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Abstract

The Kohn-Sham density functional theory, a widely used approach for calculating elec-

tronic properties of atoms and molecules, relies on approximating the exchange-correlation

energy functional or the corresponding potential, vXC. Whether the exchange-correlation

potential is modeled directly or derived from its parent energy functional, its behavior

as a function of position in an atom or a molecule can be used to detect and correct

deficiencies of the parent density functional approximation. The too-fast decay of vXC

derived from common density functionals is a major problem, because it causes inaccurate

Rydberg excitation energies and erroneous fractional charges in dissociating molecules.

An efficient method to correct the shape of the exchange-correlation potential in the

asymptotic regions was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V.

N. Staroverov, Phys. Rev. Lett. 108, 253005 (2012)]. In that method, the exchange-

correlation potential of an auxiliary system with a fractionally occupied frontier orbital

is used to construct a model potential for the neutral system of interest. In this thesis,

we investigate a method to eliminate unphysical partial charges on atoms in dissociating

polar molecules via the use of the fractional occupation technique. The method proves

successful not only for enforcing correct integer charges in the dissociation limit, but also

for predicting how atomic charges change at intermediate interatomic separations. We

also test the hypothesis that a fractionally charged system with an integral number of

electrons but fractional nuclear charge may be used to correct the exchange-correlation

potential in order to obtain more accurate Rydberg excitation energies. Our findings

show that, although the model potentials generated in this way give rise to some im-

provements, the optimal nuclear charge to be added depends on the system. In contrast,

the advantage of the method of fractional orbital occupations is that the parameter re-

quired to correct excitation energies is system-independent.

Keywords: quantum chemistry, density functional theory, exchange-correlation po-

tential, fractionally charged systems, partial charge, self-interaction error.
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Chapter 1

Introduction

1.1 Density functional theory

The description of electronic structure of molecules in the ground state relies on solving

the non-relativistic time-independent Schrödinger equation,

ĤΨ(x1,x2, ...,xN) = EΨ(x1,x2, ...,xN), (1.1)

where Ĥ is the electronic Hamiltonian operator, E is the total ground-state energy,

and Ψ(x1,x2, ...,xN) is the ground-state electronic wavefunction, which depends on the

positions and spins xi ≡ {ri, σi} of all of the N electrons in the system. The Hamiltonian

of an N -electron system can be written as the sum of the operators for the kinetic energy

of the electrons, T̂ , the energy of interaction of the electrons with the external potential

v(r) (typically due to the nuclei), V̂ , and the energy of the electron-electron interaction,

V̂ee [1]:

Ĥ = T̂ + V̂ + V̂ee = −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(ri) +
N∑
i<j

1

|ri − rj|
. (1.2)

Here and below, we employ the system of atomic units to present equations in a compact

form.

Analytical solutions of the Schrödinger equation are only available for a limited num-

ber of one- and two-electron systems, such as the hydrogen atom and the hydrogen

molecular ion. For a many-electron system, the Schrödinger equation can be solved only

approximately. The approximate wavefunction has to satisfy the fundamental property

of the exact Ψ, which is its antisymmetry with respect to an interchange of the coordi-

nates of any two electrons: Ψ(x2,x1, ...,xN) = −Ψ(x1,x2, ...,xN). The simplest solution
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is to use a Slater determinant, that is, an antisymmetrized product of N orbitals, φi:

Φ(x1,x2, ...,xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)
...

...
...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣
, (1.3)

where (N !)−1/2 is a normalization factor. In practical calculations, the spatial parts of the

orbitals are linear expansions in a set of predefined basis functions. The form of the ap-

proximate Ψ of Eq. 1.3 is used in the Hartree-Fock (HF) theory [2, 3]. More sophisticated

wavefunction-based methods [4–6] expand Ψ as a sum of Slater determinants.

The most computationally expensive step of a HF calculation is the calculation of

O(N4) two-center two-electron integrals. In highly accurate wavefunction-based meth-

ods, the approximate wavefunction becomes more complex, and evaluation of a larger

number of two-electron integrals is required. Consequently, these methods scale less

favourably, up to O(N7) [7] and even O(N !) [1], which makes their application to large

systems, such as biomolecules, impossible.

An alternative became available in 1964, when Hohenberg and Kohn proved [8] that

the energy and electronic properties of atoms and molecules in the ground state are

uniquely defined by the electron density ρ(r). This statement, the first Hohenberg-Kohn

theorem, is the foundation of density functional theory (DFT), one of the most widely

used electronic structure calculation methods. In a DFT calculation, the evaluation of

two-center two-electron integrals is usually not necessary, therefore, DFT outperforms

wavefunction-based methods in terms of computational scaling with system size, and

enables calculations on proteins and periodic systems with thousands of atoms [9].

For a molecule with N electrons, the electron density ρ(r) is defined as the following

integral over the spin coordinates of all electrons and over all but one of the spatial

coordinates:

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, ...,xN)|2dσ1dx2 . . . dxN . (1.4)

The electron density is a probability density function, which, when multiplied by an

infinitely small volume element dr near the point r, gives the probability of finding

any of the N electrons with arbitrary spin within dr while the other (N − 1) electrons

have arbitrary positions. Time-independent DFT only deals with ground-state densities,

hence, from now on, the terms “electron density” or simply “density” will refer to the

ground-state electron density of the system.

In DFT, there exists a rule that assigns the value of the total ground-state energy

2



E to the electron density ρ(r), which is itself a function of r. The mathematical term

for such a rule is a functional. A functional can be regarded as a function of a function.

Thus, one can say that the ground-state energy can be expressed as a functional of the

electron density (hence the name DFT):

E = E[ρ]. (1.5)

Furthermore, according to the second Hohenberg-Kohn theorem [8], the energy density

functional is variational. That is, for a trial density ρ, which is not the ground-state

density, it gives an energy above the ground-state energy E0:

E[ρ] ≥ E0. (1.6)

This holds for any density that can be produced by some external potential (a v-

representable density) [10]. The variational principle provides a way of finding the

ground-state density by minimizing the total energy [11, 12].

If one knew the exact form of the energy functional E[ρ], then obtaining the exact

ground-state ρ and E would not require solving the Schrödinger equation. Unfortunately,

E[ρ] is extremely complicated, and its exact form is unknown, so that in practice one

has to resort to density functional approximations (DFAs).

1.1.1 Kohn-Sham approach

In the same way as with the Hamiltonian, one can partition the energy functional E[ρ]

into several terms: the kinetic energy functional, T [ρ], the energy due to the external

electrostatic potential, V [ρ], and the energy of electron-electron interactions, Vee[ρ]:

E[ρ] = T [ρ] + V [ρ] + Vee[ρ]. (1.7)

The kinetic energy and the electron-electron interaction energy do not have explicit forms

in terms of the density. These two terms constitute a large part of the total energy. Thus,

devising a functional that would approximate the entire T [ρ] and Vee[ρ] is undesirable.

This obstacle is overcome in the Kohn-Sham method.

In the Kohn-Sham approach [13], one starts by introducing a fictitious system, in

which electrons do not interact with each other. For such a system, the electron-electron

interaction term Vee[ρ] in Eq. 1.7 disappears, and the energy functional becomes

Es[ρ] = Ts[ρ] + Vs[ρ], (1.8)

3



where the symbol s denotes that the system is non-interacting. Thus, Ts[ρ] is the kinetic

energy of non-interacting electrons, it can be calculated exactly, and Vs[ρ] =
∫
vs(r)ρ(r)dr

is the energy due to the external potential. The energy of the non-interacting system,

Es, corresponds to such a Hamiltonian of Eq. 1.2, in which there is no electron-electron

interaction term. One can map this fictitious system to the real system of interest by

noting that it is possible to adjust the external potential, vs(r), in such a way that this

potential will give rise to the electron density equal to the ground-state density of the

system of interest. This leads to the following energy functional of the real interacting

system:

E[ρ] = Ts[ρ] + V [ρ] + J [ρ] + EXC[ρ], (1.9)

where Ts[ρ] is the part of kinetic energy of electrons, which only accounts for their un-

correlated motion, J [ρ] is the Coulomb repulsion energy of electrons:

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′. (1.10)

In the absence of external electric fields, V [ρ] comes only from the electrostatic attraction

of the electrons to the nuclei and can be written as

V [ρ] = −
M∑
A=1

∫
ZA

|r−RA|
ρ(r)dr, (1.11)

where ZA is the charge of the A-th nucleus, RA is its position, and M is the total number

of nuclei.

The last term in Eq. 1.9, EXC[ρ], is called the exchange-correlation energy functional.

It takes care of the electron-electron interactions that are not accounted for by other

terms. The exchange energy, EX, is associated with the antisymmetry of an electronic

wavefunction with respect to the exchange of the coordinates of two electrons. The exact

exchange energy (EXX) in DFT is given by the same expression as the exchange energy

in the HF theory:

Eexact
X = −1

2

N∑
i,j

∫ ∫
φ∗i (r)φ

∗
j(r
′)φj(r)φi(r

′)

|r− r′|
drdr′, (1.12)

but instead of the HF orbitals, the Kohn-Sham orbitals, φi, are used. The correlation

energy can then be obtained as the following difference:

EC = EXC − Eexact
X . (1.13)

4



However, in practice one usually uses approximate expressions for EX, and the division

of the exchange-correlation energy into the exchange and correlation terms is arbitrary.

The key benefit of the mapping between the real system and the non-interacting

one is that it allows one to transform the formidable problem of solving the many-body

Schrödinger equation (Eq. 1.1) into a manageable task of solving N one-electron Kohn-

Sham equations of the form[
−1

2
∇2 + veff([ρ]; r)

]
φi(r) = εiφi(r), (1.14)

where φi(r) are Kohn-Sham orbitals, and εi are their eigenvalues. The effective Kohn-

Sham potential veff is the functional derivative of E[ρ]−Ts[ρ] with respect to the electron

density.

