abundant OTU in my study, OTU_9 Minimedusa 

polyspora, since both produce bulbil propagules. Bahnmann (2009) suggests these 

propagules may be easily spread across a site by tillage, assisting the fungus to colonize a 

large area, and it may be a saprotroph preferring agricultural residues of wheat, corn, and 

soy. Remnants of these agricultural influences were apparently strong enough in my 

recently tilled sites for the fungus to reach higher abundance than pristine sites. 

The Lachnellaceae minor clade was also tillage-associated, as predicted. My 

prediction was based on the Lachnella/Calathella (Nia) clade having the second-highest 

abundance in conventionally tilled sites but being absent from historically and never 

tilled sites in Bahnmann’s study (2009). No Calathella spp. were identified in my study; 

my Lachnellaceae minor clade consisted of one unknown Lachnellaceae species. 

Lachnella alboviolascens had an unresolved phylogenetic placement in Moncalvo (2002), 

but the Lachnellaceae family was later placed in the Marasmioid major clade and 

considered synonymous with the Nia minor clade by Matheny et al. (2006). Lachnella 

spp. are culturable saprotrophs of plant litter with a cyphelloid (cup-shaped) fruiting body 

form (Agerer 1983). 

A number of additional taxa not predicted to be tillage-sensitive showed strong 

association with pristine or tilled sites. The Boletales major clade includes the Boletaceae 

and Suillaceae, both of which were pristine-associated. The Boletales are mostly believed 

to be ectomycorrhizal based on field observations of mushrooms, but the order actually 

includes many brown-rot and white-rot saprotrophs of wood as well (Binder and Hibbett 

2006). The Boletales were completely absent from Michigan agroecosystem soils, and 

this has been attributed to lack of suitable ectomycorrhizal plant hosts (especially wood 
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species) at most of the sites (Wong 2012). I found four Boletaceae OTUs, all matching 

with ectomycorrhizal genera and found only in pristine sites where trees were nearby – 

especially oak (Quercus spp.). There were only two Suillaceae OTUs: OTU_874 Suillus 

luteus found only in DeMaere (where many tree seedlings were present, and sapling pines 

with fruiting bodies of Suillus americanus nearby) and OTU_60 Suillus cavipes, which 

was found in Walpole only, especially the pristine sites. For both the Boletaceae and 

Suillaceae, the trend towards pristine sites is probably a byproduct of ectomycorrhizal 

plant hosts (woody species) tending to be lacking at recently tilled sites where they have 

not been able to establish. 

The Russulales unknown family was found in pristine sites only and represents 

three OTUs lacking strong GenBank sequence matches. Russulaceae OTUs found 

matches for Lactarius and Russula spp., so the unknown family represents other taxa. 

The Russulales order comes in every fruiting body form: resupinate (crust-like), discoid, 

clavarioid, pileate (typical umbrella mushrooms), and gasteroid (stomach-like), and the 

order consists of mostly saprotrophs but also ectomycorrhizals (e.g., Russula spp), root 

parasites, and insect symbionts (Miller et al. 2006). It is unknown what the three OTUs 

from this group may represent and why they were found in pristine sites only. An 

important soil aggregating species from the Russulales with an identity near the genus 

Peniophora was found in short grass prairie (Caesar-TonThat et al. 2001). No species of 

Peniophora were otherwise matched with my OTUs, so it is possible these OTUs may 

belong there. 

The Agaricaceae represents three OTUs from Agaricus (button mushrooms), 

Lepiota (parasol mushrooms), and Vascellum (small puffball) genera. They were found 

almost exclusively in pristine sites, except for the Lepiota sp. which was also found in 

DeMaere. Fruiting bodies of these genera are known to occur in grasslands, especially 

pastures (e.g., Hay 2013) where Agaricus spp. can form large “fairy rings” in the grass 

(Griffith and Roderick 2008). Mushrooms of Agaricus campestris and a Vascellum sp. 

were found fruiting in several sites in my study. Many Lepiota spp. are nitrophilic, and 

some prefer dune habitats (Bon 1993), perhaps explaining presence in the sandy soils of 

DeMaere. The preference of this family for pristine sites may be explained by higher 
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levels of organic carbon found in pristine sites than tilled ones, given that members in this 

family are all saprotrophic. The Agaricaceae are apparently less abundant in sites where 

soil molecular analysis has been conducted (with very low abundance in historically tilled 

sites in Bahnmann 2009 and not mentioned at all in Jumpponen et al. 2010 or Penton et 

al. 2013). Agaricaceae members that form fairy rings have active hyphae and often 

fruiting bodies at the ring’s edge, but apparently die back inside the ring and are 

presumably not present outside the ring (Dowson et al. 1989, Griffith and Roderick 

2008). It is possible studies sampling with soil cores are better suited to finding taxa with 

smaller and more evenly dispersed individuals. 

The Corticiaceae had a moderate preference for pristine sites over tilled ones. 

There was a split between the four OTUs of the Corticiaceae. Two OTUs were found in 

only tilled sites and are plant pathogens (Waitea circinata and Laetisaria arvalis) and two 

OTUs were found in only pristine sites and are saprotrophic crusts that grow on wood 

(best matches to Vuilleminia macrospora and Limonomyces roseipellis). Apparently the 

two pristine-associated crusts were abundant enough to influence the association of this 

family, and they can grow on grassland litter or organic matter in the soil as well as 

woody material. 

In addition to the two predicted tillage-associated families, two more were found 

in my study. The Tulasnellaceae form patchy crust-like fruiting bodies and have been 

reported as saprotrophs of wood (pine) or mycorrhizal with orchids (Roche et al. 2010). 

Five OTUs, mostly Tulasnella spp. (of uncertain species identity), were each found at 

only one tilled site except for one found at two pristine Walpole sites (see Appendix B). 

Perhaps they are saprotrophs of remnant agricultural residues (preferring corn, soy, and 

wheat over natural plant litter).  

The second tillage-associated family, Hydnodontaceae, consisted of four OTUs: 

Hydnodontaceae sp., Subulicystidium sp., and Trechispora sp. 1 and 2. These members 

form white crusts and are believed to be mycorrhizal with a side variety of plants. In total 

they were present in about as many pristine sites as tilled ones, but had much higher 

abundance in the tilled sites. It is unclear why this preference may exist. 
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4.1.4 Vegetation metrics 

There is growing research interest about how well a site’s plant diversity and soil 

microbial (bacterial and fungal) composition correspond. Some studies have found plant 

diversity to be strongly associated with microbial composition (Carney and Matson 2006, 

Grueter et al. 2006), whereas others have found this not to be the case (Liang et al. 2012). 

This question of the similarity or dissimilarity of plant and fungal characteristics of sites 

has implications for fungal conservation. Nature reserve organizations preferentially 

preserve sites that rank highly using vegetative assessments, and so mycologically 

valuable sites that rank lower using those methods are overlooked as a result (Rotheroe 

2001). I did find some support for this notion, since at least fungal richness was poorly 

associated with conservatism value of sites. As well, sites of close proximity (in which 

geographic region was controlled) with very different plant diversity and management 

histories still had similar fungal communities. For example, Silphium and Sandpits were 

adjacent to each other and had vastly different aboveground vegetation and management 

histories, but their fungal composition was very similar. Liang and colleagues (2012) note 

similar observations. Even without tillage as a confounding factor, there was no 

difference in microbial composition between old switchgrass monoculture fields and 

diverse mixedgrass prairie sites. More research is needed to determine what, if not 

aboveground vegetation, may indicate a site of fungal importance.  

4.2 Aboveground and belowground comparisons 

In some studies, aboveground mushroom survey results have been compared with 

results obtained by other survey types on the same site, but none so far have made 

comparisons with high-throughput sequencing. Aboveground mushroom survey data was 

compared with belowground root tip genotyping of ectomycorrhizal fungi by Gardes and 

Bruns (1996). Correspondence between the two methods was limited – some species 

were commonly encountered using either method, but others were rare aboveground and 

common belowground or common aboveground and rare belowground. My results 

support this to some degree, but it is difficult to draw confident conclusions about 

whether this applies when the belowground survey includes high-throughput sequencing, 

given that I only found eight species shared between the two survey types.  
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Horton and Bruns (2001) reviewed studies of ectomycorrhizal fungi comparing 

aboveground fruiting body surveys to belowground root tip genotyping, and found that 

species common by one method are rare by the other, as a rule. Such trends are accounted 

for partly by differences in sampling between the two methods, but it is believed the 

dissimilarity largely exists for a biological reason: different investment strategies for 

different species (Horton and Bruns 2001). Some species invest more energy into 

belowground vegetative growth and competition than aboveground reproduction (fruiting 

body structures to spread spores) whereas others take the opposite approach (Horton and 

Bruns 2001). My results, then, suggest that Clavaria cf. acuta invests more energy in 

vegetative growth and competition (belowground activities) than reproduction 

(aboveground fruiting body production) whereas Cotylidia undulata uses the opposite 

investment strategy. 

Porter et al. (2008) used aboveground mushroom surveys and belowground soil 

rDNA cloning to compare the degree of overlap and ability to capture fungal diversity of 

a site. Similarly to the root tip genotyping studies, and the results of my study, there was 

little overlap between the two survey types. Unlike the root tip studies, the study by 

Porter and colleagues assessed degrees of overlap at different taxonomic scales (species, 

but also genus-order level), and using richness, abundance, and phylogenetic diversity as 

measures. Naturally, the degree of overlap between the two survey types increases at 

coarser taxonomic resolutions – most orders were present in either survey to some 

degree, and the Agaricales were the largest component of both survey types. The 

Agaricales were dominant at the level of order in my study as well, but already 

similarities began to break down at the finer scale of minor clades. At the species level, 

Porter et al. (2008) found only 13 OTUs in common, representing 10% of aboveground 

mushroom diversity (132 total) and 20% of belowground soil diversity (66 total). In my 

study, the expected overlap was 16 species, representing 22% of aboveground diversity 

(74 total) and 6% of belowground soil diversity (256 total). The differences between the 

study of Porter and colleagues (2008) and mine are associated with the total number of 

species that were found by either method. 
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It is important to consider sampling effort when comparing results of two survey 

types (Horton and Bruns 2001). Porter and colleagues (2008) found about twice as many 

species aboveground than belowground, whereas I found about four times as many 

species belowground than above. Their belowground method was different (cloning is 

more labour intensive than high-throughput sequencing) and they put more effort into 

aboveground mushroom collection and sequencing than I did (they visited their site 

several times per week in peak season). Their study was also in a forested ecosystem, 

where mushrooms are more abundant. Unlike my study, they found about as many orders 

unique to the aboveground survey as belowground (5:6). In my study the aboveground 

survey captured far fewer unique clades than the belowground surey (5:38). Despite these 

differences, her study and mine found similar degrees of total overlap between both 

survey types – about one-third (6/18 shared orders in their study and 17/60 shared minor 

clades in mine). This suggests that despite some differences in aboveground sampling 

effort and belowground methods, only about a third of orders-families are found using 

either survey type. 

 There are many reasons why some taxa are unique to one survey type or the other. 

Obviously the aboveground survey missed minor clades that lack conspicuous fruiting 

bodies: Ceratobasidiaceae, Hymenochaetaceae, Cantharellales incertae sedis 

(Minimedusa spp.), and Tulasnellaceae, to name those with higher abundance or richness. 

