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Abstract

It is generally assumed that in the interstellar medium much of the emission emanating from

atomic and molecular transitions within a radiating gas happen independently for each atom

or molecule, but as was pointed out by R. H. Dicke in a seminal paper several decades ago

this assumption does not apply in all conditions. As will be discussed in this thesis, and

following Dicke’s original analysis, closely packed atoms/molecules can interact with their

common electromagnetic field and radiate coherently through an effect he named superra-

diance. Superradiance is a cooperative quantum mechanical phenomenon characterized by

high intensity, spatially compact, burst-like features taking place over a wide range of time-

scales, depending on the size and physical conditions present in the regions harbouring such

sources of radiation. I will discuss the potential for superradiance in the atomic hydrogen

21-cm line for which we extended Dicke’s analysis to the magnetic dipole interaction char-

acterizing this line. Then, the application of superradiance to the OH 1612-MHz, CH3OH

6.7-GHz and H2O 22-GHz maser lines will be discussed, and it will be shown that super-

radiance provides a valid explanation for previous observations of intensity flares detected

in these spectral lines for some astronomical sources. An interesting result is that superra-

diance provides a natural mechanism for the recent observations of periodic and seemingly

“alternating” methanol and water flares in G107.298+5.639 that cannot be easily explained

within the context of maser theory.

Keywords: Atomic/Molecular Processes, Interstellar Medium, Coherent Interactions, Su-

perradiance, Maser
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Co-Authorship

This thesis is comprised of three papers among which two are already accepted for publication

in The Astrophysical Journal, and one is submitted to Science Advances and still undergoing

the review process. All three papers were co-authored with Dr. Martin Houde who has

supervised the three projects.

The work described in Chapter 2 is concerned with the first ever published paper on

superradiance within the context of astrophysics, and provides a thorough theoretical and

numerical investigation of superradiance for magnetic dipolar transitions (i.e., for the hy-

drogen 21 cm line). The analyses in Section 2.3.1 describing the interaction of two atoms

separated by small and large interatomic distances, were conducted with Dr. Houde. Simi-

larly, parts of the Introduction and Discussion were also written with Dr. Houde.

In Chapter 3 we extend the scope of our work by comparing the existing superradiance

theoretical model for electric dipolar transitions to data of the OH 1612-MHz line obtained

for the U Orionis Mira star and the IRAS 18276-1431 pre-planetary nebula. Our numerical

analysis closely follows the formalism of superradiance presented in Gross and Haroche [1982].

The data for U Orionis were taken from Jewell et al. [1981] while the data for the IRAS 18276-

1431 pre-planetary nebula were kindly made available to us by Wolak et al. [2014]. Both

data sets were analyzed by myself, while the discussion of the results presented in Sections

3.4.1 to 3.4.3 was written with Dr. Houde.

In Chapter 4 the superradiance model discussed in Chapter 3 was augmented and further

used to explain the existence of intensity flares detected in the G33.64-0.21, Cep A, and

G107.298+5.639 star-forming regions. The data for G33.64-0.21 were first published by

Fujisawa et al. [2014] and made available to us by the (first) author. The Cep A data were

taken from Mattila et al. [1985], while Szymczak et al. [2016] conducted the observations for

G107.298+5.639 and kindly shared their data with us. All the analyses were mainly carried

out by myself, while the discussion of the results for G107.298+5.639 was written with Dr.

Houde.
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Chapter 1

Introduction

The electromagnetic spectrum is a key tool to explore the Universe, and its precise interpre-

tation is essential to getting an accurate picture and models of regions within, and distant

from, our solar system. A vastly studied region that has drawn the attention of scientists

practically from the beginning of astronomical research is the interstellar medium (ISM).

The ISM, which consists of gas and dust over a wide range of densities distributed between

the stars, emits radiation and interacts with the background radiation passing through it.

The spectra of the ISM reveal information about the physical and chemical properties of its

building blocks through their interactions with the ambient radiation. The intensity of the

radiation measured directly from the obtained spectra, for example, is used to determine

important parameters such as temperature and the density of particles [Emerson, 1996]. It

should be noted that our prior knowledge and understanding of the physics of interactions

between radiation and matter plays a crucial role in the interpretation of the spectra. It also

directly impacts the accuracy with which we estimate fundamental physical and chemical

quantities.

In studies of the ISM, it is generally assumed that each particle interacts independently

with the ambient radiation field. This assumption, when applied to an ensemble of radiating

particles, results in an intensity relation which is a linear function of the number of particles

(for radiation that is optically thin). Based on this approach, the density of particles in the

ISM is calculated and later used in further calculations, e.g., estimates of the strength of

magnetic fields in the ISM.

1



In 1954, R. H. Dicke introduced a coherence theory, which describes a non-linear inter-

action and dependence between the intensity of the radiation and the number of particles

[Dicke, 1954]. More precisely, he showed that the coherent interaction of particles via their

radiation field can result in an enhancement of the radiation intensity, a phenomenon he

named superradiance. In the 1970s and 80s, the theory was extensively studied and tested in

different laboratories, and superradiance was observed in several cases [Skribanowitz et al.,

1973, Vrehen et al., 1977, Cahuzac et al., 1979, Gounand et al., 1979, Gross et al., 1979,

Rosenberger and DeTemple, 1981, Raimond et al., 1982, Kaluzny et al., 1983]. After the

experimental confirmation of superradiance these coherent interactions were further studied

in many different environments, but they were never investigated in the ISM.

The ISM is permeated with many different types of atoms and molecules which exist in

a diverse range of physical conditions. It is possible that in some regions of the ISM, and

under specific conditions, a given population of identical particles acts coherently and the

intensity of the radiation emitted by those groups deviates from a simple linear relation.

Therefore using this linear intensity relation in the analyses of spectra obtained from such

regions could result in inaccurate estimates of physical quantities, and lead to an incorrect

interpretation of those areas within the ISM.

In this thesis we investigated the possibility of coherent interactions between radiation

and matter, i.e., superradiance, within the context of the ISM.

1.1 Superradiance

When a two-level atom/molecule interacts with a radiation field whose wavelength cor-

responds to the energy difference between its energy levels, the atom/molecule becomes

excited and eventually decays to its ground state, spontaneously emitting a photon. Sup-

pose that the two-level atom/molecule is placed in an ensemble consisting of N initially

excited atoms/molecules identical to it. The photon spontaneously emitted by the initial

atom/molecule can then be seen as phase-coherent to its neighbour in the ensemble if the

two atoms/molecules are close enough. This phase coherent photon can stimulate the emis-

sion of a second photon with the same mode, the same phase and in the same direction by
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the neighbouring atom/molecule. This process can continue through the whole ensemble if

the atoms/molecules are spaced closely enough. As a result, the spontaneous emission is

enhanced throughout the medium and the intensity of the radiation becomes proportional

to N2. This is to be contrasted with the non-coherent interaction of an ensemble with the

radiation field, where the intensity depends linearly on N , the number of atoms/molecules

in the ensemble. The coherence that is built up in this way is called cooperative, and the en-

hancement of spontaneous emission throughout the medium in such a manner is the essence

of superradiance [Lin and Yelin, 2012].

1.1.1 Dicke’s Model

As mentioned earlier, superradiance was discussed initially in the pioneering paper of Dicke

“Coherence in Spontaneous Radiation Processes” published in 1954 [Dicke, 1954]. In this

paper, Dicke studied an ensemble of initially excited N two-level identical molecules located

within a spatial volume smaller than λ3 (the so-called small-sample), where λ is the wave-

length of the radiation interacting with the molecules. He considered the ensemble as a single

quantum mechanical system and developed his formalism using the fact that the problem of

N two-level molecules interacting with a classical radiation field is mathematically equivalent

to the problem of N spin one-half particles subjected to a classical magnetic field. In Dicke’s

model, the energy levels corresponding to certain correlations between individual molecules

are described and the time evolution of the system caused by the coupling of the molecules

with the radiation field is discussed (it must be noted that all other factors affecting its

evolution, such as collisional transitions, are neglected in his model). Dicke then showed

that the decay time-scale for such a system is much shorter than the natural lifetime of the

excited level of an individual molecule in the ensemble and that the intensity of the radiation

is proportional to N2, indicating a sudden peak of radiation on a short time-scale.

The key assumption in Dicke’s model that allows the build-up of strong coherence through

the ensemble is the molecules’ permutation symmetry. In order to generate Dicke’s perfect

superradiance, the coupling of the molecules to the radiation field must be symmetrical

with respect to exchange of any two molecules in the ensemble. In an actual situation,

it seems difficult to satisfy this symmetry condition while maintaining a perfect coherence

3



through the ensemble. Effects such as the van der Waals interaction between molecules,

neglected in Dicke’s original work, compete with the build-up of coherence and introduce

decoherence throughout the sample. van der Waals interactions become important when

the interparticle distance, r, is smaller than λ. In a sample where some particles have

different close-neighbour environments, van der Waals interactions break the permutation

symmetry resulting in weakened correlations and a subsequent deviation from a perfectly

symmetrical superradiance behaviour. However, coherence is preserved among those with a

similar close-neighbourhood resulting in an overall radiation intensity larger than that of a

fully non-coherent system [Gross and Haroche, 1982].

Dicke further extended his discussion to a large-sample, where the constituent molecules

are distributed over a finite volume larger than λ3. He showed that in a large-sample the

coherent radiation can only be achieved in a particular direction k along which the radiation

from different molecules interfere constructively [Dicke, 1954, 1964]. He pointed out that

the intensity of radiation from such a sample can be orders of magnitude larger than the

non-coherent intensity but smaller than the intensity of a perfectly symmetrical superradiant

system. In fact, in a large-sample propagation effects that are negligible in a small-sample

become important and break the symmetry of interaction between the molecules and the

radiation. As a result, coherent interactions only build up among groups of molecules that

experience a similar radiation field [Gross and Haroche, 1982].

Following Dicke’s original idea, the theory of superradiance was studied by several groups

[Arecchi and Courtens, 1970, Bonifacio and Preparata, 1970, Bonifacio et al., 1971a,b, Lehm-

berg, 1970, Rehler and Eberly, 1971, De Martini and Preparata, 1974, MacGillivray and Feld,

1981, Gross and Haroche, 1982, Schuurmans et al., 1982, Moi et al., 1983], and the initial

model was augmented to incorporate symmetry-breaking effects found in actual systems.

These studies were mainly inspired by the observations of superradiance in different labora-

tory systems.

1.1.2 Experimental Verification of Superradiance

Superradiance was observed for the first time in some infrared transitions of an HF gas in 1973

by Skribanowitz et al. [1973]. In their experiment a cylindrical large-sample of HF molecules
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was optically pumped into a particular rotational level, which after some time delay led to

a burst of superradiant emission. The reported peak intensity was ten orders of magnitude

larger than that from ordinary spontaneous emission, which is emitted isotropically. The

experimental results were found to be in good agreement with predictions made with the

semi-classical theory of superradiance discussed by MacGillivray and Feld [1976] (see Section

1.2.2 for more details).

Superradiance was subsequently observed at far-infrared [Rosenberger and DeTemple,

1981] and optical [Cahuzac et al., 1979] wavelengths for large-sample realizations. It was

only at millimetre and other long-wavelength domains that superradiance could be realized

in a small-sample [Gross et al., 1979]. This was mainly due to the experimental difficulties

in preparing a large number of excited particles in a regular pattern within a small-sample in

the optical and infrared domains. In 1995, after the realization of Bose-Einstein condensates

(BEC), it became possible to investigate superradiance action in small-samples interacting

with short-wavelength radiation. The first observation of superradiance in a BEC sample

was in 1999 by Inouye et al. [1999].

Experimental studies of superradiance led to the discovery of interesting features for this

effect, which contributed significantly to the development of superradiance theory. For exam-

ple, observations of the transition from the superradiance regime to amplified spontaneous

emission (ASE) helped to understand the role of non-coherent relaxation/dephasing effects

(e.g., collisions) in the evolution of a superradiance system. ASE systems, i.e., mirror-less

lasers/masers, operate in the rate equation regime, which describes the change in the pop-

ulation of atomic/molecular energy levels due to non-coherent processes. The spectral line

profile of ASE is similar to a thermal atomic/molecular spectral shape, although exhibiting a

linewidth a few times narrower. Also, the radiation intensity output from ASE does not show

the N2 dependence or the delays observed for superradiance (see Section 1.2.3) [Siegman,

1971].

1.1.3 The Requirements of Superradiance

In essence, superradiance concerns systems in which population inversion is achieved and

where the constituent atoms/molecules are closely packed; the effect is strongest and easier to
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detect when neighbouring particles are separated by approximately less than the wavelength

of radiation coupled to the system. Coherent interactions can be established in such a system

if other relaxation or dephasing processes do not disturb the build-up of correlations among

atoms/molecules, which act as radiators. When a superradiant sample is prepared in an

inverted state through a pumping mechanism, the energy stored in the sample is released

after a delay-time tD for a small-sample, (τD for a large-sample), which is proportional to

TR the characteristic time-scale of superradiance. The duration of a superradiant intensity

burst is also set by TR. In Dicke’s perfect superradiant system, in a small-sample TR = τsp/N

where τsp is the spontaneous decay time of a single atom/molecule in the sample and N the

number of inverted atoms/molecules. The superradiance delay time for such a small-sample

is given by tD = TR ln (N).

In a large-sample the geometrical characteristics of the sample become important and,

for example, in a cyclindrical large-sample as a result of propagation effects TR is modified

to

TR = τsp
8π

3nLλ2
, (1.1)

where L stands for the length of the sample and n represents the number density of in-

verted atoms/molecules [Benedict et al., 1996]. Accordingly, the average delay-time 〈τD〉 =

TR ln (N) depends on the geometry of the sample via TR. The parameters τD and TR are

compared to the time-scales of non-coherent processes in order to determine the evolution of

a non-ideal matter-field system. If a non-coherent relaxation process depletes the inversion

in the system over a time-scale Trel, then the time-scale of superradiance needs to be shorter

than that of the corresponding non-coherent effect to allow coherent interactions in the sam-

ple. More precisely, the system can only operate in the superradiance regime if τD, TR < Trel.

However, the superradiance delay-time τD is usually about an order of magnitude larger than

TR, implying that τD sets the necessary condition for coherent interactions.

The coherent process can be also interrupted by the so-called dephasing effects that

disturb the phase matching process in a sample. Elastic collisions, for example, affect the

spacing between the energy levels of the colliding particles through short-range interactions

and introduce a phase shift in the quantum state of the system. Since superradiance re-
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quires a symmetrical evolution throughout the sample, such dephasing mechanisms break

the symmetry and weaken the cooperative process. This also implies that τD < Tdeph for

superradiance to ensue.

A further requirement of superradiance is velocity coherence among atoms/molecules in

the system. The random thermal motions in a sample result in the Doppler line broad-

ening effect, which can significantly reduce the number of atoms/molecules partaking in

the coherent process. In fact, only those atoms/molecules that maintain a good velocity

coherence experience a symmetrical coupling to the radiation field necessary for superradi-

ance. In a sample where a good coherence cannot be preserved in the velocity field of the

atoms/molecules, coherent interactions can be terminated right from the start. This also

implies that superradiance cannot be expected in a thermally relaxed gas.

In summary, beside the two necessary requirements of population inversion and velocity

coherence, one must also have τD < T ′, where T ′ is the time-scale of the most important

relaxation/dephasing effect in the sample. In a system where the aforementioned set of

conditions is satisfied, superradiance can take place.

1.2 The Theory of Superradiance

The theoretical studies of superradiance after Dicke’s original model [Dicke, 1954] employed

mainly two different points of view. The first, and so-called Schrödinger picture considers

the ensemble of N two level atoms/molecules as a full quantum mechanical system and de-

scribes superradiance as a collective and coherent spontaneous emission developed through

the ensemble. This approach was also used by Dicke [1954], and is more suitable for the

studies of small-samples. The second approach describes superradiance as a temporal am-

plification of photon noise or of an external field by an extended atomic/molecular medium,

and is mainly used in the studies of large-samples. In this approach, the atomic/molecular

sample is described by the polarization (or the magnetization for magnetic dipole transitions;

see Chapter 2) and population inversion at each spatial point. The time evolution of these

quantities, as well as that of the radiation field, provide a complete picture of the coherent

effect in the large-samples. This so-called Heisenberg picture is also quantum mechanical
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in nature but involves equations that are similar to the Bloch-Maxwell equations obtained

in a semi-classical analysis of a matter-field system. It should be noted that these two ap-

proaches (i.e., the Schrodinger and Heisenberg pictures) describe the same physical effect

and are selected based on their relative ease of use for a given system [Gross and Haroche,

1982, Benedict et al., 1996].

1.2.1 The Schrödinger Picture

In the Schrödinger picture, the matter-field system is represented by its density matrix,

which for a system containing a large number of particles is a giant mathematical object.

The density matrix contains a large amount of information on all the atomic/molecular and

field observables that can be extracted with the corresponding density operators. As our main

interest generally lies with the atomic/molecular observables, the reduced atomic/molecular

density operator obtained by taking the trace over all field variables of the density matrix

plays a central role in the Schrödinger picture. In this picture the evolution of the system,

and accordingly that of the density matrix, follows the Schrödinger equation, resulting in the

superradiance master equation. The master equation contains integration over time, all field

modes, directions, as well as a summation over all couples of atoms/molecules. In a small-

sample, this complicated equation reduces to a simpler form but is still difficult to solve. In

the ISM, if superradiance is not rendered impossible by dephasing effects in a small-sample,

the smaller number of atoms/molecules, which is reflected in the radiation intensity, makes it

unlikely to observe the effect [Rajabi and Houde, 2016a,b]. For this reason, we have mainly

focussed on the study of large-samples in the ISM and thus adapted the Heisenberg approach

for the studies presented in this thesis.

1.2.2 The Heisenberg Picture

In a large-sample, the Heisenberg picture provides a more straightforward approach as an

alternative method since it considers only the two atomic/molecular observables that are

usually measured in superradiance experiments. In this approach, the atomic/molecular

population inversion and polarization state, as well as the radiation field operator are defined

8



locally in the sample, and the evolution of the operators obeys the Heisenberg equation. The

resulting set of equations for electric dipolar coupling between radiation and matter is1

∂N̂
∂τ

=
i

~

(
P̂+

0 Ê
+
0 − Ê−0 P̂−0

)
(1.2)

∂P̂+
0

∂τ
=

2id2

~
Ê−0 N̂ (1.3)

∂Ê+
0

∂z
=

iω

2ε0c
P̂−0 , (1.4)

which describes the evolution of the system in the retarded-time frame τ = t − z/c, where

z is the axis of propagation and c the speed of light [Gross and Haroche, 1982]. In these

equations quantities P̂±0 and Ê±0 are, respectively, the envelopes for the polarization and the

electric field vectors. The quantity N̂ is linearly proportional to the population inversion in

the sample, while d and ω represent, respectively, the electric dipole matrix element and the

angular frequency of the radiation field at resonance with the atomic/molecular transition.

The set of Equations (1.2) to (1.4), also known as Maxwell-Bloch equations, represent

the evolution of an ideal system in which dephasing/relaxation effects are neglected. One

can adapt these equations to more realistic conditions by including population decay and

de-polarization terms as follows

∂N̂
∂τ

=
i

~

(
P̂+

0 Ê
+
0 − Ê−0 P̂−0

)
− N̂
T1

(1.5)

∂P̂+
0

∂τ
=

2id2

~
Ê−0 N̂−

P̂+
0

T2

(1.6)

∂Ê+
0

∂z
=

iω

2ε0c
P̂−0 , (1.7)

where T1 and T2 are (phenomenological) time-scales for non-coherent relaxation and dephas-

ing, respectively [Mandel, 2010].

The resulting set of coupled non-linear equations can be only solved numerically. In this

thesis, we show the results of our numerical analysis for the special case T1 = T2 = T ′ for

which Equations (1.5) to (1.7) can be reduced to the so-called Sine-Gordon equation

d2θ

dq2
+

1

q

dθ

dq
= sin (θ) , (1.8)

1The system of Equations (1.2) to (1.4) is derived in the slowly varying envelope approximation (SVEA)

approximation (see Chapter 2 for more details).
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through the following change of variables

N̂ =
N

2V
cos (θ) e−τ/T

′
(1.9)

P̂+
0 =

Nd

2V
sin (θ) e−τ/T

′
, (1.10)

where θ is the so-called Bloch angle and N the number of inverted atoms/molecules within

the sample volume V at τ = 0. The variable q in Equation (1.8) is a dimensionless parameter

defined as

q = 2

√
zτ ′

LTR

, (1.11)

where τ ′ = T ′
(
1− e−τ/T ′)

. Given the initial conditions for θ and dθ/dq we can solve the

Sine-Gordon equation numerically to find θ and subsequently determine the field amplitude

Ê±0 emerging out of the sample as a function of the retarded time τ . The intensity of the

outgoing radiation ISR is then calculated

ISR =
cε0
2

∣∣∣Ê+
0

∣∣∣2 . (1.12)

1.2.3 Characteristics of Superradiant Emission

In Dicke’s original model, the superradiant emission from an ideal small-sample composed

of N atoms/molecules is characterized by a single burst where the peak intensity scales as

N2. More precisely, the intensity of superradiant pulse is given by [Dicke, 1954, Gross and

Haroche, 1982]

ISR =
N2~ωΓ

2
cosh−2

[
NΓ

2
(t− tD)

]
, (1.13)

where ~ω is the energy of a photon otherwise emitted spontaneously with a decay rate Γ =

1/τsp. As seen in Figure 1.1 the corresponding superradiant intensity reaches its maximum

value after the delay time tD = (NΓ)−1 ln (N).

In an ideal large-sample, the superradiant intensity can be calculated numerically by

solving the Maxwell-Bloch equations for the special case T1 = T2 = ∞ (see Section 1.2.2

for details). The propagation effects in a large-sample result in multiple superradiant burst

events while the peak intensity of consecutive bursts gradually drops as shown in Figure 1.2.

This phenomenon known as the ringing effect results from the re-absorption and re-emission
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Figure 1.1: The ideal small-sample superradiant system. The normalized radiation intensity

is plotted versus the time axis, scaled to the superradiance characteristic small-sample time-

scale TR = (NΓ)−1.

of photons at the observer-facing cross-section (or end-fire) of the (cylindrical) large-sample.

As can be seen in the figure the first burst event for a large-sample resembles the burst for

a small-sample, but TR and τD characterize the output intensity differently. More precisely,

a function similar as in the case of the small-sample, i.e., cosh−2
[
(τ − τD) / (TRτD)1/2

]
, can

tailor the first burst, but with a width given by (TRτD)1/2 instead of τsp/N (where TR is

given by Equation (1.1)). In Figure 1.2 we show that the inner part of the envelope of the

intensity curve can be described by cosh−2
(

[(τ − τD) /τD]1/2
)

(for τ ≥ τD), while its tail

tends to exp
(
− [(τ − τD) /τD]1/2

)
(for τ ≥ τD).

In a large-sample where dephasing/relaxation effects are included (e.g., T1 = T2 = T ′ 6=
∞) the number of burst events varies as a function of T ′/TR. In Figure 1.3, we show the

intensity of superradiant emission for three different T ′/TR. As seen in the figure, the ringing

effect is weakened as a result of dephasing/relaxation mechanisms that evidently tend to work

against superradiance.
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Figure 1.2: The superradiant intensity of an ideal large-sample, normalized to one, is plotted

versus the retarded-time axis, scaled to the characteristic large-sample time-scale of super-

radiance TR.