The functional derivative of a functional F [f ] can be defined through the variation δF

of this functional, which results from variation of f by δf = εη, where ε is an infinitesimal

number and η is an arbitrary integrable function. One can use a Taylor expansion around

ε = 0 for δF to obtain

δF = F [f + εη]− F [f ] =
dF [f + εη]

dε

∣∣∣∣
ε=0

ε+
1

2

d2F [f + εη]

dε2

∣∣∣∣
ε=0

ε2 + . . . (1.15)

By keeping only the first-order term in the expansion, one arrives at

lim
ε→0

F [f + εη]− F [f ]

ε
=
dF [f + εη]

dε

∣∣∣∣
ε=0

. (1.16)

Then the functional derivative v([f ]; r) = δF/δf(r), where f is a function of r, is defined

as ∫
v([f ]; r)η(r)dr =

∫
δF

δf(r)
η(r)dr =

dF [f + εη]

dε

∣∣∣∣
ε=0

. (1.17)

For a particular case when f = ρ, F [f ] = E[ρ]−Ts[ρ] = V [ρ]+J [ρ]+EXC[ρ], and η = δρ,

one has

veff([ρ]; r) ≡ δ(V [ρ] + J [ρ] + EXC[ρ])

δρ(r)
. (1.18)

The effective potential can be written as the sum of the functional derivatives of V [ρ],

J [ρ], and VXC[ρ]. These are the external potential v(r)

v(r) =
δV [ρ]

δρ(r)
= −

M∑
A=1

ZA
|r−RA|

, (1.19)
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the Hartree potential vH(r)

vH([ρ]; r) =
δJ [ρ]

δρ(r)
=

∫
ρ(r′)

|r− r′|
dr′, (1.20)

and the exchange-correlation potential vXC(r)

vXC([ρ]; r) =
δEXC[ρ]

δρ(r)
. (1.21)

The sum of vH and vXC is often referred to as the Hartree-exchange-correlation poten-

tial, vHXC. The Hartree-exchange-correlation potential accounts for all electron-electron

interactions in the system.

After inserting the available expressions for the potentials from Eqs. 1.19 and 1.20,

the Kohn-Sham equations (Eq. 1.14) can be rewritten as[
−1

2
∇2 + v(r) + vH([ρ]; r) + vXC([ρ]; r)

]
φi(r) = εiφi(r). (1.22)

Similarly to the exchange-correlation functional, the exchange-correlation potential is the

only term in Eq. 1.22 that does not have an exact expression relating it to ρ(r). If a DFA

is designed by approximating the exchange-correlation energy functional EXC[ρ] (this is

the most common route), then the exchange-correlation potential, vXC, can be obtained

via Eq. 1.21 using techniques of functional differentiation. An alternative is to devise an

approximate form for vXC directly. Such exchange-correlation potentials are called model

potentials.

With an approximate form for either EXC[ρ] or vXC at hand, one can proceed to solve

the Kohn-Sham equations (Eq. 1.22). The objective is to find the Kohn-Sham orbitals

φi(r), since the electron density ρ(r) can be calculated as the sum of the squares of the

Kohn-Sham orbitals:

ρ(r) =
N∑
i=1

|φi(r)|2. (1.23)

However, Eq. 1.22 contains terms that depend on the yet unknown density (vHXC =

vH + vXC). Therefore, the Kohn-Sham equations have to be solved self-consistently. In a

self-consistent procedure one starts with a guess for the Kohn-Sham orbitals, evaluates

vHXC([ρ]; r), and finds the new Kohn-Sham orbitals by solving Eq. 1.22. The new orbitals

are used to construct the new vHXC([ρ]; r), and the above steps are repeated until the

orbitals do not change any more.

It should be noted that the Kohn-Sham method is formally exact. That is, no ap-
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proximations are introduced during the derivation of the Kohn-Sham equations, and, if

the exact EXC were used, one would obtain the exact ground-state density and energy.

Unfortunately, the exact EXC[ρ] and vXC are out of reach. Some features of the exact

exchange-correlation energy functional and potential are known, as well as their form

for certain special cases, such as hydrogen-like atoms. These provide guidance for the

construction of new density functional approximations. However, there is no systematic

way of improving density functionals. Along with the approximations that satisfy as

many exact constraints as possible and can be considered non-empirical, there are ones

that use fitting and violate the constraints while still showing excellent performance.

1.2 The ladder of density functionals

Local density approximation

The simplest approach used to model electrons in a real system is to treat them as a

uniform electron gas, where electrons move in the field of a constant positive background

charge and the electron density is constant everywhere. This simplification allows one to

derive an energy functional known as the local density approximation (LDA) [13]:

ELDA
XC [ρ] =

∫
fLDA

XC (ρ(r))dr, (1.24)

where the exchange-correlation energy density fXC is a function of the density only. LDA

is local in the sense that the energy density at a particular point r in the system depends

only on ρ at that particular point, and is independent of its surroundings. The exchange-

correlation energy density can be split into the exchange and correlation parts, with the

exchange term, fX, being the dominant contributor. The exact fX has a simple analytic

expression [14, 15]:

fLDA
X (ρ(r)) = −3

4

(
3

π

)1/3

ρ1/3(r). (1.25)

The correlation term, fLDA
C , is not available in exact form, but the existing analytical

expressions are very accurate. Of course, LDA is an exact method only for the uni-

form electron gas. Taking into account that the electron density in atoms and molecules

is highly non-uniform, one would expect LDA to provide poor description of real sys-

tems. Surprisingly, the results are not very bad: for some properties, such as molecular

geometries, LDA even outperforms the HF approximation [9].
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Generalized gradient approximations

Although, in principle, the density should be the only ingredient necessary to deter-

mine the exchange-correlation energy, it is more practical to construct flexible exchange-

correlation functionals in approximate DFT by adding more density-dependent terms. In

order to take care of the rapid change of densities in atoms and molecules, an exchange-

correlation functional should have a nonlocal ingredient—the density gradient, ∇ρ. The

functionals that depend not only on ρ, but also on ∇ρ, are called generalized gradient

approximations (GGA) and can be generally written as

EGGA
XC [ρ] =

∫
fGGA

XC (ρ(r),∇ρ(r))dr. (1.26)

The development of GGAs brought density functional theory to a whole new level since

reasonably accurate calculations (previously available only for solid-state materials with

LDA) became possible for molecules.

Meta-generalized gradient approximations

Further improvements to EXC[ρ] can be achieved by introducing dependence on even

more terms. It seemed natural to include the Laplacian of the density and higher-order

terms, but such functionals were found to suffer from numerical instabilities [16]. Another

option proven to be successful is to utilize the kinetic energy density τ(r). The kinetic

energy density integrates to the non-interacting kinetic energy Ts (hence the name). It

depends on ρ implicitly through the orbitals φi:

τ(r) =
1

2

N∑
i=1

|∇φi(r)|2 . (1.27)

The functionals that depend on the kinetic energy density, in addition to the density

gradient and the density itself, are known as meta-generalized gradient approximations.

The general form of a meta-GGA is

Emeta-GGA
XC [ρ] =

∫
fmeta-GGA

XC (ρ(r),∇ρ(r), τ(r))dr. (1.28)

The three types of density functionals discussed, LDA, GGA, and meta-GGA, are

often collectively referred to as semi-local functionals. The term semi-local means that

the ingredients of these functionals, ρ, ∇ρ, and τ , at a given point r depend on the

density or orbitals only in the vicinity of r.
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Hybrid functionals

Nowadays, the most popular density functionals are hybrid functionals. These are con-

structed by combining GGAs or meta-GGAs with the exact exchange. First, let us

explain what is meant by the exact exchange.

Recall that the exchange-correlation energy functional can be split into the exchange

and the correlation parts, EX and EC, the exchange contribution is significantly larger

than the correlation. The exchange energy can be calculated exactly. The expression for

the exact exchange (EXX) is borrowed from the HF theory,

Eexact
X = −1

2

N∑
i,j

∫ ∫
φ∗i (r)φ

∗
j(r
′)φj(r)φi(r

′)

|r− r′|
drdr′, (1.29)

with the only difference that the orbitals used to evaluate EXX are not the Hartree-Fock,

but the Kohn-Sham orbitals.

It seems rational to use the exact expression for the exchange part and approximate

only the correlation part, instead of approximating the whole EXC. Indeed, the resulting

functional has some appealing features that will be discussed later. Nonetheless, its

accuracy is unsatisfactory in general applications. For example, the error in atomization

energies is about six times higher than that of GGAs [9]. Since the exact exchange part

is non-local while the approximate correlation is local, it appears that their combination

lacks important cancellation of errors that occurs in a fully approximate EXC. Besides,

the integration in Eq. 1.29 is a computationally demanding task [17].

Combining EXX with approximate exchange makes it possible to have the cancellation

of errors occur, just as in semi-local functionals, but with added flexibility. The exchange-

correlation energy of a typical hybrid functional can be written as

Ehybrid
XC = aEexact

X + (1− a)Eapprox
X + Eapprox

C , (1.30)

where 0 < a < 1 is the mixing parameter. Some hybrids have additional parameters and

consist of more than two components for exchange and/or more than one component for

correlation.

1.3 Self-interaction error

One might expect density functional approximations to give exact solutions for those

one-electron systems for which the exact analytical solutions of the Schrödinger equation
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are available. Unfortunately, this is not the case. Consider an example—the hydrogen

atom. Clearly, since it contains only one electron, there cannot be any electron-electron

interactions. However, the total energy functional, E[ρ] = Ts[ρ] + V [ρ] + J [ρ] + EXC[ρ],

still contains an electron-electron repulsion term J [ρ], which is written as

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′. (1.31)

Even in a one-electron system, J [ρ] does not vanish because it contains a spurious

interaction of electron density with itself. The exchange-correlation energy functional

also deals with electron-electron interactions. Thus, the erroneous self-repulsion would

not be an issue if it was cancelled out by EXC[ρ]. That is, for a DFA to be free of the

one-electron self-interaction error (SIE), it should satisfy

EXC[ρ] = −J [ρ] (1.32)

for any one-electron density. Common exchange-correlation functionals are not con-

structed to cancel out self-repulsion. The SIE leads to a number of qualitative and quan-

titative errors, including dissociation of polar molecules into fractionally charged species

[18–24], underestimation of reaction barriers [25, 26], and errors in the description of

charge-transfer complexes [27, 28].

One can eliminate the one-electron SIE by applying a self-interaction correction (SIC)

scheme, such as the one by Perdew and Zunger [29]. This correction explicitly enforces

Eq. 1.32 and helps to correct the problems associated with the SIE in atoms. However,

the Perdew-Zunger correction not only leads to computational difficulties, but also tends

to deteriorate the performance on thermochemistry [30].