Similarly in Porter et al. (2008), orders lacking conspicuous fruiting bodies such as the 

Atheliales, Sebacinales, and Trechisporales were unique to the belowground survey 

(missed by the aboveground survey). Most of the other minor clades missed in my study 

by the aboveground survey produce conspicuous fruiting bodies but they are 

(surprisingly, in a grassland environment) saprotrophic on wood or else mycorrhizal with 

woody plants: Auriculariaceae, Gomphales cf., Inocybaceae, Pluteaceae (except for 

Volvariella, which produces mushrooms in grasslands), and Thelephoraceae. 

 Five minor clades were detected by the aboveground survey and not by the 

belowground survey: Tubariaceae, Nidulariaceae, Paxillaceae, Hydnangiaceae, and 

Peniophoraceae. I propose three explanations. 1) Some of these families were only found 

growing directly on aboveground litter that was not attached to the soil, and so they 
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would naturally be excluded when removing the litter layer from the top of soil cores 

when sampling. This would apply to the Nidulariaceae (Cyathus stercoreus and Nidula 

candida) and Peniophoraceae (Peniophora versiformis). 2) The aboveground survey type 

can cover a much larger area of land, and so it is possible that fruiting bodies were found 

at some distance from the point of soil sampling, too far away to capture belowground 

hyphae. I believe that this was the case with the Paxillaceae. In the one site where this 

family was found, a few fruiting bodies of a Paxillus were found at a considerable 

distance from the small area where soil sampling was permitted. The Hydnangiaceae 

were represented by one Laccaria sp. that was found fruiting throughout DeMaere 

prairie, but never within several meters of where soil cores were taken along one edge of 

the site. This may have also been the case for the Tubariaceae. Two Tubaria species were 

found throughout DeMaere, but they were also found in Silphium prairie and Sandpits on 

Walpole Island, which were smaller sites where soil sampling was more widely 

dispersed. The sampling distance effect is possible, but less likely in those cases. This 

brings me to the third possibility. 3) The belowground survey type misses some taxa due 

to its short sequence requirement negatively impacting OTU identifications. If this is the 

case, the Tubariaceae sequences were retrieved by the belowground survey but could not 

be confidently identified as such. For example, OTU_197 Bolbitiaceae_sp1 could not be 

identified with confidence despite matching well with a Tubaria furfuracea sequence 

from aboveground collections in this study (3/246 base pair mismatches). The OTU 

retrieved sequences from a variety of taxa in Genbank (e.g., Deconica xeroderma 

(KC669340), Psilocybe cf. subviscida/crobula (KC176337), and Tubaria serrulata 

(DQ987906) - all with 100% coverage, 2e-122 E value, and 99% identity), and grouped 

with the Bolbitiaceae in my phylogenetic tree. Therefore it is possible the belowground 

survey misses some taxa due to its short sequence read requirement negatively impacting 

OTU identifications. The use of additional primer sets, including ones targeting the ITS1 

or ITS2 regions, may provide better identifications for some taxa that lack diagnostic 

sequences in the D1 region of LSU used in this study (Asemaninejad et al. 2016).  
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4.3 Ecology and conservation of prairie 
Agaricomycetes 

4.3.1 Ecological roles of predominant taxa 

4.3.1.1 Clavariaceae 

Based on soil DNA sequence data, the Clavariaceae were the most OTU-rich 

minor clade (22 OTUs) but only 14th most abundant (1.5%). Previous studies in the 

agricultural and old-field context of the Kellogg Biological Station (KBS) in Michigan 

consistently found the Clavariaceae to be the most OTU-rich basidiomycete taxon in the 

soil (Lynch 2004, Bahnmann 2009, Wong 2012). Fruting bodies of white clavate (club-

shaped with a wider tip than base) Clavaria spp. found during mushroom surveys in my 

study appeared macroscopically identical but sequencing of two collections revealed two 

different species at the genetic level (Clavaria cf. acuta and Clavaria cf. fragilis). Two 

other Clavariaceae mushrooms were found: Clavulinopsis laeticolor that was similar to 

the white Clavaria spp. except it was yellow, and a Ramariopsis that was very small and 

highly branched. A moderately high richness of Clavariaceae fruiting bodies are found in 

European grassland mushroom surveys, usually second to the Hygrophoraceae and 

Entolomataceae (e.g., Arnolds 1989). Given these findings, the diversity of the 

Clavariaceae is probably underestimated in surveys that do not involve sequencing, 

particularly as some members of the family are agaricoid or crust-like (Birkebak et al. 

2013) and not otherwise recognizable as Clavariaceae. 

Besides lignicolous (wood-decaying) species, the Clavariaceae are believed to be 

mostly biotrophic (a broad term for any symbiosis with a living partner – in opposition to 

necrotrophic where the symbiosis leads to the death of the partner) (Birkebak et al. 2013). 

Some of the Clavariaceae are mycorrhizal with ericoid plants (Seviour et al. 1973, 

Petersen and Litten 1989) and others are algal-associates. All Clavariaceae fruiting bodies 

collected in this study were attached to bare soil. It could be that they have a biotrophic 

relationship with the roots of grassland plants or they may be lignicolous on buried non-

woody but lignin-containing plant debris. 
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4.3.1.2 Entolomataceae 

The Entolomataceae were the second most OTU-rich minor clade (18 OTUs) but 

only the 11th most abundant (1.9%). They constituted the third most OTU-rich minor 

clade in KBS soils from Michigan (Lynch and Thorn 2006, Bahnmann 2009). Unlike the 

Clavariaceae, the diversity of the Entolomataceae is more readily apparent in mushroom 

surveys without requiring sequencing. Eleven different mushroom morphospecies were 

encountered in this study, making it the most species-rich family from my mushroom 

surveys. In grasslands of The Netherlands it was by far the richest—55 species were 

listed from grasslands and sandy sites in Arnolds (1989). Most of the Entolomataceae 

(including those identified to species in this study) are regarded as saprotrophs (obtaining 

energy from decomposing organic matter in the soil). Noordeloos (1981) notes Entoloma 

as a genus of terrestrial saprophytic mushrooms of humus. The designation of this family 

as saprotrophic is questionable and needs further study – most Entolomataceae do not 

grow in culture and many seem to be associated with mosses or algal crusts (Greg Thorn 

pers. comm.). The ecological category of “saprotroph” has been considered a dumping 

ground for leftover fungal taxa with unknown, poorly examined, or semi-saprotrophic but 

truly more complex ecological roles (Griffith and Roderick 2008) and groups considered 

saprotrophic in the past have been discovered to have other roles (see my discussion of 

Hygrocybe spp. in 4.3.1.4 Hygrophoraceae). Some Entolomataceae species are 

mycorrhizal with shrubby plants from the rose family (Kobayashi and Yamada 2003), but 

none of the known mycorrhizal Entolomataceae or their potential Rosaceae host plants 

were identified in any of the field sites in this study. 

4.3.1.3 Sebacinaceae 

The Sebacinaceae were the third/fourth most OTU-rich minor clade (16 OTUs – 

tied with the Polyporaceae sensu lato) but only 10th most abundant (2.3%). In Michigan 

soils, this group was found to have much lower richness compared to richness of other 

families (Wong 2012) and the group was apparently absent or of too low abundance to 

mention in other grassland molecular studies (Jumpponen et al. 2010, Penton et al. 2013). 

It is possible Sebacinaceae were present in these soils but were not detected because the 

primers used could not detect their sequences; Sebacinaceae sequences are unusual, being 
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basal in the Agaricomycetes next to the Cantharellales and this group has long been 

overlooked (Weiss 2011). 

No fruiting bodies from this family were encountered in mushroom surveys from 

my study, although conspicuous white tremelloid crust-like masses are known to be 

formed by some members of this family. The Sebacinaceae are known for their variety of 

symbioses with plants: ectomycorrhizas (where a fungal layer is formed on roots of tree 

species), orchid mycorrhizas, ericoid mycorrhizas, jungermannioid (associated with the 

Jungermanniales – an order of liverworts) mycorrhizas, and probably a diversity of other 

mycorrhizas that are yet to be uncovered (Weiss et al. 2004). Tedersoo et al. (2010) warn 

against considering all Sebacina spp. as mycorrhizal, since the Sebacinaceae includes 

other ecological groups (e.g., OTU_981 Efibulobasidium sp., which they consider a 

saprotroph) and many species are still crypic with unresolved ecologies. Many 

Sebacinaceae species are endophytes (apparently symptomless symbionts in plants that 

are now often believed to improve the plant’s growth and resilience) that are found 

around the world in seemingly all angiosperm families, as well as in ferns, mosses, and 

liverworts (Weiss et al. 2011). Three OTUs in my study matched closely with 

Piriformospora indica, a root endophyte found in a wide range of host plants, including 

monocots, dicots, and legumes (Varma et al. 2012). The two most abundant OTUs from 

this group (OTU_35 Sebacinaceae sp. 2 and OTU_174 Serendipita vermifera sp. 2) were 

found almost exclusively in recently tilled sites, and many of the Sebacinaceae OTUs 

were present only in tilled sites (see Appendix B). Serendipita vermifera has been 

confirmed as an ectomycorrhizal species with a variety of hosts (Warcup 1988), quite 

possibly including plants present in restored tilled sites. The hosts and activities of the 

majority of the Sebacinaceae encountered in this study remain unknown. 

4.3.1.4 Hygrophoraceae 

The Hygrophoraceae were the fifth most OTU-rich minor clade (13 OTUs) and 

also the fifth most abundant (5.1%). Other soil molecular studies did not find 

Hygrophoraceae OTU richness to be as relatively high as in my study (Jumpponen et al. 

2010, Wong 2012, Penton et al. 2013) but this group is famously rich and abundant from 

mushroom surveys in waxcap grasslands of Europe (Rotheroe et al. 1996). My study 
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encountered only four morphospecies of Hygrocybe, but it is likely more would have 

been encountered with greater survey effort (my study has low sampling effort compared 

to other mushroom studies; e.g., Porter et al. 2008) and sequencing within morphospecies 

to discover cryptic species that are known to occur in the group (e.g., Ainsworth et al. 

2013). There were 49 Hygrocybe spp. recorded from grasslands in Scotland (Newton et 

al. 2003), and 26 from grasslands in The Netherlands (Arnolds 1989) – relatively high 

richness for this genus in both studies, but still lower than the number of Entoloma spp.  

The ecology of this group has been elusive for some time despite being studied 

extensively. Hygrophorus spp. are ectomycorrhizal with trees, so none were found. 

Cuphophyllus spp. are probably biotrophic; from this genus only one OTU (Appendix B) 

and two aboveground mushroom species were found (Appendix C). Hygrocybe spp. were 

first believed to be saprotrophs (Arnolds 1982, as cited in Griffith et al 2002) until 

Hygrocybe and Arrhenia spp. were discovered to be biotrophic (Seitzman et al. 2011). 

Hygrocybe spp. are probably associated with grasses (Griffith et al. 2014) and Arrhenia 

spp. with mosses or algae. The mushroom Omphalina rivulicola/pyxidata (identified to 

one of those two species) is closely related but separate from the lichen-forming species 

of Lichenomphalia (Redhead et al. 2002). There was one instance of a basidiolichen 

found belowground (OTU_2 Acantholichen/Dictyonema sp.) but despite the top two 

GenBank matches both having 100% coverage and 96% identity for Acantholichen 

pannarioides (KT429807) and Dictyonema aeruginosulum (EU825954), this identity is 

questionable since these genera are known to be only tropical in distribution (Ertz et al. 

2008, Dal-Forno et al. 2016).  