It should be noted that superradiant emission is contained within a highly directionally

focussed beam. For a cylindrical large-sample, the superradiant beam is aligned with the

axis of symmetry of the sample emerging out of its end-fire.

These characteristics of superradiant emission, i.e., highly directional, intense bursts of

radiation exhibiting intensity variations over a wide range of time-scales, can be used to

identify coherent interactions in a medium.

1.3 Superradiance and the Maser Action

Sources characterized by high intensity radiation travelling along beams of narrow angular

sizes are now routinely detected in the ISM and are associated with the maser action. A

maser (Microwave Amplification by Stimulated Emission of Radiation) occurs when there

is amplification of incident radiation in a medium. The main requirements for the maser

action are a population inversion for the energy levels of the spectral line under consider-

ation, sufficient velocity coherence along the line of sight, and a large enough number of

atoms/molecules to provide the needed amplification (we note that these requirements are
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Figure 1.3: The non-ideal large-sample superradiant intensity, normalized to one, plotted

versus the retarded-time, scaled to the characteristic time-scale of superradiance TR, for

different T ′. The dephasing/relaxation effects are characterized by T ′.

also needed for superradiance). Masers from several molecules (e.g, OH, H2O, and CH3OH)

have been detected in a variety of astronomical settings. These detections not only confirm

the possibility of achieving population inversion and velocity coherence in the masing regions

but also point to sites where superradiance might develop. Interestingly, the monitoring of

some maser sources has revealed significant intensity variations over time-scales ranging from

hours to years [Gray, 2012]. Several studies were conducted with the objective of finding a

viable explanation for some of the observed intensity variations within the context of maser

theory, but none were fully satisfactory. Since superradiance provides a natural mechanism

for intensity variations over various time-scales, the study of this phenomenon in the corre-

sponding regions might shed light on the underlying mechanism at play at least for some of

these cases.

It should be noted that, although superradiance and maser both belong to a family of
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collective effects, these are two fundamentally different phenomena. In particular, unlike

superradiance an astronomical maser is a non-coherent radiation process, which can operate

in a steady state regime. More precisely, for a maser a group of excited atoms/molecules

emit through the stimulated emission process as long as inversion can be maintained in the

masing region. Superradiance, on the other hand, is a transient phenomenon, producing

strong bursts of radiation taking place over a range of time-scales. The coherent interactions

between matter and the radiation field, which are the essence of superradiance, require more

restrictive conditions (e.g., τD < T ′) that are more difficult to be met and maintained.

This may result in transitions between maser and superradiance regimes in a given system,

where superradiant requirements are only met temporarily (see Section 3.4.3 in Chapter 3

for more details). It is important to note that the maser action can be described as a series of

successive events where an incident photon stimulates the emission of a subsequent photon,

repeatedly throughout a sample. On the other hand, superradiance coherence emphasizes

the fact that the group of atoms/molecules interacting with radiation field acts as a single

quantum mechanical system [Nussenzveig, 1973].

Astronomical masers were discovered in several environments, e.g., circumstellar en-

velopes (CSEs) of highly eveloved stars, star-forming regions, and shocked regions where

supernova remnants expand into molecular clouds [Elitzur, 1992]. In parts of this thesis, we

will focus on 1612-MHz OH masers in the CSEs of evolved stars, as well as 22-GHz H2O and

6.7-GHz CH3OH masers near HII regions within star-forming complexes.

1.3.1 The Circumstellar Envelope of Evolved Stars – The 1612-

MHz OH Maser Line

Low- to intermediate-mass stars (i.e., stars with masses of about 1 M� to 8 M�) become

variable in the final stages of their evolution. During this phase, some of the gas particles

in the photosphere of these stars are ejected outwardly through mechanical and radiative

processes, and eventually form the CSE of the star. The CSE of such stars can harbour

different types of masers depending on their composition. OH 1612-MHz masers can occur

in the CSE of oxygen-rich (M-type) stars (e.g., Mira variables and OH-IR stars). The

14



modeling of the pumping process for this line suggests that the maser action can operate at

a distance of about r ≤ 1016 cm from the star [Gray, 2012]. This is where the expanding

shell of the CSE reaches a terminal velocity and the condition of velocity coherence can be

achieved over the so-called Sobolev length. For Mira variables or OH-IR stars the Sobolev

length is typically on the order of 1014 − 1016 cm (see Chapter 3).

It is known that the infrared (IR) radiation emanating from warm dust, also formed in

CSEs of evolved stars, is mainly responsible for the population inversion in the 1612-MHz

OH line in masing regions. Changes in the brightness of the central star modulate the IR

radiation from dust and subsequently the intensity of the masers. However, in some cases the

intensity variations observed in the 1612-MHz line do not exhibit any correlation with that

of the central star and remain unexplained. The study of superradiance in the corresponding

regions may unravel the cause of such intensity variations.

1.3.2 Star-forming Regions – The 22-GHz H2O and 6.7-GHz CH3OH

Maser Lines

Star formation is initiated by the gravitational collapse of clouds of molecular gas, which

results in the formation of centrally condensed protostellar objects. The most massive stars

that will ensue from the formation process (i.e., O- and early B-type stars) will be hot enough

to produce ultraviolet (UV) radiation, which will ionize the ambient gas and eventually lead

to the formation of highly ionized atomic hydrogen regions (i.e., the so-called HII regions).

HII regions appear at a later stage in the star-forming process, and first reveal themselves as

‘hyper’ and ‘ultra-compact’ (i.e., an ucHII) when the massive protostar becomes hot enough

to bring ionization. An ucHII region then expands and in the process entrains the sur-

rounding material into some sort of organized flowing motion. Some masers (e.g., 6.7-GHz

CH3OH masers) are associated with HII regions and are accordingly categorized as ‘late’

masers. These late masers attain population inversion through radiative pumping via in-

frared radiation emitted by dust in the protostellar environment. There are, however, a class

of masers (e.g., most 22-GHz H2O masers), which can form in the earlier stages of evolution

of a protostar. These masers, also known as early masers, are usually associated with shock
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regions where frequent molecular collisions play an important role in the establishment of the

needed population inversion [Gray, 2012]. But it should be noted that the infrared radiation

from dust may also contribute to the pumping of early masers as it is not possible to have a

purely collisional pump in a maser region [Goldreich and Kwan, 1974]. This is because the

frequent collisions can re-establish the local thermodynamic equilibrium (LTE) conditions

and thus render impossible the existence of the population inversion needed to allow the

maser action.

Statistical studies of masers in star-forming regions (SFRs) indicate that masers are

mostly associated with high-mass SFRs where an appreciable amplification can be achieved

through the presence of large populations of maser molecules. Still, some 22-GHz H2O masers

have been detected in low-mass SFRs, in shocked gas formed by molecular outflows from

young stellar objects [Gray, 2012]. The long-term monitoring of some 22-GHz H2O masers

indicated flux variations on time-scales of the order of a few days to several months [Sulli-

van III, 1973]. These variations were linked to changes in the pumping rates of masers or

structural/dynamical variations of maser cloudlets [Peng, 1989]. However, some flaring ob-

servations show distinct behaviours that cannot be understood within the context of existing

maser models.

Finally, 6.7-GHz CH3OH masers also show intensity variations, which in some cases occur

periodically or regularly [Goedhart et al., 2003]. The time-scales of these variations range

from hours to months. Changes in infrared radiation, which are reflected in the pumping

rate of the masers, were thought to be responsible for such time-variations. However, the

observations of nearly simultaneous flarings of 6.7-GHz CH3OH and 4.8-GHz H2CO masers

[Araya et al., 2010], or recently 6.7-GHz CH3OH and 22-GHz H2O masers [Szymczak et al.,

2016], within relatively small spatial scales raised some fundamental questions, which are

addressed in this thesis.

1.4 Dephasing/Relaxation Effects in the ISM

In order to determine the possibility of coherent interactions in the ISM, we need to identify

the non-coherent processes that act as dephasing/relaxation mechanisms against superra-

16



diance. For any region in the ISM, collisions with hydrogen atoms and molecules, ions,

electrons, or dust grains can change the internal state of an atom/molecule (inelastic col-

lisions) or interupt the phase-locking process required for superradiance (elastic collisions).

As mentioned earlier, the time-scale of dephasing/relaxation effects must be longer than the

time-scale of coherent interactions (i.e., τD) to allow superradiance in a non-ideal system.

The time-scale of inelastic collisions can be estimated with the knowledge of the collisional

cross sections for appropriate density and temperature conditions in a medium, while noting

that the high abundances of hydrogen (in its atomic or molecular forms, depending on the

conditions) makes it the main collision partner of most atoms/molecules in the ISM. For

elastic collisions, the mean time between collisions can be determined using

Tc =
1

σgnv̄
, (1.14)

where σg and n are, respectively, the geometric cross-sectional area and number density

of the most important collision partner moving with the mean relative velocity v̄. Elastic

collisions are usually more frequent than inelastic collisions and are used to calculate the

collisional time-scale for the superradiance samples studied in this thesis.

In the ISM, either in CSEs of evolved stars or near HII regions, the population of energy

levels of atoms/molecules are affected by the infrared radiation from warm dust. As men-

tioned earlier, infrared radiation can act as a pump populating the energy levels correspond-

ing to a maser line. At the same time, these couplings can be also considered as a relaxation

mechanism depleting the population out of maser levels. The large dipole moments of these

transitions make them very interesting, although the rate of a radiative transition is very

sensitive to the opacity at the corresponding wavelength. The opacity varies over different

regions and an infrared coupling route can switch roles between pumping and depleting the

population of a given level. It is, therefore, sometimes important to include relaxation effects

due to infrared radiation in the estimation of relaxation time-scales for superradiace.

1.5 This Thesis: Superradiance in the ISM

This thesis consists of three projects that investigate the possibilty of superradiance in the

ISM. In Chapter 2 the formalism of superradiance is extended to magnetic dipolar transitions
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and to transitions exhibiting circular polarization. While this chapter gives a thorough review

of the theory of superradiance, it is mainly focussed on the interaction of HI samples with

the 21 cm line. The search for observational signatures of superradiance for this line has yet

to be conducted.

In Chapter 3 we apply the concept of superradiance to the OH molecule 1612 MHz

spectral line. The interaction of this line with radiatively pumped OH samples in the CSE of

evolved stars is studied. We apply our superradiance model to data found in the literature for

intensity flares detected in the U Orionis Mira star and the IRAS 18276-1431 pre-planetary

nebula.

In Chapter 4 we extend our superradiance analysis to the 6.7-GHz CH3OH and 22-GHz

H2O maser lines. We show that superradiance provides a viable explanation for flaring

observations of the 6.7-GHz CH3OH and 22-GHz H2O detected, respectively, in the G33.64-

0.21 and Cep A star-forming regions. Finally, we show that superradiance provides a natural

mechanism for the recent observations of seemingly alternating CH3OH and H2O maser flares

in G107.298+5.639.
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Chapter 2

Dicke’s Superradiance in

Astrophysics. I – The 21 cm Line1

2.1 Introduction

It is generally assumed that in much of the interstellar medium (ISM) emission emanating

from atomic and molecular transitions within a radiating gas happen independently for each

atom or molecule. From intensity measurements of such spectral lines, important parameters

(e.g., density and temperature) can be determined and the physical conditions in a given

environment thus characterized [Townes and Schawlow, 1955, Emerson, 1996, Goldsmith and

Langer, 1999, Irwin, 2007]. For example, in cases where the spectral lines are optically thin,

the intensity will be found to scale linearly with the number of atoms or molecules responsible

for the detected radiation. The soundness of this approach rests mostly on the assumption

that spontaneous emission from different atoms or molecules happens independently.

As was pointed out by R. H. Dicke in a seminal paper several decades ago [Dicke, 1954],

the assumption of independent spontaneous emission for the components of a gas does not

apply in all conditions. As will be discussed in this paper, and following Dicke’s original

analysis, closely packed atoms can interact with their common electromagnetic field and

radiate coherently. That is, the spontaneous emission of atoms or molecules in such a gas

1Rajabi, F., & Houde, M. 2016, The Astrophysical Journal, 826, 216

22



will not be independent, but rather take place in a cooperative manner. In the ideal case,

this phenomenon will lead to a much more intense and focused radiation (proportional to

the square of the number of atoms), which Dicke called superradiance. Since Dicke’s original

proposal, the field of superradiance research has flourished, and an abundant literature has

developed within the physics community. The first experimental detection of superradiance

in the laboratory was achieved by Skribanowitz et al. [1973], while several other independent

verifications [Gross et al., 1976, Gibbs et al., 1977, Carlson et al., 1980, Moi et al., 1983,

Greiner et al., 2000, Xia et al., 2012] have since been realized under a large domain of

conditions and experimental setups (see Chap. 2 of Benedict et al. 1996, MacGillivray and

Feld 1976, Andreev et al. 1980, Gross and Haroche 1982 for reviews).

While the reality of the superradiance phenomenon has long been clearly established

in the laboratory, to the best of our knowledge it has yet to be investigated within an

astrophysical context. It appears to us important to do so since some of the requirements

and conditions needed for the realization of a superradiant system are known to be satisfied in

some regions of the ISM. More precisely, superradiance can arise in systems where there is a

population inversion, and the effect will be much stronger and more likely to be realized when

atoms or molecules are separated by approximately less than the wavelength of radiation (see

below and Section 2.3.2).

The population inversion condition is known to occur in the ISM and is partly respon-

sible for the ubiquitous presence of masers (see Fish 2007, Watson 2008, Vlemmings 2012,

Sarma 2012 for recent reviews). But it is also important to realize that, although it is a

necessary condition, population inversion is not by itself sufficient to ensure superradiance.

It is also required that sufficient velocity coherence exists between the atoms partaking in

the effect, and that any other dephasing takes place on time-scales longer than those char-

acterizing superradiance. When all these conditions are met, a coherent behavior can be

established between the atoms, and superradiance can ensue. We note, however, that, as

will be discussed later on, superradiance is unlikely to take place in thermally relaxed regions

of the ISM. This is because Doppler broadening resulting from, say, a Maxwellian velocity

distribution would leave too few atoms with the required velocity coherence to allow super-

radiance to develop. Our analysis will therefore imply other types of environments where
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thermal equilibrium has not been reached. For example, any region in the ISM into which

a significant amount of energy is being suddenly released (e.g., shocks or regions where sig-

nificant radiation flares occur) will be strongly out of equilibrium and provide conditions

that are potentially markedly different from those found in a thermal gas and may meet the

requirements for superradiance. Also, although superradiance can also occur for large inter-

atomic or molecular separations (i.e., greater than the wavelength of radiation; see Section

2.3.1), the aforementioned constraint of small interatomic or molecular separation, and its

implication for the corresponding densities, is likely to be met for only a limited number of

spectral lines, but a few astrophysically important transitions are suitable candidates. One

of these spectral lines is the 21 cm atomic hydrogen transition.

Even though a 21 cm maser has yet to be discovered, which would also imply the real-

ization of a population inversion for this spectral line, as will be seen through our analysis

the length-scales required for superradiance at 21 cm are very small compared to those that

would be needed for maser amplification in the ISM (Storer and Sciama 1968, and see below).

It follows that, although the lack of observational evidence of masers for this transition sig-

nificantly affects the probability of detecting superradiance, it does not rule it out. Also, the

existence of higher densities of atomic hydrogen in some parts of the ISM would increase the

potential detectability of superradiance if the other necessary conditions for its realization

previously listed were also met. Furthermore, with the recent discoveries of radio bursts at

frequencies close to 1400 MHz [Kida et al., 2008, Thornton et al., 2013], the investigation

of the properties of a transient phenomenon such as superradiance is timely. This is why

in this first paper on the subject we chose to introduce the concept of superradiance to the

ISM using this spectral line.

Whether or not a population inversion can easily be realized for the energy levels leading

to the 21 cm line, it has been considered in the existing literature [Shklovskii, 1967, Storer

and Sciama, 1968, Dijkstra and Loeb, 2008], and we know of at least one region (the Orion

Veil) where the kinetic temperature is lower than the 21 cm spin temperature, providing

evidence for a population inversion [Abel et al., 2006]. The main pumping process covered

in the literature corresponds to the situation when a H I gas is close to a source of radiation

that emits a field with an intensity Iv (ν) in the neighborhood of the Lyα line. A hydrogen
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atom in the ground hyperfine state (n = 1, F = 0) can absorb a photon and become excited

to the n = 2 level. Later on, the atom returns to the upper hyperfine state (n = 1, F = 1),

emitting a slightly less energetic photon than the initial one absorbed by the atom. The

same can happen for a hydrogen atom initially in the hyperfine state (n = 1, F = 1) that

returns to the ground (n = 1, F = 0) state after excitation to the n = 2 level, emitting

a slightly more energetic photon in the process. The absorption rate of the photons for

both cases depends on the intensity of the radiation Iv (ν), but the return (emission) process

does not. Therefore, the F = 0 level will undergo more absorptions followed by a return

to the (n = 1, F = 1) level whenever Iv (ν) harbors more blue than red photons and will

become accordingly less populated than the F = 1 level [Wouthuysen, 1952, Field, 1958,

Shklovskii, 1967, Storer and Sciama, 1968]. Although Storer and Sciama [1968] concluded

that it is unlikely to maintain a population inversion over the extended region needed for the

maser amplification with this process, they also pointed out that an “appreciable” inversion

can thus be realized over a region of thickness ∼ 6 × 10−5 pc. Given the above inversion

scenario, we would expect that environments located in the periphery or near boundaries

of H II regions could provide conditions suitable for the development of superradiance, for

example. The aforementioned evidence for a 21 cm population inversion in the Orion Veil

brings support to this idea. Whatever the case, the 21 cm line will serve us as a starting

point for the development of the superradiance formalism for the ISM (in the present case

for a magnetic dipolar transition), which will then be refined in the future and also applied

to other (electric dipolar) spectral lines (e.g., the OH 1612 MHz, CH3OH 6.7 GHz, and H2O

22 GHz maser transitions) where observational evidence for superradiance can be found in

the literature [Rajabi and Houde, 2016, Rajabi and Houde, 2016].

It should also be pointed out that superradiance is a fundamentally different phenomenon

from the maser action, even though the two may seem similar at first glance. An astronomical

maser is a collective but not coherent phenomenon. More precisely, for a maser, a group

of atoms, initially in their excited states, emit through the stimulated emission process

but cannot be considered as a single quantum system. That is, it is possible to describe

maser action through successive events where an excited atom is stimulated by the incident

radiation and emits a photon, with the same stimulation/emission processes subsequently
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repeated for different atoms in the masing sample. In contrast, for superradiance, coherence

emphasizes the fact that the group of atoms interacting with the radiation field behaves like

a single quantum system [Nussenzveig, 1973]. That is, the superradiance emission process

cannot be broken down into successive events, as is the case for maser radiation. Finally,

superradiance is a transient effect in which a strong directional pulse is radiated over a

relatively short time-scale, while maser action operates more in a steady-state regime as

long as population inversion is maintained.

The material covered in this paper goes as follows. We start with a general discussion of

the concept of superradiance for the so-called small and large samples, as originally discussed

by Dicke [1954, 1964], in Section 2.2. In Section 2.3, we examine the possibility of building

cooperative behavior in a H I sample based on a comparative analysis of time-scales for the

21 cm line in a H I gas, as well as present corresponding numerical results. A discussion

and short conclusion follow in Sections 2.4 and 2.5, respectively, while the superradiance

formalism and detailed derivations for the material discussed in the main sections of the

paper will be found in appendices at the end of this chapter.

2.2 Superradiance

2.2.1 Dicke’s Small-sample Model

Dicke originally proposed in 1954 a model where an ensemble of N initially inverted two-

level atoms interacting with their common radiation field is considered as a single quantum

mechanical system [Dicke, 1954]. In his model, a two-level atom is modeled as a spin-1/2

particle in a magnetic field where the spin up configuration corresponds to the excited state

|e〉 and the spin down to the ground state |g〉. Just as an ensemble of N spin-1/2 particles

can be described using two quantum numbers s and ms, the eigenstates of the combined N

two-level atoms in Dicke’s model can also be labeled with two quantum numbers r and mr

such that 0 ≤ r ≤ N/2 and mr = −r,−r + 1, . . . , r − 1, r, where

mr =
Ne −Ng

2
, (2.1)

with Ne and Ng the number of particles in the excited and ground states, respectively.
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Figure 2.1: Dicke states with r = N/2 for a system of N two-level (spin-1/2) particles.

Spontaneous radiation intensities are indicated on the right.

From the complete set of eigenstates characterizing this quantum mechanical system, those

symmetrical under the permutation of any pair of atoms are particularly important and

are called Dicke states. The initial state |e, e, ..., e〉 of N fully inverted spin-1/2 particles

corresponding to N fully inverted two-level atoms is one such Dicke state and is identified

by r = N/2 and mr = N/2. When an atom in the ensemble decays to its ground state by

emitting a photon, the quantum number mr is decreased by one while r remains unchanged,

and the system moves to another symmetric state. Dicke showed that the radiation intensity

from such an ensemble cascading from the initial (r = N/2, mr = N/2) state down through

an arbitrary state (r, mr) is

I = I0 (r +mr) (r −mr + 1) (2.2)

if the volume containing the ensemble of N two-level atoms is much smaller than λ3, the

cube of the wavelength of the radiation interacting with the atoms. In Equation (2.2), I0

is the radiation intensity due to spontaneous emission from a single two-level atom. This

particular type of system and density condition defines a small sample. This cascading

process is depicted in Figure 2.1.
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Furthermore, Dicke pointed out that in the (r = N/2, mr = 0) state, where the half

of the atoms are in the ground state and the other half in the excited state, the radiation

intensity of the system is maximum at

I = I0

(
N

2

)(
N

2
+ 1

)
(2.3)

∝ N2I0, (2.4)

implying a significantly enhanced radiation beam, a phenomenon he named superradiance.

This can be understood by the fact that when the distance between neighboring atoms is

much smaller than the wavelength of radiation, the photon emitted by one atom is seen to be

in phase by neighboring atoms and can bring about the emission of a new photon of the same

mode and in the same direction as the initial photon. This process can continue through the

whole ensemble, resulting in an intense superradiant radiation pulse proportional to N2 (see

Equation [2.4]). In contrast to the superradiance observed in a perfectly coherent system, in

a noncoherent system all atoms act independently with a radiation intensity scaling linearly

with N . This possibility of coherent interactions is in contrast with the common assumption

that, in the ISM, atoms, for example, mainly interact independently with the radiation field,

such that the intensity of the radiation is a linear function of the atomic density.

In order to conduct a more careful investigation of the possibility of coherent interactions,

especially superradiance in a H I gas, we will need to adapt Dicke’s original theory to the

corresponding astrophysical conditions. We therefore first need to carefully understand all

the assumptions that lead to a symmetrical ensemble and superradiance in the original model

of Dicke [1954]. The main assumptions can be listed as follows:

• A small sample of neutral atoms is confined to a volume V � λ3 with the walls of the

volume transparent to the radiation field.

• The N two-level atoms in the sample are separated by a distance much less than λ

but distant enough not to worry about any overlap between the wave functions of

neighboring atoms, which would require that the wave functions be symmetrized.
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• The ensemble of N initially inverted hydrogen atoms possesses a permutation sym-

metry under the exchange of any pair of atoms in the sample. This is a restricting

condition that could prove difficult to satisfy in general.

