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Abstract 

 

Acetylcholine (ACh) is one of the main neuromodulators in the mammalian central 

nervous system (CNS). This chemical messenger has been implicated in the underlying 

physiology of many distinct cognitive functions. However, the exact role that ACh plays 

in regulating information processing in the brain is still not fully understood. The 

vesicular acetylcholine transporter (VAChT) is required for the storage of ACh into 

synaptic vesicles, and therefore it presents a means to modulate release. Diminished 

VAChT levels cause a decrease in cholinergic tone, whereas increased VAChT 

expression has been shown to augment ACh release. Previously published data have 

shown that elimination of VAChT in the basal forebrain in genetically-modified mice 

impairs learning and memory. 

For our studies we have used different mouse lines in which the expression of the 

VAChT gene is changed, both increased and decreased. We are therefore able to study 

the consequences of altered cholinergic tone in vivo. Our hypothesis is that changes in 

cholinergic tone produce specific molecular signatures in target brain areas that underlie 

alterations in cognitive function. Our studies aimed to elucidate the behavioural and 

molecular consequences of cholinergic dysfunction. Behavioral testing included 

classical learning and memory tests as well as sophisticated tasks using novel touch 

screens chambers to measure attention, learning and memory as well as cognitive 

flexibility. At the molecular level, the goal was to examine how long-term changes in 

cholinergic tone impact mechanisms regulating synaptic plasticity and neuronal health. 

Finally, by aging mouse models of cholinergic dysfunction we were able to elucidate the 

role that cholinergic tone plays in the classical pathological hallmarks of 

neurodegenerative disorders. 

Ultimately, by establishing the molecular signature of increased and decreased 

cholinergic tone in targeted brain regions (cortex and hippocampus) it may become 

possible to find novel targets for therapeutic interventions to improve cognitive deficits 

due to altered cholinergic tone. 
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Chapter 1 
 

1 Introduction 
 

1.1 Central Cholinergic Tone 
 

Acetylcholine (ACh) was the first neurotransmitter to be identified (Loewi 1921). Cells 

which secrete, and thus signal via ACh, are deemed cholinergic cells. Cholinergic cells 

are found throughout the mammalian body and they are both neuronal and non-

neuronal cell types. Neuronal ACh acts both in the peripheral nervous system (PNS) 

and in the central nervous system (CNS). In the PNS ACh is the neurotransmitter which 

activates skeletal muscles, in the neuromuscular junction. Furthermore, ACh in the PNS 

is the neurotransmitter of the autonomic nervous system which regulates a host of 

involuntary and unconscious bodily functions. CNS ACh is a neuromodulator affecting 

synaptic plasticity and regulating many behaviours including learning and memory, 

attention, and reward (Hasselmo 1999, Picciotto, Higley et al. 2012).  

1.1.1 Regulation of ACh Release 
 

Synthesis of ACh relies on the uptake of choline into the presynaptic cholinergic nerve 

terminal. This process is mediated by the activity of the high affinity choline transporter 

1 (CHT-1) (Yamamura and Snyder 1972) Kuhar and Murrin 1978). Choline in the 

presynaptic cell is then combined with Acetyl-CoA and synthesized into ACh by the 

choline acetyltransferase enzyme (ChAT) (Hersh 1982, Rylett and Schmidt 1993). 

Newly synthesized molecules of ACh are then packaged into synaptic vesicles by the 

vesicular acetylcholine transporter (VAChT) (Prado, Reis et al. 2002, Prado, Roy et al. 

2013). VAChT represents the rate liming step in the release of ACh. Genetic elimination 

of VAChT has demonstrated that VAChT is required for the storage and release of ACh 

(Prado, Martins-Silva et al. 2006, de Castro, De Jaeger et al. 2009). Unlike monoamine 

which have multiple and redundant transporters (Liu, Peter et al. 1992), VAChT is the 

sole transporter for ACh. Following stimulation of the presynaptic cell, ACh containing 
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synaptic vesicles fuse with the presynaptic membrane and ACh is released into the 

synapse (Katz and Miledi 1965, Varoqui and Erickson 1996). In the synapse, ACh can 

bind and act upon pre and post synaptic ACh receptors. These receptors fall into two 

main classes, ionotropic nicotinic receptors, and metabotropic muscarinic receptors. 

Upon dissociation from the receptors, synaptic ACh is broken down into its constituents 

by the activity of the acetylcholinesterase enzyme (AChE) (Marnay and Nachmansohn 

1937, Soreq and Seidman 2001). Schematic of ACh release is depicted in Figure 1.1. 
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Figure 1.1 The Cholinergic Synapse. (A) Choline is taken up into the pre-synaptic 

cholinergic neuron by the activity of the high affinity choline transporter, CHT-1. (B) 

Choline and acetyl-CoA are combined to form acetylcholine by the choline 

acetyltransferase enzyme. (C) The Vesicular Acetylcholine Transporter packages 

acetylcholine into synaptic vesicles, exchanging one cytoplasmic molecule of 

acetylcholine for two vesicular H+ ions. (D) Following excitation of the pre-synaptic 

cholinergic neurons, acetylcholine containing synaptic vesicle fuses with the plasma 

membrane and acetylcholine is released into the synapse. Acetylcholine can then bind 

to either ionotropic nicotinic receptors or metabotropic muscarinic receptors. These 

receptors can be expressed both pre- and post-synaptically. (E) Following dissociation 

of acetylcholine from its receptors, the molecule is broken down by the 

acetylcholinesterase enzyme into acetate and choline.  
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1.1.2 The Vesicular Acetylcholine Transporter 
 

To speed up synaptic transmission, neurotransmitters are packaged into synaptic 

vesicles, and released as a quantum (Katz and Thesleff 1957, Stevens 1993). This 

quantal release mechanism allows for the local concentration of neurotransmitters 

released into the synapse to be orders of magnitude larger than if neurotransmitters 

were simply released uniformly across the nerve terminal.  Release events of ACh from 

neurons into the synapse have been well characterized as quantal events (Katz and 

Thesleff 1957, Van der Kloot and Molgo 1994). It has been estimated that roughly 

10,000 molecules of ACh are packaged into each vesicle (Linder, Pennefather et al. 

1984). As ACh is a cation, it will not simply diffuse passively through membranes. A 

transport mechanism is required for the packaging of ACh into vesicles for synaptic 

release. VAChT is the protein responsible for the packaging of ACh into synaptic 

vesicles (Alfonso, Grundahl et al. 1993). Evidence of how VAChT carries out this 

transport has been elucidated from models of the proteins structure.  

Although the structure of the protein has not been resolved by crystallography or other 

methods, models of the protein structure have been proposed to explain the 

biochemical activity of the transporter. It has been suggested, based on the knowledge 

of other transporters in the same protein family, that VAChT would assume a 12 

transmembrane domain structure (Vardy, Arkin et al. 2004). Following the proposed 

model, the protein would be separated into two distinct large structural halves, allowing 

for a central transport path to be formed between them (Khare, Ojeda et al. 2010).  

VAChT is able to pump ACh into synaptic vesicles, by exchanging two intra-vesicular 

protons, for one cytoplasmic molecule of ACh (Nguyen, Cox et al. 1998).  Experimental 

evidence suggests that this exchange occurs within the described central transport path 

of the protein (Ojeda, Kolmakova et al. 2004). 

In vitro studies have indicated that the activity of VAChT is highly regulated. VAChT will 

concentrate ACh into vesicles at a rate 30 folds lower than predicted, based on the free 

energy formed by the exchange of two protons (Parsons 2000). The pharmacological 

agent vesamicol is a selective non-competitive VAChT inhibitor. Studies using 
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vesamicol have shown that the compound is able to block ACh storage in vesicles, and 

also block release of ACh into the synapse (Anderson, King et al. 1983, Collier, Welner 

et al. 1986, Whitton, Marshall et al. 1986, Prado, Gomez et al. 1992, Van der Kloot 

2003). Therefore, synaptic release of ACh is dependent on VAChT packaging the 

neurotransmitter into vesicles. These findings have been confirmed in vivo, where mice 

with targeted deletions of VAChT no longer release ACh upon KCl stimulation (Prado, 

Martins-Silva et al. 2006, de Castro, De Jaeger et al. 2009, Lima Rde, Prado et al. 

2010, Guzman, De Jaeger et al. 2011). Taken together, these results place VAChT as 

the rate limiting step in the release of ACh into the synapse.  

The majority of total VAChT protein is found within the synaptic vesicles of cholinergic 

neurons. The VAChT protein however is not locally translated at the synapse (Park, 

Gondre-Lewis et al. 2011). The intracellular trafficking of VAChT is therefore a key 

cellular process within cholinergic neurons (Prado and Prado 2002).  VAChT trafficking 

to synaptic vesicles has been shown to be a clathrin-mediated process (Santos, 

Barbosa et al. 2001, Barbosa, Ferreira et al. 2002, Ferreira, Santos et al. 2005). 

Experiments using a yeast two hybrid system to investigate protein-protein interaction, 

have shown that the C-terminal domain of VAChT interacts with the AP-2 adaptor 

complex (Barbosa, Ferreira et al. 2002). AP-2 is a multimeric protein that is a master 

regulator of chlatrin-mediated endocytosis (Pearse, Smith et al. 2000). A di-leucine motif 

has been characterized within the C-terminus of the VAChT protein, and plays a critical 

role in the clathrin-mediated endocytosis of the transporter (Tan, Waites et al. 1998). 

Mutations in this di-leucine motif abolish the interaction between VAChT and the AP-2 

complex (Barbosa, Ferreira et al. 2002). Likewise, the C-terminal segment of vesicular 

monoamine transporters (VMATs) regulates their trafficking (Tan, Waites et al. 1998). 

This is not surprising as there is a large degree of homology between VAChT and 

VMATs (Liu and Edwards 1997). Interestingly, the intracellular trafficking of these 

proteins is vastly different. In the brain, VMATs are trafficked to many different types of 

secretory vesicles (Nirenberg, Liu et al. 1995, Nirenberg, Chan et al. 1996). Conversely, 

VAChT is localized almost exclusively to synaptic vesicles (Gilmor, Nash et al. 1996, 

Weihe, Tao-Cheng et al. 1996). It appears that the phosphorylation of this C-terminus is 

important to the subcellular specificity of VAChT trafficking (Krantz, Waites et al. 2000, 
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Ferreira, Santos et al. 2005). The kinase PKC has been shown to both modulate 

VAChT phosphorylation as well as ACh release from hippocampal synaptosomes 

(Tanaka, Fujiwara et al. 1986, Allgaier, Daschmann et al. 1988, Barbosa, Clarizia et al. 

1997). VAChT phosphorylation can therefore be highly relevant to cholinergic signalling 

in the brain (Van der Kloot and Molgo 1994).  

1.1.3 Choline Acetyltransferase 

 
Synthesis of ACh within neurons occurs within the cytoplasm of cholinergic nerve 

terminals. ChAT is the enzyme responsible for the production of ACh within cells. As its 

name suggests, choline acetyltransferase transfers an acetyl group from an acetyl-CoA 

to a choline molecule to produce the neurotransmitter ACh (Nachmansohn and Berman 

1946). Expression of the ChAT enzyme is extremely sparse, estimated to comprise less 

than a ten thousandth of a percent of total brain proteins (Eckenstein and Thoenen 

1982, Bruce, Wainer et al. 1985). Despite this low abundance, ChAT protein is found 

within every cholinergic cell in the brain (Docherty, Bradford et al. 1985), its expression 

pattern therefore follows the anatomical distribution of cholinergic neurons in the brain.  

 

Interestingly, the genes for ChAT and VAChT are present in the same gene locus, 

termed the cholinergic gene locus (Eiden 1998, Mallet, Houhou et al. 1998). Cloning of 

the ChAT gene revealed a rather unique structure for the gene (Berrard, Brice et al. 

1987, Strauss, Kemper et al. 1991). Upstream of the coding region for ChAT, within the 

intron between the first and second exons, the VAChT 1590bp open reading frame was 

discovered (Bejanin, Cervini et al. 1994, Erickson, Varoqui et al. 1994, Roghani, 

Feldman et al. 1994). The VAChT gene is found in the same transcriptional orientation 

as ChAT (Berrard, Varoqui et al. 1995). This unique gene organization is evolutionarily 

conserved and can be found in C. elegans (Alfonso, Grundahl et al. 1994, Roghani, 

Feldman et al. 1994), drosophila (Kitamoto, Wang et al. 1998), mice (Misawa, Ishii et al. 

1992, Barbosa, Massensini et al. 1999), rats (Bejanin, Habert et al. 1992) and men 

(Berrard, Brice et al. 1987). Although arising from the same gene locus, VAChT and 
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ChAT are transcribed as separate transcripts (Alfonso, Grundahl et al. 1994, Erickson, 

Varoqui et al. 1994).  

ChAT is localized predominantly in the cytoplasm (Bruce, Wainer et al. 1985). However, 

membrane-bound forms of the protein have been reported (Bruce and Hersh 1987). In 

addition, a variant of the human form of the enzyme can localize to the nucleus, wherein 

it plays a role in the regulation of gene expression and chromatin modeling (Gill, 

Bhattacharya et al. 2003, Matsuo, Bellier et al. 2011). The ChAT enzyme is organized 

as a globular, single strand, protein (Govindasamy, Pedersen et al. 2004). Site-directed 

mutagenesis studies have shown that a number of critical amino acid residues regulate 

the catalytic function of the protein (Carbini and Hersh 1993, Dobransky, Davis et al. 

2000). This work showed that a histidine residue is the acid/base catalytic residue of the 

enzyme, while a nearby arginine residue interacts with, and binds the CoA molecule. 

Further structural biology experiments have confirmed these findings (Kim, Rylett et al. 

2006). 

Interestingly, there appears to be no correlation between the mRNA level of ChAT 

within a cellular population, and the enzymatic activity of the cells (Berrard, Brice et al. 

1987). This finding suggests that regulation of ChAT protein levels and activity occur at 

the post-transcriptional level. Translation of the ChAT protein occurs within the soma of 

neurons (Berrard, Brice et al. 1987) and the enzyme is then transported by an 

undetermined mechanism to the synapse. The transport of the enzyme represents a 

means by which cells can regulate their production of ACh. A critical post-translational 

modification to the ChAT enzyme is its phosphorylation (Bruce and Hersh 1989, 

Dobransky and Rylett 2003). A number of phosphorylation sites have been 

demonstrated on the enzyme and it appears that these modifications play a role in 

regulating the catalytic activity of the enzyme (Dobransky and Rylett 2003). A key 

phosphatase involved in the regulation of ChAT enzymatic activity is PKC (Dobransky, 

Doherty-Kirby et al. 2004). Importantly ChAT phosphorylation in synaptosomes is 

sensitive to Ca2+ levels (Dobransky and Rylett 2005). The enzymatic activity of ChAT, 

and consequently ACh synthesis, can therefore be regulated in response to neuronal 

depolarization. Deletion of the chat gene from the mouse genome is post-embryonically 
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lethal (Misgeld, Burgess et al. 2002). Studies of the embryos from these animals have 

shown in the absence of ChAT there is dramatic restructuring of the PNS in these 

animals (Brandon, Lin et al. 2003), indicating that ChAT, and therefore ACh, is essential 

for proper developments of the nervous system.    

1.1.4 The High Affinity Choline Transporter 

 
Synthesis of ACh is dependent on the intracellular concentrations of choline. Neurons 

are unable to synthesise enough of their own choline for cholinergic neurotransmission 

(Yamamura and Snyder 1972, Collier and Katz 1974).Therefore, ACh releasing neurons 

are dependent on the activity of a transporter to obtain their choline (Birks, Macintosh et 

al. 1956, Birks and Macintosh 1957). The transporter responsible for the uptake of 

choline into neurons is the CHT1 transporter.  This transporter regulates choline levels 

within a cell, by transporting choline into the cell in a Na+ dependant manner (Simon 

and Kuhar 1975, Birks, Worsley et al. 1985). This protein is encoded by the SLC5A7 

gene, which was first identified in C. elegans, and subsequently identified in the rat, 

mouse and human (Apparsundaram, Ferguson et al. 2000, Okuda, Haga et al. 2000). 

There is a very high degree of homology between the rat and human gene (Okuda and 

Haga 2000) as well as between the rat and mouse gene (Apparsundaram, Ferguson et 

al. 2001). Importantly, CHT1 is preferentially expressed in cholinergic neurons, and can 

therefore be used as a specific marker for these cells (Misawa, Nakata et al. 2001). 

CHT1 is not the sole choline transporter expressed in the mammalian brain. The 

Torpedo-like choline transporter, CTL1 is highly expressed in oligodendrocytes, where it 

provides choline for the synthesis of phospholipids (Traiffort, Ruat et al. 2005). CLT1 

also differs from CHT1 in that its function is dependent on K+ ions rather than Na+ ions 

(Fujita, Shimada et al. 2006). The other choline transporter expressed in the 

mammalian brain is the organic cation transporter 2 (OCT2). Unlike CTL1, OCT2 is also 

expressed in cholinergic neurons, being found on synaptic vesicles within these 

neurons (Nakanishi, Haruta et al. 2011, Nakata, Matsui et al. 2013). OCT2 however is 

not selective for choline, but rather can transport all organic cations. Given that OCT2 

and CHT1 share similar localization in cholinergic neurons, it has been hypothesized 
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that these two transporters may collaborate to transport choline into cholinergic neurons 

(Nakata, Matsui et al. 2013). 

The CHT1 protein is 580 amino acids long and organized on plasma membranes in a 

13 transmembrane domain structure (Apparsundaram, Ferguson et al. 2000, Okuda, 

Haga et al. 2000, Torres, Gainetdinov et al. 2003). CHT1 has been shown to have 

consensus PKA and PKC phosphorylation motifs, implicating these signalling pathways 

in the regulation of this protein (Gates, Ferguson et al. 2004, Brock, Nickel et al. 2007). 

Experimental inhibition of these signalling pathways has led to decreases in cell surface 

levels of the transporter (Gates, Ferguson et al. 2004). Although CHT1 carries out its 

physiological function at the plasma membrane, the vast majority of the protein is found 

within intracellular vesicles, with only a small portion of the total protein pool found on 

the plasma membrane (Ferguson, Savchenko et al. 2003, Ribeiro, Alves-Silva et al. 

2003, Ribeiro, Black et al. 2005). Inclusion of CHT1 in the plasma membrane of 

synapses is dependent on the activity of the neuron. Depolarization by action potential 

of the neuron increases the levels of CHT1 at the plasma membrane in a calcium 

dependant manner (Collier and Katz 1974, Simon and Kuhar 1975). The trafficking of 

CHT1 to the plasma membrane is mediated by the clathrin endocytic pathway (Ribeiro, 

Alves-Silva et al. 2003). Plasma membrane CHT1 then can be internalized in a clathrin 

dependant manner to either be tagged for proteasome degradation, or to be trafficked 

back to the plasma membrane (Ribeiro, Black et al. 2005).  

Genetic elimination of CHT1 from the mouse genome results in post-natal lethality, 

within an hour of birth, due to an inability of the animals to breathe (Ferguson, 

Bazalakova et al. 2004). Mice with a heterozygous null mutation are however viable and 

are able to maintain the same level of choline uptake as wild-type control animals 

through posttranslational compensation of CHT1 function, by increased inclusion at the 

plasma membrane (Ferguson, Bazalakova et al. 2004). Furthermore, in mice with a 

heterozygous null deletion of the ChAT gene (and therefore a reduced capacity to 

synthesize ACh), levels of the CHT1 protein were increased in compensation (Brandon, 

Mellott et al. 2004). Analysis of the prefrontal cortex of rats performing attention based 

cognitive tasks showed both an increase in choline uptake and in CHT1 protein levels 



10 
 

 
 

(Apparsundaram, Martinez et al. 2005). These findings demonstrate that the trafficking 

of CHT1 to the plasma membrane is a highly dynamic process which plays a role in 

normal physiological functioning. Importantly polymorphisms in the CHT-1 gene have 

been identified in patients with Attention Deficit Disorders, related to cholinergic deficits 

in these patients (English, Hahn et al. 2009). The trafficking of CHT1 to the plasma 

membrane is thus a critical determinant to the levels of choline within cholinergic cells 

and a critical process for cognitive functioning.  

1.1.5 Nicotinic Receptors 

 
Nicotinic acetylcholine receptors (nAChRs) are ionotropic receptors which are selective 

for ACh. nAChRs are expressed in both the peripheral and in the CNS. This class of 

receptors are involved in neuronal excitability and regulation of neurotransmitter 

release. There are nine different nicotinic receptor subunits that are expressed in the 

CNS, they are either  subunits (2, 3, 4, 5, 6, 7) or  subunits (2, 3, 4) all encoded by 

distinct genes (Le Novere and Changeux 1995, Dani and Bertrand 2007). These 

subunits combine as either homomeric or heteromeric pentameric receptors.  The most 

prominent homomeric nicotinic receptor in the mammalian CNS is the 7 nicotinic 

receptor (7nAChR). However the most prominently expressed nicotinic receptor in the 

brain is the 42nAChR (Wada, Wada et al. 1989). 

Regardless of their make-up, nicotinic receptors share the same general structure. They 

are organised as a transmembrane receptor with a central ion channel, an extracellular 

ligand binding domain with a ligand binding pocket (Karlin and Akabas 1995). Although 

they share similar structures, 7nAChRs and 42nAChRs have drastically different 

functional properties (Giniatullin, Nistri et al. 2005). 7nAChRs are quick to be activated 

by ACh and are quickly desensitized (Pidoplichko, DeBiasi et al. 1997). These receptors 

are permeable to Na+, and K+, but are highly permeable to Ca2+ (Seguela, Wadiche et 

al. 1993).  42nAChRs on the other hand are slow to be activated by ACh and are also 

slow to desensitize (Alkondon and Albuquerque 2005). These receptors are only 

permeable to Na+ and K+ ions.  
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In situ hybridization studies have demonstrated that the 4 and 2 nAChR subunits are 

expressed ubiquitously across the mammalian brain (Wevers, Jeske et al. 1994).  

Expression of these receptors is highest in the thalamus and cortex and relatively low in 

the hippocampus (Alkondon, Reinhardt et al. 1994). 2 nAChRs is essential for nicotine 

evoked release of GABA and dopamine from synaptosomes collected from a number of 

brain regions (Turner 2004, McClure-Begley, King et al. 2009). Furthermore nicotine 

evoked striatal release of dopamine is abolished in mice lacking the 2 subunit (King, 

Caldarone et al. 2004). This regulation of dopamine release by 2nAChRs is 

functionally relevant as mice lacking this receptor do not display place preference 

conditioning to cocaine (Zachariou, Caldarone et al. 2001). Young mice lacking the 2 

nAChR subunit do not display memory impairments, however as these mice age they 

display cortical atrophy and cell loss in the hippocampus (Zoli, Picciotto et al. 1999). 

The age dependant neurodegeneration in these animals is associated with learning and 

memory impairments.  

The 7nAChR like the 4 and 2 is expressed throughout the brain. However the 

distribution pattern of the 7nAChR is antithetical to the pattern of the 4 and 2 

subunits. 7nAChRs are most expressed in the hippocampus and cortex, but are 

almost absent in the thalamus (Seguela, Wadiche et al. 1993). Although 7nAChRs are 

highly involved in synaptic plasticity in the hippocampus, 7-subunit knockout mice did 

not differ from wild-type controls in a host of memory assays including contextual and 

cued fear-conditioning and on the Morris water maze (Paylor, Nguyen et al. 1998, 

Fernandes, Hoyle et al. 2006). 7nAChRs are also expressed on non-neuronal cells in 

both the brain and in the periphery, including astrocytes and microglia. 7nAChRs on 

these non-neuronal cells play a critical role in inflammation (de Jonge and Ulloa 2007) 

and in neuroprotection (Ren, Puig et al. 2005). On immune cells activation of 7 

receptors regulates the production of inflammatory cytokines (Wang, Yu et al. 2003).   

1.1.6 Muscarinic Acetylcholine Receptors 

 
ACh can act upon a class of metabotropic receptors, the muscarinic acetylcholine 

receptors (mAChRs). There have been 5 subtypes of mAChRs that have been 
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identified, the M1, M2, M3, M4 and M5 receptors. All of these receptors function as 

classical G-protein coupled receptors (Wess 1996). mAChRs can be subdivided into 

two categories, the Gq coupled receptors which includes the M1, M3 and M5 receptors 

(Berstein, Blank et al. 1992, Offermanns, Wieland et al. 1994, Qin, Dong et al. 2011), 

and the Gi/o coupled M2 and M4 receptors (Winitz, Russell et al. 1993, Migeon and 

Nathanson 1994). The Gq coupled receptors activate phospholipase C and increase 

intracellular Ca2+ levels; these receptors are therefore deemed excitatory. The Gi/o 

coupled receptors on the other hand act by decreasing cyclic nucleotide levels, 

decreasing intracellular Ca2+ levels and promoting K+ efflux, thus inhibiting the neuron.  

G proteins can also directly regulate K+ channels, which is a common mechanism for 

M2 muscarinic receptors (Kunkel and Peralta 1995).  

 

All five of the mAChR are expressed in the mammalian nervous system. These 

receptors are found to be expressed on both neuronal and glial cell types in the nervous 

system. The expression of the M1, M4 and M5 subtypes is enriched in the CNS, 

whereas the M2 and M3 receptors are equally found in both the CNS and the PNS 

(Levey 1993). mAChRs in the brain have been shown to play regulatory roles in many 

cognitive processes. Each of the five muscarinic receptors are encoded by a unique 

gene. This has allowed for the genetic manipulation of the individual receptor types and 

from this their distinct physiological roles in the central nervous system have been 

elucidated (Wess 2004). 

 

M1 mAChRs are expressed throughout the mammalian forebrain, including cerebral 

cortex, hippocampus, and in the striatum (Wolfe and Yasuda 1995). It is by its broad 

level of expression that the receptor is thought to play a role in many cognitive 

processes. Mice lacking the M1 mAChR have been shown to be hyperactive (Gerber, 

Sotnikova et al. 2001) and have impaired working memory (Anagnostaras, Murphy et al. 

2003) and consolidation (Gould, Dencker et al. 2015). These animals also present a 

number of biochemical (Berkeley, Gomeza et al. 2001) and electrophysiological 

(Anagnostaras, Murphy et al. 2003) abnormalities that underlie their impaired behaviour.  
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M3 mAChRs are expressed throughout the brain but are most prominently expressed in 

the hypothalamus (Wall, Yasuda et al. 1991). Hypothalamic M3 mAChRs regulate food 

intake and appetite. These receptors are found on melanin-concentrating hormone 

producing neurons of the hypothalamus, and their activations stimulates production of 

the appetite regulating hormones (Yamada, Miyakawa et al. 2001). Mice lacking this 

receptor are lean and have a pronounced reduction in bodyweight and food intake 

compared to control animals (Yamada, Miyakawa et al. 2001).  In the periphery these 

receptors have been shown to regulate smooth muscle function (Matsui, Motomura et 

al. 2002) and the salivary response (Bacman, Sterin-Borda et al. 1996).  

 

M5 mAChRs have low levels of expression throughout the brain and are enriched in 

limited cellular populations (Wei, Walton et al. 1994). M5 mAChRs are expressed on the 

midbrain dopaminergic neurons, originating from the substantia nigra (Vilaro, Palacios 

et al. 1990), and are therefore highly critical to the regulation of dopamine release in the 

striatum. M5 mAChRs have been shown to directly regulate striatal dopamine release, 

although other muscarinic subtypes can also modulate striatal dopamine by indirect 

mechanisms (Zhang, Yamada et al. 2002). The ventral tegmental area of mice deficient 

in the M5 mAChR do not respond to cholinergic stimulation demonstrating that these 

receptors also regulate ventral tegmental area dopamine release (Yeomans, Forster et 

al. 2001, Forster, Yeomans et al. 2002). Given the role of these receptors in regulating 

dopamine signalling, mice lacking M5 mAChRs have altered responses to opioids and 

cocaine (Basile, Fedorova et al. 2002, Thomsen, Woldbye et al. 2005).  

 

The inhibitory M2 and M4 mAChRs function mainly as auto-receptors for ACh in the 

brain (Starke, Gothert et al. 1989). These receptors are also both present on the 

GABAergic medium spiny neurons in the striatum (Yan, Flores-Hernandez et al. 2001). 

For the most part, these receptors are responsible for inhibiting release of ACh (Zhou, 

Meyer et al. 2002). They are therefore predominantly presynaptic receptors found on 
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cholinergic neurons (Levey, Edmunds et al. 1995). These receptors therefore play a 

critical role in the regulation of the timing and release of ACh, processes which are 

highly relevant to cognitive function (Sarter, Parikh et al. 2009). Mice lacking the M2 

receptor show a broad range of hippocampal behavioural and electrophysiological 

impairments (Seeger, Fedorova et al. 2004). Mice lacking the M4 receptor also present 

with learning impairments and hyperactivity (Koshimizu, Leiter et al. 2012). Given that 

these receptors regulate release of ACh; it is difficult to differentiate the specific roles of 

these receptors to cognition, from general roles of cholinergic tone in the brain.  

1.1.7 Basal Forebrain Cholinergic System 

 
The basal forebrain is a collection of nuclei including the medial septum (MS), the 

ventral pallidum (VP), the diagonal band nuclei, magnocellular preoptic nucleus, and the 

nucleus basalis magnocellularis (nBm) (Zaborszky, Pang et al. 1999). The neurons 

found within this brain region have been implicated in many cognitive functions including 

learning and memory and executive function (Miyamoto, Shintani et al. 1985). The basal 

forebrain is composed of a highly variable population of neurons. ACh releasing 

neurons  represent  roughly 20% of the neurons in the basal forebrain (Semba 2004). 

Other neurons in the basal forebrain release glutamate, GABA and neuropeptides 

(Henny and Jones 2008).  

The output of basal forebrain cholinergic neurons is dependent on the nuclei from which 

these neurons are found (Figure 1.2A). Neurons originating in the MS and the diagonal 

band nuclei provide the major cholinergic innervation to the hippocampus (Mesulam, 

Mufson et al. 1983). Cholinergic neurons from the diagonal band and from the 

magnocellular preoptic nucleus project to the olfactory bulb and to the enthorinal cortex 

(Gaykema, Luiten et al. 1990), while the nBm cholinergic neurons project to both the 

basolateral amygdala and the entire cortex (Boegman, Cockhill et al. 1992, Power, Thal 

et al. 2002). Just as the basal forebrain is not a homogenous cell population, the 

described projections are not purely cholinergic with both GABAergic and glutamatergic 

projection neurons sharing the same projection tracks as the cholinergic cells (Huh, 

Goutagny et al. 2010).  
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Basal forebrain cholinergic neurons receive afferent input from midbrain and brainstem 

as well as from the hypothalamus. Unlike the non-cholinergic neurons in the basal 

forebrain, the cholinergic neurons in the basal forebrain do not appear to receive top 

down input from the cortex (Zaborszky 1989, Zaborszky and Duque 2000). 

Hypocretin/orexin positive neurons from the hypothalamus have been identified as the 

main source of innervation to the basal forebrain (Henny and Jones 2006). These 

neurons have been shown to synapse onto both cholinergic and non-cholinergic neuron 

in the basal forebrain. These neurons are histaminergic and are important regulators of 

arousal. Midbrain afferent connections to the basal forebrain originate from the 

dopaminergic cells of the substantia nigra and from the ventral tegmental area (Fallon 

and Moore 1978, Zahm and Trimble 2008). Brainstem structures which project to the 

basal forebrain cholinergic cells are adrenergic in nature from the medulla and the locus 

coeruleus and cholinergic from the pedunculopontine nucleus.  

Basal forebrain cholinergic neurons role in regulating executive function and memory 

has largely been investigated by immunotoxin lesioning of these cells (Baxter, Bucci et 

al. 2013). The 192 IgG-saporin is a specific neurotoxin which, when delivered to the 

basal forebrain, will selectively kill cholinergic neurons and spare the other cell types in 

the region (Book, Wiley et al. 1992). An important caveat to the attribution of these 

behaviours to cholinergic signalling is that these neurons may not be simply cholinergic. 

In culture, these cholinergic neurons from the basal forebrain have been shown to be 

able to release glutamate (Allen, Abogadie et al. 2006). Recent optogenetic 

experiments have demonstrated that basal forebrain cholinergic which project to the 

cortex co-release GABA from distinct pools of vesicles (Saunders, Granger et al. 2015). 

The behavioural consequences of this co-transmission have yet to be investigated, but 

suggest  that GABA and/or glutamate co-released with ACh may influence behaviours 

thought to be regulated by ACh signalling alone (Granger, Mulder et al. 2016).  

1.1.8 Striatal Cholinergic System 

 
Contrary to projection cholinergic neurons found in the basal forebrain and the 

pedunculopontine tegmental nucleus, the cholinergic neurons in the striatum are local 
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interneurons (Figure 1.2B). As such, they are characterized by shorter axons and form 

circuits with nearby neuron within the same brain region (Zhou, Wilson et al. 2002). The 

cholinergic interneurons of the striatum are the primary source of ACh in the striatum, 

but only comprise less than 1% percent of all cells in the striatum (Bolam, Wainer et al. 

1984). Cholinergic neurons in the striatum, relative to other cholinergic neurons, have 

higher levels of  the  key cholinergic markers choline acetyltransferase (Hebb and Silver 

1961) and acetylcholinesterase (Woolf and Butcher 1981). This enrichment in 

cholinergic markers demonstrates the importance that these cells play in regulating 

striatal function. 33 1.2 B. 

 

A key role of the cholinergic interneurons in the striatum is to integrate information from 

afferent inputs to the striatum. This is achieved by assimilating inputs of a large number 

of neurons which release various different neurotransmitters, by expressing a large 

number of different receptor classes for these neurotransmitters. These 

neurotransmitters can either act in an excitatory manner, such as glutamate (Calabresi, 

Centonze et al. 1998), serotonin (Bonsi, Cuomo et al. 2007), histamine (Bell, 

Richardson et al. 2000) and substance P (Aosaki and Kawaguchi 1996). 

Neurotransmitters can also inhibit cholinergic interneurons, such as GABA (DeBoer and 

Westerink 1994), adenosine (Brown, James et al. 1990), and endogenous opioids 

(Rada, Mark et al. 1991). Other neurotransmitters can be both excitatory and inhibitory, 

depending on which class of receptors they activate such as with dopamine, excitatory 

D1-like signalling (Aosaki, Kiuchi et al. 1998) and inhibitory D2-like (Chuhma, Mingote et 

al. 2014). It is therefore the role of these cholinergic interneurons to integrate all of 

these various signals.  

 

Despite their relatively small cell number, striatal interneurons project throughout the 

striatum and can therefore have broad physiological effects.  GABA-ergic medium spiny 

neurons (MSNs) are the primary output of the striatum (Chuhma, Tanaka et al. 2011).  

These neurons are not thought to express nicotinic acetylcholine receptors (Luo, 

Janssen et al. 2013), though nicotine can indirectly modulate their activity (Liu, Otsu et 

al. 2007). Cholinergic signalling therefore directly modulates the activity of MSNs by 
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activation of muscarinic receptors. Activation of M1 muscarinic receptors on these cells 

is thought to reduce KCNQ potassium inhibition (Shen, Hamilton et al. 2005) and Ca2+ 

entry (Perez-Garci, Bargas et al. 2003), increasing the excitation of MSNs. Nicotinic 

receptors in the striatum are highly concentrated on both glutamatergic and 

dopaminergic nerve terminals. Glutamatergic nerve terminals in the striatum are 

enriched in 7 nicotinic receptors, and activation of these receptors leads to release of 

glutamate (Campos, Alfonso et al. 2010). Release of dopamine in the striatum is also 

highly dependent on cholinergic signalling. Unlike glutamate, the release of dopamine in 

the striatum has been shown to be dependent on the synchrony of cholinergic 

interneuron firing, and the activation of 2 nicotinic receptors on dopaminergic terminals 

(Cachope, Mateo et al. 2012).  

 

An important caveat for many of the studies of striatal cholinergic neurons, is that these 

cells co-transmit glutamate. This co-transmission is achieved through synergism 

between VAChT and the vesicular glutamate transporter-3 (VGLUT-3) (El Mestikawy, 

Wallen-Mackenzie et al. 2011). VAChT and VGLUT-3 are found on the same vesicles in 

these neurons and it has been shown that VGLUT-3 enables these vesicles to package 

additional ACh (Gras, Amilhon et al. 2008). Studies using genetically modified mice 

have shown that the glutamate and the ACh released from these neurons can have 

separate and potentially opposite physiological roles in regulating striatal function and 

behaviour (El Mestikawy, Wallen-Mackenzie et al. 2011, Guzman, De Jaeger et al. 

2011, Sakae, Marti et al. 2015). Behavioural studies of mice with lesioned striatal 

cholinergic interneurons were found to be hyperactive, have a heightened response to 

cocaine and do not show haloperidol induced catalepsy (Hikida, Kaneko et al. 2001, 

Kitabatake, Hikida et al. 2003). These behaviours were initially attributed to the 

cholinergic properties of these cells. However mice lacking release of ACh from the 

striatum were not hyperactive and did not display heightened responses to cocaine 

(Guzman, De Jaeger et al. 2011). In fact, it was mice lacking the VGLUT-3 transporter 

which recapitulated the phenotype of the lesioned animals (Gras, Amilhon et al. 2008). 

The ACh released from these cells seems to be playing a critical role in regulating 

release of dopamine. The animals lacking release of ACh from the striatum showed a 
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functional increase in dopamine receptor expression and activity, assessed by 

pharmacological MRI (Guzman, De Jaeger et al. 2011). VGLUT-3 and VAChT have 

opposing roles in the regulation of dopamine release. Elimination of VAChT from striatal 

interneurons decreases KCl stimulated dopamine release, whereas elimination of 

VGLUT-3 from these neurons potentiates the dopamine response (Sakae, Marti et al. 

2015). These results suggest that other physiological properties of striatal ACh may 

potentially be attributable to the glutamate released from these cholinergic interneurons 

or may be dependent on the combined action of both neurotransmitters. 

1.1.9 The Pedunculopontine Tegmentum Cholinergic System 

 
The pedunculopontine tegmentum (PPT) is a collection of nuclei found within the 

brainstem behind the substantia nigra. The nuclei found within the PPT are a 

heterogeneous population of neurons that differ by the neurotransmitters they release. 

The three major neurons within the PPT are cholinergic, GABAergic and glutamatergic 

(Martinez-Gonzalez, Wang et al. 2012). These three types of neurons are largely 

segregated into separate regions of the PPT. The majority of cholinergic neurons within 

the PPT are located in the PPT pars compacta (Pahapill and Lozano 2000).  

 

Much of the work to characterize the projection of the cholinergic neurons from the PPT 

has been done in non-human primates. These experiments have shown that these 

cholinergic neurons project predominantly to structures within the basal ganglia (Figure 

1.2 C). Both the substantia nigra (Futami, Takakusaki et al. 1995) and the ventral 

tegmental area  receive significant input from the cholinergic neurons of the PPT 

(Charara, Smith et al. 1996). This anatomical data place these cholinergic cells as key 

regulators of dopamine signalling in the brain. The primary output of the cholinergic 

neurons from the PPT is the thalamus (Parent, Pare et al. 1988). Additionally the 

striatum also receives direct input from the cholinergic neurons of the PPT (Dautan, 

Huerta-Ocampo et al. 2014). The PPT is therefore an alternate source of cholinergic 

tone in the striatum, besides the cholinergic interneurons. Finally an important target of 

the cholinergic neurons in the PPT is the contralateral PPT (Benarroch 2013). 
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Given the anatomical connectivity data, the cholinergic output from the PPT is placed to 

be a key regulator of dopamine signalling in the brain. Experimental evidence for this 

was first shown by studying the addictive properties of nicotine; by increasing dopamine 

release acting specifically through 2 nicotinic acetylcholine receptors in the VTA 

(Picciotto, Zoli et al. 1998). Further work has also demonstrated that M5-type 

muscarinic receptors can also stimulate dopamine release from the VTA (Corrigall, 

Coen et al. 2002). Since the cholinergic output from the PPT can robustly modulate 

dopamine signaling, these neurons are important intermediaries of addiction and 

reward. Not only do these neurons release more ACh into the VTA during cocaine 

administration and cocaine seeking behaviours (You, Wang et al. 2008), but these 

cholinergic neurons will also increase their firing rate in response to environmental cues 

associated with reward (Goldberg and Reynolds 2011). Given these findings, 

cholinergic PPT neurons have been proposed to be master regulators of dopamine 

signalling in the brain (Maskos 2008).   