In my study, the Hygrophoraceae minor clade was found to prefer pristine sites 

over tilled ones. In Europe, Hygrocybe spp. are considered sensitive to fertilizer 

application and human disturbance, and are being lost as low-productivity natural 

grasslands are converted into agriculturally improved nutrient-rich, high-productivity 

sites (Arnolds 1989). The importance of Hygrocybe spp. in my study and others is further 

discussed in sections 4.1.2 and 4.2.2. 
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4.3.1.5 Mycenaceae 

The Mycenaceae were the most abundant minor clade (22.5%). Most of the 

abundance comes from two OTUs that were dominant in Walpole sites – Mycena 

epiptygeria sp. 1 and Mycena sp. 2. There were only seven OTUs, but four (or maybe 

five – one collection was identified to either Marasmius or Mycena) mushroom 

morphospecies were encountered. The Mycenaceae are saprotrophic primary colonizers 

on plant debris or rarely humus (Moncalvo et al. 2002). Often Mycenaceae fruiting 

bodies are attached directly to their substrate; I observed mushrooms on leaves (e.g., from 

New Jersey Tea – Mycena sp. (longstem)), grass litter (Mycena cf. stylobates), and some 

on bare soil (Mycena sp. (white)). The number of mushroom morphospecies encountered 

and the omission of litter from belowground sequencing suggests the Mycenaceae may be 

even more prominent in tallgrass prairies than shown in this study. 

4.3.1.6 Ceratobasidiaceae 

The Ceratobasidiaceae were the second most abundant minor clade (22.5%), with 

most of this abundance coming from one species – the most abundant OTU (OTU_1 

Ceratobasidiaceae sp. 1). No other OTUs in this minor clade could be identified to a 

higher resolution than family except for one with a strong query match for 

Thanatephorus cucumeris – a plant pathogen (see Appendix B). The Ceratobasidiaceae 

were less abundant and received little attention in studies of Michigan soils (Wong 2012) 

and tallgrass prairies in Kansas (Jumpponen et al. 2010) and Oklahoma (Penton et al. 

2013), although they have been found in abundance in soils of an Australian agricultural 

site (Midgley et al. 2007). 

A variety of ecological roles occur across the species in this family. Many species 

are able to switch between different roles depending on conditions or may sit somewhere 

on a spectrum ofmany roles (Veldre et al. 2013). This makes it difficult to ascertain what 

ecological activities they were carrying out in the context of this tallgrass prairie study. 

The Ceratobasidiaceae include crop pathogens (necrotrophs, that kill the host and feed on 

dead tissue), orchid mycorrhizae, saprotrophs, and endophytes (which live in plant tissues 

but cause no symptoms) (Veldre et al. 2013). OTUs found in recently tilled sites may be 
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crop pathogens that are still harbored in the soil from the recent agricultural activity. 

Midgley et al. (2007) found their one agriculturally active site to be dominated by the 

Ceratobasidiales. In my study, many OTUs in the Ceratobasidiaceae were found in both 

tilled and pristine sites, and so they may be saprotrophs or else endophytes or pathogens 

of non-agricultural prairie plants. It is unlikely any represent orchid mycorrhizae because 

orchid species were not present in the sampling plots of any site. This family does not 

produce macroscopic fruiting bodies, except for inconspicuous anamorphic sclerotia 

(Veldre et al. 2013), so they were not observed at all in aboveground surveys. It is 

possible that OTU_1 Ceratobasidiaceae sp. 1 had such high abundance in this 

experiment from its sclerotia being captured during soil sampling and retained in the soil 

sieving procedure.  

4.3.1.7 Polyporaceae sensu lato 

The Polyporaceae sensu lato were the third most abundant (10%) and third/fourth 

richest minor clade (16 OTUs – tied with the Sebacinaceae). The majority of the 

abundance arises from OTU_5 Hypochnicium sp. and OTU_376 Fomitopsidaceae sp. The 

OTUs found in this group were taxonomically diverse, covering at least 10 genera (see 

Appendix B). Similarly to the Mycenaceae, it is possible that diversity was undersampled 

in the belowground method, since members were observed fruiting on aboveground litter 

(such as Trametes spp. on incidental woody debris or decaying vines of Vitis riparia). 

 It is perhaps surprising that this group was so rich and abundant in grasslands. 

The Polyporaceae are known for being abundant in forests, decaying lignin and/or 

cellulose in standing wood and fallen wood as brown rots and white rots (Hibbett et al. 

2014). Some of the Polyporaceae form agaricoid fruiting bodies (with pores instead of 

gills) whereas others are corticioid (crust-like). Hypochnicium spp. are corticioid on 

fallen wood (Telleria et al. 2010). Fomitopsidaceae members are usually saprotrophic 

brown rots of wood (decomposing cellulose and hemicellulose). Apparently these “wood-

rotting” fungi are also found in tallgrass prairies, presumably decomposing non-woody 

plant material in the soil. It has been suggested that lignin-rich rough-textured herbaceous 

plant material such as Solidago spp. (goldenrod) stems are an abundant and likely 

substrate in grasslands (Bahnmann 2009). There were no apparent tilled-pristine trends in 
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OTUs from the Polyporaceae sensu lato (see Appendix B), so ecological roles could not 

be further determined using site history. 

4.3.2 Comparisons of composition with other grassland studies 

 Only a few studies have applied high-throughput sequencing to soil 

Agaricomycetes in tallgrass prairies. Penton and colleagues (2013) compared fungal 

composition of Oklahoma tallgrass prairies to Alaskan permafrost under warming 

conditions. Dominant Agaricomycete taxa were the Tricholomataceae and Marasmiaceae 

at the family level, and Moniliophthora (Marasmiaceae), Leucopaxillus 

(Tricholomataceae), Camarophyllopsis (Clavariaceae), and Camarophyllus (syn. 

Cuphophyllus; Hygrophoraceae) at the genus level. In my study of Ontario tallgrass 

prairies, the Tricholomatoid and Marasmioid major clades were first and fourth most 

abundant, so there is some correlation with Oklahoma. However, Ontario contains a 

stronger component of the Ceratobasidiaceae (Cantharellales) and Polyporaceae sensu 

lato (=Polyporales). In both Ontario and Oklahoma, members of the Clavariaceae and 

Hygrophoraceae are prominent. Their dominant Moniliophthora sp. (4.5% of all their 

sequences) was not found in my study, perhaps because the genus name applied to their 

OTU is doubtful (some other Marasmiaceae species is more likely). A search of all seven 

species of Moniliophthora from Index Fungorum shows no indication of this genus 

occurring in the United States, but only being described from tropical and Eastern regions 

(associated with Theobroma cacao, Phillips-Mora et al. 2007, Meinhardt et al. 2008; 

Southeast Asia, Kerekes and Desjardin 2009; littoral forests of Polynesia, Kropp and 

Albee-Scott 2012; and Korea, Antonin et al. 2014). Naming of OTUs depends on closest 

matches available, which may represent only a closely related taxon (e.g. my OTU_62 

Acantholichen/Dictyonema sp. which are also only known from the tropics (Ertz et al. 

2008, Dal-Forno et al. 2016)). 

 Jumpponen and colleagues (2010) applied high-throughput sequencing to study 

soils at Konza tallgrass prairie in Kansas. Ontario prairies were similar to Kansas in 

having strong representation of the Cantharellales and Polyporales (in the Kansas study, 

second and fourth most abundant respectively), which was lacking in the Oklahoma 

prairies from Penton (2013). However the Kansas prairie had much stronger 
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representation from the Atheliales (third most abundant) than was found in Ontario or 

Oklahoma. The most abundant order from Kansas was the Agaricales, which would 

include both the Tricholomataceae and Marasmiaceae from Penton’s study (Oklahoma) 

or Tricholomatoid and Marasmioid major clades from my study (Ontario). Jumpponen et 

al. (2010) list genera that were encountered and ones that had significant correlations 

with certain soil strata, which was the focus of their study. All of the Agaricomycete 

genera from this list were also found in my study, usually in both the aboveground and 

belowground surveys and with high abundance of their families: Omphalina and 

Hygrocybe (Hygrophoraceae), Marasmiellus (Marasmiaceae), Mycena (Mycenaceae), 

Clitopilus (Entolomataceae), and Ceratobasidium (Ceratobasidiaceae – Cantharellales). 

 To summarize, high-throughput sequencing of tallgrass prairies in Ontario, 

Oklahoma, and Kansas shows that composition tends to consist mostly of the following 

broad taxa by abundance: Tricholomatoid clade (Agaricales), Marasmioid clade 

(Agaricales), Cantharellales (especially Ceratobasidiaceae), and Polyporales. Certain 

other families tend to have high richness: Hygrophoraceae, Entolomataceae, 

Clavariaceae, and Mycenaceae. 

 Aboveground mushroom surveys of grasslands in North America are rare. Hay 

(2013) surveyed mixedgrass prairie from Grasslands National Park in southern 

Saskatchewan. There were many species in common with this study: Hygrocybe spp., a 

Clitopilus sp. (misidentified as Arrhenia sp.), Phallus hadriani, and puffballs from the 

Agaricaceae (Lycoperdon/ Bovista/ Vascellum). Some mushrooms from the mixedgrass 

prairie were found only in Mary & Peter’s prairie in this study of Ontario: Agaricus spp. 

and Calvatia cyathiformis (both Agaricaceae). Other Saskatchewan mixedgrass prairie 

mushroom species were not encountered at all in Ontario tallgrass prairies: Marasmius 

oreades (Marasmiaceae) and an unknown Clitocybe sp. (Tricholomataceae) that were 

both highly abundant, Volvariella sp. and Volvopluteus gloiocephalus (Pluteaceae), 

various coprophilous species (from genera Coprinopsis, Panaeolus, and Protostropharia) 

probably only lacking in the Ontario sites due to absence of cattle dung, and the desert 

species Battarea phalloides. 
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 In Europe, mushroom surveys have been used to recognize and designate high 

quality grasslands of conservation concern (e.g., Scotland by Newton et al. 2003, 

Netherlands by Arnolds 1989, South Wales by Rotheroe 2001, and many other European 

regions not listed here). Grasslands of high conservation quality in Europe have been 

termed “waxcap grasslands” and are characterized by high diversity of waxcap 

(Hygrophoraceae – particularly Hygrocybe spp.) mushrooms (Griffith et al. 2002).  

Rotheroe and colleagues (1996) proposed a method of assessing conservation 

quality of waxcap grasslands using mushroom taxa common in this ecosystem: 

Hygrocybe spp. sensu lato, clavarioid fungi (=Clavariaceae), Geoglossaceae, Entoloma 

spp. sensu lato, and Dermoloma spp (Tricholomataceae) – counting the number of 

species found at a site for each group, noting them by their first letters: C, H, E, G, and D. 

It should be noted that the Dermoloma spp. group (“D”) traditionally also includes 

Camarophyllopsis spp. which are now placed in the Clavariaceae (Griffith et al. 2013). 

Using equal sampling effort across multiple sites, the sites can be compared by their 

counts (for examples, see Rotheroe 2001). Generally, the Hygrophoraceae, Clavariaceae, 

and Entolomataceae were found to have high richness and moderately high abundance 

using belowground and aboveground surveys in my study. The Geoglossaceae are 

members of the Ascomycota and therefore were not considered in my study, although it 

is worth noting none were found incidentally in aboveground surveys. Dermoloma spp. 

were encountered the least in Rotheroe’s examples, and only one Camarophyllopsis sp. 

