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Abstract

In our daily environment, we are constantly encountering an endless stream of
information which we must be able to sort and prioritize. Some of the features that
influence this are the emotional nature of stimuli and the emotional context of events.
Emotional information is often given preferential access to neurocognitive resources,
including within sensory processing systems. Interestingly, both auditory and visual
systems are divided into dual processing streams; a ventral object identity/perception
stream and a dorsal object location/action stream. While effects of emotion on the ventral

streams are relatively well defined, its effect on dorsal stream processes remains unclear.

The present thesis aimed to investigate the impact of emotion on sensory systems
within a dual pathway framework of sensory processing. Study | investigated the role of
emotion during auditory localization. While undergoing fMRI, participants indicated the
location of an emotional or non-emotional sound within an auditory virtual environment.
This revealed that the neurocognitive structures displaying activation modulated by
emotion were not the same as those modulated by sound location. Emotion was
represented in regions associated with the putative auditory ‘what’ but not ‘where’
stream. Study Il examined the impact of emotion on ostensibly similar localization
behaviours mediated differentially by the dorsal versus ventral visual processing stream.
Ventrally-mediated behaviours were demonstrated to be impacted by the emotional
context of a trial, while dorsally-mediated behaviours were not. For Study Ill, a motion-
aftereffect paradigm was used to investigate the impact of emotion on visual area
V5/MT+. This area, traditionally believed to be involved in dorsal stream processing, has
a number of characteristics similar to a ventral stream structure. It was discovered that
V5/MT+ activity was modulated both by presence of perceptual motion and emotional
content of an image. In addition, this region displayed patterns of functional connectivity

with the amygdala that were significantly modulated by emotion.

Together, these results suggest that emotional information modulates neural
processing within ventral sensory processing streams, but not dorsal processing streams.

These findings are discussed with respect to current models of emotional and sensory



processing, including amygdala connections to sensory cortices and emotional effects on
cognition and behaviour.

Keywords: Emotion; emotional processing; sensory processing; localization; visual
streams; auditory streams; vision; audition; functional magnetic resonance imaging;
multi-voxel pattern analysis
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CHAPTER 1



1. Introduction

Imagine walking down a city street. You can hear cars rumbling past and people
deep in conversation. You can see the faces of countless individuals each with their own
perspectives and experiences. You can feel the shoulders of other passersby as you move
through the crowds. Suddenly, you hear a single scream and everything seems more vivid
than before. Your senses heighten; you are now a little more aware of your surroundings,
noticing the world in new detail. These instinctive responses focus your senses onto
specific objects in your environment, conveniently allowing you to process things more
efficiently than before, while inconveniently holding your attention to specific objects,
not allowing you to disengage. This situation, while possibly uncommon for many, is an
example of the type of stress our sensory processing systems encounter on a daily basis.
Within our environment, we experience a constant incoming stream of sensory
information which must be sorted and prioritized to avoid becoming overwhelming. The
emotional nature of an object and the emotional context surrounding an event are two

factors that can greatly influence this prioritization.

1.1 Emotional Processing
Emotion can be portrayed as internal states elicited by reward or punishment,

(Rolls, 2005), involving exposure to reinforcing stimuli or events, (i.e., emotional
stimuli). These internal states are thought to originate as an evolutionary mechanism to
represent a desire for, or an aversion to, an object/situation; they are a common currency
which allows us to compare of the value of objects, and guide our behaviour towards
approaching beneficial object/situations while avoiding detrimental ones (Rolls, 2000).
Emotion is a multidimensional construct with two unique elements contributing to its
representation: valence and intensity (Anderson et al., 2003; Anderson & Sobel, 2003;
Bradley, Greenwald, Petry, & Lang, 1992; Kensinger & Corkin, 2004; Russell, 1980).
Emotional valence is considered to be the nature of the response that a stimulus elicits
along a positive-negative axis, while emotional intensity refers to the level of arousal it
elicits (Bradley et al., 1992; Russell, 1980). To ensure the reliability of response elicited
by a stimulus in any given experiment, emotional stimuli datasets commonly are
validated and normalized with subjective rating acquired from a large sample population,
with measurements of both valence and arousal (Bradley & Lang, 1999; Lang, Bradley,



& Cuthbert, 2005). Furthermore, emotions are considered transient states rather than
lasting patterns of behaviour or states of mind. They are produced reflexively upon
exposure to a particular stimulus or thought and decay quickly post stimulus, without
encompassing multiple events and objects (Beedie, Terry, & Lane, 2005; Gross &
Thompson, 2007; Rolls, 2000).

Casual observation of the world around us would suggest that people pay more
attention to emotional rather than neutral stimuli. Empirical study supports this
assumption. Considerable evidence suggests that emotional information has the ability to
gain rapid, preferential access to brain resources, with emotional objects generally
processed faster (Eimer, Kiss, Press, & Sauter, 2009; Kawasaki et al., 2001; Schupp et
al., 2000), more likely to reach conscious awareness (Oliver, Mao, & Mitchell, 2015),
and more captivating of spatial awareness (Calvo & Nummenmaa, 2008; Fox et al., 2000;
Frischen, Eastwood, & Smilek, 2008; Lamy, Amunts, & Bar-Haim, 2008; Ohman, Flykt,
& Esteves, 2001) than neutral ones. The effects of emotion are often reflexive and
involuntary (L. F. Barrett, K.N., & Gross, 2007; Dolan & Vuilleumier, 2003; Ohman,
2002; Tracy & Robins, 2008), yet also heterogeneous in nature; the impact of emotion
can have great variability between paradigm and participant (Vuilleumier & Huang,
2009). To understand what may underlie this variability, it is important to consider the

neurocognitive systems that control emotional processing.

Emotions are processed in a distributed manner within the brain; diverse neural
networks contribute to the representation of different positive and negative environmental
cues (Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012). Numerous overlapping
emotional processing networks have been uncovered, including those implicated in the
representation and identification of facial expressions (Vuilleumier & Pourtois, 2007),
processing of emotional speech prosody (Fruhholz, Ceravolo, & Grandjean, 2012;
Nicholson, Takahashi, & Nakatsu, 2000), and assessment of environmental threat
(Frewen, Dozois, Joanisse, & Neufeld, 2008; Ohman, 2005; Pourtois, Schwartz, Seghier,
Lazeyras, & Vuilleumier, 2006). Interestingly, the amygdala appears to act as a central

hub within many of these networks.



1.1.1 The Amygdala

The amygdala is an almond-shaped structure comprised of a number of individual
nuclei, located deep in the anterior medial temporal lobe. It exhibits extensive anatomical
and functional connections to numerous regions across the brain (Amaral & Price, 1984;
Bickart, Dickerson, & Barrett, 2014; Kim et al., 2011; Roy et al., 2009). In fact, a review
by Young and collaborators (1994) indicated that the amygdala possesses some degree of
structural connection to more than 80% of neocortical regions investigated in non-human
primates (64 of 72 investigated regions; Young, 1993), including, but not limited to,
ventral occipital lobe, prefrontal cortex, and inferior temporal lobe. In addition, it has
been demonstrated that regions of both the auditory (Reser, Burman, Richardson, Spitzer,
& Rosa, 2009) and visual cortex (Amaral, Behniea, & Kelly, 2003; Freese & Amaral,
2005) receive direct feed-forward projections from amygdaloid nuclei. Of note, however,
anatomical connections with the amygdala were not found with some areas associated
with the dorsal visual stream (see 1.3.1 for review of this pathway), including the frontal
eye-fields and supplementary motor area, or the auditory ‘where’ pathway (see 1.2.1 for
review of this pathway), including the most caudal regions of the superior temporal gyrus
(STG; Young, 1993). Furthermore, in addition to extensive anatomical projections to
neocortex, the amygdala also receives rich sensory inputs across modalities (LeDoux,
2007; Pessoa, 2008; Price, 2003). This extensive connectivity is believed to partially
underlie emotion-related changes in perceptual experience.