 

The PPT cholinergic neurons also play a key role in regulating sleep and arousal. PPT 

cholinergic neurons are completely inhibited during seizures, this inhibition is 

accompanied by changes in EEG recordings (Motelow, Li et al. 2015). In line with these 

findings, PPT cholinergic neurons play a critical role in increasing arousal states during 

sleep. Recent optogenetic studies have found that activation of cholinergic neurons in 

the PPT is an important modulator of REM sleep and plays a critical role in the initiation 

of REM sleep (Van Dort, Zachs et al. 2015).  
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Figure 1.2 The Central Cholinergic System in the Murine Brain. Sagittal 3D 

reconstructions of the mouse brain. Image data detailing axonal projections labeled by 

rAAV tracers injections into ChAT-IRES-Cre mice, and visualized using serial two-

photon tomography. (A) Cholinergic projections from the basal forebrain. (B) Cholinergic 

interneurons in the striatum (C) Cholinergic projections from the pedunculopontine 

tegmental nucleus. Images generated from the Allen Brain Institute Mouse Connectivity 

Atlas. © 2016 Allen Institute for Brain Science. Allen Mouse Brain Connectivity Atlas 

[Internet]. Available from: http://connectivity.brain-map.org. Oh, S.W. et al. (2014) A 

mesoscale connectome of the mouse brain, Nature 508: 207-214. 

doi:10.1038/nature13186 

http://connectivity.brain-map.org/
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1.2 Cholinergic Regulation of Brain Functions 

 

1.2.1 Cholinergic Regulation of Hippocampal Function 

 

The hippocampus has been extensively studied for its role in regulating learning and 

memory (Squire 1992). This brain region plays an important role in the formation and 

maintenance of new memories. In Alzheimer’s disease (AD) the hippocampus is one of 

the first brain regions to be affected by pathology (De Leon, George et al. 1997, 

Padurariu, Ciobica et al. 2012). Hippocampal degeneration mediates some of the 

learning and memory deficits in AD patients (Graham and Hodges 1997). 

 

The finding in humans that drugs which block cholinergic receptors in brain impair 

performance on task of learning and memory (Ghoneim and Mewaldt 1975, Atri, 

Sherman et al. 2004), have placed this neurotransmitter as a central regulator of 

memory. Functional MRI studies have shown that cholinergic modulation of the 

hippocampus occurs during learning and memory tasks (Goekoop, Scheltens et al. 

2006, Wink, Bernard et al. 2006). Much of the work delineating the mechanism of 

cholinergic control of hippocampal function has been performed in rodents. In both 

rodents and man, the cholinergic innervation to the hippocampus arises from the medial 

septum nucleus within the basal forebrain cholinergic system (Lewis and Shute 1967).   

 

The involvement of the basal forebrain cholinergic system in memory is supported by 

several works employing various methods ranging from unspecific and specific lesion 

methods (Wrenn, Lappi et al. 1999, Chudasama, Dalley et al. 2004), pharmacological 

manipulations (Granon, Poucet et al. 1995) and more recently the use of genetic 

manipulations (Fernandes, Hoyle et al. 2006, Martyn, De Jaeger et al. 2012, Al-Onaizi, 

Parfitt et al. 2016). The observation of a transient increase of cholinergic activity during 

and after a memory tasks can be observed in hippocampus (Durkin and Toumane 1992, 

Durkin 1994). It is suggested that this increase in neurotransmitter release may support 

synaptic plasticity in the hippocampus, a mechanism which is essential for learning and 
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memory (Fadda, Melis et al. 1996, Hironaka, Tanaka et al. 2001). 

 

Synaptic plasticity is a process whereby the nervous system changes the weight of 

functional connectivity; it can help form, eliminate, potentiate and weaken connections 

of neuronal circuits (Abbott and Nelson 2000).  The mechanism of cholinergic regulation 

of hippocampal plasticity has been well studied (Hasselmo and Bower 1993, McEwen 

1999, Yakel and Shao 2004, Hasselmo 2006, Drever, Riedel et al. 2011, Yakel 2012). 

The addition of low concentrations of carbachol, a cholinergic mimetic, onto cultured 

slices induces LTP,  an effect dependent of muscarinic receptors (Auerbach and Segal 

1996). In vivo experiments have consistently demonstrated the role of cholinergic tone 

in the modulation of LTP. Free walking mice showed reduced LTP in the hippocampus, 

after cholinergic denervation in the medial septum or following administration of 

muscarinic receptors antagonists (Leung, Shen et al. 2003, Doralp and Leung 2008). 

Furthermore, deletion of VAChT from basal forebrain neurons also disrupts 

hippocampal LTP ex vivo (Martyn, De Jaeger et al. 2012) and in vivo (Al-Onaizi, Parfitt 

et al. 2016). 

 

The mechanisms by which cholinergic neurons regulate synaptic plasticity are complex 

and are likely to involve short-term changes in membrane conductance and also on 

second messengers. Carbachol can induce another type of synaptic plasticity in the 

hippocampus and the cortex, long-term depression (LTD), once again requiring 

muscarinic activation (Jo, Son et al. 2010, Caruana, Warburton et al. 2011). LTD is 

correlated with learning and information storage, furthermore, it has been related to 

processes which require cognitive flexibility such as extinction and behavior flexibility 

(Collingridge, Peineau et al. 2010).  

 

Reports have proposed the notion that cholinergic modulation of synaptic plasticity is 

highly dependent on time, and that nicotinic receptors serve as a switch between LTP 

and LTD. Ge and Dani (2005), using a protocol to induce a short-term, transient, 

potentiation (STP) observed that the STP became an LTP response when ACh was 

administered multiple seconds prior to the stimulation, however when ACh was 
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delivered less than a second prior the stimulation then the STD turned into a LTD 

response. Similarly, cholinergic stimulation 120 ms prior to stimulation lead to an 

α7nAChR dependent LTP. When the same cholinergic stimulation was administered 10 

ms after electrical stimulation, a muscarinic dependant LTP was observed (Gu and 

Yakel 2011).Thus depending on the timing of the activation, either induction of LTP or 

LTD can occur and will depend on the activation of nicotinic or muscarinic receptors.  

Cholinergic activity seems necessary to regulate neuronal synchrony (Metherate, Cox et 

al. 1992). Neuronal synchrony is the simultaneous change in membrane potential 

across multiple neurons. This process, in the hippocampus, is thought to underlie many 

different types of cognitive processing, such as learning and memory (Benchenane, 

Tiesinga et al. 2011). Furthermore, it has been suggested that disruption of neuronal 

synchrony may underlie cognitive deficits in diseases such as Alzheimer’s and 

Parkinson’s (Uhlhaas and Singer 2006).  

 

1.2.2 Cholinergic Regulation of Attention 
 

Release of ACh from the basal forebrain into the prefrontal cortex (PFC) is essential for 

attentive processing. ACh signalling in the PFC is an important mechanism for 

neuromodulation of cortical synaptic activity. The efflux of ACh into the PFC, occurs in 

rapid transients that act on the millisecond time scale and tonicaly release ACh (Celesia 

and Jasper 1966). These cholinergic transients are correlated with both cue detection 

and attentional performance in rodents.   

Both selective cholinergic lesions  and non-selective lesions of the basal forebrain 

produce robust deficits in attentional performance in rodents (Robbins, Everitt et al. 

1989, Muir, Dunnett et al. 1992, Turchi and Sarter 1997, McGaughy and Sarter 1998).  

Importantly, the attentional deficits produced by lesions to the basal forebrain 

cholinergic system are permanent (McGaughy, Kaiser et al. 1996). In addition, these 

deficits do not alter response times in lesioned animals. On a task where rodents are 

rewarded for both detecting the presence of salient stimuli and their absence, 

cholinergic lesions produced drastic deficits in detection of the salient cues, but the 

rodents had no deficits on trials where they were required to detect the absence of the 
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stimulus (McGaughy, Kaiser et al. 1996, McGaughy and Sarter 1998). These results 

implicate basal forebrain cholinergic tone in mediating cue detection. The attention 

deficits in basal forebrain cholinergic lesioned animals were insensitive to 

pharmacological administration of nicotinic agonists, suggesting that specifically the 

release of ACh is critical for cue detection in tasks of attention (McGaughy, Decker et al. 

1999).  

Microdialysis studies have shown that release of ACh into the PFC is increased when 

rodents are performing attentional tasks (Passetti, Dalley et al. 2000). Efflux of ACh into 

the PFC appears to vary based on the difficulty of the attentive task, where the harder 

the task, the more ACh is released (Dalley, McGaughy et al. 2001).  Experiments 

recording cholinergic signalling in the PFC using enzyme coated microelectrodes 

demonstrated that attentionally relevant cues correlated with rapid transient increases in 

ACh levels in the PFC (Parikh, Kozak et al. 2007). These cholinergic transients 

correlated with attentive behaviour in the animals and were absent when the cues were 

missed by the animals. Optogenetic stimulation of basal forebrain cholinergic afferents, 

to simulate cholinergic transients, during tasks of attention produced “false alarms” 

where rodents behaved as if they had seen a rewarding cue, when no cue had been 

presented (Gritton, Howe et al. 2016).  

Evidence for nicotinic regulation of attention comes from a number of studies which 

demonstrated the pro-attentive effects of nicotine (Wesnes and Warburton 1984, 

Rusted and Warburton 1992). The two most prevalent nicotinic receptors in the PFC are 

the 42nAChRs and the 7nAChRs. Evidences from animal models suggest that the 

effects of nicotine on attention are mediated by 42nAChRs (Potter, Corwin et al. 

1999, Howe, Ji et al. 2010). Administration of a 42nAChRs agonist had a greater 

effect on attentive behaviour than nicotine (Howe, Ji et al. 2010). Mice lacking the 

2nAChR subunit had impairments in attention as assessed by the 5-choice serial 

reaction time task. These deficits were reversed by viral mediated expression of the 2 

subunit specifically in the PFC, demonstrating the necessity and sufficiency of the 

2nAChR subunit (Guillem, Bloem et al. 2011). The mechanism of 42nAChRs 

signalling in attention has been thoroughly studied. Stimulation of 42nAChRs evoked 
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release of glutamate into the PFC, lesions of the mediodorsal thalamic nucleus 

eliminated the glutamate release (Parikh, Man et al. 2008). 42nAChRs thus recruit 

thalamic glutamatergic inputs to regulate cue detection (Howe, Ji et al. 2010). 

Histological studies have shown that the thalamic glutamatergic nerve terminals in the 

PFC do indeed express 42nAChRs (Lambe, Picciotto et al. 2003).  

The evidence for the involvement of 7nAChRs in attention is more contentious. Initial 

studies suggest that mice null for the 7nAChR have deficits in sustained attention 

(Hoyle, Genn et al. 2006, Young, Crawford et al. 2007). Others have however reported 

no deficits in these same mice on the same tasks (Guillem, Bloem et al. 2011). It should 

be noted that in the latter study the task was substantially easier. The attentional deficits 

in mice null for the 7nAChR may therefore be dependent on the difficulty of the task 

assessing attention. Pharmacological manipulations of 7nAChRs have also had mixed 

results, with some showing improvements in attention and others showing no 

behavioural effects (Grottick and Higgins 2000, Pichat, Bergis et al. 2007, Rezvani, 

Kholdebarin et al. 2009, Wallace, Callahan et al. 2011).  

The role of muscarinic receptors in attention has been investigated in human studies 

using the muscarinic inhibitor scopolamine. Administration of scopolamine induces 

cognitive impairments in healthy human subjects (Dunne and Hartley 1986). The effects 

of muscarinic blockade on attention appear to involve the visual cortex along with the 

PFC (Davidson and Marrocco 2000). mAChR blockade in the visual cortex prevents V1 

neuronal adaptation to attentional stimuli. Stimulation of mAChRs in the PFC 

potentiates release of ACh from basal forebrain cholinergic neurons. This top down 

modulation of attention circuitry by mAChRs plays a role in ignoring distracting stimuli 

(Sarter, Gehring et al. 2006, Broussard, Karelina et al. 2009). The predominant 

hypothesis is that attentional performance is the result of synergy between nAChRs and 

mAChRs. Nicotinic receptors would mediate cue detection and the saliency of the 

attentionally relevant stimuli, and the muscarinic receptors regulate the top-down 

processes and recruit the relevant circuitry for sustained attention (Greenwood, Lin et 

al. 2009).  
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1.2.3 Cholinergic Regulation of Executive function 

 
Executive function is the umbrella term for the collection of cognitive processes that 

includes attention, working memory, cognitive flexibility and planning.  These cognitive 

processes allow an organism to monitor their own behaviour and allow for the organism 

to achieve goal directed behaviour. Impairments in executive function are associated 

with a number of neurological and neuropsychiatric disorders (Tekin and Cummings 

2002).  

It is by modulating the activity of various cortical networks, that ACh is believed to 

regulate executive functioning (Hasselmo and Sarter 2011). Of particular interest, ACh 

in the PFC is thought to function in a signal-to-noise manner to mediate salient cue 

detection in the environment (Sarter, Hasselmo et al. 2005). Cortical cholinergic tone 

has been shown to modulate gamma oscillations (Buhl, Tamas et al. 1998); this effect 

seems to be dependent of muscarinic activation, mainly by M1 muscarinic receptors 

(Fisahn, Pike et al. 1998, Fisahn, Yamada et al. 2002). Activation of nicotinic receptors 

in the PFC has been shown to increase post-synaptic activity (Couey, Meredith et al. 

2007). Recently, two-photon imaging has been used to explore the role of nicotinic 

receptors in the regulation of these effects. Poorthuis and colleagues (2013) have 

demonstrated that cortical pyramidal neurons can be differentially modulated by 7 and 

2 nAChRs depending on the layer of the cortex. 

Of importance for executive function and attention, ACh in the PFC appears to regulate 

both LTP and LTD (Bueno-Junior, Lopes-Aguiar et al. 2012). However, the effects of 

cholinergic projections arising from the basal forebrain are highly important in synaptic 

plasticity all throughout the cortex. It regulates both the function and the development of 

the visual cortex (Hohmann and Berger-Sweeney 1998, Morishita, Miwa et al. 2010). 

Finally, cortical cholinergic tone is thought to play a role in synchronizing activity in the 

motor cortex and regulate responses to attentionaly relevant stimuli (Conner, Culberson 

et al. 2003). The mechanisms underlying the role of cortical cholinergic tone to regulate 

synaptic plasticity seem to be divergent from those in the hippocampus. For example, in 

the hippocampus carbachol induction of LTD does not require PLC or PKC activity, 
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whereas, in the mPFC carbachol-induced LTD requires the participation of PLC and 

PKC signaling (Huang and Hsu 2010, Caruana, Warburton et al. 2011). Furthermore, 

cortical cholinergic tone appears to function synergistically with noradrenaline to 

modulate cortical plasticity (Bear and Singer 1986, Kirkwood, Rozas et al. 1999).     

1.2.3.1 Cholinergic Regulation of Cognitive Flexibility  

 
Cognitive flexibility is defined as the ability of higher organisms to adapt under varying 

environmental conditions, which is essential for survival. In order to test cognitive 

flexibility in rodents, tasks such as the pairwise visual discrimination are used (Clark, 

Cools et al. 2004). All tasks which assess cognitive flexibility require the animal to learn 

a given “rule”, usually a pairing of a stimulus with a reward, then to abandon this rule in 

favour of a new one. Performance on such behavioural tasks are highly dependent on 

the PFC. Specifically, the prelimbic subregion of the PFC, has been shown to be 

important in regulating anxiety-related behaviours, and reversal learning in a visual 

discrimination task (Heidbreder, Thompson et al. 1996). Direct lesions or temporary 

inactivation of the prelimbic regions of the prefrontal cortex has no effect on the 

acquisition of different stimuli, that is to say the initial “rule” but has a robust 

consequence when a shift in using another strategy is needed in order to a adapt and 

learn a new “rule” (de Bruin, Sanchez-Santed et al. 1994, Ragozzino, Detrick et al. 

1999, Birrell and Brown 2000, Delatour and Gisquet-Verrier 2000, Dias and Aggleton 

2000, Ragozzino, Kim et al. 2003). Previous studies have  also shown that the striatum, 

which receives input from the prelimbic region, plays an important role in cognitive 

flexibility (Dunnett and Iversen 1981, Packard, Hirsh et al. 1989, Knowlton, Mangels et 

al. 1996, Packard and Teather 1997).  

Cholinergic tone in the striatum has been thought to play an important role in mediating 

cognitive flexibility. Striatal ACh was demonstrated to be critical for regulating synaptic 

plasticity that underlies forms of learning and memory (Calabresi, Centonze et al. 1998). 

In addition to the role of ACh in memory functions, Aosaki et al (Aosaki, Tsubokawa et 

al. 1994) reported that the activity of striatal tonic active neurons was correlated with the 

presentation of rewards, providing insight on the role of striatal ACh in goal-oriented 
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behaviors. However, the exact role of striatal ACh in cognitive flexibility is still under 

investigation. Mice with striatal interneurons deficient for VAChT showed no deficits in a 

water maze based reversal learning paradigm (Guzman, De Jaeger et al. 2011), a form 

of cognitive flexibility.  

Results from mice lacking forebrain VAChT indicate that cholinergic tone is not required 

for the initial spatial learning phase in a Morris Water Maze task. However, when the 

contingencies are changed, and the platform is moved to a different quadrant of the 

pool, these mutant mice are completely unable to adapt and learn the new “rule”, 

suggesting that forebrain cholinergic tone is required for such behaviour (Martyn et al., 

2012). Although there is a clear role of ACh in cognitive flexibility little is known of the 

mechanisms by which ACh exerts its effect.    

Administration of the M1 muscarinic antagonist scopolamine is one of the most robust 

means by which impairments in behavioural flexibility can be induced (Ragozzino, Jih et 

al. 2002, Klinkenberg and Blokland 2010). Furthermore administration of agonists and 

positive allosteric modulators of M1 improve performance on measures of cognitive 

flexibility (McCool, Patel et al. 2008, Shirey, Brady et al. 2009). Interestingly, visual 

discrimination and reversal learning tested in mice deficient for the M1 muscarinic 

receptor showed no significant differences from control mice on acquisition or reversal 

(Bartko, Romberg et al. 2011), in contrast to the pharmacological data. Aging induced 

impairments in cognitive flexibility has been correlated with decreased expression of the 

M2 muscarinic receptor. Seeger et al (2004), investigated the role of M2 receptors, 

using M2 knockout mice in behavioural tasks assessing working memory and 

behavioural flexibility. They reported that M2 null mice had deficit in the acquisition 

phase of the Barnes Maze by their inability to switch from a random strategy to a more 

efficient strategy. Thereby, concluding that cognitive flexibility could be mediated 

through M2 receptors.  

The role of nicotinic receptors in cognitive flexibility has not been greatly explored. 

Nicotinic ACh receptors, specifically the 7nAChR, have been shown to alter both 

release of glutamate in the PFC (Marchi, Risso et al. 2002, Gomez-Varela and Berg 

2013) and trafficking of glutamate receptors (Yang, Paspalas et al. 2013). As Glutamate 
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signalling (Karlsson, Tanaka et al. 2009) and glutamate receptor trafficking (Brigman, 

Feyder et al. 2008, Brigman, Daut et al. 2013) play important roles in cognitive flexibility, 

it is possible that cholinergic modulation of glutamate signalling, via nicotinic receptor 

activation, may contribute to one’s ability to reverse contingency rules and demonstrate 

cognitive flexibility. 

1.3 Alzheimer’s Disease 

 
AD is a chronic neurodegenerative disease which is characterized by loss of neurons 

and synapses in cortical and subcortical brain regions. This cell loss results in atrophy 

of the effected brain regions. This neuropathology manifests itself symptomatically early 

on as memory loss, but as the disease progresses the symptoms expand to include 

long term memory loss, impairments in executive functioning and mood disorders. The 

pathological hallmarks of the disease are extracellular amyloid plaques, and intracellular 

neurofibrillary tangles. This pathology has been hypothesised to play a critical role in 

disease development, however the etiology of the disease remains poorly understood. 

1.3.1 Amyloid Pathology in AD 

 
A pathological hallmark of AD, is the appearance of extracellular amyloid plaques. The 

presence of these plaques are a required diagnostic criteria for AD and plaque burden 

within the brain is used to determine the Braak staging of AD (Braak, Braak et al. 1986). 

These amyloid plaques are composed of aggregated fragments of the amyloid 

precursor protein (APP) (Weidemann, Konig et al. 1989). 

 

APP is an integral membrane protein and within the brain its expression is highest at 

synapses (Muller and Zheng 2012, Puig and Combs 2013). Mice deficient in the APP 

gene present subtle cognitive deficits and electrophysiological changes but do not 

recapitulate an “Alzheimer’s-like” phenotype (Zheng, Jiang et al. 1996, Mileusnic, 

Lancashire et al. 2000, Wang, Yang et al. 2005). It is therefore understood that the 

amyloid toxicity in the AD brain arises from a gain of function of the protein rather than a 

loss of the protein normal functions. The normal cellular function of the amyloid 

precursor protein remains unclear. The protein has been linked to many key neuronal 
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functions including synaptic formation (Priller, Bauer et al. 2006), neuronal transport 

(Torroja, Chu et al. 1999), iron export (Rogers, Bush et al. 2008) and hormonal 

signalling (Bandyopadhyay, Goldstein et al. 2007).  

 

APP under normal conditions undergoes a series of post-translational modifications, 

most notably proteolytic cleavage of the protein. APP can undergo either an 

amyloidogenic or a non-amyloidogeneic proteolytic cleavage, these cleavage pathways 

are mediated by distinct proteolytic enzymes. The non-amyloidogeneic pathway begins 

with APP cleavage by -secretase into a soluble APP fragment and a C83 fragment 

(Esch, Keim et al. 1990, Sisodia, Koo et al. 1990). The C83 fragment is subsequently 

cleaved by the -secretase enzyme to form the non-toxic P3 (Haass, Hung et al. 1993) 

and the APP protein’s intracellular domain or AICD C-terminus fragments (Gu, Misonou 

et al. 2001).  

Amyloidogeneic proteolytic cleavage of APP is initiated by the -secretase (BACE1) 

enzyme (Cai, Wang et al. 2001). Given its role in initiation of toxic APP processing, 

BACE1 is the rate limiting step in A production (Stockley and O'Neill 2007). BACE1 will 

cleave APP into soluble APP fragments and C99 fragments (Luo, Bolon et al. 2001). It 

is these C99 fragments which can be cleaved at a number of sites by the -secretase 

enzymatic complex to produce A species and AICD fragments (Citron, Westaway et al. 

1997, Dovey, John et al. 2001). The cleavage pathway by which APP is catabolised is 

determined by the relative abundance of the - and -secretases. However mutations in 

both the APP gene (De Jonghe, Esselens et al. 2001)  and in the secretase enzymes 

can favour production of A(Yan, Bienkowski et al. 1999, Jankowsky, Fadale et al. 

2004) Changes in the catabolism of APP to produce A-proteins is thought to trigger 

the amyloid cascade in the AD brain and is the basis of the amyloid hypothesis of AD 

(Hardy and Higgins 1992). There are three predominant forms of A peptides: A38, 

A40 and A42 (Portelius, Tran et al. 2007). Additionally, an A43 peptide has been 

described in presenilin-1 mutation knockin mice (Xia, Kelleher et al. 2016). There is 

evidence that the more hydrophobic forms of these peptides, in particular the A42, are 
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more related to severity of AD (Chui, Tanahashi et al. 1999). Specifically, the ratio of 

A42 to A40 is most related to disease severity (Jarrett, Berger et al. 1993).

A key component therefore in Aproduction is the -secretase enzymatic complex. This 

enzymatic complex is composed of four essential core proteins (Edbauer, Winkler et al. 

2003): presenilin-1(Haass and Steiner 2002), nicastrin (Yu, Nishimura et al. 2000), 

APH-1 (Goutte, Tsunozaki et al. 2002) and presenilin enchancer-2 (Francis, McGrath et 

al. 2002). Mutations in these core proteins enhance production of A42 peptides 

(Citron, Westaway et al. 1997, Yu, Nishimura et al. 2000). Inhibition of -secretase on 

the other hand reduces beta-amyloid production in the brain (Dovey, John et al. 2001). 

The individual core proteins have also been shown to play regulatory roles in APP 

processing beyond their enzymatic activity. Presenilin-1 for example can modulate APP 

processing by regulating the intracellular trafficking of the protein (Leem, Saura et al. 

2002, Cai, Leem et al. 2003). Depictions of the amyloidogenic and non-amyloidogeneic 

APP cleavage pathways are shown in Figure 1.3. 

Given the highly neurotoxic nature of A-oligomers and potentially of Aplaques, many 

therapeutic approaches have been developed to target the production of A, by 

inhibiting BACE1(Vassar 2001) or the -secretase complex (Dovey, John et al. 2001). 

Although targeting these enzymatic pathways may be promising therapeutic avenues, 

concerns have been raised that interfering with these enzymes may be detrimental to 

neuronal health (Hu, Hicks et al. 2006, Haapasalo and Kovacs 2011). The -secretase 

enzymatic complex for instance, plays many other critical roles in the cell including 

Notch processing (De Strooper, Annaert et al. 1999). Therefore, the general inhibition of 

this complex has been shown not to be a good approach for therapeutic interventions 

for AD (Haass and Selkoe 2007). Targeting the amyloidogenic activity of the complex 

while leaving the Notch signalling unaffected can be achieved by modulating proteins 

which activate the complex (Netzer, Dou et al. 2003, He, Luo et al. 2010).  

Total A levels, particularly the A42 molecule, in the brain can either be elevated by 

increase in production of the toxic species or by a reduction in their clearance (Selkoe 

1993, De Felice and Ferreira 2002).  This increase in A-proteins leads to the 
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propensity to form A-oligomers in the brain (Lambert, Barlow et al. 1998, Walsh, 

Klyubin et al. 2002, Gong, Chang et al. 2003). The oligomers disrupt synaptic function 

(Wang, Pasternak et al. 2002, Lacor, Buniel et al. 2004, Lacor, Buniel et al. 2007). 

Eventually the accumulation of these oligomers triggers amyloid plaque formation 

(Ahmed, Davis et al. 2010) and elicits an inflammatory response (White, Manelli et al. 

2005, Sondag, Dhawan et al. 2009). This accumulation of A-oligomers therefore leads 

to progressive neuronal injury (Zhang, McLaughlin et al. 2002). A-oligomers have also 

been shown to trigger tau hyperphosphorylation (Ma, Yang et al. 2009). These events 

together have been suggested to underlie neuronal dysfunction and cognitive decline in 

the AD brain (Cleary, Walsh et al. 2005, Tomic, Pensalfini et al. 2009).  

A-oligomers can produce cytotoxicity by a number of mechanisms. A number of 

transmembrane receptors have been identified that A-oligomers can bind to, including 

the NMDA receptor (Texido, Martin-Satue et al. 2011), 7nAChR (Wang, Lee et al. 

2000, Lilja, Porras et al. 2011), insulin(Zhao, De Felice et al. 2008) and the PrPc 

(Lauren, Gimbel et al. 2009, Chen, Yadav et al. 2010). Binding to these membrane 

proteins can trigger a number of cytotoxic signalling pathways, ultimately leading to cell 

death (Haass and Selkoe 2007). A-oligomers have also been proposed to increase 

membrane permeability and by doing so, disrupt the cationic homeostasis of the 

affected cells (Lin, Bhatia et al. 2001, Demuro, Mina et al. 2005). A-oligomers can also 

trigger cytotoxic cellular signalling when it accumulates within neurons. These 

intracellular aggregates of A have been shown to impair proteasome function (Tseng, 

Green et al. 2008), disrupt mitochondria (Manczak, Anekonda et al. 2006) and increase 

production of toxic reactive oxygen species (Cenini, Cecchi et al. 2010).  
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Figure 1.3 Processing of the Amyloid Precursor Protein. (A) Transmembrane APP 

protein can be cleaved by either the α-secretase or the -secretase enzymes. Cleavage 

by the -secretase enzyme leads to the amyloidogenic processing of the protein, while 

cleavage by the -secretase leads to the non- amyloidogenic processing of the protein. 

(B) The amyloidogenic processing of APP. Following cleavage by the -secretase 

enzyme a  soluble APP fragment and a C99 fragment of the protein are formed. The 

C99 fragment undergoes subsequent cleavage to form toxic A fragments and AICD 

fragments. This cleavage is mediated by the -secretase complex. (C) The non-

amyloidogenic processing of APP. Following cleavage by the α-secretase enzyme an  

soluble APP fragment and a C83 fragment of the protein are formed. The C83 fragment 

undergoes subsequent cleavage to form inert P3 fragments and the AICD fragment.  

This cleavage is mediated by the -secretase complex. 
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1.3.2 Tau Pathology in Alzheimer’s Disease 

 
Another key pathological hallmark of AD, is the appearance of intracellular 

neurofibrillary tangles (NFTs). Inclusion of NFTs, along with amyloid plaques, are a 

diagnostic criteria for AD and the severity of the NFT pathology are also important for 

the Braak staging of AD (Braak, Braak et al. 1986). NFTs are composed of aberrantly 

phosphorylated microtubule associated protein tau (Goedert, Wischik et al. 1988). The 

exact relationship between tau pathology and neurodegeneration remains unclear. 

Specifically, it is not fully understood if tau pathology arises from the loss of the protein 

normal function, or if tau hyperphosphorylation leads to a toxic gain of function of the 

protein.  

 

The full length tau protein is 441 amino acid residues long and presents two 

characteristic domains. Near the C-terminus of the protein, there are a number of 

tubulin binding domains, and near the N-terminus there are two acidic domains. The 

predominant function of the tau protein is to stabilize microtubules (Lee, Cowan et al. 

1988). This function is mediated by the two characteristic structural domains of the 

protein, with the tubulin binding domain binding -tubulin (Maccioni, Rivas et al. 1988), 

and the acidic domains binding  to the negatively charged regions of microtubules 

(Ennulat, Liem et al. 1989). This interaction between tau and microtubules can be 

regulated by phosphorylation of the tau protein. Phosphorylation of tau negatively 

regulates its interaction with microtubules (Steiner, Mandelkow et al. 1990). Aberrant 

phosphorylation of the tau protein can thus lead to microtubule instability, a potential 

mechanism of tau neurotoxicity.  

 

The effects of tau phosphorylation are dependent on which amino acid residues on the 

protein are phosphorylated. Different phosphorylation sites can have different 

physiological or pathological outcomes. Tau phosphorylation plays an important role in 

regulating microtubule dynamics in neurons, however when deregulated this process 

can become neurotoxic. The key inhibitory phosphorylation sites on tau are Ser262, 

Thr231, and Ser235; tau phosphorylated at any of these amino acids will have inhibited 
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microtubule binding capacities (Sengupta, Kabat et al. 1998). Furthermore, 

phosphorylation at Ser199/Ser202/Thr205, Thr212, Thr231/Ser235, Ser262/Ser356, 

and Ser422, will not only inhibit the function of the protein, but will cause tau to 

sequester normal tau proteins away from microtubules and inhibit their function as well 

(Alonso Adel, Mederlyova et al. 2004). Finally phosphorylation at Thr231, Ser396, and 

Ser422 have also been shown to promote self-aggregation of the tau in vitro (Abraha, 

Ghoshal et al. 2000). 

 

Phosphorylation of tau is a dynamic process with a number of kinases and 

phosphatases interacting with the protein. The kinases which have been identified to 

phosphorylate tau are glycogen-synthase kinase-3β (GSK-3β) (Takashima, Noguchi et 

al. 1993), cyclin-dependent protein kinase 5 (Baumann, Mandelkow et al. 1993), cAMP-

dependent protein kinase (Jicha, Weaver et al. 1999),and stress-activated protein 

kinases (Ferrer, Gomez-Isla et al. 2005). These kinases preferentially phosphorylate tau 

at different amino acid residues. GSK-3β in particular has been identified as promoting 

toxic phosphorylation of tau. This kinase will preferentially phosphorylate at 

Ser202/Thr205, Ser214/Thr212, Thr231 and Ser396 residues (Song and Yang 1995). 

PP2A has been identified as the major phosphatase of tau (Goedert, Jakes et al. 1995).  

Importantly, activity and expression of this phosphatase has been shown to be 

decreased in the AD brain (Liu, Grundke-Iqbal et al. 2005).  

 

Tau neurotoxicity is likely the result of both the gain and loss of functions resulting from 

hyperphosphorylated tau. As described above, when tau is hyperphosphorylated it no 

longer stabilizes microtubules. Hyperphosphorylation of the protein can therefore 

destabilize microtubules and compromise axonal transport (Zhang, Maiti et al. 2005). 

Furthermore, tau hyperphosphorylation causes the protein to bind to its un-

phosphorylated form and inhibits its own function. This again leads to microtubule 

instability and compromised axonal transport (Zhang, Maiti et al. 2005). Microtubule 

instability is highly toxic to neurons (Gornstein and Schwarz 2014), drugs that inhibit 

microtubule stability are toxic to cultured neurons within hours and can cause 

neurological impairments within a week in vivo (Pisano, Pratesi et al. 2003). 
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1.3.3 Cholinergic Vulnerability in Alzheimer’s Disease 

 
A central hypothesis in AD, is that the cognitive symptoms of the disease arise as a 

result of the loss of basal forebrain cholinergic signalling. It was first reported in the 

1970’s that anticholinergic drugs could impair cognitive function in humans (Deutsch 

1971). Given these findings, it was hypothesized that this neurotransmitter system may 

be dysfunctional in dementia. Post mortem analysis of AD brains has revealed 

significant reductions in levels of the ChAT enzyme in the cortex (Bowen, Smith et al. 

1976, Perry, Gibson et al. 1977). Furthermore, it has been shown that in the AD brain 

there is a reduction in choline uptake (Rylett, Ball et al. 1983), ACh release (Nilsson, 

Nordberg et al. 1986), VAChT (Efange, Garland et al. 1997, Chen, Reese et al. 2011, 

Parent, Bedard et al. 2013) and an overall reduction in the number of cholinergic 

neurons in the basal forebrain region (Davies and Maloney 1976, Whitehouse, Price et 

al. 1982).  This body of evidence lead to the cholinergic hypothesis of AD (Bartus, Dean 

et al. 1982). This hypothesis is the basis for the use of cholinesterase inhibitors as 

standard therapy for AD. These drugs have been shown to be effective in improving 

behavioural symptoms of the disease and delaying the placement of the patients in 

nursing homes (Cummings 2003).  

 

One of the hypothesis of AD is that the neuronal dysfunction that occurs in the disease 

precede the cognitive decline (Nestor, Scheltens et al. 2004). That is, the pathological 

changes observed in the brain cause neuronal dysfunction and cell loss, leading to 

cognitive decline. It is therefore important to detect AD prior to the clinical manifestation 

of the disease. It was reported that there was no change in ChAT or AChE levels in the 

cortex of individuals with mild-AD (Davis, Mohs et al. 1999). Furthermore, the activity of 

the enzyme was reported as unaltered in the mild-AD brain and activity was increased 

in the brain of patients with mild cognitive impairment (DeKosky, Ikonomovic et al. 

2002). These findings led to criticisms of the validity of the cholinergic hypothesis of AD 

(Morris 2002). A strong counterargument to these criticism, however is that neither total 

levels nor activity of the ChAT or AChE enzymes represent accurate measures of ACh 

release. Therefore the levels of these enzymes in the AD brain are not necessarily 
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indicative of changes in cholinergic signalling (Terry and Buccafusco 2003). Further 

evidence of cholinergic dysfunction (either for or against), in particular assessment of 

ACh release, in early AD is therefore still needed. 

 

The main risk factor for AD is aging (Lindsay, Laurin et al. 2002). Therefore, numerous 

studies have examined the effect of aging on the cholinergic system. It was shown that 

in mice, ACh synthesis is reduced by 75% when comparing young (3 months old) to 

aged (30 months old) animals (Gibson, Peterson et al. 1981). Furthermore, as mice 

age, their cholinergic neurons no longer release as much ACh as their younger 

counterparts (Gibson and Peterson 1981). These findings were confirmed in rats as well 

(Wu, Bertorelli et al. 1988). Numerous studies in animals have suggested that 

cholinergic neurons function “normally” and that the aging process stresses these 

neurons and decreases their function (Meyer, Crews et al. 1986, Gilad, Rabey et al. 

1987, Moore, Stuckman et al. 1996). Accelerating the aging-induced deficits in 

cholinergic signalling has been shown to have functional consequences in rat model of 

sustained attention (Burk, Herzog et al. 2002). 

 

Recent evidence has added a new dimension to the cholinergic hypothesis of AD.  

Clinical findings report that there is an increased incidence of dementia in patients 

following the cumulative use of anticholinergic drugs (Gray, Anderson et al. 2015, 

Risacher, McDonald et al. 2016). It is well understood that the use of these compounds 

can impair cognition while the patient is taking them. However, there is a growing body 

of clinical evidence suggesting that anticholinergic medications can produce cognitive 

impairments long after consumption of the medications has been cessed (Carriere, 

Fourrier-Reglat et al. 2009, Jessen, Kaduszkiewicz et al. 2010). Furthermore, it has 

been reported that prolonged use of these drugs, specifically anti-muscarinic agents, 

increases Alzheimer’s pathology in the brains of these patients (Perry, Kilford et al. 

2003). In vitro models, have confirmed that anti-muscarinic agents have the most potent 

effect on neuronal and astrocytic cells (Woehrling, Parri et al. 2015). Mechanistic 

insight, however, into how anticholinergic medications can increase risk of dementia are 

still largely unknown.  
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Cholinergic neurons also appear to be highly vulnerable to AD pathology. Post-mortem 

analysis of AD brains has shown that basal forebrain cholinergic neurons present with 

both amyloid (Baker-Nigh, Vahedi et al. 2015) and tau pathology (Vana, Kanaan et al. 

2011, Ahmadian, Rezvanian et al. 2015). These cholinergic basal forebrain neurons 

have been shown to be vulnerable to both of these AD related pathologies. This 

selective vulnerability is mediated by the dependence of these basal forebrain 

cholinergic neurons on trophic factors. Aspecies impair trophic signalling in these 

neurons, resulting in impairment in their function and toxicity to the cells  (Cuello and 

Bruno 2007). Targeting these neurotrophic pathways in mouse models of AD can 

improve cognitive outcomes in these mice, and at the same time reduce tau and A 

related pathology (Nguyen, Shen et al. 2014). Furthermore, it has been shown that A 

species promote tau hyperphosphorylation in basal forebrain cholinergic neurons 

(Zheng, Bastianetto et al. 2002). Cholinergic neurons are therefore highly vulnerable to 

AD pathology and this is thought to play a role in mediating cognitive dysfunction in the 

disease. Also, the magnitude of the loss of these neurons correlates to cognitive deficits 

in patients (Mufson, Ma et al. 2002). It should be noted that other factors have been 

shown to correlate to cognitive dysfunction including A oligomers (Cleary, Walsh et al. 

2005, Tomic, Pensalfini et al. 2009) and general synaptic dysfunction in the AD brain 

(DeKosky and Scheff 1990, Selkoe 2002).  

 

Aberrant cholinergic signalling can also impact the signalling pathways related to both 

tau and amyloid pathology. Immunolesions of basal forebrain cholinergic neurons in the 

3xTG mouse model of AD (which has both amyloid and tau pathology), significantly 

enhanced pathology in these mice (Hartig, Saul et al. 2014). Furthermore administration 

of an M1 muscarinic agonist to 3xTG mice significantly decreased the pathology and 

hippocampal specific memory impairments in the animals (Caccamo, Oddo et al. 2006). 