There exist functionals that satisfy Eq. 1.32 [31, 32]. However, these functionals

include 100% of the exact exchange, and the combination of Eexact
X with an approximate

correlation term results in poor accuracy. Moreover, even with the functionals free from

the one-electron SIE, some difficulties related to self-interaction remain, because correct

results in the one-electron case do not mean there is no self-interaction in many-electron

systems. The latter is usually referred to as the many-electron self-interaction error.

1.4 Derivative discontinuity in DFT

While there is no such thing as a fractionally charged atom or molecule in nature, one

may encounter fractional electron numbers in DFT when dealing with a time average of
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an open system, e.g. atom X which can exchange electrons with atom Y. Such a system is

represented in quantum mechanics by an ensemble average of states with integer electron

numbers. The resulting energy E is a function of the average number of electrons, N .

For a system with the number of electrons fluctuating between the integers J and (J+1),

and with the probability of the (J + 1)-electron state p, the average energy becomes

E = (1− p)EJ + pEJ+1, (1.33)

where EJ and EJ+1 are the ground-state energies for the J- and (J+1)-electron systems.

The average number of electrons is N = J + p. Eq. 1.33 suggests that the curve of E

versus N in exact DFT is linear between a pair of neighbouring integer electron numbers.

In other words, the curve consists of a series of straight-line segments [18, 33].

Now, consider the derivative of the total energy E with respect to the electron number

N . From the piecewise-linear shape of E(N), the derivative ∂E/∂N must be constant

within the straight-line segments, and it must have discontinuities at integer values of

N . It was shown by Janak [34] that, in both exact and approximate DFT,

∂E

∂N
= εi, (1.34)

where εi is the eigenvalue of the orbital whose occupation is varying. So, ∂E/∂N gives

the set of orbital eigenvalues and jumps by a constant as N passes an integer. This

property of exact DFT is called derivative discontinuity [18].

The values of ∂E/∂N at the points where N passes through the number of electrons

M in a neutral system are of particular interest. In exact DFT they correspond to the

first ionization energy I and the electron affinity A of that M -electron system:

εi(M − 1 < N < M) = εM = −IM , (1.35)

εi(M < N < M + 1) = εM+1 = −AM , (1.36)

Approximate DFT lacks piecewise linearity and, consequently, derivative discontinuity.

Lack of derivative discontinuity is closely associated with the presence of the SIE: both

problems lead to the same physical effects, but seem to explain these effects from different

perspectives [33].

While at integer values of N the curve of E versus N for a common density functional

comes very close to the exact one, the segments and the whole curve is convex (Fig. 1.1).

Thus, the derivative ∂E/∂N is continuous and is not constant within the segments.

The Janak’s theorem (Eq. 1.34), which relates this derivative to the orbital eigenvalues,
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Approximation
Exact

N = J - 1 

N = J + 1 
εJ

εJ+1

Figure 1.1: Typical dependence of the exact total energy of a system on the number of
electrons and the energy calculated with a DFA. J is an integer. The exact curve consists
of linear segments, whereas the approximate one is convex within these segments.

still holds, but these eigenvalues are far from the true ionization potentials and electron

affinities. In Fig. 1.1, the slope of the tangent line to the approximate curve at the

electron-deficit left-hand side of N = J is equal to the energy of the J-th orbital, εJ , and

the slope of the tangent line at the electron-abundant right-hand side of N = J is equal

to the energy of the (J + 1)-th orbital, εJ+1.

Compare these two slopes, εJ and εJ+1, to the slopes of the exact linear segments.

The approximate εJ is, in general, less negative than it should be, i.e. the binding energy

of the electron occupying the J-th orbital is underestimated. The J-th orbital is in

fact the highest occupied molecular orbital (HOMO) of the J-electron system, and the

underestimation of its energy can lead to qualitatively incorrect predictions of electron

removal energies. On the contrary, the approximate εJ+1 is much more negative than its

exact counterpart. In the J-electron system, the (J + 1)-th orbital corresponds to the

lowest unoccupied molecular orbital (LUMO), thus, HOMO-LUMO band gaps calculated

using common semilocal density functionals are severely underestimated [35].
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1.5 Asymptotic shape of the exchange-correlation po-

tential

Recall that the exchange-correlation potential, vXC, is a functional derivative of the

exchange-correlation energy, EXC, with respect to the electron density, ρ:

vXC([ρ]; r) =
δEXC[ρ]

δρ(r)
. (1.37)

Direct modelling of vXC is an alternative route to devise a new DFA. But even if a density

functional is designed in a regular way, by building a EXC, analysis of the shape of the

exchange-correlation potential is a useful tool to explain or predict the performance of

that functional.

The two common problems of popular density functionals, the self-interaction error

and the lack of derivative discontinuity, are both reflected in the intermediate- and long-

range shape of vXC [36]. In order to avoid self-interaction, every electron in an N -electron

system should only feel the potential of the rest of (N−1) electrons. The Hartree potential

for the chosen electron,

vH([ρ]; r) =

∫
ρ(r′)

|r− r′|
dr′, (1.38)

is known to fall off as N/r. It follows that to obtain an overall (N − 1)/r decay, the

exchange-correlation potential should behave asymptotically as −1/r. In reality, the

exchange-correlation potentials of typical semilocal functionals decay much faster (ex-

ponentially), so that the resulting Hartree-exchange-correlation potential, vHXC, is too

repulsive at intermediate and large r. The asymptotic shape of the exchange-correlation

potentials is improved upon by adding a fraction of the exact exchange, since the HF

exchange itself shows correct −1/r decay. Thus, in hybrid functionals vXC falls off as

−a/r, where 0 < a < 1 is the amount of the incorporated exact exchange [37].

The situation with the derivative discontinuity in terms of vXC is more complicated.

It was shown by Perdew et al. [18], that since the exact total energy is a piecewise-linear

function of the electron number N , the exact exchange-correlation potential must be

discontinuous at integer values of N with the electron-deficient and the electron-abundant

sides differing by a system-dependent constant.

In practice one has to deal with continuous exchange-correlation potentials. Even with

continuous potentials, one can still obtain accurate results given the correct asymptotic

behavior of vXC:

vXC([ρ]; r) ∼ −1

r
(r →∞). (1.39)
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The incorrect asymptotic shape of vXC has little influence on the occupied orbitals [38].

Therefore, properties that depend only on the occupied orbitals—total energies, ioniza-

tion potentials, and molecular geometries—turn out to be of reasonable quality. As for

the properties determined by the unoccupied orbitals—vertical excitation energies and

polarizabilities—their accuracy is rather low [39, 40].

1.6 Objectives of the research

The main goal of this research was to tackle problems caused by the self-interaction er-

ror and the lack of derivative discontinuity in DFAs. Two examples of such problems

are unphysical dissociation of polar molecules into fractionally charged species and un-

derestimation of Rydberg vertical excitation energies in time-dependent DFT. In order

to treat these two issues, we employ the concept of a fractionally charged system. A

fractionally charged system can have either a non-integer number of electrons or partial

nuclear charge. In Chapter 1, we devise a technique that enforces integer charges upon

dissociation. The main idea of the technique is to model a corrected exchange-correlation

potential for a system by fractionally depopulating its HOMO or populating the LUMO.

In Chapter 2 we explore the possibility of using a slightly different approach to construct

a model exchange-correlation potential. The fractionally charged system in this approach

is obtained by adding a portion of nuclear charge. We employ this potential to calculate

Rydberg excitation energies and compare the results to the performance of the fractional

HOMO depopulation method.
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Chapter 2

Elimination of spurious fractional

charges in dissociating molecules by

correcting the shape of approximate

Kohn-Sham potentials

2.1 Introduction: Dissociation of diatomic molecules

Consider the dissociation of a polar diatomic molecule XY (where Y denotes the more

electronegative atom). Specifically, we are interested in how the charges on X and Y

change when the molecule is stretched and whether the neutral atoms or the pair of ions,

X+ and Y−, are the product of dissociation.

In the beginning, when the internuclear distance is still close to the equilibrium bond

length Re(X–Y), the atoms are ionized since the electrostatic attraction energy between

X+ and Y− is high enough to compensate for the energy required to ionize them. This

energy is just the difference between the ionization energy of X and the electron affinity

of Y, (IX − AY), and here we assume that it is always positive.

As the molecule is stretched further, the Coulomb attraction energy decreases as 1/R,

while (IX −AY) stays constant. Consequently, at some point the Coulomb energy drops

below the energy needed to produce the pair of ions, and the two neutral atoms become

the more favorable state. The internuclear separation at which this interchange occurs

for a given molecule is called the critical radius, Rc:

Rc(XY) =
e2

IX − AY

. (2.1)
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If the molecule is stretched to infinite internuclear distance, the Coulomb energy

vanishes, so the molecule stays in its neutral state.

In the discussion above, we assumed that energy is always consumed when X and Y

are ionized to obtain X+ and Y−, that is, (IX − AY) is positive. Let us now verify that

this is true for any pair of elements from the periodic table. It is known that the lowest

ionization energy is that of cesium, ICs = 3.89 eV, and the highest electron affinity

belongs to chlorine, ACl = 3.61 eV. So, even the smallest energy that is required to

produce an ionized pair, (ICs − ACl) = 0.28 eV, is positive. This confirms that in any

fully ionic diatomic molecule the correct charges on atoms are ±1 at RX–Y < Rc(XY)

and zero at RX–Y > Rc(XY), the dissociation product is always a pair of neutral atoms.

2.2 Theory

2.2.1 Tests of DFAs for fractional charge dissociation problem

Unfortunately, the majority of DFAs currently in use fail to predict correct dissocia-

tion products. Instead, they dissociate diatomic molecules into unphysical fractionally

charged atoms [1–7].