• The transition between atomic levels takes place between nondegenerate levels, colli-

sions between atoms do not affect their internal states, and collisional broadening is

neglected as a result of the small size of the sample [Dicke, 1953].

• Although it is mentioned in Dicke [1954] that the main results of his study are inde-

pendent of the type of coupling between atoms and the field, the interaction of the

atoms with the radiation field in Dicke’s model is assumed to be electric dipolar.

• Finally, the radiation field is assumed to be uniform through the small sample, the elec-

tric dipoles associated with the atoms are parallel, and propagation effects neglected.

Comparing a corresponding small sample of N neutral hydrogen atoms interacting with

the 21 cm line in the ISM with a Dicke sample, we can see that some of the assumptions

made in the Dicke formalism hold and some do not. For example, the transitions between

the hyperfine states of a hydrogen atom take place between nondegenerate levels since the

external magnetic field in the ISM lifts the upper-level degeneracy (see Section 2.3). Also,

a small sample of H I atoms found in many regions in the ISM would readily verify the

criterion that N � 1 in a volume V < λ3 and could thus be approximately assumed to

experience the same 21 cm radiation field without consideration of propagation effects. On

the other hand, unlike in Dicke’s sample, collisional and Doppler broadening effects should,

in the most general case, be considered because, for example, collisions between hydrogen

atoms affect the internal hyperfine states in their electronic ground state through spin de-

excitation [Field, 1958]. Most importantly, it must also be noted that the type of coupling

between hydrogen atoms and the 21 cm line is magnetic dipolar in nature.

Above all, the permutation symmetry of atoms, which is a key assumption in the Dicke

model, is difficult to preserve in an actual situation because of dipole-dipole interactions

between the atoms. Dipole-dipole interactions have a r′−3 dependency, and these short-

range interactions become important in small samples where the distance between atoms
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r′ is smaller than λ (see Section 2.3.1). In the Dicke model, the symmetry-breaking effect

of dipole-dipole interactions is ignored. In later studies of superradiance (e.g., Gross and

Haroche 1982), it has been shown that in general dipole-dipole interactions break the permu-

tation symmetry, except in those configurations where all atoms have identical close-neighbor

environments. This symmetry-breaking effect results in weakened correlations and a sub-

sequent deviation from a perfectly symmetrical superradiance behavior (i.e., the I ∝ N2

relation in Equation [2.4]). In a sample of N atoms, if s atoms (s < N) experience a similar

close neighborhood, the correlation can build up among this group of atoms, and the inten-

sity of radiation from the whole sample is expected to be larger than the intensity of a fully

noncoherent system (Inc) but smaller than that of a perfect superradiance system (ISR).

In a small sample of N neutral hydrogen atoms in the ISM, it may thus appear possible to

develop coherent behaviors if the permutation symmetry is conserved among a group of atoms

in the sample. This is arguably a reasonable assumption on average for an ensemble of atoms

within the small volumes discussed here. That is, the different atoms in the sample are likely

to be subjected to the same conditions when averaged over time and space. Furthermore, we

also note that in a H I-sample the magnetic dipole-dipole interactions are definitely weaker

than the electric dipole-dipole interactions discussed in the literature focusing on symmetry-

breaking effects.

2.2.2 Dicke’s Large-sample Model

In his first paper on superradiance, Dicke also extended his formalism to a large sample,

where the volume of the sample V > λ3 and the interatomic distance r′ between some atoms

can be greater than λ. He showed that, in a large sample, coherent radiation can occur

in a particular direction k in which the radiation from different atoms is in phase. When

the phase-matching condition is satisfied in some direction k, the initial state of the system

can be described by a correlated symmetric state of type (r,mr), and the intensity of the

radiation in a solid angle along k follows

I (k) = I0 (k) [(r +mr) (r −mr + 1)] , (2.5)
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similar to Equation (2.2) for a small sample. When a photon is emitted in the direction k,

the system cascades to a lower state obeying the selection rules ∆r = 0, ∆mr = −1, and

similar to the case of a small sample, symmetrical states of the same r are coupled to each

other through coherent transitions (see Section 2.3.1). On the other hand, when a radiated

photon has a wave vector k′ 6= k, the states with different r (i.e., of different symmetry) can

couple, and consequently the coherence is weakened in the system [Dicke, 1954]. It follows

that in a large sample consisting of N inverted atoms, the radiation by one atom is only seen

to be in phase by a group of atoms (contrary to a small sample where the radiation field

is assumed uniform over the whole sample), and correlation can only be developed among

this group. This naturally results in a radiation intensity that is greater than that of the

corresponding fully non-coherent system but smaller than the superradiance intensity of a

perfectly coherent system consisting of N atoms.

Finally, in a large-sample as a result of possibly large interatomic distances (i.e., r′ > λ)

the symmetry breaking effects of the dipole-dipole interactions are less important, whereas

the propagation effects that are absent in a small-sample cannot be neglected. The prop-

agation of radiation over a large distance in a large-sample results in the reabsorption and

reemission of the photons and consequently leads to a nonuniform evolution of the atoms

in the sample (see Section 2.3.2). Beyond these factors, Dicke’s analysis of the large-sample

includes assumptions similar to those used for the small sample.

2.3 The Two-level H I sample

Let us consider an ensemble of neutral hydrogen atoms in the electronic ground state in some

region of the ISM, where it can emit or absorb photons at the λ = 21 cm wavelength. The

hydrogen 21 cm line is perhaps the most important source of information in radio astronomy

and arises from the transition between two levels of the hydrogen atom in the 1s ground

state. The interaction between the electron spin and the proton spin in the nucleus of the

atom splits the otherwise degenerate 1s energy level into the two F = 0 and F = 1 sub-levels.

The F = 1 ↔ 0 transition in the absence of an external magnetic field produces the 21 cm

line, corresponding to a frequency ν = 1420.406 MHz.
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Figure 2.2: Energy level diagram for the HI 21 cm line in the presence of a Zeeman-splitting

external magnetic field.

Considering a more realistic case, the magnetic field in a cold neutral gas is generally on

the order of 10 µG [Crutcher, 2012], and the energy level corresponding to F = 1 splits into

three sublevels identified by mF = −1, 0, and 1. The interaction between the F = 0 and

F = 1 levels becomes more complicated as this splitting provides three possible hyperfine

transitions, as shown in Figure 2.2. These hyperfine transitions link states of like parity and

obey the general magnetic-dipole selection rules ∆F = 0,±1 and ∆m = 0,±1. Based on

these rules, all of the three transitions shown in Figure 2.2 are allowed; however, depending on

the relative orientation (or the polarization) of the magnetic component of the radiation field

to the quantization axis of the atom, some transitions may be favored. In the more general

case, there is a mixture of all three transitions, with each transition exhibiting particular

polarization properties. In order to better understand the coherent and cooperative evolution

of a sample of N hydrogen atoms coupled to its radiation field, it will be simpler for us to

focus our analysis on only one of these transitions and consider the atomic system as an

ensemble of two-level atoms. Although this model represents a significant simplification,

the two-level atom approximation is extensively used for, and its results are well verified in,

laboratory experiments involving more complicated atomic or molecular systems with more

complex energy levels [Mandel, 2010].
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Figure 2.3: The two-hydrogen-atom system. When kr′ � 1 the upper and lower symmetric

states |e1e2〉 and |g1g2〉, respectively, couple to the intermediate symmetric state |+〉 at

the enhanced transition rate 2Γ, where Γ is the transition rate of a single atom acting

independently. In contrast, the antisymmetric state |−〉 cannot couple to the upper and

lower states because of the cooperative behavior between the two atoms. The energy level

shifts ±∆E for the |±〉 states are also shown.

2.3.1 Magnetic Dipole-dipole Interaction between Hydrogen Atoms

The theoretical model for the problem can be found in Appendix 2.A, where the Hamilto-

nian for the two-level H I sample is developed and the main equations of superradiance are

derived. To simplify our discussion, we have limited our analysis to the |F = 0, m = 0〉 ←→
|F = 1, m = +1〉 transition through which a hydrogen atom emits a left circular polariza-

tion (LCP) photon, i.e., with its electric field vector rotating counter-clockwise as seen by

the observer facing the incoming wave. One of the main components of the Hamiltonian

is the magnetic dipole energy term V̂MD that describes the interaction between the atoms

composing the sample (see Equations [2.50] and [2.62]). We now focus on this interaction

to get a sense of how the needed cooperative behavior for superradiance develops between

atoms.
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Hydrogen Atoms Separated by a Small Interatomic Distance (r′ < λ)

In order to have a better understanding of how cooperative behavior is built up in a sample

of N atoms, it is helpful to first study the simpler case of two atoms. We specifically consider

a system consisting of two hydrogen atoms, once again assuming each atom is a two-level

system with the excited state |e〉 (F = 1) and the ground state |g〉 (F = 0). The two atoms

are initially excited, and the state of the system is given by |e1〉 ⊗ |e2〉 = |e1e2〉. Eventually

one of the two atoms spontaneously decays to its ground state, emitting a photon with a

wavelength λ and energy ~ω. If the interatomic distance r′ is much smaller than λ (i.e.,

kr′ � 1) and the two atoms are identical, then one cannot say which atom has emitted the

photon nor which is in a given state. In the case of the two-level hydrogen atom discussed

here, this decay rate must be related to that of the corresponding magnetic dipole transition

given by (in MKS units)

Γ =
µ0k

3
∣∣∣〈e| M̂ |g〉∣∣∣2
3~π

. (2.6)

We can furthermore express the state of the system by either a symmetric |+〉 or antisym-

metric |−〉 combination of the |e1g2〉 and |g1e2〉 state vectors, such as

|+〉 =
1√
2

(|e1g2〉+ |g1e2〉) (2.7)

|−〉 =
1√
2

(|e1g2〉 − |g1e2〉) , (2.8)

which, at this stage of our analysis, have the same energy and are thus degenerate (see

below).

We now refine this model by adding the magnetic dipole-dipole interaction term to the

system’s Hamiltonian. In this model, the magnetic dipole from one atom, say, M̂1, interacts

with the magnetic field B̂2 due to the dipole of the other atom located at a position r′ = r′er′

away in the near field, where kr′ � 1 [Jackson, 1999]

B̂2(r′) =
µ0

4π

[
cos (kr′)

r′3
+

sin (kr′)

r′2

] [
3er′

(
er′ · M̂2

)
− M̂2

]
. (2.9)
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It can be shown that when the two dipoles are aligned, the term of the interaction Hamilto-

nian that is relevant to the present discussion is

Ĥdd = −µ0k
3µ2

B

2π

(
3 |β|2 − 1

) [cos (kr′)

(kr′)3 +
sin (kr′)

(kr′)2

](
R̂+

1 R̂
−
2 + R̂−1 R̂

+
2

)
, (2.10)

with β = eL · er′ . The raising/lowering operators R̂+
1 , R̂−1 , and so on are defined in Equation

(2.47) and the LCP unit vector state eL in Equation (2.54), while µB is the Bohr magneton.

It can further be shown, through a simple diagonalization exercise, that this interaction

Hamiltonian lifts the degeneracy between the |+〉 and |−〉 states of Equations (2.7) and

(2.8), with their corresponding energies becoming [Protsenko, 2006]

E± = E0 ±∆E, (2.11)

with E0 the unperturbed energy of the states and

∆E =
µ0k

3µ2
B

2π

(
3 |β|2 − 1

) [cos (kr′)

(kr′)3 +
sin (kr′)

(kr′)2

]
. (2.12)

It is then also possible to verify through Equation (2.6), setting M̂ = M̂1 + M̂2, that the

transition rates Γ± for the |±〉 states with the initial |e1e2〉 and final |g1g2〉 states are

Γ+ = 2Γ (2.13)

Γ− = 0, (2.14)

where Γ is the transition rate of a single atom acting independently.

The differentiation of energy levels brought about by the magnetic dipole-dipole interac-

tion is, therefore, seen to be a function of β and the interatomic distance r′. More important,

however, is the doubling of the transition rate for the symmetric state |+〉 and the cancella-

tion of that of the antisymmetric state |−〉. Such enhanced and reduced rates are respectively

associated with superradiance and subradiance. This scenario for the two-atom system is

depicted in Figure 2.3.

This behavior can also be understood by considering the symmetry of the system’s Hamil-

tonian and states. The fact that, as could easily be verified, the Hamiltonian of the system
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of two atoms (including the magnetic dipole term V̂MD) is totally symmetric under the per-

mutation of the two aligned atoms when kr′ � 1 implies that only states of like symmetry

can be coupled. It follows that since the initial state |e1e2〉 of the fully inverted system is also

symmetric, it can only couple to the |+〉 intermediate state, and from there to the symmet-

ric ground state of the system |g1g2〉. Accordingly, it is interesting to note that under these

conditions a system prepared in the intermediate antisymmetric state |−〉 will not decay to

the ground state since Γ− = 0. This is evidently different from the case of a noncoherent

system where both atoms eventually decay to their individual ground states |g〉 at the rate

Γ. We therefore see that superradiance and subradiance are characteristics of a coherent

system, where the intensity of radiation does not scale linearly with the number of atoms,

as is the case for a noncoherent system.

When the effect discussed here is generalized to a sample composed of N atoms confined

within a volume V � λ3 (a small sample), we find that some of the conditions that prevailed

for the two-atom case are not realized. Most importantly, Equations (2.11) and (2.12)

indicate that this interaction leads to a distribution of energy levels in the system unless the

atoms all have similar nearest neighborhoods (e.g., a ring-like periodic distribution of atoms;

Gross and Haroche 1982). This spread in energy levels will tend to reduce the strength of

the superradiance effect.

It has nonetheless been observed through numerical calculations and experiments that

coherent behaviors still apply to N -atom small-sample systems where radiation is of long

enough wavelength [Gross et al., 1979], as is the case for the 21 cm line. For kr′ ∼ 1 the

ratio ∆E/E0 ∼ Γ/ω is exceedingly small for the 21 cm line, and the time-scale associated

with the energy shifts is on the order of ~/∆E ∼ (kr′)3 Γ−1 [Benedict et al., 1996], which

for the H I densities considered in this paper renders this type of dephasing negligible. As

will be discussed later, dephasing due to collisions are more likely to set the time-scale for

homogeneous dephasing. The same is not necessarily true at short wavelengths, where it

is very difficult to place a large number of atoms within a subwavelength dimension in a

regular pattern, and in such a sample strong dipole-dipole interactions break the symmetry

and terminate the coherent behavior by introducing large energy-level shifts. Thus most of

the experimental observations of superradiance took place at longer wavelengths (i.e., in the
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infrared as opposed to optical; Benedict et al. 1996).

For an inverted N -atom small sample with initially uncorrelated dipoles, the first photon

emitted by one of the atoms interacts with the dipole moments of the other atoms, resulting

in the build-up of correlation between them. After some time, known as the delay time

tD, a very high degree of correlation is developed in the system, where in the strongest

superradiance regime, the N microscopic dipoles eventually act like one macroscopic dipole.

The rate of emission is then enhanced to NΓ, while the radiation intensity is proportional

to N2 and becomes highly directional, being focused in a beam with a temporal half-width

on the order of 1/ (NΓ).

It should also be noted that the correlation between dipoles can be triggered by an

external source, such as an input radiation field. This can happen if the input radiation field

is stronger than the spontaneous fluctuations in the sample and the coupling of the dipoles

to the external field leads to coherent behaviors. An enhancement of radiation through

coupling to an external field is called triggered superradiance [Benedict et al., 1996].

It can be shown that the superradiance radiation intensity ISR of an ideal H I small-

sample composed of N inverted atoms is given by [Dicke, 1954, Gross and Haroche, 1982,

Benedict et al., 1996]

ISR = N2~ωΓ cosh−2 [NΓ (t− tD)] , (2.15)

where ~ω is the energy of the corresponding atomic transition and the aforementioned delay

time tD = (NΓ)−1 ln (N). In Figure 2.4 the radiation intensity of a HI small sample with

N = 75 atoms confined within a cube of length 4 cm (' λ/5 for the 21 cm line) is plotted

as a function of time using Equation (2.15). The intensity is normalized to NInc, where

Inc = N~ωΓ is for the corresponding noncoherent smallsample. It can be seen in Figure

2.4 that the energy stored in the small sample is radiated away in a single burst. After

time t = tD, the intensity reaches its maximum value, N times that of the noncoherent

intensity, and the peak intensity of the normalized plot becomes equal to one. In this H

I sample, Γ−1 = 3.5 × 1014 s [Draine, 2012], the delay time tD = 2.0 × 1013 s, and the

characteristic time of superradiance is TR = (NΓ)−1 = 4.6 × 1012 s. It should also be

pointed out that in such a sample the correlation between dipoles is initiated by internal
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Figure 2.4: The ideal HI small-sample superradiant system. The radiation intensity is plotted

as a function of time t, for N = 75 atoms confined within a cube of L = 4 cm. After the delay

time tD = 2.0× 1013 seconds the system radiates coherently in a single burst of radiation.

spontaneous fluctuations, and it is assumed that we are dealing with an ideal system, where

the dipole-dipole symmetry-breaking effects are negligible and there are no other relaxation

mechanisms (i.e., cooperative emission is the only decay mechanism).

In a real system, there are some relaxation and dephasing effects that compete with the

build-up of the correlation, and in order to subsequently have superradiance, its characteristic

timescale TR and delay time tD must be shorter than (in some exceptional cases on the order

of) the relaxation/dephasing time-scales [Gross and Haroche, 1982, Benedict et al., 1996].

The nonideal case will be discussed in Section 2.3.2.

Two Hydrogen Atoms Separated by a Larger Interatomic Distance (r′ > λ)

Let us still assume that the atoms are prepared initially in their excited states, with the state

of the two-atom system given by |e1e2〉. Similar to the subwavelength case, a first photon is

radiated, leaving the system in an intermediate state, which, unlike for the subwavelength

case, will be described with any combination of |e1g2〉 and |g1e2〉 states with each having
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equal probability contributions, that is, not only by the |+〉 and |−〉 states. More precisely,

if we associate the general symmetric state

|S〉 =
1√
2

(
|e1g2〉+ eiφ|g1e2〉

)
(2.16)

with the intermediate state shown on the left side of Figure 2.5, then we should assign its

orthogonal antisymmetric state

|A〉 =
1√
2

(
|e1g2〉 − eiφ|g1e2〉

)
(2.17)

to the intermediate state on the right side of the figure [Dicke, 1964]. In Equations (2.16) and

(2.17), φ is a phase term discriminating between the multiple choices for the intermediate

states. To get a better understanding of the transition probabilities for these states, it is

useful to refer to Equation (2.62) for the magnetic dipole interaction term with a radiation

field for two atoms separated by r′ and for a given k. We then find that for coupling to, say,

the |e1e2〉 state the following term comes into play:

V̂MD ∝ R̂+
1 + R̂+

2 e
ikr′ cos(θ′), (2.18)

where θ′ is the angle between k and r′. Given that the transition probability (and rates) are

proportional to
∣∣∣〈e1e2| V̂MD |S〉

∣∣∣2 and
∣∣∣〈e1e2| V̂MD |A〉

∣∣∣2 [Grynberg et al., 2010], we calculate

using Equation (2.16), (2.17), and (2.18)

ΓS ∝ cos2

{
1

2
[φ− kr′ cos (θ′)]

}
(2.19)

ΓA ∝ sin2

{
1

2
[φ− kr′ cos (θ′)]

}
. (2.20)

We therefore see that, although the first photon can be emitted in any direction θ′,

its direction of emission determines φ and the intermediate state of the system since the

transition probabilities peak at φ − kr′ cos (θ′) = 2mπ for ΓS and φ − kr′ cos (θ′) = nπ for

ΓA (m and n 6= 0 are integers). Going through the same exercise for the |g1g2〉 state shows a
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Figure 2.5: The two-hydrogen-atom system separated by r′ > λ. The upper and lower

symmetric states |e1e2〉 and |g1g2〉, respectively, couple to the intermediate symmetric |S〉 and

antisymmetric |A〉 states with the corresponding transition rates ΓS and ΓA. The direction

of emission of the first photon determines the intermediate state of the system, and the

direction of the second photon is correlated with that of the first.

similar dependency on θ′ and φ as in Equations (2.19) and (2.20), which implies that these

transitions rates will also be likely to peak at the same value of φ. It follows that there is

an angular correlation between two successive photons, where the direction of the second

photon is correlated with the direction of the first. This angular correlation can take place

even when the atoms are placed several wavelengths apart, as a result of their coupling to a

common electromagnetic field, and favors intense radiation along elongated geometries (e.g.,

pencil-like or cylindrical structures; Dicke 1964).

Depending on the intermediate state of the system, two different classes of transitions

are possible; coherent and noncoherent. If the emission of the first photon leaves the system

in a symmetric intermediate state (e.g., |S〉), the symmetric coupling to the radiation field

results in the coherent behavior, and consequently the system decays to the symmetric

ground state |g1g2〉 with the corresponding transition rate shown in Figure 2.5. In contrast,
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if the system is in the antisymmetric intermediate state |A〉 the coupling to the radiation field

will be antisymmetric under the exchange of the atoms as they interact with the nonuniform

electromagnetic field, and the system decays noncoherently to the ground state |g1g2〉 with

the decay rate ΓA.

We can also explain this classically by considering two classical radiators separated by

a distance r′ > λ. Over large distances, the phase and the polarization of the radiation

field emitted by each radiator varies from place to place. When the radiation from the two

identical radiators interferes, the intensity of the total field is given by

Itot ∝
〈
(B1 + B2)2〉 (2.21)

∝
〈
B2

1

〉
+
〈
B2

2

〉
+ 2 〈B1 ·B2〉 , (2.22)

and can become as large as four times the intensity of a single radiator I0 if

〈B1 ·B2〉 ∼ I0. (2.23)

If the phase of the radiation from different radiators does not match perfectly, the term con-

taining the correlation 〈B1 ·B2〉 in Equation (2.22) becomes smaller than I0 and consequently

the total intensity Itot decreases until it reaches its minimum for completely out-of-phase ra-

diators. Furthermore, the correlation term can vanish when radiators act independently. In

this case, the total intensity becomes equal to the sum of the intensities of the two indepen-

dent radiators (the so-called noncoherent system).

2.3.2 The N-atom Large sample
(
V > λ3

)
We can extend our discussion for the case of two distant atoms (i.e., r′ > λ) to a large

sample consisting of N atoms distributed over a volume V > λ3. As stated above, the

build-up of correlations in an extended N -atom sample can be understood as a constructive

interference of the radiation by different atoms. In a large sample as a result of propagation

over large distances (i.e., larger than λ), the phase of the radiation varies throughout the

sample (kr′ � 1 and eik·r
′ � 1). Consequently, the phase of the atomic magnetization differs

41



with position. In an inverted large sample, the radiations from different atoms interfere

with each other, and when the magnetizations of the radiators are perfectly in phase, an

intense propagating wave is produced in one direction (the phase-matching condition cannot

be satisfied in all directions).

In order to better understand the phase-matching process, it is useful to go back to the

angular correlation effect described in the two-atom case. In a large sample of N inverted

atoms, when the first photon is emitted, other atoms interact with its radiation field, and

the direction of the next photon is affected by the first one. In a more general sense, when

a photon is radiated in a particular direction k, it becomes more probable to observe the

second photon in the same direction k than any other direction. Thus, as the atoms radiate,

an angular correlation builds up in the sample that triggers the phase-matching process in

a well-defined direction.