These effects were purported to be mediated by regulating GSK3 activity and BACE1 

expression. Crossing Alzheimer’s model mice with mice lacking the M1 muscarinic 

receptor significantly increased amyloidogenic processing of APP and accumulation of 

toxic A species (Davis, Fritz et al. 2010). Further work in mice has shown that 
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impairing cholinergic signalling accelerates tau hyperphohsphorylation (Zhang, Chen et 

al. 2014). These studies speak to the complexity of AD pathology and provide evidence 

that cholinergic signalling, along with being highly vulnerable to AD pathology, may also 

be important in regulating AD pathology.  

1.3.4 RNA Metabolism Dysfunction in Alzheimer’s Disease 

 
RNA metabolism refers to any events in the life cycle of an RNA molecule, including its 

synthesis, modification, processing, translation and ultimately its degradation (Stamm, 

Ben-Ari et al. 2005). Alternative splicing is the process by which the mRNA of a given 

gene can be edited to form differential transcripts. This process involves the inclusion or 

the exclusion of particular exons or introns in a transcript (Zahler, Neugebauer et al. 

1993). Alternative splicing is a central aspect of neural physiology and is carried by RNA 

binding proteins. The function of a number of RNA binding proteins is therefore 

essential for both the development and function of neurons (Jensen, Dredge et al. 

2000).   

Alternative splicing of mRNAs prior to their translation is an essential regulatory process 

in eukaryotic cells. It is by alternative splicing that a single gene composed of multiple 

exons can be translated into proteins which have different structures and functions 

(Padgett, Grabowski et al. 1986, Breitbart, Andreadis et al. 1987). Furthermore, the 

alternative splicing of an mRNA plays a critical role in the final cellular localization of the 

gene product. For example, if a nuclear localization signal of a given protein is added by 

alternative splicing that protein will now translocate to the nucleus, as is the case with 

CaM-Kinase (Srinivasan, Edman et al. 1994). Alternative splicing plays a critical role in 

both the development and in the normal function of the mammalian nervous system (Li, 

Lee et al. 2007, Raj and Blencowe 2015).  

There are multiple patterns of alternative splicing that have been identified in eukaryotic 

cells (Sammeth, Foissac et al. 2008). Schematic depictions of the different forms of 

alternative splicing can be found in Figure 1.4. The most common alternative splicing 

event is the cassette-exon event (Sammeth, Foissac et al. 2008); this is the inclusion or 

exclusion of a single exonic sequence from the final mRNA transcript (Van der Ploeg, 
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Liu et al. 1982). A mutually exclusive exon splicing event is when the inclusion of a 

given exon in a transcript results in the exclusion of another (usually a proximal exon) 

(Smith and Nadal-Ginard 1989). Alternative splicing can also occur within an exon. 

Splicing of a sequence which changes the length of the exon at the 5’- end is an 

alternative 5’ splicing event, and an event that does the same at the 3’ end of an exon is 

a 3’ alternative splicing event (Fu, Mayeda et al. 1992). Intronic sequences are usually 

spliced out of a final transcript, however alternative splicing of an mRNA can result in 

the retention of intronic sequences (Galante, Sakabe et al. 2004). Alternative splicing 

can also occur within the promoter region of a given transcript, when this event occurs it 

results in a different first exon for the final transcript (Cramer, Caceres et al. 1999). 

Alternative splicing also plays a significant role in the regulation of the 3’ UTR of a 

transcript, as it can result in a completely different 3’-UTR (Grimm, Holinski-Feder et al. 

1998). The length of the 3’UTR is also prone to alternative splicing, these events are 

termed alternative polyadenylation events (Proudfoot, Furger et al. 2002). Alternative 

polyadenylation of a transcript is an important determinant of which microRNA end up 

binding to the transcript and therefore can effect translation and degradation of the 

transcript (Sandberg, Neilson et al. 2008).  
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Figure 1.4. Patterns of alternative splicing in eukaryotic cells. (A) Cassette-exon 

splicing events are the inclusion or exclusion of a single exonic sequence from the final 

mRNA transcript. (B) Mutually-exclusive splicing events occur when the inclusion of a 

given exon in a transcript results in the exclusion of another. (C) Intronic retention, when 

an intronic sequence is retained in the final mRNA transcript. (D) Alternative promoter 

events are when alternative splicing changes the first exon of a given transcript. (E) 

Alternative polyadenylation events occur when the length of the 3’-UTR of a transcript is 

altered. (F) Alternative 3’-UTRs occur when the 3’UTR of a transcript is completely 

alerted by alternative splicing. (G) 3’-Splicing event. When alternative splicing occurs 

within the 3’ region of an exon. (H) 5’-Splicing event. When an alternative splicing event 

occurs within the 5’ region of an exon. 

 

All of these different patterns of alternative splicing occur concurrently on transcripts 

within eukaryotic cells. These splicing events are regulated by hosts of RNA-binding 
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proteins (RBPs) (Mount, Pettersson et al. 1983, Mayeda and Krainer 1992, Wu and 

Maniatis 1993, Izaurralde, Lewis et al. 1994). RBPs all bind to RNA and either enhance 

or repel spliceosome formation and ultimately the alternative splicing of specific 

sequences (Blencowe 2000). Any given RBP can have different effects on a single 

transcript based on where the RBP binds to the mRNA, post-translational modification 

to the RBP and interactions with other RBPs (Tacke, Chen et al. 1997, Xiao and Manley 

1997, Black 2003). In the mammalian nervous system, there is a significant amount of 

overlap between the functions of the various RBPs. This creates a complex and finely 

tuned regulatory network regulating RNA metabolism within each neuron in the brain 

(Vuong, Black et al. 2016).  The interactions between these RNA binding proteins in 

neurons is complex and plays a vital role in neuronal function (McGlincy and Smith 

2008) and are dysfunctional in AD (Bai, Hales et al. 2013). 

 

Many familial mutations have been identified in key AD related genes that cause 

alternative splicing of these transcripts. This includes the genes for the amyloid 

precursor protein (Golde, Estus et al. 1990) and  tau (Niblock and Gallo 2012). 

Furthermore mutations in genes involved in RNA metabolism are central to many 

familial forms of neurodegeneration, including AD (Lemmens, Moore et al. 2010). In 

particular, dysfunction of RNA metabolism is an important factor in the etiology of 

Amyotrophic Lateral Sclerosis (ALS). Many of the key processes in RNA metabolism 

have been shown to be disrupted in ALS (Strong 2010). Microarray analysis has shown 

that a large number of key transcripts are both up and down regulated in ALS, 

suggesting impaired regulation of transcription in the disease (Ferraiuolo, Heath et al. 

2007). Furthermore, there is evidence of altered alternative splicing(Rabin, Kim et al. 

2010), mRNA transport deficits (Millecamps and Julien 2013) and impairment in RNA 

translation in ALS (Ling, Polymenidou et al. 2013). Mutations in hnRNPA2/B1 and 

hnRNPA1 (see below) have been associated with familial forms of ALS. Importantly, 

these mutations result in the proteins aggregating in stress granules and forming 

cytoplasmic inclusions (Kim, Kim et al. 2013).  

The role of alternative splicing in sporadic AD however is not well defined. The 

hippocampus was identified as a region vulnerable to changes in RNA metabolism in 
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the sporadic AD brain. Importantly, these observed changes in RNA metabolism, were 

uncorrelated to pathological hallmarks of AD (Doebler, Markesbery et al. 1987).  Many 

studies have demonstrated that transcriptome level changes in genes related to 

neuronal function are a hallmark of AD (Miller, Oldham et al. 2008). Microarray studies 

of the AD brain temporal lobe found that there was significant amounts of alternative 

splicing, and that this was reflected by changes in RNA binding protein levels (Tollervey, 

Wang et al. 2011). Further microarray analysis of post-mortem entorhinal cortices from 

AD and non‐demented control brains, found global changes in alternative splicing in the 

sporadic AD brain (Berson, Barbash et al. 2012). Importantly, these changes in 

alternative splicing were linked to hnRNPA/B proteins.  

 

1.3.4.1 hnRNPA/B Proteins 

 
Heterogeneous nuclear ribonucleoproteins (hnRNP) are a large family of protein which 

associate with and bind pre-mRNA into hnRNP particles. hnRNP particles are 

complexes of mRNA and protein. A mRNA being in an hnRNP particle indicates to the 

cell that the mRNA is not mature, and is not ready for translation (Konig, Zarnack et al. 

2010). It is within this hnRNP particle that splicing of the mRNA occurs. A subfamily of 

the hnRNP proteins is the A/B family. The hnRNPA/B family is comprised primarily of 

the hnRNPA1 hnRNPA2/B1 proteins (Minoo, Martin et al. 1991), although hnRNPA0 

(Myer and Steitz 1995) and hnRNPA3 (Matsui, Motomura et al. 2002) are also members 

of the family. All hnRNPA/B proteins have two RNA-recognition motifs within a glycine 

rich domain (Dreyfuss, Matunis et al. 1993). All proteins within the family have a 

relatively high level of homology between these RNA-recognition motifs (Burd, Swanson 

et al. 1989). hnRNPA/B proteins are the most abundant hnRNP proteins within cells. 

hnRNPA2/B1 and A1 comprise roughly 60% of all hnRNP proteins within cells (Beyer, 

Christensen et al. 1977).  hnRNPA/B proteins are most abundant within the nucleus of 

cells (Pinol-Roma, Swanson et al. 1989), however the shuttling of these proteins 

between the nucleus and the cytoplasm is critical for many of their functions.    
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The key function of hnRNPA/B proteins is their involvement is RNA-editing. hnRNPA/B 

proteins are essential components of the spliceosome and are involved in alternative 

and constitutive splicing events (Jurica, Licklider et al. 2002). hnRNPA/B proteins do not 

directly splice mRNA, rather, they regulate alternative splicing by attracting or repulsing 

serine/arginine-rich (SR) proteins (Martinez-Contreras, Cloutier et al. 2007). Therefore, 

hnRNPA/B proteins can act as either splicing enhancers or repressors, depending on 

their RNA-recognition motif and the element they bind on a given mRNA, and their 

effect on SR proteins.  

hnRNPA/B proteins can also play important roles in other aspects of RNA metabolism. 

These proteins can play a role in gene transcription, by binding to promoter regions of 

genomic DNA (Takimoto, Tomonaga et al. 1993, Campillos, Lamas et al. 2003). The 

binding of these hnRNPA/B proteins can either promote or inhibit transcription of genes. 

hnRNPA/B proteins also play a role in shuttling mRNA out of the nucleus. hnRNPA/Bs 

interact with transportin 1 and 2 proteins (Rebane, Aab et al. 2004) and is then be 

exported from the nucleus by nucleoporins (Bonifaci, Moroianu et al. 1997). hnRNPA/Bs 

then shuttle mRNAs to polysomes for translation (Visa, Alzhanova-Ericsson et al. 1996).  

In neurons this can involve transporting key transcripts, in an activity dependant 

manner, from the nucleus to the synapse, such as BDNF mRNA (Leal, Afonso et al. 

2014). hnRNPA2/B1 is also found to bind to, and interact with miRNAs. hnRNPA2/B1 

will specifically bind miRNAs which have a recognition element for hnRNPA2/B1, the 

protein controls the loading of miRNAs into exosomes (Villarroya-Beltri, Gutierrez-

Vazquez et al. 2013).  

1.3.4.2 hnRNPA/B Proteins in AD 
 

The selective loss of hnRNPA/B proteins in the AD brain was an important breakthrough 

in understanding the mechanism which regulate alternative splicing (Berson, Barbash et 

al. 2012). In mice, viral mediated knockdown of hnRNPA/B proteins recapitulated many 

of the alternative splicing events observed in the AD brain (Berson, Barbash et al. 

2012). Furthermore knocking down hnRNPA/B proteins produced memory and 

electrophysiological impairments in the mice (Berson, Barbash et al. 2012). Taken 

together, these results implicate broad changes in alternative splicing as a causal factor 
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to cognitive impairments in AD. Importantly, this change in hnRNPA/B protein levels 

was independent of Aβ and Tau toxicity in mouse models of AD. Rather, it was shown 

that cholinergic signalling mediated hnRNPA/B protein levels (Berson, Barbash et al. 

2012), and that manipulating cholinergic tone in mice could impair RNA metabolism. 

An unbiased analysis of the human brain-insoluble proteome identified a number of 

protein components of the U1-snRNP, both the U1-70K and the U1A proteins, as being 

aggregated in the AD brain (Bai, Hales et al. 2013). This complex is a primary 

component of the spliceosome and mediates spliceosome binding to RNA and the 

initiation of splicing (Hodnett and Busch 1968, Seraphin and Rosbash 1989). In line with 

the observation of aggregation of splicing factors in the AD brain, a number of genes 

were shown to be alternatively spiced in the AD brain, including the BACE1 gene (Bai, 

Hales et al. 2013). In vitro manipulations of U1-70K expression altered APP processing 

in cultured neurons and induced production of A species (Bai, Hales et al. 2013). 

Experimental evidence has shown that he aberrant aggregation of the U1-70K splicing 

factor in the AD brain is the result of abnormal truncation of the protein in the AD brain 

(Bai, Chen et al. 2014).   

 

Taken together, these findings demonstrate multiple neurodegeneration-related 

alterations in RNA processing which may play a role in AD pathogenesis and disease 

progression. The mechanisms regulating these disease related changes in RNA-

metabolism remain poorly understood, however cholinergic signalling has been 

demonstrated as an important mediator of this process. Insight into the cellular 

mechanisms regulating this interaction could provide crucial insight into the 

pathogenesis of AD. 

1.3.4.3 RNA Sequencing as a Tool to study RNA Metabolism 

 
The study of entire transcriptome at once (the sum of all transcripts within a cell, or 

group of cells) has proven to be an invaluable tool in neuroscience from basic science 

(Okaty, Sugino et al. 2011), up to clinical research (Gould and Manji 2004). A number of 

techniques have been developed in order to study the transcriptome. Sequencing based 
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approaches is one of the powerful tools used to study of RNA metabolism. The 

depection of the typical workflow of an RNA-Seq experiment can be found in Figure 1.5. 

RNA-Seq can provide an in depth qualitative and quantitative analysis of the 

transcriptome. The first step in RNA-Seq is the isolation of total RNA from the cell 

population/tissue of interest. This total RNA is then converted into a library of cDNA and 

fragmented. Adapter sequences are added to each fragment of cDNA. The adapter 

sequences provide necessary elements for sequencing and also contain DNA barcodes 

which allows for the determination of the 5’-3’ orientation of the sequence fragment. The 

cDNA fragments are then sequenced in a high throughput manner, producing “reads” of 

the fragments. After being sequenced, the resulting “reads” are then aligned using 

assembly algorithms either with or without a reference genome (Mortazavi, Williams et 

al. 2008).  This mapping process provides the qualitative analysis of the transcriptome, 

while the quantitative aspect of RNA-Seq comes from the count of the reads from same 

transcript (Kanitz, Gypas et al. 2015, Conesa, Madrigal et al. 2016). This “reads count” 

can be used to compare the level of transcripts across experimental conditions.  

Given that RNA-Seq can provide quantitative and qualitative analysis of transcripts at 

an extremely high level of resolution, the technique is an invaluable tool to the study of 

alternative splicing and RNA processing. The resulting data from RNA-Seq experiments 

can be analyzed in a number of ways to quantify alternative splicing. The most 

conservative approach to this kind of analysis is to quantify the number of reads which 

map to particular transcript isoform which have unique sequences, be they exons, intron 

or splice junctions (Filichkin, Priest et al. 2010). The normalized count of these reads 

provides an absolute quantification of the abundance of these transcript variants. This 

approach however is limited to transcripts which have these unique sequences, or 

which only have very minor (a couple of base pairs) differences between transcript 

variants. An alternative approach is to quantify all the reads which map onto a specific 

gene of interest, and normalizing the reads to the average for that gene. This approach 

will thus provide the relative abundance of transcript variants, and has led to the 

discovery of many novel alternative splicing events and splice junctions (Trapnell, 

Pachter et al. 2009).  
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Figure 1.5 Workflow of an RNA-Seq Experiment. (A) A tissue sample of interest is 

isolated.  (B) mRNA is isolated from the tissue sample.  (C) The mRNA is converted into 

cDNA and fragmented into short segments (reads). (D) The reads are sequenced. (E) 

Sequenced reads are aligned to a reference genome. (F) Aligned sequences are then 

counted (read counts) to allow for comparisons between samples.    
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1.4 Rationale and Hypothesis 
 

AD is a progressive neurodegenerative disease and is characterized by a number of 

key pathological and molecular changes in the brain. These molecular and pathological 

changes converge to perturb neuronal function, leading to cognitive decline, and 

ultimately lead to loss of neurons in the brain. A key aspect of AD is the loss of basal 

forebrain cholinergic neurons. ACh has been implicated in the underlying physiology of 

many distinct cognitive functions; however the exact role that ACh plays in regulating 

information processing in the brain is still not fully understood. 

 

Therefore, the overall objective of thesis is to first characterize how altered cholinergic 

signalling in mice can lead to cognitive dysfunction. Additional objectives include to 

evaluate the molecular changes that follow long-term cholinergic dysfunction and how 

they may be related to AD pathology. VAChT is required for the storage of ACh into 

synaptic vesicles, and therefore it presents a means to modulate release. We can 

leverage this knowledge to generate mice with brain region specific changes in 

transporter level. Specifically, the aims of this thesis are: 

 

1. To investigate the consequences of cholinergic dysfunction on distinct cognitive 

domains in mice and attempt to dissect underlying receptor signalling pathways. 

2. Determine the genome-wide transcriptome level changes in mice with long-term 

cholinergic dysfunction and to determine the molecular mechanisms 

underpinning these changes. 

3. Examine the molecular alterations that contribute to molecular pathology in a 

mouse model with deficient cholinergic signaling in the forebrain. 

Several lines of research suggest that long-term cholinergic dysfunction may lead to 

cognition dysfunction, suggesting a role for decreased ACh signaling on the broad 

molecular and pathological changes in the demented brain. The hypothesis we tested is 

that changes in cholinergic tone produce specific molecular signatures in target brain 

areas that underlie alterations in cognitive function. We combined behavioural and 

molecular techniques and unique mouse models to test this hypothesis and to define 
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basic aspects of regulation of behaviour by cholinergic activity. Dysfunction of the 

cholinergic system has been shown to play a role in a host of neurological and 

neuropsychiatric disorders beyond just AD. Thus, understanding the basic physiological 

aspects of this system may lead to the development of novel treatments for neurological 

and psychiatric disorders. 
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Chapter 2 

ChAT–ChR2–EYFP mice have enhanced motor endurance but 

show deficits in attention and several additional cognitive domains 
 

2.1 Chapter Summary 

 
Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in 

many forms of cognitive and motor processing. Recent studies have used bacterial 

artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) 

protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT–

ChR2–EYFP) to dissect cholinergic circuit connectivity and function using optogenetic 

approaches. We report that a mouse line used for this purpose also carries several 

copies of the vesicular acetylcholine transporter gene (VAChT), which leads to 

overexpression of functional VAChT and consequently increased cholinergic tone. We 

demonstrate that these mice have marked improvement in motor endurance. However, 

they also present severe cognitive deficits, including attention deficits and dysfunction in 

working memory and spatial memory. These results suggest that increased VAChT 

expression may disrupt critical steps in information processing. Our studies demonstrate 

that ChAT–ChR2–EYFP mice show altered cholinergic tone that fundamentally 

differentiates them from wild-type mice. 
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2.2 Introduction 

 
Acetylcholine (ACh) has multiple functions in the CNS, including modulation of attention 

and memory encoding, consolidation, and retrieval (Prado et al., 2013). Understanding 

the precise roles of ACh in distinct brain regions has remained a challenge because of 

the myriad of cholinergic receptors that can modulate postsynaptic and presynaptic 

cholinergic activities (Hasselmo and Sarter, 2011). Genetic approaches have been used 

to determine the specific roles of ACh in different brain regions (Guzman et al., 2011; 

Martyn et al., 2012; Patel et al., 2012), as well as to pinpoint precise functions of ACh 

receptors (for review, see Wess et al., 2007; Changeux, 2010). More recently, 

optogenetics has also been used to further dissect and understand cholinergic signaling 

in the CNS (Witten et al., 2010; Nagode et al., 2011; Ren et al., 2011; Zhao et al., 2011; 

Gu et al., 2012). One of the approaches to specifically activate cholinergic neurons 

using optogenetics is in vivo injection of Cre-inducible viral vectors carrying the 

channelrhodopsin-2 (ChR2) gene. Cholinergic specificity is ensured by using bacterial 

artificial chromosome (BAC) transgenic mice expressing Cre recombinase under the 

control of the choline acetyltransferase (ChAT) promoter (Gradinaru et al., 2007). 

Alternatively, BAC transgenic mice expressing ChR2 protein under the control of the 

ChAT promoter (ChAT–ChR2–EYFP) have also been used, for example, to examine 

ACh/glutamate cotransmission in neurons thought to be strictly cholinergic (Ren et al., 

2011; Zhao et al., 2011). However, a unique characteristic of the ChAT locus, also 

called cholinergic gene locus (Eiden, 1998), is that the entire open reading frame for the 

vesicular acetylcholine transporter (VAChT) lies within the intron between the first and 

second exons of the ChAT gene (Bejanin et al., 1994; Erickson et al., 1994; Roghani et 

al., 1994; Cervini et al., 1995; Naciff et al., 1997). Thus, the BAC containing the ChAT 

gene used to generate these mouse lines carries also the VAChT gene. 

Importantly, increased expression of VAChT can alter ACh release. For example, in 

vitro overexpression of the VAChT in Xenopus neurons results in increased amplitude 

of miniature currents and in more synaptic vesicles containing ACh (Song et al., 1997). 

Moreover, a recent report indicates that a mouse line containing four copies of the 

ChAT–BAC driving the expression of GFP presents increased ACh release (Nagy and 
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Aubert, 2012). However, the consequences of VAChT overexpression for cognitive 

functions are not yet understood. Because ChAT–ChR2–EYFP mice have the potential 

to become widely used by the neuroscience community as a tool to determine the 

consequences of cholinergic activation for behavior manifestations, we determined the 

extent by which VAChT is overexpressed in this mouse line and whether 

overexpression of VAChT affects mouse behavior. 

We report that ChAT–ChR2–EYFP mice have several extra copies of the VAChT gene 

and express increased VAChT mRNA and protein levels. ACh release is increased 

threefold in these mice. Importantly, we find that ChAT–ChR2–EYFP have increased 

physical endurance, consistent with increased cholinergic tone. In contrast with the 

improved motor function, cognitive tests demonstrated that increased expression of 

VAChT interferes with multiple domains of cognitive function. 

2.3 Material and Methods 
 

2.3.1 Animals 
 

All experiments were performed in compliance with the Canadian Council of Animal 

Care guidelines for the care and use of animals. The protocol was approved by the 

University of Western Ontario Institutional Animal Care and Use Committee (2008-127). 

All efforts were made to minimize the suffering of animals. ChAT–ChR2–EYFP mice 

[B6.Cg-Tg(Chat-COP4*H134R/EYFP)6Gfng/J; The Jackson Laboratory] and VGAT–

ChR2–EYFP mice [B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J; The Jackson 

Laboratory] were described previously (Zhao et al., 2011) and were maintained as 

hemizygous. Control mice consisted of ChAT–ChR2–EYFP or VGAT–ChR2–EYFP 

negative littermates. Only male mice were used in these studies. Animals were housed 

in groups of two to four per cage in a temperature-controlled room with a 14/10 

light/dark cycle. Food and water were provided ad libitum. Behavioral assessment 

started with less demanding (locomotor activity) to more demanding (depression and 

anxiety-like behavior, spatial memory in the Barnes maze, water maze, and then 

attention) tasks. Treadmill experiments were done after the water maze and before 
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attention measurements. There was an interval of 3–5 d between distinct behavioral 

tasks. The experimenter was blind to the genotypes, and, in most behavioral tasks, 

software-based analysis was used to score mouse performance. All behavioral 

experiments were performed from 9:00 A.M. to 4:00 P.M. in the light cycle, except for 

the light/dark transition (always performed after 7:00 P.M.) and locomotor activity tests 

(performed from 5:00 P.M. to 9:00 P.M.; lights off at 7:00 P.M.). 

2.3.2 Immunofluorescence microscopy 
 

Mice were anesthetized using a ketamine (100 mg/kg)-xylene (20 mg/kg) solution and 

then killed by transcardial perfusion with 4% paraformaldehyde (v/v) in 1× PBS. Brains 

were harvested and placed in 4% paraformaldehyde in 1× PBS at 4°C for 4 h, and they 

were kept at 4°C until being sliced using a vibratome. Brain sections (40 μm) were 

prepared, and free-floating sections in 1× PBS (one per well in a 24-well plate) were 

permeabilized with 0.4% Triton X-100 in 1× PBS for 1 h. Nonspecific epitopes were 

blocked using a solution of 1× PBS/0.4% Triton X-100 containing 0.1% glycine (w/v), 

0.1% lysine (w/v), 1% BSA (w/v), and 1% normal donkey serum (w/v). Primary antibody 

(an FITC-conjugated goat polyclonal anti-GFP; catalog #ab6662; Abcam) was 

incubated in blocking buffer overnight at 4°C. Sections were then washed five times in 

1× PBS/0.4% Triton X-100 (10 min each). Sections were mounted on slides and 

visualized using an Olympus IX81 laser-scanning microscope (FluoView) using an 

argon laser with parameters set for GFP. Images were taken using a 10× objective 

(numerical aperture 0.40) with the tile feature. Acquired images were then used to 

reconstruct the entire brain using the Olympus software. 

2.3.3 qPCR and Western blotting 
 

To genotype mice and to measure gene copies of VAChT, genomic DNA was extracted 

from tail-snip samples, and qPCR was used with the following primer pair: forward, 5′-

GAGAGTACTTTGCCTGGGAGGA-3′; and reverse, 5′-

GGCCACAGTAAGACCTCCCTTG-3′. The results were normalized to Sti1p1 using the 

following primer pair: forward, 5′-ATGTATCTGAGCATGCCTCTG-3′; and reverse, 5′-
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ATTGCCCTTCTCCTTTAGCTC-3′. To measure VAChT mRNA expression, total RNA 

was extracted using the Aurum Total RNA for fatty and fibrous tissue kit (Bio-Rad) 

according to the kit manual. cDNA synthesis and qPCR analysis were performed as 

described previously (Guzman et al., 2011). Immunoblotting was performed as 

described previously (Martins-Silva et al., 2011). The antibodies used were anti-VAChT 

(catalog #139103; Synaptic Systems), anti-ChAT (catalog #A144p; Millipore), anti-

Synaptophysin (catalog #S5768; Sigma-Aldrich), and anti-Actin (catalog #ab49900; 

Abcam). 

2.3.4 Acetylcholine Release 

 
ACh release from hippocampal brain slices was done as described previously (Guzman 

et al., 2011), by labeling slices with [3H] methyl-choline, before using KCl to stimulate 

release of labeled ACh. 

2.3.5 Metabolic assessments 

 
Oxygen consumption, carbon dioxide production, respiratory exchange ratio (RER), 

food and water intake, and physical activity were simultaneously measured for young 

and adult mice by using the Comprehensive Lab Animal Monitoring System interfaced 

with Oxymax software (Columbus Instruments) essentially as described previously 

(Guzman et al., 2013). Mice were individually housed in the metabolic chambers 

maintained at 24 ± 1°C and given ad libitum access to powdered standard rodent chow 

and water. All the measurements were taken every 10 min for 24 h (12 h light/12 h dark) 

after a 16 h habituation period in the individual metabolic chambers. Total activity, 

ambulatory activity, and sleep (periods of inactivity) were obtained using the Opto-M3 

Activity Monitor and Oxymax software algorithms (Columbus Instruments) as described 

previously (Guzman et al., 2013). 

2.3.6 Glucose tolerance test 

 
Animals were fasted for 5 h and then received an intraperitoneal injection of 2 g/kg 

glucose. Blood glucose levels were measured at 0 (baseline), 30, 60, 90, 120, and 150 
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min after glucose injection. Glucose levels were determined in blood samples obtained 

from a tail snip using ACCU-CHEK Advantage (Roche Diagnostics). 

2.3.7 Grip force 

 
Forelimb and hindlimb grip strength were assessed using a previously described 

protocol (Prado et al., 2006). 

2.3.8 Treadmill 

 
To test motor endurance, a rodent treadmill (IITC Life Sciences), with a grid behind the 

track that delivered a mild electric shock (15–20 V) when the mouse fell off, was used. 

Before testing, mice were trained for 4 d (3 min/day). On the first day, inclination was 

set to 5°. The inclination was increased by 5° on each subsequent training day. The 

initial training speed was 8 m/min, and the treadmill was accelerated by 1 m/min, up to 9 

m/min. In the second training session, the initial speed was 10 m/min and was 

increased to 11 m/min, whereas on the third day and fourth days, the speed was 

maintained at 12 m/min. On the test day, the initial speed was set to 12 m/min, and the 

ramp angle was set to 20°. Speed was increased to 20 m/min over the course of the 

first 15 min of testing, after which it remained constant, until the test was complete. The 

test ended when 60 min had elapsed or the mouse had reached exhaustion (Lund et al., 

2010). 

2.3.9 Elevated plus maze, forced swimming test, and tail 

suspension test 

 
Anxiety-like behavior was assessed using the elevated plus maze test, performed as 

described previously (Martins-Silva et al., 2011). Sessions were recorded and the video 

was analyzed using the ANY-Maze Software (Stoelting) to determine total time spent in 

the open and closed arms. Depressive-like behavior was assessed using the forced 

swim and tail suspension tests (Martyn et al., 2012). For the forced swim test, mice 

were placed in a 2 L beaker containing 1.8 L of 25–27°C water, for 6 min. For the tail 

suspension test, mice were suspended from their tails for 5 min, held in place by a strip 
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of masking tape placed ∼1.5 inches from the base of the tail. Sessions were recorded 

for both tests, and immobility time and episodes were assessed using the ANY-Maze 

Software. For the forced swim test, only data obtained after the initial 2 min of the test 

were used for the analysis. 

2.3.10 Rotarod 

 
The rotarod task was conducted as described previously to assess motor learning and 

acrobatic motor skill (Prado et al., 2006; de Castro et al., 2009a). 

2.3.11 Locomotor activity 

 
Spontaneous locomotor activity in a new environment to determine exploratory behavior 

was recorded using automated locomotor boxes essentially as described previously 

(Guzman et al., 2013). 

2.3.12 Spontaneous alternations Y-maze 

 
The spontaneous alternations Y-maze task to investigate working memory was 

performed using a symmetrical, three-armed Y-maze as described previously (de 

Castro et al., 2009a). All sessions were recorded. Both the order and the number of arm 

entries were recorded. A spontaneous alternation was counted when the mouse visited 

all three arms in a row without revisiting a previous arm. 

2.3.13 Barnes maze 

 
Barnes maze testing to determine spatial memory was performed as described 

previously (Patil et al., 2009; Martyn et al., 2012) using a white circular platform (92 cm 

in diameter) with 20 equally spaced holes (5 cm in diameter; 7.5 cm between holes), 

elevated 105 cm above the floor (San Diego Instruments), and spatial cues (posters, 

streamers, and plastic props) were placed around the maze. Briefly, animals were given 

four training trials a day for 4 d, with a 15 min intertrial interval (ITI). On the fifth day, 

memory was assessed via a probe trial. The probe trial consisted of barring access to 
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the target hole and assessing nose pokes to the holes within the target quadrant. 

Sessions were recorded and analyzed using the ANY-Maze Software. 

2.3.14 Morris water maze 

 
The spatial version of the Morris water maze (MWM) was conducted as described 

previously to investigate spatial memory (Vorhees and Williams, 2006; Martyn et al., 

2012). Briefly, animals were given four training trials a day (90 s each) for 4 d, with a 15 

min ITI. If the mice did not find the platform after 90 s during the learning phase, they 

were gently directed to the platform. On the fifth day, memory was assessed via a probe 

trial (60 s), during which the platform is removed and time spent in the target quadrant is 

measured. The task was performed in a 1.5-m-diameter pool with 25°C water. The 

platform was submerged 1 cm below the surface of the water, and spatial cues (posters, 

streamers, and plastic props) were distributed around the pool. Sessions were recorded 

and analyzed using the ANY-Maze Software. 

Both the two-trial and cued variations of the MWM were performed as described 

previously (Vorhees and Williams, 2006). Briefly, for the two-trial variation, used to 

assess working or trial-dependent learning and memory, mice were tested over the 

course of 8 d. The mouse was first given a 90 s trial, and then after a 15 s ITI, the 

mouse was given a second trial with identical platform location and starting point. This 

was repeated with four unique starting location/platform location combinations a day. As 

for the cued variation, used to assess goal-directed behavior, mice were tested for 2 d 

using novel platform and starting location combinations. For this variation, the platform 

was at water level and a cue was placed on it (a plastic block). Sessions were recorded 

for both tests and were analyzed using the ANY-Maze Software. 

2.3.15 Five-choice serial reaction time task 

 
The five-choice serial reaction time (5-CSRT) task is used to determine attention in mice 

(Robbins, 2002; Romberg et al., 2011). Mice were trained in the 5-CSRT in automated 

Bussey-Saksida Mouse Touch Screen Systems model 81426 (Campden Instruments 

Limited). Schedules were designed and data were collected using the ABET II Touch 
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software v.2.15 (Lafayette Instruments). Before being trained on the 5-CSRT task, mice 

were first put through a pretraining program. This consisted of first habituating the 

mouse to the testing chamber with the lights off for 15 min. The next day, the mouse 

was left in the chamber with the lights off for 20 min. At this time, the reward tray was 

primed with strawberry milkshake (Saputo Dairy Products), and a tone was played when 

the mouse entered the reward tray. Whenever the mouse returned to the reward tray, it 

received a reward paired with the tone. This was repeated the next 2 d for 40 min 

sessions (phase 1). 

The next training phase (phase 2) involved pairing the reward with presentation of the 

stimulus (flash of light in one of the five windows) on the touchscreen. The stimulus 

appeared randomly, and, after 30 s, it was removed and a reward was given paired with 

a tone. If the mouse touched the screen while stimulus was displayed, it immediately 

received a reward. Once the mouse collected the reward, a new trial was initiated. This 

phase was repeated until the mouse completed 30 trials within 60 min (phase 2). 

To further shape behavior, phase 3 involved displaying the stimulus randomly in one of 

the windows. The mouse had to touch the stimulus on the screen to receive a reward 

paired with a tone. There was no response to the mouse touching anything but the 

stimulus. Once again, this was repeated until the mouse completed 30 trials within 60 

min. The next phase (phase 4) was identical to phase 3 except that the mouse had to 

initiate each trial by nose poking the reward tray. Criterion was 30 correct trials within 60 

min. 

Finally, in the last pre-training phase (phase 5), the previous procedure was repeated, 

but if the mouse touched an incorrect screen, it received a 5 s timeout, during which the 

chamber light was turned on. The final phase had a stricter criterion, requiring the mice 

to perform 30 trials in 60 min with 23 correct responses in 2 consecutive days. 

For the 5-CSRT training phase, mice were trained to respond to brief flashes of light 

pseudo randomly displayed in one of the five spatial locations on the touchscreen. Each 

trial was initiated after the mouse poked the magazine. In this phase, the stimulus was 

delivered after a variable 5–10 s delay (delay period), during which the animal was 

required to attend to the screen. In case the mouse prematurely touched the screen 
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during this delay, the response was recorded as premature and the mouse was 

punished with a 10 s timeout. The stimulus duration was initially set to 4 s, followed by a 

limited holding period of 5 s, during which the stimulus was absent but the mouse could 

still respond to the location (holding period). Each session lasted 50 trials or 1 h. 

Responses to the stimulus window during stimulus presence or the holding period were 

recorded as correct, whereas responses to any other window were recorded as 

incorrect. A correct choice was rewarded with a tone and food delivery. An incorrect 

response was punished with a 10 s timeout. A failure to respond to any window either 

during stimulus display or the holding period was recorded as an omission, and the 

mouse was punished with a 10 s timeout. Perseverative responses to the screen after 

premature, correct, and incorrect choices were also recorded. Our initial goal was to 

have the performance of a mouse reaching criterion at 4 s stimulus duration (80% 

accuracy, 20% omissions for 3 consecutive days) and reduce the stimulus duration to 2 

s. However, ChAT–ChR2–EYFP BAC mice were not able to reach criterion at 4 s 

stimulus duration. Therefore, we used another training procedure, that is, the same 

cohort of mice was trained in a 16 s stimulus duration, and when they reached criterion, 

the stimulus duration was reduced to 8 s. After reaching criterion with the 8 s stimulus, 

the mice were tested 2 more days, and the mean measures of those additional 2 d were 

used to assess baseline performance. 

After finishing training at 8 s stimulus duration, mice were probed for attentional deficits 

in the following probe trial schedule: each mouse was tested over two sessions at a 

given stimulus duration (4 and 2 s). Between each different stimulus duration, the 

mouse was returned to an 8 s stimulus duration for two baseline sessions. The order of 

the probe trial sessions was semi randomized using a Latin square method. 

On all 5-CSRT task sessions, accuracy was defined as the total number of correct 

responses divided by the number of correct and incorrect responses (touches to a 

wrong window while the correct stimulus was still displayed). Rate of omissions were 

the proportion of omitted responses to total trials. Response latency was the time for the 

mouse to touch the correct stimulus from its onset. Reward collection latency was the 

time for the mouse to return to the reward tray once it had touched the correct stimulus. 
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A premature response was counted when the mouse touched one of the windows 

before stimulus onset. Finally, a perseverative response was any identical response that 

occurred after a correct, incorrect, or premature response. 

2.3.16 Statistical analyses 

 
Data are expressed as mean ± SEM. SigmaStat 3.5 software was used for statistical 

analysis. Comparison between two experimental groups was done by Student's t test or 

Mann–Whitney rank-sum test when the data did not follow a normal distribution. When 

several experimental groups or treatments were analyzed, two-way ANOVA or two-way 

repeated-measures (RM) ANOVA were used as required. When appropriate, a Tukey's 

HSD post hoc comparison test was used. 

2.4 Results 
 

2.4.1 Increased levels of VAChT in the ChAT–ChR2–EYFP BAC 

mice 

 
Immunofluorescence analysis confirmed previous findings that ChR2–EYFP is highly 

expressed in different areas of the brain (Zhao et al., 2011), including the striatum and 

basal forebrain (Fig. 2.1A), as well as interpeduncular nucleus and brainstem motor 

nuclei (data not shown). qPCR assays showed that ChAT–ChR2–EYFP mice contain 

∼56 copies of the VAChT gene and 54 copies of the YFP gene (Fig. 2.1B), suggesting 

that close to 50 copies of the ChAT–BAC were inserted in the mouse genome. RT-

qPCR data indicate that these additional copies of the VAChT gene are functional 

because VAChT mRNA was increased almost 20-fold in the striatum of ChAT–ChR2–

EYFP mice when compared with controls; importantly, expression of ChAT, as 

expected, was not changed (Fig. 2.1C). This increased VAChT mRNA level is 

consistent with the elevated copy number of ChAT–ChR2–EYFP BAC. Expression of 

the VAChT protein is also increased (Fig. 2.1D) in this mouse line. In the hippocampus, 

there is a 550% increase in VAChT protein levels, whereas in the brainstem, VAChT 

levels are augmented by 350% when compared with control littermates (Fig. 2.1D). 