The major cause of this is the lack of derivative discontinuity. DFAs produce the

total energy E that is convex within the segments (J − 1) < N < J (Fig. 1.1). Due

to the convexity of E(N), approximate semi-local functionals overestimate eigenvalues

of the HOMOs and severely underestimate eigenvalues of the LUMOs. For many pairs

of elements, the orbital energies of the frontier orbitals are off to such an extent that

εLUMO(Y) < εHOMO(X), where atom Y is more electronegative than X. This does not

happen in reality, even for the pairs of X and Y with the largest differences in electroneg-

ativities. If εLUMO(Y) < εHOMO(X), then a fraction of an electron can be transferred from

X to Y. The two atomic fragments go from neutral atoms to fractionally charged species

X+q′ and Y−q
′
, where 0 ≤ q′ < 1, and the energy change in such a process is negative:

∆E = (εLUMO(Y)− εHOMO(X))δq′ < 0. (2.2)

If the eigenvalue of the HOMO of the partially charged fragment X+q′ is still higher then

the eigenvalue of the LUMO of Y−q
′
(which is, strictly speaking, not the LUMO anymore,

since it is fractionally populated), the process continues. The charge transfer stops when

at some q′ = q the eigenvalues of the frontier orbitals equalize. Thus, an attempt to find

the lowest-energy solution via the self-consistent procedure results in fractionally charged

fragments. According to Ruzsinszky et al., fractional charges are observed for 174 of 276
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diatomic molecules made of the first 24 open sp-shell atoms [2].

Two examples of such diatomic molecules are LiF and SiO. For these molecules we

tested the accuracy of charges calculated with four common DFAs: the local density

approximation (LDA), the generalized gradient approximation by Perdew, Burke, and

Ernzerhof (PBE) [8], the meta-GGA by Tao, Perdew, Staroverov, and Scuseria (TPSS)

[9], and the hybrid functional constructed from PBE (PBE0) [10]. Each of these function-

als is typical of its rung in the ladder of density functional approximations [11]. Thus, one

can expect the charges calculated with other GGAs, meta-GGAs, and hybrids to be very

similar to the ones predicted by the PBE, TPSS, and PBE0 functionals respectively. The

results obtained with two methods that enforce correct integer charge dissociation, the

Hartree-Fock method and the long-range corrected hybrid PBE functional (LC-ωPBE)

[12], are included for comparison. In the HF method, the states with fractional numbers of

electrons are energetically unfavourable, since the ground-state energy E in this method

is concave inside the segments (J − 1) < N < J . Despite predicting correct charges,

the HF approximation is not appropriate for chemical applications because of significant

errors introduced by neglecting electron correlation. The errors in thermochemical prop-

erties are especially large: on a test set of 32 molecules composed of first- and second-row

elements, the mean absolute deviation between atomization energies computed with the

HF method (6-31G(d) basis set) and experiment turned out to be 86 kcal/mol [13]. Of

course, accurate wavefunction-based approximations, such as multi-configurational self-

consistent field and coupled cluster theory, dissociate molecules correctly, but they are

computationally demanding.

Within the DFT framework, range-separated hybrids, such as LC-ωPBE, which have

improved asymptotic shape of the exchange-correlation potential, are one way of achiev-

ing correct dissociation behavior [4]. Other methods include eliminating the one-electron

self-interaction error [14] and employing exact-exchange potentials [6].

The computations in this chapter were performed using a modified version of the

Gaussian 03 [15] code and its newer version, Gaussian 09 [16], for the LC-ωPBE method.

The calculations were unrestricted; the keyword Stable=Opt was used to ensure the

lowest energy state was found in each case. UltraFine integration grid and 6-311+G(d)

basis set were employed throughout unless otherwise specified.

Since in a molecule the densities of two atoms overlap, there is no unique definition

for the charge on one of the atoms, therefore, various population analyses have to be

used. They differ in the way the net charge is defined, but eventually, as the interatomic

distance increases and the overlap between the densities becomes negligible, their results

converge. We have used the natural population analysis (NPA) [17] to calculate charges.
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In the NPA scheme, the charge on an atom is obtained as the sum of the occupation

numbers of the natural atomic orbitals localized on this atom. The interatomic overlap

between the natural orbitals of adjacent atoms is removed during their construction. The

advantages of the natural population analysis are its stability with respect to basis set

changes and better description of the charge distributions in ionic compounds.
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Figure 2.1: NPA charges on Li in LiF (a) and on Si in SiO (b) versus bond lengths.
Fractional charges result from the calculations employing LDA, PBE and TPSS; The HF
method and the LC-ωPBE functional give qualitatively correct curves; the hybrid PBE0
dissociates SiO correctly, but fails for LiF.

Figure 2.1 shows the NPA charges on Li atom in LiF (a) and on Si in SiO (b) as func-

tions of the internuclear separations. For XY = LiF, from experimental data for I(Li)
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and A(F), Rc(LiF) = 7.23 Å; and for SiO Rc(SiO) = 2.15 Å. None of the methods suc-

ceeds in predicting Rc, but the curves calculated with the HF and the LC-ωPBE methods

are qualitatively correct: large charge for separations close to the equilibrium distance

drops quite suddenly to near zero. As for the LDA, PBE, and TPSS approximations,

they predict that the charge on X tends to a nonzero limit (' 0.4 for Li and ' 0.1 for

Si) as R→∞. The hybrid PBE0 functional has the classical exchange term from the HF

theory as an ingredient of its exchange-correlation functional. The incorporation of the

exact exchange makes PBE0 behave in some aspects like the HF method, so it improves

the charge on Si. But the charge on Li remains a challenge.

2.2.2 Correcting the shape of exchange-correlation potentials

via fractional occupations

We propose a new correction scheme to enforce integer charge dissociation by changing the

shape of the exchange-correlation potential. The scheme is based on the previous work

by Gaiduk, Firaha, Mizzi, and Staroverov [18, 19], who showed that a more accurate

Kohn-Sham potential of a system can be obtained by performing calculations with a

fraction of an electron removed from that system. The correction scheme discussed in

the present work is easy to implement, it has virtually no added computational cost, and

it also improves other properties, such as eigenvalues of the highest occupied and the

lowest unoccupied molecular orbitals and excitation energies.

Let us now examine how the introduction of fractional occupations affects the exchange-

correlation potential. Recall that the exchange-correlation potential is a component of

the Hartree-exchange-correlation potential:

vHXC([ρ]; r) = vH([ρ]; r) + vXC([ρ]; r). (2.3)

vHXC([ρ]; r) arises from the electron-electron interactions in the system.

Now, consider an M -electron system of interest and an auxiliary system with a frac-

tional number of electrons (M + ω). The density of the auxiliary system is

ρ̃(r) = ρ(r) + ω|φFMO|2, (2.4)

where FMO stands for a frontier molecular orbital, either the HOMO or the LUMO,

depending on the sign of ω.

To calculate the shape-corrected exchange-correlation potential vcorrected
XC ([ρ]; r), one
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Figure 2.2: Self-consistent LDA exchange potentials of the SiO molecule at
R(Si–O) = 3Re(SiO) and the corresponding HOMOs: the potential evaluated for the
spin-up density (a) and the spin-up HOMO (b), the potential evaluated for the spin-
down density (c) and the spin-down HOMO (d). The potentials are calculated with
aug-cc-pVQZ basis set using an integration grid with 599 radial shells and 974 points per
shell. Corrected LDA potentials are obtained by fractionally depopulating the spin-up
HOMO by 1.0 electron.

needs to replace vHXC([ρ]; r) in the Kohn-Sham equations,[
−1

2
∇2 + v(r) + vHXC([ρ]; r)

]
φi(r) = εiφi(r), (2.5)

with the Hartree-exchange-correlation potential of the auxiliary (M+ω)-electron system,

then solve the equations self-consistently, and calculate vcorrected
XC ([ρ]; r) as the difference
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Figure 2.3: Self-consistent LDA exchange potentials of the LiF molecule at
R(Li–F) = 3Re(LiF) and the corresponding LUMOs: the potential evaluated for the
spin-up density (a) and the spin-up LUMO (b), the potential evaluated for the spin-
down density (c) and the spin-down LUMO (d). The potentials are calculated with
aug-cc-pVQZ basis set using an integration grid with 599 radial shells and 974 points
per shell. Corrected LDA potentials are obtained by fractionally populating the spin-up
LUMO by 1.0 electron.

between vHXC([ρ̃]; r) and the Hartree potential of the initial M -electron system:

vcorrected
XC ([ρ]; r) = vHXC([ρ̃]; r)− vH([ρ]; r). (2.6)

Let us now see how the initial exchange-correlation potential compares with the cor-

rected one. The effect of the correction,

∆vXC([ρ]; r) = [vXC([ρ̃]; r)− vXC([ρ]; r)] + [vH([ρ̃]; r)− vH([ρ]; r)] , (2.7)
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Figure 2.4: Self-consistent PBE exchange potentials of the SiO molecule at
R(Si–O) = 3Re(SiO) and the corresponding HOMOs: the potential evaluated for the
spin-up density (a) and the spin-up HOMO (b), the potential evaluated for the spin-
down density (c) and the spin-down HOMO (d). The potentials are calculated with
aug-cc-pVQZ basis set using an integration grid with 599 radial shells and 974 points per
shell. Corrected PBE potentials are obtained by fractionally depopulating the spin-up
HOMO by 1.0 electron.

is determined by its sign, which in its turn depends on the sign of ω. If ω is negative (a

fraction of an electron is removed), then vXC([ρ̃]; r) is less negative than vXC([ρ]; r), but

this is counteracted by the decrease in vH([ρ̃]; r), which scales more rapidly with ρ. As

a result, vHXC([ρ̃]; r) < vHXC([ρ]; r) and ∆vXC([ρ]; r) < 0. Using the same reasoning, if

ω is positive (a fraction of an electron is added), then ∆vXC([ρ]; r) > 0. Thus, by ap-

plying fractional occupations we can either decrease or increase the exchange-correlation
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Figure 2.5: Self-consistent PBE exchange potentials of the LiF molecule at
R(Li–F) = 3Re(LiF) and the corresponding LUMOs: the potential evaluated for the
spin-up density (a) and the spin-up LUMO (b), the potential evaluated for the spin-
down density (c) and the spin-down LUMO (d). The potentials are calculated with
aug-cc-pVQZ basis set using an integration grid with 599 radial shells and 974 points
per shell. Corrected PBE potentials are obtained by fractionally populating the spin-up
LUMO by 1.0 electron.

potential in the regions where the fractionally occupied orbital is localized. This is the

key feature of the method, which allows one to correct the density distribution: the

exchange-correlation potential does not change by the same amount everywhere in the

molecule.