Ideal superradiance is the result of the symmetrical evolution of an atom-field system, and

in a large sample, the propagation effects result in the nonuniform evolution of the atoms in

the sample. In order to better understand propagation effects in a large sample, the atomic

medium can be divided into small identical slices with dimensions larger than λ but much

smaller than the length of the sample. A microscopic dipole is then associated with each slice

with its magnitude being proportional to the number of excited atoms in the corresponding

slice. At the beginning, the dipoles in different slices are independent and their radiation

uncorrelated. After some time (or the so-called retarded time delay τD; see Equation (2.34)),

as they interact with their common radiation field, the dipoles lock in to a common phase,

and act as a single macroscopic dipole radiating intensely with ISR = NfInc, where Nf

is the enhancement factor of the superradiant intensity ISR over the noncoherent intensity

Inc determined by the efficiency of the common phase-locking process (through the value of

f ≤ 1). The enhancement factor Nf can become very large in samples with N � 1, and it

converges to N in an atomic system with dimensions of the order of λ, resulting in ISR = NInc

for the most efficient phase-locking process seen in a small sample. In other words, f < 1

implies a limited coherent behavior in a large sample resulting in a smaller output intensity

and weakened superradiance, whereas f = 1 indicates a fully coherent behavior leading to

an intense radiation and perfect superradiance [Gross and Haroche, 1982, MacGillivray and
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Feld, 1976].

This approach has the shortcoming that it cannot explain the initiation of the radiation

in the system by spontaneous fluctuations, and to overcome this problem phenomenological

fluctuations of dipoles in the initial stages of the evolution can be added to the formalism.

In contrast, triggered superradiance can be fully explained in this manner because the cor-

relation process is initiated by an external field, which can be defined classically. It must

be pointed out that the results of this method are valid only if the propagation time of the

radiation τE through a sample of length L (i.e., τE = L/c) is smaller than the superradiance

characteristic time TR given by

TR = τsp
16π

3nλ2L
, (2.24)

where τsp = 1/Γ is the spontaneous decay time of a single atom and n the density of

inverted atoms (see MacGillivray and Feld 1976, Rosenberger and DeTemple 1981, and

Appendix 2.B). This condition (i.e., τE < TR) is known as the Arecchi-Courtens condition,

and it ensures that the atomic magnetization in different parts of the sample can lock into

a common phase and coherent behavior can develop through the sample.

In Appendix 2.A, we derive the evolution equations for the radiation field and the atomic

system using the Heisenberg representation, while in Appendix 2.B we solve the correspond-

ing Maxwell-Bloch system of equations, at resonance, within the framework of the slowly

varying envelope approximation (SVEA). To do so, we adopted the following form for the

radiation magnetic field and atomic magnetization:

B̂±L (r, t) = B̂±0 (r, t) e±i(kz−ωt) (2.25)

M̂± (r, t) = M̂±
0 (r, t) e±i(kz−ωt), (2.26)

with B̂±0 and M̂±
0 corresponding to slowly varying envelope operators. The superradiance of

a cylindrical large sample of length L under ideal conditions is then found to be determined

by the following equations for, respectively, the magnetization, the population inversion, and

the magnetic field:
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M̂+
0 =

µBN

2
√

2V
sin (θ) (2.27)

N̂ =
N

V
cos (θ) (2.28)

B̂+
0 =

iµB

2
√

2γ

∂θ

∂τ
, (2.29)

where γ = µ2
B/2~. The solution for the Bloch angle θ as a function of the retarded time

τ = t− L/c is obtained through the so-called Sine-Gordon equation:

d2θ

dq2
+

1

q

dθ

dq
= sin (θ) (2.30)

with

q = 2

√
zτ

LTR

. (2.31)

In Figure 2.6 we show the solution for the radiation intensity of such an ideal, cylindrical

large sample of H I atoms of length L = 0.02 cTR, where c is the speed of the light, by

numerically solving Equations (2.27)-(2.31). For these calculations we set a Fresnel number

of unity to reduce the impact of diffraction losses, which are not taken into account in our

model. This yields a cylinder of radius

w =

√
λL

π
, (2.32)

which for our ideal sample results in w = 0.036 (cTR)1/2.

In this sample, the Arecchi-Courtens condition is satisfied (i.e., τE � TR), allowing the

use of the homogeneous condition θ0 = 4.9 × 10−12 rad for the initial value of the Bloch

angle. More precisely, for the large sample used for the figure, we assumed that internal

fluctuations dominate over triggered superradiance, and the initial Bloch angle was set with

θ0 = 2/
√
N [Gross and Haroche, 1982].

In Figure 2.6, the retarded-time axis is scaled to TR and the radiation intensity to NInc,

that is, the number of inverted atoms times the corresponding noncoherent intensity that

would otherwise be expected from such a sample. More precisely, for comparison purposes
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Figure 2.6: The ideal cylindrical HI large-sample. The radiation intensity, scaled to NInc, is

plotted versus the retarded time τ = t− L/c normalized to the superradiance characteristic

time-scale TR. The length and radius of the cylinder are, respectively, L = 0.02 cTR and

w = 0.036 (cTR)1/2.

we consider the non-coherent intensity emanating through the sample’s end-fire (i.e., the

end facing the observer) of area A, within the superradiance radiation beam solid angle

φD = λ2/A (in the direction k along which the phase-locking condition is satisfied) normalized

to the solid angle associated with the total noncoherent radiation. We thus have

Inc = N~ω
(

1

Aτsp

)(
φD

4π

)
=

4

3

~ω
ATR

, (2.33)

where Equation (2.24) was used for the last step, and N~ω is the total energy initially stored

in the sample. As shown in the figure, this energy is radiated away through multiple bursts,

a phenomenon known as the ringing effect. This effect can be explained by the fact that

atoms in different locations in the sample radiate at different times. In other words, an atom

at location z = z0, prepared in the excited state at τ = 0, radiates its energy away and
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decays to its ground state, then later on absorbs the energy radiated by another atom at a

location z < z0 and becomes excited, leading to another radiation event.

In a large sample, just as in a small sample, internal field fluctuations or an external

field trigger superradiance, and after the delay time τD the atoms radiate coherently. But

contrary to a small sample, the large sample delay time depends on the initial conditions

and is given by [Benedict et al., 1996]

τD ' TR

4

∣∣∣∣ln( θ0

2π

)∣∣∣∣2 . (2.34)

In Figure 2.6 the first burst of radiation occurs after τD ' 160TR, which is consistent with

the value one finds using Equation (2.34). As can also be seen, this first intensity burst

only carries out a fraction of the total energy stored in the sample, while the remaining

radiation happens through subsequent bursts. The number of burst events depends on the

length of the sample, and as the length is increased radiation emanates through a larger

number of bursts, while the peak intensity of consecutive burst events gradually drops.

This is a consequence of energy conservation and the fact that, in a larger (i.e., longer)

sample, radiation from different groups of atoms along the sample arrive at the end-fire at

different times, and the process of absorbing the radiation, developing correlations between

the dipoles, and eventually reemitting the radiation repeats multiple times over a very long

period of time. On the other hand, when the length of the sample is decreased, the ringing

effect becomes weaker until, for a small sample of dimension of order of λ, it totally washes

out and we only observe a single burst of radiation carrying away all the energy stored in the

system (as in Figure 2.4). Finally, we note that although the maximum radiation intensity

seen in Figure 2.6 seems to imply that f ∼ 0.001 � 1, the large number of atoms present

in the sample ensures that ISR � Inc (see Section 2.4). We should also note, however, that

the Sine-Gordon equation is very sensitive to initial conditions. It therefore follows that the

exact shape of the intensity curve, for example, the number of bursts in Figure 2.6, is also

strongly dependent on θ0.
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Nonideal Case: Dephasing Effects

As was mentioned earlier, the characteristic timescale of superradiance TR and the delay time

τD (for a large-sample) must be shorter than the relaxation/dephasing time-scales to allow

the build-up of correlations in a nonideal sample. These effects include natural broadening

due to the spontaneous decay time-scale τsp of a single atom and collisional broadening

related to the mean time between collisions τcoll for an atom in the sample. Although, as was

stated in Section 2.1, our analysis is aimed at regions of the ISM where thermal equilibrium

has not been reached and where consequently the assignation of a temperature to determine,

for example, collision rates is perhaps ill-defined, we will nonetheless adopt such a procedure

for the rest of our discussion to get a sense of the time-scales involved. Accordingly, in a H

I gas different types of collisions can take place depending on the temperature and density.

For environments of temperatures ranging from approximately 10 K to 300 K, which are

the focus of our analysis, collisions between two neutral hydrogen atoms (H-H collisions)

dominate and fall into two categories: elastic and inelastic. During an elastic H-H collision,

the spacing between the atomic energy levels is slightly affected, but no transition between

them is induced. The change in energy spacing occurs as a result of short-range interaction

forces between the two colliding particles and induces a phase shift in the wave function

of the scattered atoms. After a number of elastic collisions, an atom can lose coherence

with the interacting radiation field as a result of the randomness in the perturbations. In

contrast, in an inelastic H-H collision, the internal energy of the hydrogen atoms will be

changed. This occurs when the two hydrogen atoms with oppositely directed electron spins

approach each other at distances less than approximately 10−8 cm. This process is known

as electron exchange or the spin de-excitation effect. As a result of such a collision, the

induced phase shift can lead to a change in the internal spin states [Wittke and Dicke, 1956],

and it is found that spin de-excitation is the dominating relaxation process in a high-density

collision-dominated H I gas. We therefore find that H-H collisions not only can affect the

strength of a potential coherent 21 cm radiation by removing from the population of the

excited hyperfine states, they also contribute to the line breadth and can change the shape

of the spectral line by affecting the spacing between internal energy levels. For example, the
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time-scale of H-H collisions is estimated to be on the order of 108 s in the case of elastic

scattering and 109 s for spin de-excitations, using the mean effective collisional cross sections

given in Irwin [2007] for a H I gas at T = 100 K and n = 10 cm−3. The mean time between

collision τcoll is thus set to the shortest of these time-scales and must at least be larger than

TR and τD to allow coherent behavior (see Section 2.4).

In addition, other broadening effects, such as Doppler broadening, are further dephasing

mechanisms that can destroy cooperative behavior if their time-scales (importantly the so-

called Doppler dephasing time, i.e., the reciprocal of the Doppler width) are smaller than

TR and τD [Meziane et al., 2002, Bonifacio and Lugiato, 1975]. In a thermally relaxed

gas, thermal motions are probably the most important dephasing effects and result in line

broadenings that correspond to very short dephasing time-scales (e.g., Ttherm ∼ 10−3 s at

T = 100 K). In the presence of such strong dephasing effects, correlations cannot develop

between the dipoles, and any coherent interaction will be terminated right from the start.

Hence our earlier comment that we do not expect to find superradiance under conditions

of thermal equilibrium, but potentially only in (out-of-equilibrium) regions where strong

velocity coherence can be maintained along the line of sight. Furthermore, this condition

may be only met among a group of atoms in such regions, therefore reducing the number of

inverted atoms in the sample that could participate in coherent interactions. However, we

know from maser observations that a high level of velocity coherence can be achieved in some

regions of the ISM, and we expect that superradiance could happen under similar conditions.

As was mentioned in Section 2.1, the main inversion pumping mechanism likely involved for

the 21 cm transition points to the surroundings of H II as potential sites for superradiance in

this spectral line. It follows that we should also anticipate an analogous (very small) volume

filling factor for the emitting regions of superradiant sources as for masers.

In Figure 2.7 the intensity of the H I large sample discussed in Section 2.3.2 (and presented

in Figure 2.6 for the ideal case) is plotted as a function of the retarded time τ for the special

case where dephasing/relaxation effects are included and characterized by a single time-scale

set to T ′ = 541TR (see Section 2.4 and Appendix 2.B). These results were obtained by once

again numerically solving Equation (2.30), while the magnetization and population inversion

are given by
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Figure 2.7: The non-ideal HI cylindrical large-sample. All parameters are as in Figure 2.6,

except that dephasing/relaxation effects are included for the special case where they are

characterized by a single time-scale T ′ = 541TR. The ringing effect is weakened as a result

of the dephasing.

M̂+
0 =

µBN

2
√

2V
sin (θ) e−τ/T

′
(2.35)

N̂ =
N

V
cos (θ) e−τ/T

′
, (2.36)

and the dimensionless parameter

q = 2

√
zτ ′

LTR

(2.37)

with

τ ′ = T ′
(

1− e−τ/T ′
)
. (2.38)

The magnetic field is once again given by Equation (2.29). The intensity and time axes are

scaled like those of Figure 2.6 for the ideal H I sample. We can see from Figure 2.7 that the
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ringing effect seen in the ideal sample is also present here but is weakened by the dephasing

and basically terminated after τ ∼ 1000TR (i.e., approximately the dephasing time-scale).

The dephasing effects also affect the maximum energy radiated away through each burst

event and result in slightly weaker intensities.

2.4 Discussion - Cooperative Behavior in a HI Gas in

the ISM

As is made evident from our previous discussions, the characteristic time-scale of super-

radiance TR is a fundamental criterion to consider in the investigation of this cooperative

behavior. For an ideal small sample of volume V < λ3 ∼ 104 cm3, for total hydrogen densities

1 cm−3 < nH < 100 cm−3 and a population inversion η ∼ 0.01, the superradiance time-scale

TR =
τsp

ηnHV
, (2.39)

∼ 1012

nH

s (2.40)

is such that TR ∼ 1010−1012 s, where τsp ∼ 1014 s for the 21 cm line. As mentioned in Section

2.3.2, tD (≈ TR, in this case) must be shorter than the relaxation/dephasing time-scales in

order to allow the build-up of cooperative behaviors in the sample. In a typical H I gas, an

important relaxation mechanism for an atom is collisional de-excitation, the rate for which

is given by

τcoll =
1

nHκ10

. (2.41)

Values for the collisional de-excitation rate coefficient κ10 for the hyperfine state F = 1

over a range of temperatures can be found in Zygelman [2005], and for 10 K < T < 300 K

we find τcoll ∼ 108 − 1012 s for the previous range of atomic hydrogen densities. These

collision rates become τcoll ∼ 107− 1012 s when elastic collisions are considered [Irwin, 2007].

It can thus be seen that the expected collisional relaxation time-scales are likely to render

superradiance improbable for small H I sample, especially at higher temperatures. This

suggests the investigation of larger samples containing more atoms.
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Although in a large sample the general cooperative behavior is weaker than the ideal

Dicke superradiance, the greater number of atoms will reduce TR, increase the radiation

intensity, and make it more likely to observe the effect. However, it is also important to

realize that not only must the condition TR < T ′ be realized for establishing superradiance,

such that the noncoherent de-excitation does not become the dominant mechanism to release

the energy of the system, but we must also ensure that τD < T ′ is verified since τD > TR

from Equation (2.34). In other words, the delay time needed to establish coherence in the

sample must also be smaller than the dephasing time-scale.

It is important to note that the requirement τD < T ′ effectively sets a threshold that

must be met for the onset of superradiance. From the dependency of τD on the different

parameters (see Equation [2.34]) we find that, for a given transition, it can only be reduced

below T ′ through a corresponding increase of the inverted population’s column density nL.

It follows that superradiance will only be triggered when the column density meets or exceeds

some critical value [Rajabi and Houde, 2016]. Contrary to what is the case for laboratory

superradiance experiments, where short laser pulses are used to create the necessary pop-

ulation inversion, the existence of a threshold also implies that there is no requirement for

the presence of a pulse to initiate superradiance in the ISM (but see below). It only matters

that a critical level of inversion is reached, and the rate at which it is attained is irrelevant.

However, stronger superradiance bursts can be achieved in the presence of population-

inverting pulses that bring the column density to levels significantly exceeding its critical

value. But in such cases the values attained for nL can be limited by the pumping time TP

over which the population inversion is achieved throughout the sample. For example, as we

increase the length of the sample, TR and τD decrease, but, it becomes necessary to achieve the

population inversion over a larger length-scale. There are two types of pumping mechanisms

available to achieve the population inversion in an atomic system: swept pumping and

instantaneous pumping [MacGillivray and Feld, 1981, Gross and Haroche, 1982]. In the

swept-pumping scenario, the atomic sample is pumped longitudinally by a pulse traveling

along the sample, and the pumping process is characterized by a finite pumping time TP,

whereas for instantaneous pumping a transverse excitation causes the simultaneous excitation

of all atoms in the sample, resulting in TP ≈ 0. When the pumping process cannot be

51



achieved instantaneously but is realized over a finite time, the output intensity of a small

or a large sample is only affected slightly as long as TP < τD. The main effect of the finite

pumping time is then an increase in the delay time of the superradiant process in comparison

to what one expects from Equation (2.34): the actual delay time τ ′D will be longer than the

theoretical delay time τD [MacGillivray and Feld, 1981].

However, if pumping occurs at an approximately constant rate over some pulse time

interval in a H I gas (i.e., dn(t)/dt ' Λ, where Λ is a constant) and the first burst of super-

radiance radiation is emitted before the expected inversion density n is achieved throughout

the sample, then we need to replace n by its effective value at time t = τ ′D (i.e., neff = n (τ ′D)).

In this case, only a fraction of atoms contribute to the first burst, and the system cannot emit

as much of the energy stored within it through a series of coherent bursts [MacGillivray and

Feld, 1981]. If the pulse (pumping) time becomes too long and the first superradiant burst is

emitted before the inversion is achieved along the sample, only a few coherent bursts can be

observed. This happens as the system reaches a quasi-steady state, in which the growth and

depletion of population occur with the same rates. In the quasi-steady state, the radiation

intensity is given by I = ~ωL (dn/dt) and is no longer proportional to N2 [MacGillivray and

Feld, 1981]. The transition from a superradiant to the quasi-steady regime was first observed

in the laboratory by Gross et al. [1976]. For an astronomical system, this would correspond

to passing from a superradiant system to an astronomical (mirror-less) maser. We therefore

conclude that, in the ISM, superradiance will not happen in a steady-state regime, but will

rather be characterized by strong variability in radiation intensities over time. One could,

for example, conceive of an emitting region harboring a maser that would be episodically

modulated with strong bursts of radiation due to superradiance, perhaps resulting from some

radiative trigger or a sudden decrease in τD (from a corresponding increase in the inverted

population; for example, see Rajabi and Houde 2016, Rajabi and Houde 2016).

In a more general context, i.e., without limiting the discussion to the 21 cm line, it

is also important to note that superradiance triggered through population-inverting pulses

(that bring nL significantly above its critical value) cannot result if these pulses are due to

collisions alone. This is because of the undesirable consequences that collisions have on the

dephasing/relaxation of a sample. That is, if TP is the pumping time due to collisions, then
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we know from our previous discussion that TP < τD for pulse-initiated superradiance to be

possible. But since in this case the time-scale for collision dephasing is T ′ = TP, it follows

that τD > T ′ and superradiance will be inhibited by collisions.

When N � 1 we have for the average delay time 〈τD〉 = TR ln (N) [Gross and Haroche,

1982], which means that 〈τD〉 is usually an order of magnitude or two larger than TR for the

large samples to be studied. As we will now see, for the range of densities and temperatures

considered for our analysis, 〈τD〉 < T ′ can be realized in a large set of conditions. In a H I

large sample where all the necessary conditions for superradiance are fulfilled (i.e., TP, τE <

〈τD〉 < T ′, with sufficient velocity coherence), we can estimate the time-scale of potential

superradiance bursts using the results of our numerical analyses for the corresponding large

sample, as long as the Fresnel number is kept close to unity. For the following examples we

considered a density nH = 10 cm−3 with an inversion factor η = 0.01, implying an inverted

population of 940 atoms in a volume λ3. Our results indicate that radiation bursts over

time-scales on the order of days (i.e., from Figure 2.7 a few hundred times TR = 103 s, while

〈τD〉 = 5.2 × 104 s) can be associated with cylindrical H I samples of length and radius

L ≈ 1011 cm and w ≈ 9× 105 cm, respectively, while bursts over timescales on the order of

minutes (i.e., TR = 1 s and 〈τD〉 = 66 s) can be associated with samples with L ≈ 1014 cm

(approximately equal to 6× 10−5 pc; see Storer and Sciama 1968) and w ≈ 3× 107 cm. In

all cases, we have T ′ ≈ τcoll > 〈τD〉 over a wide range of conditions, ensuring that dephasing

effects will not destroy atomic coherent behaviors, and we found f ≈ 10−4 (from Figure 2.7)

with an efficiency factor Nf ranging from approximately 1012-1024, from the shortest to the

longest sample length L. These results imply a corresponding amplification factor of 1010 to

1022 over the corresponding noncoherent intensity of such samples (taking into account the

noninverted population).

Although the samples considered above would probably not yield strong detections (e.g.,

for the sample of length L ≈ 1014 cm and w ≈ 9 × 107 cm we calculate an integrated flux

∼ 10−22 erg s−1 cm−2 at a distance of 400 pc), given the small radii considered here it is

unlikely that only a single superradiant system would be realized in a region harboring an

inverted population. That is, if we assume a reasonable maser spot size for the population-

inverted region (e.g., wspot ∼ 1 au), then it becomes possible that a very large number
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of superradiant systems could simultaneously erupt (wspot/w ∼ 106) and render a strong

detection more likely when the conditions for superradiance are met [Rajabi and Houde,

2016]. This leads us to suggest, that despite the simplicity of and the approximations used

in our model, significant intensity variability due to superradiance could be detectable for

the 21 cm line in some regions of the ISM.

2.5 Conclusions

We have applied the concept of superradiance introduced by Dicke [1954] to the ISM by

extending the corresponding analysis to the magnetic dipole interaction characterizing the

atomic hydrogen 21 cm line. Our results suggest that only relatively low levels of population

inversion over short astronomical length-scales (i.e., ≈ 0.001 AU) are needed to sustain

the cooperative behavior leading to superradiant radiation in the ISM. This phenomenon is

characterized by strong intensity variability over a range of time-scales, and our numerical

calculations show that such episodic bursts of radiation could potentially happen over periods

ranging from hours to months.

This first paper on this topic has, in part, served as an introduction to superradiance in

the ISM, but much remains to be done. For example, we have not attempted to characterize

the shapes of superradiant spectral lines or their polarization properties, which for the 21

cm line would necessitate the consideration of all hyperfine F = 1 ↔ 0 transitions. In

subsequent publications, we thus intend to extend our analysis to tackle these questions and

investigate the potential for superradiance in other important astronomical spectral lines.

It would further be beneficial to broaden the scope of our analysis to include a wider range

of conditions such effects as pumping, diffraction losses, and different sample geometries

associated to different Fresnel numbers.
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Appendices

2.A Theoretical Model

2.A.1 The Hamiltonian and the Maxwell-Bloch Equations

We follow Dicke [1954] and approximate the Hamiltonian for a sample of N hydrogen atoms

with each atom acting as a two-level system, while taking into account the magnetic nature

of the dipole-radiation interaction applicable to this case:

Ĥ = Ĥ0 + Ĥrad + ~
N∑
j=1

ωj

(
R̂j3 +

1̂

2

)
−

N∑
j=1

M̂j · B̂ (rj) . (2.42)

In this Hamiltonian equation, Ĥ0 contains the translational and interatomic interaction

energies of the atoms, Ĥrad is the radiation field Hamiltonian term, ~ωj
(
R̂j3 + 1̂/2

)
is the

internal energy of the jth two-level atom (1̂ is the unit operator), which has the eigenvalues 0

and ~ωj, and the last term stands for the interaction between the electromagnetic field and

the magnetic dipole of the jth atom M̂j. Since this Hamiltonian is written under the magnetic

dipole approximation, it implies that the magnetic field B̂ does not change considerably over

the size of the atom and is determined by its value at the position of the center of mass of the

atom, rj. Finally, the effects of the hyperfine interaction between the proton and electron

spins within a single hydrogen atom and the Zeeman interaction due to an external magnetic

field would be included in the frequency ωj of the atomic transition.