Expression of the ChAT protein was unaltered in both brain regions (Fig. 2.1E). 
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Importantly, increased expression of VAChT protein had functional consequences, 

because ChAT–ChR2–EYFP BAC mice presented threefold to fourfold increase in the 

release of newly synthesized [3H]ACh from hippocampal slices (Fig. 2.1F). Moreover, 

BAC transgenic expression of VAChT was able to rescue postnatal lethality attributable 

to VAChT elimination. We crossed ChAT–ChR2–EYFP with VAChTdel/wt 

[heterozygous VAChT knock-out (de Castro et al., 2009b)] mice and then intercrossed 

heterozygous littermates to obtain ChaT–ChR2–EYFP VAChTdel/del. Screening of the 

offspring was done by qPCR of the VAChT del allele (de Castro et al., 2009b). Our data 

show that ChAT–ChR2–EYFP VAChTdel/del mice are viable and survive to adulthood 

(Table 1). 
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Figure 2.1- Overexpression of VAChT in ChAT–ChR2–EYFP mice. A, YFP 

expression in the CNS of ChAT–ChR2–EYFP mice (n = 3). B, VAChT and YFP gene 

copy numbers determined by genomic qPCR (n = 5). C, VAChT and ChAT mRNA 

expression in the striatum of wild-type and transgenic mice (n = 6 for both genotypes). 

D, VAChT protein expression in the hippocampus and brainstem with representative 

immunoblots (n = 3 for both genotypes). E, ChAT protein expression in the 

hippocampus and brainstem with representative immunoblots (n = 3 for both 

genotypes). F, Release of newly synthesized ACh in hippocampal slices (n = 4 for both 

genotypes). *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

 
 

Figure 2.1- Overexpression of VAChT in ChAT–ChR2–EYFP mice. 
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Table 2.1. Rescue of lethality in VAChTdel/del mice. ChAT–ChR2–EYFP mice were 

crossed to VAChTdel/wt mice and offspring were then intercrossed. Genomic qPCR 

using primers that amplify the VAChTdel allele was used to identify live VAChTdel/del 

mice containing the ChaT BAC. 
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Table 2.1. Rescue of lethality in VAChTdel/del mice. 

 

Genotype Number of mice born 

VAChTwt/wt 2 

VAChTwt/del 7 

ChAT–ChR2–EYFP VAChTwt/del 10 

ChAT–ChR2–EYFP VAChTdel/del 4 

ChAT–ChR2–EYFP VAChTwt/wt 6 

Total 29 
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2.4.2 ChAT–ChR2–EYFP mice have improved motor endurance 

 
To assess neuromuscular function in ChAT–ChR2–EYFP mice, both forelimb and 

hindlimb grip strength were measured, but there was no statistical difference between 

ChAT–ChR2–EYFP mice and control littermates (Fig. 2.2A). In contrast, ChAT–ChR2–

EYFP mice performed much better than wild-type controls in the treadmill. By using a 

protocol designed to determine physical fitness, we observed that ChAT–ChR2–EYFP 

mice were able to run almost twice as much compared with control mice (t(14) = 2.497, 

p = 0.0256; Fig. 2.2B). 
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Figure 2.2 ChAT–ChR2–EYFP mice have increased physical endurance. A, Grip 

force in wild-type and transgenic mice. B, Treadmill analysis of physical endurance in 

wild-type and transgenic mice (*p < 0.05, n = 8 for both genotypes).  
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Figure 2.2 ChAT–ChR2–EYFP mice have increased physical endurance. 
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2.4.3 ChAT–ChR2–EYFP mice do not present gross alterations in 

metabolism 

 
To investigate whether increased copy numbers of VAChT affects homeostasis, 

transgenic ChAT–ChR2–EYFP mice were assessed in metabolic cages. Transgenic 

mice had body weight statistically similar to controls (t(14) = 0.6920, p = 0.500; Fig. 2.3). 

These mice presented similar metabolic profiles as controls, with no statistical 

differences in RER, in the light (t(14) = 0.9898, p = 0.831) or the dark (t(14) = 0.5414, p 

= 0.702) cycles (Fig. 2.3A). They did not consume more O2 during the light cycle (t(14) 

= 0.1897, p = 0.8523) or dark cycle (t(14) = 1.402, p = 0.1828; Fig. 2.3B). Similar results 

were obtained for CO2 release during the light (t(14) = 0.09952, p = 0.9221) or dark 

(t(14) = 1.462, p = 0.1658) cycle (Fig. 2.3C). Likewise, locomotor activity, sleep time, or 

blood glucose levels were not significantly altered in this transgenic mouse line (Fig. 

2.3). Interestingly, ChAT–ChR2–EYFP mice consumed both more food and water 

during the dark cycle than control mice (food consumption, t(14) = 2.212, p = 0.0441; 

water consumption, t(14) = 2.878, p = 0.0122; Fig. 2.3D,E). 
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Figure 2.3. Metabolic analysis in ChAT–ChR2–EYFP mice. A, Respiratory exchange 

rate analysis. B, VCO2 consumption. C, VO2. D, Food consumption. E, Water 

consumption. F, Sleep time. G, Home cage activity. H, Body weight at time of analysis. 

I, Glucose tolerance test. *p < 0.05, n = 8 for both genotypes. 
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Figure 2.3. Metabolic analysis in ChAT–ChR2–EYFP mice. 
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2.4.4 ChAT–ChR2–EYFP mice do not present anxiety or 

depression-like behavior 

 
We tested ChAT–ChR2–EYFP mice for anxiety using the elevated plus maze paradigm. 

These mice visited the open (t(14) = 0.2304, p = 0.8211) or closed (t(14) = 0.1365, p = 

0.8934) arms at rates statistically comparable with those observed in controls (Fig. 

2.4A). In addition, they did not spend more time than controls in the open (t(14) = 

0.2304, p = 0.8211) or closed (t(14) = 0.1314, p = 0.8973) arms (Fig. 2.4B). ChAT–

ChR2–EYFP mice were also tested for depressive-like behavior using both the tail 

suspension and forced swim tests and presented no statistical difference from wild-type 

controls (swim test, t(14) = 0.4016, p = 0.6941; tail suspension, t(14) = 0.04468, p = 

0.9650; Fig. 2.3C,D, respectively). 
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Figure 2.4. Assessment of anxiety and depressive-like behavior in ChAT–ChR2–

EYFP mice. A, Number of arm entries in the elevated plus maze. B, Time spent in the 

open and closed arms. C, Immobility time in the forced swimming test. D, Immobility 

time in the tail suspension test (n = 8 for both genotypes). 
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Figure 2.4. Assessment of anxiety and depressive-like behavior in ChAT–ChR2–

EYFP mice. 
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2.4.5 ChAT–ChR2–EYFP mice show normal locomotion but have 

impaired motor learning 

 
We assessed locomotor activity in ChAT–ChR2–EYFP mice using an automated novel 

open-field environment for 4 h: 2 h in the light and 2 h in the dark. No statistical 

differences in locomotor activity were observed between genotypes (F(1,658) = 0.2468, 

p = 0.6271; Fig. 2.5A). There was no interaction between time × genotype (F(47,658) = 

0.4313, p = 0.9997), with both genotypes significantly reducing their locomotor activity 

during the course of the test in the light phase (F(47,658) = 9.725, p < 0.0001). 

Moreover, habituation in the open field was not affected in ChAT–ChR2–EYFP mice 

[Fig. 2.5B; two-way RM-ANOVA shows a significant effect of day (F(2,42) = 15.07, p < 

0.0001), no effect of genotype (F(1,42) = 2.653, p = 0.1108), and no interaction (F(2,42) 

= 0.880, p = 0.4225)]. 

Knowing that transgenic mice have increased endurance and no overt deficits in 

locomotor behavior, the accelerating rotarod task was used to assess motor learning. 

Surprisingly, the ChAT–ChR2–EYFP mice failed to improve their performance in the 

rotarod, whereas wild-type control mice improved the time spent on the rotarod as well 

as distance traveled [Fig. 2.5C,D; two-way RM-ANOVA revealed main effect of 

genotype (F(1,182) = 6.015, p = 0.0279) and trial (F(13,182) = 2.796, p = 0.0012)]. Post 

hoc analysis confirmed that the ChAT–ChR2–EYFP mice did not significantly improve 

their performance from their first trial. 
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Figure 2.5. ChAT–ChR2–EYFP mice have normal locomotor activity but impaired 

motor learning. A, Locomotor activity of wild-type or ChAT–ChR2–EYFP mice during 

the light (2 h) and dark (2 h) activity periods in an open arm. The test was done from 

5:00 P.M. to 9:00 P.M. B, Habituation in the open field. C, Acrobatic motor performance 

and motor learning in the rotarod. Time spent on the rod. D, Distance traveled in the 

rotarod (*p < 0.05, significant difference between genotypes; #p < 0.05, ##p < 0.01, 

###p < 0.001, significant difference within genotype; n = 8 for both genotypes). 
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Figure 2.5. ChAT–ChR2–EYFP mice have normal locomotor activity but impaired 

motor learning. 
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2.4.6 ChAT–ChR2–EYFP mice have impaired spatial memory 

 
To assess other forms of learning, we tested spatial learning and memory in the ChAT–

ChR2–EYFP mice using the Barnes maze and MWM. During the acquisition phase of 

the Barnes maze, there were no statistical differences for the performance between the 

two genotypes. The two groups made a similar number of errors before reaching the 

target hole (F(1,42) = 0.2685, p = 0.6124; Fig. 2.6A). In contrast, during the probe trial, 

on day 5, ChAT–ChR2–EYFP mice visited the target hole location significantly less than 

controls (t(14) = 3.360, p = 0.0047; Fig. 2.6B) and showed a significantly decreased 

preference for the target hole, as defined by the target hole preference index [target 

hole visits/mean visits per hole (Holmes et al., 2002), t(14) = 2.712, p = 0.0168; Fig. 

2.6C]. Although both genotypes showed a significant effect of the hole location during 

the probe trial (F(1,154) = 26.66, p = 0.001), there was a significant effect of genotype 

(F(1,154) = 11.29, p = 0.047) and a significant genotype × hole location effect (F(1,154) 

= 2.819, p = 0.022). Post hoc analysis revealed that wild-type mice preferred the target 

hole, whereas ChAT–ChR2–EYFP mice did not (Fig. 2.6D,E). Representative traces of 

two controls (Fig. 2.6F) and two ChAT–ChR2–EYFP mice (Fig. 2.6G) show the 

performance of the two genotypes in this task. 

To further determine the mechanisms involved with potential spatial memory deficits, 

the MWM was used. Once again during the course of acquisition, the performance of 

ChAT–ChR2–EYFP mice was indistinguishable from that of controls in terms of latency 

to find the target (F(1,42) = 0.8933, p = 0.3606) and the distance traveled to the target 

(F(1,42) = 2.783, p = 0.1175; Fig. 2.7A–C). Mutants learned the location of the platform 

similar to control mice, confirming the observations using the Barnes maze. These 

results indicate that the ChAT–ChR2–EYFP mice do not have any gross sensorimotor 

deficits and were able to use the cues to learn the task. However, on the probe trial day, 

ChAT–ChR2–EYFP mice showed no preference for the target quadrant of the pool (Fig. 

2.7D). The occupancy plots in the MWM on the probe trial show that the controls clearly 

remembered where the platform should be (Fig. 2.7E). In contrast, ChAT–ChR2–EYFP 

mice did not seem to retrieve this information during the probe trial (Fig. 2.7F). 
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Figure 2.6. ChAT–ChR2–EYFP mice have spatial memory deficits in the Barnes 

maze. Mice were subject to the Barnes maze paradigm, and the average values of four 

3-min trials per day are plotted. A, Number of errors before finding the target hole. B, 

Visits to the target hole during the day 5, 90 s probe trial. C, Preference for the target 

hole over other holes during the probe trial (target hole visits/average nontarget visits). 

D, Nose pokes per hole were measured on day 5 in a 90 s probe trial for control mice. 

T, Target hole. Numbers refer to the location of holes adjacent to the target hole. Op, 

Opposite hole. E, ChAT–ChR2–EYFP mice. F, Representative path tracings for two 

control mice during the probe trial (target quadrant highlighted; T). G, Same as in F but 

for ChAT–ChR2–EYFP mice. *p < 0.05, **p < 0.01, ***p < 0.001, n = 8 for both 

genotypes. 
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Figure 2.6. ChAT–ChR2–EYFP mice have spatial memory deficits in the Barnes 

maze. 
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Figure 2.7. ChAT–ChR2–EYFP mice have spatial memory deficits in the MWM. 

Mice were subject to the MWM paradigm, and the average values of four 90-s trials per 

day are plotted. A, Latency to find the platform. B, Distance traveled to the platform. C, 

Mouse speed. D, Percentage time spent per quadrant was measured on day 5 in a 60 s 

probe trial with the platform removed. E, Representative occupancy plots for two control 

mice. F, Representative occupancy plots for two ChAT–ChR2–EYFP mice during the 

probe trial (T indicates the location of the target quadrant). ###p < 0.001, significant 

difference within genotype, n = 8 for both genotypes. L, Left; O, opposite; R, right; T, 

target. 
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Figure 2.7. ChAT–ChR2–EYFP mice have spatial memory deficits in the MWM. 
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2.4.7 ChAT–ChR2–EYFP mice have deficiencies in cue-directed 

memory 

 
To assess cue-driven learning in these mice, the cued version of the MWM was used 

(Vorhees and Williams, 2006). There was a significant difference between genotypes 

(F(1,14) = 5.262, p = 0.0378) and a significant effect of day (F(1,14) = 7.834, p = 

0.0142) in terms of latency to find the target (Fig. 2.8A). Post hoc analysis confirmed 

that control mice improved their performance from day 1 to day 2, whereas ChAT–

ChR2–EYFP mice did not (Fig. 2.8A). There was a trend for ChAT–ChR2–EYFP mice 

to swim a greater distance to the target (Fig. 2.8B), but this failed to reach significance 

(F(1,14) = 7.834, p = 0.0861). A closer examination of the path traces revealed that 

ChAT–ChR2–EYFP mice do not seem to use the cue to find the target on the second 

day (Fig. 2.8C,D). 
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Figure 2.8. ChAT–ChR2–EYFP mice have deficits in cue memory. Mice were 

subject to the cued version of the MWM in which they had to associate the platform with 

a cue. A, Primary latency to find the platform. B, Distance traveled to the platform. C, 

Representative path tracings to the target of two control mice. D, Representative path 

tracings to the target of two ChAT–ChR2–EYFP mice. Traces are from the second trial 

on the first and second days of the experiment, with T indicating the location of the 

platform. The average of four 90-s trials per day is plotted. *p < 0.05, n = 8 for both 

genotypes. 
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Figure 2.8. ChAT–ChR2–EYFP mice have deficits in cue memory. 
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2.4.8 ChAT–ChR2–EYFP have impaired working memory  
 

The above experiments suggest that ChAT–ChR2–EYFP mice can learn the spatial 

version of the MWM, but they have difficulty retrieving that memory trace. Moreover, 

these transgenic mice show impaired motor learning and cued-driven learning. These 

results suggest the possibility that chronically increased cholinergic tone disturbs 

distinct forms of information processing. To evaluate working memory, we first used 

spontaneous alternations in the Y-maze (de Castro et al., 2009a). In contrast to results 

obtained with littermate control mice, ChAT–ChR2–EYFP mice revisited the arms of the 

Y-maze more often, showing significantly less spontaneous alternations (t(14) = 2.448, 

p = 0.0293; Fig. 2.9A). The number of arm entries was not affected (t(14) = 0.6031, p = 

0.5568; Fig. 2.9B), nor was distance traveled (t(14) = 0.5620, p = 0.5837; data not 

shown). However, performance of ChAT–ChR2–EYFP mice was above chance (>50%) 

regarding alternations, suggesting that these mice had a partial dysfunction on their 

working memory. To exclude the possibility that the cognitive deficits observed could be 

related to the introduction of ChR2 or EYFP, we also tested VGAT–ChR2–EYFP and 

their littermate controls in the Y-maze alternation. qPCR analysis showed that these 

mice had ∼20 copies of EYFP and therefore 20 copies of the ChR2 gene. Distinct from 

ChAT–ChR2–EYFP mice, VGAT–ChR2–EYFP mice did not differ statistically from their 

littermate controls in terms of either spontaneous alternations (t(10) = 0.1914, p = 

0.8520; Fig. 2.9C) or number of arm entries (t(10) = 1.562, p = 0.1494; Fig. 2.9D). 

To further probe working memory in ChAT–ChR2–EYFP mice, the two-trial variation of 

the MWM was used (Vorhees and Williams, 2006). In this variation of the task, mice 

must first find a novel platform location by chance and then, after a 10 s ITI, find it 

again. To analyze mouse performance on this task, we used the latency and distance 

savings ratio to standardize data (Varvel and Lichtman, 2002). These ratios were 

calculated by dividing the distance traveled, or latency on the first trial by that on the 

sum of the first and second trials. Values >0.5 indicate improvement from the first to the 

second trial. ChAT–ChR2–EYFP mice had significantly lower distance savings ratio 

(t(14) = 2.501, p = 0.0254) and latency savings ratio (t(14) = 3.684, p = 0.0025; Fig. 
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2.9E–H) than control mice. Together, these results indicate that ChAT–ChR2–EYFP 

mice have impaired working memory. 
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Figure 2.9. ChAT–ChR2–EYFP mice have deficits in working memory. A, 

Spontaneous alternations in the Y-maze were used to assess working memory for 

ChAT–ChR2–EYFP mice. B, Number of arms visited for ChAT–ChR2–EYFP mice (n = 

8 for both genotypes). C, Spontaneous alternations in the Y-maze for VGAT–ChR2–

EYFP mice. D, Number of arms visited for VGAT–ChR2–EYFP mice. n = 6 for both 

genotypes. E, ChAT–ChR2–EYFP mice were subject to the two-trial MWM paradigm to 

further assess working memory. Savings ratios were calculated from the average of the 

first and second 90 s trials across all 4 d of the experiment. The graph shows the mean 

distance savings ratios. F, Latency saving ratio. G, Representative path tracings to the 

target for two control mice. H, Representative path tracings to the target for two ChAT–

ChR2–EYFP mice. Traces are from the first and second trials during the third day of the 

experiment. T indicates the location of the platform. *p < 0.05, **p < 0.01, n = 8 for both 

genotypes. 
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Figure 2.9. ChAT–ChR2–EYFP mice have deficits in working memory. 
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2.4.9 ChAT–ChR2–EYFP mice have impaired attentional 

processing 

 
To determine whether ChAT–ChR2–EYFP mice may be affected in other cognitive 

domains that are sensitive to cholinergic tone and could contribute to the deficits we 

observed, we used the 5-CSRT task. During pretraining, transgenic mice did not differ 

from controls in terms of trials needed to achieve criterion [two-way RM-ANOVA; no 

effect of genotype (F(1,48) = 0.6766, p = 0.4268) and no effect of training phase 

(F(4,48) = 2.306, p = 0.0717)]. It should be noted that one mouse of each genotype 

never completed the pretraining and were not subjected to training in the 5-CSRT task. 

Our initial goal was to train mice first using a 4 s stimulus duration and then proceed to 

2 s as described previously (Romberg et al., 2011). However, after 12 training sessions 

at 4 s stimulus duration, whereas all control mice reached criterion with an average of 

10.28 ± 1.23 trials, all ChAT–ChR2–EYFP mice failed to acquire the task. Therefore, we 

increased the stimulus duration time (decreased the attentional demand) to 16 s and 

then 8 s to do the training. Probe trials were then performed with 4 and 2 s stimulus 

durations. 

 

Under less demanding attentional conditions, ChAT–ChR2–EYFP mice were able to 

acquire the task, reaching criteria at both stimulus durations (16 and 8 s) in the same 

number of sessions as controls [two-way RM-ANOVA; no effect of genotype (F(1,12) = 

1.122, p = 0.3103) and no effect of stimulus duration (F(1,12) = 2.492, p = 0.1404)]. 

However, during probe trials, ChAT–ChR2–EYFP mice showed significant impairments 

in choice accuracy [two-way RM-ANOVA; main effect of genotype (F(1,12) = 29.86, p = 

0.0001) and no effect of stimulus duration (F(1,12) = 0.6894, p = 0.4226); Fig. 2.10A], 

with post hoc analysis showing that the ChAT–ChR2–EYFP mice had impaired 

accuracy at both stimulus durations. The rate of omissions for ChAT–ChR2–EYFP mice 

was unaffected [two-way RM-ANOVA; no effect of genotype (F(1,12) = 1.928, p = 

0.1902) and main effect of stimulus duration (F(1,12) = 13.79, p = 0.0030); Fig. 2.10B]. 

Additionally, ChAT–ChR2–EYFP mice showed a significant increase in premature 
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responses [two-way RM-ANOVA; main effect of genotype (F(1,12) = 21.74, p = 0.0005) 

and main effect of stimulus duration (F(1,12) = 7.657, p = 0.0171); Fig. 2.10C]. Post hoc 

analysis revealed that the ChAT–ChR2–EYFP mice had more premature responses at 

each stimulus duration. No change in perseverative responses was observed in ChAT–

ChR2–EYFP mice [two-way RM-ANOVA; no effect of genotype (F(1,12) = 0.05002, p = 

0.8268) and no effect of stimulus duration (F(1,12) = 0.6894, p = 0.4226); Fig. 2.10D]. 

Importantly, there were no differences between genotypes in terms of response latency 

[two-way RM-ANOVA; no effect of genotype (F(1,12) = 1.570, p = 0.2341) and no effect 

of stimulus duration (F(1,12) = 2.112, p = 0.1718)] or reward collection latency [two-way 

RM-ANOVA; no effect of genotype (F(1,12) = 1.082, p = 0.3189) and no effect of 

stimulus duration (F(1,12) = 0.001394, p = 0.9708); Fig. 2.10E,F]. 
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Figure 2.10. ChAT–ChR2–EYFP mice have deficits in attention. The 5-CSRT task 

was used to measure attention in the ChAT–ChR2–EYFP mice. A, Mean response 

accuracy during probe trial sessions. B, Rate of omissions. To assess response 

patterns, both premature (C) and perseverative (D) responses were monitored during 

probe trials. E, Mean response latency. F, Mean reward collection latency. *p < 0.05, 

***p < 0.001, n = 7 for both genotypes. 
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Figure 10. ChAT–ChR2–EYFP mice have deficits in attention 

 

 

 



146 
 

 
 

2.5 Discussion 

 
Here we report an extensive characterization of the BAC transgenic ChAT–ChR2–EYFP 

mouse line and reveal two major findings. First, there are several extra copies of the 

VAChT gene in this mouse line, which led to increased levels of functional transporter, 

increased release of ACh, and improvement of physical endurance. Second, it seems 

that this chronic increase in cholinergic tone is deleterious in the CNS, disrupting 

several distinct cognitive domains. Interestingly, increase in VAChT mRNA expression 

was approximately fourfold higher than increase in protein expression. This result 

suggests the existence of translational or posttranslational mechanisms limiting the 

availability of the VAChT protein in cholinergic neurons. 

Vesicular storage of ACh is a required step for ACh release (de Castro et al., 2009b), 

and decreased VAChT expression leads to motor and cognitive dysfunctions (Prado et 

al., 2006; Martyn et al., 2012). Specifically, reduction of VAChT levels affects grip 

strength and fatigue; VAChT knockdown homozygous mice, with 70% reduction in 

VAChT levels, are unable to run in a treadmill test (Prado et al., 2006). In agreement 

with these early results, overexpression of the high-affinity choline transporter in 

motoneurons improves the performance of transgenic mice in the treadmill (Lund et al., 

2010). The present results with ChAT–ChR2–EYFP mice further support the notion that 

physical fitness is related to changes in cholinergic synaptic activity. Increased VAChT 

levels allowed transgenic mice to run farther than control nontransgenic littermates on 

the treadmill. However, it is unknown whether the increase in motor endurance results 

only from increased VAChT levels in motoneurons because, in this mouse line, VAChT 

is likely to be overexpressed in all cholinergic nerve endings. Decreased VAChT 

expression in the periphery has been shown to affect cardiac activity by distinct 

mechanisms (Lara et al., 2010; Rocha-Resende et al., 2012; Roy et al., 2012; Prado et 

al., 2013). Thus, ChAT–ChR2–EYFP mice will be essential to determine whether 

increased VAChT expression can improve cardiovascular function. 

Although a number of studies indicate that ACh is involved in the regulation of metabolic 

homeostasis (for review, see Picciotto et al., 2012), no significant difference between 
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ChAT–ChR2–EYFP and wild-type littermates was observed when an extensive list of 

metabolic parameters was analyzed, including RER, the volume of oxygen produced 

(VO2), the volume of carbon dioxide produced (VCO2), body weight, sleeping time, 

ambulatory movement, and serum glucose. However, our data show that ChAT–ChR2–

EYFP mice consume significantly more food and water during the dark period. It is 

possible that the small increase in food and water intake observed in these transgenic 

mice reflects the fact that, in the home-cage-like environment, they have a small 

tendency to be more active than controls. Surprisingly, ChAT–ChR2–EYFP mice did not 

show changes in locomotor activity in a novel environment, anxiety-like behavior, or 

depression-like behavior. To note, increased cholinergic transmission has been 

suggested to be pro-depressive (Janowsky et al., 1972; Overstreet et al., 1986; 

Overstreet, 1993; Fagergren et al., 2005). Moreover, antagonists of nicotinic and 

muscarinic receptors have antidepressant activity (Rabenstein et al., 2006; Andreasen 

and Redrobe, 2009). Because chronic increase in cholinergic tone may affect the 

expression of distinct receptors in specific brain regions, it is unlikely that all phenotypes 

described previously attributable to cholinesterase inhibition or dysfunction may be 

affected in ChAT-ChR2-EYFP mice. 

Despite their increased motor endurance, ChAT–ChR2–EYFP mice were unable to 

improve their performance in the rotarod, suggesting that increased cholinergic tone in 

the CNS is deleterious for learning an acrobatic skill. Previous experiments with mice 

presenting reduced levels of VAChT (40% VAChT knockdown heterozygous mice) had 

indicated that motor learning depends on cholinergic tone (Prado et al., 2006; de Castro 

et al., 2009b). Together, these results suggest that either too much or too little ACh in 

the brain is detrimental for motor learning. 

We have also detected diminished performance of ChAT–ChR2–EYFP mice in two 

distinct tasks designed to measure spatial memory. In both the Barnes maze and MWM, 

ChAT–ChR2–EYFP mice present a specific deficit in the retrieval of information. In both 

tests, ChAT–ChR2–EYFP mice were able to learn the task (location of the platform or 

the exit hole), as evidenced by their improved performance over the 4 d of training. 

However, in probe trials, ChAT–ChR2–EYFP mice performed poorly compared with 
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their littermate controls in both tests. This phenotype may not be related only to spatial 

memory deficits, because these mice also presented impairments in the cued version of 

the MWM. Because ChAT–ChR2–EYFP mice can improve their performance during the 

4 d of training in the Barnes maze and MWM, it is unlikely that they present any gross 

sensory motor deficits that would preclude visualization of cues. Conversely, deficits in 

the cued version of the MWM suggest that increased cholinergic tone might interfere 

with the mouse's ability to recognize that the platform is the goal (cue detection). It has 

been reported that detection of signals depends on cholinergic neurotransmission 

(Sarter et al., 2005; Parikh et al., 2007). Therefore, the chronic excess of cholinergic 

tone may disrupt the transmission of salient information related to a cue, preventing 

these animals from using such information to guide them to their goal. 

Working memory is a prefrontal cortical process that is modulated by cholinergic 

signaling (Croxson et al., 2011). There is strong evidence implicating cholinergic activity 

in enhancing discrimination of signal-to-noise in the prefrontal cortex (for review, see 

Hasselmo and Sarter, 2011), a role that is critical in regulating attention (Sarter et al., 

2006; Parikh et al., 2007; Hasselmo and Sarter, 2011). However, the focus in the 

literature has been on hypocholinergic function (McGaughy et al., 2002; Dalley et al., 

2004; Harati et al., 2008; Parikh et al., 2013), and to date, there has not been an 

evaluation of chronic cholinergic deregulation on attentive processing. Additionally, ACh 

has been shown to be important for feature binding, the process by which the brain 

processes specific features of an object and compile a unified picture of it (Botly and De 

Rosa, 2009). Interestingly ChAT–ChR2–EYFP mice showed inattentive behavior related 

to cholinergic dysregulation; however, they also showed increased premature 

responses in the 5-CSRT task, a behavior that has been shown to be regulated by 

serotonergic signaling (Fletcher et al., 2013; Humpston et al., 2013). ACh has been 

proposed to help filter sensory information by increasing persistent spiking in cortical 

neurons, compatible with its proposed role in facilitating cue detection (Hasselmo and 

Stern, 2006). Such a mechanism depends on background tonic level of ACh but also on 

the transient increase in cholinergic activity (Parikh et al., 2007). Whether tonic 

cholinergic activity in the ChAT–ChR2–EYFP mice is so high that it precludes additional 

transient increases in cholinergic tone remains to be determined. However, the 
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observation that ChAT–ChR2–EYFP mice have working memory and attention deficits 

suggests the possibility that multiple forms of information encoding are affected in these 

mice. Therefore, these experiments emphasize the importance of regulated ACh 

release in cognitive function. 

The precise mechanism by which excessive release of ACh in ChAT–ChR2–EYFP mice 

affects memory is not yet clear. It is likely that cellular regulation of neuronal spiking 

(Hasselmo and Sarter, 2011) may be affected by chronically increased levels of 

extracellular ACh. Moreover, increased and sustained cholinergic tone may affect 

forebrain circuitries by changing the expression of receptors and the regulation of other 

neurochemical systems, leading to abnormal processing, encoding, or retrieval of 

information. The overall memory deficits observed in ChAT–ChR2–EYFP mice suggest 

the need for specific temporal and spatial control of synaptic ACh levels for optimal 

cognitive performance. 

In contrast with the worse performance of ChAT–ChR2–EYFP mice in cognitive tasks, 

augmented cholinergic tone seems to improve physical fitness, suggesting that 

increasing cholinergic tone may be beneficial in the periphery. Whether increased 

cholinergic function will be beneficial in other parameters regulated by the autonomic 

nervous system, as well as for improving the activity of the cholinergic anti-inflammatory 

pathway, remains to be determined. 

Given that we detect improvement physical endurance and decreased performance in a 

series of behavioral tasks that have been previously related to cholinergic functions, we 

have interpreted our results as a potential consequence of increased cholinergic tone. It 

should be noted that we cannot eliminate the possibility that the large number of copies 

of the BAC inserted in the mouse genome disrupted a specific gene locus that could 

both improve physical endurance and disrupt cognition, although this seems unlikely. 

Also, we cannot discard the possibility that the high copy number of ChR2 or YFP may 

have unexpected consequences. We attempted to test this possibility by using another 

mouse line with high copy number of ChR2 and YFP. The VGAT–ChR2–EYFP mice, 

which have 20 copies of these genes, did not present impairments in working memory. 

These results support the argument that the effects observed in ChAT–ChR2–EYFP 
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mice are related to cholinergic hyperfunction. Importantly, these altered phenotypes 

fundamentally differentiate ChAT–ChR2–EYFP from control mice. 

In short, our experiments indicate that ChAT–ChR2–EYFP mice overexpress VAChT 

and show important functional consequences, including unforeseen effects in cognitive 

processing. Because most studies using optogenetic control of cholinergic neurons 

have used mice expressing Cre or ChR2 that was inserted in the ChAT–BAC (Witten et 

al., 2010; Bell et al., 2011; Gu and Yakel, 2011; Nagode et al., 2011; Cachope et al., 

2012; Kalmbach et al., 2012), it is important to be aware that VAChT overexpression 

may contribute to behavioral or cellular outputs. Therefore, novel approaches to control 

cholinergic neurons using optogenetics may be necessary. Inactivation of the VAChT 

gene in the ChAT–BAC is a possible alternative. However, ChAT–ChR2–EYFP mice 

will be valuable to test current theories of cholinergic function and the consequences of 

overactive cholinergic signaling for information processing. 
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Chapter 3 

Forebrain deletion of the vesicular acetylcholine transporter 

results in deficits in executive function, metabolic, and RNA 

splicing abnormalities in the prefrontal cortex 

 

3.1 Chapter Summary 

 
One of the key brain regions in cognitive processing and executive function is the 

prefrontal cortex (PFC), which receives cholinergic input from basal forebrain 

cholinergic neurons. We evaluated the contribution of synaptically released 

acetylcholine (ACh) to executive function by genetically targeting the vesicular 

acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was 

assessed using a pairwise visual discrimination paradigm and the 5-choice serial 

reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to 

learn, but were impaired in reversal learning, suggesting that these mice present 

cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in 

the 5-CSRT. Although their performance was indistinguishable from that of control mice 

during low attentional demand, increased attentional demand revealed striking deficits 

in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's 

disease, significantly improved the performance of control mice, but not of VAChT-

deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed 

altered levels of two neurochemical markers of neuronal function, taurine and lactate, 

suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice 

displayed a drastic reduction in the splicing factor heterogeneous nuclear 

ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was 

previously demonstrated in Alzheimer's disease. Consequently, several key 

hnRNPA2/B1 target transcripts involved in neuronal function present changes in 

alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme 

involved in lactate metabolism. We propose that VAChT-targeted mice can be used to 

model and to dissect the neurochemical basis of executive abnormalities. 
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3.2 Introduction 

 
The prefrontal cortex (PFC) is essential for the modulation of executive function, which 

is loosely defined as a set of cognitive tools that allows hierarchical and timely control of 

actions leading to specific behaviors (Alvarez and Emory, 2006; Robbins and Roberts, 

2007; Chudasama, 2011). Disruption in executive function is a key symptom in 

neurological and neuropsychiatric disorders, including Alzheimer's disease (AD; Perry 

and Hodges, 1999; Traykov et al., 2007; McGuinness et al., 2010), schizophrenia 

(Morice, 1990), autism (Hill, 2004; Sala et al., 2011), and drug addiction (Stalnaker et 

al., 2009). The basic neurochemical underpinnings of executive function are, however, 

still poorly understood. 

Cholinergic deficits are a hallmark of AD (Perry et al., 1977; Whitehouse et al., 1981, 

1982). Moreover, amyloid β (Aβ) oligomers, potential toxins in AD, disrupt cholinergic 

synaptic transmission in the PFC (Chen et al., 2013). Cholinergic deficiency in AD can 

have widespread effects, including global changes in alternative splicing of genes 

involved in synaptic plasticity (Berson et al., 2012). 

Acetylcholine (ACh) in the PFC has been implicated in controlling attention (Elliott, 

2003; Jurado and Rosselli, 2007), one of the components of executive function. Cue 

detection and top-down modulation of attentive behavior have both been shown to 

activate PFC cholinergic activity and to be modulated by cholinergic signaling (Sarter et 

al., 2001; Parikh et al., 2007). Cholinergic transients in the PFC have been linked to cue 

detection, and both tonic and phasic PFC ACh release seem to regulate attentional 

demand (Parikh et al., 2007; for review, see Hasselmo and Sarter, 2011), which may 

depend mainly on nicotinic receptor signaling (McGaughy et al., 1999; Grottick and 

Higgins, 2000; Parikh et al., 2010; Guillem et al., 2011). 

Cognitive flexibility, the ability to alter strategy according to changing environmental 

cues, is another key component of executive function (Elliott, 2003; Jurado and Rosselli, 

2007). The neurochemical basis of cognitive flexibility is not fully understood, but 

serotonin is thought to play critical roles (Schmitt et al., 2006; Evers et al., 2007; 

Brigman et al., 2010). 
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Release of ACh is a tightly regulated process, with the vesicular acetylcholine 

transporter (VAChT) controlling a limiting key step (de Castro et al., 2009a; Kolisnyk et 

al., 2013; for review, see Prado et al., 2013). Genetic elimination of VAChT from the 

forebrain causes deficits in reversal learning assessed using the Morris Water Maze 

(MWM) (Martyn et al., 2012). Deficits in reversal learning may be related to 

hippocampal dysfunction, but could also reflect alterations in behavioral flexibility. To 

examine if decreased levels of VAChT, a change observed in AD (Efange et al., 1997; 

Chen et al., 2011), affects executive function we have used touchscreen tasks. We 

report that elimination of forebrain VAChT caused severe deficits in cognitive flexibility 

and in sustained attention. In addition, we found that these mutant mice have profound 

changes in RNA processing in the PFC, which correlate with behavioral and metabolic 

deficits. Our results suggest that elimination of forebrain cholinergic activity in mice 

provides a model for understanding the neurochemical basis of executive function. 

 

3.3 Material and Methods 

 

3.3.1 Animals  

 
Generation of VAChTSix3-Cre-flox/flox mice was previously described (Martyn et al., 

2012). In short, VAChTSix3-Cre-flox/flox mice were generated by crossing 

VAChTflox/flox (mixed C57BL/6J × 129/SvEv background, backcrossed to C57BL/6J for 

five generations) with the Six3-Cre mouse line (NMRI background, backcrossed to 

C57BL/6J for five generations). We then intercrossed VAChTSix3-Cre-flox/wt mice to 

obtain VAChTSix3-Cre-flox/flox. For the galantamine experiments, the mice used were 

wild-type C57BL/6J. Mice were housed in groups of three or four per cage without 

environmental enrichment in a temperature-controlled room with 14/10 h light/dark 

cycle, and water was provided ad libitum. Only male mice were used in these studies. 

Mice were restricted to 85% of their free-feed weight and maintained on 85% of their 

weight for the duration of the study. All procedures were conducted in accordance with 

guidelines from the Canadian Council of Animal Care at the University of Western 

Ontario with an approved institutional animal protocol (2008–127). 
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3.3.2 Western Blotting 

 
Mouse PFC was collected, protein was isolated, and immunoblotting was performed as 

previously described (Martins-Silva et al., 2011). The antibodies used were anti-VAChT 

(catalog #139103; Synaptic Systems) at a 1:3000 dilution, anti-Synaptophysin (catalog 

#S5768; Sigma-Aldrich) at a 1:500 dilution, anti-hnRNP A2/B1 (catalog #sc-10035; 

Santa Cruz Biotechnology) at a 1:500 dilution, and anti-β-Actin (catalog #ab49900; 

Abcam), at a 1:15000 dilution. Band intensity was quantified using FluoroChemQ 

software (Thermo Fisher Scientific). 

3.3.3 Acetylcholine Release 

 
ACh release from prefrontal cortical brain slices was quantified by labeling slices with 

[3H] methyl-choline before using KCl to stimulate release of labeled ACh as previously 

described (Guzman et al., 2011). 

3.3.4  qPCR 

 
To measure mRNA expression, total RNA was extracted from freshly dissected PFC 

tissue, using the Aurum Total RNA for fatty and fibrous tissue kit (Bio-Rad) according to 

the manufacturer's instructions. cDNA synthesis and qPCR analysis were performed as 

previously described (Guzman et al., 2011). Primer sequences used to determine 

alternative spliced transcripts are found in Table 3.1. β-Actin was used as a reference 

transcript for all reactions. For alternative splicing experiments, the alternative exon 

levels were normalized to a constitutively expressed exon from the same gene. 
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Table 3.1. Primers for alternative splicing assay 

Target Forward primer(5′ → 3′) Reverse primer (5′ → 3′) 

CD55 exon 8 CCCAGCATGTACCTGTTACC TCACATGCAAAACTGTCAAGG 

CD55 exon 1 TGTCTCTGTTGCTGCTGTCC TGCTCAGCAAACTTGGAGTG 

DRAM2 exon 2 TGATTCAAGGTTCACACTCACA AAAACTGAGGCCTTGCTGAA 

DRAM2 exon 4 TTCAGCAAGGCCTCAGTTTT TCAGGAGGTATTGTCCCTGTG 

SIPA1L1 intron 5 TCAGGCATGCAGTTCTTTTG GAAAGCAGGCAGTACCTTCG 

SIPA1L1 exon 4 TAGTGTGGACGCTGCTGTCT GGCTCTGTGGTCACCAGAAT 

DYSTONIN exon 41 ATGGCATTTCCCCCATTAG GGAGGTTGGTTTTGCTTCAA 

DYSTONIN exon 7 GAGCGGGACAAAGTTCAAAA CCCGTCCCTCAGATCCTC 

REELIN exon 3 ATCATGTCCGACCACCAGTT ATCATGTCCGACCACCAGTT 

REELIN exon 18 GCAGTGCCAGACTTTCCTCT GCCTCCCATCTTTGTTGAAA 

REELIN exon 1 GGCAACCCCACCTACTACG GACTGGATGCTTGTCGAGGT 

mENAH CGGCAGTAAGTCACCTGTCA C TTCAGCTTTGCCAGCTCTT 

mENAH invasive GATTCAAGACCATCAGGTTGTG CAATGTTGGCCCTAAATAGAA 

PKM1 CATGCAGCACCTGATAGCTC TTATAAGAGGCCTCCACGCTG 

PKM2 GCAGTGGGGCCATTATCGT GGGATTTCGAGTCACGGCAA 
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3.3.5  Magnetic resonance imaging 

 
Magnetic resonance spectroscopy of the prefrontal region was performed in four 

VAChTSix3-Cre-flox/flox mice and four littermates (VAChTflox/flox). Spectroscopic 

localization of a 24 μl voxel was achieved by adiabatic selective refocusing (DelaBarre 

and Garwood, 1998) on a 9.4 tesla horizontal bore small animal Agilent magnetic 

resonance imaging (MRI) scanner. Water-suppressed full spectra (TR/TE = 3250/20 

ms, 128 acquisitions), water-suppressed macromolecule spectra (TR/TE = 5000/20 ms, 

inversion time TI = 873 ms, 128 acquisitions), and water-unsuppressed spectra (TR/TE 

= 3250/20 ms, 8 acquisitions) were acquired. All animals were anesthetized with 2% 

isoflurane during the procedure and were maintained at 37° by blowing warm air into the 

bore of the magnet using a Model 1025 Small Animal Monitoring and Gating System 

(SA Instruments). 