Let us explore two examples: the SiO molecule (Fig. 2.2), which requires the HOMO

depopulation, and the LiF molecule (Fig. 2.3), which requires the LUMO population.

In both of these cases we choose ω = ±1.0 for illustration purposes, as it makes the
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effect more pronounced compared to the effect of lower magnitudes of ω, and we use

exchange-only LDA.

In SiO, we depopulate the α-HOMO. The depopulated orbital is localized on silicon,

consequently, considering the total change in the α- and β-spin exchange potentials, the

lowering of vX is more pronounced in the vicinity of the Si nucleus. The electron density

is forced to shift towards the region with lower vX, and this density gain makes the charge

on Si less positive.

In LiF, we populate the α-LUMO (the procedure to chose the orbital and the sign of

ω is outlined in Section 2.2.3). This orbital is localized on fluorine, thus, the buildup of

the potential in the vicinity of F is larger than in the vicinity of Li. The electron density

flows towards Li, the magnitudes of charges decrease and become close to zero.

The overall effect of the correction on the exchange potentials in Fig. 2.2 and 2.3

(specifically, the spin-down potentials) is the shift of the potential wells of the more

electronegative atoms, O and F, relative to the potential wells of the less electronegative

atoms, Si and Li. A similar feature appears in exact DFT. The exact exchange-correlation

potential of a polar diatomic molecule has step structure, that is, the potential is upshifted

near the atom with the higher ionization energy [20–22]. Thus, the corrected potentials

mimics the step structure of the exact vXC.

The potentials obtained from the exchange-only PBE functional and their corrected

counterparts (Fig. 2.4 for SiO and Fig. 2.5 for LiF) are similar to the LDA potentials

of Fig. 2.2 and 2.3. Note that the spikes in the interatomic regions in Fig. 2.5 and 2.4

are not related to the method of fractional occupations, they are a feature of the PBE

exchange potential. To explain the spikes we refer to the analytic representation of the

exchange potential vX of a generalized gradient approximation [23],

vX =
∂f

∂ρ
+

4

3

∂2f

∂s2

s2

ρ
− ∂2f

∂ρ∂s
s− ∂f

∂s

q

ρs

+

(
∂f

∂s
− s∂

2f

∂s2

)
u

ρs3
,

(2.8)

where s, q, and u are dimensionless counterparts of the density gradient, Laplacian, and

Hessian, f is the energy-density function. The expression for the PBE potential derived

via Eq. 2.8 is a sum in which each of the terms depends on ρ and s, some depend on q

and u.

In the region between two nuclei there is a point at which the density, ρ, has a

minimum, the reduced density gradient, s, is zero and also has a minimum, q has a

maximum, u is zero and has a minimum. Substituting these extremum values of ρ, s,
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q, and u into the expression for the PBE exchange potential results in extremum values

of the summands. The summands do not cancel each other out, so the potential has a

spike. A detailed explanation is given in Appendix A.

2.2.3 Fractional occupation technique

In this section we outline the detailed procedure to follow in order to obtain qualitatively

correct charges in a polar molecule XY.

As discussed previously, the effect of our method relies on the choice of orbital to be

fractionally occupied. Thus, given a stretched molecule with two spin-HOMOs and two

spin-LUMOs, the first block of steps is to decide which one of these orbitals should be

either depopulated or populated. This is done according to the following algorithm:

1. To determine the sign of ω, i.e. choose between the HOMO and the LUMO, perform

unrestricted self-consistent calculations on the XY+ cation, the XY− anion, and the

neutral XY molecule. Use the orbitals of XY+ and XY− to estimate the charge on X

in the neutral molecule in post-SCF fashion, that is, by performing just one cycle

of the SCF procedure (Fig. 2.6). The cation and the anion represent the cases

of ω = −1 (HOMO depopulation) and ω = 1 (LUMO population) respectively,

therefore, choose the sign of ω that has the desired effect of the charge on X, i.e.,

lowers the charge. If the charge is lowered in both cases, depopulate the HOMO.

2. If ω is negative, determine which of the two spin-HOMOs should be depopulated.

If XY is an open-shell molecule, choose the majority spin HOMO (α-HOMO).

Otherwise, choose the actual HOMO, that is, the one with the higher energy.

3. If ω is positive, the easiest way to fractionally populate the LUMO is to take the

orbitals of the anion and remove (1−ω) of an electron from its HOMO. The choice

of the spin-HOMO to depopulate is exactly the same as above: if XY− is open-

shell, depopulate the α-HOMO, otherwise, depopulate the HOMO with the higher

eigenvalue.

The second block of steps is to find the optimal fraction of an electron to remove or

add. While a wide range of ω values for a particular molecule can lower the charges in

it, a too high or too low ω may lead to an overcorrection, i.e., significant negative charge

on X, or an undercorrection in addition to having poor SCF convergence. Therefore, an

optimal ω value should be used.

4. Recall that in step 1 the decision was made on whether one should depopulate the

HOMO and thus make the system closer to the cation, or populate the LUMO and
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Figure 2.6: Post-SCF charges on Li in LiF (a) and on Si in SiO (b). In each case,
the input orbitals for the post-SCF calculation are those of the corresponding cations
(ω = −1.0) and anions (ω = 1.0).

Table 2.1: Quantities needed to estimate the optimal ω value via Eq. (2.9) for a diatomic
molecule XY, where Y denotes a more electronegative atom.

XY XY+ XY−

Charge from a DFA q0 q+ q−
Correct charge qcorrect

0 = 0 qcorrect
+ = 1 qcorrect

− = 0
Error in charge ∆q0 = q0 − 0 ∆q+ = q+ − 1 ∆q− = q− − 0
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make the system closer to the anion. Now, consider the charge on atom X in the

appropriate ion, as well as the charge on X in the neutral molecule. For these two

cases calculate the errors in charge on atom X (Table 2.1) obtained with DFAs as

compared to the physically correct charges: X0Y0 for a neutral molecule, X+1Y0

for a cation, and X0Y−1 for an anion. Once the values of ∆q0 and either ∆q+ or

∆q− from Table 2.1 are available, do a two-point interpolation to find ω:

ω = ± ∆q0

∆q± −∆q0

. (2.9)

A graphical representation of the interpolation for the LiF and SiO molecules is

shown in Fig. 2.7.
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Figure 2.7: Two-point interpolation to find optimal values of ω for the LiF (a) and SiO (b)
molecules stretched to 5 times the equilibrium internuclear distance at PBE/6-311+G(d)
level of theory.

Once the four preliminary steps are completed, one can proceed to do the calculation

on the fractionally occupied system.

5. Do a self-consistent calculation on the XY system with fractional electron number.

The code for DFT calculations on such systems was implemented in the Gaussian 03

[15] package. The modified version takes standard Gaussian input with added

control options for the fraction of an electron ω to be removed from either the

spin-up or the spin-down HOMO. To fractionally occupy one of the spin-LUMOs

31



one can depopulate the HOMO of the corresponding anion by a (1−ω) fraction of

an electron.

6. Finally, use the orbitals from the previous step to evaluate energies, potentials, and

charges by performing just one cycle of the self-consistent-field procedure.

Note that the choice of the sign of ω and the spin-orbital to fractionally occupy (the

first three steps of the procedure above) should only be done once for a given molecule

and that these calculations must be done for a stretched geometry, at which physical

charges on X and Y are zeroes. However, one should calculate an optimal value of ω via

Eq. 2.9 at every internuclear distance if one wants to explore charges upon dissociation.

2.3 Results

We explored how the charges on atoms change with increasing internuclear distance in the

two example molecules, LiF and SiO. The results are plotted in Fig. 2.8, with the charges

on Li and Si evaluated within the NPA framework. The most important feature of these

curves is the correct dissociation limit: in both LiF and SiO the atoms are neutral at

large R. Moreover, comparison of the two curves to the ones obtained using the HF and

the LC-ωPBE methods in Fig. 2.1 shows that their overall shape is qualitatively correct:

large charges for small separations drop suddenly to near-zero values as the internuclear

distance increases. The bond lengths at which the charges drop to zero in Fig. 2.8 do

not exactly match the experimental values of Rc(LiF) = 7.23 Å and Rc(SiO) = 2.15 Å,

but this is also the case with the HF and the LC-ωPBE in Fig. 2.1.

To further verify our findings, we have tested the method on a number of highly

stretched diatomic molecules, both closed- and open-shell. Original charges calculated

with three DFAs (PBE, TPSS, and PBE0) at 5 times the equilibrium internuclear separa-

tion are reported together with corrected charges and the corresponding (de)population

parameters ω in Table 2.2. For all of the molecules in Table 2.2, the interatomic distance

is larger than their critical radii. This corresponds to the rightmost side of Fig. 2.8 for

LiF and SiO. Significant improvements are observed for all the molecules studied, as the

corrected charges are essentially zeros. We have also tested the method of fractional

occupations on a few examples of polyatomic molecules, and the resulting zero charges in

BeF2, BF3, and CO2 suggest that the method can be successfully applied to polyatomic

molecules.
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Figure 2.8: Corrected NPA charges on Li in LiF (a) and on Si in SiO (b) versus bond
lengths. No residual fractional charges are observed.

2.4 Conclusion

Fractional charges in dissociating polar molecules are a problem of all semilocal DFAs

and are a consequence of the many-electron SIE. Within the framework of the method

of fractional occupations, the correction is introduced by changing the shape of the

exchange-correlation potential of a molecule in such a way that vXC near the less elec-

tronegative atom is lowered relative to vXC near the more electronegative atom. This is

done either by depopulating the HOMO and decreasing the potential in the region where

the HOMO is localized or by populating the LUMO and increasing the potential in the
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Å
ω

C
h
ar

ge
C

or
re

ct
ed

ch
ar

ge
ω

C
h
ar

ge
C

or
re

ct
ed

ch
ar

ge
ω

C
h
ar

ge
C

or
re

ct
ed

ch
ar

ge
L

iF
1.

56
38

6
0.

68
6

0.
47

7
−

0.
00

1
0.

68
8

0.
46

5
−

0.
00

1
0.