Following Dicke, we define the operators R̂x, R̂y, R̂3, and R̂2 such that

R̂K (r) =
N∑
j=1

R̂jKδ (r− rj) , K = x, y, 3 (2.43)

R̂2 (r) = R̂2
x + R̂2

y + R̂2
3 (2.44)[

R̂2 (r) , R̂K (r′)
]

= 0 (2.45)[
R̂a (r) , R̂b (r′)

]
= iεabcR̂c (r) δ (r− r′) , a, b, c = x, y, 3, (2.46)

which are similar to the relations found in the spin or general angular momentum formalisms.
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We can also define the raising and lowering operators

R̂± (r) = R̂x(r)± iR̂y(r), (2.47)

which further verify the following commutation relations:

[
R̂±(r), R̂3(r′)

]
= ∓R̂±(r)δ(r− r′) (2.48)[

R̂+(r), R̂−(r′)
]

= 2R̂3(r)δ(r− r′). (2.49)

It is clear from the form of the Hamiltonian and the commutation relations between the

operators that R̂2 and R̂3 commute with Ĥ and, therefore, share the eigenfunctions |r,mr〉
introduced in Section 2.2.1 to describe the state of the system.

The atomic hydrogen transitions at 21 cm are magnetic dipolar in nature and bring into

consideration the next leading term in our analysis, i.e., the magnetic dipole interaction

found on the right-hand-side of Equation (2.42):

V̂MD = −
N∑
j=1

M̂j · B̂ (rj) , (2.50)

which is at the center of our analysis. In general, the magnetic dipole operator M̂j of the

jthatom can be written as [Condon and Shortley, 1951]

M̂j = µF F̂j (2.51)

µF ' gJ

[
F (F + 1) + J (J + 1)− I (I + 1)

2F (F + 1)

]
, (2.52)

where Ĵ is the sum of the electronic orbital L̂ and spin Ŝ angular momenta (i.e., Ĵ = L̂+ Ŝ),

and F̂ is the sum of Ĵ and the nuclear spin Î (i.e., F̂ = Ĵ + Î). For the hyperfine levels of

the ground state of the hydrogen atom, we have F = 0 and 1, J = S = 1/2, I = 1/2, and

µF ' gJ/2, whereas gJ = geµB/~. In this equation, ge ' 2 and µB is the Bohr magneton. The

operator F̂j can also be written in terms of pseudospin operator R̂j as F̂j = ~
(
R̂j + 1̂/2

)
,

allowing us to write

M̂j = µB

(
R̂j +

1̂

2

)
. (2.53)
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For the |F = 0,m = 0〉 ←→ |F = 1,m = +1〉 LCP transition we consider, the circular

polarization state of radiation can be defined using the corresponding unit vectors [Grynberg

et al., 2010]:

eL = − 1√
2

(ex + iey) (2.54)

eR =
1√
2

(ex − iey) , (2.55)

which with e3 can be used to write the pseudospin operator as

R̂j =
1√
2

(
−R̂−j eL + R̂+

j eR

)
+ R̂j3e3. (2.56)

In a HI gas, the LCP magnetic component of the radiation propagating along the k

direction interacts with the magnetic dipole of a hydrogen atom, resulting in a transition

between the two hyperfine levels. The corresponding magnetic field operator can be expressed

as

B̂L(r, t) =
∑
k

[
B̂+
Lk(r)e−iωkteL + B̂−Lk(r)eiωkte∗L

]
, (2.57)

where

B̂+
Lk(r) =

1

c

√
~ωk
2ε0V

âLke
ik·r (2.58)

=
(
B̂−Lk

)†
, (2.59)

and V is the arbitrary volume of quantization. In Equations (2.58) and (2.59), aLk and a†Lk

are, respectively, the LCP second quantization field annihilation and creation operators, and

they obey the following commutation relation:

[
âLk, â

†
Lk′

]
= 1̂δkk′ . (2.60)

As a result, one can express the magnetic dipole interaction term in Equation (2.50) for

transitions involving only LCP photons as
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V̂MD = −µB

N∑
j=1

R̂j · B̂L(rj) (2.61)

=
µB√
2c

N∑
j=1

∑
k

√
~ωk
2ε0V

(
R̂+
j âLke

ik·rj + R̂−j â
†
Lke
−ik·rj

)
, (2.62)

using R̂ · eL = −R̂+/
√

2 and R̂ · e∗L = −R̂−/
√

2. It will also prove useful to write Equation

(2.62) in the following form:

V̂MD = −
ˆ
V

M̂(r) · B̂L(r)d3r, (2.63)

which allows a definition of the transverse macroscopic magnetization operator M̂(r) in

terms of the raising and lowering density operators R̂+ and R̂− as follows:

M̂ (r) = −µB√
2

[
R̂− (r) eL + R̂+ (r) e∗L

]
(2.64)

≡ M̂
+

(r) + M̂
−

(r). (2.65)

Neglecting inhomogeneous broadening effects (i.e., we omit Ĥ0 and set ωj = ω0) and

inserting Equation (2.62) in Equation (2.42), the Hamiltonian of the HI-sample system in-

teracting with the 21 cm line via the (F,mF : 0, 0←→ 1,+1) transition becomes

Ĥ = ~ω0

N∑
j=1

(
R̂j3 +

1̂

2

)
+ Ĥrad +

µB√
2c

∑
k

√
~ωk

2ε0V

N∑
j=1

(
R̂+
j âLke

ik·rj + R̂−j â
†
Lke
−ik·rj

)
.

(2.66)

The radiation Hamiltonian term Ĥrad can be expressed in terms of the second quantized

operators âLk and â†Lk, and âRk and â†Rk associated with left and right circular-polarized

radiation states, respectively, with

Ĥrad = ~ω
∑
k

[(
â†LkâLk +

1̂

2

)
+

(
â†RkâRk +

1̂

2

)]
. (2.67)

As discussed in the literature [Gross and Haroche, 1982, Benedict et al., 1996], the evo-

lution of the atomic system can be calculated using the Heisenberg equation of motion for

the operator X̂ in a system described by the Hamiltonian Ĥ with
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dX̂

dt
=

1

i~
[X̂, Ĥ]. (2.68)

One can then readily find the following equations of motions for R̂+, R̂−, and R̂3:

dR̂+

dt
= iω0R̂

+ − i
√

2µB
~

R̂3B̂
−
L (2.69)

dR̂−

dt
= −iω0R̂

− +
i
√

2µB
~

R̂3B̂
+
L (2.70)

dR̂3

dt
= − iµB√

2~

(
R̂+B̂+

L − R̂−B̂−L
)
, (2.71)

where, for simplicity, we now set B̂±L for the value of the LCP component of the magnetic

field averaged over the positions of the atoms. In a similar way, we can write the following

equations of motion for the raising and lowering magnetization operators M̂
+

(r) and M̂
−

(r)

using Equation (2.64) as

dM̂
+

dt
= −iω0M̂

+ − iµ2
B

~

(
eL · B̂+

L

)
R̂3eL (2.72)

dM̂
−

dt
= iω0M̂

−
+
iµ2

B

~

(
e∗L · B̂−L

)
R̂3e

∗
L. (2.73)

It is also useful to define the operator N̂

N̂ = 2R̂3 (2.74)

= 2
N∑
j=1

R̂3jδ(r− rj), (2.75)

which can be interpreted as a population inversion density operator considering that R̂3j has

eigenvalues of ±1/2 and the eigenvalue of R̂3 =
∑
R̂3j is equal to half of the population

difference between the excited level F = 1, mF = 1 and the ground level F = 0, mF = 0 at

time t. Using Equation (2.75) one can show that Equations (2.71)-(2.73) can be rewritten

as

dN̂
dt

=
2i

~

(
M̂

+ · B̂+
L − M̂

− · B̂−L
)

(2.76)
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dM̂
+

dt
= −iω0M̂

+ − iγ
(
eL · B̂+

L

)
N̂eL (2.77)

dM̂
−

dt
= iω0M̂

−
+ iγ

(
e∗L · B̂−L

)
N̂e∗L, (2.78)

where γ = µ2
B/2~.

Furthermore, in the Heisenberg representation one can derive the equation

−∇2B̂±L +
1

c2

∂2B̂±L
∂t2

= −µ0∇2M̂
±

(2.79)

for the evolution of the magnetic component of the radiation field when defining

B̂±L (r, t) = B̂±0 (r, t) e±i(kz−ωt) (2.80)

M̂± (r, t) = M̂±
0 (r, t) e±i(kz−ωt), (2.81)

using the slowly varying envelope approximation (SVEA), where B̂±0 and M̂±
0 are slow-

varying envelope operators multiplied by fast-oscillating exponential terms propagating in

the positive z direction. Within the context of the SVEA, we assume that the B̂±0 and

M̂±
0 significantly change over time-scales much longer than 1/ω and length-scales much

larger than 1/k [Gross and Haroche, 1982]. Upon applying the SVEA, Equation (2.79) is

simplified to (
∂

∂z
+

1

c

∂

∂t

)
B̂±0 ' ± iµ0ω

2c
M̂±

0 . (2.82)

In the derivation of Equation (2.82), we neglected any transverse effects on the radiation field

and magnetization (i.e., ∂B±0 /∂x ≈ ∂B±0 /∂y ≈ 0 and ∂M̂±
0 /∂x ≈ ∂M̂±

0 /∂y ≈ 0), which

should be included in numerical calculations for a true three-dimensional sample.

Using Equations (2.80) and (2.81), we can rewrite Equations (2.76), (2.77), and (2.78)

at resonance, that is, when ω = ω0, in the reduced form of

dM̂±
0

dt
= ∓iγB̂±0 N̂ (2.83)

dN̂
dt

=
2i

~

(
M̂−

0 B̂
+
0 − M̂+

0 B̂
−
0

)
. (2.84)
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Equations (2.82)-(2.84) are known as the Maxwell-Bloch equations and can be solved si-

multaneously to determine the time evolution of the radiation field, magnetization, and

excitation state for an ideal sample.

2.A.2 Dephasing Effects and Pumping

The previous derivations for the ideal case must be augmented appropriately when dealing

with more realistic conditions for the ISM, where dephasing and relaxation effects cannot

be neglected and continuous pumping of the atomic system can take place. One can phe-

nomenologically add the corresponding terms to the atomic equations as follows [Mandel,

2010]:

dM̂+
0

dt
= −iγB̂+

0 N̂−
1

T2

M̂+
0 + ΛM (2.85)

dN̂
dt

=
2i

~

(
M̂−

0 B̂
+
0 − M̂+

0 B̂
−
0

)
− 1

T1

(
N̂− Neq

)
, (2.86)

where T1 and T2 are the characteristic time-scales for, respectively, population decay and

demagnetization, Neq is the “equilibrium” value for N̂ obtained in the absence of interaction

with the coherent field B̂L, and ΛM represents any source term of magnetization.

The one-dimensional magnetic field Equation (2.82) can also be adapted to the more

realistic conditions by adding a correction term to account for the loss of radiation due to

transverse effects and diffraction, which depend on the shape and symmetry of the sample.

These are characterized by the Fresnel number

Fn =
A

λL
, (2.87)

where A and L, respectively, stand for the cross section and length of the sample. For

samples of cylindrical symmetry with a Fresnel number smaller than one, transverse effects

of the field are negligible, whereas the diffraction of radiation along the propagation axis can

play an important role. Gross and Haroche [1982] have shown that a damping term B+
0 /Ldiff

can be included in the field equation to take into account diffraction effects in samples with

Fn � 1. For such a sample, Equation (2.82) can be approximately augmented to

(
∂

∂z
+

1

c

∂

∂t

)
B̂+

0 (z, τ) +
1

Ldiff

B+
0 (z, τ) ' iµ0ω

2c
M̂+

0 , (2.88)
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where Ldiff ' FnL/0.35 [Gross and Haroche, 1982].

The atom-field Equations (2.85), (2.86), and (2.88) also form a Maxwell-Bloch system of

equations and provide a more complete and realistic picture for the evolution of the system.

This set of equations can be numerically solved for a given set of parameters T1, T2, Neq,

and ΛM.

2.B The Sine-Gordon Solution

The set of Equations (2.85), (2.86) and (2.88) can only be solved analytically for a few special

cases [Mandel, 2010]. We first consider the ideal condition, where the dephasing/relaxation,

diffraction, and pumping terms are neglected (i.e., T1 = T2 = ∞, Ldiff = ∞, and ΛM = 0).

Effecting a change of variable from t to the retarded time τ = t− z/c yields

(
∂

∂z
+

1

c

∂

∂t

)
=

∂

∂z
(2.89)

∂

∂t
=

∂

∂τ
, (2.90)

which can be used to simplify the set of Maxwell-Bloch equations (2.82)-(2.84) to

∂M̂±
0

∂τ
= ∓iγB̂±0 N̂ (2.91)

∂N̂
∂τ

=
2i

~

(
M̂−

0 B̂
+
0 − M̂+

0 B̂
−
0

)
(2.92)

∂B̂±0 (z, τ)

∂z
' ± iµ0ω

2c
M̂±

0 . (2.93)

The form of Equations (2.91) and (2.92) implies that
∣∣∣M̂+

∣∣∣2 +
∣∣∣M̂−∣∣∣2 + (µ2

B/4)
∣∣∣N̂∣∣∣2 is

a conserved quantity and allows us to redefine M̂±
0 and N as

M̂+
0 =

µBN

2
√

2V
sin (θ) (2.94)

N̂ =
N

V
cos (θ) , (2.95)

where N is the number of inverted atoms in the sample at τ = 0 and θ is the so-called Bloch

angle.
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Taking these solutions into account, at resonance Equations (2.91) and (2.93) are trans-

formed to

B̂+
0 =

iµB

2
√

2γ

∂θ

∂τ
(2.96)

∂B̂+
0

∂z
=

iµ0ωµBN

4
√

2cV
sin (θ) (2.97)

in the retarded time frame. Taking the spatial derivative of Equation (2.96) we can write

∂B̂+
0

∂z
=

iµB

2
√

2γ

∂2θ

∂z∂τ
, (2.98)

which when compared to Equation (2.97) yields the following nonlinear equation

∂2θ

∂z∂τ
=
µ0µ

2
BωN

4~cV
sin (θ) (2.99)

upon using γ = µ2
B/2~. This equation is further transformed with the introduction of a new

dimensionless variable [Gross and Haroche, 1982]

q = 2

√
zτ

LTR

, (2.100)

to

d2θ

dq2
+

1

q

dθ

dq
= sin (θ) , (2.101)

with TR the characteristic time for superradiance given by Equation (2.24). Equation (2.101)

is the so-called Sine-Gordon equation [Gross and Haroche, 1982]. This equation can be

numerically solved and the corresponding solution for θ substituted back into Equation (2.96)

to determine the field amplitude B̂+
0 emerging from the sample (at z = L) as a function of

the retarded time τ . Knowing B̂+
0 (L, τ), the output radiation intensity I is given by

I =
c

2µ0

∣∣∣B̂+
0

∣∣∣2 . (2.102)

A more realistic case where dephasing/relaxation is included with a single time-scale (i.e.,

T ′ = T1 = T2 6= ∞, Ldiff = ∞, and ΛM = Neq = 0) can be dealt with in a similar manner.

We then have the corresponding definitions for Equations (2.94) and (2.95)
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M̂+
0 =

µBN

2
√

2V
sin (θ) e−τ/T

′
(2.103)

N̂ =
N

V
cos (θ) e−τ/T

′
, (2.104)

which also lead to Equation (2.96) for B̂+
0 . Performing a spatial derivative on Equation

(2.96) yields

∂2θ

∂z∂τ
=
µ0µ

2
BωN

4~cV
sin (θ) e−τ/T

′
. (2.105)

A comparison of Equation (2.105) with (2.99) shows that the presence of dephasing implies

a source term containing a decaying exponential. This exponential factor can be removed

from this equation through the following change of variable:

τ −→ τ ′ = T ′
(

1− e−τ/T ′
)
, (2.106)

which allows us to transform Equation (2.105) to the Sine-Gordon equation (i.e., Equation

(2.101)) by redefining the dimensionless parameter q with the following:

q = 2

√
zτ ′

LTR

. (2.107)
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Chapter 3

Dicke’s Superradiance in

Astrophysics. II – The OH 1612 MHz

Line1

3.1 Introduction

The OH (hydroxyl) rotational transitions at nearly 18 cm were the first interstellar molecular

lines detected in the radio range [Weinreb et al., 1963, Bertolotti, 2015]. The ground level

of that molecule is split into two sub-levels known as Λ-doublets with ±Λ~ energies. Each

component of the Λ-doublets is also split into two hyperfine levels labelled F = 1 and F = 2,

as shown in Figure 3.1. The transitions that connect sub-levels with the same F -values are

called the main lines, whereas the transitions between sub-levels of different F -value are

called the satellite lines [Stahler and Palla, 2008]. The four transitions including the two

main lines at 1665 MHz and 1667 MHz and the two satellite lines at 1612 MHz and 1720

MHz compose the group of 18 cm wavelength lines. In optically thin regions under conditions

of local thermodynamic equilibrium (LTE), the expected intensity ratios are approximately

1:5:9:1 for the 1612 MHz, 1665 MHz, 1667 MHz and 1720 MHz lines, respectively [Elitzur,

1992]. However, in several observations different line ratios were measured [McGee et al.,

1Rajabi, F., & Houde, M. 2016, The Astrophysical Journal, 828, 57
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Figure 3.1: The schematic diagram of the ground rotational state of the OH molecule. The

ground rotational level labelled by 2Π3/2, J = 3/2 splits into Λ−doublet sub-levels shown

as ± states. This splitting is due to the interaction between the rotational and electronic

angular momenta of the molecule. Each Λ−doublet sub-level further splits into two hyperfine

levels as a result of the interaction between the electron and nuclear spins of hydrogen atom.

The four possible maser transitions are shown with their corresponding frequencies in MHz.

Note that the hyperfine splitting is not to scale.

1965], and in some cases the intensity of a given line significantly exceeded that predicted

using LTE [Weaver et al., 1965]. The strong anomalous line intensities were explained by

postulating maser action for the corresponding transitions.

Maser action occurs when LTE conditions are violated and velocity coherence is achieved

between a group of population-inverted molecules. In the presence of a pumping mechanism

that can maintain a higher population in the excited level, the corresponding transition

can exhibit the exceptionally high intensity typical of maser sources [Elitzur, 1992]. The

aforementioned study of Weaver et al. [1965] reported the first detection of an OH maser,

which was to be followed by several other detections in different regions of the interstellar

medium (ISM). A few years later Turner [1970] suggested classifying OH maser sources into

two classes: Type I and Type II, depending on their brightest detected line. In Type I,

the main-line transitions, especially the one at 1665 MHz, are dominant. The sources in

this class are usually detected in star-forming sites near H II regions. Type II sources are
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further divided into Type IIa and Type IIb in which the brightest line corresponds to one

of the satellite lines. Type IIa OH maser sources, which are usually detected in supernova

remnants, are brightest at 1720 MHz, while in Type IIb the 1612 MHz line is dominant.

These sources are often spatially associated with highly evolved stars undergoing rapid mass

loss and enclosed in a circumstellar shell [Gray, 2012]. In addition, the first extragalactic

OH maser was detected in 1982 by Baan et al. [1982] in Arp 220 (IC 4553) with a luminosity

approximately 108 times greater than that of typical Galactic OH masers. This led to the

term “megamaser.” Since then several OH megamasers, and even gigamasers, have been

detected [Darling and Giovanelli, 2002], usually in the nuclear region of luminous or ultra-

luminous infrared galaxies [Lockett and Elitzur, 2008].

The existence of 18-cm OH masers confirms the possibility of inverting populations in

the ground level Λ-doublets of this molecule in the ISM. Different pumping mechanisms

are suggested for different types of Galactic and extragalactic masers. For instance, Type

IIb maser sources near evolved stars are known to be pumped by the far-infrared radiation

emitted from dust (Elitzur 1992, He 2005, Gray et al. 2005; see Section 3.2 for more details),

while it is suggested that the pumping of OH Type I main-line masers is controlled by

collisions with H2 molecules in star-forming regions [Kylafis and Norman, 1990]. Maser

action also requires line-of-sight velocity coherence, which can lead to an abnormally narrow

line-width through amplification along the radiation path. For Galactic OH 18-cm lines the

typical line width is ≤ 1 km/s [McBride et al., 2013].

Population inversion and velocity coherence are also required for the superradiance co-

operative radiation process. In 1954, R. H. Dicke pointed out that a sample consisting

of N excited atoms/molecules interacting with a common radiation field cannot always be

considered as a collection of independent radiators [Dicke, 1954]. He showed that, under

ideal conditions and after a time delay, the sample of atoms/molecules can radiate its stored

energy at an enhanced rate NΓ; N times faster than the spontaneous emission rate Γ of a

single atom/molecule. As a result, the intensity of the output radiation ISR scales as the

square of the number of inverted atoms/molecules N , unlike the linear dependency of the

radiation intensity from the corresponding non-coherent system Inc (Rajabi and Houde 2016;

hereafter Paper I).
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In the ISM, it is usually assumed that atoms/molecules interact with the radiation

field independently and the intensity of the radiation becomes a linear function of the

atomic/molecular density (if the line is optically thin). But in the case of the OH 18-

cm line, for which the detection of several maser sources verifies the possibility of achieving

population inversion and velocity coherence in some regions, this assumption may fail and

it becomes important to examine the possibility of superradiance and coherent interactions.

Accordingly, in this paper we follow on the superradiance analysis performed in Paper I for

the HI 21 cm (magnetic dipole) transition with a similar study for the OH 18 cm (electric

dipole) line. In order to do so, we first discuss the necessary conditions for superradiance in

Section 3.2, and narrow down our focus to the 1612 MHz line interacting with OH molecules

in the outer regions of the circumstellar envelope (CSE) of highly evolved stars. In Section

3.3, we investigate the likelihood that these conditions can be met in these regions using

the Heisenberg approach, with a method of analysis that is an electric dipolar version of the

magnetic dipole study found in Paper I and is similar to earlier analyses found in the physics

literature [Gross and Haroche, 1982, Benedict et al., 1996]. In Section 3.4 we discuss our

numerical results on the characteristics of a potential OH 1612 MHz coherent system, with

an application to previous observations performed on the U Orionis Mira star [Jewell et al.,

1981] and the IRAS18276-1431 pre-planetary nebula [Wolak et al., 2014]. We end with a

short conclusion in Section 3.5.

3.2 Requirements for Superradiance

In this section we provide a brief summary of the requirements needed for superradiance,

but a more detailed discussion will be found in Section 2 of Paper I. Our discussion applies

equally well to atoms or molecules, however, we will focus on molecular superradiance since

OH is the subject of our analysis.