While acting as a central hub in numerous emotion-related anatomical and
functional networks, the amygdala is particularly involved in the processing of arousal
and valence during the perception of both auditory (Fecteau, Belin, Joanette, & Armony,
2007; Scott et al., 1997) and visual (Breiter et al., 1996; Kapp, Whalen, Supple, &
Pascoe, 1992; Kryklywy, Nantes, & Mitchell, 2013; Lane, Chua, & Dolan, 1999; D.
Sander, Grafman, & Zalla, 2003) emotional stimuli. This provides further evidence of the
amygdala’s role as a central player in numerous large-scale emotion-related networks.
Specifically, the amygdala appears to be involved in the representation of fear-learning
and fear-related stimuli (Barad, Gean, & Lutz, 2006; Johansen et al., 2010; LeDoux,
2003; Ohman & Mineka, 2001). Its role in emotional processing is not limited to this,

however, as evidence has implicated amygdala activity in the coding of positive



associations (Garavan, Pendergrass, Ross, Stein, & Risinger, 2001; Hamann, Ely,
Hoffman, & Kilts, 2002; Paton, Belova, Morrison, & Salzman, 2006), the disambiguation
of emotional expressions (Adolphs, 2002; Whalen, 1998), the representation of emotional
voices (Fecteau et al., 2007; Scott et al., 1997), and reflexive emotional reactivity (Hare
et al., 2008; Machado, Kazama, & Bachevalier, 2009). Moreover, functional brain
imaging in humans has demonstrated that amygdala activity modulates the representation
of objects in sensory processing areas (Lundy & Norgren, 2001; Morris et al., 1998;
Ruden, 2005), potentially influencing perceptual experience.

1.2 Auditory System

Audition is the predominant way in which we are able to identify, localize and
perceive objects that are outside of our current visual field. Studies investigating the
structure and organization of the auditory cortex have revealed dual pathways of
processing for sound localization and sound identification: the ‘where’ and ‘what’
pathways, respectively (Bushara et al., 1999; Maeder et al., 2001; Recanzone & Cohen,
2010). This architecture is reminiscent of, and likely inspired by, the “vision for action’
and ‘vision for perception’ streams identified for visual processing (Goodale & Milner,
1992; Ungerleider & Mishkin, 1982) described below (see 1.3). Human auditory
pathways appear to diverge from Heschl’s gyrus (HG; Ahveninen et al., 2006) adjacent to
primary auditory cortex (Al; Rauschecker & Romanski, 2011). Medial regions of this
structure display activity that is not characteristic of property-specific auditory
processing, while eccentric regions display activity associated with increased
specialization (D. J. Barrett & Hall, 2006; Warren & Griffiths, 2003).

Additional evidence for the dissociation of auditory cortex into discrete ‘where’
and ‘what’ processing streams comes from a number of convergent methodologies. For
example, a double dissociation of sound location and identity processing has been
observed in cats between the posterior and anterior auditory field, respectively (Lomber
& Malhotra, 2008). Furthermore, numerous neuroimaging studies conducted in humans
have identified distinct cortical regions underlying processing of sound identity and

sound-source location, generally dividing these functions along a posterior medial-



anterior lateral axis (e.g., Ahveninen et al., 2013; Alain, Arnott, Hevenor, Graham, &
Grady, 2001; Hart, Palmer, & Hall, 2004; Maeder et al., 2001).

1.2.1 Posterior-Medial ‘Where’ Stream

While historically, there has been much difficulty performing neuroimaging
studies on auditory localization, as the presentation of spatialized sounds is not trivial
within an MRI scanner, substantial evidence suggests that sound location is processed in
the posterior and medial portion the temporal lobe. Specifically, spatial cues used for
localization are processed in regions posterior to A1 (Arnott, Binns, Grady, & Alain,
2004; Harrington, Stecker, Macpherson, & Middlebrooks, 2008; Rama et al., 2004;
Rinne, Ala-Salomaki, Stecker, Patynen, & Lokki, 2014; Stecker, Harrington,
Macpherson, & Middlebrooks, 2005), including the posterior STG, posterior superior
temporal sulcus (STS) and the inferior parietal lobule (IPL). These areas appear to be
functionally connected with regions of lateral prefrontal cortex (PFC), and the superior
frontal sulcus (SFS). Together, these regions comprise a distributed network for spatial
auditory processing (Ahveninen et al., 2006; Bizley & Cohen, 2013; Krumbholz,
Eickhoff, & Fink, 2007; see Figure 1.1a).

The auditory ‘where’ pathway does not appear to display any topographical
representation of sound, but rather exhibits generalized increased activity during tasks
involving sound localization (Arnott et al., 2004; D. J. Barrett & Hall, 2006; Sestieri et
al., 2006). Auditory localization tasks typically involve presenting sounds in dichotic
listening paradigms, or within standardized virtual auditory environments. The general
increase in activity, and lack of topographical representation, suggest a population rate
code to represent sound location in human auditory cortex (Mizrahi, Shalev, & Nelken,
2014; Salminen, May, Alku, & Tiitinen, 2009). This method would allow sound locations
to be represented by contrast between the rate of firing amongst separate populations of
neurons (Miller & Recanzone, 2009). Indeed, it has been suggested that the
representation of auditory spatial cues relies on two populations of neurons, each with
widely tuned spatial sensitivity that encompasses the majority of an auditory hemifield
(Salminen et al., 2009; Salminen, Tiitinen, & May, 2012). The level of activation

contrasted between these two opponent populations is believed to reflect the location of



the auditory object (Stecker, Harrington, & Middlebrooks, 2005; Stecker &
Middlebrooks, 2003). Additionally, there appear to be individual cortical regions that
respond particularly well to sounds arising from broad locations within these broad
receptive fields. For example, BA40 and BA37, show increased activation for sounds
originating around the midline relative to eccentric positions (Zimmer, Lewald, Erb, &
Karnath, 2006), suggesting increased processing of these environmental regions. Regions
of frontal cortex, including SFS and inferior frontal cortex (IFC), also display neural
activity modulated by sound location (Alain et al., 2001; Arnott et al., 2004). These
regions appear to be functionally connected with both IPL and posterior STG, respond
preferentially to task relevant stimuli (Ahveninen et al., 2006), and are implicated in the

direction of attention to relevant information.