3.3.6 Metabolite analysis 

 
Magnetic resonance spectra were analyzed using purpose-built software (fitMAN; 

Bartha et al., 1999) to determine the contribution of each metabolite relative to total 

creatine as previously described (Bartha, 2007, 2008). Briefly, spectra were lineshape 

corrected (Bartha et al., 2000b) and the macromolecule and residual water contribution 

was removed (Kassem and Bartha, 2003). Then, the spectrum was fitted in the time 

domain to a basis set of 19 metabolite lineshapes (Pfeuffer et al., 1999; Bartha et al., 

2000a). Five metabolites (measured relative to creatine) were reliably measured and 

included in group comparisons: N-acetylaspartate (NAA), myo-inositol (Myo), choline 

(Cho), taurine (Tau), and lactate (Lac). 

3.3.7  Touchscreen behavioral assessment 

 

3.3.7.1 Apparatus and task 

 
Mice were trained in the 5-choice serial reaction time task (5-CSRT) and in the pairwise 

visual discrimination in automated Bussey–Saksida Mouse Touchscreen Systems 
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model 81426 (Campden Instruments). Schedules were designed and data were 

collected using the ABET II Touch software v.2.15 (Lafayette Instruments). 

3.3.7.2 Pretraining 

 
Before being trained on the pairwise visual discrimination or the 5-CSRT task, mice 

were first put through a pretraining program. This consisted of first habituating the mice 

to the testing chamber with the lights off for 15 min. The next day, mice were left in the 

chamber with the lights off for 20 min, this time with the reward tray primed with a 150 μl 

reward (strawberry milkshake; Saputo Dairy Products), and a tone was played 

whenever the mouse entered the reward tray. Whenever the mouse returned to the 

reward tray, it received a reward (7 μl) paired with the tone. This training was repeated 

the next 2 d for 40 min sessions (phase 1). 

The next training phase (phase 2) involved pairing the reward with the presentation of 

the stimulus on the touchscreen. The stimulus appeared randomly in one of the 

windows and after 30 s, it was removed and a reward (7 μl) was given paired with a 

tone. If the mouse touched the screen while the image was displayed, it immediately 

received a reward (7 μl). Once the mouse collected the reward a new trial was initiated. 

This phase was repeated until the mouse completed 30 trials within 60 min (phase 2). 

Phase 3 was used to further shape behavior. It involved displaying the stimulus 

randomly in one of the windows. The mouse was required to touch the stimulus on the 

screen to receive a reward (7 μl) paired with a tone. There was no response to the 

mouse touching anything but the stimulus. Once again, this was repeated until the 

mouse completed 30 trials within 60 min. Phase 4 was identical to phase 3 except that 

the mouse was required to initiate each trial by nose poking the reward tray. Criterion 

was 30 correct trials within 60 min. 

Finally, in the last pretraining phase (phase 5), the previous procedure was repeated but 

if the mouse touched an incorrect screen, it received a 5 s time-out, during which the 

light was turned on. The final phase had a stricter criterion, requiring the mouse to 

perform 30 trials in 60 min with at least 23 correct responses in 2 consecutive days. 
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3.3.7.3 Pairwise visual discrimination and reversal 

 
Pairwise visual discrimination and reversal task were performed as previously described 

(Romberg et al., 2013). Mice used in this experiment were 6–8 months old. At the 

beginning of each session, the reward tray was primed with 7 μl of milkshake. Briefly, 

the mice were first trained to discriminate between two visual stimuli, which were 

presented simultaneously, with their spatial location randomized over a 30 trial session. 

If mouse nose poked the correct stimulus (S+), a tone was played and mouse received 

a reward (7 μl), whereas if the incorrect stimulus (S−) was nose poked, light in the 

chamber was turned on for 5 s (time-out) followed by a correction trial. During the 

correction trial, the trial was repeated until the mouse poked the correct stimulus. 

Criterion was reached when the mouse selected the correct image (S+) on 80% of the 

trials, excluding correction trials, for 2 consecutive days. Once mice reached criteria, 

they were given two sessions to assess baseline performance on the task. For reversal 

learning the rule associated to each stimulus was switched, that is, the rewarded image 

(S+) during acquisition became the (S−) image in reversal and was punished, while the 

(S−) image from acquisition became the correct stimulus and was rewarded. Reversal 

learning was assessed over the course of 10 sessions. 

3.3.7.4 Training in 5-CSRT 

 
The 5-CSRT task was performed as previously described (Romberg et al., 2011). A 

distinct cohort of mice (8–10 months old) was trained in the 5-CSRT task. At the 

beginning of each session, the reward tray was primed with 7 μl of milkshake. Each trial 

was initiated after the mouse nose poked the magazine. In this phase, the stimulus was 

delivered after a variable 5–10 s delay (delay period), during which the animal was 

required to attend to the screen. In case the mouse prematurely touched the screen 

during this delay, the response was recorded as premature and the mouse was 

punished with a 10 s time-out. The stimulus duration was initially set to 4 s, followed by 

a limited holding period of 5 s, during which the stimulus was absent, but the mouse 

could still respond to the location (holding period). Responses to the stimulus window 

during stimulus presence or the holding period were recorded as correct and a 7 μl 
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reward was administered, while responses to any other window were recorded as 

incorrect. A correct choice was rewarded with a tone and food delivery. An incorrect 

response was punished with a 10 s time-out. A failure to respond to any window both 

during stimulus display, or during the holding period, was recorded as an omission and 

punished with a 10 s time-out. Perseverative responses to the screen after premature, 

correct, and incorrect choices were also recorded. Once the performance of a mouse 

reached criterion at 4 s stimulus duration (80% accuracy, 20% omissions for 3 

consecutive days), the stimulus duration was reduced to 2 s. After reaching criterion 

with the 2 s stimulus, mice were tested for two more days. The mean measurement of 

those 2 d was used to assess baseline performance. If the mouse completed <30 trials, 

it was considered not to have reached criteria, even if it met accuracy and omissions 

thresholds. 

3.3.7.5 Probe trial 

 
To probe attention in mice we used a previously described probe trial schedule with 

reduced stimulus durations (Romberg et al., 2011). Briefly, each mouse was tested for 2 

consecutive days at a given stimulus duration (1.5, 1, 0.8, and 0.6 s). After each test, 

the animal was retested onto the 2 s stimulus duration for 2 d or until criteria were 

reached (80% accuracy, 20% omission), to assess baseline performance. The order of 

the probe trial sessions were semi-randomized using a Latin square method. 

3.3.7.6 Distraction task 

 
To further test attentional demand, and assess susceptibility to distraction, we 

developed a distraction version of the 5-CSRT task. During this task, a 1000 ms 

distractor tone, different from the reward tone, was played semi-randomly at five 

different time points during the delay period: 0 (corresponding to when the mouse 

initiates the task), 0.5, 2.5, 4.5, and 5 s (corresponding to when the stimulus is 

displayed on the touchscreens). Stimulus duration was set to 2 s. For each distractor 

tone time point mice were tested for five sessions. At the end of the five sessions one 

baseline task (50 trial, 2 s stimulus duration, no distractor sounds) was performed 

before moving to the next distractor time point. 
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3.3.7.7 5-CSRT task measures 

 
On all 5-CSRT task sessions, accuracy was defined as the total number of correct 

responses, divided by the number of correct and incorrect (touches to a wrong window 

while the correct stimulus was still displayed) responses. The rate of omissions was the 

proportion of omitted responses to total trials. Response latency was the time for the 

mouse to touch the correct stimulus after its onset. Reward collection latency was the 

time for the mouse to return to the reward tray once it had touched the correct stimulus. 

A premature response was counted when the mouse touched one of the windows 

before stimulus onset. Finally, a perseverative response was any identical response that 

occurred following a correct, incorrect, or premature response. 

3.3.7.8 Drug treatments 

 
Galantamine hydrobromide, a cholinesterase inhibitor, (Sigma-Aldrich) was dissolved in 

physiological saline (0.9% NaCl) before administration. Sixty minutes before being 

tested on the 5-CSRT mice received an intraperitoneal injection of drug (100 μl, 1 

mg/kg) or saline. The dose for galantamine was selected based on previous studies 

(Prado et al., 2006; de Castro et al., 2009b; De Jaeger et al., 2013). Previously, we 

have tested 3 mg/kg galantamine in other tasks, but this dose was no more effective 

than 1 mg/kg and it produced hypersalivation in mice (de Castro et al., 2009b). 

Moreover, at 1 mg/kg wild-type mice were able to increase their performance in the 5-

CSRT (see below). Mice were tested at the 0.6 s stimulus duration, which represents a 

high attention demanding task (Romberg et al., 2011). The order of the injections was 

counterbalanced. Between injections mice had three washout days wherein their 

performance on the 5CSRT was re-baselined at the 2 s stimulus duration. 

3.3.8  Statistical analysis 

 
For the pairwise visual discrimination task response accuracy was calculated as the 

number of correct trials divided by the total number of trials, excluding correction trials. 

Data are expressed as mean ± SEM. SigmaStat 3.5 software was used for statistical 

analysis. Comparison between two experimental groups was made by Student's t test or 
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Mann–Whitney rank sum test, when the data did not follow a normal distribution. When 

several experimental groups or treatments were analyzed, two-way ANOVA or two-way 

ANOVA with repeated measures was used as required. When appropriate, a Tukey's 

HSD post hoc comparison test was used. In all comparisons, p < 0.05 was considered 

statistically significant. 

 

3.4 Results 

 

3.4.1 VAChTSix3-Cre-flox/flox mice have reduced VAChT and 

ACh release in the PFC 

 
We have previously reported that VAChTSix3-Cre-flox/flox mice have the VAChT gene 

deleted from >90% of their basal forebrain cholinergic neurons (Martyn et al., 2012). To 

confirm that this deletion affected prefrontal cortical cholinergic signaling, we performed 

Western blot analysis to assess VAChT expression. VAChTSix3-Cre-flox/flox mice have 

a significant reduction in PFC VAChT protein expression (t(6) = 2.706, p = 0.0353; Fig. 

5.1A). Moreover, this reduction in VAChT protein levels results in a significant decrease 

in newly synthesized [3H] ACh release in slices of PFC from VAChTSix3-Cre-flox/flox 

mice when compared with control mice (t(4) = 2.899, p = 0.0442; Fig. 5.1B). We used 

qPCR to assess the expression of nicotinic receptors (nAChRs), which have been 

shown previously to be critical for attentional performance. The PFC of VAChTSix3-Cre-

flox/flox mice shows no significant change in the expression of α7nAChR mRNA (t(10) = 

0.9300, p = 0.3743) nor β2nAChR mRNA (t(10) = 0.8359, p = 0.4227). Interestingly, 

α4nAChR mRNA is slightly upregulated (t(10) = 2.550, p = 0.0289; Fig. 5.1 C). 
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Figure 3.1 Expression of VAChT in the PFC of VAChTSix3-Cre-flox/flox mice. A, VAChT 

protein expression in the PFC with representative immunoblots inset (n = 4). B, Release 

of newly synthesized [3H]ACh in PFC slices (n = 3). C, qPCR analysis of nAChR 

expression (n = 6, data are mean ± SEM, *p < 0.05). 
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Figure 3.1 Expression of VAChT in the PFC of VAChTSix3-Cre-flox/flox mice.  
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3.4.2 Decreased forebrain cholinergic tone specifically disturbs 

reversal learning in the pairwise visual discrimination task 

 
We have previously demonstrated that VAChTSix3-Cre-flox/flox mice have impairments 

in reversal learning in the MWM (Martyn et al., 2012), suggesting the possibility that 

these mice have behavior flexibility deficits. To determine whether VAChTSix3-Cre-

flox/flox mice present alterations in cognitive flexibility we used a “nonhippocampal” 

pairwise visual discrimination task (Romberg et al., 2013). This task has been 

previously shown to depend on the PFC and also on striatal-cortical loops (Graybeal et 

al., 2011). The performance of VAChTSix3-Cre-flox/flox mice did not differ from that of 

controls (VAChTflox/flox) when they were trained to operate the touchscreen 

(pretraining phase). The number of sessions the mice took to acquire each training 

phase did not differ from control (RM-ANOVA, no effect of genotype F(1,54) = 0.3950, p 

= 0.5398; main effect of training phase F(4,54) = 5.227, p = 0.0012; and no interaction 

effect F(4,54) = 1.389, p = 0.2495; Figure 3.2A). Acquisition of the pairwise visual 

discrimination task (Fig. 5.2B; for stimuli used) did not differ between genotypes, in 

terms of sessions to criteria (Fig. 5.2C; t(14) = 0.2446, p = 0.8117), correction errors 

made (Fig. 5.2D; t(14) = 0.2942, p = 0.7746), response latency (Fig. 5.2E; t(14) = 1.019, 

p = 0.3256), or reward collection latency (Fig. 5.2F; t(14) = 0.2606, p = 0.7988). We 

have previously reported that these mice are hyperactive in novel environments, but 

they are able to habituate to the environment (Martyn et al., 2012). Hence, due to the 

extensive training for the performance in the touchscreen tasks the lack of differences in 

response and reward collection latencies is not surprising. However, VAChTSix3-Cre-

flox/flox mice showed severe reversal learning impairment (Fig. 5.3A; for the stimuli 

used), measured by the percentage of correct responses (Fig. 5.3B; RM-ANOVA, main 

effect of genotype F(1,132) = 19.78, p = 0.0008; main effect of session F(11,132) = 

23.28, p = 0.0001; and significant interaction effect F(1,12) = 5.035, p = 0.0001) and by 

its increased correction errors (Fig. 5.3C; RM-ANOVA, main effect of genotype F(1,132) 

= 14.72, p = 0.0024; main effect of session F(11,132) = 14.37, p = 0.0001; and 

significant interaction effect F(1,12) = 2.817, p = 0.0025). Post hoc analysis showed that 

VAChTSix3-Cre-flox/flox mice never improved significantly from the first reversal 
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session and in 10 sessions they performed only at chance level. Importantly, during the 

reversal trials, the VAChTSix3-Cre-flox/flox mice did not differ from controls in terms of 

response latency (Fig. 5.3D; RM-ANOVA, no effect of genotype F(1,154) = 0.4233, p = 

0.5258; main effect of session F(11,154) = 4.705, p = 0.0001; and no interaction effect 

F(11,154) = 0.9997, p = 0.4493) or reward collection latency (Fig. 5.3E; RM-ANOVA, no 

effect of genotype F(1,154) = 1.107, p = 0.3105; main effect of session F(11,132) = 

3.965, p = 0.0001; and no interaction effect F(11,154) = 1.141, p = 0.3333). These 

results suggest that forebrain cholinergic tone is important for cognitive flexibility. 
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Figure 3.2. VAChTSix3-Cre-flox/flox mice show normal visual discrimination 

learning. A, Mean number of trials required to reach criteria during the operant 

conditioning, pretraining phases. B, Image of a mouse performing the task, with the fan 

shown as the S+ and the marbles as the S−. C, Number of sessions to criteria in the 

pairwise visual discrimination learning task. D, Correction errors made to achieve 

discrimination criteria. E, Mean response latency. F, Mean reward collection latency. n = 

8, data are mean ± SEM. 
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Figure 3.2. VAChTSix3-Cre-flox/flox mice show normal visual discrimination learning.  
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Figure 3.3. VAChTSix3-Cre-flox/flox mice have impaired reversal learning. A, Image of a 

mouse performing the task, this time with the fan shown as the S− and the marbles as 

the S+. B, Choice accuracy before (B1 and B2) and during reversal trials (R2–R10), 

dashed line denotes chance (50%). C, Number of correction errors made across 

reversal trials. D, Response latency across reversal trials. E, Reward collection latency 

across reversal trials (n = 8, data are mean ± SEM, *p < 0.05, **p < 0.01, and ***p < 

0.001). 
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Figure 3.3. VAChTSix3-Cre-flox/flox mice have impaired reversal learning.  
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3.4.3  VAChTSix3-Cre-flox/flox mice have impaired acquisition of 

the 5-CSRT task 

 
Similar to the results for visual discrimination experiments, the performance of the 

second cohort of VAChTSix3-Cre-flox/flox mice did not differ from that of control mice 

for touchscreen operation training (pretraining phase). The number of sessions 

necessary to reach criteria across all pretraining phases did not differ between 

genotypes (RM-ANOVA, no effect of genotype F(1,32) = 1.528, p = 0.2515; no effect of 

training phase F(4,32) = 1.492, p = 0.2280; Figure 3.4A). However, when mice were 

trained to respond to flashes of light displayed in one of the five spatial locations on the 

touchscreen (training phase), VAChTSix3-Cre-flox/flox showed a significantly worse 

performance, needing more sessions to reach criteria (RM-ANOVA, main effect of 

genotype, F(1,8) = 10.06, p = 0.0132; main effect of stimulus duration, F(1,8) = 5.731, p 

= 0.0436, no interaction effect, F(1,8) = 4.252, p = 0.0731; Fig. 5.4B). 
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Figure 3.4. Training in the 5-CSRT task. A, Mean number of trials required to reach 

criteria during the operant conditioning, pretraining phases.B, Mean number of trials 

required to reach criteria at 4 and 2 s stimulus duration (n = 6, data are mean ± SEM, 

*p < 0.05). 
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Figure 3.4. Training in the 5-CSRT task 
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3.4.4  Deletion of forebrain VAChT results in inattentive but not 

impulsive or compulsive behavior 

 
Once mice reached criteria they were tested for attentional performance by decreasing 

stimulus duration to 1.5, 1, 0.8, and 0.6 s as previously described (Romberg et al., 

2011). At 1.5 s, VAChTSix3-Cre-flox/flox mice were able to perform identically to control 

mice in both accuracy and omissions (Fig. 5.5A,B). In contrast, increasing attentional 

demand by diminishing the stimuli period revealed an attentional deficit in VAChTSix3-

Cre-flox/flox mice. Response accuracy did not differ between genotypes (RM-ANOVA, 

no effect of genotype F(1,24) = 0.0007548, p = 0.9788; main effect of stimulus duration 

F(3,24) = 10.28, p < 0.001; Figure 3.5A). However, VAChTSix3-Cre-flox/flox mice 

presented an increased rate of omission (RM-ANOVA, main effect of genotype F(1,24) 

= 57.99, p < 0.0001; main effect of stimulus duration F(3,24) = 36.44, p < 0.0001; no 

interaction effect F(3,24) = 2.176, p = 0.1171; Figure 3.5B). Post hoc analysis revealed 

that VAChTSix3-Cre-flox/flox mice omitted more at 0.6–1 s stimulus durations. 

Interestingly, VAChT-deficient mice had no alterations in premature responses (RM-

ANOVA, no effect of genotype F(1,24) = 0.07440, p = 0.7874; no effect of stimulus 

duration F(3,24) = 0.9891, p = 0.4146; Figure 3.5C) or perseverative responses (RM-

ANOVA, no effect of genotype F(1,24) = 0.04610, p = 0.9695; no effect of stimulus 

duration F(3,24) = 1.244, p = 0.3232; Figure 3.5D). Additionally, mutant mice did not 

differ from littermate controls in response latency (RM-ANOVA, no effect of genotype 

F(1,24) = 2.279, p = 0.1818; no effect of stimulus duration F(3,24) = 0.09686, p = 

0.7662; Figure 3.5E) and reward collection latency (RM-ANOVA, no effect of genotype 

F(1,24) = 2.279, p = 0.1818; no effect of stimulus duration F(3,24) = 1.189, p = 0.3420; 

Figure 3.5F). 
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Figure 3.5. VAChTSix3-Cre-flox/flox mice have attentional deficits. Performance and 

response measures during 5-CSRT task probe trials. Mice were subjected to a series of 

probe trials and the average values of 50 trial sessions are plotted. A, Mean 

accuracy. B, Mean rate of omissions. C, Mean premature responses. D, Mean 

perseverative responses. E, Mean response latency. F, Mean reward collection latency 

(n = 6, data are mean ± SEM, *p < 0.05 and **p < 0.01). 
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Figure 3.5. VAChTSix3-Cre-flox/flox mice have attentional deficits 
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3.4.5 Deletion of forebrain VAChT impairs sustained attention 

 
To assess sustained attention (vigilance), we analyzed both response accuracy and 

rate of omissions over blocks of 10 trials (Romberg et al., 2011). Response accuracy of 

control mice did not significantly vary across blocks, but did reduce significantly with 

decreases in stimuli duration (RM-ANOVA, main effect of stimulus duration F(3,48) = 

5.893, p = 0.0104; no effect of block F(4,48) = 1.214, p = 0.317; Figure 3.6A). In 

contrast, response accuracy of VAChTSix3-Cre-flox/flox mice reduced significantly 

across blocks and stimuli duration (RM-ANOVA, main effect of stimulus duration F(3,48) 

= 4.257, p = 0.0077; main effect of block F(4,48) = 3.933, p = 0.0289; Figure 3.6B). As 

with response accuracy, rate of omissions of control mice did not vary across blocks, 

only with stimuli duration (RM-ANOVA, main effect of stimulus duration F(3,48) = 5.803, 

p = 0.0228; no effect of block F(4,48) = 0.5352, p = 0.7105; Figure 3.6C), whereas rate 

of omissions of VAChTSix3-Cre-flox/flox mice increased significantly across stimuli 

duration and blocks (RM-ANOVA, main effect of stimulus duration F(3,48) = 9.387, p = 

0.0018; main effect of block F(4,48) = 2.803, p = 0.0360; Figure 3.6D). Together the 

data suggest that VAChTSix3-Cre-flox/flox mice have impaired ability to sustain 

attention. 
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Figure 3.6. VAChTSix3-Cre-flox/flox mice have impaired sustained attention. Mean 

response accuracy for blocks of 10 trials for (A) VAChTflox/flox and (B) VAChTSix3-Cre-

flox/flox mice. Mean rate of omission for blocks of 10 trials for (C) VAChTflox/flox and (D) 

VAChTSix3-Cre-flox/flox mice (n = 6, data are mean ± SEM, *p < 0.05). 
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Figure 3.6. VAChTSix3-Cre-flox/flox mice have impaired sustained attention. 
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3.4.6 Deletion of forebrain VAChT increases susceptibility to 

distractions 

 
To assess distractibility of VAChTSix3-Cre-flox/flox mice, we increased attentional 

demand by testing them on a distraction variation of the 5-CSRT. Stimulus duration was 

set to 2 s, where performance of both genotypes was identical, and distractor sounds 

were played at set time points during trials. Response accuracy of VAChTSix3-Cre-

flox/flox mice tended to be reduced by distractions compared with controls (RM-

ANOVA, near significant effect of genotype F(1,32) = 4.825, p = 0.0589; main effect of 

distractor onset F(4,32) = 3.583, p = 0.0159; Figure 3.7A). Rate of omission was 

significantly higher in VAChTSix3-Cre-flox/flox mice than controls (RM-ANOVA, 

significant effect of genotype F(1,32) = 6.809, p = 0.0312; no effect of distractor onset 

F(4,32) = 2.564, p = 0.0572; Figure 3.7B). Importantly, neither response latency (RM-

ANOVA, no effect of genotype F(1,32) = 1.045, p = 0.3367; main effect of distractor 

onset F(4,32) = 7.069, p = 0.0003; Figure 3.7C) nor reward collection latency varied 

between genotypes (RM-ANOVA, no effect of genotype F(1,32) = 0.7467, p = 0.4127; 

main effect of distractor onset F(4,32) = 3.226, p = 0.0248; Figure 3.7D). 
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Figure 3.7 VAChTSix3-Cre-flox/flox mice are more susceptible to distraction. Mice were 

subjected to a series of distraction trials and the average values of 50 trial sessions per 

distractor onset are plotted.A, Mean response accuracy. B, Mean rate of omission. C, 

Mean response latency. D, Mean reward collection latency (n = 6, data are mean ± 

SEM, * represents significant differences between genotypes, # represents significant 

differences within genotypes; *p < 0.05). 
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Figure 3.7 VAChTSix3-Cre-flox/flox mice are more susceptible to distraction. 
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3.4.7 Galantamine improves attention in wild-type mice on a 

demanding task 

 
Detection of pro-attentive effects of pharmacological manipulations on the 5-CSRT is 

hampered by possible ceiling effects (Robbins, 2002). To detect differences in mice it is 

important to test the drug on challenging conditions, which can be achieved by 

shortening the duration of the stimulus presentation (Romberg et al., 2011). To find a 

suitably challenging task in which we could observe increased attention, we trained a 

group (n = 8) of wild-type mice on the 5-CSRT, and ran them through the probe trial 

series, serially reducing stimulus duration (1.5, 1, 0.8, and 0.6 s). Choice accuracy 

(F(4,31) = 13.77, p < 0.0001; Fig. 3.8A) and rate of omissions (F(4,31) = 6.716, p = 

0.0024; Fig. 3.8B) were significantly affected by reducing stimulus duration. Post hoc 

analysis revealed that at 0.6 s stimulus duration the rate of accuracy was significantly 

reduced, and omissions significantly increased from the 1.5 s stimulus duration. We 

therefore chose both, 0.8 s stimulus duration and the more challenging 0.6 s stimulus 

duration, for pharmacological testing. Administration of galantamine (1 mg/kg, i.p.) 1 h 

before 5-CSRT testing at 0.8 s did not improve accuracy (paired t test, t(7) = 1.287, p = 

0.2544; Fig. 3.8C) or omissions (paired t test, t(7) = 0.4581, p = 0.6661; Fig. 3.8D). 

However, when administered before a 0.6 s stimulus duration session, galantamine (1 

mg/kg) significantly improved accuracy compared with saline (paired t test, t(7) = 2.405, 

p = 0.0471; Fig. 3.8E) and significantly reduced the rate of omission (paired t test, t(7) = 

2.379, p = 0.0489;Fig. 3.8F). Response latency (paired t test, t(7) = 1.296, p = 0.2360), 

and reward collection latency (paired t test, t(7) = 0.390, p = 0.7080) were not changed 

by galantamine injections (data not shown). These results suggest that increased 

cholinergic tone can increase attentional performance when the probe trial is sufficiently 

demanding to avoid a potential ceiling effect. 

3.4.8  Galantamine does not improve attention deficits in 

VAChTSix3-Cre-flox/flox mice 

 
To investigate if the deficits observed in VAChTSix3-Cre-flox/flox are exclusively related 

to decreased levels of synaptic ACh, we injected mice with galantamine (1 mg/Kg IP), a 
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dose that effectively improved performance of wild-type mice (Fig. 3.8), and tested both 

VAChTSix3-Cre-flox/flox and VAChTflox/flox mice at 0.6 s (50 trials). Galantamine 

tended to improve choice accuracy, albeit this effect did not reach statistical significance 

(paired t test, t(5) = 1.954, p = 0.1224; Fig. 3.8G). However, the drug was able to 

significantly reduce rate of omissions (paired t test, t(5) = 3.383, p = 0.0277; Fig. 3.8H) 

in VAChTflox/flox mice. Interestingly, galantamine had no effect on the performance of 

VAChTSix3-Cre-flox/flox mice, neither improving accuracy (paired t test, t(5) = 0.162, p 

= 0.880; Fig. 8G) nor rate of omission (paired t test, t(5) = 0.868, p = 0.434; Fig. 3.8H). 
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Figure 3.8 Galantamine improves attention in wild-type, but not in VAChTSix3-Cre-

flox/flox mice. Wild-type mice (n = 8) were subjected to a series of probe trials and the 

average values of 50 trial sessions are plotted. A, Mean accuracy. B, Mean rate of 

omissions. Effect of galantamine (1 mg/kg i.p.) on (C) response accuracy and (D) rate of 

omission in wild-type mice at a 0.8 s stimulus duration (n = 8). Effect of galantamine on 

(E) response accuracy and (F) rate of omission in wild-type mice at a 0.6 s stimulus 

duration (n = 8). Effect of galantamine (1 mg/Kg I.P.) on (G) choice accuracy and (H) 

rate of omission in VAChTflox/flox and VAChTSix3-Cre-flox/floxmice (n = 6, data are mean ± 

SEM, *p < 0.05). 
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Figure 3.8 Galantamine improves attention in wild-type, but not in VAChTSix3-Cre-

flox/flox mice. 
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3.4.9  Deletion of forebrain VAChT results in metabolic 

abnormalities in the PFC 

 
The lack of effect of galantamine in VAChTSix3-Cre-flox/flox suggests that diminished 

ACh release in mutant mice may not be sufficiently increased by galantamine to reverse 

the attentional deficits in these mice. In addition to that, a chronic decrease in 

cholinergic tone may cause circuitry or metabolic changes that could affect how 

neuronal circuitries are recruited for specific cognitive tasks. We used in vivo magnetic 

resonance spectroscopy to assess if metabolic parameters were affected in the 

prefrontal region of VAChT-deficient mice (Fig. 3.9A; representative spectra). This 

analysis revealed that VAChTSix3-Cre-flox/flox mice had significantly less Lac (t(6) = 

2.600, p = 0.0428; Fig. 3.9B) and Tau (t(6) = 2.522, p = 0.0452; Fig. 3.9C) than controls. 

Levels of NAA (t(6) = 0.0907, p = 0.9307; Fig. 3.9D), Myo (t(6) = 0.9598, p = 0.3742; 

Fig. 3.9E), and Cho (t(6) = 0.1461, p = 0.8886; Fig. 3.9F) remained unchanged. 
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Figure 3.9. VAChTSix3-Cre-flox/flox mice have metabolic abnormalities in the PFC. In 

vivo magnetic resonance spectroscopy of neuronal metabolites. A, 9.4 tesla 1H 

magnetic resonance spectroscopy data from VAChTflox/flox (top) and VAhTsix3cre-

flox/flox (bottom) mice. The VAChTflox/flox data are shown in gray with fit superimposed 

(black line) and residual shown above. Individual component spectra for Tau and Lac 

are also provided. B, Levels of Lac. C, Levels of Tau. D, Levels of NAA. E, Levels of 

Myo. F, Levels of Cho (n = 4, data shown are the median and individual values per 

mouse, *p < 0.05). 
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Figure 3.9. VAChTSix3-Cre-flox/flox mice have metabolic abnormalities in the PFC. 
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3.4.10 Deletion of forebrain VAChT results in altered RNA 

metabolism in the PFC 

 
Cholinergic deficits in AD have been proposed to cause major transcriptome changes 

via aberrant hnRNPA2/B1 expression (Berson et al., 2012). hnRNPA2/B1 refers to a 

family of proteins that functions as splicing factors and mRNA chaperones (Hoek et al., 

1998; Kamma et al., 1999). This gene family is critical for regulating alternative splicing 

in numerous genes involved with synaptic plasticity and cognition (Berson et al., 2012). 

Its expression is severely reduced in Alzheimer brain and appears enhanced in primary 

mouse neurons under carbachol induction (Berson et al., 2012), suggesting cholinergic 

regulation of hnRNPA2/B1 proteins. To determine whether the PFC of VAChTSix3-Cre-

flox/flox shows parallel suppression of the hnRNPA2/B1 proteins, their levels were 

assessed. Compared with controls, the PFC of VAChTSix3-Cre-flox/flox mice showed a 

significant reduction in hnRNPA2/B1 expression (75% decrease, t(6) = 4.941, p = 

0.0026; Fig. 3.10A). We then used qPCR to assess whether the decrease in 

hnRNPA2/B1 could have a functional impact on RNA processing in the PFC. We 

evaluated the alternative splicing of the key genes, SIPA1L1(SIPA), REELIN(RELN), 

DRAM2, CD55, DYSTONIN (DST), and ENAH, as manifested by increased exon 

inclusion tested both in Alzheimer's brain and in mouse brain depleted of its cholinergic 

neurons by saporin-mediated treatment (Berson et al., 2012). This analysis revealed 

that VAChTSix3-Cre-flox/flox mice had significant changes in the splicing of these 

genes in the PFC, with significantly increased inclusion of exon 8 of CD55 (t(10) = 

2.550, p = 0.0289), exon 41 of DST (t(10) = 7.436, p = 0.0001), exon 18 of RELN (t(10) 

= 3.230, p = 0.0090), and exon 2 of DRAM2 (t(10) = 3.990, p = 0.0260). In addition the 

inv isoform of the ENAH gene was also significantly increased (t(10) = 2.522, p = 

0.0303). In contrast, intron 5 of SIPA (t(10) = 0.5449, p = 0.5978) and exon 3 of RELN 

(t(10) = 2.215, p = 0.0511), which have also been shown to be affected in AD, were 

unchanged, although we detected a trend for the latter (Fig. 3.10B). 

hnRNPA2/B1 has been shown to regulate the splicing of pyruvate kinase M (PKM) 

enzyme, which in turn dictates lactate metabolism (David et al., 2010). Knockdown of 

hnRNPA2/B1 expression in vitro favors the PKM1 isoform, which leads to reduced 
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levels of Lac, whereas upregulation hnRNPA2/B1 favors the PKM2 isoform and 

increased Lac levels (Clower et al., 2010; for review, see Chen et al., 2010). To test 

whether alternative splicing of PKM occurs in VAChTSix3-Cre-flox/flox mice, we 

performed qPCR to determine the expression of the PKM1 and PKM2 splice variants. 

Interestingly the VAChTSix3-Cre-flox/flox mice showed a significant upregulation of the 

PKM1 variant (t(10) = 4.277, p = 0.0016), and a significant reduction in the PKM2 

variant (t(10) = 3.073, p = 0.0110; Fig. 3.10C), effectively changing the ratio between 

these two enzymes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



198 
 

 
 

Figure 3.10. VAChTSix3-Cre-flox/flox mice have abnormal RNA processing in the 

PFC. A, hnRNPA2/B1 protein expression in the PFC with representative immunoblots 

(inset, n = 4). B, qPCR analysis of alternative splicing events for CD55, ENAH, SIPA, 

Dystonin (DST), Reelin (RELN), and DRAM2. C, Expression of the PKM1 and PKM2 

isoforms. Alternative exon levels are normalized to a constitutive exon from the same 

gene (n = 6, data are mean ± SEM, *p < 0.05, **p < 0.01, and ***p < 0.001). 
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Figure 3.10. VAChTSix3-Cre-flox/flox mice have abnormal RNA processing in the 

PFC. 
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3.5 Discussion 

 
In this report we show that forebrain VAChT knock-out mice present deficits in two 

domains of executive function, cognitive flexibility and attention. Additionally, VAChT-

deficient mice exhibit metabolic deficits in the PFC suggestive of changes in PFC 

circuitry. Furthermore, these mice have reduced expression of a key splicing factor, 

hnRNPA2/B1, which has been previously implicated in synaptic plasticity deficits in AD 

(Berson et al., 2012) and in mutations that were recently discovered in rare 

proteinopathies (Kim et al., 2013). These changes have a functional impact on RNA 

metabolism in the PFC of VAChT-deficient mice. These results suggest that 

VAChTSix3-Cre-flox/flox mice may represent a powerful tool to dissect the molecular 

and neurochemical basis of executive dysfunction. 

3.5.1  Cognitive flexibility in VAChTSix3-Cre-flox/flox mice 

 
VAChTSix3-Cre-flox/flox mice were able to associate an image with a reward, and 

another with a punishment, in the pairwise visual discrimination task. Acquisition of this 

task has been shown to be dependent on glutamatergic signaling, with mice lacking the 

GLAST glutamate transporter being unable to acquire the task (Karlsson et al., 2009). 

Evidence suggests that the NMDA receptor is an important molecular switch for the 

acquisition of the task (Brigman et al., 2008; Barkus et al., 2012). Our results indicate 

that cholinergic signaling is not required for such learning. In contrast, when 

contingencies of the pairwise task were reversed, forebrain VAChT knock-out mice 

were unable to adapt and learn the new rule. Reversal learning in a visual discrimination 

task has been proposed to serve as a measure of cognitive flexibility in rodents 

(Izquierdo et al., 2006; Brigman et al., 2008). Neurochemical modulation of reversal 

learning is complex, as it can be enhanced by targeting multiple neurotransmitter 

signaling systems including serotonergic (Brigman et al., 2010), dopaminergic 

(Izquierdo et al., 2006), and glutamatergic (Balschun et al., 2010). The role of 

cholinergic signaling has been focused predominantly on muscarinic receptors (Ridley 

et al., 1984, 1985). Determining the exact mechanism has been difficult, as M1 receptor 

agonists facilitate cognitive flexibility (McCool et al., 2008; Shirey et al., 2009), but no 



201 
 

 
 

effects on cognitive flexibility were observed in M1-null mice (Bartko et al., 2011). There 

is evidence suggesting that M2 and M4 receptors may be involved in cognitive flexibility 

(Nieves-Martinez et al., 2012). Our results indicate that cholinergic signaling is essential 

for modulation of cognitive flexibility. 

3.5.2  Attention deficits in VAChT-deficient mice 

 
To further understand the role of forebrain ACh in executive function we evaluated 

attention on forebrain VAChT knock-out mice using the 5-CSRT task, a test suggested 

to be dependent on PFC cholinergic signaling (Guillem et al., 2011; for review, see 

Robbins, 2000; Dalley et al., 2004a). In line with our previous finding with the 

VAChTSix3-Cre-flox/flox mouse line having learning and memory deficits (Martyn et al., 

2012), these mice showed impairments in acquisition of the 5-CSRT, taking nearly twice 

as long as controls to reach criteria at the 4 and 2 s phase of the training process. 

Interestingly, they were not impaired during the pretraining phase, wherein mice are 

taught to respond to the touchscreen. These results suggest that simple operant 

conditioning is not dependent on forebrain cholinergic signaling, but rather that forebrain 

ACh is responsible for the use of such information to perform higher order cognitive 

tasks. Attentional demand deficits were probed by reducing stimulus duration. Choice 

accuracy, perseverative, and premature responses of VAChTSix3-Cre-flox/flox mice 

were unaffected. However, the rate of omission for VAChTSix3-Cre-flox/flox was 

significantly increased. Additionally, in the presence of a noise distractor VAChTSix3-

Cre-flox/flox mice were significantly less attentive than controls, showing a much higher 

rate of omissions. This test was performed under a condition in which the performance 

of VAChT-deficient mice was on par with controls without the auditory distraction. The 

auditory distraction task gives a clear indication that the attention deficits observed in 

VAChTSix3-Cre-flox/flox mice were not due to visual abnormalities. These findings are 

aligned with previous work, given that cue detection has been shown to involve 

transient rises in ACh release (Himmelheber et al., 2000; Parikh et al., 2007). Our 

experiments agree with previous work indicating a key role for cholinergic activity in 

improving response to distractors in attentional tasks (Gill et al., 2000; Terry et al., 2002; 
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Newman and McGaughy, 2008; Broussard et al., 2009; Howe et al., 2010; St Peters et 

al., 2011). 