90
6

0.
42

0
−

0.
00

1
B

eO
1.

33
09

−
0.

75
1

0.
14

6
0.

00
0
−

0.
86

2
0.

10
8

–a
0.

00
0

0.
00

0
0.

00
0

B
C

l
1.

71
52

8
−

0.
54

4
0.

27
0

0.
00

0
−

0.
53

0
0.

24
6

0.
00

0
−

0.
59

7
0.

15
6

0.
00

0
N

aC
l

2.
36

08
0.

75
5

0.
45

5
–a

0.
76

4
0.

46
6

0.
00

0
0.

99
9

0.
43

3
0.

00
0

N
aO

2.
05

15
5

0.
48

1
0.

29
9

0.
00

0
0.

46
1

0.
27

5
0.

00
0

0.
38

3
0.

15
1

0.
00

0
M

gS
e

2.
14

25
0.

45
0

0.
14

8
0.

00
0

0.
43

0
0.

13
4

0.
00

0
0.

00
0

0.
00

0
−

0.
01

2
A

lO
e

1.
61

78
2

0.
42

1
0.

28
4

0.
00

0
0.

37
3

0.
23

8
0.

00
0

0.
24

6
0.

12
1

0.
00

0
A

lC
1.

95
50

b
−

0.
66

3
0.

22
2

0.
00

0
−

0.
65

3
0.

19
0

0.
00

0
−

1.
00

0
0.

07
2

0.
00

0
S
iO

1.
50

97
5
−

0.
50

2
0.

15
1

0.
00

0
−

0.
60

2
0.

19
5

0.
00

0
0.

00
0

0.
00

0
0.

00
0

C
aO

e
1.

82
21

0.
49

2
0.

31
5

0.
00

0
0.

46
7

0.
29

8
0.

00
0

0.
39

7
0.

17
9

0.
00

0
G

aF
1.

77
43

7
0.

63
8

0.
44

1
0.

00
2

0.
64

9
0.

42
2

0.
00

0
0.

74
7

0.
36

6
0.

00
0

G
eO

1.
62

46
4
−

0.
54

6
0.

16
3

0.
00

0
−

0.
50

6
0.

11
7

0.
00

0
0.

00
0

0.
00

0
0.

00
0

B
eF

2
1.

37
29

8c
0.

99
9

0.
38

2
0.

00
0

0.
99

9
0.

33
1

0.
00

0
−

0.
99

9
0.

11
7

0.
00

0
B

F
3

1.
31

3d
−

0.
88

0
0.

54
7

0.
00

0
−

0.
92

1
0.

46
6

0.
00

0
−

1.
00

0
0.

27
7

0.
00

0
C

O
2

e
1.

16
0d

0.
39

4
0.

15
6

0.
00

4
0.

17
1

0.
09

6
0.

00
0

0.
00

0
0.

00
0

0.
00

0

a
T

h
e

ca
lc

u
la

ti
on

co
u

ld
n

ot
b

e
co

n
ve

rg
ed

.
b
F

ro
m

R
ef

.
[2

5]
.

c
F

ro
m

R
ef

.
[2

6]
.

d
F

ro
m

R
ef

.
[2

7]
.

e
F

or
ce

rt
ai

n
m

ol
ec

u
le

s,
ω

<
0

co
u

ld
n

ot
b

e
u

se
d

w
it

h
a
ll

th
e

th
re

e
te

st
ed

fu
n

ct
io

n
a
ls

,
w

h
il

e
ω

>
0

w
o
rk

ed
co

n
si

st
en

tl
y

fo
r

a
ll

o
f

th
em

.
In

th
es

e
ca

se
s,

th
e

ch
oi

ce
w

as
m

ad
e

to
u

se
th

e
L

U
M

O
d

ep
o
p

u
la

ti
o
n

th
ro

u
g
h

o
u

t.

34



region where the LUMO is localized. This shift resembles the step structure of the exact

exchange-correlation potential. It prevents the electron density from flowing to the more

electronegative atom and eliminates partial charges.

The fractional occupation technique is essentially a three-step procedure. Fist, one

determines which orbital should be fractionally occupied and what is its optimal occupa-

tion number. Next, one performs a self-consistent calculation using the ω determined in

the previous step. Finally, the self-consistent orbitals are used in a post-SCF calculation

to evaluate the charges. However, the calculation of the optimal value of ω is optional

and can be skipped to save computational time. In this work, tuning of ω is mostly done

for the purpose of better convergence. If convergence is not an issue, then ω ' ±0.5 can

be used for any molecule.

The correction via the fractional occupation of a FMO not only gives zero charges

in the dissociation limit, but also improves the overall behavior of the charges as the

molecule is being stretched from its Re to R → ∞. Although the experimental critical

radii are not reproduced, qualitatively correct sharp decline of the charge is observed.

The method of fractional occupations does not allow one to obtain meaningful en-

ergies of dissociating species, therefore, its practical applications are limited. But the

significance of this method is that it shows how the step structure of the exact exchange-

correlation potential can be mimicked by simply varying the occupation numbers of

frontier molecular orbitals.
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Chapter 3

Excitation energies from

Kohn-Sham potentials corrected via

addition of fractional nuclear charge

3.1 Introduction

The success of DFT for ground states of molecules encouraged researchers to explore the

possibility of applying DFT to excited states. Runge and Gross proved that for a given ini-

tial wavefunction, there exists a one-to-one correspondence between the time-dependent

density and the time-dependent external potential [1]. The Runge-Gross theorem pro-

vides the formal foundation for time-dependent density functional theory (TDDFT) [2,

3]. One can apply the Kohn-Sham approach to an excited state and reduce the interacting

many-electron time-dependent problem to a set of one-electron time-dependent Kohn-

Sham equations. Just like in the ground-state DFT, the exchange-correlation potential

has to be approximated. The most common approximation is the adiabatic approxima-

tion, according to which the time-dependent exchange-correlation potential vXC([ρ]; r, t)

is assumed to react instantaneously to changes in the density with time. In that case,

the time-dependent vXC([ρ]; r, t) at a moment t in time is just the ground-state vXC([ρ]; r)

which corresponds to the density at time t [4]. A further simplification is to keep only the

first-order term in the function that describes system’s response to a field. This simpli-

fication, called the linear-response regime, is appropriate for weak optical fields usually

encountered when calculating electron absorption spectra.

Adiabatic linear-response TDDFT gained popularity as a tool for the calculation

of excited states mainly due to its simplicity and applicability for large systems out of
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reach for more accurate but computationally demanding wavefunction theories. However,

its accuracy is not always satisfactory. The problem is illustrated in Fig. 3.1: the six

calculated Rydberg excitation energies of the Mg atom are underestimated. A Rydberg

state of an atom arises from the excitation of a valence electron to an orbital with

principal quantum number greater than that of any occupied orbital of the ground state

(a Rydberg orbital). A molecular Rydberg excitation is an electronic transition into a

virtual molecular orbital composed primarily of atomic Rydberg orbitals. If the principal

quantum number of an excited orbital is equal to the highest one among the ground-

state orbitals, the excited state is called valence. Thus, Rydberg states usually lie higher

than valence states. TDDFT gives reasonable accuracy for valence excitations, but it

systematically and significantly underestimates Rydberg excitation energies [5–7].
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Figure 3.1: Vertical excitation energies of the first 8 excited states of the Mg atom calcu-
lated by TDDFT using the LDA functional compared to the corresponding experimental
data.

The failures of TDDFT are closely related to the problems of the employed density

functionals and, thus, originate from time-independent DFT. In particular, underestima-

tion of the energies of Rydberg states is due to incorrect asymptotic and intermediate

range shape of the exchange-correlation potentials derived from semilocal functionals

[8–10]. While the exact exchange-correlation potential decays asymptotically as −1/r,

semilocal exchange-correlation potentials fall off exponentially [11]. As a result, the

energy of the highest occupied molecular orbital (HOMO) is insufficiently negative com-

pared to its exact energy, which is equal to the negative of the ionization potential,

εexact
HOMO = −I, and the energies of the high-lying (Rydberg) orbitals are too low. Thus,
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the energies of Rydberg excitations are underestimated. Exchange-correlation potentials

derived from hybrid density functionals decay asymptotically as −a/r (where a is a con-

stant other than 1) [8], which is closer to the correct −1/r behavior. The underestimation

of high-lying excitation energies by hybrid functionals is less pronounced, but still present

[12–14].

Numerous attempts have been made to correct long-range behavior of potentials in

DFT. These include construction of model exchange-correlation potentials [15–21], inclu-

sion of full exact exchange [22], and use of range-separated hybrids, in which the amount

of exact exchange is a function of position in space [23–26].

Improved asymptotic shape of semilocal exchange-correlation potentials can also be

achieved via the method of fractional depopulation of the HOMO, developed by Gaiduk

et al. [27, 28]. In this method, one constructs a model exchange-correlation potential for

an N -electron system according to the following equation:

vcorrected
XC ([ρ]; r) = vHXC([ρ̃]; r)− vH([ρ]; r), (3.1)

where vHXC([ρ̃]; r) is the Hartree-exchange-correlation potential of the (N − δ)-electron

system with the density ρ̃(r) obtained by removing a fraction δ of an electron from the

HOMO.

The potential corrected in this manner is closer to −1/r in the valence and asymptotic

regions than the original potential (Fig. 3.2). In essence, the HOMO depopulation creates

a layer of positive charge distributed over the valence region of the atom or molecule.

As the amount of an electron removed increases, orbital eigenvalues decrease nearly

linearly with larger slopes for valence orbitals than for Rydberg ones. The valence orbital

eigenvalues become exact near δ = 0.5, while the Rydberg orbital eigenvalues become

exact at larger values of δ. However, the focus of our attention are eigenvalue differences,

since they approximate excitation energies [29]. The eigenvalue differences, which are

initially underestimated, also increase with δ (Fig. 3.3).

The optimal fraction of an electron to be removed can be adjusted to minimize the

mean absolute errors of excitation energies. This parameter has very little system depen-

dence, therefore, it is sufficient to optimize δ for each particular density functional. The

HOMO depopulation method can be used with any density functional, it has no added

computational cost and is very easy to implement.