1.2.2 Anterior-Lateral ‘What’ Stream
While auditory spatial information appears to be processed along a posterior-

medial-temporal to parietal to superior-frontal pathway, non-spatial auditory information
is processed along an anterior-lateral-temporal to inferior-frontal axis. In humans, pitch,
phoneme, and pattern recognition are initially performed alongside spatial localization
within Al (Obleser et al., 2006; Wessinger et al., 2001) and the planum temporale (PT;
Arnott et al., 2004). While the spatial information is subject to further processing in the
posterior-medial temporal lobes and subsequent areas (see 1.3.1), processing of identity
related cues involves anterior regions of the temporal lobe, including STS, STG, and the
anterior temporal pole, as well as regions of the inferior frontal gyrus (IFG; Alain et al.,
2001; Arnott et al., 2004; see Figure 1.1b). Sound identification and classification
processes performed within the auditory ‘what’ stream are exceptionally diverse in
nature, including, but not limited to, focal and ambient environmental sounds
(Doehrmann, Naumer, Volz, Kaiser, & Altmann, 2008; Engelien et al., 1995; Kiefer,
Sim, Herrnberger, Grothe, & Hoenig, 2008; Lewis et al., 2004), pure auditory tones
(Muller, Kleinhans, & Courchesne, 2001), speech (Binder et al., 2000), and non-linguistic
vocalizations (Belin, Zatorre, & Ahad, 2002).

Evidence for and refinement of this theoretical pathway is supplied by multiple

convergent results and methodologies. Neuroimaging studies have provided consistent



support for identity specific processing areas within auditory cortex (Ahveninen et al.,
2006; Alain et al., 2001; Arnott et al., 2004; Bushara et al., 1999; Rama et al., 2004;
Sestieri et al., 2006). Furthermore, additional evidence for a functional dissociation of
auditory identity processing has come from studies using transcranial magnetic
stimulation (TMS) as disruption of activity within the anterior auditory cortex produces
significant impairments in sound identification processes (Ahveninen et al., 2013).
Similar deficits in auditory identification are observed after lesions to anterior STS and
middle temporal gyrus (MTG; Bidet-Caulet et al., 2009; Clarke et al., 2002; Nicholson et
al., 2000; Trumpp, Kliese, Hoenig, Haarmeier, & Kiefer, 2013; Zundorf, Lewald, &
Karnath, 2016). Additional evidence supporting this dissociation stems from reversible
lesioning of auditory cortex performed in cats (Lomber & Malhotra, 2008) and
electrophysiological recordings in macaques (Rauschecker & Scott, 2009; Rauschecker &
Tian, 2000).

Interestingly, some auditory regions thought to be utilized primarily for early
stages of sound location processing have also been found to display patterns of neural
activity sensitive to auditory object identification. Specifically, human neuroimaging
studies have found that identity-related processing occurs in both the posterior PT and
posterior STS in regions immediately surrounding Al (Benedict et al., 2002; Buchanan
et al., 2000; Burton, Diamond, & McDermott, 2003). Indeed, nearly half of all sound-
identity studies conducted have found activity within these regions (Arnott et al., 2004),

suggesting a mixture of spatial and identity-related processing in early auditory areas.

1.2.3 Emotion in Audition

While much of the work investigating the impact of emotion on the senses has
focused on the visual domain (see 1.3.4), emotional cues have some pronounced effects
within audition as well. Emotional content can be recognized from auditory information
across numerous different types of stimuli, including, but not limited to, language
(Paulmann, Ott, & Kotz, 2011; Shanahan, 2008), verbal intonation (Wildgruber, Pihan,
Ackermann, Erb, & Grodd, 2002; Wildgruber et al., 2005), music (Blood & Zatorre,
2001; Koelsch, Fritz, DY, Muller, & Friederici, 2006), and non-linguistic vocalizations
(Aeschlimann, Knebel, Murray, & Clarke, 2008; Bachorowski & Owren, 2003; Laukka et

al., 2013). Interestingly, while some of these cues are inherently culture-dependent (i.e.,



language), others appear to be more fundamentally characteristic of human auditory
processing (Bachorowski & Owren, 2003). For example, non-linguistic affective
vocalizations, particularly those representing primary negative emotional states, exhibit
consistent and reliable emotional prosody (Aeschlimann et al., 2008) and can be
distinguished uniformly across numerous cultures, akin to facial expression recognition
(Laukka et al., 2013).

Emotional differentiation of sounds is performed very quickly during auditory
processing with differences in neural activity identified between emotional and non-
emotional sounds as early as 150ms post stimulus onset (Sauter & Eimer, 2010).
Furthermore, emotional sounds appear to maintain an elevated status of processing
prioritization, eliciting increased activation across large areas of auditory cortex within
the temporal lobe (Buchanan et al., 2000; Ethofer et al., 2006; Ethofer et al., 2012;
Fecteau et al., 2007; Wildgruber et al., 2002; Wildgruber et al., 2005). In addition to
augmented activation of auditory cortices, emotional sounds also appear to cause
significant changes in neural processing outside of the temporal lobe. Notably, both
positive and negative vocalizations have been demonstrated to elicit increased amygdalar
activation compared to neutral sounds (Fecteau et al., 2007; K. Sander, Brechmann, &
Scheich, 2003).

There have been a number of studies which attempt to identify the ‘what’ of
auditory emotion, (i.e., auditory features that carry emotional information). These studies
have implicated specific auditory features in the experience of emotion from sounds,
including fundamental frequencies (Arias, Busso, & Yoma, 2014; Kramer, 1963,;
Lieberman & Michaels, 1962; Protopapas & Lieberman, 1997), tempo (Kamenetsky,
Hill, & Trehub, 1997; G. D. Webster & Weir, 2005), and amplitude (Scherer &
Oshinsky, 1977). These features, however, are not necessary to evoke emotional
responding and associated neural activation, as controlling for all of these characteristics
does not always eliminate auditory affect recognition (Ethofer et al., 2006). In contrast to
the extensive investigation of auditory features related to emotion, very little work has
investigated the role of emotion on auditory spatial processing. While dichotic listening

tasks suggest that crude spatial cues may impact the processing resources dedicated to
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emotional sounds (Erhan, Borod, Tenke, & Bruder, 1998; Jancke, Buchanan, Lutz, &
Shah, 2001), the exact impact of emotion on the representation of sound location remains

unknown.

1.3 Visual System

To act with volition on an object in the immediate environment, generally one must
first view and represent that object within the brain. For the majority of humans, this
process is done predominantly by our visual systems. The human visual system is tasked
with representing, identifying, and directing interactions between both stationary and
moving objects in our environment. While some basic processing is completed by
subcortical structures, such as the lateral geniculate nucleus of the thalamus (De Valois,
1960; Roska et al., 1993), superior colliculus, and amygdala (Pasley, Mayes, & Schultz,
2004), the majority of the higher order processing is performed at a cortical level.

Cortical visual processing is thought to be performed by two distinct pathways or
streams (Ungerleider & Mishkin, 1982). Akin to the auditory processing streams
previously discussed, the visual processing streams appear to be both anatomically
segregated and functionally specialized (Goodale & Milner, 1992; Milner & Goodale,
1993). Much of the information processed in visual cortices enters the visual system at
primary and secondary cortices, including V1 and V2 in the posterior occipital lobe.
Beyond this, two visual streams quickly emerge (Baizer, Ungerleider, & Desimone,
1991; Ungerleider & Mishkin, 1982). A dorsal processing pathway, running between the
occipital-temporal cortex and the posterior IPL (Goodale & Milner, 1992; Milner &
Goodale, 1993), mediates visually-guided action and goal directed behavior (Goodale,
2011), though the exact nature of dorsal-visual functioning and its contribution to
perception and visual awareness remains debated (Hebart & Hesselmann, 2012; Kravitz,
Saleem, Baker, & Mishkin, 2011; Schenk, 2012; Schenk & Mcintosh, 2010). In contrast,
a ventral processing pathway, running between the occipital-temporal cortex and the
inferior temporal cortex (Goodale & Milner, 1992; Milner & Goodale, 1993), mediates
our perception of the world; that is, our conscious experience of ‘seeing’ (Kravitz et al.,
2011; Milner & Goodale, 2006). It should be noted that complex behaviour relies on

input from both systems. Thus, while segregation and separation of visual pathways does
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exist, dynamic interaction between them must also occur (Cloutman, 2013; Goodale &
Westwood, 2004; Himmelbach & Karnath, 2005; Lee & van Donkelaar, 2002).