Regulation of attentional performance by endogenous ACh has been investigated in 

rats using immunolesion with IgG-192 saporin (Walsh et al., 1996; Risbrough et al., 

2002; Lehmann et al., 2003; Chudasama et al., 2004; Dalley et al., 2004b). Specifically, 

deficits in choice accuracy and increases in perseverative responses were observed in 

rats following 192 IgG-saporin-induced lesions (McGaughy et al., 2002; Dalley et al., 

2004b). In these studies no effects were observed on rates of omissions. Our 

experiments show a somewhat distinct feature, demonstrating increased rates of 

omission, without changes in perseverative response. Interestingly, selective elimination 

of the β2 nAChR in mice also revealed an increase in rate of omissions (Guillem et al., 

2011). The differences between genetically modified and lesioned animals could 

therefore be species related. Alternatively, this difference may reflect the capacity of 

cholinergic neurons to secrete more than one neurotransmitter (El Mestikawy et al., 

2011; Prado et al., 2013). Basal forebrain cholinergic neurons can release glutamate in 

vitro (Allen et al., 2006). There is also evidence that these neurons possess the 

machinery to release GABA (Henny and Jones, 2008). Recent experiments targeting 

striatum cholinergic neurons revealed striking behavioral differences between mice that 

had cholinergic elimination, using immunolesion, or mice that were genetically targeted 

to eliminate striatal ACh release (Kitabatake et al., 2003; Guzman et al., 2011; for 

review, see Prado et al., 2013). Immunolesion of cholinergic neurons can therefore 

have effects beyond impairing ACh release and could affect cotransmission. Whether 

cotransmission has a role in the small phenotypic differences between our experiments 

and previous work using rats injected with IgG-192-saporin remains to be determined. 

Galantamine was unable to rescue the attention deficits in VAChTSix3-Cre-flox/flox 

mice. We have previously shown, using a mouse line with decreased VAChT 

expression, that galantamine could reverse social memory deficits (Prado et al., 2006) 

and object recognition memory deficits (de Castro et al., 2009b; De Jaeger et al., 2013). 

Hence, the fact that galantamine can improve performance of control mice, but not of 

VAChTSix3-Cre-flox/flox mice, suggests that the latter may not release sufficient 
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synaptic ACh to be enhanced by galantamine. Alternatively, these sophisticated tasks 

may be more affected by changes in neuronal circuitry. The in vivo 1H spectroscopy 

data suggest that critical metabolic changes occur in VAChT-deficient mice; namely, 

reduced levels of both Tau and Lac in the prefrontal region. Lac has been proposed as 

the preferred metabolic substrate for neurons (for review, see Pellerin et al., 2007), 

suggesting that decreased cholinergic tone may lead to a general decrease in neuronal 

activity. 

3.5.3  Alterations in PFC function in VAChT-deficient mice 

 
The reduction in PFC hnRNPA2/B1 observed in VAChTSix3-Cre-flox/flox mice is in line 

with previous work indicating cholinergic-mediated regulation of its expression in AD 

(Berson et al., 2012). Furthermore, we found that alternative splicing alteration pattern 

in the PFC of these mice is similar to the pattern found in both AD patient samples and 

hypocholinergic animal models (Berson et al., 2012). Overall, these changes suggest 

alterations in the PFC circuitry. Furthermore, the splicing change found in the PKM gene 

indicates a potential mechanism for cholinergic regulation of Lac metabolism. Of note, 

nearly significant differential expression of the PKM variants was observed in exon array 

datasets from the entorhinal cortices of three AD patients and three matched controls 

studied previously, despite the small number of samples (Berson et al., 2012; p < 0.051; 

raw data deposited in the GenBank). 

Decreased Lac levels have been observed in mouse models of AD (Du Yan et al., 2000; 

Marjanska et al., 2005). Moreover, in the CRND8 transgenic mouse model of AD, lower 

levels of Tau were observed in vivo by H1-NMR (Salek et al., 2010). Interestingly, high 

levels of Lac in cultured neurons decrease susceptibility to Aβ-derived peptides and 

oxidative stress in vitro (Newington et al., 2012). Together, these data suggest that 

VAChTSix3-Cre-flox/flox mice may be useful for understanding metabolic abnormalities 

that occur in dementia. 
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3.6 Conclusion 

 
In summary, by eliminating VAChT from the forebrain we determined that cholinergic 

signaling regulates executive function, affects metabolism, and also RNA processing in 

the PFC. The PFC has been shown to mediate salient cue detection (Himmelheber et 

al., 2000; Parikh et al., 2007), and it serves as a hub that regulates numerous 

neurotransmitter interactions (Dalley et al., 2004a; Carr et al., 2007; Tait and Brown, 

2008). Our work helps to define the specific role played by ACh in behaviors related to 

cortical functioning, and its potential underlying mechanisms. Decreased levels of 

VAChT in the brain have been reported in AD (Efange et al., 1997; Chen et al., 2011), 

therefore the executive dysfunction and mRNA processing abnormalities we observed 

in VAChT-deficient mice may be of relevance to model this specific deficiency in 

humans. Therefore, this work provides novel insights into the basic neurochemical 

contributors governing executive function. 
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Chapter 4 

 

α7 nicotinic ACh receptor‐deficient mice exhibit sustained 

attention impairments that are reversed by β2 nicotinic ACh 

receptor activation 
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4.2 Chapter Summary 

 
Disruptions of executive function, including attentional deficits, are a hallmark of a 

number of diseases. ACh in the prefrontal cortex regulates attentive behaviour; 

however, the role of α7 nicotinic ACh receptor (α7nAChR) in attention is contentious. In 

order to probe attention, we trained both wild-type and α7nAChR knockout mice on a 

touch screen-based five-choice serial reaction time task (5-CSRT). Following training 

procedures, we then tested sustained attention using a probe trial experiment. To 

further differentiate the role of specific nicotinic receptors in attention, we then tested the 

effects of both α7nAChR and β2nAChR agonists on the performance of both wild-type 

and knockout mice on the 5-CSRT task. At low doses, α7nAChR agonists improved 

attentional performance of wild-type mice, while high doses had deleterious effects on 

attention. α7nAChR knockout mice displayed deficits in sustained attention that were 

not ameliorated by α7nAChR agonists. However, these deficits were completely 

reversed by the administration of a β2nAChR agonist. Furthermore, administration of a 

β2nAChR agonist in α7nAChR knockout mice elicited similar biochemical response in 

the prefrontal cortex as the administration of α7nAChR agonists in wild-type mice. Our 

experiments reveal an intricate relationship between distinct nicotinic receptors to 

regulate attentional performance and provide the basis for targeting β2nAChRs 

pharmacologically to decrease attentional deficits due to a dysfunction in α7nAChRs. 

4.3 Introduction 

 
Attentional performance can be severely compromised in different neuropsychiatric and 

neurodegenerative diseases, including schizophrenia and Alzheimer's disease (Mega 

and Cummings, 1994; Buckner, 2004). ACh release in the prefrontal cortex (PFC), a 

brain area known to play a central role in attention (Kastner and Ungerleider, 2000; 

Corbetta and Shulman, 2002; Buschman and Miller, 2007), is important for the 

regulation of attentive behaviour (Elliott, 2003). Schizophrenic patients present severe 

physiological and molecular dysfunctions in the PFC (Weinberger et al., 1986; Mirnics et 

al., 2000; Guillozet-Bongaarts et al., 2014). One of the more profound molecular 

changes is the loss of the α7 nicotinic ACh receptor (α7nAChR), encoded by the 
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CHRNA7 gene. Although the genetic linkage between the CHRNA7 gene and 

schizophrenia is complex, with studies pointing towards and against CHRNA7 as a risk 

gene for the disease (Xu et al., 2001; Zammit et al., 2007), robust decreases in protein 

and mRNA expression of the α7nAChR have been shown in the PFC of patients with 

schizophrenia (Guan et al., 1999; Guillozet-Bongaarts et al., 2014). Moreover, in 

Alzheimer's disease, Aβ peptides can bind to α7nAChRs (Wang et al., 2000) and 

disrupt their function (Chen et al., 2006). 

There is accumulating evidence demonstrating that cue detection during attentional 

efforts is mediated by nicotinic receptor signalling (McGaughy et al., 1999a; Grottick and 

Higgins, 2000; Parikh et al., 2007, 2010). β2nAChRs are both necessary and sufficient 

to regulate attention in mice using a non-demanding five-choice serial reaction time task 

(5-CSRT) paradigm (Guillem et al., 2011). On the other hand, the role of α7nAChRs in 

attention is still not completely understood. Initial studies suggest that CHRΝΑ7−/− mice 

present deficits in sustained attention (Hoyle et al., 2006; Young et al., 2007). However, 

it has been reported that for less demanding tasks no deficits were observed in 

α7nAChR-null mice (Guillem et al., 2011). Taken together, these results suggest that 

attentional deficits in CHRΝΑ7−/− mice may depend on the attentional load. 

Pharmacological manipulations of α7nAChRs have also produced conflicting results, 

most likely because of the poor selectivity of the drugs used (Grottick and Higgins, 

2000; Pichat et al., 2007; Rezvani et al., 2009; Wallace et al., 2011a). Interestingly, 

studies in humans have shown that agonists for the α7nAChR can improve the 

performance of patients suffering from schizophrenia on neurocognitive tests (Olincy et 

al., 2006; Olincy and Stevens, 2007). 

Here, we report that α7nAChR-null mice present deficits in their ability to sustain 

attention in a demanding paradigm. Moreover, we found that activation of α7nAChRs 

increased biochemical signalling and attention in wild-type (WT) mice, but not in 

CHRΝΑ7−/− mice. Interestingly, activation of β2nAChRs triggered similar biochemical 

pathways as α7nAChR agonists and reversed attentional deficits in α7nAChR-null mice. 

These results suggest that α7nAChRs may contribute to attention performance, but 

activation of β2nAChRs can bypass the deficits triggered by deficient α7nAChR 
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signalling. Our results suggest that the α7nAChR plays a role in sustained attention 

during demanding tasks and that β2nAChR drugs may be of potential use for correcting 

cognitive and molecular signalling deficits seen in psychiatric or neurological disorders 

in which α7nAChRs are affected. 

4.4 Material and Methods 

 

4.4.1  Animals 

 
CHRΝΑ7−/− mice (B6.129S7 nAChR Chrna7tm1Bay/J) were purchased from Jackson 

Laboratories (Bar Harbor, ME, USA). Mice were housed in groups of three or four per 

cage in a temperature-controlled room with 12/12 h light/dark cycle (07:00–19:00 h), and 

water was provided ad libitum. Only male mice were used in these studies. For the 5-

CSRT studies, mice were housed in pairs and restricted to 85% of their free-feed weight 

and maintained on 85% of their weight for the duration of the studies as described 

(Kolisnyk et al., 2013a,b). All behavioural experiments were conducted between 12:00 

and 17:00 h. We followed the ARRIVE guidelines (Kilkenny et al., 2010); hence, mice 

were randomized for behavioural tests, and the experimenter was blind to the genotype. 

All procedures were conducted in accordance with guidelines from the Canadian 

Council of Animal Care at the University of Western Ontario with an approved 

institutional animal protocol (2008-127). 

4.4.2  Five-choice serial reaction time task training 

 
A cohort of WT and CHRΝΑ7−/− mice (n = 7 per genotype, 5–6 months old) was trained 

in the 5-CSRT task using the automated Bussey–Saksida Mouse Touch Screen System 

model 81426 (Campden Instruments, Lafayette, IN, USA). Schedules were designed, 

and data were collected using the abet ii touch software v.2.15 (Lafayette Instruments, 

Lafayette, IN, USA). Mice were trained to respond to the touch screen chambers using 

a previously described operant training procedure (Kolisnyk et al., 2013a, 2013b). 

Training on the 5-CSRT task was performed as previously described (Romberg et al., 

2011). Once the performance of a mouse reached criterion (80% accuracy, 20% 
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omissions for three consecutive days) at 4 s stimulus duration, stimulus duration was 

reduced to 2 s. After reaching criterion at a 2 s stimulus duration, the mouse was tested 

on probe trials. 

4.4.3  Probe trial 

 
To probe attention in mice, we used a previously described probe trial schedule with 

reduced stimulus durations (Romberg et al., 2011; Kolisnyk et al., 2013a). Mice were 

tested for 2 days at a given stimulus duration (1.5, 1, 0.8 or 0.6 s). Each day, sessions 

lasted 50 trials or 1 h. After each test, the animal was retested at the 2 s stimulus 

duration for 2 days, until the mice had been tested at all stimulus durations. The order of 

the probe trial sessions was semi-randomized using a Latin square method. 

Behavioural data were averaged over the 2 days of each stimulus duration. 

4.4.4  Drug injections 

 
For all drug experiments, mice were tested at the 0.6 s stimulus duration. The same 

mice used for the initial 5-CSRT experiments were used for the drug studies. Animals 

were injected 30 min before testing for the PHA-543,613 (Sigma-Aldrich, St Louis, MO, 

USA) and PNU-228,927 (Tocris Bioscience, Bristol, UK) experiments and 15 min before 

testing for the ABT-418 (Sigma-Aldrich) experiment (McGaughy et al., 1999b). Doses of 

PHA-543,613 [0.33, 1 and 3 mg∙kg−1, i.p. (Acker et al., 2008)], PNU-282,927 [1, 3 and 

5 mg∙kg−1, i.p. (Hajos et al., 2005; Vicens et al., 2013)] and ABT-418 [0.04, 0.13 and 

0.39 mg∙kg−1, i.p. (McGaughy et al., 1999a)] were chosen based on previous studies. In 

control experiments, vehicle (saline) was injected. The order of drug injections was 

semi-randomized using a Latin square method. Between different doses in the drug 

injection experiments, mice were given two washout days during which they were 

baselined with a 2 s stimulus duration. 

4.4.5  Analysis of 5-CSRT task 

 
On all 5-CSRT task sessions, accuracy was calculated as the number of correct 

responses divided by the number of correct and incorrect responses (touches to a 



226 
 

 
 

wrong window while the correct stimulus was still displayed). Omissions were calculated 

as the total number of omitted trials divided by the number of total trials. Response 

latency was the time the mouse took to touch the correct stimulus after the onset of its 

display. Reward collection latency was defined as the time it took the mouse to enter 

the reward magazine following a correct response. A premature response was counted 

when the mouse touched one of the windows prior to the stimulus being displayed. 

Finally, a perseverative response was any identical response that occurred following a 

correct, incorrect or premature response. 

4.4.6  Food intake in food-deprived mice 

 
Feeding behaviour was analysed as previously described (Semenova and Markou, 

2007). Naive groups of WT and CHRΝΑ7−/− mice (n = 8 per genotype) were housed 

individually and were deprived of food overnight before the test. During the test, mice 

were placed in a clean cage and given 20 g of standard chow. Food intake was 

measured 20, 40, 60 and 80 min after the start of the test. Food intake was normalized 

to the body weight of the animals. 

4.4.7  qPCR 

 
Total RNA was extracted from freshly dissected PFC tissue, using the Aurum Total RNA 

for fatty and fibrous tissue kit (Bio-Rad Laboratories, Hercules, CA, USA); cDNA 

synthesis and quantitative PCR (qPCR) analysis of nicotinic receptor expression were 

performed as previously described (Guzman et al., 2011; Kolisnyk et al., 2013a). 

4.4.8 Western Blotting 
 

Western blotting was performed as previously described (Martins-Silva et al., 2011). For 

analysis of phospho-proteins in the PFC, mice were given i.p. drug injections and were 

killed 30 min later. Tissue was then homogenized in lysis buffer supplemented with 

protease and phosphatase inhibitor cocktails (Thermo Fisher Scientific, Waltham, MA, 

USA). The antibodies used were anti-vesicular ACh transporter (VAChT) (catalogue 

#139103; Synaptic Systems, Göttingen, Germany), anti-ChAT (catalogue #1DB-001-
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0000849693; Millipore, Billerica, MA, USA), anti-synaptophysin (catalogue #S5768; 

Sigma-Aldrich), anti-ERK1/2 (catalogue #4695; Cell Signaling Technology, Danvers, 

MA, USA), anti-phospho-ERK1/2 (catalogue #4372; Cell Signaling Technology), anti-

cFos (catalogue #4384; Cell Signaling Technology) and anti-β-actin (catalogue 

#ab49900; Abcam, Cambridge, UK). Band intensity was quantified using fluorochemq 

software (Thermo Fisher Scientific). 

4.4.9 Statistical analyses 

 
All data are expressed as mean ± SEM. sigmastat 3.5 (Systat Software, San Jose, CA, 

USA) was used for all statistical analysis. Comparisons between two experimental 

groups were made by Student's t-test. When several experimental groups or treatments 

were analysed, one-way ANOVA or two-way ANOVA with repeated-measures tests 

were used as required. Statistically significant effects were further analysed using 

Tukey's honestly significant difference post hoc tests. In all analyses, P < 0.05 was 

considered statistically significant. 

4.5 Results 
 

4.5.1  α7nAChR-null mice present normal acquisition on the 5-

CSRT task 

 
No difference between CHRΝΑ7−/− mice and WT controls was observed in the number 

of sessions required to reach criterion at any of the pre-training phases for the 5-CSRT 

task [Fig. 4.1.1; RM-ANOVA: no effect of genotype, F(1,14) = 2.814, P = 0.1156; main 

effect of training phase, F(4,14) = 104.3, P < 0.0001; no interaction effect, 

F(4,14) = 1.126, P = 0.3535]. During training on the 5-CSRT task as well, CHRΝΑ7−/− 

mice took as many sessions as WT controls to achieve criterion at both the 4 and 2 s 

stimulus durations [RM-ANOVA: no effect of genotype, F(1,14) = 2.552, P = 0.1325; 

main effect of stimulus duration, F(1,14) = 57.78, P < 0.0001; no interaction, 

F(1,14) = 4.472, P = 0.0529; Fig. 4.1.1B]. It should be noted that there was a strong 

tendency for the CHRΝΑ7−/− mice to take longer to learn the task at the 4 s stimulus 
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duration, which may reflect previously documented impairments in procedural learning 

in these mice (Young et al., 2011). 

4.5.2  α7nAChR-null mice have impaired sustained attention 

 
Once mice reached criterion at 2 s stimulus duration, we assessed attention 

performance by using a probe trial, with reduced stimulus durations (1.5, 1, 0.8 and 

0.6 s stimulus durations) as previously described (Romberg et al., 2011). Across all four 

stimulus durations, CHRΝΑ7−/− mice performed similarly to controls in both total 

measures of omissions [RM-ANOVA: no effect of genotype, F(1,36) = 3.235, P = 0.0972; 

main effect of stimulus duration, F(3,36) = 14.50, P < 0.001; no interaction, 

F(3,36) = 0.5136, P = 0.6755; Figure 4.1.2A] and accuracy [RM-ANOVA: no effect of 

genotype, F(1,36) = 0.06134, P = 0.8086; main effect of stimulus duration, 

F(3,36) = 9.208, P < 0.001; no interaction, F(3,36) = 0.6347, P = 0.5975; Figure 4.1.2B]. 

To assess sustained attention, we analysed rate of omissions and response accuracy 

over blocks of 25 trials across the various stimulus durations of the probe trial 

experiment. As each probe trial session ends after 50 trials or 1 h, analysing blocks of 

25 trials divided the performance between two halves: block A and block B. This 

procedure allowed us to determine if mice can sustain attention during the full period of 

the probe trial and maintain performance between the first and second periods of 

testing. Performance of control WT mice did not differ across the probe trial in terms of 

omissions [RM-ANOVA: no difference between blocks A and B, F(1,6) = 1.904, 

P = 0.2168; main effect of stimulus duration, F(3,18) = 8.661, P < 0.001; and no 

interaction, F(3,18) = 0.4736, P = 0.7045; Figure 4.1.2C) or accuracy [RM-ANOVA: no 

effect of blocks, F(1,6) = 4.319, P = 0.0829; main effect of stimulus duration, 

F(3,18) = 4.897, P = 0.0166; and no interaction, F(3,18) = 0.4947, P = 0.6905; Figure 

4.1.2D]. In contrast, CHRΝΑ7−/− mice displayed increased omission errors in the 

second half of the probe trial experiment compared with the first half [RM-ANOVA: main 

effect of block, F(1,6) = 20.59, P < 0.001; main effect of stimulus duration, 

F(3,18) = 9.471, P < 0.001; and main interaction effect, F(3,18) = 12.13, P < 0.001; 

Figure 4.1.2E). Post hoc analysis confirmed that CHRΝΑ7−/− mice had significantly 

more omission errors during the second half of the task at both the 0.8 and 0.6 s 
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stimulus durations, suggesting that these mice display impaired ability to sustain 

attention. Interestingly, CHRΝΑ7−/− mice did not present accuracy impairments across 

the two blocks [RM-ANOVA: no effect of block, F(1,6) = 1.348, P = 0.2897; main effect of 

stimulus duration, F(3,18) = 5.877, P = 0.0056; and no interaction effect, 

F(3,18) = 0.6404, P = 0.5989; Figure 4.1.2F]. 

Increases in omission on the 5-CSRT task have been proposed to be due to lack of 

attention, lack of motivation or motor impairments (Robbins, 2002). Given that 

CHRΝΑ7−/− mice were no different from controls in terms of latency to respond to 

stimulus or latency to collect the reward, it is unlikely that motivation or motor 

impairments are causing the deficits in sustained attention (Robbins, 2002; Spinelli et 

al., 2004). To address this, we measured several other parameters to test for 

motivational or aberrant behaviour in CHRΝΑ7−/− mice. α7nAChR-null mice showed no 

difference in latency to respond to the stimulus [RM-ANOVA: no effect of genotype, 

F(1,36) = 0.01533, P = 0.9035; no effect of stimulus duration, F(3,36) = 2.003, 

P = 0.1310; no interaction, F(3,36) = 1.223, P = 0.3154; Figure 4.1.3A]. We then 

assessed response latency across blocks of trials to determine if the sustained attention 

deficits in CHRΝΑ7−/− mice may be due to delayed responsiveness. Response latency 

did not differ across blocks for either the WT [RM-ANOVA: no effect of block, 

F(1,6) = 0.07218, P = 0.7972; no effect of stimulus duration, F(3,18) = 2.749, P = 0.0792; 

and no interaction effect, F(3,18) = 0.7886, P = 0.5159; Figure 4.1.3B] or CHRΝΑ7−/− 

mice [RM-ANOVA: no effect of block, F(1,6) = 0.2481, P = 0.6362; no effect of stimulus 

duration, F(3,18) = 2.2557, P = 0.1166; and no interaction effect, F(3,18) = 1.490, 

P = 0.2501; Figure 4.1.3C]. We also assessed the time to retrieve their reward following 

a correct response [RM-ANOVA, no effect of genotype, F(1,36) = 0.2025, P = 0.6607; no 

effect of stimulus duration, F(3,36) = 1.153, P = 0.3410; no interaction, F(3,36) = 0.2954, 

P = 0.8284; Figure 4.1.3D] when compared with WT controls. Furthermore, we 

assessed reward latency across blocks of trials, and neither the WT [RM-ANOVA: no 

effect of block, F(1,6) = 2.345, P = 0.1766; no effect of stimulus duration, 

F(3,18) = 2.176, P = 0.1262; and no interaction effect, F(3,18) = 0.5404, P = 0.6677; 

Figure 4.1.3E) nor CHRΝΑ7−/− mice [RM-ANOVA, no effect of block, F(1,6) = 0.02162, 

P = 0.8879; no effect of stimulus duration, F(3,18) = 0.6190, P = 0.6617; and no 
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interaction effect, F(3,18) = 0.3581, P = 0.7839; Figure 4.1.3F) showed alteration in 

reward collection latency. To test whether CHRΝΑ7−/− mice differ from WT controls in 

satiety, we measured food intake following food restriction in a group of naive mice. 

Compared with controls, CHRΝΑ7−/− mice did not differ in food consumption over the 

course of the test [RM-ANOVA: no effect of genotype, F(1,48) = 1.280, P = 0.2800; main 

effect of time, F(4,48) = 73.88, P < 0.001; and no interaction effect, F(4,48) = 1.296, 

P = 0.2849; Figure 4.1.3G]. This is in line with previous work showing that these mice 

have normal motivation (Hoyle et al., 2011) and suggests that CHRΝΑ7−/− mice have 

specific deficits in sustained attention. 

Impulsivity and compulsivity were also assessed in CHRΝΑ7−/− mice during the probe 

trial experiment. Compared with controls, CHRΝΑ7−/− mice were no different in terms 

of premature responses, a measure of impulsivity [RM-ANOVA: no effect of genotype, 

F(1,36) = 0.9222, P = 0.3575; no effect of stimulus duration, F(3,36) = 0.4541, 

P = 0.7161; no interaction effect, F(3,36) = 0.09521, P = 0.9621; Fig. 4.1.4A, B], or 

perseverative responses, a measure of compulsive behaviour [RM-ANOVA: no effect of 

genotype, F(1,36) = 0.04477, P = 0.8363, main effect of stimulus duration, 

F(3,36) = 4.105, P = 0.0140; no interaction effect, F(3,36) = 0.8660, P = 0.4685, Fig. 

4.1.4C, D]. 

The ability to release normal levels of ACh is critical to attention (Kolisnyk et al., 

2013a,b); therefore, we investigated expression levels of the cholinergic machinery in 

the PFC of CHRΝΑ7−/− mice. Compared with WT controls, CHRΝΑ7−/− mice showed 

no significant change in expression of the VAChT [t(4) = 0.375, P = 0.7291] or ChAT. 

The sustained attention deficits in CHRΝΑ7−/− mice are therefore not a result of an 

inherent dysfunction in the machinery required for ACh release (Figure 4.1.5A). 

α7 nicotinic ACh receptor deletion has been suggested to cause compensatory changes 

in other nicotinic receptors during development (Yu et al., 2007). To determine if the 

PFC of adult CHRΝΑ7−/− mice displayed altered expression of nicotinic receptors, we 

examined their expression by qPCR analysis. The PFC of CHRΝΑ7−/− mice showed no 

significant change in the expression of CHRNA4 [t(8) = 1.104, P = 0.3016] or of 

CHRNB2 expression [t(8) = 0.4893, P = 0.6378]. In addition, we evaluated the 
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expression of the enzyme AChE and observed no significant difference between 

genotypes [t(8) = 0.0409, P = 0.9684]. As expected, we did not detect CHRNA7 

expression in CHRΝΑ7−/− animals (Figure 4.1.5B). 

To evaluate the biochemical correlates of neuronal activity in the PFC of CHRΝΑ7−/− 

mice, we determined protein levels of the immediate-early gene cFos, a known marker 

of activated neurons. Compared with the WT control, CHRΝΑ7−/− mice showed no 

significant change in cFos protein levels [t(4) = 0.779, P = 0.4792, Figure 4.1.5C]. 

Moreover, to test if the CHRΝΑ7−/− had impaired activation of relevant second 

messenger signalling cascades involved with nicotinic response in attention (Wallace 

and Porter, 2011b), we evaluated the phosphorylation status of ERK1/2 and observed 

no significant difference between genotypes [t(4) = 0.331, P = 0.7575, Figure 4.1.5D]. 
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Figure 4.1.1. Pre-training on the 5-CSRT task. (a) Sessions to criteria during 

pretraining for the 5-CSRT task. Numbers designate phases of the pre-training (1 – 

‘habituation’, 2 – ‘initial touch’, 3 – ‘must touch’, 4 – ‘must initiate’, 5 – ‘punish incorrect’). 

(b) Sessions to criteria during training on the 5-CSRT task. (Data are presented as 

mean ± SEM.). 
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Figure 4.1.1. Pre-training on the 5-CSRT task. 
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Figure 4.1.2. CHRNA7−/− mice have impaired sustained attention. Comparison 

between genotypes of (A) omissions and (B) accuracy during the probe trial experiment 

using the 5-CSRT task. (C) Omissions and (D) accuracy across bins of 25 trials in WT 

mice. (E) Omissions and (F) accuracy across bins of 25 trials in CHRNA7−/− mice (data 

are presented as mean ± SEM; *P < 0.05,**P < 0.01, ***P < 0.001). 
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Figure 4.1.2. CHRNA7−/− mice have impaired sustained attention. 
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Figure 4.1.3. CHRNA7−/− mice have normal motivation and motor function during 

the 5-CSRT task. Comparison between genotypes of response latencies (A). Response 

latencies across bins of 25 trials in wild-type (B) and CHRNA7−/− mice (C). Comparison 

between genotypes of reward collection latencies (D). Reward collection latencies 

across bins of 25 trials in wild-type (E) and CHRNA7−/− mice (F). (G) Food 

consumption following food deprivation as a measure of motivation (data are presented 

as mean ± SEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



237 
 

 
 

Figure 4.1.3. CHRNA7−/− mice have normal motivation and motor function during 

the 5-CSRT task. 
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Figure 4.1.4. Response patterns did not differ in α7nAChR null mice on the 5-

CSRT task probe trial. Premature (a) and perseverative (b) responses between WT 

(clear bars) and CHRNA7−/− mice (dark bars). (Data are presented as mean ± SEM.) 
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Figure 4.1.4. Response patterns did not differ in α7nAChR null mice on the 5-

CSRT task probe trial. 
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Figure 4.1.5. Evaluation of the expression of cholinergic markers and relevant 

signalling pathways in the PFC of CHRNA7−/− mice. (A) Immunoblot of VAChT and 

ChAT expression in the PFC. (B) qPCR expression of nicotinic receptors and AChE in 

the PFC. (C) cFos protein levels and (D) ERK1/2 phosphorylation in the PFC (data are 

presented as mean ± SEM). 
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Figure 4.1.5. Evaluation of the expression of cholinergic markers and relevant 

signalling pathways in the PFC of CHRNA7−/− mice. 
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4.5.3  Effect of α7nAChR agonists on attention 
 

To evaluate acute roles of α7nAChR in regulating sustained attention behaviour, we 

investigated two selective α7nAChR agonists, PHA-543,613 (Acker et al., 2008) and 

PNU-282,987 (Hajos et al., 2005), in WT mice using the 5-CSRT task. Mice were tested 

at a 0.6 s stimulus duration, which represents a cognitively demanding version of the 

task (Romberg et al., 2011; Kolisnyk et al., 2013a). PHA-543,613 significantly improved 

rate of omissions [RM-ANOVA: main effect of dose, F(3,18) = 12.52, P < 0.001; Figure 

4.2.1A], with post hoc analysis confirming that the 1 mg∙kg−1 dose significantly 

improved performance over saline. Conversely, PHA-543,613 significantly altered 

response accuracy in higher doses [RM-ANOVA: main effect of dose, F(3,18) = 12.55, 

P < 0.001; Figure 4.2.1B]. Post hoc analysis revealed that at the highest dose tested 

(3 mg∙kg−1), PHA-543,613-injected mice performed significantly worse than mice 

injected with saline. PHA-543,613 did not significantly alter response latency [RM-

ANOVA: no effect of dose, F(3,18) = 1.568, P = 0.2318, Fig. 4.2.2A] or reward collection 

latency [RM-ANOVA: no effect of dose, F(3,18) = 0.7517, P = 0.5382; Fig. 4.2.2B]. In 

addition, PHA-543,613 did not alter premature [RM-ANOVA: no effect of dose, 

F(3,18) = 0.7599, P = 0.4930) nor perseverative responses [RM-ANOVA: no effect of 

dose, F(3,18) = 0.1404, P = 0.8821, Fig. 4.2.2C, D]. To address the effects of PHA-

543,613 on sustained attention, we analysed performance of mice over blocks of 25 

trials and observed that PHA-543,613 did not significantly alter sustained omissions 

between the two blocks of testing [RM-ANOVA: main effect of dose, F(3,36) = 13.20, 

P < 0.0001; no effect of block, F(1,12) = 0.7069, P = 0.4327; and no interaction, 

F(3,36) = 1.288, P = 0.3088; Figure 4.2.1C], nor did it alter accuracy in WT mice [RM-

ANOVA: main effect of dose, F(3,36) = 14.63, P < 0.0001; no effect of block, 

F(1,12) = 1.729, P = 0.101; and no interaction effect, F(3,18) = 0.0713, P = 0.9749; 

Figure 4.2.1D). At 1 mg∙kg−1, the percentage of omissions seemed to be slightly 

reduced in the second block, suggesting modest improvement in the performance. 

The second α7nAChR agonist tested, PNU-282,987, also significantly improved rate of 

omissions [RM-ANOVA: main effect of dose, F(3,18) = 2.767, P = 0.0437, Figure 

4.2.1E], with post hoc analysis confirming that both the 1 and 3 mg∙kg−1 doses 
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significantly improved performance over saline. Conversely, PNU-282,978 significantly 

altered response accuracy [RM-ANOVA: main effect of dose, F(3,18) = 5.637, 

P = 0.0066; Figure 4.2.1F). Post hoc analysis revealed that at the highest dose tested 

(5 mg∙kg−1) mice injected with PNU-282,978 performed significantly worse than mice 

injected with saline. PNU-282,978 did not significantly alter response latency [RM-

ANOVA: no effect of dose, F(3,18) = 0.9985, P = 0.4018; Fig. 4.2.2E] nor reward 

collection latency [RM-ANOVA: no effect of dose, F(3,18) = 1.131, P = 0.3375; Figure 

4.3.2.2.1F]. PNU-282,978 did not alter the number of premature [RM-ANOVA: no effect 

of dose, F(3,18) = 3.015, P = 0.1157] or perseverative responses [RM-ANOVA: no effect 

of dose, F(3, 18) = 0.4522, P = 0.6707, Fig. 4.2.2G, H]. In terms of the effects of PNU-

282,978 on sustained attention, analysis of injected mice over two blocks of 25 trials 

showed that PNU-282,978 did alter the rate of omissions, with 3 mg∙kg−1 improving 

omission rates over the two blocks [RM-ANOVA: main effect of dose, F(3,36) = 6.095, 

P = 0.0031; no effect of block, F(1,12) = 0.5240, P = 0.4761; and main interaction effect, 

F(3,36) = 3.218, P = 0.0407; Figure 4.2.1G], but did not alter sustained accuracy [RM-

ANOVA: main effect of dose, F(3,36) = 6.044, P = 0.0019; no effect of block, 

F(1,12) = 0.222, P = 0.6458; and no interaction effect, F(3,18) = 0.0701, P = 0.9755; 

Figure 4.2.1H]. 

To evaluate the biochemical correlates of acute α7nAChR agonist activation in the PFC, 

we injected PHA-543,613 on WT mice and determined protein levels of cFos and the 

phosphorylation status of ERK1/2. These experiments used a separate cohort of mice, 

which were injected with drug or saline and then killed 30 min later and had their PFC 

dissected to obtain protein extracts. Compared with saline, PHA-543,613 injected in 

mice led to a significant increase in the levels of cFos protein in their PFC [one-way 

ANOVA: main effect of dose, F(2,6) = 7.404, P = 0.0240; Figure 4.2.1I], with post hoc 

analysis showing that cFos levels were increased at both doses of PHA-543,613. 

Similarly, injections of PHA-543,613 significantly increased ERK1/2 phosphorylation 

levels in a dose-dependent way [one-way ANOVA: main effect of dose, F(2,6) = 28.80, 

P < 0.001; Figure 4.2.1J]. 
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Figure 4.2.1 α7nAChR agonists improve attention in wild-type mice. (A) Omission 

and (B) accuracy following injections of PHA-543,613 in WT mice. (C) Omissions 

and (D) accuracy over bins of 25 trials following administration of PHA-543,613. (E) 

Omission and (F) accuracy following injections of PNU-282,987 in WT mice. (G) 

Omissions and (H) accuracy over bins of 25 trials following administration of PNU-

282,987. (I) cFos protein levels and (J) ERK1/2 phosphorylation following injection of 

PHA-543,613 (data are presented as mean ± SEM; *P < 0.05,**P < 0.01, ***P < 0.001). 
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Figure 4.2.1 α7nAChR agonists improve attention in wild-type mice.  
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Figure 4.2.2 α7nAChR agonists did not alter response patterns in wild-type mice. 

Premature responses (a), perseverative responses (b), response (c) and reward 

collection (d) latencies following PHA-543,613 injections in WT mice. Premature 

responses (e), perseverative responses (f), response (g) and reward collection (h) 

latencies following PNU-282,927 injections in WT mice. (Data are presented as 

mean ± SEM.) 
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Figure 4.2.2 α7nAChR agonists did not alter response patterns in wild-type mice. 
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4.5.4  Positive and negative effects of α7nAChR agonists are 

abolished in CHRΝΑ7−/− mice 

 
To confirm the specificity of both PHA-543,613 and PNU-282,987 for α7nAChRs, we 

administered both compounds to CHRΝΑ7−/− mice prior to testing them on the 5-CSRT 

task with a 0.6 s stimulus duration. Compared with saline, PHA-543,613 had no effect 

on the performance of the mice at any dose tested. PHA-543,613 did not alter rate of 

omissions [RM-ANOVA: no effect of dose, F(3,18) = 1.528, P = 0.2515; Figure 4.3.1A] or 

response accuracy [RM-ANOVA: no effect of dose, F(3,18) = 0.1121, P = 0.8733; Figure 

4.3.1B], response latency [RM-ANOVA: no effect of dose, F(3,18) = 0.2490, P = 0.7348; 

Figure 4.3.2A] or reward collection latency [RM-ANOVA: no effect of dose, 

F(3,18) = 0.3018, P = 0.6621; Figure 4.3.2B]. PHA-543,613 did not alter the number of 

premature [RM-ANOVA: no effect of dose, F(3,18) = 1.104, P = 0.3579] or perseverative 

responses [RM-ANOVA: no effect of dose, F(3,18) = 2.101, P = 0.1738, Figure 4.3.2C, 

D]. Furthermore, when we analysed performance over blocks of 25 trials, we observed 

that PHA-543,613 did not alter impaired omission deficit of CHRΝΑ7−/− mice at 0.6 s, 

which remained significantly higher in block B across all doses [RM-ANOVA: no effect 

of dose, F(3,36) = 1.528, P = 0.2414; main effect of block, F(1,12) = 14.89, P = 0.0084; 

and no interaction F(3,12) = 0.2209, P = 0.8806; Figure 4.3.1C]. PHA-543,613 did not 

alter sustained accuracy in CHRΝΑ7−/− mice either [RM-ANOVA: no effect of dose, 

F(3,36) = 0.2017, P = 0.8945; no effect of block, F(1,12) = 0.00701, P = 0.9343; and no 

interaction, F(3,36) = 0.02177, P = 0.9956; Figure 4.3.1D]. 

As with the PHA-543,613, PNU-282,987 had no effect on the performance of 

CHRΝΑ7−/− mice at any of the tested doses. The drug did not alter rate of omissions 

[RM-ANOVA: no effect of dose, F(3,18) = 0.1515, P = 0.9277; Figure 4.3.1E], response 

accuracy [RM-ANOVA: no effect of dose, F(3,18) = 0.1458, P = 0.9310; Figure 4.3.1F], 

response latency [RM-ANOVA: no effect of dose, F(3,18) = 0.0586, P = 2.808, Figure 

4.3.2E] or reward collection latency [RM-ANOVA: no effect of dose, F(3,18) = 0.8089, 

P = 0.4603, Figure 4.3.2F]. PNU-282,978 did not alter the number of premature [RM-

ANOVA: no effect of dose, F(3,18) = 0.2767, P = 0.8316] or perseverative responses 

[RM-ANOVA: no effect of dose, F(3,18) = 0.2218, P = 0.8036, Figure 4.3.2G, H]. Also, 
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analysis of performance of injected mice over blocks of 25 trials showed that the 

α7nAChR agonist had no effect on the impaired omission deficit that we consistently 

observed on CHRΝΑ7−/− mice [RM-ANOVA: main effect of block, F(1,6) = 9.112, 

P = 0.0234; no effect of dose, F(3,18) = 0.2542, P = 0.8573; and no interaction, 

F(3,18) = 0.2546, P = 0.8570; Figure 4.3.1G] nor on sustained accuracy [RM-ANOVA: 

no effect of blocks, F(1,6) = 0.0258, P = 0.9945; no effect of dose, F(3,18) = 1.123, 

P = 0.3729; and no interaction, F(3,18) = 0.2665, P = 0.8491; Figure 4.3.1H]. Taken 

together, these results demonstrate that modulation of attention performance on the 5-

CSRT task by both PHA-543,613 and PNU-282,987 depends on their activity on 

α7nAChR. 