Despite its simplicity, the method of the HOMO depopulation significantly improves

Rydberg excitation energies, while decent accuracy of valence excitation energies is pre-

served. In a recent study by Truhlar and co-workers [30], the HOMO depopulation
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Figure 3.2: LDA exchange potential for the Mg atom without and with correction via
the depopulation of the HOMO by one electron. The correction makes vLDA
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−1/r at large and intermediate r.

technique was compared to other methods that predict accurate excitation energies. It

was shown on a test set of 69 excited states (both valence and Rydberg) of 11 closed-shell

organic molecules that the HOMO depopulation method employing B3LYP (the Becke

three parameter hybrid functional [31] with the Lee-Yang-Parr correlation term [32]),

BLYP (the Becke-Lee-Yang-Parr generalized gradient approximation) [32, 33], and M06

(the meta generalized gradient hybrid functional of Zhao and Truhlar) [34] outperform

equation-of-motion coupled cluster singles and doubles (EOM-CCSD) [35], an accurate

and computationally demanding wavefunction-based method.

The HOMO depopulation is not the only way to obtain a fractionally charged system.

Another route is to keep the number of electrons in the system integral, but add a fraction

of nuclear charge. This should also result in stronger electrostatic interaction between

an excited electron and the rest of the system and increase Rydberg excitation energies.

Here we investigate whether modification of the nuclear charge may lead to the same

improvements in excitation energies as the HOMO depopulation.

3.2 Theory

Recall that in the Kohn-Sham density functional theory [36] the electron density ρ(r)

is expressed in terms of Kohn-Sham orbitals, ρ(r) =
∑N

i |φi(r)|2. The orbitals are self-
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consistent solutions of the time-independent integro-differential Kohn-Sham equations:[
−1

2
∇2 + v(r) + vHXC([ρ]; r)

]
φi(r) = εiφi(r), (3.2)

where v(r) =
∑M

A=1 ZA/|r−RA| is the external potential due to the nuclei, and vHXC([ρ]; r)

is the sum of the Hartree potential vH([ρ]; r) =
∫
dr′ρ(r′)/|r− r′| and the exchange-

correlation potential vXC([ρ]; r), which represents the rest of electron-electron interac-

tions.

Our goal is to test if addition of fractional nuclear charge corrects the shape of the

exchange-correlation potential and Rydberg excitation energies in the same manner as

the fractional HOMO depopulation does. In order to do so, we use the Kohn-Sham po-

tential of the system with a positive fraction 0 < ζ ≤ 1 of charge added to the nucleus

or distributed among the nuclei (with the weights proportional to their atomic num-

bers). In this system, the external electrostatic potential due to the nuclei, v(r), is more

negative than in the initial system. Clearly, the distribution of the electron density in

this system, ρ̃(r), is also different from the initial one, ρ(r), with the maximum located

closer to the nucleus and lower electron density at intermediate and large distances from

the nucleus. Thus, to proceed with construction of the corrected exchange-correlation

potential, vcorrected
XC ([ρ]; r)], one needs both the Hartree-exchange-correlation and the ex-

ternal potential of the fractionally charged system, which are related to the corresponding
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potentials of the initial system via the following equation:

v(r) + vH([ρ]; r) + vcorrected
XC ([ρ]; r)

= ṽ(r) + vH([ρ̃]; r) + vXC([ρ̃]; r),
(3.3)

from which

vcorrected
XC ([ρ]; r) = [ṽ(r)− v(r)]

+ [vH([ρ̃]; r)− vH([ρ]; r)] + vXC([ρ̃]; r).
(3.4)
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Figure 3.4: LDA exchange potential for the Mg atom without and with correction. The
corrected potential is constructed via Eq. 3.4 by adding a unit of nuclear charge (ζ = 1.0).
The shape of the corrected LDA exchange potential at large and intermediate r is closer
to −1/r than the shape of original LDA exchange potential.

The resulting model exchange-correlation potential is less repulsive and closer to the

correct −1/r asymptotic limit, as shown in Fig. 3.4 for the Mg atom. However, the inter-

vention in the nature of the nuclei is not without consequences, and the model potential

now has a spurious discontinuity at the nucleus. Despite the presence of this artificial

discontinuity, the improved asymptotic behavior should still advance the accuracy of

Rydberg excitation energies.
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3.3 Methodology

We used the Gaussian 09 program [37] to perform all calculations. The UltraFine in-

tegration grid was employed throughout, the basis sets in use were d-aug-cc-pVQZ for

atoms and d-aug-cc-pVTZ for molecules. These basis sets were obtained by augmenting

the standard aug-cc-pVQZ and aug-cc-pVTZ basis sets with one additional set of diffuse

functions of each type (s, p, d, and so on).

The correction procedure can be viewed as a two-step process. First, a self-consistent

field (SCF) solution of Kohn-Sham equations is obtained for a chosen density functional

and a given system with a fraction of positive charge ζ added to it. An optimal amount

of charge ζ to be added was determined by fitting to 14 experimental excitation energies

(both valence and Rydberg) of the CO molecule. The value of ζ is slightly different

for each functional, but the variation is small. In an atom ζ was placed directly in the

centre of the nucleus, and in a molecule it was distributed among all the nuclei with the

weights proportional to their atomic numbers. The addition of charge does not require

modification of any subroutines as it can be done with the ZNuc keyword in the geometry

specification section.

Once the SCF solution is obtained, the self-consistent Kohn-Sham orbitals from the

first step are fed to the linear response TDDFT subroutine.

3.4 Results

Addition of fractional nuclear charge makes the HOMO of a molecule more negative

(Fig. 3.5), in a manner similar to how it is done via the fractional HOMO depopulation.

Energies of the virtual orbitals also decrease, but the higher the orbital energy is, the

less it changes with ζ. Thus, the eigenvalue spectrum diverges, and, as a result, energy

differences for high-lying virtual orbitals become more pronounced. Since excitation

energies can be approximated by Kohn-Sham eigenvalue differences [38], one can expect

that addition of fractional nuclear charge will raise excitation energies for high-lying

states the most. This is exactly what is necessary in order to correct Rydberg transition

energies and keep the already good accuracy of TDDFT for valence excitations, which

are typically low-lying.

Addition of fractional nuclear charge leads to an increase of Rydberg excitation en-

ergies, which is similar to the effect of the HOMO depopulation. Therefore, the mean

absolute error decreases as a function of ζ (Fig. 3.6 for the CO molecule) and reaches a

minimum at an optimal value of ζ. As ζ increases further, Rydberg excitation energies
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start to exceed their experimental values and the absolute error increases again. Valence

excitation energies, on the other hand, have very little correlation with the amount of

added charge. Thus, an optimal ζ allows to obtain an overall improvement of accuracy

of excitation energies.

To compare the method of nuclear charge addition to the fractional HOMO depop-

ulation, we computed mean absolute errors of 104 excitation energies, both valence and

Rydberg, of three atoms (Be, Mg, Zn) and six molecules (CO, CH2O, C2H2, C2H4, H2O,

N2) at their experimental geometries using four functionals from different classes: the

local density approximation (LDA) with the Perdew-Wang parametrization for corre-

lation [39], the Becke-Lee-Yang-Parr (BLYP) generalized gradient approximation [32,

33], the Becke three parameter hybrid functional [31] with the Lee-Yang-Parr correla-

tion term (B3LYP), and the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized

gradient approximation [40]. The mean absolute errors for the 31 valence and 73 Ryd-

berg excitations of these atoms and molecules are given in Table 3.1, and Fig. 3.7 shows

how the correction via the addition of fractional nuclear charge compares to the HOMO

depopulation on the example of the BLYP functional.

According to the results presented in Table 3.1 and Fig. 3.7, addition of fractional

nuclear charge indeed reduces errors in Rydberg excitations, and in several cases it even

outperforms the method of fractional HOMO depopulation. However, while the effect of
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the fractional HOMO depopulation is consistent for both atoms and molecules, and the

mean absolute errors are reduced to 0.2 eV, the addition of fractional nuclear charge does

not work as well for atoms as it does for molecules. This makes the overall performance

of the nuclear charge addition method worse than that of the fractional HOMO depop-

ulation, with the mean absolute error of about 0.3 eV. A closer look at the improved

excitation energies of atoms (Tables 3.2–3.4) shows that the new correction method over-

estimates, or overcorrects them. Thus, the optimal values of ζ found by fitting to 14

experimental excitation energies of the CO molecule turn out to be non-optimal for

atoms.
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Figure 3.8: Mean absolute errors of 28 excitation energies of atoms and 76 excitation
energies of molecules calculated using two different sets of added charges ζ: one set was
fitted to 14 experimental excitation energies of the CO molecule, and the other set was
fitted to 8 experimental excitation energies of the Mg atom. The latter set gives better
results for atoms but fails for molecules.

To find out whether a different choice of optimal ζ values can lead to better results,

we determined a new set of ζ’s by fitting 8 calculated excitation energies of the Mg atom

to experimental data. This gave lower values: ζ = 0.11 for LDA and B3LYP, ζ = 0.15

for BLYP, and ζ = 0.13 for TPSS. Although these parameters were indeed optimal for

atoms, and lowered the mean absolute errors of the excitation energies of atoms to 0.30,

0.29, 0.22, and 0.31 eV for LDA, BLYP, B3LYP, and TPSS respectively (Table 3.1), the

errors in excitation energies of molecules increased (Fig. 3.8), leading to a worse overall

performance with the errors for atoms and molecules of 0.45, 0.50, 0.28, and 0.41 eV.

In principle, one could solve the problem by using different optimal ζ values for
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atoms than for molecules. However, this means that the correction by the addition of

fractional nuclear charge lacks one major advantage of the fractional HOMO depopulation

technique—system independence of parameter ζ.

3.5 Conclusion

We tested whether fractionally charged systems with partial nuclear charges and integral

numbers of electrons are as efficient for improving excitation energies as systems with

integral nuclear charges and fractionally depopulated HOMOs. In both approaches, the

model potentials are less repulsive, which allows one to obtain corrected (more nega-

tive) HOMO eigenvalues as well as larger orbital energy differences and higher vertical

excitation energies.

Since excitation energies increase linearly with the amount of nuclear charge added,

ζ, using high values of ζ leads to an overestimation of excitation energies. The optimal

values of ζ are different (but not significantly) for different density functionals and can

be determined by fitting to experimental excitation energies of an atom or a molecule.