1.3.1 Dorsal ‘Vision for Action’ Stream
The dorsal visual stream involves a series of neurocognitive structures, including

dorsal portions of the occipital and temporal cortex, parietal cortex, and the superior
frontal sulcus (see Figure 1.1c). Originating from visual area 5, and the extended middle
temporal area (V5/MT+; Goodale & Milner, 1992; Rizzolatti & Matelli, 2003), there are
numerous projections that comprise this pathway, including projections to visual area 3A,
medial superior temporal areas, the fundus of the superior temporal area, and the ventral
and lateral IPL (Ungerleider & Mishkin, 1982). This pathway has likely further
extensions into the dorsolateral PFC (Foxe & Simpson, 2002), an area implicated in both
spatial working memory (Iba & Sawaguchi, 2003; Kikuchi-Yorioka & Sawaguchi, 2000;
Levy & Goldman-Rakic, 2000; Rypma & D'Esposito, 2003) and saccadic eye-
movements (Funahashi, Bruce, & Goldman-Rakic, 1991). Output from the dorsal visual
pathway is believed to influence cortical regions involved in motor control, as well as
relay information to evolutionarily older visuomotor regions in the brainstem and
midbrain. These include re-entrant connections to the visual thalamus and pulvinar (Kaas
& Lyon, 2007), and a cortico-pontine-cerebellar pathway implicated in the refinement of
visually guided movement (Glickstein, 2000). Notably, some of the cortical regions
associated with more tertiary stages of this stream, such as IPL, are not exclusive to the
dorsal visual pathway, but are also involved in the posterior-medial auditory pathway
(Arnott et al., 2004) and may be involved in controlling spatial attention across domains
(Behrmann, Geng, & Shomstein, 2004).

The primary function of the dorsal stream is related to the online direction of goal
directed movements (Goodale, 2011). It specifies parameters of a movement to allow
visual information to guide an interaction in real-time (Milner & Goodale, 2008) utilizing
egocentric coordinates, or effector-specific frame of reference (Committeri et al., 2004;
Zaehle et al., 2007). Structures within the dorsal stream receive bottom-up information
relating to both visual target location and body positioning or direction (e.g., arm
position) thus allowing processing in this stream to be diagnostic of the positioning of



12

these objects relative to each other (Thaler & Goodale, 2010). It, in turn, utilizes this
information to modulate skilled action, rather than generating any noticeable visual
percepts (Goodale, 2011). A frequently cited example of skilled action is that of reaching
and grasping; the motion of the arm towards an object and the grip aperture scaling prior
to grasping the object are both dorsal-mediated behaviours (Culham et al., 2003; Goodale
& Milner, 1992; Milner & Goodale, 2008; Tanne, Boussaoud, Boyer-Zeller, & Rouiller,
1995). This mediation is particularly evident in visual stream lesion studies, in which
patients with severe damage to the ventral visual stream retain their ability to grasp
objects they are presented, while reporting no visual awareness of the item (Goodale,
Milner, Jakobson, & Carey, 1991; Whitwell, Milner, Cavina-Pratesi, Barat, & Goodale,
2015). Of note, the dorsal visual stream is relatively insensitive to countermanding
instruction (Pisella et al., 2000) and visual illusion (Haffenden & Goodale, 1998). When
presented with two objects that are visually different in length yet, in reality, equal, grip
aperture was scaled correctly while reaching directly to both objects (e.g., Miller-Lyer
illusion; Bruno & Franz, 2009; Dewar & Carey, 2006). This demonstrates a resistance to
task irrelevant information by the dorsal visual stream, an important characteristic to

consider when investigating the effect of emotional distraction on visual processes.

1.3.2 Ventral ‘Vision for Perception’ Stream
Originally outlined in the primate cerebral cortex by Ungerleider and Mishkin

(1982), the ventral visual stream originates at visual area V4, and proceeds along several
routes to the anterior and inferior temporal lobe and ventrolateral PFC (Distler,
Boussaoud, Desimone, & Ungerleider, 1993; Kaas & Lyon, 2007; M. J. Webster,
Bachevalier, & Ungerleider, 1994; see Figure 1.1d). This pathway displays connections
with a number of subcortical structures, including the striatum (Cheng, Saleem, &
Tanaka, 1997; Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013; Saint-Cyr,
Ungerleider, & Desimone, 1990), nucleus accumbens (Kravitz et al., 2013) and amygdala
(Amaral et al., 2003). The ventral visual stream is traditionally believed to act as a serial-
staged hierarchical system; information enters the system from early visual areas at V4,
and continues through anterior temporal and inferior frontal cortex (Macko et al., 1982;
Ungerleider & Mishkin, 1982), undergoing a series of processing stages with increasingly

complex cognitive representations of visual information (Serre, Oliva, & Poggio, 2007).
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Recent anatomical and functional developments, however, suggests that a number of
feed-forward and feed-back connection are involved in ventral visual processing
(Rousselet, Thorpe, & Fabre-Thorpe, 2004), allowing for direct communication between
different processing stages and the associated subcortical regions (Kravitz et al., 2013).
Of particular interest here, the amygdala has extensive anatomical connection to a

number of ventral visual areas (Amaral et al., 2003; Freese & Amaral, 2005).

While the exact nature of the dorsal visual stream remains debated (Hebart &
Hesselmann, 2012; Kravitz et al., 2011; Schenk, 2012; Schenk & Mclntosh, 2010), the
theoretical characterization of the ventral visual stream has remained relatively stable.
Processing in the ventral visual stream is understood to be involved primarily with tasks
of object perception and identification (Goodale & Milner, 1992; Milner & Goodale,
2008) and utilizes a predominantly allocentric, or scene-based, frame of reference
(Committeri et al., 2004; Schenk, 2006; Zaehle et al., 2007). Processing in this stream is
related to the representation of enduring characteristics of objects and their spatial
relation to one another (Milner & Goodale, 2008). For example, activity in the ventral
stream has been related to short- and long-term visual memory (Bergmann, Rijpkema,
Fernandez, & Kessels, 2012; Christophel, Hebart, & Haynes, 2012) and facial recognition
(Davidenko, Remus, & Grill-Spector, 2012; Jeffreys, 1989; Nagy, Greenlee, & Kovacs,
2012; Rossion, Hanseeuw, & Dricot, 2012), and is modulated by such stimulus
characteristics as reward value (Jakobsdottir, de Ruitter, Deijen, Veltman, & Drent,
2012). Much of the processing of specific stimuli categories is functionally clustered to
particular regions of the ventral visual stream, with sub-regions of this stream displaying
characteristic patterns of responding to specific classes of stimuli (e.g., faces; Rossion et
al., 2012, scenes; Epstein & Kanwisher, 1998, tools; Beauchamp & Martin, 2007, etc.).
Representational specificity of the ventral visual stream is thought to be developed by a
combination of experience and properties of the underlying neural architecture
(Kanwisher & Dilks, 2012; Kravitz et al., 2013). Unlike the dorsal stream, many
processes in the ventral stream are susceptible to visual illusion. For instance in both the
Titchener and Miller-Lyer illusions, identical objects are presented, yet are perceived to
be of varying sizes. This underscores an ability of the ventral visual stream to be