Additionally, to confirm the selectivity of the molecular changes observed following 

PHA-543,613 administration in WT mice, we injected CHRΝΑ7−/− mice with the highest 

dose of the drug (3 mg∙kg−1) and then, 30 min later, measured the effects on cFos 

protein levels and ERK1/2 phosphorylation in the PFC. Unlike PHA-543,613-injected 

WT mice, CHRΝΑ7−/− mice exhibited no change in cFos levels [t(4) = 0.387, 

P = 0.7186; Figure 4.3.1I] or ERK1/2 phosphorylation [t(4) = 0.1029, P = 0.9230; Figure 

4.3.1J], suggesting that both the behaviour and molecular effects of the drug are 

specific to activation of α7nAChR. 
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Figure 4.3.1. α7nAChR agonists do not alter attention in mice lacking α7nAChR. 

(A) Omission and (B) accuracy following injections of PHA-543,613 in CHRNA7−/− 

mice. (C) Omissions and (D) accuracy over bins of 25 trials following administration of 

PHA-543,613 in CHRNA7−/− mice. (E) Omission and (F) accuracy following injections 

of PNU-282,987 in CHRNA7−/− mice. (G) Omissions and (H) accuracy over bins of 25 

trials following administration of PNU-282,987. (I) cFos protein levels and (J) ERK1/2 

phosphorylation following injection of PHA-543,613 (data are presented as 

mean ± SEM; *P < 0.05,**P < 0.01, ***P < 0.001). 
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Figure 4.3.1. α7nAChR agonists do not alter attention in mice lacking α7nAChR. 
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Figure 4.3.2. α7nAChR agonists did not alter response patterns in CHRNA7-null 

mice. Premature responses (a), perseverative responses (b), response (c) and reward 

collection (d) latencies following PHA-543,613 injections in CHRNA7−/− mice. 

Premature responses (e), perseverative responses (f), response (g) and reward 

collection (h) latencies following PNU-282,927 injections in CHRNA7−/− mice. (Data are 

presented as mean ± SEM.). 
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Figure 4.3.2. α7nAChR agonists did not alter response patterns in CHRNA7-null 

mice. 
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4.5.5  The β2nAChR agonist ABT-418 improves attention 

 
In order to explore the relationship between distinct types of nicotinic receptors on 

attentional performance, we used ABT-418, a β2nAChR agonist, and treated WT mice 

that were tested with the 0.6 s stimulus duration paradigm. Injections of ABT-418 were 

able to significantly improve both rate of omissions [RM-ANOVA: main effect of dose, 

F(3,18) = 4.544, P = 0.0132; Figure 4.4.1A] and response accuracy [RM-ANOVA: main 

effect of dose, F(3,18) = 6.950, P = 0.0020; Figure 4.4.1B] without altering response 

latency [RM-ANOVA: no effect of dose, F(3,18) = 0.06377, P = 0.9014; Figure 4.4.2A] or 

reward collection latency [RM-ANOVA: no effect of dose, F(3,18) = 0.2936, P = 0.8797; 

Figure 4.4.2B]. ABT-418 did not alter the number of premature [RM-ANOVA: no effect 

of dose, F(3,18) = 1.228, P = 0.3103] or perseverative responses [RM-ANOVA: no effect 

of dose, F(3,18) = 0.3062, P = 0.6764, Figure 4.4.2C, D]. To evaluate the effects of ABT-

418 on sustained attention, we analysed accuracy and omissions across blocks of 25 

trials. ABT-418 did not significantly alter sustained omissions across blocks for WT mice 

[RM-ANOVA: no effect of block, F(1,6) = 0.6582, P = 0.6013; main effect of dose, 

F(3,18) = 0.2542, P = 0.8573; and no interaction, F(3,18) = 0.6582, P = 0.5847; Figure 

4.4.1C]. ABT-418 had no effect on sustained accuracy in WT mice, with the 

improvements brought on by the drug spanning across both blocks of trials [RM-

ANOVA: no effect of block, F(1,6) = 0.7267, P = 0.4083; main effect of dose, 

F(3,18) = 7.744, P = 0.0003; and no interaction F(3,18) = 1.084, P = 0.3662; Figure 

4.4.1D). 

Given that nicotinic receptors may be expressed in similar populations of neurons and 

could crosstalk (Azam et al., 2003), we evaluated whether β2nAChR receptor activation 

could impact attention in mice lacking α7nAChR. As with the WT mice, ABT-418 was 

able to significantly improve both omissions [RM-ANOVA: main effect of dose, 

F(3,18) = 5.466, P = 0.0066; Figure 4.4.3A] and accuracy [RM-ANOVA: main effect of 

dose, F(3,18) = 3.383, P = 0.0373; Figure 4.4.3B] in CHRΝΑ7−/− mice, without altering 

response latency [RM-ANOVA: no effect of dose, F(3,18) = 1.622, P = 0.2495; Figure 

4.4.4A] or reward collection latency [RM-ANOVA: no effect of dose, F(3,18) = 0.8793, 

P = 0.4359; Figure 4.4.4B]. ABT-418 did not alter the number of premature [RM-
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ANOVA: no effect of dose, F(3,18) = 0.1450, P = 0.81133] or perseverative responses 

[RM-ANOVA: no effect of dose, F(3,18) = 0.1254, P = 0.8336; Figure 4.4.4C, D]. 

Importantly, ABT-418 was able to reverse the sustained attention deficits observed in 

CHRΝΑ7−/− mice (Figure 4.4.3C) and improved the sustained omission deficits in these 

mice [RM-ANOVA: main effect of block, F(1,6) = 11.82, P = 0.0138; main effect of dose, 

F(3,18) = 7.640, P = 0.0017; and no interaction effect, F(3,18) = 1.707, P = 0.2013; 

Figure 4.4.3C]. Post hoc analysis revealed that this occurred even at the lowest dose 

administered. Sustained accuracy was not altered [RM-ANOVA: no effect of block, 

F(1,6) = 0.1284, P = 0.7324; main effect of dose, F(3,18) = 5.017, P = 0.0106; and no 

interaction, F(3,18) = 1.054, P = 0.3929; Figure 4.4.3D]. 

To determine the biochemical correlates of treatment with ABT-418 on CHRΝΑ7−/− 

mice, we injected a new cohort of CHRNA7−/− mice with 0.39 mg∙kg−1 of ABT-418 and 

30 min later evaluated cFos and ERK1/2 phosphorylation levels in the PFC of the mice. 

Compared with saline-injected mice, CHRΝΑ7−/− mice injected with ABT-418 showed a 

significant increase in cFos protein levels 30 min after injection [t(4) = 5.610, P = 0.0050; 

Figure 4.4.3E]. ABT-418 was also able to significantly increase ERK1/2 phosphorylation 

levels in the PFC of mice lacking α7nAChR [t(4) = 5.300, P = 0.0061; Figure 4.4.3F]. 

Importantly, given that the mice had been exposed to the task numerous times, we 

evaluated the performance of the mice over the course of the various injections in order 

to ensure that the improvements brought on by the ABT-418 were not due to the mice 

becoming better at the task. We compared the performance (both rates of omission and 

accuracy) of the mice from the vehicle injections of each drug experiment with their 

naive performance (the performance at a 0.6 s stimulus duration during the probe trial 

experiments). Both the WT {omission [one-way ANOVA: no effect of treatment, 

F(6,18) = 0.7467, P = 0.4692; Figure 4.4.57A] and accuracy [one-way ANOVA: no effect 

of treatment, F(6,18) = 0.6749, P = 0.6716; Figure 4.4.57B]} and CHRΝΑ7−/− mice 

{omission [one-way ANOVA: no effect of treatment, F(6,18) = 2.565, P = 0.1154; Figure 

4.4.57C] and accuracy [one-way ANOVA: no effect of treatment, F(6,18) = 1.005, 

P = 0.3876; Figure 4.4.57D]} demonstrated no significant change in performance in both 

omissions and accuracy from their naive performance across all injections. 
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Figure 4.4.1. β2nAChR agonists improve attention in wild-type mice. (A) Omission 

and (B) accuracy following injections of ABT-418 in WT mice. (C) Omissions and (D) 

accuracy over bins of 25 trials following administration of ABT-418 in WT mice (data are 

presented as mean ± SEM; *P < 0.05,**P < 0.01. 
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Figure 4.4.1. β2nAChR agonists improve attention in wild-type mice. 
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Figure 4.4.2. ABT-418 did not alter response patterns in wild-type mice. Premature 

responses (a), perseverative responses (b), response (c) and reward collection (d) 

latencies following ABT-418 injections in WT mice. (Data are presented as 

mean ± SEM.). 
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Figure 4.4.2. ABT-418 did not alter response patterns in wild-type mice. 
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Figure 4.4.3. Sustained attention deficits of CHRNA7 null mice are reversed by 

β2nAChR agonists. (A) Omission and (B) accuracy following injections of ABT-418 in 

CHRNA7−/− mice. (C) Omissions and (D) accuracy over bins of 25 trials following 

administration of ABT-418. (E) cFos protein levels and (F) ERK1/2 phosphorylation 

following injection of ABT-418 (data are presented as mean ± SEM; *P < 0.05,**P < 0.01. 
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Figure 4.4.3. Sustained attention deficits of CHRNA7 null mice are reversed by 

β2nAChR agonists. 
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Figure 4.4.4. ABT-418 did not alter response patterns in CHRNA7 null mice. 

Premature responses (a), perseverative responses (b), response (c) and reward 

collection (d) latencies following ABT-418 injections in CHRNA7−/− mice. (Data are 

presented as mean ± SEM.). 
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Figure 4.4.4. ABT-418 did not alter response patterns in CHRNA7 null mice. 
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Figure 4.4.5. Performance of mice did not differ across all drug treatments. 

Evaluation of accuracy (a) and omissions (b) from vehicle treatments from all drug trials 

in wild-type mice. Evaluation of accuracy (c) and omissions (d) from vehicle treatments 

from all drug trials in wild-type mice CHRNA7−/− mice. (Data are presented as 

mean ± SEM.). 
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Figure 4.4.5. Performance of mice did not differ across all drug treatments. 
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4.6 Discussion 
 

In this study, we demonstrated that the genetic elimination of the CHRNA7 gene 

disturbs sustained attentional performance, as measured by the 5-CSRT task, and that 

this deficit is reversed by administration of ABT-418, a β2nAChR agonist. CHRΝΑ7−/− 

mice exhibited impaired performance (increased omission errors) during the second half 

of testing sessions of the 5-CSRT, suggestive of deficits in sustained attention, or 

vigilance. Increases in omission errors on the 5-CSRT task may reflect either decreased 

attentional processing or a lack of motivation (Robbins, 2002; Spinelli et al., 2004). 

However, given the normal performance of CHRΝΑ7−/− mice on the food intake test, 

this phenotype is unlikely to represent a motivational issue, suggesting that the lack of 

α7nAChRs impairs the ability to maintain performance levels during the task. 

Pharmacological activation of α7nAChRs in WT mice by two distinct α7nAChR agonists, 

PHA-543,613 and PNU-282,987, in lower doses improved attentional performance but 

did not change sustained attention. These effects were specific to their actions on 

α7nAChRs, as these compounds were ineffective on CHRΝΑ7−/− mice. 

Pharmacological activation of the β2nAChR by ABT-418 was able to reverse the 

sustained attention deficit in CHRΝΑ7−/− mice, suggesting that the deficits observed in 

these mice can be rescued by β2nAChR signalling. 

Post-mortem analysis of human patient samples has shown that ERK1/2 MAP kinase 

signalling is reduced in brains of schizophrenic patients (Yuan et al., 2010). Moreover, 

an inability to induce phosphorylation of ERK1/2 MAP kinases in the PFC is thought to 

underlie certain cognitive deficits in animal models of schizophrenia (Kamei et al., 

2006). α7nAChR activation has been shown to induce phosphorylation of ERK1/2 MAP 

kinases both in vitro and in vivo (Bitner et al., 2007). Similar effects have been observed 

in second-generation antipsychotics (Lu et al., 2004). We showed that pharmacological 

activation of the α7nAChR by PHA-543,613 induced a dose response increase in both 

ERK1/2 phosphorylation levels and cFos in WT mice. These effects were not detected 

in CHRΝΑ7−/− mice. Whether this biochemical correlation of α7nAChR activation 

relates to the biochemical and attentional deficits observed in schizophrenia is 

unknown. Interestingly, when CHRΝΑ7−/− mice were treated with the β2nAChR agonist 
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ABT-418, both ERK1/2 phosphorylation and cFos protein levels were increased and 

were correlated with the reversal of the sustained attention deficits. Although it is 

currently unclear if the neurons that respond to ABT-418 and the α7nAChR drugs PHA-

543,613 and PNU-282,987 are the same, one potential important implication of the 

behavioural data is that ABT-418 can reverse the sustained attention deficits due to 

abnormal CHRNA7 expression. 

Interestingly, in WT mice, all α7nAChR targeting drugs used presented an inverted ‘U’-

shaped behavioural response. This is not uncommon with nicotinic signalling with 

similar responses observed across cognitive domains and even species (Picciotto, 

2003; Olincy et al., 2006; Wallace et al., 2011a; Braida et al., 2013). Desensitization of 

the receptor is often suggested as a potential mechanism underlying this U-shaped 

behavioural response. Our data suggest that this may not be the case for α7nAChR 

activation, given that we see increases in the levels of phospho-ERK1/2 following 

administration of a high dose of α7nAChR agonist in WT mice, which results in poor 

performance on the 5-CSRT task. Interestingly, it has been proposed that overactivity of 

this second messenger signalling pathway can actually impair executive function and 

lead to distractibility (Birnbaum et al., 2004). We have also recently shown that 

increased cholinergic tone by overexpression of VAChT and increased cholinergic 

signalling in BAC ChAT-Chr2-EYFP mice disturbs attentional processing (Kolisnyk et 

al., 2013b). 

The ability of nicotine to improve attention has been well documented in rodents (Young 

et al., 2004), non-human primates (Prendergast et al., 1998) and humans (Lawrence et 

al., 2002). A common technique to evaluate the role of α7nAChR signalling in attention 

has been to co-treat rodents with both nicotine and the α7nAChR antagonist MLA. 

These studies have, however, provided mixed results. Some investigators obtained 

evidence for α7nAChR signalling in the pro-attentive effects of nicotine (Hahn et al., 

2011), and others failed to implicate α7nAChR signalling in nicotine-induced 

improvements in attention (Grottick and Higgins, 2000). Studies using AR-R17779, a full 

agonist of the α7nAChR, have failed to demonstrate pro-attentive effects of α7nAChR 

stimulation (Grottick and Higgins, 2000; Grottick et al., 2003; Hahn et al., 2003). This 
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compound, however, has also been shown to poorly penetrate the blood brain barrier 

(Mullen et al., 2000). On the other hand, R3487/MEM 3454, an α7nAChR agonist and 5-

HT3 receptor antagonist, has been shown to improve measures of sustained attention 

in both rats (Rezvani et al., 2009) and macaque monkeys (Wallace et al., 2009). Our 

experiments utilized both PHA-543,613 and PNU-282,987, α7nAChR agonists, which 

have been previously reported to easily cross the blood brain barrier (Acker et al., 

2008). Indeed, the biochemical activation reflected by increased cFos levels or 

phospho-ERK supports the contention that these drugs were able to activate the PFC in 

mice. Importantly, our data further support results from previous studies, suggesting that 

α7nAChR signalling has a role in sustained attention (Young et al., 2007), specifically 

characterized by increased omission errors on the 5-CSRT task in α7nAChR-null mice 

(Young et al., 2004). 

Cholinergic transients in the PFC have been shown to be important for cue detection 

and attentional processing (Parikh et al., 2007). α7nAChR activation increases the 

duration of these transients 10–15-fold, and interestingly, this effect is lost when 

dopaminergic afferents to the PFC are eliminated, suggesting a complex interplay 

between neurotransmitter systems (Parikh et al., 2010). 

An important role of nicotinic receptors in the CNS is to influence the release of other 

neurotransmitters. Nicotinic receptors have been shown to influence the release of 

glutamate (Gioanni et al., 1999), dopamine (Zhou et al., 2001), GABA (Alkondon et al., 

1999), noradrenaline (Fu et al., 1998), 5-HT (Kenny et al., 2000) and ACh itself (Rowell 

and Winkler, 1984). Efflux of all of these neurotransmitters in PFC has been associated 

with performance on the 5-CSRT task (reviewed in Robbins, 2002). Electron 

microscopy studies point to ACh release potentially being auto-regulated by presynaptic 

α7nAChRs in the PFC (Duffy et al., 2009). On the other hand, post-synaptic β2nAChRs 

have been shown to be necessary and sufficient to regulate performance on the 5-

CSRT task (Guillem et al., 2011; Poorthuis and Mansvelder, 2013). In addition to the 

possibility that α7 and β2 receptors can form functional heteromeric receptors (Liu et al., 

2009; Moretti et al., 2014), our data reveal a complex interplay between these two 

receptors in regulating sustained attention. Given that our results suggest that activation 
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of β2nAChRs can bypass α7nAChRs, it is possible that activation of α7nAChRs could 

induce ACh release in the PFC, which would then activate post-synaptic β2nAChRs to 

regulate sustained attention. If this model is correct, it may explain the inconsistency 

amongst studies using non-selective nicotinic agonists and antagonists. Co-treatment 

with nicotine and methyllycaconitine, a α7nAChR antagonist, would still activate 

β2nAChRs and thus improve attentive processing. Therefore, these previous 

experiments would not exclude a role of α7nAChRs in attentional performance. 

In conclusion, our data support a role for α7nAChRs in sustained attention and reveal 

an intricate relationship between distinct nicotinic receptors to regulate attentional 

performance. Our results indicate that activation of β2nAChRs can bypass attentional 

deficits due to α7nAChR deficiency, suggesting that β2nAChRs may be an important 

pharmacological target in cognitive dysfunctions in which impaired α7nAChRs have 

been implicated, such as schizophrenia and Alzheimer's disease (Parri et al., 2011). 
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Chapter 5  

Cholinergic surveillance over hippocampal RNA metabolism and 

Alzheimer’s-like pathology 

 
This is a pre-copyedited, author-produced version of an article accepted for publication 

in Cerebral Cortex following peer review. 

5.1 Chapter Summary 

 
The relationship between long-term cholinergic dysfunction and risk of developing 

dementia is poorly understood. Here we used mice with deletion of the vesicular 

acetylcholine transporter (VAChT) in the forebrain to model cholinergic abnormalities 

observed in dementia. Whole genome RNA-sequencing of hippocampal samples 

revealed that cholinergic failure causes changes in RNA metabolism. Remarkably, key 

transcripts related to Alzheimer’s disease are affected. BACE1 for instance, shows 

abnormal splicing caused by decreased expression of the splicing regulator 

hnRNPA2/B1. Resulting BACE1 overexpression leads to increased APP processing 

and accumulation of soluble Aβ1-42. This is accompanied by age-related increases in 

GSK3 activation, tau hyper-phosphorylation, caspase-3 activation, decreased synaptic 

markers, increased neuronal death and deteriorating cognition. Pharmacological 

inhibition of GSK3 hyperactivation reversed deficits in synaptic markers and tau 

hyperphosphorylation induced by cholinergic dysfunction, indicating a key role for GSK3 

in some of these pathological changes. Interestingly, in human brains there was a high 

correlation between decreased levels of VAChT and hnRNPA2/B1 levels with increased 

tau hyperphosphorylation. These results suggest that changes in RNA processing 

caused by cholinergic loss can facilitate Alzheimer’s-like pathology in mice, providing a 

mechanism by which decreased cholinergic tone may increase risk of dementia.  
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5.2  Introduction 

 
Alzheimer’s disease (AD), the predominant form of dementia, is pathologically 

characterized by accumulation of amyloid plaques and neurofibrillary tangles that 

ultimately lead to neuronal death. One of the early alterations identified in AD-affected 

individuals with cognitive decline is a profound decrease in basal forebrain cholinergic 

neurons (Whitehouse et al., 1982), which gave rise to the cholinergic hypothesis of AD 

(Bartus et al., 1982). Accordingly, Alzheimer’s Disease Neuroimaging Initiative data 

reveal atrophy of the basal forebrain in individuals with mild cognitive impairment 

(Grothe et al., 2014), and increased forebrain cholinergic atrophy in Alzheimer’s-

affected individuals (Grothe et al., 2013). Cholinergic dysfunction correlates with 

decreased hippocampal volume and pathology (Teipel et al., 2014). Furthermore, recent 

epidemiological data suggest that long-term use of drugs with anti-cholinergic activity by 

elderly individuals increases the future risk of dementia (Gray et al., 2015). These 

observations reveal an intimate, but poorly understood relationship, between cholinergic 

dysfunction and the pathological and cognitive deficits in AD. However, whether 

cholinergic malfunction has a causal role in increasing the risk of dementia or regulating 

pathology is unknown. Moreover, the causal and temporal relationships between 

cholinergic malfunctioning and long-term changes in hippocampal neurons in AD are 

still unclear.  

To test the capacity of cholinergic tone to regulate long-term functions in target cells we 

examined the hippocampal transcriptome in genetically-modified mice with 

compromised hippocampal cholinergic tone. Using forebrain-specific deletion of the 

vesicular acetylcholine transporter (VAChT), a protein required for acetylcholine (ACh) 

release (de Castro et al., 2009; Prado et al., 2013), we unveil that long-term cholinergic 

deficiency causes global changes in gene expression and alternative splicing in the 

hippocampus. This leads to abnormal alternative splicing of BACE1 with consequent 

age-dependent changes in amyloid precursor protein (APP) processing, tau hyper-

phosphorylation, hippocampal neuronal loss and cognitive decline. Comparative 

analyses in the AD brain enabled us to identify links between cholinergic deficiency and 

AD pathology, together supporting the notion that early cholinergic dysfunction may be 
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a pivotal step in AD pathology initiation and progression. Our data provide potential 

mechanisms to explain how cholinergic deficiency may facilitate pathology in AD. 

 

5.3  Materials and Methods 

 

5.3.1 Mouse lines 

 
Generation of VAChTflox/flox mice was previously described (de Castro et al., 2009). 

VAChTNkx2.1-Cre-flox/flox mice were generated by crossing VAChTflox/flox (crossed 

for 5 generations with C57BL/6J) with the Nkx2.1-Cre mouse line (C57BL/6J-Tg(Nkx2-

1- cre)2Sand/J), purchased from The Jackson Laboratory (JAX stock no. 008661). 

Unless otherwise stated, all control mice used were VAChTflox/flox littermates. All 

procedures were conducted in accordance with guidelines of the Canadian Council of 

Animal Care (CCAC) and in accordance with ARRIVE guidelines, at the University of 

Western Ontario with an approved institutional animal protocol (2008-127). Only male 

mice were used for all experiments. 

5.3.2  RNA Sequencing 

 
Mouse hippocampal tissue was rapidly dissected and total RNA was extracted from 

individual samples using the PureLink RNA Mini Kit (Ambion). 2 µg of total RNA were 

then sent to the Centre for Applied Genomics, The Hospital for Sick Children, where the 

cDNA library was prepared using the TruSeq Stranded Total Sample Preparation kit 

(Illumina) and run in a HiSeq 2500 platform with coverage of 200-250 million pair reads 

per lane. 5 animals were run per lane to obtain enough coverage for alternative splicing 

analysis (50 million pair reads per sample). The sequenced reads were aligned to the 

mouse genome using the TopHat program against the mouse genome in Ensembl 

(version EnsMart72) to enable quantification of splice junctions in addition to gene level 

measurements. Differential gene expression analysis was conducted using the 

Bioconductor DESeq package which accounts for the counts binomial distribution 
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(Anders and Huber, 2010). Datasets are available on ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-3897. 

For human brains, we used the SQUARETM RNA library construction approach which 

utilizes different sets of 5’- and 3’-site specific primers to segregate all full-length 

transcripts into sub-pools defined by the selective nucleotides in the respective primers. 

Unlike traditional sequencing, which is based on the use of universal primers that 

produce a pool of fragmented RNA products for a given gene, we used 12 different sets 

of 3’-primers that complement all distinct di-nucleotides at transcript 3’-polyadenylation 

sites and enable separate sequencing of the corresponding intact RNA molecules for 

each of the primer sets through barcoding. This unprecedented depth of segregated 

brain RNA-Seq data was made publicly accessible by establishing a user-friendly 

website where the sequenced variants for any given brain-expressed transcript can be 

found (http://apainad.weebly.com/). Sequencing files were processed and analyzed for 

differential expression and functional enrichment.  

 RNA sequencing libraries made from the temporal gyrus samples yielded an average 

of 6.0*106 (STD=2.0*106) uniquely aligned 75 base pair (bp) single end reads, or 

approximately 7.0*107 (STD=1.8*107) total read counts when combining all 12 

SQUARE fields for each sample. These reads were mapped against the 

GRGCh37/hg19 version of the Homo sapiens genome (http://genome.ucsc.edu/). 

Transcripts with more than 1 read per kilobase per million (RPKM) per SQUARE field 

were defined as being detected (Hebenstreit and Teichmann, 2011). An average of 

6610±1367 genes per field were detected across the 12 fields (details in Supplementary 

Table 5.6.2). Expression criteria were set to RPKM>1 in at least one of the SQUARE 

fields, in at least 80% of the tested donor cohorts. 

5.3.3  Immunofluorescence 

 
Immunofluorescence experiments were performed as previously described (de Castro 

et al. 2009). Primary antibodies used were anti-Choline Transporter (CHT1; 1:200), 

which was kindly donated by Dr. R. Jane Rylett, University of Western Ontario, London, 

Ontario, anti-hnRNPA2/B1 (1:200 Santa Cruz Biotechnology Catalog no. sc-10035), 
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anti-Cleaved caspase-3 (1:500 Thermo Fisher Scientific, Catalog no. PA5-16335), anti-

AT180 (1:1000 Thermo Fisher Scientific, Catalog no. EN-MN1040), anti-NeuN (1:200 

PhoshphoSolutions, Catalog no. 583-FOX3), anti-GFAP, anti-PSD95. Sections were 

visualized by Zeiss LSM 510 Meta (Carl Zeiss, Oberkochen, Germany) confocal system 

(40x, 63x objectives, with an N.A. of 1.3 and 1.4, respectively) and by Leica TCS SP8 

(Leica Microsystems Inc, Ontario, Canada) confocal system (63x objective, with an N.A. 

of 1.4), a 488-nm Ar laser and 633-nm HeNe laser were used for excitation of 

fluorophores. 

5.3.4 Western Blotting 

 
Mouse hippocampi were collected, protein was isolated, and immunoblotting was 

performed as previously described using RIPA lysis buffer supplemented with protease 

and phosphatase inhibitors (Guzman et al., 2011). Band intensities were quantified 

using FluoroChemQ software (Thermo Fisher Scientific). 

5.3.5  Gene Ontology Analysis 

 
Gene ontology functional analysis was performed using the GOrilla software through the 

web application. Using the two-un-ranked lists method as described (Eden et al., 2009). 

KEGG pathway analysis was performed using the ClueGO plug-in of Cytoscape 

(Bindea et al., 2009). 

5.3.6  RNA Binding Protein Analysis 

 
To predict potential RNA-binding proteins that may be implicated in the observed 

changes in alternative splicing, alternatively spliced sequences were run through the 

RBPmap software (Paz et al., 2014) to detect potentially altered RNA binding proteins. 

The list of RNA binding proteins that were suggested by the software were then run 

through the Allen Brain Atlas (http://mouse.brain-map.org/) in order to ensure that they 

were expressed in the murine hippocampus. All RNA binding proteins not expressed in 

the hippocampus were excluded. 
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5.3.7  qPCR 

 
To measure mRNA expression, total RNA was extracted from freshly dissected 

hippocampal tissue, using the Aurum Total RNA for fatty and fibrous tissue kit (Bio-Rad) 

according to the manufacturer's instructions. cDNA synthesis and qPCR analysis were 

performed as previously described (Guzman et al., 2011). For alternative splicing 

experiments, the alternative exon levels were normalized to a constitutively expressed 

exon from the same gene. 

5.3.8  Primary Neuronal Cultures 

 
Primary mouse hippocampal neurons were produced from E16 embryos as previously 

described (Ostapchenko et al., 2013). Neurons were cultured for 15 days. Knockdown 

of hnRNPA2/B1 from the cultured neurons was achieved by treatment with a shRNA, as 

previously described (Berson et al., 2012). A separate set of cultured neurons was 

treated with 10M of carbachol, 10M of carbachol and 100M Atropine, or 100M 

Atropine alone for 48 hours. 

5.3.9  APP Processing 

 
Biochemical analysis of the processing of APP was performed as previously described 

(Dewachter et al., 2002). Forebrains from VAChT deficient and control mice were 

homogenized in 50mM Tris-HCl (pH 8.5), samples were then ultracentrifuge at 

135,000g for 1 hour at 4oC, and the supernatant was collected and analyzed by 

Western blotting and ELISA. The pellet was re-suspended and ultracentrifuged again 

and diluted in 8M guanidine HCl to obtain the insoluble fraction for ELISA analysis.    

5.3.10 ELISA 

 
Murine β-amyloid was measured from the hippocampal homogenate using the Wako 

Human/Rat (Mouse) β-Amyloid (42) ELISA High-Sensitive Kit (Catalog Number: 292-

64501). The ELISA assay was performed according to the manufacturer's protocol. 
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5.3.11 Congo Red Staining 

 
Congo red staining was performed as previously described (Thompson and Walker, 

2015), using a Congo-Red solution (Sigma C-6277) in 100% ethanol. 

5.3.12 Silver staining 

 
Assessment of argyrophilic cells in the hippocampus was done by using NeuroSilverTM 

staining kit II (FD NeuroTechnologies, Inc., Baltimore, MD), which provides detection of 

degenerating neurons, including neuronal somata, axons, and terminals. 

5.3.13 Estimation of Hippocampal Volume 

 
NeuN immunohistochemistry was performed in order to estimate the volume of and 

number of neurons of hippocampal regions CA1, CA3, and the dentate gyrus (DG) as 

described (Beauquis et al., 2014). Briefly, tissue sections were stained with mouse 

monoclonal anti-NeuN (1:500 PhosphoSolutions, Catalog no. 583-FOX3), using the 

ABC kit (Vector Laboratories) and developed with 2 mM diaminobenzidine (Sigma, 

USA) and 0.5 mMH2O2 in 0.1 M Tris buffer. The total number of NeuN (T) cells in the 

various hippocampal regions was estimated using the following formula: T=(N*V)/t  , 

where N is the cell density, V is the volume of the structure, and t is the thickness of the 

section. 

5.3.14 GSK3 Inhibition 

 
To inhibit GSK3 in VAChTNkx2.1-Cre-flox/flox mice, a cohort of aged animals (12 

months old, n=5 AR-A014418 treated, n=4 saline treated) were implanted with Alzet 

micro-osmotic pumps (Model 1004; DURECT Corp, Cupertino, Calif). The pumps were 

implanted subcutaneously in the intra-scapular region of each mouse. The reservoir of 

each pump was preloaded with 96 μL of either sterile saline solution or the GSK3 

inhibitor AR-A014418. The pumps administered 5 mg/kg/d of AR-A014418, a dose 

shown to produce a significant inhibition of GSK3 in vivo (Ly et al., 2013). During the 
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implantation procedure, mice were anesthetized with ketamine (100 mg/kg) and 

xylazine (15 mg/kg). Drug treatment lasted for 28 days. 

5.3.15 Morris Water Maze 

 
The spatial version of the Morris water maze (MWM) was conducted as described 

previously to investigate spatial memory (Kolisnyk et al., 2013b; Martyn et al., 2012; 

Vorhees and Williams, 2006). Briefly, animals were given four training trials a day (90 s 

each) for 4 d, with a 15 minute inter-trial interval. If the mice did not find the platform 

after 90 s during the learning phase, they were gently directed to the platform. On the 

fifth day, memory was assessed via a probe trial (60 s), during which the platform is 

removed and time spent in the target quadrant is measured. The task was performed in 

a 1.5-m-diameter pool with 25°C water. The platform was submerged 1 cm below the 

surface of the water, and spatial cues (posters, streamers, and plastic props) were 

distributed around the pool. Sessions were recorded and analyzed using the ANY-Maze 

Software. 

The classification of search strategies mice employed during training was defined as 

previously described (Garthe et al., 2009). An experimenter blind to genotypes scored 

search strategies as follows: (1) thigmotaxis, characterized by maintaining close 

proximity to the wall (>70% trial within 10-cm of wall); (2) random search, illustrated by 

global swimming with no classified strategy; (3) scanning, characterized by a preference 

for the central pool area (>50% trial within 35-cm of pool center); (4) chaining, 

characterized by searching near the correct radial distance of the platform to the wall 

(>75% trial 20–50-cm from the pool center, <15% within 10-cm of wall, and <10% within 

20-cm of pool center); (5) directed search, characterized by a preference for a 

passageway toward the platform or platform quadrant (>80% trial within a 50-cm-wide 

region from the start point to the platform); (6) focal search, characterized by a highly 

localized search near the platform (≥50% trial in a circular target zone with a 15-cm 

radius); (7) direct swim, characterized by a maintained heading toward the platform 

(Little to no deviation in path to reach platform from start point). Total block lengths were 

the sum of all blocks for one strategy and one mouse. 
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5.3.16 Protein Isolation from Human post-mortem brain tissue 
 

Samples from parietal cortical tissues from age/ sex-matched controls (n = 6, 3 females 

and 3 males) and AD-affected individuals (n = 6, 3 females and 3 males) and 

information related to age and demographics have been previously published 

(Ostapchenko et al., 2013). The samples were homogenized in RIPA buffer 

supplemented with protease inhibitor cocktail (Calbiochem), and Western blotting was 

performed as described above. 

5.3.17 Statistical analysis 

 
Sigmastat 3.5 software was used for statistical analysis. Student’s t-test was used for 

comparison between two experimental groups. Two-way ANOVA or two-way ANOVA 

with repeated measures (RM) were used when more than two groups were compared. 

 

5.4 Results 

 

5.4.1  Forebrain Cholinergic dysfunction modifies expression 

levels of hippocampal transcripts and alternative splicing 

 
To determine the contribution of cholinergic tone to the regulation of hippocampal 

transcript levels, we used VAChTNkx2.1-Cre-flox/flox mice, a mouse line with selective 

deletion of the VAChT gene from forebrain regions, including the medial septum, which 

contains cholinergic neurons that project to the hippocampus.  VAChT has been shown 

to be essential for ACh packaging and release (de Castro et al., 2009; Lima Rde et al., 

2010; Prado et al., 2006). Non-biased whole genome transcriptome RNA-sequencing of 

hippocampal samples from three VAChT-deficient and four control mice yielded a total 

of 14,200 expressed genes. Comparative analysis revealed that 1,098 genes were 

differentially expressed in VAChTNkx2.1-Cre-flox/flox hippocampi compared to control 

mice (Figure 5.1.1A-B, FDR corrected p < 0.05). Of those, 763 genes were upregulated 

and 362 down-regulated in the transgenic mice. In addition, a linear regression analysis 
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on reciprocal junction pairs detected roughly 4% of hippocampal transcripts in 

VAChTNkx2.1-Cre-flox/flox mice as alternatively spliced in high confidence as 

compared with control mice. Equal proportion of exon inclusion and exclusion events 

was observed; mainly events of cassette exons were detected (Figure 5.1.1C), 

suggesting widespread changes in several splicing regulation related pathways and/or 

cellular mechanisms (Soreq et al., 2014). 

We interrogated these differentially expressed/spliced genes for involvement in 

neuronal function and AD-like pathology. A number of genes involved in critical 

pathways including PI3K-Akt signalling pathway [a regulator of neuronal vulnerability 

(Endo et al., 2006; Gary and Mattson, 2001)], spliceosome regulation and regulation of 

microtubule-based processes were identified using Gene Ontology (GO) KEGG 

pathway analysis (Figure 5.1.1D, Table 5.1). qPCR validation and correlation between 

changes observed in RNA-Seq and in an independent mouse cohort are shown in Fig. 

5.1.2 for the different gene pathways and alternative splicing events. These results 

suggest that abnormal cholinergic signalling can effectively modulate several major 

gene pathways with potential to influence the function of target cells in the 

hippocampus. 

We also performed small molecule RNA-Seq and additional miRNA microarray 

hybridization experiments, and observed limited changes in miRNA expression in the 

hippocampus of VAChT-deficient mice (Fig. 5.1.3). VAChTNkx2.1-Cre-flox/flox 

hippocampus showed a mature miRNA expression profile with only marginal differences 

from controls. Only 7 of 700 detectable miRNAs were differentially expressed, and of 

the 20 miRNAs most highly expressed in the hippocampus, comprising 82% of total 

counts, none were differentially expressed (Fig. 5.1.3). These findings point to 

alternative splicing and transcription, or changes in mRNA turnover, rather than miRNA, 

as potential main contributors to phenotypes in VAChT-deficient mice. 
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Figure 5.1.1. Forebrain deletion of VAChT induces alterations in hippocampal 

transcriptome. (A) Principal component analysis of transcripts from the hippocampi of 

control (VAChTflox/flox; gray circles) and VAChTNKx2.1-Cre-flox/flox (red circles) mice. (B) Cluster 

analysis of differentially regulated transcripts in the hippocampus of VAChTNKx2.1-Cre-flox/flox 

(n=3) mice compared to controls (n=4). (C) Number of genes at indicated significance 

cut-off that were found to have an exon inclusion or exclusion event and summary of 

alternative splicing events. (D) List of genes from the PI3K-AKT pathway (grey shading), 

Spliceosome pathway (blue shading), Microtubule polymerization pathway (green 

shading) and other AD genes of interest (yellow shading), identified from KEGG pathway 

analysis of altered transcripts in VAChTNKx2.1-Cre-flox/flox mice. For each gene corresponding 

fold change, corrected statistical significance levels, and RNA expression change is also 

shown. Altered mRNA expression of these genes has been confirmed by qPCR (see Fig. 

5.1.2). 
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Figure 5.1.1. Forebrain deletion of VAChT induces alterations in hippocampal 

transcriptome. 
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Figure 5.1.2. qPCR validation of RNA-Seq data. (A) qPCR validation and Pearson’s 

correlation analysis on transcripts annotated to the spliceosome KEGG pathway 

quantified by RNA-Seq data from the hippocampus of VAChTNKx2.1-Cre-flox/flox mice and 

controls [(r=0.8528, p=0.001), n=6 data are mean ± SEM.]. (B) qPCR validation and 

Pearson’s correlation analysis with RNA-Seq data of transcripts annotated to the PI3k-

AKT KEGG pathway [(r=0.8528, p=0.001). (C) qPCR validation and Pearson’s 

correlation analysis of transcripts annotated to the  microtubule polymerization pathway 

[(r=0.8528, p=0.001). 
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Figure 5.1.2. qPCR validation of RNA-Seq data. 
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Figure 5.1.3. Global hippocampal expression of miRNA is not altered in VAChT 

deficient mice. (A) Small RNA sequencing from six VAChTNkx2.1-Cre-flox/flox mice and five 

controls demonstrated miR-592-5p, miR-219-2-3 and 148a-3p as differentially 

expressed (DE) after FDR correction (P<0.05). (B) Principal Component Analysis (PCA) 

showed marginal separation of the two groups, suggesting that VAChT transcript 

removal does not induce a global change in small RNA expression. (C) Extent of 

absolute change was limited, as none of the top 20 miRNAs expressed in the 

hippocampus were modified, leaving 82% of hippocampal miRNAs unchanged. (D) 

Similar fractions of small RNA reads mapped to parts of the pre-miRNA molecules other 

than the mature-miRNA in VAChTNkx2.1-Cre-flox/flox mice and controls (E) Processing rate 

and/or efficacy might be affected, as a set of 7 seemingly unmodified miRNAs 

presented drastically reduced pre-miRNA levels when quantified by long RNA 

sequencing in VAChTNkx2.1-Cre-flox/flox mice. 
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Figure 5.1.3. Global hippocampal expression of miRNA is not altered in VAChT 

deficient mice. 
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Table 5.1 AD Related Genes Identified in RNA-Seq Data. Genes in either the AKT 

pathway (grey shading), Spliceosome pathway (blue shading), or Regulation of 

Microtubule Polymerization (green shading) and role(s) in AD-like pathology. 
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Table 5.1 AD Related Genes Identified in RNA-Seq Data. 