Similarly to the HOMO depopulation, the approach of fractional nuclear charge ad-

dition can be applied to any density functional and does not require additional computa-

tional time. It is also simpler than the fractional HOMO depopulation method in terms

of implementation.

However, the optimal amount of added nuclear charge for atoms appears to be sig-

nificantly different from the optimal amount of added charge for molecules (0.1 versus

0.2). Consequently, the overall reduction of the mean absolute errors of excitation ener-

gies in a test set consisting of both atoms and molecules is not as notable as with the

method of fractional HOMO occupations. Because of system dependence of parameter

ζ, the fractional nuclear charge approach is less favourable than the fractional HOMO

depopulation technique.
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3Å

.

C
2
H

2
U

n
co

rr
ec

te
d

p
ot

en
ti

al
s

C
or

re
ct

ed
p

ot
en

ti
al

s

L
D

A
B

L
Y

P
B

3L
Y

P
T

P
S
S

L
D

A
B

L
Y

P
B

3L
Y

P
T

P
S
S

S
ta

te
T

ra
n
si

ti
on

ζ
=

0
ζ

=
0.

11
ζ

=
0.

22
ζ

=
0.

15
ζ

=
0.

26
ζ

=
0.

11
ζ

=
0.

14
ζ

=
0.

13
ζ

=
0.

20
E

x
p
t.

a

3
Σ

+ u
π
u
→

π
g

5.
53

5.
22

5.
03

4.
96

5.
56

5.
59

5.
25

5.
26

5.
02

5.
02

4.
96

4.
96

5.
20

3
∆
u

π
u
→

π
g

6.
21

5.
78

5.
70

5.
77

6.
29

6.
35

5.
86

5.
90

5.
74

5.
75

5.
82

5.
84

6.
00

1
∆
u

π
u
→

π
g

7.
02

6.
77

6.
80

6.
96

6.
89

7.
30

6.
98

7.
09

6.
92

6.
76

7.
14

7.
21

7.
20

3
Π
u

π
u
→

3s
σ
g

7.
16

6.
68

7.
22

6.
98

7.
78

8.
39

7.
52

8.
12

7.
81

7.
97

7.
73

8.
12

8.
07

3
Π
u

π
u
→

3s
σ
g

7.
17

6.
71

7.
26

7.
02

7.
81

8.
43

7.
57

8.
18

7.
86

8.
03

7.
78

8.
18

8.
16

3
Π
g

π
u
→

3p
σ
u

7.
37

6.
87

7.
43

7.
19

7.
94

8.
41

7.
60

8.
04

7.
92

8.
05

7.
86

8.
16

8.
90

3
Σ

+ g
π
u
→

3p
π
u

7.
71

7.
23

7.
88

7.
49

8.
43

9.
15

8.
24

8.
94

8.
55

8.
75

8.
35

8.
81

8.
98

1
Π
g

π
u
→

3p
σ
u

7.
42

6.
94

7.
55

7.
26

8.
06

8.
62

7.
78

8.
31

8.
12

8.
27

8.
03

8.
40

9.
00

3
∆
g

π
u
→

3p
π
u

7.
73

7.
25

7.
89

7.
53

8.
46

9.
19

8.
23

8.
94

8.
59

8.
78

8.
39

8.
86

9.
08

3
Π
u

π
u
→

3d
σ
g

7.
81

7.
36

8.
15

7.
65

8.
61

9.
32

8.
45

9.
23

8.
79

9.
22

8.
60

9.
14

9.
17

1
Σ

+ g
π
u
→

3p
π
u

7.
78

7.
31

8.
01

7.
60

8.
53

9.
29

8.
36

8.
95

8.
59

8.
79

8.
50

8.
88

9.
21

1
Π

+ u
π
u
→

3d
σ
g

7.
82

7.
37

8.
18

7.
67

8.
62

9.
44

8.
48

9.
28

8.
91

9.
23

8.
62

9.
15

9.
24

b

M
ea

n
ab

so
lu

te
er

ro
rs

w
it

h
re

sp
ec

t
to

ex
p

er
im

en
t

V
al

en
ce

(3
)

0.
24

0.
22

0.
29

0.
24

0.
32

0.
28

0.
14

0.
09

0.
24

0.
29

0.
16

0.
14

R
y
d
b

er
g

(9
)

1.
31

1.
79

1.
14

1.
49

0.
62

0.
24

0.
84

0.
24

0.
52

0.
31

0.
66

0.
25

A
ll

(1
2)

1.
05

1.
40

0.
93

1.
18

0.
54

0.
25

0.
67

0.
20

0.
45

0.
31

0.
54

0.
22

a
F

ro
m

R
ef

.
[4

4]
(e

x
ce

p
t

fo
r

th
e

1
Π

u
st

at
e)

.
b
F

ro
m

R
ef

.
[4

5]
.

56



T
ab

le
3.

8:
V

al
en

ce
an

d
R

y
d
b

er
g

ex
ci

ta
ti

on
en

er
gi

es
(i

n
eV

)
fo

r
th

e
C

2
H

4
m

ol
ec

u
le

ca
lc

u
la

te
d

b
y

T
D

D
F

T
u
si

n
g

va
ri

ou
s

d
en

si
ty

fu
n
ct

io
n
al

s
w

it
h

an
d

w
it

h
ou

t
th

e
co

rr
ec

ti
on

b
y

ad
d
in

g
a

fr
ac

ti
on

of
n
u
cl

ea
r

ch
ar

ge
ζ
.

M
ol

ec
u
la

r
ge

om
et

ry
:
r(

C
C

)
=

1.
33

9Å
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Chapter 4

Summary

Density functional approximations enjoy great popularity in applied quantum chemistry

due to their low computational cost in combination with decent accuracy. Despite this

success, there exist obstacles that prevent DFAs from being used as a universal black-

box tool to calculate any properties of any system. The lack of derivative discontinuity

[1], which is also reflected in the incorrect asymptotic shape of the exchange-correlation

potential, causes complications with a number of properties, such as incorrect energies

of the highest occupied and the lowest unoccupied molecular orbital, unphysical charges

on dissociating fragments [2, 3], and inaccurate Rydberg excitation energies [4, 5].

In an attempt to design corrections that address the consequences of the lack of

derivative discontinuity, one has to take certain desirable features into account. First of

all, the correction scheme should preserve the already satisfactory accuracy of DFAs for

the majority of properties. Second, the correction should not increase the running time

of a density functional calculation significantly, otherwise, one of the main advantages

of DFT, its low computational cost, will be lost. Finally, it would be preferable if the

correction scheme had as little system dependence as possible. The method of fractional

population of frontier molecular orbitals aims to satisfy these criteria. In this method, the

shape-corrected exchange-correlation potential is generated on the fly from the exchange-

correlation potential of the fractionally depopulated or fractionally populated system.

In Chapter 1 of the present work, we showed that, in addition to the improved orbital

eigenvalues and vertical excitation energies [6, 7], the method of fractional occupations

solves the problem of fractional charges on atoms in dissociating molecules. We designed

an algorithm to decide which orbital is to be fractionally occupied and what its occupation

number should be. By means of this algorithm, it is possible to model the step structure of

the exact exchange-correlation potential in polar diatomic molecules. We demonstrated

that our scheme provides qualitatively correct behavior of charges as the distance between
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the dissociating atoms increases.

A fractionally charged system can be also created by modifying the nuclear charges

of the atoms in a molecule. In Chapter 2, we employed this approach to obtain cor-

rected exchange-correlation potentials to be used in time-dependent DFT calculations.

Although addition of nuclear charge did lead to some improvements in Rydberg excita-

tion energies, the amount of charge to be added appeared to be system-dependent. This

showed that it is not only the sheer presence of fractional charge, but also its distribution

that plays a role in correcting the shape of the exchange-correlation potential and related

properties.
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Appendix A

On the shape of the PBE exchange

potential in interatomic regions

In order to exclude any possible numerical artefacts and simplify the problem, an ana-

lytical function was chosen to model the one-dimensional density in the region between

two nuclei. We make use of the fact that atomic densities are approximately piecewise

exponential [1]. Thus, two identical atoms that are well separated from each other can

be modeled by the sum of two exponents:

ρ = e−(x+r/2) + e(x−r/2), (A.1)

where by tuning the parameter r one can simulate an increasing interatomic separation.

To reconstruct the PBE exchange potential, one needs four ingredients: the density

ρ, the dimensionless density gradient s, Laplacian q, and Hessian u [2]:

s =
|∇ρ|
ρ4/3

, (A.2)

q =
∇2ρ

ρ5/3
, (A.3)

u =
(∇ρ)2∇|∇ρ|

ρ13/3
. (A.4)

It is clear from Fig. A.1, that in the region between two sufficiently separated nuclei,

where the density is nearly flat, all the three dimensionless ingredients are ill behaved.

The PBE exchange energy functional has the general form

E[ρ] =

∫
f(ρ, s)dr, (A.5)
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where f is the energy-density function for the PBE functional [3],

f(ρ, s) = Cρ4/3

(
1 +

µs2

1 + µs2

k

)
. (A.6)

Here C, µ, and k are non-empirical parameters.

Figure A.1: The four ingredient of the PBE exchange potential for the model one-
dimensional exponential density of Eq. A.1.

Figure A.2: The sum of the last five components of Eq. A.7 for the PBE exchange
potential evaluated using model one-dimensional exponential density. These components
are the source of the spikes in vPBE

X .
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The exchange potential was constructed according to Ref. [2] as the sum of the fol-

lowing six terms:

vX =
∂f

∂ρ
+

4

3

∂2f

∂s2

s2

ρ
− ∂2f

∂ρ∂s
s− ∂f

∂s

q

ρs

+
∂f

∂s

u

ρs3
− ∂2f

∂s2

u

ρs2
.

(A.7)

Substituting the one-dimensional model density and the three corresponding dimension-

less components into Eq. A.7 results in five of the six terms having minima at x = 0, and

two of them (the second and the third) also having inflection points near x = 0. When

these five terms are summed up, the irregularities do not cancel out (Fig. A.2). In cal-

culations on real systems, the problem may be further enhanced by numerical artefacts,

but it does not affect neither energies, nor molecular properties.
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