mediated by visual context and task irrelevant information.
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Interestingly, some visually guided action appears to be heavily mediated by the
ventral stream processes in addition to the expected dorsal stream processes. For
example, pantomimed tool use relies on the recruitment of the ventral visual system to
maintain a sustained mental representation of the tool to perform the action rather than
direct interaction with the visual environment (Westwood, Chapman, & Roy, 2000).
Similarly, delaying the performance of a visually guided action can cause additional
recruitment of the ventral visual stream (Singhal, Monaco, Kaufman, & Culham, 2013),
and disruption of these areas during delay has the ability to influence the trajectory, but
not the end point, of a visually guided action (Cohen, Cross, Tunik, Grafton, & Culham,
2009). These examples highlight the complex interaction between the visual processing
streams, and illustrate how minute changes in behaviour can greatly alter the

neurocognitive systems required for their execution.

1.3.3 Motion Processing
Unique among visual processing areas are those whose primary function is to

represent and decode motion. Movement and motion processing has typically been
ascribed to regions of visual cortex known as V5/MT+ (Ahlfors et al., 1999; Riecansky,
2004; Thakral & Slotnick, 2011). These regions were originally identified in the macaque
monkey along the middle temporal and medial superior temporal gyrus as a population of
neurons with greater sensitivity to moving compared to stationary visual stimuli
(Maunsell & van Essen, 1983a; Nowlan & Sejnowski, 1995; O'Keefe & Movshon, 1998;
Wang, 1997). In addition to input from early visual areas V1, V2 and V3 (Maunsell &
Van Essen, 1983b), V5/MT+ also receives direct input from multiple subcortical regions,
including the pulvinar, thalamus, and superior colliculus (Lanyon et al., 2009;
Schoenfeld, Heinze, & Woldorff, 2002). In humans, neuroimaging studies have found
that area V5/MT+ responds to global motion (Giaschi, Zwicker, Young, & Bjornson,
2007), implied motion (Fawcett, Hillebrand, & Singh, 2007), and biological motion,
including dynamic facial expression (Schultz, Brockhaus, Bulthoff, & Pilz, 2013; Schultz
& Pilz, 2009; Trautmann, Fehr, & Herrmann, 2009), with the degree of activation related
to salience-based characteristics such as motion velocity (Chawla, Phillips, Buechel,
Edwards, & Friston, 1998; DeAngelis & Uka, 2003) and coherence (Aspell, Tanskanen,
& Hurlbert, 2005). Interestingly, V5/MT+ also responds to stationary visual stimuli
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during the perception of illusory motion (He, Cohen, & Hu, 1998; Tootell et al., 1995).
Disruption of V5/MT+ processing with TMS can result in deficits in object speed
processing (McKeefry, Burton, VVakrou, Barrett, & Morland, 2008) and motion
recognition (Laycock, Crewther, Fitzgerald, & Crewther, 2007), behaviours necessary for

direct visually-guided action with our immediate environment.

While traditionally thought to be subsumed by the dorsal visual stream (Born &
Bradley, 2005), categorization of V5/MT+ within the two visual system hypothesis
remains inconsistent. While the prevailing view remains that this region is primarily a
dorsal stream structure (Born & Bradley, 2005; Goodale & Milner, 1992; Rizzolatti &
Matelli, 2003), others advocate for an increased role as a contributor to ventral visual
processing (Kravitz et al., 2013). V5/MT+ does indeed function as a relay for information
entering the dorsal stream (Goodale & Milner, 1992; Maunsell & van Essen, 1983a;
Rizzolatti & Matelli, 2003), exhibiting projections to tertiary regions of the dorsal
processing stream (Maunsell & Newsome, 1987; Ungerleider & Desimone, 1986) while
disruption of its activity can lead to impairments in reaching behaviours (Whitney et al.,
2007). Bi-directional projections and functional connectivity, however, have also been
established to subcortical structures more related to ventral stream processing, including
the amygdala (Amaral et al., 2003; Young et al., 1994), and disturbances of V5/MT+
processes can lead to impaired word recognition (Laycock, Crewther, Fitzgerald, &
Crewther, 2009). Furthermore, some critical function-related characteristics exhibited by
V5/MT+ are more consistent with ventral-based processing than dorsal-based processing.
For example, activation of V5/MT+ during the processing of static images has been
linked with the presence of the motion aftereffect, a unique form of visual illusion (Antal
et al., 2004; Culham et al., 1999; Fawcett et al., 2007; Hogendoorn & Verstraten, 2013;
Tootell et al., 1995). This susceptibility to illusion is more consistent with ventral rather
than dorsal stream processing. As such, it is an intriguing question of how these regions,
which feed into the dorsal visual stream yet also display connections (e.g., to the
amygdala) and functional limitations (i.e., susceptibility to illusion) consistent with the
ventral stream, will respond to perceptual distraction typically associated with the ventral

visual stream.
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A Auditory ‘Where’ Path | B Auditory ‘What Path

W, |

Primary Auditory Cortex Primary Auditory Cortex
[ Auditory ‘Where’ Pathway Auditory ‘What’ Pathway

C “Vision for Action’ D ‘vision for Perception’

Primary Visual Cortex
[] ‘Vision for Action’ Areas

Primary Visual Cortex
[[] “Visual for Perception’ Areas

Figure 1.1 Dual pathway models of sensory processing.

A) Auditory ‘Where’ Pathway. Spatial processing for auditory information begins in Al,
and projects along a posterior medial axis into secondary auditory cortex on the STG.
From here addition projections carry information into the IPL and SFS. B) Auditory
“What’ Pathway. Processing of non-spatial auditory information also begins in Al.
Information is projected into anterior lateral STG and further into IFC. C) ‘Vision-for-
Action’ Pathway. Visual information enter cortex primarily through areas V1 and V2.
Projections from these areas through dorsal occipital lobe, IPL and SFS are thought to
underlie our control of visually guided movements. D) ‘Vision-for-Perception’ Pathway.
Visual information is carried from VV1/V2 through ventral occipital lobe and into ITC and
IFC. Processing in this pathway underlies our perceptual knowledge of visual object
information.

Note: Arrows indicate the primary flow of information transfer in each stream. This is not
strictly serial. There are feedback connections betweenvisual and auditory areas in each
stream as well contributing to processing.
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1.3.4 Emotion in Visual Processing
Attention to emotional stimuli has been heavily studied in the visual system, as

emotion is known to have diverse and robust effects on a number of visual processes.
Neurally, the emotional nature of an image is known to modulate activity within visual
processing areas (Lang et al., 1998; Morris et al., 1998; Vuilleumier & Driver, 2007).
Behaviourally, people tend to display a bias towards attending to emotionally-charged
rather than neutral stimuli, particularly those with a negative valence. Increased
emotionality can facilitate stimulus identification of a target image (Graves, Landis, &
Goodglass, 1981), or potentiate the effects of distractors (Blair & Mitchell, 2009;
Vuilleumier & Driver, 2007). Many of these effects are believed to be mediated by
feedback connections originating in the amygdala (Furl, Henson, Friston, & Calder,
2013; Morris et al., 1998), a region previously noted for its extensive role in emotional
processing (see 1.1.1). Evidence suggests that functional connectivity between the
amygdala and early visual processing areas is modulated by the emotional content of an
image (Amting, Greening, & Mitchell, 2010; Foley, Rippon, Thai, Longe, & Senior,
2012; Furl et al., 2013; Morris et al., 1998). Furthermore, extensive anatomical pathways
have been described directly connecting these regions both in diffusion tensor imaging
studies of human populations (Catani, Jones, Donato, & Ffytche, 2003) and in non-
human primates (Amaral et al., 2003; Amaral & Price, 1984; Catani et al., 2003).