When a group of N excited molecules are placed within a volume V much smaller than

λ3, the cube of the wavelength of the radiation λ interacting with the molecules, the radiation

by one molecule is seen to be in phase by the other molecules. As a result, the radiation

from the different molecules interferes constructively and a strong directional pulse emerges
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from the sample [Dicke, 1954]. This process can also be described from the molecular point

of view. In a small-sample (i.e., defined for V � λ3) the intermolecular distance r is much

smaller than λ and, for such small intermolecular distances, the interaction between the

molecular dipoles and the radiation field is symmetrical throughout the sample. As a result,

after a delay time tD the molecular dipoles lock to a common phase and act like a single

macroscopic dipole radiating a superradiant intensity ISR = NInc, where Inc is the intensity

of a fully non-coherent system [Dicke, 1954, Gross and Haroche, 1982, Benedict et al., 1996].

The phenomenon can be extended to a large-sample, defined as N molecules distributed

over a volume V � λ3, with inter-molecular spacings potentially larger than λ. In a large-

sample, the phase of the radiation varies from place to place as a result of propagation. This

will lead to a non-uniform spatial evolution of the molecules, and can result in a weaker

coherent behavior as compared to that of a small-sample. However, the higher number of

molecules partaking in coherent interactions in a large-sample can make up for this, resulting

in an intense output superradiant pulse with ISR = NfInc, where the Nf factor determines

the enhancement of the radiation intensity in comparison to Inc and the efficiency of the

common phase-locking process is reflected in f (< 1) alone. Unlike for a small-sample, the

phase-matching condition in a large-sample can only be met in some particular directions,

and the fact that the phase-locking factor f is always smaller than unity implies a weakened

superradiance. It is found that after a delay time τD, a first burst of superradiance emerges

the sample followed by a number of weaker bursts, the so-called ringing effect (see Section 3.3

below, and Sections 3 and 4 in Paper I). The ringing effect is associated with the re-absorption

and re-emission of radiation through the end-fire (i.e., the observer-facing cross-section of the

superradiant sample) of a large-sample interacting with the incoming radiation originating

from other parts farther away in the sample.

Any mechanism that non-coherently reduces the excited level population (e.g., collisional

relaxation) or disturbs the phase-locking process can diminish and even terminate super-

radiance. It is therefore necessary that the time-scale of dephasing/relaxation effects be

longer than τD in a large-sample (or tD in a small-sample) to allow for the development of

any coherent behavior. This also explains why velocity coherence is an essential condition

for superradiance. In the absence of velocity coherence, random thermal motions in a gas
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results in Doppler line broadening that corresponds to a very short dephasing time-scale

(i.e., Ttherm � τD), and renders this phenomenon the most likely cause of dephasing in a

sample. For this reason, it is not expected that superradiance could arise in a thermally

relaxed gas. Our study of superradiance is better suited to regions of the ISM where thermal

equilibrium has not been reached (e.g., shocks; see Paper I). However, this does not imply

that Doppler broadening is not present in a velocity-coherent region, but it is expected to

be less constraining than in a thermally relaxed environment.

For any region in the ISM, inelastic collisions with ions, electrons, hydrogen atoms and

molecules, or dust grains can further change the internal state of an OH molecule, and if the

associated time-scale is smaller than τD, coherent behavior and superradiance can be sup-

pressed. Although they do not change the internal state of a molecule, elastic collisions can

also interrupt the coherent phase-locking process and weaken superradiance. This is because

during an elastic collision the spacings between energy levels for the colliding counterparts

change as a result of short-range interaction forces. After a number of such collisions each

acting like a random perturbation, the molecule can lose coherence with the interacting ra-

diation field [Wittke and Dicke, 1956]. Elastic collisions are normally more frequent than

inelastic collisions, and the mean time between elastic collisions usually sets the time-scale

of collisional dephasing/relaxation Tc and the corresponding condition τD < Tc is required

to allow the build-up of coherent interactions.

The above discussion also implies that coherent interactions cannot be developed in

a collisionally pumped OH sample since that would require that the pumping time-scale

TP = Tc < τD, which contradicts the necessary condition Tc > τD for superradiance (see

Paper I). Thus, for our present study of superradiance we will only focus on OH samples that

are believed to be inverted through radiative processes. The studies of pumping mechanism

of OH masers show that the 1612 MHz masers associated with evolved stars are pumped by

far-infrared photons at 35 and 53 µm [Litvak, 1969, Jewell et al., 1979, Gray, 2012, Elitzur,

1992]. These photons are emitted from dust shells formed by mass losses from the central

star. The radiative pumping model for 1612 MHz masers near evolved stars is corroborated

by the observation of correlated variations in the intensities of the star and corresponding

masers [Harvey et al., 1974, Jewell et al., 1979]. While recent studies by He [2005] and
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Lockett and Elitzur [2008] suggest that OH megamasers, which emit primarily at 1667 MHz

and 1665 MHz, are also pumped by far-infrared radiation (more precisely 53 µm radiation

from dust), the determination of the exact pumping mechanism of main-line masers still

requires more studies and collisional processes are not generally ruled out from the pumping

scenarios [Gray, 2012]. Hence, in this paper we limit our investigation to the possibility

of superradiance for the 1612 MHz line interacting with OH molecules in the circumstellar

envelopes of late-type stars.

3.2.1 OH Samples Near Evolved Stars

One of the final stages in the evolution of a low- to intermediate-mass star (i.e., stars with

masses of about 1 M� to 8 M�) is the asymptotic giant branch (AGB) phase. In that stage,

the star, which is composed of an oxygen/carbon core enclosed within layers of hydrogen and

helium, becomes variable and can produce shock waves. Shock waves initiate the mass-loss

process from the photosphere of the star to cooler regions where the gas particles can clump

into dust grains, which interact with the radiation from the star over a broad continuum.

Through these interactions the radially outgoing photons transfer their momentum to dust

grains driving them outward. This also results in an outflow of the gas particles that are

coupled to dust grains through collisions [Lamers and Cassinelli, 1999, Gray, 2012]. As

outflowing waves move further from the star, they become cooler and denser and form the

CSE. The CSE of an evolved star can harbor masers of different types depending on its

composition. OH masers are usually found in the CSE of oxygen-rich (or M-type) stars.

Examples of such stars are Mira variables, long-period M-type stars with periods of 100-500

days [Karttunen et al., 2007], which are known sources of 1612 MHz OH maser emission.

OH-IR stars are another group of long-period variables (LPV) that were originally detected

through their 1612 MHz OH maser emission and the infrared radiation emanating from

their CSE. Miras are variable at both visible and infrared wavelengths, whereas the CSE of

OH-IR stars absorbs starlight at visible wavelengths and re-emits it in the infrared. OH-IR

stars are thought to lose mass at a rate of 10−8 M� yr−1 to 10−4 M� yr−1 forming larger

CSEs than Miras, which have a lower mass-loss rate. The CSEs of these evolved stars are

theoretically divided into three zones [Gray, 1999], of which the inner and outer zones are
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relevant to our study. In the outermost zone, where the CSE is optically thin, UV light

from the interstellar medium dissociates H2O molecules into OH. In the inner zones, the

radiation from the central star is absorbed by dust grains and is re-emitted in the infrared.

It was initially suggested by Elitzur et al. [1976] that the 35- and 53-µm infrared photons

emitted from dust pump the 1612 MHz OH masers in the outer regions of the CSE of evolved

stars. The pumping scheme proposed by Elitzur et al. [1976] was modified by Gray et al.

[2005], and their detailed analysis of collisional and radiative couplings of OH molecules in

the expanding CSE of OH-IR stars indicated that the strongest pumping route uses 53-µm

photons.

The CSE of evolved stars expands radially and reaches a constant terminal velocity

v∞ ∼ 10 km s−1 to 20 km s−1 in its outer regions [Gray, 2012]. At distances about r & 1016

cm from the central star, velocity coherence is achieved among OH molecules moving with the

well-defined terminal velocity in the radial or tangential directions relative to the OH shell

[Draine, 2011]. This velocity coherence can be maintained over the so-called Sobolev length,

which is typically on the order of 1014 − 1016 cm for LPV evolved stars (see Section 3.4.1

below). This, therefore, may allow the existence of relatively long OH samples, if inversion is

achieved through infrared pumping from warm dust. In such samples coherent correlations

may develop if the shortest non-coherent relaxation/dephasing time-scale is larger than τD.

Although our analysis is better adapted to regions where thermal equilibrium has not

been reached, we will approximate the time-scale of relaxation/dephasing effects in the usual

manner applicable to a thermally relaxed gas. We should, however, keep in mind that the

time-scales calculated that way are likely to provide overestimates and should be consid-

ered as worst case scenarios, as far as superradiance is concerned. One of the main re-

laxation/dephasing mechanisms in the CSE of evolved stars is collision. We will therefore

determine collision time-scales in OH samples given a temperature T and number density

nH2 of hydrogen molecules, which are expected to be the main collisional partners of OH

in molecular gas shells [Gray, 2012]. These parameters depend on the mass-loss rate of the

central star in a circumstellar envelope [Goldreich and Scoville, 1976]. For instance, at a

mass-loss rate of 1 × 10−5 M� yr−1 the abundance of OH molecules is estimated to be ap-

proximately 10 cm−3, while nH2 ∼ 106 cm−3 at r ≈ 1016 cm based on the study of different
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physical and chemical processes taking place in the CSEs of OH-IR stars [Gray et al., 2005].

Allowing for potentially lower mass-loss rates, we will consider the 104 cm−3 ≤ nH2 ≤ 106

cm−3 range in what follows.

The time-scale of OH−H2 collisions can be determined with the knowledge of the colli-

sional cross sections in these regions. The cross sections for inelastic OH−H2 collisions at

different temperatures are given in Offer et al. [1994], and the related time-scale is estimated

to range from 105 sec to 107 sec for 106 cm−3 ≥ nH2 ≥ 104 cm−3, respectively. For elastic

OH−H2 collisions the corresponding time-scale is given by

Tc =
1

nH2σgv̄
, (3.1)

where σg ' 4× 10−16 cm2 is the geometrical cross-sectional area of a hydrogen molecule and

v̄ is the mean relative velocity of OH molecules [Irwin, 2007, Souers, 1986]. For example,

v̄ is estimated to be ∼ 1 km s−1 at T ∼ 100 K. Inserting these values into Equation (3.1)

gives 104 sec ≤ Tc ≤ 106 sec for 106 cm−3 ≥ nH2 ≥ 104 cm−3, respectively. As was already

mentioned, elastic OH−H2 collisions are found to be somewhat more frequent than their

inelastic counterpart and thus set the time-scale of collisional dephasing Tc.

Another important process that affects the population of OH energy levels in the CSE

of evolved stars is the infrared radiative coupling of rotational levels. As was mentioned

earlier, the warm dust in the CSE absorbs the radiation from the central star and re-emits it

at mid- and far-infrared wavelengths. The different infrared couplings of the OH rotational

levels have large transition dipoles leading to fast excitation/relaxation rates. It should be

noted that these transition rates also depend on the opacity at the corresponding infrared

wavelengths, which vary over the different zones of the CSE. Among the different infrared

coupling routes some pump the 1612-MHz line while others deplete the population inversion

and have a relaxation effect. The numerical studies conducted by Gray et al. [2005] show

that these infrared couplings are responsible for the inverted OH zones, with a relaxation

time-scale for the 1612-MHz line, including collisional and radiative couplings, on the order

of ∼ 104 sec for a mass loss rate of 10−5 M� yr−1. Allowing for variations with different mass

loss rates, we find that the radiative relaxation time-scales are comparable to those expected

from collisions in these regions. For the sake of our discussion we will assume, for simplicity,
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that the time-scale of OH−H2 collisions sets the upper limit for the characteristic time-scales

of superradiance in circumstellar OH samples, but we keep in mind that infrared radiative

coupling may also be responsible for this. For the aforementioned range of H2 densities, when

assuming thermal equilibrium the delay time τD and the characteristic time of superradiance

TR should not exceed 104 sec to 106 sec. Although these figures should be viewed as worst

case scenarios (i.e., lower limits), they allow us to get a sense of the time-scales involved.

As we will see later, these time-scales imply intensity variations that could last as long as

several years.

3.3 Analytical Model

In this section we use the formalism developed in Gross and Haroche [1982] to describe the

behavior of a superradiant system. Since, as will be seen in Section 3.4, the realization of

superradiance small-sample is unlikely to take place in the CSEs of evolved stars for the

collisional time-scales previously calculated (see Paper I), we focus our analysis on the case

of a large-sample.

Taking into account the dephasing/relaxation effects, the behavior of a superradiant

system can be expressed by a set of so-called Maxwell-Bloch equations within the framework

of the slowly varying envelope approximation (SVEA)

∂N̂
∂τ

=
i

~

(
P̂+

0 Ê
+
0 − Ê−0 P̂−0

)
− N̂
T1

(3.2)

∂P̂+
0

∂τ
=

2id2

~
Ê−0 N̂−

P̂+
0

T2

(3.3)

∂Ê+
0

∂z
=

iω

2ε0c
P̂−0 , (3.4)

where T1 is the (phenomenological) time-scale of non-coherent population relaxation (e.g.,

through inelastic collisions) and similarly T2 for phase relaxation (e.g., through elastic col-

lisions). These equations were derived within the context of the Heisenberg representation.

The quantities P̂±0 and Ê±0 are the envelopes for the polarization P̂± and the electric field

Ê± vectors, respectively, which are assumed to have the following form
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P̂± (z, τ) = P̂±0 (z, τ) e±iωτ ε̂m (3.5)

Ê± (z, τ) = Ê±0 (z, τ) e∓iωτ ε̂m, (3.6)

with ε̂m the unit vector indicating the orientation of the molecular electric dipole moment.

The population inversion density is given by (twice) N̂, while d and ω are, respectively, the

transition dipole matrix element and the angular frequency of the radiation field at resonance

with the molecular transition. Equations (3.2) to (3.4) are derived using a two-level system

model and describe the evolution of the matter-field system in the retarded-time frame τ

(= t − z/c , where c is the speed of light). In the ISM, an OH sample interacting with

the radiation along the line-of-sight can be modeled by a cylindrical large-sample along

the z-axis. Although a one-dimensional field equation discards the loss of radiation due to

diffraction or transverse effects, it is an approximation that reduces the number of variables

and allows us to move the analysis forward while retaining the essential physics of the

problem. Nonetheless, considerations of the sample’s geometry, described by the Fresnel

number F = A/ (λL), with A and L the cross-section and length of the sample, respectively,

will also enter our analysis.

Under the assumption that the different dephasing time-scales are similar (i.e., T ′ ≡ T1 =

T2), the Maxwell-Bloch equations can be solved by effecting the following change of variables

N̂ =
N

2V
cos (θ) e−τ/T

′
(3.7)

P̂+
0 =

Nd

2V
sin (θ) e−τ/T

′
, (3.8)

where θ is the so-called Bloch angle and N is the number of inverted molecules at τ = 0

in the sample volume V . Inserting Equations (3.7) and (3.8) into the system of Equations

(3.2)-(3.4) yields

Ê+
0 =

i~
2d

∂θ

∂τ
(3.9)

d2θ

dq2
+

1

q

dθ

dq
= sin (θ) , (3.10)
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with q

q = 2

√
zτ ′

LTR

, (3.11)

and τ ′ = T ′
(
1− e−τ/T ′)

. The characteristic time-scale of superradiance TR is given by

TR = τsp
8π

3nλ2L
, (3.12)

where τsp is the spontaneous decay time-scale of a single molecule and n = N/V the density of

inverted molecules in the sample [Gross and Haroche, 1982, Benedict et al., 1996]. Equation

(3.10) is the so-called Sine-Gordon equation, which can be solved numerically to find solutions

for θ (q) at the end-fire of the sample (i.e., at z = L). The solution for θ as a function τ can

be used to evaluate Ê+
0 (z = L, τ) from Equation (3.9), and then the intensity of radiation

emerging from the sample with

ISR =
cε0
2

∣∣∣Ê+
0

∣∣∣2 , (3.13)

where ε0 is the permittivity of vacuum.

In Figure 3.2 we show three solutions for the radiation intensity from a cylindrical large-

sample of OH molecules interacting with the 1612 MHz line, for the cases where T ′ = 70TR,

210TR, and 700TR. For these calculations we set the total number density of OH molecules

to nOH = 10 cm−3, the level of inversion η = 0.01, and TR = 7 days. The length of the sample

L is set through Equation (3.12) for the given TR, and the Fresnel number is set to unity

forcing the radius of the sample to w =
√
λL/π. This value for the Fresnel number minimizes

diffraction losses, which are not taken into account in our model [Gross and Haroche, 1982].

In the figure the radiation intensity axis is scaled to NInc and the retarded-time axis is

normalized to TR. We can express the non-coherent intensity Inc as

Inc = N~ω
(

1

Aτsp

)(
φD

4π

)
, (3.14)

where N~ω is the total energy initially stored in the OH sample, of which a fraction φD/4π

emerges from the end-fire of the sample through a cross-sectional area A over the spontaneous

decay time-scale τsp. The superradiance beam solid-angle φD is defined as
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Figure 3.2: The OH cylindrical large-sample. The intensity axis, scaled to NInc , is plotted

versus the retarded-time axis, normalized to the superradiance characteristic time-scale TR.

The length of the sample L is set through Equation (3.12) for a given TR, and the Fresnel

number is set to unity forcing the radius of the sample to w =
√
λL/π. Dephasing effects

are included for three different time-scales T ′ = 70TR, 210TR, and 700TR.

φD =
λ2

A
, (3.15)

in the direction of the cylinder’s symmetry axis where the phase-locking condition is fulfilled.

Equation (3.14) can be rewritten as

Inc =
2

3

~ω
ATR

, (3.16)

using Equations (3.12) and (3.15). Equation (3.16) makes it clear that the non-coherent

intensity is roughly N times smaller than the maximum superradiance intensity, since for the

latter approximately N inverted molecules decay to their ground level over the characteristics

time-scale of superradiance TR.

In a large-sample, internal fluctuations (i.e., the thermal noise or spontaneous emission)

as well as an external radiation can trigger superradiance. For the calculations presented in
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Figure 3.2 we used internal fluctuations to set the initial Bloch angle at θ0 = 2/
√
N [Gross

and Haroche, 1982]. Once superradiance is initiated, dipoles in a large-sample lock into a

common phase and radiate coherently after the delay time [Benedict et al., 1996]

τD ' TR

4

∣∣∣∣ln( θ0

2π

)∣∣∣∣2 . (3.17)

For the above OH sample we have θ0 = 4.7 × 10−5 rad, which results in τD ' 35TR using

Equation (3.17), in good agreement with the time appearance of the first burst of radiation

in Figure 3.2. As can be also seen in the figure, the total energy stored in the OH sample

is released through consecutive bursts with a gradual drop in the peak intensities, with the

number of bursts depending on the length of sample and the dephasing time-scale T ′. More

precisely, for longer samples and dephasing time-scales (e.g., for T ′ = 210TR and 700TR

in the figure) the process of re-absorption/re-emission takes place more frequently at the

end-fire of the sample, leading to a larger number of burst events. However, we should also

note that the (non-linear) Sine-Gordon equation is highly sensitive to initial conditions. It

follows that the selected value for θ0 also has an impact on the appearance of the intensity

curve (e.g., in the number of bursts present).

It should be also pointed out that the scaled peak intensities in Figure 3.2 indicate the

phase-locking factor 0.001 . f . 0.01 depending on the dephasing time-scale. But the

large number of inverted molecules N in an OH large-sample in a circumstellar envelope will

imply, even when multiplied by such a small value for f , a significant enhancement factor

resulting in ISR � Inc.

3.4 Discussion

The condition τD < T ′ further implies TR < T ′, since in a large-sample composed of N � 1

molecules τD is at least an order of magnitude larger than TR (see Equation [3.17]). More

precisely, the average delay time, i.e., for several realizations of a superradiance system with

a different θ0, is given by [Gross and Haroche, 1982]

〈τD〉 = TR ln (N) , (3.18)
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which again indicates that TR < 〈τD〉.
In a small-sample, where there are a relatively small number of atoms, the two time-scales

TR and 〈τD〉 are approximately of the same order of magnitude and the condition τD < T ′ can

be interchanged with TR < T ′. For such cases the superradiance time-scale can be calculated

from [Dicke, 1954]

TR =
τsp

ηnOHV
, (3.19)

where, once again, η is the population inversion factor, nOH is the total molecular density,

and V is the volume of the sample. A small-sample of OH molecules interacting with the

1612 MHz line is characterized by V < λ3 ∼ 103 cm−3. Applying this constraint on the

volume and substituting τsp ∼ 1011 sec for the 1612 MHz transition line transforms Equation

(3.19) to

TR >
108

ηnOH

sec, (3.20)

yielding TR > 109 sec for nOH ∼ 10 cm−3 [Gray et al., 2005] and η ∼ 0.01, which are

appropriate for masing regions in circumstellar envelopes. On the other hand, we previously

calculated the time-scale of OH−H2 collisions Tc in circumstellar OH samples to be ∼ 104

sec to 106 sec for molecular hydrogen densities 106 cm−3 > nH2 > 104 cm−3 (see Section

3.2.1). Although our estimated range for this collision time-scale is likely under-estimated,

it indicates that superradiance is unlikely to take place in corresponding OH small-samples

since Tc = T ′ < TR.

In a large-sample TR is set by the two sample parameters: length L and density of inverted

molecules n (see Equation [3.12]). Although it may initially appear that in a large-sample

TR can always be set to a value smaller than T ′ by adjusting L or n, in the ISM these

parameters are constrained by the physical characteristics of the region within which the

population inversion is realized.

In the case of CSE OH samples, the length of an inverted region depends on the mass-

loss rate of the central pulsating star, which changes as the star evolves. The computational

modeling of CSEs of OH-IR stars by Gray et al. [2005] suggests that the radial extent of

OH population-inverted zones shrinks as the mass-loss rate of the central star increases.
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More precisely, the mass-loss rate affects the optical depth of the infrared pump photons

and subsequently the thickness of inverted OH zones. Hence, in higher mass-loss rates the

envelope becomes more opaque to pump photons and the extent of the region accessible to

pump decreases. It is expected that population-inverted regions typically range from 1011

cm to 1014 cm in thickness [Gray et al., 2005].

Using Equation (3.12) we can use this range for the length L of a cylindrical large-sample,

along with our previous values of n = ηnOH = 0.1 cm−3 (i.e., 643 molecules within λ3) and

τsp = 7.8 × 1010 sec to find 10−1 sec & TR & 10−3 sec for 1011 cm < L < 1014 cm. Using

a Fresnel number of unity to minimize diffraction losses in our calculations, specifying a

radius w =
√
λL/π ranging from 7.7× 105 cm to 2.4× 107 cm, we find that 10 sec & 〈τD〉 &

10−2 sec for the same range of cylindrical lengths. The time-scales are evidently very short in

comparison to our previous estimates of 104 sec < Tc < 106 sec. It thus appears reasonable

to expect that superradiance could take place in the CSEs of such evolved stars. Indeed, we

find that 〈τD〉 ∼ 106 sec for as small a value as L = 105 cm. Given these numbers, we now

investigate potential observational evidence for superradiance in the OH 1612 MHz line.