OTU (syn. Hodophilus sp. – Appendix B) was encountered in Ontario tallgrass prairies 

by my study (although it is possible any of the Clavariaceae sp. 1-4 may represent 

Camarophyllopsis species). 

I applied the CHEGD method to my aboveground and belowground data. West 

Windsor (pristine) sites tended to score the highest, with pristine (except for Sandpits) 

Walpole sites in second place. The highest scoring site by the aboveground survey data 

was Pottawatomi prairie (a pristine site in Walpole Island) at C0, H2, E6, G0, D0. In 

second place was HA (FRS #23 – a pristine site in Windsor) with more even diversity at 

C2, H2, E3, G0, D0. The highest scoring site by the belowground method was Ojiway 

prairie area A (pristine site in Windsor) at C6, H5, E3, G-, D1. Despite this, no 
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mushrooms were encountered at the site in aboveground surveys (despite searching 

below thick vegetation and litter). It is difficult to compare my CHEGD scores with other 

studies, since, for the aboveground method, my study had relatively low sampling effort 

(only two or three visits per site) and the CHEGD method has not been applied to 

belowground soil high-throughput sequencing studies. However, there seems to be a 

much higher diversity of Hygrocybe spp. (H) in European grasslands (e.g., C3, H28, E0, 

G5 in Rotheroe 2001). 

I compared my aboveground mushroom survey results of Ontario tallgrass 

prairies with Netherlands grasslands and similar sandy ecosystems surveyed by Arnolds 

(1989) as one European example. The CHEGD taxa were highly diverse in the 

Netherlands surveys, especially species of Entoloma (55) and from the Hygrophoraceae 

(33), with fewer from the Clavariaceae (only 17 – or 10 if the seven Camarophyllopsis 

spp. are traditionally placed in the “D” group) and again fewer species from the 

Geoglossaceae and Dermoloma. Similar proportions of species of Entoloma, Hygrocybe, 

and from the Clavariaceae were found in aboveground surveys in this study, but in 

smaller numbers (11, 4, and 5 respectively). Increased sampling visits may have 

uncovered richness similar to that in the Netherlands. Ontario sites were visited only two 

or three times, which probably uncovered only about a third to a half of the true species 

diversity according to species accumulation curves of these taxa from Newton et al. 

(2003). From a belowground perspective, the Clavariaceae are by far the most species-

rich of the CHEGD group (24 OTUs, vs. only 11 for the Entolomataceae and eight for the 

Hygrophoraceae), but this is not apparent in aboveground surveys. Several species were 

shared between the Netherlands and Ontario: Entoloma incanum, E. excentricum 

(perhaps; the uncertain identity in my study was E. excentricum/sericellum), E. 

mougeotii, Hygrocybe conica (group), H. glutinipes, H. flavescens, Phallus hadriani, and 

Cyathus stercoreus. The genera Tubaria and Hebeloma were present in Ontario tallgrass 

prairies but absent in the Netherlands grasslands. Species of Hebeloma have been 

recorded in forests and roadsides in the Netherlands, but not in any type of grassland 

there, while Tubaria wasn’t recorded from any ecosystems in that study at all (Arnolds 

1989). Conversely, Ontario tallgrass prairies lacked members of Dermoloma and 

Camarophyllopsis – at least aboveground (from CHEGD), as well as other genera: 
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Conocybe, Lepiota, Lepista, Psathyrella, Psilocybe, and Volvariella. It is possible these 

seemingly unique taxa may be uncovered with higher sampling effort (in the Netherlands 

or Ontario). 

4.3.3 Notable species and conservation significance 

Cotylidia undulata is apparently rare in Ontario tallgrass prairies, as it was found 

only at the DeMaere prairie (by both aboveground and belowground methods), where it is 

apparently associated with moss on the sandy soil. The species is found around the world 

(for example, is listed as occurring in degraded or dessicated Sphagnum peat bogs in the 

Netherlands by Arnolds 1989), but has been listed as vulnerable on a red list of species at 

risk by the British Mycological Society (Evans et al. 2006). Once deposited, the sequence 

obtained from a collection of fruiting bodies in this study will be only the second 

sequence available in GenBank for this species. 

Psathyrella ammophila (dune brittlestem mushroom) was found only in the two 

Norfolk prairies due to their sandy soils. This species requires sand dune habitat and has a 

relationship with plant roots – particularly with Ammophila spp. (beachgrass) (Watling 

and Rotheroe 1989, First Nature 2015). Conservation managers should keep variation 

within ecosystems in mind, since (for example) sandy tallgrass prairies are habitat to 

unique fungi not found in tallgrass prairies with other soil types. 

 Arrhenia cf. griseopallida was found at two sites, but is easy to overlook given its 

tiny size and gray-brown colour similar to soil. Whether it is actually rare or only 

overlooked would require survey efforts focused on finding more occurrences of this 

mushroom specifically. Investigations are under way to clarify species of Arrhenia and 

name undescribed ones, of which a sequence from one of the collections in this study is a 

part (Andrus Voitk pers. comm.). It is possible genetic studies may discover that cryptic 

taxa within this morphospecies are unique to grasslands in North America (different from 

European specimens). 

Minimedusa polyspora (OTU_9) produces raspberry-like bulbils (0.1-0.2 mm) 

(Weresub and LeClair 1971) and members of the Ceratobasidiaceae (perhaps including 
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OTU_1 Ceratobasidiaceae sp. 1) produce sclerotia (0.250 mm - 0.500 mm) (Kumar et al. 

2002). These unusual bulbils and sclerotia propagules may explain the high abundance of 

the two species in this study. Since the propagules are larger than the openings of the 

finest sieve used in the soil sieving procedure (0.053 mm) there would have been much 

higher proportion of fungal matter for these species than others. Pneumatospora 

obcoronata (syn. Minimedusa obcoronata) also produces bulbils and was by far the most 

abundant OTU in studies of Michigan soils (Bahnmann 2009) that used the same sieveing 

method (Thorn et al. 1996). 

4.4 Limitations 

The belowground survey type is highly limited by small sampling size. In each 

field site only a small fraction of the land is sampled by thin vertical soil cores (cores are 

2.5 cm diameter with 5 × 6 taken per site, so that’s 4.9 × 10-6 % of a one hectare site). 

This is further reduced in the lab when only a few milligrams of each sample are added to 

an Eppendorf tube for DNA extraction, and then only a few microliters of DNA extract 

are used for PCR. The sequencing process itself also subsamples by using only some of 

the PCR products to create a library and then sequencing only part of that library. The 

limitations of such repeated subsampling are described by Gloor (2015). The 

consequence is that rare species are easily lost in the process. Fortunately a few grams of 

soil can contain tens to hundreds of fungal species (Lynch and Thorn 2006, Peay et al. 

2016). I found one Agaricomycete OTU per gram of raw soil, or seven OTUs per gram 

before any taxonomic filtering (Agaricomycetes, other fungi, and representatives from 

other kingdoms). 

The aboveground survey type does not face the limitations of repeated 

subsampling. Sampling area is less of a limitation, as a large area can be searched for 

fruiting bodies, but it is still impossible to cover the entire site, and so it is possible that 

some mushrooms were present but not found. This is particularly likely for inconspicuous 

(small and/or drab-coloured) fruiting bodies that are hidden under grass and litter. 

Another major limiting factor in aboveground surveys is the seasonal and sporadic nature 

of fruiting body production. Sites should ideally be visited more than once each season 

and over several years (Rossman et al. 1998, Lodge et al. 2004). This is not a limiting 
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factor in belowground sampling because hyphal materials are found in the soil even when 

no mushrooms are being produced. 

The belowground survey type applied to soil microbes has also been criticized for 

being too sensitive, capturing DNA from unwanted biological materials. The soil sieving 

technique I used washes away the spores of almost all fungi (most importantly, spores 

deposited hundreds of years ago and those from other ecosystems), retaining only plant 

debris, fungal hyphae, rhizomorphs, and sclerotia (ecologically active material belonging 

to the sampled ecosystem) (Parkinson and Williams 1960, Thorn et al. 1996, Lynch and 

Thorn 2006). Without sieving, inactive and active fungal materials would both be present 

in samples and it would be impossible to distinguish them after sequencing, leading to 

incorrect ecological inferences (Klein 2015). Another way of targeting only active 

organisms is to use rRNA (ribosomal RNA), which has a faster turnover rate than rDNA, 

or mRNA (messenger RNA for genes actively expressed in the environment). My study 

used rDNA because it is more stable across time and more appropriate for capturing a 

wide range of diversity with limited field sampling (Porter et al. 2008). 

Sequence-based identification is particularly difficult when: 1) the query OTU 

retrieves a wide variety of taxa that are all equally well-matched or 2) the best matches 

are highly dissimilar to the query OTU (noted in Penton et al. 2013). Various underlying 

limitations come into play. GenBank is limited by frequent incorrectly annotated 

sequences (i.e. wrong identifications) (Nilsson et al. 2012) and still holding too few 

sequences. Of the world’s estimated eight million species of fungi (Taylor et al. 2014), 

GenBank currently holds sequences for only 125,865 (see NCBI taxonomy statistics: 

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=statistic

s&?&m=0). The data gap comes from both described fungi with herbarium specimens 

that have not yet been sequenced (Brock et al. 2009) and undescribed fungi, which 

include those without conspicuous fruiting bodies or which cannot be cultured. 

I addressed the limitation of undescribed, unsequenced fungi by constructing of a 

large phylogram combining OTU and mushroom sequences from this study with quality 

GenBank reference sequences (not shown). OTUs with weak matches could at least be 
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placed in a broader taxonomic group (such as order or family). Of note are the following 

minor clades which probably represent undescribed soil fungi: Cantharellales unknown 

family, Russulales unknown family, Thelephorales unknown family, most of the 

Pluteaceae, Pleurotaceae, and all of the Gomphales cf. group.  

All OTUs from the Gomphales clade grouped together strongly in my 

phylogenetic tree, but returned diverse and highly dissimilar matches with a maximum 

identity of ca. 90%, usually with representatives from the Gomphales, but sometimes also 

from the Cantharellales, Russulales, Strophariaceae, Hymenogastraceae, Pluteaceae, 

Auriculariaceae, and Phallaceae. The Gomphales OTUs were placed between reference 

sequences from the Gomphales and Phallaceae in my phylogenetic tree. In a study of 

Michigan soils, three OTUs from no till and historically tilled plots were placed in the 

gomphoid/phalloid clade and were on their own branch on a phylogram, next to a branch 

with reference sequences of Phallus hadriani and Mutinus elegans (Wong 2012). The 10 

Gomphales cf. clade OTUs from my study and the three gomphoid/phalloid OTUs from 

Michigan apparently represent a region of undescribed fungal species. 

Studies in Michigan soils repeatedly returned a “sister clade to Volvariella” or 

“Pluteoid clade” that was very OTU rich (Lynch 2004, Bahnmann 2009, and Wong 

2012). This seems to correspond to my 11 Pluteaceae spp., which did not return strong 

GenBank matches and created their own branch on my phylogram. Again, these are 

apparently a group of closely related undescribed fungi. 