When investigating the impact of emotion on visual processing, most research
relies on predominantly ventral-based visual processing, including expression recognition
(Adolphs, 2002; Anderson & Phelps, 2000; Han, Alders, Greening, Neufeld, & Mitchell,
2012), assessment of emotional scenes (Ferrari, Codispoti, Cardinale, & Bradley, 2008;
Lane et al., 1999; Sabatinelli et al., 2011), and stimulus detection (Lamy et al., 2008;
Ohman et al., 2001; Pessoa, Japee, & Ungerleider, 2005; Vuilleumier, 2005).
Neuroimaging studies have demonstrated augmented neural processing in the ventral
visual stream for emotional compared to neutral stimuli during the presentation of
emotional faces (Morris et al., 1998), aversive pictures (Lang et al., 1998), and fear-
conditioned stimuli (Krolak-Salmon, Henaff, Vighetto, Bertrand, & Mauguiere, 2004).

The consistent and robust effect of emotion in these areas suggests a widespread role for
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emotion in modulating activity and allocating processing resources within the ventral

visual stream.

Little research has directly addressed the role of emotion in the dorsal visual
stream. In non-human primates, emotion does not appear to impact the activation of
parietal neurons during visually guided action (Rolls et al., 1979), while in humans, the
presence of fearful stimuli has been shown to affect planned, but not automatic control of,
visually guided action (Ta, Liu, Brennan, & Enns, 2010). Furthermore, while bilateral
lesions of the amygdala, a structure an extensive role in emotional processing (LeDoux,
2003, 2007; Phelps, 2006), leads to reduced grey matter along the ventral visual stream, it
does not cause any morphometric abnormalities in dorsal visual stream structures (Boes
etal., 2012).

There does exist some evidence to suggest that dorsal stream regions, including
occipital and parietal lobe, display augmented activation while processing emotional
compared to neutral movie scenes (Goldberg, Preminger, & Malach, 2014). It should be
noted, however, that the emotional scenes used in this study may include more motion or
otherwise be characterized by greater visual complexity than neutral ones, as the stimuli
were not controlled for degree of visual motion or other confounds. Furthermore, dorsal
visual activations observed in these tasks are unrelated to behaviours traditionally
associated with the dorsal visual stream (i.e., visually-guided action); participants were
required only to observe and assess the content of these videos (Goldberg et al., 2014).
As such, subsequent activation during this task may be related to indirect motion
processing effects, rather than a direct impact of emotion of on vision-for-action. As
such, the effects of emotional information on dorsal stream processing, as conceptualized

by the two visual systems hypothesis, remain unclear.

Motion-processing regions have been demonstrated to show context dependent
reactivity to emotional information. Specifically, V5/MT+ displays augmented activation
for emotional compared to neutral videos, but no activation differences between
emotional and neutral static facial expressions (Furl et al., 2013). Interestingly, the

stimuli used in this study did not change in their relative distance from the observer, a cue
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thought to be critical in determine the emotional significance of an object (Panksepp,
1998). Recent studies that address threat distance have utilized either abrupt changes in
visual angle (Coker-Appiah et al., 2013) or third person threat proximity (i.e., the
distance of a threatening object to an onscreen avatar; Mobbs et al., 2007) to approximate
threat distance rather than varying the distance to the actual observer. Moreover,
neuroimaging investigations during these experiments have focused primarily on
responsivity in the frontal cortex, or the periaugeductal gray (Coker-Appiah et al., 2013;
Mobbs et al., 2007; Mobbs et al., 2010), often neglecting the role of visual motion
processing regions. As described above (see 1.3.1), V5/MT+ serves as an entry point for
information into the dorsal visual stream, and augmentation of this region may be
reflected in activity of more tertiary areas of the processing pathway. In addition,
connectivity models suggest that dynamic facial emotion modulates backward
connections from the amygdala to V5/MT+ (Furl et al., 2013). This notion is supported
by studies in both amygdala-lesioned non-human primates (Hadj-Bouziane et al., 2012)
and human epilepsy patients with amygdala sclerosis (Vuilleumier, Richardson, Armony,
Driver, & Dolan, 2004). Reactivity of motion-sensitive regions to complex emotional

scenes, however, remains unknown.

1.4 Thesis Objectives and Hypotheses
The overall objective of this thesis was to determine the impact of emotion on

sensory processing. In particular, the role of emotion was investigated with respect to its
impact in dual pathway models of sensory processing. While emotional information has
been demonstrated to impact stimulus representation in both the anterior-lateral auditory
‘what’ pathway and the ventral visual ‘perception’ pathway (hereby referred to as ventral
sensory pathways), its impact on processing in the posterior-medial auditory ‘where’
pathway and dorsal visual ‘action’ pathway (hereby referred to as dorsal sensory
pathways) remained to present relatively unknown. Three independent studies were

conducted to address unique aspects of this overall objective.

1.4.1 Study |
The objective of Study I was to identify the neural processes involved in

localization of emotional sounds and how they affect one’s ability to localize and
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discriminate these stimuli. Previous work has identified improved visual detection during
emotional ‘pop-out’ of visual stimuli (Lamy et al., 2008), as well as increased auditory
cortex activity during the presentation of emotional compared to neutral stimuli (Fecteau
et al., 2007; Viinikainen, Katsyri, & Sams, 2012). Our primary hypothesis was that the
prioritization of emotional stimuli conferred by the visual system during object
processing would also apply to the auditory system. This hypothesis was founded on
previous studies in vision, auditory behavioural studies demonstrating increased
attentional resource allocation to emotional words and noises (Goydke, Altenmuller,
Moller, & Munte, 2004; Sauter & Eimer, 2010), as well as neuroimaging studies of
dichotic listening tasks (Ethofer et al., 2012; Mitchell, Elliott, Barry, Cruttenden, &
Woodruff, 2003). This study utilized virtual auditory environments to mimic the

presentation of naturalistic spatialized auditory information in an fMRI scanner.

Study | attempted to address two specific aims:

1. Determine influence of emotional valence on localization speed and
accuracy for auditory stimuli presented in virtual space.
Based on evidence presented in behavioural studies utilizing dichotic listening
tasks and EEG, we hypothesized that subjects would display a ‘negativity
bias’ wherein they would be faster to target and locate a sound that has a

negative valence (fear or distress).