3.4.1 The U Orionis Mira Star

U Orionis is a M8 III-type OH Mira variable with a period of 372 days, which has exhibited

in the past significant variations in the intensity of several OH maser emission lines. Jewell

et al. [1981] reported the results of their monitoring program of the 1612 MHz, 1665 MHz,

and 1667 MHz masers observed in the CSE of U Ori, along with a compilation of similar

data taken from several other sources [Pataki and Kolena, 1974, Reid et al., 1977, Cimerman,

1979, Fix, 1979] covering several years of observations (i.e., from 1974 to 1979). All three

maser lines exhibited significant flaring events during that period. Although the 1665 MHz

and 1667 MHz masers showed strong correlation in their intensity variations, the 1612 MHz

maser displayed a completely different behavior characterized by the authors as a “damped

oscillator decline” spanning about an order of magnitude in intensity range over the period.

These variations were also clearly uncorrelated with the star’s light curve (see Figure 1 of

Jewell et al. 1981), and there has been no satisfactory explanation for such behavior that we

are aware of so far.
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Figure 3.3: A superradiance intensity model (solid blue curve) with TR = 6.5 days, T ′ =

393TR, and θ0 = 4.4 × 10−5 rad superposed on data from Jewell et al. [1981] (black dots)

obtained during the 1974 to 1979 OH 1612 MHz maser flaring episode of U Orionis.

Since the ringing in superradiance intensity displayed in the T ′ = 210TR and 700TR

curves shown in Figure 3.2 is also reminiscent of a “damped oscillator” behavior, the data of

Jewell et al. [1981] provide us with a first opportunity to test our OH 1612 MHz superradiance

model. We accordingly show in Figure 3.3 the results of our attempt. In the figure, the black

dots are taken from Figure 1 of Jewell et al. [1981], while the (blue) solid curve is calculated

from our model discussed in Section 3.3. We have once again used the internal fluctuation

condition to trigger superradiance (i.e, θ0 = 2/
√
N), which resulted in θ0 = 4.4 × 10−5 rad

(τD ' 35TR; see Equation [3.17]) for the chosen parameters TR = 6.5 days and T ′ = 393TR,

while keeping n = 0.1 cm−3. Given the simplicity of our one-dimensional superradiance

model we have not attempted to perform any formal fit to the data, but merely adjusted

the model’s free parameters (i.e., TR and T ′) to reproduce the main features found in the

data. Our model was also “normalized” in intensity to that of the data. Unfortunately, the

data is sparse early on (i.e., up to approximately Day 2600) and we cannot be certain of the

proper behavior during that period, but the intensity is well constrained for the rest of the
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observation period. We should also note that the data compiled in Jewell et al. [1981], realized

with different facilities and instruments probing sometimes different polarization states, do

not focus on a single spectral feature but rather represent the integrated flux over a finite

bandwidth. Despite these facts and the simplicity of our model, the oscillatory behavior

of the intensity is relatively well captured by the superradiance model. More precisely, the

intensity of the last four maxima (at times beyond Day 2500) are reasonably well matched

by the curve, both in their relative intensities and times of occurrence.

We note that the superradiant system stemming from our calculations yields a cylindrical

length L = 3.4 × 104 cm, which is orders of magnitude shorter than corresponding scales

expected for masers. It follows that, within the context of our model, a large number

of superradiant large-samples must be responsible for creating a radiation intensity strong

enough to be detected during the flaring period (see Section 3.4.3 below). Also, the dephasing

time T ′ needed to reproduce the data corresponds to approximately 7 years (∼ 108 sec and '
10 τD) and points to conditions significantly less constraining than those previously calculated

for a thermally relaxed gas, as expected. This implies the existence of significant velocity

coherence over the length L of a superradiant sample. This may not be surprising considering

the Sobolev length for this source, which we evaluate to be LSobolev ∼ 1016 cm using previously

published data on the velocity gradient found in U Ori’s CSE [Laury-Micoulaut et al., 1979].

The relative smallness of a superradiant sample (i.e., L/LSobolev ∼ 10−12) is an indicator of

small frequency shifts and longer dephasing time-scales in the superradiant samples.

3.4.2 The IRAS18276-1431 Pre-planetary Nebula

IRAS18276-1431 (OH17.7-2.0) is a pre-planetary nebula with a detached CSE and central

star of spectral type earlier than K5, long known for its strong 1612 MHz OH maser emission

[Bowers, 1978]. Wolak et al. [2014] have recently published the results of a monitoring

campaign performed between 2002 and 2009, where emission from OH masers at 1612 MHz,

1665 MHz, and 1667 MHz was measured twice monthly using the Nançay Radio Telescope.

While a monotonic decay and rise in intensity were detected at 1665 MHz and 1667 MHz,

respectively, the integrated flux from the red-shifted part of the 1612 MHz spectrum revealed

a significant intensity flare lasting approximately 6 years. Furthermore, during that same
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Figure 3.4: A superradiance intensity model (broken curve) with TR = 42 days, T ′ = 61TR,

and θ0 = 2.8× 10−4 rad superposed on data from Wolak et al. [2014] (solid curve) obtained

during the 2002 to 2009 OH 1612 MHz maser flaring episode of IRAS18276-1431.

period the blue-shifted part of the spectrum only displayed a monotonic decay.

We show in Figure 3.4 the results of calculations using our superradiance model (broken

curve) superposed to the data from Wolak et al. [2014] (solid curve) for the aforementioned

flaring episode of the OH 1612 MHz line. Although the duration of the data does not allow

us to determine if the burst of radiation taking place between approximately Day 2800 and

Day 5000 is a single occurrence or part of a series of bursts, the longer duration of the flare

(∼ 2000 days) in comparison to case of U Ori and the expected limitation on the dephasing

time T ′ seem to imply a single flare. Accordingly, our superradiance model yields TR = 42

days, T ′ = 61TR, and θ0 = 2/
√
N = 2.8×10−4 rad (τD ' 25TR), and provides a rewardingly

nice match to the data.

As for U Ori, we note that the superradiance cylinder length L = 5.2 × 103 cm is

orders of magnitude shorter than those expected for masers, implying that a large number of

superradiant large-samples are behind the measured intensity variation, while the required

dephasing time T ′ ' 7 years (∼ 108 sec and ' 2.4 τD) is markedly longer than the mean
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collision times previously calculated for 104 cm−3 ≤ nH2 ≤ 106 cm−3 at T = 100 K, as

expected. And, once again, because of the small size of a superradiant sample (L = 5.2 ×
103 cm) relative to typical values for the Sobolev length in the CSE of evolved stars, less

constraining dephasing effects are anticipated.

3.4.3 Transition Between Maser and Superradiance Modes

The data sets from Jewell et al. [1981] and Wolak et al. [2014] both indicate transitions

between periods of (quasi) steady state maser radiation and flaring episodes. Here we propose

a scenario where such transitions could take place within the context of the superradiance

model.

We know from our discussion in Section 3.2 that superradiance requires a dephasing time

such that T ′ > τD. We therefore surmise, because of the relationship between τD and TR

given in Equation (3.17), the existence of a critical value TR,crit for the characteristic time-

scale of superradiance, which cannot be exceeded for superradiance to take place. That is,

superradiance requires TR . TR,crit with

TR,crit =
4T ′∣∣ln ( θ0

2π

)∣∣2 , (3.21)

which in turn can be manipulated to yield, using Equation (3.12), a corresponding critical

value for the product of the inverted population density n and the large-sample length L. In

other words, superradiance also implies a column density of inverted molecules nL & (nL)crit

with

(nL)crit =
2π

3λ2

τsp

T ′

∣∣∣∣ln( θ0

2π

)∣∣∣∣2 . (3.22)

In the AGB phase, the mass-loss rate can change significantly during thermal pulsation

periods, when the evolved star blows away its mass in the form of super winds, or when

the circumstellar envelope starts detaching from the star. These variations happen over

relatively short time-scales (i.e., on the order of a few years) and can result in correspondingly

important changes in L and n in an OH large-sample. However, variation in nL do not
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necessarily require abrupt disruptions in the CSE and could happen more gradually over

time or even because of local variations on smaller spatial scales.

Whatever the case may be, we can therefore imagine a situation where a region harboring

an OH maser could experience a change in nL that would push it above the critical value

given in Equation (3.22). At that point, the region over which nL > (nL)crit would erupt

into a superradiance mode that would overtake the maser process, since superradiance is

a lot more efficient at radiating the energy stored in the sample (i.e., the superradiance

radiation intensity scales with N2). The initial maser radiation field itself could serve as a

trigger for the superradiant event. Interestingly, our superradiance models for U Ori and

IRAS18276-1431 show that nL (or TR and τD) is only a factor of a few (at most an order of

magnitude for U Ori) higher than the critical value.

The time-scales of the flaring events for U Ori and IRAS18276-1431 indicate, however,

that the whole maser region cannot at once act as a single coherent radiating system. Pre-

sumably some other factor does not allow this to take place. For example, this could be

because the level of velocity coherence is not high enough over the whole masing region to

ensure that the corresponding dephasing time is sufficiently long to allow the entire region

to act as a single superradiance system. On the other hand, velocity coherence is likely to be

sufficient locally (i.e., on scales on the order of 103 cm to 104 cm for the examples considered

here) to allow for the corresponding region within the maser to break-up into a large number

of smaller superradiance large-samples. Our calculations presented in Figures 3.3 and 3.4,

and their level of agreement with the corresponding data, provide credible evidence for such

a scenario.

It is interesting to note that from an observational standpoint a single superradiant

volume over which nL > (nL)crit is unlikely to be resolvable in view of its spot size on the

sky. This would be unusual for masers, which are often resolvable through high-resolution

interferometry observations. This could also imply, based on the model discussed here,

that an unresolvable source in a masing region exhibiting characteristics associated with

superradiance (e.g., the ringing effect in the intensity variations) could be associated to a

system composed of a single or a few superradiant sources operating within that region.

However, as is implied by the discussion above, the converse is not necessarily true. That is,
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the fact that a source is spatially resolved does not imply that it cannot consist of a group

composed of a large number of superradiant systems.

Finally, within the context of the model presented here, since a given region can make

transitions between maser and superradiance modes we would expect that similar proper

motion properties apply to both types of sources.

3.5 Conclusion

We have applied the concept of superradiance introduced by Dicke [1954] to the OH molecule

1612 MHz spectral line often used for the detection of masers in CSEs of evolved stars. As

the detection of 1612 MHz OH masers in the outer shells of envelopes of these stars implies

the existence of a population inversion and a high level of velocity coherence, and that these

are two necessary requirements for superradiance, we investigated whether superradiance

can also take place in these regions. Our analysis suggests that superradiance provides a

valid explanation for previous observations of intensity flares detected in that spectral line for

the U Orionis Mira star [Jewell et al., 1981] and the IRAS18276-1431 pre-planetary nebula

[Wolak et al., 2014]. The confirmation of superradiance in these sources would not only

reveal a new range of unexplored physical conditions in the ISM but, on a more fundamental

level, also reveal the existence of coherent quantum mechanical systems and corresponding

entangled states over length scales reaching a few times 104 cm.
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Chapter 4

Dicke’s Superradiance in

Astrophysics. III – The 6.7-GHz

Methanol and 22-GHz Water Maser

Lines1

4.1 Introduction

Since their first detection in the OH 18 cm lines [Weaver et al., 1965], a large number of masers

from several molecules were discovered in both galactic and extragalactic environments. The

main characteristics of masers include very high brightness temperatures, corresponding to

very high emission intensities over small spatial scales, narrow line-widths, and occasionally

high levels of polarization across the spectral lines [Elitzur, 1992, Gray, 2012]. These at-

tributes of the maser action result from the stimulated emission process in a medium where

a population inversion is established and maintained, leading to large amplifications along

optical paths exhibiting good velocity coherence for the spectral line under consideration.

In addition, observations show that some maser sources exhibit significant intensity vari-

1A modified version of this chapter has been submitted to Science Advances (F. Rajabi and M. Houde

2016, Explaining Recurring Maser Flares in the ISM Through Large-scale Entangled Quantum Mechanical

States, Science Advances, submitted.)
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ability on time-scales ranging from days to several years. The 22-GHz water masers in Orion

KL, for example, exhibited drastic flux density variations over a six-year period between

1979 to 1985 [Matveenko et al., 1988, Garay et al., 1989]. This phase of activity was followed

by a twelve-year quiescent period that ended in 1997, when subsequent burst activity was

detected in this source [Omodaka et al., 1999]. Although the majority of flaring sources dis-

play abrupt changes of flux density through isolated impulsive phases [Mattila et al., 1985],

interestingly, intensity variations in some sources are sometimes found to be periodic, where

the corresponding maser transition regularly alternates between phases of high activity and

quiescence [Goedhart et al., 2003, Szymczak et al., 2015]. Although a number of models

are proposed to explain such time-variations, the underlying mechanism for most of these

observations still remains obscure [van der Walt et al., 2009, Parfenov and Sobolev, 2014].

Some of the aforementioned requirements for the maser action, i.e., population inversion

and velocity coherence, are also necessary for superradiance; a fundamentally different radia-

tion enhancement process. Superradiance, introduced by Dicke in 1954, is a coherent and co-

operative quantum mechanical phenomenon by which a group of N inverted atoms/molecules

emit a radiation pulse (burst) of intensity proportional to N2. Although virtually unknown

to astrophysicists, superradiance has become a very intense research field within the physics

community since its introduction by Dicke [1954, 1964] and its initial laboratory confirma-

tion by Skribanowitz et al. [1973] (see also Gross and Haroche 1982, Benedict et al. 1996).

As superradiant pulses can exhibit a temporal behavior resembling that of flares discovered

for some masers in the circumstellar envelope (CSE) of evolved stars or elsewhere in the

interstellar medium (ISM), we recently started investigating the possibility of superradiance

within the context of astrophysics and concluded it could, in principle, take place in some

regions when the necessary conditions are met (i.e., population inversion, velocity coherence,

and long dephasing time-scales compared to those characterizing superradiance; see Rajabi

and Houde 2016a,b). More precisely, the results of our analyses suggest that superradiant

bursts are possible over a wide range of time-scales in regions spanning relatively small as-

tronomical length-scales. As will be discussed in Section 4.3, we also recently provided some

observational evidence for the OH 1612 MHz maser line using data taken from the existing

literature [Rajabi and Houde, 2016b].
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In this paper, we extend our analysis to the methanol 6.7-GHz and water 22-GHz maser

transitions using the one-dimensional formalism presented in Rajabi and Houde [2016a,b].

We start with a brief summary of the important parameters used in our numerical analyses

of Section 4.2. The superradiance model is then in turn applied to the methanol 6.7-GHz

data from the G33.64-0.21 star-forming region in Section 4.3.1 [Fujisawa et al., 2012, 2014]

and the water 22-GHz data from Cep A in Section 4.3.2 [Mattila et al., 1985], while in

Section 4.3.3 the results of our analyses for these two lines are used to explain the recent

observation of periodic and seemingly alternating flares of methanol and water masers in

G107.298+5.639 [Szymczak et al., 2016]. Finally, we end with a brief conclusion in Section

4.4.

4.2 Superradiance Model

In this section we apply the one-dimensional superradiant model presented in Rajabi and

Houde [2016b] for electric dipole transitions to existing observations of the methanol 6.7-GHz

and water 22-GHz maser lines. Our goal is to explain the peculiar intensity variations (bursts)

previously detected in the G33.64-0.21 (methanol 6.7-GHz; Fujisawa et al. 2012, 2014), Cep

A (water 22-GHz; Mattila et al. 1985), and G107.298+5.639 (both lines; Szymczak et al.

2016) star-forming regions. As will be discussed below, all of these sources exhibited intensity

variation behaviors that are typical of superradiant systems. More precisely, the first two

sources showed a type of “damped oscillator” response in their intensity curves while the

last displayed series of single-bursts.

As was recently discussed in Rajabi and Houde [2016a,b], a rapid and significant in-

crease (sometimes followed by oscillations) in radiation intensity is a behavior typical of a

(large-sample) superradiant system. In particular, the analyses of Rajabi and Houde [2016b]

established that superradiance provides a viable explanation for the observed OH 1612-MHz

intensity bursts detected in the Mira star U Orionis [Jewell et al., 1981] and the pre-planetary

nebula IRAS18276-1431 [Wolak et al., 2014]. The response of a superradiant system is char-

acterized by a few parameters, the most important being the characteristic time-scale of
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superradiance TR, which is given by

TR = τsp
8π

3nLλ2
, (4.1)

where τsp is the spontaneous decay time-scale of a single molecule (i.e., the inverse of the

Einstein spontaneous emission coefficient), n the density of inverted molecules taking part

in the superradiant process, L the length of the (cylindrical) large-sample (nL is thus the

column density of inverted molecules), and λ the wavelength of the radiation interacting

with the molecules in the superradiance system. For a given transition, λ and τsp are fixed

and TR thus only depends on the column density of molecules partaking in superradiance.

When a superradiant system is inverted through some pumping mechanism and a critical

threshold for the inverted column density is met or exceeded (see Eq. [4.3] below), the energy

stored in the system is released after the so-called delay time τD given by

τD '
TR

4

∣∣∣∣ln( θ0

2π

)∣∣∣∣2 , (4.2)

with the initial Bloch angle θ0 = 2/
√
N , where N is the number of inverted molecules in

the sample [Gross and Haroche, 1982, Benedict et al., 1996]. While the delay time τD gives

an estimate of the time when the first superradiance burst takes place, the characteristic

time TR sets the duration of each burst. In a superradiance large-sample, the energy can be

radiated away through a series of bursts, through a phenomenon known as the ringing effect.

The number of ringing oscillations varies as a function of T ′, the time-scale of the most

important dephasing effect (e.g., collisions) that will tend to work against the superradiance

phenomenon.

In a more general sense, superradiance can be only observed if τD < T ′ (see Rajabi

and Houde 2016a,b for more details), and this implies the existence of the aforementioned

threshold in inverted-population column density

(nL)crit ≈
2π

3λ2

τsp

T ′

∣∣∣∣ln( θ0

2π

)∣∣∣∣2 (4.3)

that must be met for the initiation of superradiance. More precisely, for column densities

below this critical value the dephasing effects prevent coherent interactions and the system

operates in a maser regime. As soon as nL & (nL)crit the system switches to a superradiance
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mode and the masing region breaks into a large number of superradiance large-samples for

which this condition is met [Rajabi and Houde, 2016b]. It is also important to note that

whether (nL)crit is crossed through a slow increase in pumping of the column density or

a fast population-inverting pulse is irrelevant. That is, it only matters that the condition

nL & (nL)crit is somehow reached.

Given the parameters TR (or nL) and T ′, which fully characterize a superradiance inten-

sity curve, we have tested our superradiance model on data from the three aforementioned

star-forming regions, as will be presented below. In order to do so, we have chosen TR and

T ′ as free parameters in the fitting process and tried to reproduce the intensity curves given

by the data. It must however be noted that, as was observed in Rajabi and Houde [2016b]

for the OH 1612 MHz line superradiance bursts observed in U Orionis and IRAS18276-1431,

the volume occupied by a single superradiant large-sample is several orders of magnitude

smaller than a typical maser region. A similar statement applies to the cases studied in this

paper. It follows that the superradiance intensity curves must result from the contributions

of a very large number of separate but simultaneously triggered superradiant samples. We

have therefore augmented our one-dimensional superradiance model to account for this by

averaging over several realizations of superradiance samples for which a common T ′ is used.

These realizations result from a Gaussian-distributed ensemble of TR values of mean 〈TR〉 and

standard deviation σTR . The results of our analyses are discussed in details in the following

sections.

4.3 Results and Discussion

4.3.1 The High-mass Star-forming Region G33.64-0.21

G33.64-0.21 is a high-mass star-forming region located at a kinematic distance of 4.0 kpc

with an estimated infrared luminosity of 1.2 × 104L� [Fujisawa et al., 2014]. The spectra

of the 6.7 GHz methanol masers in G33.64-0.21 were monitored daily with the Yamaguchi

32-m Radio Telescope over several time intervals from 2009 to 2015 by Fujisawa et al. [2012].

The corresponding observations identified five narrow maser spectral features (Components
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I to V, defined with increasing line-of-sight velocity; see Fig. 1 of Fujisawa et al. 2012) with

line widths of approximately 0.3 km s−1. Two bursts of radiation, lasting on the order of ten

days, were observed in Component II (vlsr = 59.6 km s−1) in July and August 2009, while all

other velocity components did not exhibit any significant change in their flux densities over

similar timescales or longer (see Fig. 2 of Fujisawa et al. 2012). During both events, the

flux densities increased approximately sevenfold within 24 hours and then returned to their

original value while exhibiting a damped oscillator behavior. Subsequent observations with

the Japanese VLBI Network revealed that Component II, responsible for the two bursts,

emanates from the southwestern edge of G33.64-0.21 within a region measured to be much

smaller than 70 AU. Different scenarios were proposed to explain these observations, but

none were so far able to adequately describe an energy release mechanism responsible for

such bursting behavior.

Given the damped oscillator character of the intensity curve during the bursts, we in-

vestigate the possibility of superradiance in the 6.7 GHz methanol line in an attempt to

explain the energy relaxation mechanism at play for G33.64-0.21. Here, we focus on the

second burst appearing in August 2009 in Figure 2 of Fujisawa et al. [2012]. The results of

our analyses show that a group of methanol superradiance large-samples of mean inverted

column density 〈nL〉 ∼ 7× 104 cm−2 (e.g., of density n ∼ 0.1 cm−3 and length L ∼ 106 cm)

can reproduce similar intensity variations as that of the 6.7 GHz line detected in G33.64-0.21.

In Figure 4.1 we show the average intensity (scaled to the data) obtained with 1000 such

superradiance large-samples (the shape of the intensity curve converges after a few hundred

realizations) calculated using our one-dimensional model (solid blue curve) superposed on

the data from Fujisawa et al. [2012] (black dots). The superradiance sample realizations are

generated using 〈TR〉 = 1.1 hr, σTR = 0.07 〈TR〉 and T ′ = 600 〈TR〉. As seen in the figure,

our superradiance model agrees well with the data and is successful in reproducing the main

characteristics of the observed intensity curve.

The observations of Fujisawa et al. [2012] were initially carried out daily (from Day 5039

to Day 5043 in Fig. 4.1) followed by alternate day monitoring of the source. As a result,

the data are sparse considering the rapid intensity variations exhibited by the superradiance

curve. This also implies that the peak flux density detected by Fujisawa et al. [2012] may
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Figure 4.1: A superradiance large-sample intensity model (solid blue curve) superposed on

the data from Fujisawa et al. [2012] (black dots) obtained in July and August 2009 for the

second methanol 6.7-GHz burst in G33.64-0.21. The superradiance intensity is averaged

over 1000 large-samples taken from a Gaussian-distributed ensemble of TR values of mean

and standard deviation of 〈TR〉 = 1.1 hr and σTR = 0.07 〈TR〉, respectively, and scaled to

the data. The dephasing time scale was set to T ′ = 600 〈TR〉 for all samples, and the

superradiance pulses were initiated from internal fluctuations characterized by an initial

Bloch angle 〈θ0〉 ∼ 10−6 rad.

not represent the actual maximum experienced by the source; our model indicates a peak

flux density of 350 Jy late on Day 5042.