4.5 Future studies 

This study is exploratory, and future studies can test the trends observed here in 

controlled experimental systems. The impact of tillage on communities of 

Agaricomycetes ought to be examined in a design where edaphic and climate factors are 

the same between tilled and pristine plots. This could be accomplished by finding pairs of 

adjacent sites that are identical except for tillage history, or by tilling portions of a 

pristine prairie as a long-term experiment (e.g., tillage microplots in never-tilled “T8” 

plots at the Kellogg Biological Station in Michigan).  
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Much of the ecology and basic biology of fungal families in this study remains 

unknown. The Sebacinaceae, Ceratobasidiaceae, and Polyporaceae, three families whose 

ecological roles in grassland soils are not clear, could be isolated and cultured from soils 

where they are abundant to test for pathogenicity (Thorn et al. 1996, Midgley et al. 2007) 

and to obtain longer sequences. Until we know more about the ecological roles of soil 

fungi it remains difficult to infer ecological significance of the taxa recovered in 

exploratory studies. 

 Aboveground litter is often omitted in high-throughput sequencing studies of soil 

biota (such as this one, and noted in Porter et al. 2008). Inclusion of litter would add 

another dimension to compare with belowground soil and aboveground mushroom 

surveys and may uncover overlooked diversity in the Mycenaceae and the Polyporaceae, 

and the otherwise absent Tubariaceae and Nidulariaceae, helping to bring a more 

complete picture to the mycological communities of grasslands. 

 Combining detailed vegetative data of sites with fungal high-throughput 

sequencing would allow for in-depth comparisons between fungal richness and plant 

composition. Sites suspected of being vegetationally uninteresting but important 

mycologically could be included to test whether conservation agencies have a gap in their 

land acquisition priorities. This has been conducted using aboveground mushroom 

surveys in South Wales (Rotheroe 2001), but not yet using high-throughput sequencing 

technology. 

4.6 Conclusion 

 This has been the first study in North America to characterize grassland fungal 

communities using high-throughput sequencing of soil samples. Although observational, 

my study provides important baseline data for future studies in tallgrass prairies and 

examining the composition of Agaricomycetes in soils. The discovery that North 

American grasslands contain many of the same dominant fungal families as European 

ones facilitates moving on with the next steps of applying European methods of study and 

fungal conservation assessment here as well. 
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Despite the influence of unknown factors related to geographic regions of sites, 

restored tallgrass prairies with a history of tillage were found to have compositional 

differences from pristine remnant sites. Examination of tillage-sensitive taxa confirmed 

their sensitivity to tillage disturbance (such as the Hygrophoraceae and Clavariaceae) and 

several taxa showing tillage-sensitive trends were proposed for further examination. 

These findings further support the need for stringent conservation of remnant ecosystems 

(such as the tallgrass prairies), and that restoration is not a replacement for conserving 

lands in the first place. 

Comparisons of the aboveground mushroom survey with belowground high-

throughput sequencing showed that the belowground survey successfully captures most 

of the taxa found aboveground and many more. Degrees of overlap between the two 

survey types at different taxonomic scales supports findings from Porter et al. (2008) that 

overlap decreases at finer scales. I showed that shared species can be determined 

(identical sequences from aboveground and belowground can be matched together), but 

they are only a small percentage of total species richness in either survey type. 

Comparisons of abundance in species shared between the two survey types brings new 

perspectives to aboveground versus belowground energy investment (especially for 

Clavaria cf. acuta and Cotylidia undulata). 

 This study clearly demonstrates the usefulness of applying high-throughput 

sequencing to belowground fungal surveys. Hopefully new technologies such as these 

will continue to illuminate the diversity and importance of fungi and facilitate our 

understanding and conservation of the world’s imperiled ecosystems. 
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Appendix A Accession numbers of best matched sequences from GenBank for soil 

OTUs and mushroom specimens with species-level names. 

OTU/Specimen Name (query ID) Accession 

HA10 Arrhenia cf. griseopallida U66436 

SA1 Clavaria cf. acuta HQ877680 

EL8 Clavaria cf. fragilis HQ877687 

HA5 Clavulinopsis laeticolor EU118618 

MP13 Clitocybe dealbata AF042589 

SI11 Clitopilus scyphoides KC176282 

DM10 Cotylidia undulata JN649335 

HA9 Entoloma cf. tubaeforme KJ845724 

PO4, PO7 Entoloma excentricum/sericellum KF771047 

DM8 Hebeloma cf. incarnatulum AF430291 

DM12 Omphalina rivulicola/pyxidata U66450 

DM12 Omphalina rivulicola/pyxidata U66451 

BF4 Pholiotina sulcata JX968153 

MP15 Psathyrella ammophila KC992871 

DM6, DM9 Tubaria cf. furfuracea (T. hiemalis) FJ717494 

OTU_245 Amanita_populiphila KP224345 

OTU_2278 Amauroderma_intermedium KU315209 

OTU_2392 Athelia_arachnoidea GU187557 

OTU_79 Athelia_bombacina LN714523 

OTU_213 Athelia_epiphylla AY586633 

OTU_1602 Boletinellus/Gyrodon_merulioides AY612807 

OTU_1398 Boletellus_chrysenteroides KP327645 

OTU_878 Vuilleminia_macrospora JX892941 

OTU_545 Burgoa_anomala AB972757 

OTU_83 Calyptella_capula AY570994 

OTU_3713 Clavaria_acuta GU299506 

OTU_1005 Clavaria_fragilis HQ877687 

OTU_435 Clavaria_fuscata HQ877691 

OTU_1168 Clavaria_incarnata_sp1 KP257245 

OTU_1327 Clavaria_incarnata_sp2 JQ415937 

OTU_1027 Clavulinopsis_helvola GU299510 

OTU_230 Cotylidia_undulata JN649335 

OTU_656 Craterellus_tubaeformis DQ898741 

OTU_150 Cuphophyllus_pratensis AF261457 
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OTU/Specimen Name (query ID) Accession 

OTU_210 Endoperplexa_enodulosa AY505543 

OTU_404 Hygrocybe_flavescens/chlorophana KF291121 

OTU_1673 Hygrocybe_lepida/cantharellus KF306334 

OTU_1051 Hymenochaete_tenuis JQ279641 

OTU_1336 Inocybe_cookei AY702014 

OTU_129 Inocybe_curvipes JN035294 

OTU_4467 Inocybe_perlata JN975013 

OTU_744 Inocybe_splendens KJ399959 

OTU_286 Inocybe_squamata FJ904136 

OTU_578 Jaapia_ochroleuca GU187670 

OTU_540 Laetisaria_arvalis EU622842 

OTU_820 Lepista_saeva KJ417193 

OTU_347 Limonomyces_roseipellis KF824722 

OTU_148 Merulicium_fusisporum EU118647 

OTU_9 Minimedusa_polyspora AB972779 

OTU_0 Mutinus_elegans AY574643 

OTU_49 Mycena_adscendens KT900143 

OTU_5 Mycena_epiptygeria_sp1 HQ604772 

OTU_9841 Mycena_epiptygeria_sp2 KP454034 

OTU_1164 Mycena_galopus HM240534 

OTU_4223 Mycena_purpureofusca HQ604765 

OTU_587 Omphalina_grisella U66443 

OTU_984 Omphalina_velutipes U66455 

OTU_506 Paulisebacina_allantoidea KF061266 

OTU_242 Pholiota_tuberculosa AY207276 

OTU_1599 Piriformospora_indica_sp2 KT762618 

OTU_90 Piriformospora_indica_sp3 KF061284 

OTU_557 Polyozellus_multiplex EF561637 

OTU_180 Ramariopsis_corniculata GU299495 

OTU_940 Ramariopsis_pulchella_sp1 GU299497 

OTU_7506 Ramariopsis_pulchella_sp2 KP012919 

OTU_198 Rogersella_griseliniae DQ873651 

OTU_1162 Russula_cremeirosea KT933844 

OTU_447 Russula_putida HG798526 

OTU_425 Sclerogaster_minor FJ435976 

OTU_12273 Serendipita_vermifera_sp1 KT762620 

OTU_174 Serendipita_vermifera_sp2 EU625994 
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OTU/Specimen Name (query ID) Accession 

OTU_407 Serendipita_vermifera_sp3 EU626002 

OTU_879 Serendipita_vermifera_sp4 EU625994 

OTU_9073 Serendipita_vermifera_sp5 AY505555 

OTU_51 Sistotrema_athelioides DQ898700 

OTU_78 Sphaerobolus_ingoldii AF139975 

OTU_69 Sphaerobolus_stellatus HQ604795 

OTU_192 Thanatephorus_cucumeris KP171644 

OTU_191 Tylospora_fibrillosa JN938845 

OTU_137 Typhula_phacorrhiza AF261374 

OTU_515 Waitea_circinata KC176341 
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Appendix B All 281 Agaricomycete OTUs from 13 tallgrass prairie sites where soil sampling was conducted. 

Key to sites: HA,B,C,D = FRS #23,32,27,28 Herb-Gray Parkway (Windsor); OA,B = Ojibway Prairie Areas 1 and 2 (Windsor); SI = 

Silphium, SA = Sandpits, MI = Mike's field, EL = Eliza's prairie, PO = Pottawatomi (Walpole); DM* = DeMaere (Norfolk) (* = 

dataset includes all 24 sample plots including nitrogen treatments, not just control plots; presence marked with “(x)”); BF = Blair Flats 

(Cambridge). Sites are ordered by geographic location, from west to east. 

OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_1084 Agaricus_sp Agaricaceae Agaricoid x  x         x  

OTU_9976 Lepiota_sp Agaricaceae Agaricoid                       x   

OTU_488 Vascellum_sp Agaricaceae Agaricoid x     x           x x     

OTU_197 Bolbitiaceae_sp1 Bolbitiaceae Agaricoid                       x   

OTU_4574 Bolbitius_sp Bolbitiaceae Agaricoid           x x         x   

OTU_1302 Conocybe_sp Bolbitiaceae Agaricoid       x                   

OTU_12334 Conocybe_sp Bolbitiaceae Agaricoid                   x   x   

OTU_14293 Conocybe_sp Bolbitiaceae Agaricoid     x             x       

OTU_255 Pholiotina_sp Bolbitiaceae Agaricoid                       (x)   

OTU_11219 Cortinarius_sp1 Cortinariaceae Agaricoid             x x x x x x   

OTU_297 Cortinarius_sp2 Cortinariaceae Agaricoid                       (x)   

OTU_5283 Cortinarius_sp3 Cortinariaceae Agaricoid   x   x           x x x   

OTU_7077 Cortinarius_sp4 Cortinariaceae Agaricoid x x x x             x x   

OTU_1194 Crepidotus_sp1 Crepidotaceae Agaricoid     x                     

OTU_2994 Crepidotus_sp2 Crepidotaceae Agaricoid                       x x 

OTU_14025 Simocybe_sp1 Crepidotaceae Agaricoid                       x   

OTU_899 Simocybe_sp2 Crepidotaceae Agaricoid         x                 

OTU_3849 Galerina_sp1 Hymenogastraceae Agaricoid     x         x           

OTU_445 Galerina_sp2 Hymenogastraceae Agaricoid             x x   x x     

OTU_4878 Galerina_sp3 Hymenogastraceae Agaricoid               x           
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_189 Hymenogastraceae_sp Hymenogastraceae Agaricoid x x x       x x x x x x   