2. ldentify neural responses associated with localizing emotional sounds in
virtual space.
Auditory emotional content may act to directly augment stimulus
representation in space, wherein we expected enhanced activation will be
observed in regions of the auditory ‘where’ stream, including PSTG and STS.
Alternatively, auditory processing pathways may show differential responding
to emotional information, similar to visual stream reactivity to cognitive
demand and illusion. In this scenario, we expected to see augmented activity
to emotional content in the auditory ‘what’ stream, including ASTG and IFG,

but not necessarily in the ‘where’ stream.
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1.4.2 Study Il
Whereas Study | focused on the impact of emotion within the dual pathway

architecture of the auditory system, Study Il shifted that focus into the visual domain.
Specifically, Study Il investigated whether there is a differential effect of emotion on
behaviours mediated to different extents by the dorsal and ventral visual stream.
Extensive previous work investigating the impact of emotion on ventral-based visual
tasks identified a consistent effect of emotional content on both behavior and neuronal
activity in the ventral visual stream (Amting, Miller, Chow, & Mitchell, 2009; Graves et
al., 1981; Lang et al., 1998; Morris et al., 1998; Vuilleumier & Driver, 2007). To date,
little to no studies directly investigated the effects of emotion on primarily dorsal stream-
mediated behaviours. Our primary hypothesis was that the augmentation of emotional
stimuli in the ventral visual stream would not be mirrored by the dorsal stream.
Specifically, significant emotional modulation of localization accuracy would be
identified during behaviours recruiting the ventral visual stream (i.e., allocentric
localization), while no emotional modulation would be observed for primarily dorsal
stream-mediated behavior (i.e., egocentric localization). This hypothesis was based on
connectivity patterns displayed by emotion-related structures to visual processing areas,
including robust connections between the amygdala and ventral but not dorsal visual
regions (Amaral et al., 2003; Amaral & Price, 1984), as well a general insusceptibility of
the dorsal visual stream to illusion and task irrelevant information (Bruno & Franz, 2009;
Dewar & Carey, 2006; Haffenden & Goodale, 1998). Egocentric and allocentric
localization behaviours were used to target the dorsal and ventral visual streams

respectively.
Study Il attempted to address one specific aim:

1. Determine the effect of emotion independently on primarily dorsal versus
ventral-mediated behaviours.
Based on evidence presented in tasks of visual emotion and illusion, we
hypothesized that subjects would display significant changes in localization
accuracy during tasks of allocentric localization in accordance with the
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emotional nature of the trial; however, we did not expect to observe similar

effect during dorsally-mediated egocentric localization.

1.4.3 Study 111
The objective of Study |11 was to delineate the impact of emotion on motion

processing during the presentation of complex visual scenes. Recent work demonstrated
that through backwards connections with the amygdala, activation of V5/MT+ is
modulated by the emotional nature of dynamic facial expression (Furl et al., 2013). Our
primary hypothesis for Study Il was that the augmentation of representation in visual
motion processing areas observed for dynamic emotional expressions would also be
apparent during the perception of moving emotional scenes. Specifically, we predicted
that activation in V5/MT+ would be significantly enhanced during the perception of
emotional compared to neutral images, and that this will be related to functional
connectivity between this region and the amygdala. To control stimuli for low-level
visual features across motion categories, illusory motion aftereffects were used to induce
the perception of movement in complex emotional scenes. This was performed by
presenting a one of three patterns of consistent motion followed by static pictures of
varying emotional content, creating visually identical pictures which appear to be moving
in opposite directions. The presence of motion aftereffects is mediated by continued
activation of V5/MT+ following the presentation of a pattern of constant visual

movement (Hogendoorn & Verstraten, 2013; Tootell et al., 1995).
Study I11 attempted to address three specific aims:

1. Determine the influence of emotional valence on motion perception and
activity in visual motion-related areas during illusory motion.
Previous work has demonstrated that V5/MT+ activity corresponds to the
duration and intensity of the motion aftereffect. Furthermore, activity in this
region is modulated by emotion content while viewing dynamic facial
expression. We hypothesized that illusory motion in emotional scenes would
have similar effects on the neural activation of motion sensitive regions and
the subjective perception of illusory motion. Specifically, we expected that
approaching or receding emotional cues would lead to significantly greater
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activation in V5/MT+, due to the self-relevance of the illusory motion

direction.

Determine the impact of emotional valence on the functional connectivity
of visual motion areas during motion perception.

Following previous work outlining connectivity patterns between V5/MT+
and the amygdala, we predicted that context-dependent functional
connectivity between these regions would be modulated by the emotional

nature of a moving visual scene.

Determine the impact of motion direction on the representation of
emotional intensity.

Founded on studies investigating threat proximity, we predicted that direction
of perceived motion would impact the subjective intensity of emotional
scenes. Furthermore, we expected that this effect will be mediated by activity

in the amygdala and prefrontal cortex.
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2. Emotion modulates activity in the ‘what’ but not ‘where’ auditory processing
stream?.

Abstract:

Auditory cortices can be separated into dissociable processing pathways similar to
those observed in the visual domain. Emotional stimuli elicit enhanced neural activation
within sensory cortices when compared to neutral stimuli. This effect is particularly
notable in ventral sensory streams. Little is known, however, about how emotion interacts
with dorsal sensory streams, and essentially nothing is known about the impact of
emotion on auditory stimulus localization. In the current study, we used fMRI in concert
with individualized auditory virtual environments to investigate the effect of emotion
during an auditory localization task. Surprisingly, participants were significantly slower
to localize emotional relative to neutral sounds. A separate localizer scan was performed
to isolate neural regions sensitive to stimulus location independent of emotion. When
applied to the main experimental task, a significant main effect of location, but not
emotion, was found in this ROI. A whole-brain analysis of the data revealed that
posterior-medial regions of auditory cortex were modulated by sound location; however,
additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity
to emotional compared to neutral stimuli. The latter region resembled areas described in
dual pathway models of auditory processing as the ‘what” processing stream, prompting a
follow-up task to generate an identity-sensitive ROI (the ‘what’ pathway) independent of
location and emotion. Within this region, significant main effects of location and emotion
were identified, as well as a significant interaction. These results suggest that emotion

modulates activity in the ‘what,” but not the ‘where,” auditory processing pathway.

1Sections of Chapter 1 are published as: Kryklywy, J.H., Macpherson, E.A., Greening,
S.G. & Mitchell, D.G.V. (2013). Emotion modulates activity in the ‘what’ but not
‘where’ auditory processing stream. Neuroimage, 82.
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2.1 Introduction

The ability to interact effectively in an environment requires the accurate
recognition and localization of surrounding objects and the capacity to prioritize these
objects for behaviour. One characteristic known to modulate this is the emotional nature
of the stimuli (Pessoa and Ungerleider, 2004, Vuilleumier, 2005, Lang and Davis, 2006,
Adolphs, 2008). Considerable evidence suggests that emotional visual stimuli gain rapid
and often preferential access to the brain’s processing resources. At the behavioural level,
emotional visual stimuli are detected faster than neutral stimuli (Graves, Landis, &
Goodglass, 1981), are more likely to enter into awareness (Amting, Greening, &
Mitchell, 2010; Mitchell & Greening, 2011) and can cause significantly greater influence
on task-relevant behaviours (Mitchell et al., 2008; Vuilleumier & Driver, 2007). These
effects are thought to be conferred by enhanced sensory processing; thus, in the visual
domain, emotional stimuli elicit greater activity than similar neutral stimuli within areas
of visual cortex (Morris et al., 1998; Vuilleumier & Driver, 2007). Similarly, studies of
auditory processing have demonstrated that the analysis of emotional auditory stimuli
occurs rapidly (Goydke, Altenmuller, Moller, & Munte, 2004; Sauter & Eimer, 2009) and
is associated with enhanced activity in sensory (i.e., auditory) cortices (Fecteau, Belin,
Joanette, & Armony, 2007; Viinikainen, Katsyri, & Sams, 2011). Despite some emerging
work concerning the influence of emotion on the representation of auditory objects,
essentially nothing is known about how emotion influences auditory stimulus

localization.