As previously mentioned, our calculations suggest that superradiance will develop in

samples of significantly smaller sizes than that of a typical methanol maser. A very large

number of superradiance large-samples, contained within the region harboring the maser,

must therefore be responsible for the detected radiation intensity. Finally, the dephasing

time-scale T ′ used to produce the solid curve is on the order of a month, which is reasonable

within the expected gas densities 104 cm−3 < nH2 < 109 cm−3 and temperature T < 300 K

in G33.64-0.21 [Cragg et al., 2005].
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4.3.2 The High-mass Star-forming Region Cepheus A

Cepheus A (Cep A) with 14 compact HII regions is a high-mass star-forming site located at

a distance of ∼ 0.7 kpc [Mattila et al., 1985]. In 1978, the 22-GHz water observations toward

this source revealed high time-variability to be followed by a strong burst at Vlsr = −8 km s−1

between April and December 1980. In October 1980, when this burst was in its decay phase

Mattila et al. [1985] started a three-year monitoring program of Cep A using the 14-m radio

telescope of the Metsähovi Radio Research Station. This source was monitored through

monthly observations until October 1983, except for a few time-spans where observations

were repeated daily or every few days. In April 1983, the flux-density of the water 22-GHz

line at Vlsr = −11.2 km s−1 increased sixfold over 10 days reaching its maximum value of

1700 Jy on April 18. Later on, over the following 40 days, the flux density decayed to

a background value while exhibiting a “damped oscillator” behavior. During this phase,

a few secondary maxima were detected every 15 days or so. Different models were used

to reproduce the observed light curve for this burst, but they were either unsuccessful in

replicating the time-scale of the event or did not capture the secondary maxima.

In an attempt to explain the aforementioned observations during the 1983 burst in Cep

A, we have applied our superradiance model to the water 22-GHz line. In Figure 4.2 we show

the superradiance intensity curve (scaled to the data) calculated using an ensemble of 1000

superradiance large-samples (solid blue curve) superposed on data from Figure 4c of Mattila

et al. [1985] (black dots). The superradiance realizations are produced using 〈TR〉 = 8.2 hr,

σTR = 0.1 〈TR〉 and T ′ = 700 〈TR〉. As seen in the figure the superradiance curve (solid

curve) occurs over similar time-scale as that for the data and analogously exhibits a peak

followed by secondary maxima as it damps. The relative intensities of the secondary maxima

match that of the data reasonably well while the main peak exceeds the data. Given the

simplicity of our superradiance model we can conclude that the overall behavior of the burst

is well-captured by this model.

It must be noted that the water rotational energy levels (JKaKc = 616 and 523) correspond-

ing to the 22-GHz line are degenerate and, in principle, superradiance can simultaneously

operate in more than one of the corresponding hyperfine components. This can complicate
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Figure 4.2: A superradiance large-sample intensity model (solid blue curve) superposed on

data from Mattila et al. [1985] (black dots) obtained in April and May 1983 for the water

22-GHz burst at Vlsr = −11.2 km s−1 in Cep A. The superradiance intensity is generated

using 1000 superradiance realizations with 〈TR〉 = 8.2 hr, σTR = 0.1 〈TR〉 and a constant

dephasing time-scale T ′ = 700 〈TR〉.

the line flux-density analysis due to the variation of the relative intensity of the degenerate

transitions and their time of occurrence, which our superradiance model does not account

for since it employs a two-level system approximation. This may be partly responsible for

the disagreement between the model peak intensity and the data. Another factor that may

have an impact is the large half-power beam width (≈ 4′) of the telescope used for these

observations, which were inevitably sensitive to an extended region and perhaps suffer con-

tamination from a number of sources.

Once again, the results of our analysis suggests that a large group of water superradi-

ance samples of mean inverted column density 〈nL〉 ∼ 6 × 104 cm−2 (e.g., n ∼ 1 cm−3 and

L ∼ 105 cm) must be responsible for the observed radiation intensity. We also note that

the dephasing time-scale T ′ = 700 〈TR〉 or 238 days resulting from our calculations is less

restrictive than the estimated collision time-scales for a given molecular hydrogen density

nH2 = 108 cm−3 at T ∼ 100K to ∼ 200K consistent with the pumping model of water masers

[Elitzur et al., 1989, Szymczak et al., 2016].
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4.3.3 The Methanol 6.7-GHz and Water 22-GHz flares in

G107.298+5.639

G107.298+5.639 is an intermediate-mass young stellar object deeply embedded in the molec-

ular cloud L1204/S140 [Szymczak et al., 2016] at a distance of ∼ 0.9 kpc [Crampton and

Fisher, 1974]. For the periods of July to December 2014 and similarly in 2015, Szymczak

et al. [2016] monitored methanol 6.7-GHz and water 22-GHz masers in this source with the

Torun 32-m Radio Telescope. During high activity intervals, the methanol observation rate

was increased to eight times a day whereas in quiescent periods they were conducted only

once a week. The water observations were, however, repeated daily with eight gaps of 4 to

5 days of no observations.

The observations of the methanol 6.7-GHz masers indicated four features, among which

the vlsr = −7.4 km s−1, −8.6 km s−1, and −9.2 km s−1 components exhibited a 34.4-day

cyclic behavior. Faint emission was also detected in a few spectral features in the velocity

range of vlsr = −17.2 km s−1 to −13.6 km s−1, although these components did not show the

same periodicity. The cyclic methanol components showed strong flux variations in the form

of a repeating (lone) burst taking place over time-scales of four to twelve days.

The 22 GHz water maser emission was also detected in six features at velocities ranging

from vlsr = −18.3 km s−1 to −1.1 km s−1. Importantly, some features (e.g., those near

vlsr = −16.5 km s−1 and −8 km s−1) peaked in intensity with the same periodicity as,

but delayed relative to, methanol flares at velocities located within ±1.1 km s−1 of those

of the water masers themselves. A similar behavior was detected at a velocity near vlsr =

−11.0 km s−1 where methanol and water flares were also observed in alternation. Based on

high angular resolution data sets collected with the European VLBI Network (EVN) and

VLBI Exploration of Radio Astrometry (VERA) [Hirota et al., 2008], Szymczak et al. [2016]

concluded that some of the periodically alternating methanol and water flares originate from

the same volume of molecular gas of 30 to 80 AU in size.

In order to find a viable explanation for these observations a number of scenarios were

examined, but none were able to adequately reproduce the observations. The observed alter-

nation of the water and methanol maser bursts is the main feature to be explained. However,
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this is very difficult to achieve within the context of maser theory, even with the assumptions

that the two types of masers happen in the same region and are being periodically enhanced

by some pulsating pumping source. For example, it is hard to conceive how the water and

methanol maser features would then occur in alternation while also showing different time

durations for their flares. We now show how this kind of behavior naturally arises, and

should be expected, when studied within the context of Dicke’s superradiance.

Figure 4.3: Superradiance models (solid curves) for the G107.298+5.639 flaring event oc-

curring between MJD 57,260 to 57,300 in Figure 3 of Szymczak et al. [2016] (i.e., Day

7260 to 7300 in our figure) for the vlsr = −8.57 km s−1 6.7-GHz methanol (red dots) and

vlsr = −7.86 km s−1 22-GHz water (blue dots) spectral features. Such flares repeated on an

approximately 34.4-day period [Szymczak et al., 2016]. The methanol and water data/models

use the vertical axes on the left- and right-hand sides, respectively. For methanol the model

parameters are 〈TR〉CH3OH = 2.1hr, σTR,CH3OH = 0.07 〈TR〉CH3OH and T ′CH3OH = 90 〈TR〉CH3OH,

yielding a mean inverted column density of 〈nL〉CH3OH ≈ 3.5 × 104 cm−2, while for water

we have 〈TR〉H2O = 7.7 hr, σTR,H2O = 0.04 〈TR〉H2O , T ′H2O = 70 〈TR〉H2O, and 〈nL〉H2O ≈
8.4× 104 cm−2. Despite the apparent time ordering between the methanol and water flares,

both superradiance models were initiated at the same time, on Day 7261.5.

We assume that we are in the presence of a periodically changing pumping source that
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simultaneously acts on the population levels of both the 22 GHz water and 6.7 GHz methanol

transitions. Although we are not aware of any other observations (beside the periodic maser

flares discussed here) that could provide evidence for such a scenario in G107.298+5.639, we

know of at least one other young protostellar system where strong, cyclic variations in infrared

luminosity have been observed with a period comparable to that seen in G107.298+5.639

(i.e., 25.34 day for LRLL 54361; see Muzerolle et al. 2013). Such infrared intensity variations

could, in principle, directly affect the pumping level of the maser transitions. Given this

assumption, we can apply our superradiance model to understand the behavior of the water

and methanol maser emission observed in G107.298+5.639.

It is important to note that for a given inverted column density the value of TR, and

therefore the durations of superradiant bursts for different spectral lines scale as τsp/λ
2 (see

Eq. [4.1]). It follows that, under similar conditions (i.e., assuming for the moment that

(nL)CH3OH ≈ (nL)H2O), we should expect a superradiance time-scale ratio of approximately

1 : 8.7 between the methanol 6.7 GHz and water 22 GHz lines, respectively. In fact, this

expected relationship between TR,CH3OH and TR,H2O provides us with the needed element to

explain the observations of Szymczak et al. [2016]. That is, since TR sets both the duration

of the superradiant burst and the time delay τD before its emergence (see Eq. [4.2]) it is to be

expected that the methanol flares will be narrower and appear earlier than those for water.

Evidently, it is unlikely that the inverted column densities for methanol at 6.7 GHz and water

at 22 GHz will be the same, and we thus relax this approximation in what follows. But the

above scenario should still hold for cases where their difference is not too pronounced.

Given the observed duration of flares for the methanol 6.7-GHz and water 22-GHz masers,

we adjusted the values of TR for these transitions to reproduce superradiant bursts of similar

time-scales (i.e., approximately 10 days for methanol and 30 days for water). The result of

our analysis is shown in Figure 4.3. The superradiance intensity models (solid curves) were

calculated using ensembles of 1000 superradiance large-samples tailored to the flaring event

occurring between MJD 57,260 to 57,300 in Figure 3 of Szymczak et al. [2016] (i.e., Day

7260 to 7300 in our Figure 4.3) for the vlsr = −8.57 km s−1 6.7-GHz methanol (red dots) and

vlsr = −7.86 km s−1 22-GHz water (blue dots) spectral features. As mentioned earlier, such

flares repeated on an approximately 34.4-day period [Szymczak et al., 2016]. For methanol
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the model parameters are 〈TR〉CH3OH = 2.1 hr, σTR,CH3OH = 0.07 〈TR〉CH3OH and T ′CH3OH =

90 〈TR〉CH3OH, yielding a mean inverted column density of 〈nL〉CH3OH ≈ 3.5 × 104 cm−2,

while for water we have 〈TR〉H2O = 7.7 hr, σTR,H2O = 0.04 〈TR〉H2O, T ′H2O = 70 〈TR〉H2O,

and 〈nL〉H2O ≈ 8.4 × 104 cm−2. In both cases, the models were scaled in intensity to the

data. As seen in the figure the methanol superradiance curve provides a very good fit to the

corresponding data, especially in the wings, while although there is a fair amount of scatter

in the data, the water superradiance intensity curve captures well the overall behavior of

the water flare. It is important to note that, despite the apparent time ordering in the

emergence of the methanol and water flares, both superradiance models were initiated at the

same time, on Day 7261.5. The alternation between the methanol and water bursts observed

in Figure 3 of Szymczak et al. [2016] is thus readily, and simply, explained by the fact that

〈TR〉H2O ≈ 3.7 〈TR〉CH3OH, which delays the appearance of the water flare (from Eq. [4.2])

and broadens it relative to methanol. The two inverted-population column densities have

comparable mean values (i.e., 〈nL〉H2O ≈ 2.4 〈nL〉CH3OH) and correspond to large-samples

lengths of 〈L〉CH3OH ≈ 3.5 × 105 cm and 〈L〉H2O ≈ 8.4 × 104 cm when 〈n〉CH3OH = 0.1 cm−3

and 〈n〉H2O = 1 cm−3. These length scales are, as was the case for the earlier examples,

markedly smaller than those typical of masers, implying the presence of large number of

superradiance samples.

Finally, it remains to be explained how the longer water intensity flares stay synchronized

to the overall 34.4-day period between successive events, as shown in Figure 3 of Szymczak

et al. [2016]. That is, the methanol bursts are short and end well before the appearance

of the subsequent flaring event, but our water superradiance model in Figure 4.3 seems to

indicate that the tail of the corresponding curve extends beyond the start of the next eruption

cycle. The observed synchronization probably results from the fact that the arrival of the

new pumping event responsible for the next flares resets the large-samples by re-establishing

the inverted populations, which in effect terminates the water superradiance cascade and

associated flare (i.e., truncates our superradiance model curve). The associated intensity

then tends to zero but superradiance is once more triggered, resulting in the appearance

of the next burst in intensity. This regenerative pumping phenomenon has previously been

observed in laboratory superradiance experiments [Gross et al., 1976, Paradis et al., 2008].
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4.4 Conclusion

We applied Dicke’s theory of superradiance introduced in 1954 to the methanol 6.7 GHz and

water 22 GHz spectral lines, often detected in molecular clouds as signposts for the early

stages of the star formation process. Superradiance is characterized by burst-like features

taking place over a wide range of time-scales, and provides a viable explanation for flaring

observations of the 6.7-GHz methanol and 22-GHz water masers detected, respectively, in

the G33.64-0.21 and Cep A star-forming regions. Furthermore, our superradiance model also

provides a natural explanation for the recent observations of periodic and seemingly “alter-

nating” methanol and water maser flares in G107.298+5.639. We showed how these flares

are the result of simultaneously initiated 6.7-GHz methanol and 22-GHz water superradiant

bursts operating on different time-scales, providing a natural mechanism for their observed

durations and time-ordering.

When combined with the recent evidence reported in the environments of evolved stars

[Rajabi and Houde, 2016b], the discovery of superradiance in star-forming regions broadens

the applicability of our model and further establishes the existence of a previously unsus-

pected physical phenomenon in the ISM. The occurrence of superradiance in astrophysical

objects implies the presence of entangled quantum mechanical systems, involving a very large

number of molecules, over distances up to a few kilometers in the ISM, which can also be of

interest to quantum information research.

Bibliography

M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov. Super-

radiance Multiatomic Coherent Emission. Bristol: IOP Publishing Ltd, 1996.

D. M. Cragg, A. M. Sobolev, and P. D. Godfrey. Models of class II methanol masers based

on improved molecular data. Monthly Notices of the Royal Astronomical Society, 360:

533–545, June 2005.

D. Crampton and W. A. Fisher. Spectroscopic observations of stars in H II regions. Publi-

cations of the Dominion Astrophysical Observatory Victoria, 14:283–304, 1974.

107



R. H. Dicke. Coherence in Spontaneous Radiation Processes. Physical Review, 93:99–110,

January 1954.

R. H. Dicke. The Coherence Brightened Laser. In I. Agarbiceanu, A. Agafitei, L. Blanaru,

N. Ionescu-Pallas, I. M. Popescu, V. Vasiliu, and V. G. Velculescu, editors, Quantum

Electronics, page 35, 1964.

M. Elitzur. Astronomical masers, volume 170 of Astrophysics and Space Science Library.

Dordrecht: Kluwer, 1992.

M. Elitzur, D. J. Hollenbach, and C. F. McKee. H2O masers in star-forming regions. The

Astrophysical Journal, 346:983–990, November 1989.

K. Fujisawa, K. Sugiyama, N. Aoki, T. Hirota, N. Mochizuki, A. Doi, M. Honma,

H. Kobayashi, N. Kawaguchi, H. Ogawa, T. Omodaka, and Y. Yonekura. Bursting Activ-

ity in a High-Mass Star-Forming Region G33.64-0.21 Observed with the 6.7GHz Methanol

Maser. Publications of the Astronomical Society of Japan, 64, February 2012.

K. Fujisawa, G. Takase, S. Kimura, N. Aoki, Y. Nagadomi, T. Shimomura, K. Sugiyama,

K. Motogi, K. Niinuma, T. Hirota, and Y. Yonekura. Periodic flare of the 6.7-GHz

methanol maser in IRAS 22198+6336. Publications of the Astronomical Society of Japan,

66:78, July 2014.

G. Garay, J. M. Moran, and A. D. Haschick. The Orion-KL super water maser. The

Astrophysical Journal, 338:244–261, March 1989.

S. Goedhart, M. J. Gaylard, and D. J. van der Walt. Periodic flares in the methanol maser

source G9.62+0.20E. Monthly Notices of the Royal Astronomical Society, 339:L33–L36,

March 2003.

M. Gray. Maser Sources in Astrophysics. New York: Cambridge Univ. Press, 2012.

M. Gross and S. Haroche. Superradiance: An essay on the theory of collective spontaneous

emission. Physics Reports, 93:301–396, December 1982.

108



M. Gross, C. Fabre, P. Pillet, and S. Haroche. Observation of Near-Infrared Dicke Superradi-

ance on Cascading Transitions in Atomic Sodium. Physical Review Letters, 36:1035–1038,

April 1976.

T. Hirota, K. Ando, T. Bushimata, Y. K. Choi, M. Honma, H. Imai, K. Iwadate, T. Jike,

S. Kameno, O. Kameya, R. Kamohara, Y. Kan-Ya, N. Kawaguchi, M. Kijima, M. K. Kim,

H. Kobayashi, S. Kuji, T. Kurayama, S. Manabe, M. Matsui, N. Matsumoto, T. Miyaji,

A. Miyazaki, T. Nagayama, A. Nakagawa, D. Namikawa, D. Nyu, C. S. Oh, T. Omodaka,

T. Oyama, S. Sakai, T. Sasao, K. Sato, M. Sato, K. M. Shibata, Y. Tamura, K. Ueda, and

K. Yamashita. Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA

III. IRAS 22198+6336 in Lynds1204G. Publications of the Astronomical Society of Japan,

60:961–974, October 2008.

P. R. Jewell, J. C. Webber, and L. E. Snyder. Evolution of the OH maser emission from U

Orionis. The Astrophysical Journal, 249:118–123, October 1981.

K. Mattila, N. Holsti, M. Toriseva, R. Anttila, and L. Malkamaki. Rapid outbursts in the

water maser Cepheus A. Astronomy & Astrophysics, 145:192–200, April 1985.

L. I. Matveenko, D. A. Graham, and P. J. Diamond. The H2O Maser Flare Region in the

Orion-Kleinmann / Orion-Kl / Nebula. Soviet Astronomy Letters, 14:468, December 1988.

J. Muzerolle, E. Furlan, K. Flaherty, Z. Balog, and R. Gutermuth. Pulsed accretion in a

variable protostar. Nature, 493:378–380, January 2013.

T. Omodaka, T. Maeda, M. Miyoshi, A. Okudaira, M. Nishio, T. Miyaji, N. Motiduki,

M. Morimoto, H. Kobayashi, and T. Sasao. The Enormous Outburst of the 7.9 km s−1

Water-Maser Feature in Orion KL. Publications of the Astronomical Society of Japan, 51:

333–336, June 1999.

E. Paradis, B. Barrett, A. Kumarakrishnan, R. Zhang, and G. Raithel. Observation of

superfluorescent emissions from laser-cooled atoms. Physical Review A, 77(4):043419,

April 2008.

109



S. Y. Parfenov and A. M. Sobolev. On the Class II methanol maser periodic variability

due to the rotating spiral shocks in the gaps of discs around young binary stars. Monthly

Notices of the Royal Astronomical Society, 444:620–628, October 2014.

Fereshteh Rajabi and Martin Houde. Dickes superradiance in astrophysics.I. the 21 cm Line.

The Astrophysical Journal, 826(2):216, 2016a.

Fereshteh Rajabi and Martin Houde. Dickes superradiance in astrophysics. II. the OH 1612

MHz line. The Astrophysical Journal, 828(1):57, 2016b.

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld. Observation of Dicke Su-

perradiance in Optically Pumped HF Gas. Physical Review Letters, 30:309–312, February

1973.

M. Szymczak, P. Wolak, and A. Bartkiewicz. Discovery of four periodic methanol masers

and updated light curve for a further one. Monthly Notices of the Royal Astronomical

Society, 448:2284–2293, April 2015.

M. Szymczak, M. Olech, P. Wolak, A. Bartkiewicz, and M. Gawroński. Discovery of periodic
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Conclusion and Future Plans

In this thesis the general assumption of independently interacting ensembles of atoms/mo-

lecules with the radiation field in the ISM was revisited. It was shown that coherent inter-

actions between matter and the radiation field, i.e., superradiance, can take place in regions

where the necessary conditions are met. These requirements were summarized as close

atomic/molecular spacing, strong velocity coherence, population inversion, and long dephas-

ing time-scales compared to those related to coherent behavior. We found superradiance to

be characterized by strong intensity variability over periods ranging from hours to years.

The potential for superradiance was specifically investigated for neutral hydrogen clouds

and the 21 cm line (Chapter 2), circumstellar envelopes and the 1612 MHz OH line (Chapter

3), and finally methanol and water samples in star-forming regions for, respectively, the 6.7

GHz and 22 GHz lines (Chapter 4). In Chapter 2, through our analysis of the 21 cm

line the formalism of superradiance was extended to magnetic dipole interactions while also

considering circularly polarized radiation. The results of our analysis suggested that, in

principle, only relatively low levels of population inversion over short astronomical length-

scales (e.g., 1014 cm in length) are needed for the realization of 21 cm superradiance in the

ISM.

In Chapter 3 we took advantage of the detection of 1612 MHz OH masers in the CSE of

evolved stars, confirming the existence of population inversions and strong velocity coherence

for this line in these sources, to further investigate whether superradiance can also take place
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in masing regions. Our analysis indicated that superradiance provides a valid explanation

for previous observations of long lasting (i.e., several years) intensity flares detected in the

1612 MHz line for the U Orionis Mira star and the IRAS18276-1431 pre-planetary nebula.

In Chapter 4 we showed that our superradiance model explains flaring observations of

the 6.7-GHz methanol and 22-GHz water masers detected, respectively, in the G33.64-0.21

and Cep A star-forming regions. Furthermore, we used superradiance to understand the

recent observations of periodic and seemingly “alternating” methanol and water maser flares

in G107.298+5.639. It was shown that these flares are the result of simultaneously initiated

6.7-GHz methanol and 22-GHz water superradiant bursts operating on different time-scales.

These observations cannot otherwise be understood within the context of the maser theory.

The confirmation of superradiance in the environments of evolved stars in Chapter 3 and

star-forming regions in Chapter 4 reveal new insight into physical conditions in the ISM.

These discoveries further indicate the existence of entangled quantum mechanical states,

consisting of a very large number of molecules, over distances up to a few kilometers in the

ISM.

Since superradiance provides a natural mechanism for bursts lasting over a variety of time-

scales, which could be as short as a fraction of a second, applying the concept of superradiance

to Fast Radio Bursts (FRBs) might provide new insights for this phenomenon as well. FRBs

are energetic eruptions at radio wavelengths with durations on the order of milliseconds.

Such signals are occasionally detected while their origin still remains unexplained.

The superradiance model we have described in this thesis successfully explains the general

behaviour of the types of systems we examined; however, a more advance model including

effects such as pumping, diffraction losses, and different dephasing and relaxation time-scales

is of interest to allow a more detailed understanding of the phenomenon. Such models can

be, for example, used to characterize the shapes of superradiant spectral lines and their

polarization properties.
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