OTU_1336 Inocybe_cookei Inocybaceae Agaricoid     x                     

OTU_129 Inocybe_curvipes Inocybaceae Agaricoid                       x   

OTU_4467 Inocybe_perlata Inocybaceae Agaricoid   x                       

OTU_1769 Inocybe_sp Inocybaceae Agaricoid       x                   

OTU_744 Inocybe_splendens Inocybaceae Agaricoid   x                       

OTU_286 Inocybe_squamata Inocybaceae Agaricoid   x                       

OTU_1367 Coprinellus_sp1 Psathyrellaceae Agaricoid                       x x 

OTU_93 Coprinellus_sp2 Psathyrellaceae Agaricoid x x x x x         x   x x 

OTU_13279 Coprinopsis_sp1 Psathyrellaceae Agaricoid     x x   x       x       

OTU_7346 Coprinopsis_sp2 Psathyrellaceae Agaricoid         x             x   

OTU_8222 Coprinopsis_sp3 Psathyrellaceae Agaricoid                   x       

OTU_6796 Cyathus_sp Psathyrellaceae Agaricoid                       (x)   

OTU_6038 Psathyrella_sp Psathyrellaceae Agaricoid   x x x   x           x x 

OTU_247 Gymnopilus_sp Strophariaceae Agaricoid x x         x         x   

OTU_7800 Hypholoma_sp Strophariaceae Agaricoid             x   x x x     

OTU_242 Pholiota_tuberculosa Strophariaceae Agaricoid x x x x   x           x x 

OTU_2392 Athelia_arachnoidea Atheliaceae Atheliales                       x   

OTU_79 Athelia_bombacina Atheliaceae Atheliales                       x   

OTU_213 Athelia_epiphylla Atheliaceae Atheliales             x x x x x     

OTU_191 Tylospora_fibrillosa Atheliaceae Atheliales             x x x x x     

OTU_870 Auriculariales_sp Auric_incertae_sedis Auriculariales             x       x     

OTU_1006 Basidiodendron_sp Auric_incertae_sedis Auriculariales               x   x       

OTU_816 Elmerina_sp Auric_incertae_sedis Auriculariales                       x   

OTU_210 Endoperplexa_enodulosa Auric_incertae_sedis Auriculariales                       x   

OTU_14200 Auricularia_sp Auriculariaceae Auriculariales                       x   

OTU_12515 Auriculariaceae_sp1 Auriculariaceae Auriculariales               x           
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_183 Auriculariaceae_sp2 Auriculariaceae Auriculariales x             x       x   

OTU_185 Auriculariaceae_sp3 Auriculariaceae Auriculariales           x       x   x x 

OTU_833 Auriculariaceae_sp4 Auriculariaceae Auriculariales                       x   

OTU_86 Auriculariaceae_sp5 Auriculariaceae Auriculariales         x             x   

OTU_869 Auriculariaceae_sp6 Auriculariaceae Auriculariales x x     x     x   x   x   

OTU_1602 Boletellus/Gyrodon_merulioides Boletaceae Boletales   x                       

OTU_1398 Boletellus_chrysenteroides Boletaceae Boletales     x                     

OTU_179 Boletus_sp Boletaceae Boletales x             x       x   

OTU_1614 Tylopilus_sp Boletaceae Boletales     x                     

OTU_2491 Boletales_sp Melanogastraceae Boletales x   x x       x           

OTU_281 Scleroderma_sp Sclerodermataceae Boletales                       x   

OTU_60 Suillus_cavipes Suillaceae Boletales             x x x x x     

OTU_874 Suillus_luteus Suillaceae Boletales                       x   

OTU_401 Botyrobasidiaceae_sp Botryobasidiaceae Cantharellales                       x   

OTU_545 Burgoa_anomala Botryobasidiaceae Cantharellales                       x x 

OTU_9 Minimedusa_polyspora Canth_incertae_sedis Cantharellales x x x x x x x x   x x x x 

OTU_9652 Minimedusa_sp Canth_incertae_sedis Cantharellales       x               x   

OTU_1087 Cantharellales_sp1 Canth_unknown_family Cantharellales         x x           x   

OTU_1394 Cantharellales_sp2 Canth_unknown_family Cantharellales     x                     

OTU_7444 Cantharellales_sp3 Canth_unknown_family Cantharellales                   x       

OTU_656 Craterellus_tubaeformis Cantharellaceae Cantharellales             x             

OTU_1 Ceratobasidiaceae_sp1 Ceratobasidiaceae Cantharellales             x x x x x x   

OTU_12552 Ceratobasidiaceae_sp2 Ceratobasidiaceae Cantharellales             x x   x       

OTU_5231 Ceratobasidiaceae_sp3 Ceratobasidiaceae Cantharellales         x             x   

OTU_6779 Ceratobasidiaceae_sp4 Ceratobasidiaceae Cantharellales                       x   

OTU_796 Ceratobasidiaceae_sp5 Ceratobasidiaceae Cantharellales         x x         x x   

OTU_192 Thanatephorus_cucumeris Ceratobasidiaceae Cantharellales                       x   
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_305 Burgella_flavoparmeliae Clavulinaceae Cantharellales                       (x)   

OTU_51 Sistotrema_athelioides Hydnaceae Cantharellales                       x   

OTU_27 Sistotrema_sp1 Hydnaceae Cantharellales     x             x   x   

OTU_2019 Sistotrema_sp2 Hydnaceae Cantharellales                       x   

OTU_7309 Sistotrema_sp3 Hydnaceae Cantharellales             x x x x x     

OTU_234 Tulasnella_sp1 Tulasnellaceae Cantharellales                       x   

OTU_426 Tulasnella_sp2 Tulasnellaceae Cantharellales                       x   

OTU_611 Tulasnella_sp3 Tulasnellaceae Cantharellales                 x         

OTU_797 Tulasnella_sp4 Tulasnellaceae Cantharellales                   x x     

OTU_1361 Tulasnellaceae_sp Tulasnellaceae Cantharellales         x                 

OTU_3713 Clavaria_acuta Clavariaceae Clavarioid     x                     

OTU_1005 Clavaria_fragilis Clavariaceae Clavarioid   x                       

OTU_435 Clavaria_fuscata Clavariaceae Clavarioid x x           x           

OTU_1168 Clavaria_incarnata_sp1 Clavariaceae Clavarioid               x           

OTU_1327 Clavaria_incarnata_sp2 Clavariaceae Clavarioid x                         

OTU_1071 Clavaria_sp1 Clavariaceae Clavarioid x   x                     

OTU_674 Clavaria_sp10 Clavariaceae Clavarioid x x                       

OTU_1256 Clavaria_sp2 Clavariaceae Clavarioid               x           

OTU_13081 Clavaria_sp3 Clavariaceae Clavarioid                       (x)   

OTU_238 Clavaria_sp4 Clavariaceae Clavarioid     x x x         x   x   

OTU_4000 Clavaria_sp5 Clavariaceae Clavarioid   x                       

OTU_516 Clavaria_sp6 Clavariaceae Clavarioid                       (x)   

OTU_520 Clavaria_sp7 Clavariaceae Clavarioid               x x x x x   

OTU_613 Clavaria_sp8 Clavariaceae Clavarioid                     x     

OTU_6560 Clavaria_sp9 Clavariaceae Clavarioid   x                       

OTU_3841 Clavariaceae_sp1 Clavariaceae Clavarioid       x                   

OTU_592 Clavariaceae_sp2 Clavariaceae Clavarioid     x         x           



113 

 

 

 

OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_61 Clavariaceae_sp3 Clavariaceae Clavarioid         x x           x   

OTU_802 Clavariaceae_sp4 Clavariaceae Clavarioid   x                       

OTU_1027 Clavulinopsis_helvola Clavariaceae Clavarioid     x x       x           

OTU_638 Hodophilus_sp Clavariaceae Clavarioid     x                     

OTU_180 Ramariopsis_corniculata Clavariaceae Clavarioid x             x       x   

OTU_940 Ramariopsis_pulchella_sp1 Clavariaceae Clavarioid x                         

OTU_7506 Ramariopsis_pulchella_sp2 Clavariaceae Clavarioid     x                     

OTU_878 Vuilleminia_macrospora Corticiaceae Corticiales             x x     x     

OTU_540 Laetisaria_arvalis Corticiaceae Corticiales           x           x   

OTU_1622 Laetisaria_fuciformis Corticiaceae Corticiales                       (x)   

OTU_347 Limonomyces_roseipellis Corticiaceae Corticiales x     x               x   

OTU_515 Waitea_circinata Corticiaceae Corticiales           x           x   

OTU_62 Acantholichen/Dictyonema_sp Hygrophoraceae Hygrophoroid         x             x   

OTU_574 Arrhenia_sp Hygrophoraceae Hygrophoroid                       x   

OTU_150 Cuphophyllus_pratensis Hygrophoraceae Hygrophoroid x             x       x   

OTU_11255 Hygrocybe_concia_group_sp1 Hygrophoraceae Hygrophoroid                     x     

OTU_160 Hygrocybe_concia_group_sp2 Hygrophoraceae Hygrophoroid x x x x   x   x     x x   

OTU_21 Hygrocybe_concia_group_sp3 Hygrophoraceae Hygrophoroid x   x x       x       x   

OTU_311 Hygrocybe_concia_group_sp4 Hygrophoraceae Hygrophoroid x x x             x x     

OTU_404 Hygrocybe_flavescens/chlorophana Hygrophoraceae Hygrophoroid     x                     

OTU_1673 Hygrocybe_lepida/cantharellus Hygrophoraceae Hygrophoroid     x                     

OTU_5877 Hygrophoraceae_sp Hygrophoraceae Hygrophoroid x   x x     x x x x x x   

OTU_1182 Omphalina_ericetorum Hygrophoraceae Hygrophoroid                       x   

OTU_587 Omphalina_grisella Hygrophoraceae Hygrophoroid                       x   

OTU_984 Omphalina_velutipes Hygrophoraceae Hygrophoroid                 x     x   

OTU_148 Merulicium_fusisporum Pterulaceae Hygrophoroid                       x   

OTU_137 Typhula_phacorrhiza Typhulaceae Hygrophoroid         x x           x   
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_1931 Typhula_sp1 Typhulaceae Hygrophoroid                       (x)   

OTU_7090 Typhula_sp2 Typhulaceae Hygrophoroid           x               

OTU_752 Typhula_sp3 Typhulaceae Hygrophoroid                       (x)   

OTU_2969 Typhulaceae_sp1 Typhulaceae Hygrophoroid                       (x)   

OTU_552 Typhulaceae_sp2 Typhulaceae Hygrophoroid     x                     

OTU_6859 Hymenochaetaceae_sp Hymenochaetaceae Hymenochaetales     x                     

OTU_1051 Hymenochaete_tenuis Hymenochaetaceae Hymenochaetales               x           

OTU_644 Hyphodontia_sambuci Hymenochaetaceae Hymenochaetales                       (x)   

OTU_17 Hyphodontia_sp1 Hymenochaetaceae Hymenochaetales             x x x x x     

OTU_301 Hyphodontia_sp2 Hymenochaetaceae Hymenochaetales             x   x x       

OTU_36 Hyphodontia_sp3 Hymenochaetaceae Hymenochaetales   x x x             x x x 

OTU_9489 Hyphodontia_sp4 Hymenochaetaceae Hymenochaetales                   x       

OTU_230 Cotylidia_undulata Repetobasidiaceae Hymenochaetales                       x   

OTU_198 Rogersella_griseliniae Schizoporaceae Hymenochaetales                       x x 

OTU_578 Jaapia_ochroleuca Jaapiaceae Jaapiales             x x x x x     

OTU_617 Marasmiaceae_sp5 Cyphellaceae Marasmioid               x           

OTU_268 Hydropoid_sp Hydropoid Marasmioid     x         x       x   

OTU_1848 Hydropus_sp Hydropoid Marasmioid     x                     

OTU_49 Mycena_adscendens Hydropoid Marasmioid                       x   

OTU_860 Flagelloscypha_sp1 Lachnellaceae Marasmioid                       (x)   