There is accumulating evidence that auditory processing occurs within two
separate cortical streams (Ahveninen et al., 2006; Alain, Arnott, Hevenor, Graham, &
Grady, 2001; Barrett & Hall, 2006; Clarke et al., 2002; Lomber & Malhotra, 2008;
Mathiak et al., 2007; Rauschecker, 2012; Rauschecker & Tian, 2000) that may share
some similarities with the well-established dorsal and ventral processing streams of the
visual system (Haxby et al., 1991; Milner & Goodale, 1993). Spatial cues used for
localization are processed primarily in posterior-medial regions of auditory cortex
(Arnott, Binns, Grady, & Alain, 2004; Bushara et al., 1999; Lomber, Malhotra, & Hall,
2007) including the posterior superior temporal gyrus (STG) and the transverse temporal
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gyrus. In contrast, sound identity cues, including pitch and language features are
processed in anterior-lateral regions of auditory cortex along the anterior STG (Altmann,
Henning, Doring, & Kaiser, 2008; Warren & Griffiths, 2003). It should be noted,
however, that there are regions of temporal lobe, including primary auditory cortex and
adjacent areas, in which neural activation has been demonstrated to code both location
and identity-related cues (Arnott et al., 2004).

Despite continuous advances toward understanding the neural mechanisms
underlying both enhanced representation of emotion within sensory cortices and our
representations of auditory space, the impact of emotion during auditory localization
remains unknown. Specifically, it remains unclear whether evidence of enhanced activity
observed in prior studies to emotional relative to neutral, non-spatialized auditory stimuli
(Fecteau et al., 2007; Viinikainen et al., 2011) would also translate into enhanced
auditory stimulus localization and augmented activity in areas of auditory cortex sensitive

to object location.

The potential of auditory virtual environments (AVES) as a method to examine
neural pathways associated with auditory stimulus localization has been described in
previous studies (Bohil, Alicea, & Biocca, 2011; Fujiki, Riederer, Jousmaki, Makela, &
Hari, 2002; Langendijk & Bronkhorst, 2000; Wightman & Kistler, 1989a, 1989b).
Previous neuroimaging studies investigating auditory localization have created AVES
using generic head-related transfer functions (HRTFs) generated from measurements of
mannequins or a prototypical head shape (Ahveninen et al., 2006; Bushara et al., 1999;
Krumbholz, Nobis, Weatheritt, & Fink, 2009). These, however, fail to accommodate for
individual differences in head size and pinnae structure that alter a sound as it enters the
ear canals, resulting in imperfect perception of spatialized sounds (Middlebrooks,
Macpherson, & Onsan, 2000; Wenzel, Arruda, Kistler, & F.L., 1993). Such variables
have been shown to influence reactions to and ratings of emotional auditory stimuli
(Vastfjall, 2003). Despite its potential importance, we are not aware of any neuroimaging

studies utilizing unique AVEs created from individualized HRTFs.
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In the present study, we investigated whether the emotion-related enhancements
observed in the visual domain at the behavioural (Amting et al., 2010; Graves et al.,
1981) and neural levels (Morris et al., 1998; Vuilleumier & Driver, 2007) would also be
found during auditory stimulus localization. We hypothesized that positive and negative
auditory cues would receive prioritized processing relative to neutral stimuli. We
predicted that this prioritization would be reflected by increased accuracy, decreased
reaction time, and increased neural activity within the posterior-medial ‘where’ pathways
of auditory processing during the localization of emotional compared to neutral sounds.
Additionally, consistent with previous studies involving non-spatialized emotional
auditory cues (Fecteau et al., 2007), we predicted that anterior-lateral areas of auditory
cortex (i.e., the putative ‘what’ processing pathway) would also show enhanced activity

for emotional compared to neutral sounds.

To test these predictions, we created AVESs by generating sounds based on each
individual’s unique HRTFs. While undergoing fMRI, participants located or identified a
series of auditory stimuli presented in these virtual environments. The current study
consisted of three related tasks. Task 1 was designed as a functional localizer, aimed at
independently identifying ROIs specifically related to sound localization while
controlling for object identity. Task 2 was conducted in the same scanning session as
Task 1. In this task, participants were required to identify the source locations of positive,
negative and neutral sounds presented within an individualized AVE. This task served
two purposes. First, the ‘where’ ROI derived from the Task 1 localizer was applied to the
data in Task 2 and interrogated to determine potential effects of emotion on auditory
stimulus location-sensitive areas. Second, Task 2 allowed us to perform an exploratory
whole-brain analysis examining the effects of, and interactions between, emotion and

location during auditory stimulus localization.

Contrary to expectations, the results showed that emotion did not modulate
regions of auditory cortex sensitive to location. However, a distinct region of anterior
lateral temporal cortex identified in this exploratory study was modulated by emotion.
This area strongly resembled regions associated with sound-identity processing in
previous studies (i.e. the putative ‘what' pathway; Barrett & Hall, 2006; Warren &
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Griffiths, 2003). Furthermore, this effect parallels patterns of activity elicited by emotion
in the ventral visual stream. To help determine the degree to which this area could be
characterized as part of the ‘what’ auditory pathway, a follow-up localizer was conducted
in a subset of participants in a subsequent session. This functional ‘what’ pathway
localizer identified ROIs that were modulated by sound identity while location and
emotion were held constant. The resulting ROI was extracted and applied to the data
generated from Task 2, allowing us to independently test the effects of emotion on the
resulting ‘what’ pathway. Following all initial analyses, multivoxel pattern analysis
(MVPA) utilizing whole brain spherical searchlights was performed. This allowed for the
identification of neural regions wherein patterns of activity are predictive of either
emotion or location information. This method has recently been demonstrated to be
highly sensitive for decoding how neural patterns code mental representations, beyond
traditional univariate approaches (Mahmoudi, Takerkart, Regragui, Boussaoud, &
Brovelli, 2012; Norman, Polyn, Detre, & Haxby, 2006) and can be particularly beneficial
for delineating population-based neural encoding, like that found in auditory processing.

2.2 Methods
2.2.1 Subjects

Eighteen healthy human subjects, (9 male, 9 female) with a mean age of 23.56
(range 19-35, SD 4.51), completed Tasks 1 and 2. All subjects granted informed consent
and were in good mental health, as assessed by a Structured Clinical Interview for DSM-
IV (Diagnostic and Statistical Manual of Mental Disorders, 4" Edition). All subjects had
normal hearing, normal or corrected-to-normal vision and were fluent English speakers.
Ten of these subjects (5 male, 5 female), with a mean age of 24.3 (range 19-35, SD 5.42),
returned to complete Task 3. All participants were reimbursed for their time at the end of
each study session. All experiments were approved by the Health Science Research

Ethics Board at the University of Western Ontario.

2.2.2 Stimuli and Apparatus
Stimuli

Twelve sounds were chosen from the International Affective Digitized Sound
(IADS) stimulus set that were of a neutral, negative or positive affective nature as defined



52

by standardized ra