OTU_970 Flagelloscypha_sp2 Lachnellaceae Marasmioid                       (x)   

OTU_80 Lachnellaceae_sp Lachnellaceae Marasmioid   x     x x           x x 

OTU_83 Calyptella_capula Marasmiaceae Marasmioid           x           x   

OTU_262 Crinipellis_sp Marasmiaceae Marasmioid             x         x   

OTU_1115 Marasmiaceae_sp1 Marasmiaceae Marasmioid     x                     

OTU_11566 Marasmiaceae_sp2 Marasmiaceae Marasmioid   x   x       x           

OTU_177 Marasmius_sp Marasmiaceae Marasmioid   x x                 x   
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_9613 Tetrapyrgos_sp Marasmiaceae Marasmioid               x x x       

OTU_15 Marasmiaceae_sp3 Physalacriaceae Marasmioid             x x x x x     

OTU_519 Marasmiaceae_sp4 Physalacriaceae Marasmioid       x           x       

OTU_425 Sclerogaster_minor Geastraceae Phallomycetidae x     x             x     

OTU_78 Sphaerobolus_ingoldii Geastraceae Phallomycetidae                       x   

OTU_69 Sphaerobolus_stellatus Geastraceae Phallomycetidae                       (x)   

OTU_1118 Gomphales_sp1 Gomphales cf Phallomycetidae               x           

OTU_8876 Gomphales_sp10 Gomphales cf Phallomycetidae                       x   

OTU_12188 Gomphales_sp2 Gomphales cf Phallomycetidae     x x                   

OTU_22 Gomphales_sp3 Gomphales cf Phallomycetidae x x x x     x x   x x x x 

OTU_383 Gomphales_sp4 Gomphales cf Phallomycetidae           x x         x   

OTU_474 Gomphales_sp5 Gomphales cf Phallomycetidae                       (x)   

OTU_503 Gomphales_sp6 Gomphales cf Phallomycetidae             x           x 

OTU_5543 Gomphales_sp7 Gomphales cf Phallomycetidae                       x   

OTU_6412 Gomphales_sp8 Gomphales cf Phallomycetidae             x         x   

OTU_843 Gomphales_sp9 Gomphales cf Phallomycetidae     x                     

OTU_121 Aseroe_sp Phallaceae Phallomycetidae                       (x)   

OTU_0 Mutinus_elegans Phallaceae Phallomycetidae x x x                 x   

OTU_1261 Phallaceae_sp1 Phallaceae Phallomycetidae                       x   

OTU_161 Phallaceae_sp2 Phallaceae Phallomycetidae                       x   

OTU_245 Amanita_populiphila Amanitaceae Pluteoid   x x                     

OTU_9509 Pleurotaceae_sp Pleurotaceae Pluteoid x x                       

OTU_225 Pluteaceae_sp1 Pluteaceae Pluteoid   x     x x               

OTU_755 Pluteaceae_sp10 Pluteaceae Pluteoid                       (x)   

OTU_773 Pluteaceae_sp11 Pluteaceae Pluteoid                       (x)   

OTU_2360 Pluteaceae_sp2 Pluteaceae Pluteoid                   x x     

OTU_274 Pluteaceae_sp3 Pluteaceae Pluteoid           x x             
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_326 Pluteaceae_sp4 Pluteaceae Pluteoid         x x x         x   

OTU_684 Pluteaceae_sp5 Pluteaceae Pluteoid         x                 

OTU_7322 Pluteaceae_sp6 Pluteaceae Pluteoid         x   x         x   

OTU_9206 Pluteaceae_sp7 Pluteaceae Pluteoid         x x               

OTU_388 Pluteaceae_sp8 Pluteaceae Pluteoid                       (x)   

OTU_550 Pluteaceae_sp9 Pluteaceae Pluteoid         x                 

OTU_343 Pluteus_sp Pluteaceae Pluteoid                       x   

OTU_2278 Amauroderma_intermedium Polyporaceae_sensu_lato Polyporales x   x x     x x   x   x   

OTU_376 Fomitopsidaceae_sp Polyporaceae_sensu_lato Polyporales x x x x     x x x x x x x 

OTU_12 Hypochnicium_sp Polyporaceae_sensu_lato Polyporales             x x x x x x   

OTU_13068 Irpex_sp Polyporaceae_sensu_lato Polyporales x                         

OTU_2262 Ischnoderma_sp1 Polyporaceae_sensu_lato Polyporales                   x       

OTU_6694 Ischnoderma_sp2 Polyporaceae_sensu_lato Polyporales             x x x x x     

OTU_1568 Neofavolus_sp1 Polyporaceae_sensu_lato Polyporales                       x   

OTU_535 Neofavolus_sp2 Polyporaceae_sensu_lato Polyporales x   x x                   

OTU_2708 Phanerochaete_sp Polyporaceae_sensu_lato Polyporales                       (x)   

OTU_2532 Phlebia_sp Polyporaceae_sensu_lato Polyporales       x     x x x x x x   

OTU_1122 Polyporales_sp1 Polyporaceae_sensu_lato Polyporales             x             

OTU_1318 Polyporales_sp2 Polyporaceae_sensu_lato Polyporales                       x   

OTU_212 Polyporales_sp3 Polyporaceae_sensu_lato Polyporales             x x x x x     

OTU_378 Polyporales_sp4 Polyporaceae_sensu_lato Polyporales             x x x x x     

OTU_939 Polyporales_sp5 Polyporaceae_sensu_lato Polyporales             x x x x       

OTU_294 Scytinostromella_sp Polyporaceae_sensu_lato Polyporales             x         x   

OTU_1460 Xenasmatella_sp Polyporaceae_sensu_lato Polyporales                 x         

OTU_4919 Auriscalpium_sp Auriscalpiaceae Russulales                       x   

OTU_101 Russulales_sp1 Russ_unknown_family Russulales x x x x           x   x   

OTU_1140 Russulales_sp2 Russ_unknown_family Russulales       x                   
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_236 Russulales_sp3 Russ_unknown_family Russulales       x           x x     

OTU_836 Russulales_sp4 Russ_unknown_family Russulales                       (x)   

OTU_480 Lactarius_sp Russulaceae Russulales   x x                     

OTU_1162 Russula_cremeirosea Russulaceae Russulales   x x                     

OTU_447 Russula_putida Russulaceae Russulales       x               x   

OTU_487 Russula_sp Russulaceae Russulales     x                     

OTU_30 Stephanosporaceae_sp1 Stephanosporaceae Russulales                       x   

OTU_470 Stephanosporaceae_sp2 Stephanosporaceae Russulales x x x x             x     

OTU_981 Efibulobasidium_sp Sebacinaceae Sebacinales                       x   

OTU_1013 Helvellosebacina_concrescens Sebacinaceae Sebacinales                       x   

OTU_506 Paulisebacina_allantoidea Sebacinaceae Sebacinales     x             x       

OTU_13646 Piriformospora_indica_sp1 Sebacinaceae Sebacinales                       x   

OTU_1599 Piriformospora_indica_sp2 Sebacinaceae Sebacinales                       x   

OTU_90 Piriformospora_indica_sp3 Sebacinaceae Sebacinales     x     x           x   

OTU_1470 Sebacinaceae_sp1 Sebacinaceae Sebacinales x                         

OTU_35 Sebacinaceae_sp2 Sebacinaceae Sebacinales         x x x         x x 

OTU_558 Sebacinaceae_sp3 Sebacinaceae Sebacinales                 x x       

OTU_607 Sebacinaceae_sp4 Sebacinaceae Sebacinales         x x               

OTU_8735 Sebacinaceae_sp5 Sebacinaceae Sebacinales         x x x         x   

OTU_886 Sebacinaceae_sp6 Sebacinaceae Sebacinales                       (x)   

OTU_12273 Serendipita_vermifera_sp1 Sebacinaceae Sebacinales         x x       x   x   

OTU_174 Serendipita_vermifera_sp2 Sebacinaceae Sebacinales             x x x x x x   

OTU_407 Serendipita_vermifera_sp3 Sebacinaceae Sebacinales             x x x x x x   

OTU_879 Serendipita_vermifera_sp4 Sebacinaceae Sebacinales             x x x x x     

OTU_9073 Serendipita_vermifera_sp5 Sebacinaceae Sebacinales             x       x     

OTU_1083 Thelephorales_sp Thel_unknown_family Thelephorales   x x                 x   

OTU_557 Polyozellus_multiplex Thelephoraceae Thelephorales             x x x x x     
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_127 Thelephoraceae sp1 Thelephoraceae Thelephorales   x x x     x x x x x     

OTU_2226 Thelephoraceae sp2 Thelephoraceae Thelephorales                       (x)   

OTU_6583 Thelephoraceae sp3 Thelephoraceae Thelephorales   x                       

OTU_7654 Thelephoraceae sp4 Thelephoraceae Thelephorales                   x       

OTU_817 Thelephoraceae sp5 Thelephoraceae Thelephorales     x                     

OTU_1166 Tomentella_sp Thelephoraceae Thelephorales                       (x)   

OTU_733 Hydnodontaceae_sp Hydnodontaceae Trechisporales         x                 

OTU_821 Subulicystidium_sp Hydnodontaceae Trechisporales       x               x   

OTU_775 Trechispora_alnicola Hydnodontaceae Trechisporales                       (x)   

OTU_186 Trechispora_sp1 Hydnodontaceae Trechisporales                       x   

OTU_390 Trechispora_sp2 Hydnodontaceae Trechisporales             x x   x       

OTU_321 Clitopilus_sp Entolomataceae Tricholomatoid   x x                 x   

OTU_10003 Entoloma_sp1 Entolomataceae Tricholomatoid     x             x       

OTU_8677 Entoloma_sp10 Entolomataceae Tricholomatoid   x     x x x         x x 

OTU_9891 Entoloma_sp11 Entolomataceae Tricholomatoid         x                 

OTU_10659 Entoloma_sp2 Entolomataceae Tricholomatoid x                   x     

OTU_14213 Entoloma_sp3 Entolomataceae Tricholomatoid x x x x x x x x     x x x 

OTU_1467 Entoloma_sp4 Entolomataceae Tricholomatoid x             x       x   

OTU_1536 Entoloma_sp5 Entolomataceae Tricholomatoid x                         

OTU_437 Entoloma_sp6 Entolomataceae Tricholomatoid   x x x           x       

OTU_481 Entoloma_sp7 Entolomataceae Tricholomatoid         x             x   

OTU_5724 Entoloma_sp8 Entolomataceae Tricholomatoid         x                 

OTU_84 Entoloma_sp9 Entolomataceae Tricholomatoid                       x   

OTU_64 Entolomataceae_sp1 Entolomataceae Tricholomatoid         x x x         x x 

OTU_1093 Entolomataceae_sp2 Entolomataceae Tricholomatoid   x               x x     

OTU_1752 Pouzarella_sp1 Entolomataceae Tricholomatoid               x           

OTU_683 Pouzarella_sp2 Entolomataceae Tricholomatoid         x x               
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OTU Name (based on query ID) Minor Clade Major Clade HA HB OA OB HC HD SA SI MI EL PO DM* BF 

OTU_8315 Richoniella_sp1 Entolomataceae Tricholomatoid x   x x           x x     

OTU_960 Richoniella_sp2 Entolomataceae Tricholomatoid x                         

OTU_1315 Lyophyllaceae_sp1 Lyophyllaceae Tricholomatoid x                         

OTU_784 Lyophyllaceae_sp2 Lyophyllaceae Tricholomatoid x x x x x   x x x x x     

OTU_5 Mycena_epiptygeria_sp1 Mycenaceae Tricholomatoid     x x     x x x x x x   

OTU_9841 Mycena_epiptygeria_sp2 Mycenaceae Tricholomatoid             x x x x x     

OTU_1164 Mycena_galopus Mycenaceae Tricholomatoid             x x x x x     

OTU_4223 Mycena_purpureofusca Mycenaceae Tricholomatoid               x x x x     

OTU_14227 Mycena_sp1 Mycenaceae Tricholomatoid                   x       

OTU_19 Mycena_sp2 Mycenaceae Tricholomatoid             x x x x x     

OTU_9988 Mycenaceae_sp Mycenaceae Tricholomatoid               x x x       

OTU_7123 Clitocybe_sp Tricholomataceae Tricholomatoid x   x x               x x 

OTU_820 Lepista_saeva Tricholomataceae Tricholomatoid     x                     

OTU_7752 Resupinatus_sp1 Tricholomataceae Tricholomatoid       x               x   

OTU_9999 Resupinatus_sp2 Tricholomataceae Tricholomatoid   x                   x   

OTU_1385 Tricholomataceae_sp1 Tricholomataceae Tricholomatoid                     x     

OTU_200 Tricholomataceae_sp2 Tricholomataceae Tricholomatoid x   x x               x x 

OTU_47 Tricholomataceae_sp3 Tricholomataceae Tricholomatoid   x     x x x         x x 
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Appendix C Morphospecies of the 74 mushrooms found across 12 tallgrass prairie sites. 

Key to sites: HA,B,C,D = FRS #23,32,27,28 Herb-Gray Parkway (Windsor); OA,B = Ojibway Prairie Area 1 and 2 (Windsor); SI = 

Silphium, SA = Sandpits, MI = Mike's field, EL = Eliza's prairie, PO = Pottawatomi (Walpole); DD = Dutton-Dunwich; MP = Mary 

& Peter's prairie, DM = DeMaere (Norfolk); BF = Blair Flats (Cambridge). Sites are ordered by geographic location, from west to 

east. Mushroomobserver numbers and “ref” are listed respectively to specimen code order. “ref” indicates the specimen was not 

posted but other specimens for this same species can be viewed for reference. “?” following species names indicates uncertain 

identifications, and following “ref” indicates uncertainty whether the specimen is truly the same species as the others.  

Species Spec Code(s) 
Mushroom 
Observer.org/ 

H
A 

H
B 

O
A 

O
B 

H
C 

H
D 

S
I 

S
A 

M
I 

E
L 

P
O 

D
D 

M
P 

D
M 

B
F 

Agaricus campestris MP7, PO15 231253, ref                     x   x     

Agrocybe sp MP1 215566                         x     

Amanita sp MP14 231251                         x     

Arrhenia cf griseopallida HA10, PO21 222131, 222132 x                   x         

Astraeus hygrometricus MP4 215730                         x     

Atheniella cf flavoalba PO24 222137                     x         

Bovista cf pusilla MP2 215568                         x     

Bovista sp PO13 215272                     x         

Calvatia cyathiformis MP12 231250                         x     

Clavaria cf acuta SA1 182133               x               

Clavaria cf fragilis EL8 215241                   x           

Clavaria sp (white) BF1, BF2, SA7 182133 ref?               x             x 

Clavulinopsis laeticolor HA5 215748 x                             

Clitocybe cf dealbata MP13 236059                         x     

Clitopilus cf scyphoides SI11 215274             x                 
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Species Spec Code(s) 
Mushroom 
Observer.org/ 

H
A 

H
B 

O
A 

O
B 

H
C 

H
D 

S
I 

S
A 

M
I 

E
L 

P
O 

D
D 

M
P 

D
M 

B
F 

Coprinellus sp SI4, BF5, BF6 215396, 215560, ref             x               x 

Coprinellus sp (large) PO9 215267                     x         

Cortinarius sp PO16, MP16 222130, ref                     x   x     

Cotylidia cf diaphana SI5 not posted             x                 

Cotylidia undulata DM3, DM10, DM11 215734,ref,ref                           x   

Cuphophyllus pratensis group EL12 222044                   x           

Cuphophyllus virgineus HA12, SI18 222046, 222045 x           x                 

Cyathus stercoreus DM4, SA2, SA6 215735, 182134, ref               x           x   

Entoloma excentricum/sericellum PO4, PO7 182145, 215264                     x         

Entoloma incanum 
EL2, EL5, El6, PO2, 
PO3 182137, 140, 141, 143, 144 

                  x x         

Entoloma cf mougeotii DD3, SI12, SI6 215744, ref, ref             x         x        

Entoloma sericeum 
BF8, BF9, MP6, 
SI13 221924, ref... 

            x           x   x  

Entoloma sp A (subgenus 
Alboleptonia) EL1, HA6, PO1 182136, ref, 182142 

x                 x x          

Entoloma cf tubaeforme HA9, PO14, HB1 215751, 215255, ref x x                 x          

Entoloma sp C (colours) PO6 215259                     x          

Entoloma sp D (dimpled) SA5, HA4 215273, ref x             x                

Entoloma sp E (Eccilia) PO8 215265                     x          

Entoloma sp F (subgenus Pouzarella) SA3 182135               x                

Entoloma subserrulatum EL9, EL10 215251, ref                   x            

Galerina marginata DD6 221929                       x        

Hebeloma cf eburneum SI14 182139 ref?             x                  

Hebeloma cf incarnatulum DM8, DM15, DM17 215740, ref, ref                           x    

Hebeloma sp 
EL4, MP10, SI19, 
PO17 182139, 231249, 235647, ref 

            x     x x   x     

Hygrocybe conica group 
DD2, PO12, PO20, 
SA9 215741, ref... 

              x     x x        

Hygrocybe flavescens HA8 215750 x                              
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Mushroom 
Observer.org/ 

H
A 

H
B 

O
A 

O
B 

H
C 

H
D 

S
I 

S
A 

M
I 

E
L 

P
O 

D
D 

M
P 

D
M 

B
F 

Hygrocybe glutinipes var rubra HA7 222157 x                              

Hygrocybe cf miniata PO10, SI20 215269, 222161             x       x          

Inocybe sp MP11 235645                         x      

Laccaria sp DM19 not posted                           x    

Leccinum sp DD5 221926                       x        

Lycoperdon sp MP5 215731                         x      

Marasmiellus sp 
PO11, BF3, HA1, 
HA3, HB3 215271, ref... 

x x                 x       x  

Mutinus caninus/elegans 
DM16, DM2, DM1, 
EL13, PO22 221931, 215732, ref... 

                  x x     x    

Mycena sp (longstem) HA13, SI16 222047, 222048 x           x                  

Mycena sp (midpt) HB2, SA10, SI15 215752, 231257, ref   x         x x                

Mycena sp (white) 
SI1, SI3, SI10, EL7, 
EL11, MP3 182131, 215394, ref... 

            x     x     x      

Mycena cf stylobates DM5 222138                           x    

Nidula candida SA12 222166               x                

Omphalina rivulicola/pyxidata DM7, DM12, DM14 215739, 221937, ref                           x    

Parasola sp HD1 215789           x                    

Paxillus sp HB8, HB5 222050, ref   x                            

Peniophora versiformis SA13 231260               x                

Phallus hadriani PO23 221970                     x          

Pholiotina sulcata BF4 215557                             x  

Psathyrella ammophila DM13, MP15 231256, 231252                         x x    
Ramariopsis/Clavulinopsis sp 
(branched) HA11 222049 

x                              

Stropharia coronilla MP8 231255                         x      

Suillus americanus DM20 221940                           x    

Trametes sp EL15, HB9 222035, 231248   x               x            

Trametopsis cervina HB7 231247   x                            
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Mushroom 
Observer.org/ 

H
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H
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O
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O
B 

H
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H
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D
M 

B
F 

Tricholoma sp EL14 221963                   x            

Tubaria cf furfuracea DM6, DM9, SA4 215736, 215738, 182311               x           x    

Tubaria sp SA11, SI17 221959, 231261             x x                

Unknown sp (buttons) SA14 not posted               x                

Unknown sp (fluffs) DM18 221938                           x    
Unknown sp (Marasmius/Mycena sp 
grass) DD4, HB6, SI7 221925, ref... 

  x         x         x        

Unknown sp (soil crust polypore) HB4 215753   x                            

Unknown sp (tiny) BF7 not posted                             x  

Vascellum sp 
EL3, SI2, PO19, 
MP9 182138, 182132, 222038, ref 

            x     x x   x     
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Appendix D Estimated percent cover values for plants in areas surrounding 

sampling plots of 12 tallgrass prairie sites. 

Plant names are presented as seven letter codes derived from their scientific names: the 

first four letters of the genus immediately followed by the last three letters of the epithet. 

Key to sites: HA,B,C,D = FRS #23,32,27,28 Herb-Gray Parkway (Windsor); OA,B = 

Ojibway Prairie Area 1 and 2 (Windsor); SI = Silphium, SA = Sandpits, MI = Mike's 

field, EL = Eliza's prairie, PO = Pottawatomi (Walpole); DM = DeMaere (Norfolk); BF = 

Blair Flats (Cambridge). Sites are ordered by geographic location, from west to east. 

  HA HB OA OB HC HD SI SA EL PO DM BF 

AGRIPAR   2                     

AGROGIG         1               

AGROSTO                 2       

AMPHBRA               8         

ANDRGER     45   1   18.5     4.5 5   

ANTENEG             8   1       

BROMSPU     1                   

CAREGRA 3 2                     

CARESPP 10   2           3       

CAREVUL   2                     

CHAMANG           1             

CIRSMUT                 1       

CORNDRU 6                       

CORNFOE                 6       

CORYAME     1 3             1   

CYPERAC                 6       

DAUCCAR     2   3.5 3             

DESMCAN         10 4         1   

DICHIMP   2                     

ELYMCAN             1           

EQUIHYE                   3.5 1   

FRAGVIR 2.5               2 6     

JUNCSPU   2                     

LESPCAP         3   6       1   

LIATSPI                   3     

MELIALB               7         

MONAFIS       2             5 5 

MUHLMEX       6                 

PANISPU     2   1               

PANIVIR                 28 30.5     
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  HA HB OA OB HC HD SI SA EL PO DM BF 

PHRAAUS   2         3           

PINUSTR                     5   

POA ANN               4         

POPUDEL   2                 1   

PTERAQU       2                 

PYCNVIR     2 2         2 3.5   3 

QUERMAC             4       1   

QUERRUB   2 2               1   

RUBUFLA 25   5                   

RUBUIDA       7                 

RUDBHIR     5       2.5       5 5 

SALIBEB     2       1.5   1       

SALISPP   2                     

SCHISCO                   21 25 3 

SETAVIR         1 1             

SILPTER             37.5           

SOLISPP 25 12 20 15 1 6 6 32 3 3.5 5 40 

SORGNUT     14 60 35 45 16   6 4.5 5 12.5 

SYMPERI         13.5         2     

SYMPNOV 1                       

SYMPPRA   12     18 6             

SYMPSPP     2       9       5   

TANAVUL                       3 

TARAOFF                     1   

TRIFHYB         15.5               

TRIFPRA           3   6         

TRIFREP               15         

ULMURUB 2.5                       

VIOLCUC                   1.5     

ZIZIAUR             3.5           
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