Gene Link to AD 

Bcar1 Linked to APP transcription (Seenundun and Robaire, 

2007). 

 

Col5a3 SNP linked to AD (Silver et al., 2012). 

 

Fgfr1 Altered expression in aging (Walker et al., 1998). 

 

Gng7 Associated with depression in the elderly (Schol-Gelok et 

al., 2010). 

Protein alterations in animal model of neurodegeneration 

(Karlsson et al., 2012). 

Itga4 Upregulated in astrocytes in AD brain (Orre et al., 2014). 

Potential to bind Ab (Sabo et al., 1995). 

Itga7 Potential to bind Ab (Sabo et al., 1995). 

Kit Mediates cell survival and apoptosis via AKT (Blume-

Jensen et al., 1998) 

Lamb1 SNP linked to AD (Taguchi et al., 2005) 

Myb Regulates neuronal apoptosis (Liu et al., 2004) 

Ngfr Up-regulated in AD brain (Scott et al., 1995) 

SNP linked to AD (Cozza et al., 2008) 

Pck2 SNP linked to AD (Taguchi et al., 2005) 

Altered transcription in AD brain (Brooks et al., 2007) 

Prkaa1 SNP linked to AD (Clarimon et al., 2009) 

Prlr Up-regulated in rat model of AD (Bakalash et al., 2011) 

Pxn Up-regulated in AD brain (Liang et al., 2012) 

Thbs3 Altered transcription in AD brain (Kalback et al., 2004) 

Tnxb SNP linked to AD (Meda et al., 2012; Sherva et al., 2011) 

Vegfc Increased levels in CSF of AD patients (Tarkowski et al., 

2002) 

Cdc40 Linked to alternative splicing in neurodegeneration 

(Tollervey et al., 2011) 

 

Ddx39b SNP linked to Late-Onset-AD (Mohsen et al., 2015)  

 

Hspa2 SNP linked to Late-Onset-AD (Broer et al., 2011; Clarimon 

et al., 2003) 

 

 

Prpf40b 

 

Implicated in human neurodegeneration (Passani et al., 

2000) 

Sf3a2 Altered in aging mouse brain(Meshorer and Soreq, 2002)   

 

Snrnp70 Up-regulated and aggregated in AD brain (Bai et al., 2013) 

 

Srsf2 Regulates splicing events in AD (Raj et al., 2014) 
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Srsf9 Regulates splicing events in AD (Qian and Liu, 2014) 

 

Wbp11 Upregulated in accelerated aging  murine model (Carter et 

al., 2005) 

 

APC Increased expression in AD brain (Leroy et al., 2001) 

CAMSAP2 Altered protein levels in animal model of 

neurodegeneration (McGorum et al., 2015) 

CLASP1 No known link to AD 

EBP4.1 Interacts with APP protein in vivo (Bai et al., 2008) 

LSP1 Epigenetic modifications in AD mouse model (Cong et al., 

2014) 

MAP1A Upregulated in tau deficient mice (Ma et al., 2014) 

Binds soluble A in vitro (Clemmensen et al., 2012) 

MON2 No known link to AD 

NCOR1 Protein expression altered by A and tau (Hoerndli et al., 

2007) 

PKCZ Altered activity in AD brain (Moore et al., 1998) 

RALBP1 Transcription altered in AD brain (Zhang et al., 2015) 

STRIP2 Decreased expression in neurodegeneration (Desplats et al., 

2006) 
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5.4.2 Cholinergic deficit triggers abnormal BACE1 alternative 

splicing and APP Processing 

 
One of the detected abnormally alternatively spliced genes in our database was the 

protease BACE1 (Figure 5.2.1D), which is responsible for the cleavage of APP (Luo et 

al., 2001). The predicted alternative splicing event in VAChT-deficient mice is expected 

to increase expression of BACE1-501, the active protein isoform (Mowrer and Wolfe, 

2008). qPCR analysis validated the predicted splicing event and demonstrated 

increased exon 3/4 inclusion for BACE1 (Figure 5.2.1A).  

Bioinformatics analysis using the RBP-Map tool revealed an enrichment of binding sites 

for hnRNPA2/B1 in BACE1 mRNA. hnRNPA2/B1 is part of a family of RNA binding 

proteins that regulate pre-mRNA splicing, trafficking and maturation (Bekenstein and 

Soreq, 2013). Notably, AD-associated impairments in cholinergic signalling are 

accompanied by decreased expression of hnRNPA2/B1 protein in the AD cerebral 

cortex and in cholinergic impaired mice (Berson et al., 2012; Kolisnyk et al., 2013a). 

Correspondingly, the hippocampus of VAChTNkx2.1-Cre-flox/flox mice showed reduced 

hnRNPA2/B1 protein levels (Figure 5.2.1 B). We then investigated whether 

hnRNPA2/B1 regulates BACE1 splicing by exposing primary hippocampal cultured 

neurons to lentivirus carrying shRNA against hnRNPA2B1. Our results showed changes 

in BACE1 splicing similar to cholinergic deficiency (Figure 5.2.1C), directly implicating 

hnRNPA2/B1 in the regulation of BACE1 splicing. To test for the role of cholinergic 

signalling and the different cholinergic receptors in mediating this splicing event, we 

treated cultured hippocampal neurons with the cholinergic mimetic carbachol. This 

treatment was able to decrease the proportion of BACE1-501. This decrease was 

blocked by co-treatment with the muscarinic antagonist atropine (Figure 5.2.1D). These 

data implicate muscarinic receptors in the regulation of BACE1 splicing. This splicing 

event in BACE1 predicts an increase in the levels of the mature BACE1 protein and 

indeed, immunoblot analysis revealed a 2-fold increase of BACE1 levels in the 

hippocampus of VAChT-deficient mice (Figure 5.2.1E).  
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In late onset AD BACE1 expression is upregulated (Hebert et al., 2008) and it is thought 

to contribute to age-dependent progression in AD pathology (Ly et al., 2013). We 

therefore tested for changes in APP processing in VAChTNkx2.1-Cre-flox/flox mice. 

Aged VAChT-deficient mice (11-14 month old) displayed a modified pattern of Tris-

soluble APP fragments (Figure 5.2.1 F), similar to that of mouse models with APP/PS1 

mutations (Jankowsky et al., 2004; Oddo et al., 2003). In contrast, membrane-bound C-

terminal fragments of APP (α and β CTFs), alterations of which can suggest impaired 

proteolytic processing of the protein [Reviewed in (Selkoe, 2000)], were similar in 

VAChT-deficient mice and controls (Figure 5.2.1 G). APP processing was not modified 

in aged Nkx2.1-Cre mice (Figure 5.2.2 A), suggesting that this effect is due to 

cholinergic dysfunction rather than to Cre expression.  

We then assessed the levels of mouse amyloid peptides using an ELISA kit validated 

for both mouse and human A peptides (Teich et al., 2013). The hippocampus of aged 

VAChTNkx2.1-Cre-

compared to controls (Figure 5.2.1 H), reaching about one third of the levels of those 

found in aged 5XFAD mouse model of AD, which is one of the most aggressive models 

of AD amyloidosis. In comparison, insoluble amyloid peptide was undetectable in the 

brains of VAChT-deficient mice, whereas it was highly abundant in the 5XFAD mice 

(Figure 5.2.1 H). In addition, neither control nor VAChT-deficient mice displayed positive 

Congo red staining, unlike brain sections from 5XFAD mice, which exhibited numerous 

Congo red plaques (Figure 5.2.1 I). These data indicate that although VAChT-deficient 

mice show increased levels of soluble A peptides, they do not seem to accumulate in 

extracellular amyloid plaques. Indeed, the murine amyloid peptide is much less prone to 

aggregation than human A due to two amino acid changes (Jankowsky et al., 2007). 
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Figure 5.2.1 Disrupted APP processing and alternative splicing of BACE1 in 

cholinergic deficient mice. (A) qPCR analysis of alternative splicing events for BACE1 

in the hippocampus of controls and (VAChTflox/flox; gray bars) and VAChTNKx2.1-Cre-flox/flox 

(red bars). Alternative exon levels are normalized to a constitutive exon from the same 

gene (n=6, data are mean ± SEM. **P<0.01). (B) Representative Western blot and 

quantification of hnRNPA2/B1 protein expression in the hippocampus of controls 

(VAChTflox/flox; gray bars) and VAChTNKx2.1-Cre-flox/flox (red bars) mice. hnRNPA2/B1 

expression was normalized to actin (n=4, data are mean ± SEM. **P<0.01). (C) 

Quantification of the BACE1 alternative splicing in primary neuron cultures treated with 

hnRNPA2B1-shRNA (*P<0.05). (D) Quantification of the BACE1 alternative splicing in 

primary neuron cultures treated with 10mM Carbachol and Atropine (n=4, data are 

mean ± SEM. **P<0.05). (E) Representative Western blot and quantification of BACE1 

protein levels in the hippocampus of controls (VAChTflox/flox; gray bars) and VAChTNKx2.1-

Cre-flox/flox (red bars) mice. BACE1 expression was normalized to actin (n=3, data are 

mean ± SEM. *P<0.05). (F) Biochemical analysis and quantification of murine APP 

fragments in brain homogenates of aged expressed as a % [(Signal intensity of the 

fragment/signal intensity of full-length protein) x100]. 11-14 month old controls 

(VAChTflox/flox; gray bars), VAChTNKx2.1-Cre-flox/flox (red bars) and APPswe/PS1dE9 (green 

bars) hippocampal tissue extracts were resolved by Western blotting (data are mean ± 

SEM n=3). (G) Analysis of membrane-bound APP fragments in aged controls 

(VAChTflox/flox; gray bars) and VAChTNKx2.1-Cre-flox/flox (red bars) and APPswe/PS1dE9 

(green bars) (data are mean ± SEM n=3). (H) Murine soluble and insoluble levels of 

Aβ42 in aged (11-14 months old) controls (VAChTflox/flox; gray bars), VAChTNKx2.1-Cre-

flox/flox (red bars) and 5xFAD (black bars) measured by ELISA (n=4) (I) Congo red 

staining in the CA1 region of the hippocampus in aged (11-14 months old) controls, 

VAChTNKx2.1-Cre-flox/flox, and 5xFAD mice. Arrowheads indicate positive-Congo red 

staining suggestive of amyloid plaques. (n=3, Scale bar, 100µm).  
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Figure 5.2.1 Disrupted APP processing and alternative splicing of BACE1 in 

cholinergic deficient mice. 
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Figure 5.2.2 Absence of altered APP processing in aged (11-14 month old) 

C57/BJ6-Nkx2.1-Cre mice. (A) Western blot of APP processing from Tris-soluble 

fraction and quantification of APP fragments detected in aged C57BL/6J-Nkx2.1-Cre 

mice (11-14 month old) showing no significant differences compared to controls 

(n=4).(Data are mean +/- S.E.M.). 
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Figure 5.2.2 Absence of altered APP processing in aged (11-14 month old) 

C57/BJ6-Nkx2.1-Cre mice. 
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5.4.3  Cholinergic deficit leads to age-dependent hippocampal 

tauopathy 

 
In AD, increased levels of soluble A peptides are thought to precede abnormal 

phosphorylation of the microtubule associated protein tau (Iqbal et al., 2010). Previous 

reports suggested that cholinergic activity and tau phosphorylation might be inter-

related (Hellstrom-Lindahl, 2000). Therefore, we used immunofluorescence to assess 

levels of the AT180 tau epitope (T231/S235) in the hippocampus of VAChT-deficient 

mice. This phosphorylation-dependent antibody specific to pT231 has been shown to 

label approximately 70% of paired helical filaments (PHF) in AD brains (Goedert et al., 

1994). Phosphorylation at this epitope reduces the binding of tau to microtubules 

potentially increasing its toxicity (Lim et al., 2008). Immunofluorescence imaging 

revealed a robust increase of AT180 immunoreactivity in the hippocampus of 

VAChTNkx2.1-Cre-flox/flox mice compared to aged-matched controls (Figure 5.3A- 11-

14 month-old mice). To test if the positive immunoreactivity of pTau in VAChT-deficient 

mice is associated with an induction of pathological tau, immunofluorescence with MC1 

antibody was performed. Positive reactivity of conformation-dependent MC1 antibody 

depends on the proximity of N terminal (a.a. 7-9) and C-terminal (313-333) amino acid 

sequences of tau, which is one of the earliest alterations of tau in AD (Weaver et al., 

2000; Wolozin et al., 1986). Immunostaining with MC1 revealed positive 

immunoreactivity in the hippocampus of aged cholinergic-deficient mice, but not in age-

matched controls (Figure 5.3B). 

In agreement with the immunofluorescence data, hippocampal extracts of 

VAChTNkx2.1-Cre-flox/flox mice showed approximately four-fold increases in pTau 

immunoreactive bands, including higher order oligomers detected with AT180, when 

compared to controls (Figure 5.3C and D). On the other hand, total tau and pTauS262 

levels were unmodified in VAChT-deficient mice (Figure 5.3C and D). Taken together, 

our data indicate that deletion of hippocampal VAChT induces hyper-phosphorylation of 

tau and leads to tau pathological conformation as detected by MC1, both of which are 

consistently observed in AD. These data suggest the potential for neuronal toxicity due 

to cholinergic dysfunction. 
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Figure 5.3. Hippocampal cholinergic failure triggers tauopathy in an age-

dependent manner. (A) Phosphorylated Tau levels monitored by immunolabeling with 

phosphorylation-dependent antibodies specific to pT231. Representative images of 

pT231 and Hoeschst labeling in the hippocampus of aged (11-14 month old) controls 

(left) and VAChTNKx2.1-Cre-flox/flox (right) mice. (n=3, Scale bar, 100µm). (B) Representative 

images of MC1 and Hoeschst labeling in the CA1 region of the hippocampus of controls 

(left) and VAChTNKx2.1-Cre-flox/flox (right) mice. (n=3, Scale bar, 100µm). (C) Western blot 

analysis of controls (VAChTflox/flox) and VAChTNKx2.1-Cre-flox/flox aged (11-14 month old) 

hippocampal samples for tau using phosphorylation-dependent anti-tau antibodies 

pT231, Ser 262 and for total Tau protein expression. (D) Quantification of Western 

blots. pT231, Ser 262, and total tau expression were normalized to actin (n= 4, data are 

mean ± SEM. **P<0.01).  
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Figure 5.3. Hippocampal cholinergic failure triggers tauopathy in an age-

dependent manner. 
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5.4.4  Cholinergic deficiency exacerbates age-dependent neuronal 

vulnerability and impaired learning 

 
Synaptic health is compromised in mouse models of AD and synaptic loss is a 

consistent finding in AD-affected individuals (Klein, 2006). To examine synaptic integrity 

we stained hippocampal sections with the synaptic marker PSD95. Aged 

VAChTNkx2.1-Cre-flox/flox mice displayed hippocampal decreases in PSD95-

immunoreactivity, increased microglial activation and up-regulation of inflammatory 

markers, in comparison to age-matched controls, suggesting large-scale synaptic 

dysfunction in these mutants (Figure 5.4.1A-C). These observations predict neuronal 

vulnerability; therefore, we stained brain sections with silver, which accumulates in 

neurons that are more vulnerable to neurodegeneration (DeOlmos and Ingram, 1971). 

Aged VAChT-deficient mice presented intensified silver staining compared to controls; 

this increased silver staining was not observed in young VAChT-deficient mice (Figure 

5.4.1D-E), suggesting that long-lasting decrease in cholinergic signalling may increase 

the vulnerability of hippocampal neurons. Parallel staining of hippocampal sections from 

aged 5XFAD mice compared to control mice performed as a positive control revealed 

similar increases in silver staining as that for VAChT-deficient mice (Figure 5.4.2).  

Activated caspase-3, a marker of apoptosis, was augmented in young VAChTNkx2.1-

Cre-flox/flox mice compared to controls (Figure 5.4.1F). However, aging significantly 

increased the number of activated caspase-positive cells in VAChT-deficient mice when 

compared to controls (Figure 5.4.1F). Also, young VAChT-deficient mice showed no 

alteration in the number of NeuN positive cells across all regions of the hippocampus 

(Figure 5.4.1G, Figure 5.4.2); while NeuN positive cells in CA1 and CA3 region, but not 

dentate gyrus were decreased in aged VAChT-deficient mice (Figure 5.4.1G, Figure 

5.4.2), predicting functional implications for this aging-related hippocampal neuronal 

vulnerability. Thus, impaired cholinergic signalling induces global changes in transcript 

levels, followed by age-related exacerbation of synaptic and neuronal vulnerability. 

To test whether long-lasting cholinergic failure may have age-dependent consequences 

in cognitive function, we subjected aged (11-14 months old) VAChT-deficient mice to 
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the MWM task. Young VAChT-deficient mice (3-6 months old) show little difference from 

controls in acquisition performance on the Morris Water Maze (MWM) task (Al-Onaizi et 

al., 2016). In contrast, aged VAChT-deficient mice took significantly longer and swam a 

greater distance than age-matched controls to find the platform across the four days of 

acquisition (Figure 5.4.1E-F). Furthermore, aged VAChT-deficient mice used distinct 

strategy preferences to find the platform, indicating that their deteriorated performance 

was due to modified learning capacities. Briefly, the analysis of search strategies used 

by each animal was based on a fixed set of criteria (Figure 5.4.1H). At a young age, 

both controls and VAChTNkx2.1-Cre-flox/flox mice predominantly used a more direct 

strategy to reach the platform (strategies 5/6/7, Figure 5.4.1I). In contrast, aged VAChT-

deficient mice used random swimming predominantly as their strategy to acquire the 

task (strategy 2, Figure 5.4.1I), while aged control mice maintained the use of more 

direct strategies. Aged VAChT-deficient mice also exhibited deficits in the probe trial 

(Figure 5.4.1G). Taken together, these results suggest that long-term cholinergic 

deficiency in VAChTNkx2.1-Cre-flox/flox mice led to progressive loss of neurons in the 

hippocampus that worsened spatial information acquisition and cognitive functioning. 
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Figure 5.4.1. Hippocampal cholinergic failure leads to increased neuronal 

vulnerability and worsens cognitive functioning. (A) Immunofluorescence imaging 

showing PSD-95 protein levels in the hippocampus of aged controls or VAChTNkx2.1-Cre-

flox/flox mice and corresponding (B) Western blot analysis for PSD-95 protein levels in the 

hippocampus of VAChTNkx2.1-Cre-flox/flox mice compared to controls (t(6)=4.286, p=0.0052, 

n=4). (C) Immunofluorescence imaging and quantification showing CD-68 

immunoreactivity in the hippocampus of aged VAChTNkx2.1-Cre-flox/flox mice as well as 

levels of IL-1 transcripts as measured by qRT-PCR (t(10)=2.312, p=0.0434, n=6) and IL-

6 transcripts as measured by qRT-PCR (t(10)=2.882, p=0.0204) (Data are mean +/- 

S.E.M., *P<0.05, n=6). (D) Representative images of silver staining in the CA1 region of 

young (3-6 months) and aged (11-14 months) mice. Scale bar, 100µm. (E) 

Quantification of silver stain-positive cells between young and aged hippocampi of 

controls (VAChTflox/flox; gray bars) and VAChTNKx2.1-Cre-flox/flox (red bars). (n=5, data are 

mean ± SEM. **P<0.01). (F) Representative immunofluorescence images for activated-

caspase 3 labelling in the hippocampi of young (Top) and aged (Bottom) mice. 

Quantification of activated caspase-3 immunolabelling in young and aged hippocampi of 

controls (VAChTflox/flox; gray bars) and VAChTNKx2.1-Cre-flox/flox (red bars). (n= 3, data are 

mean ± SEM. *P<0.05, **P<0.01, Scale bar, 100µm). (G) Distribution of neuron-specific 

nuclear antigen (NeuN)-positive neurons in the CA1 region of the hippocampus in 

young (top) and aged (bottom) mice (Scale bar, 100µm). Quantitative comparison of the 

number of neurons labelled by NeuN in the CA1 region of the hippocampus in young 

(top) and aged (bottom) mice (n= 6, data are mean ± SEM. *P<0.05). (H) 

Representative examples of the 7 classified criteria to score the strategies mice used to 

perform in the MWM. Strategies are color coded. (I) Strategy plot reflecting the mean 

strategy-recruitment values for the first and fourth trials of each day for young (left) and 

aged (right) mice. Quantification comparison of total block length values of individual 

mice and their employed strategies over the course of 4-day training period. Grey bars 

represent control mice and red bars represent VAChT-deficient mice. (n= 8, data are 

mean ± SEM. *P<0.05 **P<0.01). 
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Figure 5.4.1. Hippocampal cholinergic failure leads to increased neuronal 

vulnerability and worsens cognitive functioning. 
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Figure 5.4.2 Estimation of neuronal volume in the CA3 and DG region of the 

hippocampus of young (3-6) and aged (11-14) month old cholinergic deficient 

mice as well as cognitive deficits in aged cholinergic deficient mice. (A) Young 

VAChTNkx2.1-Cre-flox/flox mice show no change in number of NeuN positive cells in the CA3 

(t(18)=0.1894, p=0.8519), However in (B) there is a significant reduction in number of 

NeuN positive cells in the CA3 of aged VAChTNkx2.1-Cre-flox/flox mice (t(18)=2.454, 

p=0.0246). No change in the number of NeuN positive cells in the DG region was 

observed in either young (C) (t(18)=0.7814, p=0.4447) or old (D) (t(18)=0.01758, 

p=0.9862) VAChTNkx2.1-Cre-flox/flox mice (Data are mean +/- S.E.M., **p<0.01, n=9).  

Significantly impaired latency (E) (RM-ANOVA, main effect of genotype F(1,7)=6.359, 

p=0.0397), and distance to reach the platform (F) (RM-ANOVA, main effect of genotype 

F(1,7)=7.845, p=0.0265) in aged (11-14 month old) VAChTNkx2.1-Cre-flox/flox mice. (G) Aged 

(11-14 month old) VAChTNkx2.1-Cre-flox/flox mice do not show a preference for the target 

platform during the probe trial portion of the MWM task (RM-ANOVA, main effect of 

interaction F(3,21)=6.068, p<0.0038). (Data are mean +/- S.E.M., *p<0.05, **p<0.01, 

***p<0.001, n=8). (H) Representative images of silver staining procedure from 11-14 

month old wild-type and 5xFAD mice. (I) Quantification of percent silver stain area from 

11-14 month old wild-type and 5xFAD mice (Data are mean +/- S.E.M., ***p<0.001, 

n=3). Scale bar 100 µm. 
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Figure 5.4.2 Estimation of neuronal volume in the CA3 and DG region of the 

hippocampus of young (3-6) and aged (11-14) month old cholinergic deficient 

mice as well as cognitive deficits in aged cholinergic deficient mice. 
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5.4.5  Cholinergic mediated age dependent pathology is partially 

mediated by GSK3 activation 

 
In addition to APP processing and tau hyperphosphorylation, we observed other critical 

biochemical pathways altered in response to cholinergic deficiency, including aberrant 

GSK3 signalling, which has also been shown to play multiple roles in AD (Endo et al., 

2006; Gary and Mattson, 2001). As several genes that regulate the PI3-AKT pathway 

were upregulated in VAChT-deficient mice (Fig. 5.1.1D, 5.1.2), we tested for 

dysregulation of PI3-AKT signalling pathway in these mice by evaluating the 

phosphorylation status of the AKT protein and its downstream target GSK3. AKT 

presented decreased phosphorylation at residue Ser473, with unmodified Thr308 

phosphorylation, in VAChTNkx2.1-Cre-flox/flox hippocampus compared to controls 

(Figure 5.5.1A). Additionally, GSK3 tyrosine phosphorylation, which reflects 

activation of GSK3, was increased in these mutants (Figure 5.5.1B). Hence in addition 

to increased levels of proteins involved in AD pathology, these results suggest potential 

contributions of GSK3 activation in cholinergic-induced deficits.  

To test the role of GSK3 in the abnormal hippocampal changes in cholinergic-deficient 

mice, we chronically treated a cohort of aged (11 months old) VAChTNKx2.1-Cre-

flox/flox mice with the GSK3 inhibitor AR-A014418 (Figure 5.5.1C).  After 28 days of 

treatment, we found that VAChT-deficient mice treated with AR-A014418 showed a 

significant decrease in GSK3 α and  tyrosine phosphorylation when compared to 

VAChTNKx2.1-Cre-flox/flox mice treated with saline (Figure 5.5.1D).  Increased 

phosphorylation at Tyr residues 216 or 279 augments GSK3 activity (Hur and Zhou, 

2010) and examining GSK3 phosphorylation at these residues has been used to 

determine the effectiveness of AR-A014418 (Carter et al., 2014; Yadav et al., 2014). We 

then assessed some of the key alterations detected in the hippocampus of aged 

VAChTNKx2.1-Cre-flox/flox mice. AR-A014418 treatment was able to significantly 

decrease tau T231 hyperphosphorylation and MC1-immunopositive tau in Western blots 

(Chai et al., 2011; Petry et al., 2014), by approximately 50% in VAChTNKx2.1-Cre-

flox/flox mice when compared to saline VAChTNKx2.1-Cre-flox/flox mice. Total levels of 

tau where unchanged (Figure 5.5.1E). Immunofluorescence staining (Figure 5.5.1F) 
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also demonstrated reduced levels of T231 hyperphosphorylated tau in AR-A014418 

treated mice. Compared to saline treated animals, AR-A014418 treatment was able to 

significantly increase levels of PSD-95 protein (Figure 5.5.1G). 

Interestingly, we observed no changes in protein levels of BACE1 following AR-

A014418 treatment in aged VAChTNKx2.1-Cre-flox/flox mice (Fig. 5.5.2A). Furthermore 

AR-A014418 treatment did not alter the alternative splicing event in the BACE1 gene 

(Figure 5.5.2A). Together, these data suggest that the hnRNPA2/B1-mediated 

alternative splicing and subsequent increase in BACE1 protein level are not mediated 

by GSK3 activation. Surprisingly, despite reduced levels of hyperphosphorylated tau, 1-

month AR-A014418 treatment was unable to decrease the elevated levels of activated 

caspase-3, (Figure 5.5.2B). 
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Figure 5.5.1 Cholinergic mediated tau hyperphosphorylation is regulated by GSK3 

activation. (A) Representative Western-blot and quantification analysis of pAKT(S473) 

and pAKT(Thr308) levels in the hippocampus of VAChTNkx2.1-Cre-flox/flox mice. (n=4, data 

are mean ± SEM. *P<0.05 (B) Representative Western blot and quantification analysis 

of phospho-GSK3α and  in the hippocampus of aged (11-14 month old) controls (left) 

and VAChTNKx2.1-Cre-flox/flox (right) mice. Levels of pGSK3α and β to the respective GSK3 

(n= 5 and 3, data are mean ± SEM. **P<0.01, ***P<0.001). (C) Implantation of osmotic 

pumps and delivery of AR-A014418 to aged VAChTNKx2.1-Cre-flox/flox mice. (D) 

Representative Western blot and quantification analysis of phospho-GSK3α and  in the 

hippocampus of aged VAChTNKx2.1-Cre-flox/flox mice treated with AR-A014418 or saline. (E) 

Western blot analysis aged VAChTNKx2.1-Cre-flox/flox treated with AR-A014418 or saline for 

Tau hyper-phosphorylation at T231, MCI immunopositive tau and total Tau protein 

expression. (F) Representative immunolabelling of reduced T231 Tau in the 

hippocampus of aged VAChTNKx2.1-Cre-flox/flox mice (Scale bar, 100µm). (G) Western blot 

analysis for PSD-95 protein levels in the hippocampus of VAChTNkx2.1-Cre-flox/flox mice 

treated with AR-A014418 or saline. (n= 4 saline treated, n=5 AR-A014418 treated, data 

are mean ± SEM. *P<0.05 ***P<0.001). 
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Figure 5.5.1 Cholinergic mediated tau hyperphosphorylation is regulated by GSK3 

activation. 
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Figure 5.5.2 Cholinergic mediated age dependent pathology is partially mediated 

by GSK3 hyper-phosphorylation.  (A) Representative Western blot and quantification 

analysis of BACE1 protein levels, along with qPCR analysis of alternative splicing of 

exon 3/4 of the BACE1 gene in hippocampus of VAChTNKx2.1-Cre-flox/flox treated with AR-

A014418 or saline. (B) Quantification of activated caspase-3 immunolabelling in the 

hippocampus of VAChTNkx2.1-Cre-flox/flox mice treated with AR-A014418 or saline (Scale 

bar, 100µm) (n= 4 saline treated, n=5 AR-A014418 treated, data are mean ± SEM. 

*P<0.05 **P<0.01). 
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Figure 5.5.2 Cholinergic mediated age dependent pathology is partially mediated 

by GSK3 hyper-phosphorylation.   
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5.4.6 Cholinergic dysfunction in human AD brains 

 
Whether cholinergic genes are expressed in lower levels in human AD brain compared 

to cognitively alert controls and may contribute to phenotypes detected herein is not 

fully understood. To examine that, we extracted total RNA from a cohort of 24 adult 

human temporal gyrus samples collected at the Netherland Brain Bank (sample 

information in Table 5.61), including 8 sporadic AD patients and 16 from age-matched 

controls. We then profiled AD-related transcript differences by adopting the particularly 

deep SQUARETM RNA library construction approach (Hebenstreit and Teichmann, 

2011). Of those, 10,885 genes that were expressed showed a significant change. Next, 

we quantified the levels of those transcripts composing the expanded family of 

cholinergic regulator genes (Soreq, 2015). Detected cholinergic transcripts showed 

significantly lower expression levels than other protein-coding genes in the temporal 

gyrus of AD patients compared to aged-matched controls (Figure 5.6A).  

Brain samples from a distinct cohort of AD patients (Ostapchenko et al., 2013) 

supported the RNA-Seq analysis results by showing a significant VAChT loss in AD 

brains compared to age and sex-matched controls (Figure 5.6B), in agreement with 

previous observations (Chen et al., 2011; Efange et al., 1997). Furthermore, the cohort 

of AD brains exhibited 50% decrease in hnRNPA2/B1 protein levels compared to 

age/gender-matched controls (Figure 5.6C), confirming previous results obtained with a 

distinct AD cohort (Berson et al., 2012). Additionally, we found a significant positive 

correlation between VAChT and hnRNPA2/B1 protein levels (Figure 5.6D). AD brain 

samples also showed drastic increases in tau-Thr231 phosphorylation (Figure 5.6E), 

which was inversely proportional to the levels of VAChT (Figure 5.6F). Our findings 

using cholinergic-deficient mice support an intricate timeline whereby cholinergic 

dysfunction per se precedes and may have strong influence in pathological changes 

observed in AD. 
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Figure 5.6 Cholinergic Failure in the human AD Brain associates with loss of 

hnRNPA2/B1 and hyperphosporylation of tau. (A) Cholinergic Genes are down-

regulated in the AD temporal gyrus. Shown are cumulative distribution functions (CDFs) 

for the global change in the expanded family of cholinergic genes (as listed in Soreq, 

2015) compared to global expression patterns between AD and control brain tissues (n= 

8, Kolmogorov Smirnov p=0.03, red and blue lines, correspondingly). (B) Western blot 

analysis of VAChT protein levels in AD brains. (C) Western blot analysis of 

hnRNPA2/B1 protein levels in AD brains. (D) Correlation between hnRNPA2/B1 protein 

levels and VAChT protein levels in AD brains. (E) Western blot analysis of Tau-Thr231 

phosphorylation levels and (F) correlation between VAChT protein levels and Tau Thr-

231 phosphorylation levels. (n= 6, data are mean ± SEM. *P<0.05 **P<0.01). 
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Figure 5.6 Cholinergic Failure in the human AD Brain associates with loss of 

hnRNPA2/B1 and hyperphosporylation of tau. 
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Table 5.6.1 Data for cohort of human brain samples. Samples collected from the 

Netherland Brain Bank, from which total RNA was extracted and sequenced, n=24. 
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Table 5.6.1 Data for cohort of human brain samples. 

NBB id sex age Post 

mortem 

delay 

ph weight region 

2008-047 M 77 06:35 6.10 1250 superior temporalis gyrus 

2000-066 M 80 04:20 7.08 1160 inferior temporalis gyrus 

2007-025 M 82 05:15 6.34 1182 superior temporalis gyrus 

2007-052 M 82 04:15 6.41 1205 medial temporalis gyrus 

2009-040 M 83 06:10 5.91 1102 superior temporalis gyrus 

2008-029 M 84 08:05 5.95 1195 superior temporalis gyrus 

2001-044 M 85 04:25 6.20 1383 superior temporalis gyrus 

2001-063 M 85 04:45 6.38 1215 superior temporalis gyrus 

2010-016 M 86 06:15 ? 1211 superior temporalis gyrus 

2009-107 M 88 04:40 6.22 1054 superior temporalis gyrus 

2005-010 M 93 04:30 6.46 1040 superior temporalis gyrus 

2002-087 M 71 07:40 6.20 1150 superior temporalis gyrus 

2001-016 M 77 08:25 7.19 1118 superior temporalis gyrus 

2000-015 M 78 05:35 6.63 1417 inferior temporalis gyrus 

2005-044 M 80 07:15 5.80 1331 superior temporalis gyrus 

2001-021 M 82 07:40 6.07 1318 inferior temporalis gyrus 

2009-005 M 82 05:10 6.75 1087 superior temporalis gyrus 

2001-086 M 88 07:00 6.84 1368 superior temporalis gyrus 

2003-035 M 96 06:30 6.65 1300 superior temporalis gyrus 

2005-019 M 74 05:00 6.70 1115 superior temporalis gyrus 

2003-084 M 82 10:00 6.53 1488 superior temporalis gyrus 

2009-039 M 82 12:55 6.21 1406 superior temporalis gyrus 

2005-073 M 87 06:05 6.96 1468 superior temporalis gyrus 

2009-075 M 88 07:00 6.76 1230 superior temporalis gyrus 
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Table 5.6.2 Number of detected genes per patient. Number of detected genes 

(RPKM>1) per patient, per SQUARE field. Rows are patients and columns are 

SQUARE fields. 
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Table 5.6.2 Number of detected genes per patient. 

  1 2 3 4 5 6 7 8 9 10 11 12 

AD 1 6152 6729 6154 7224 9942 6284 4273 5176 6504 7879 5815 7500 

2 6961 6995 6251 7516 9611 6478 4549 5294 6698 7778 6204 7747 

3 6945 7107 6627 7388 9746 6221 4529 5037 6789 7983 6145 6059 

4 6811 6704 6530 7555 9664 6193 2877 4868 6250 7976 6246 8079 

5 6123 6417 5848 7628 9529 5953 4637 4639 6140 7481 5814 7654 

6 6956 7093 6308 7469 9927 6730 4542 4951 6091 7465 5699 6550 

7 6310 6217 5749 7176 9410 5910 4393 4695 6247 7203 5531 7122 

8 6770 6999 6436 7352 9675 6730 4451 5233 6761 7500 6114 7589 

Con 9 6374 6456 5957 6785 9250 6039 3889 4726 6506 7182 5307 6633 

10 6820 6919 6083 6883 9270 5950 4367 4861 6763 7729 5266 6545 

11 5771 6029 5191 6705 9445 5654 4197 4565 6188 6804 5649 6986 

12 5660 7181 6486 7208 10160 7867 5148 5422 6939 8082 6243 6555 

13 6332 6962 6220 6468 9430 6576 3876 5126 6959 7805 5361 6657 

14 6103 6486 5507 7139 9583 5781 4467 4604 6150 7328 5632 7412 

15 6380 6414 5592 6486 9377 5557 3940 4277 6225 7869 5571 7090 

16 6511 6673 6217 7495 9710 6147 4238 4947 6788 8011 5732 7296 

 17 6265 6450 5903 7247 9142 5907 4403 4718 6022 7212 5424 7478 

18 7153 7552 6945 7596 9822 6549 4382 5424 7282 8388 5926 7285 

19 6294 5943 5668 7300 9259 5648 4255 4416 6108 7468 5690 7321 

20 6268 6583 5753 7391 9732 6125 4635 4815 5896 7847 5733 7395 

21 7674 7822 6969 8201 10588 7826 5027 5787 7348 8095 6059 7434 

22 7274 7185 6793 7824 9945 6982 4755 5377 7258 8310 6185 7737 

23 7149 7073 6654 7206 9895 6774 4890 5274 6915 8485 5796 8190 

24 5676 6113 5303 6938 9863 6393 4630 4835 6651 7721 5964 6474 
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5.5 Discussion 

 
We employed transcriptome and biochemical assays on cholinergic-deficient mouse 

brain samples to explore the impact of long-lasting forebrain cholinergic dysfunction. 

Whole-genome RNA sequencing demonstrated that cholinergic deficiency modifies 

expression levels and isoform abundance of several key transcripts related to 

Alzheimer’s disease in the hippocampus of VAChT-deficient mice. Cholinergic-mediated 

abnormal BACE1 mRNA splicing in VAChT-mutant mice increased BACE1 protein 

levels and APP processing. Accordingly, cholinergic deficiency caused a 10-fold 

increase in soluble mouse Aβ peptides, age-dependent hippocampal tauopathy, 

synaptic abnormalities, neuronal inflammation, neuronal vulnerability and cognitive 

decline. We also showed that GSK3 activation is critical for cholinergic modulation of 

tau hyperphosphorylation and synaptic vulnerability. Furthermore, we confirmed that 

human AD brains present cholinergic dysfunction and showed that it correlates to 

changes in the levels of hnRNP A2/B1 and hyperphosphorylated tau. Our findings 

indicate that cholinergic impairments confer widespread hippocampal damage and 

malfunction. Furthermore, our data support a causal role for cholinergic signalling as a 

surveillance mechanism controlling hippocampal transcript levels, maintenance of 

cognitive function and neuronal viability in mice.  

Our RNA sequencing analysis revealed a group of differentially expressed transcripts 

related to spliceosome regulation in the hippocampus of VAChTNkx2.1-Cre-flox/flox 

mice, suggesting that the splicing machinery in these mutants could be altered. In fact, 

a significant number of alternative splicing event abnormalities were observed in the 

hippocampus of VAChT-deficient mice. These results are consistent with previously 

reported global changes of alternative splicing in the AD brain (Bai et al., 2013; Berson 

et al., 2012; Tollervey et al., 2011). Importantly, spliceosome signalling pathway 

changes can have broad implications for gene regulation [reviewed in (Shin and 

Manley, 2004)]. 

Alternative splicing in the nervous system is particularly widespread and is essential for 

multiple aspects of neuronal function (Raj and Blencowe, 2015). However, the signal-
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transduction pathways that regulate splicing are not well known (Shin and Manley, 

2004). Our study adds a role for cholinergic signalling in the maintenance of balanced 

alternative splicing. At least part of the cholinergic-control of alternative splicing seems 

to involve hnRNPA2/B1. We have shown that cholinergic deficiency in the cortex 

(Berson et al., 2012; Kolisnyk et al., 2013a) and hippocampus (Figure 2B) leads to 

decreased expression of the hnRNPA2/B1 protein. Related work demonstrated that 

hnRNPA2/B1 is a cholinergic regulated splicing factor (Kolisnyk et al submitted). 

Importantly, knockdown of hnRNPA2/B1 in cultured hippocampal neurons shifted 

splicing of BACE1 mRNA towards increased expression of mRNA species coding for 

the BACE1-501 protein isoform as observed in the hippocampus of VAChT-deficient 

mice. This splicing change led to increased expression of the BACE1 protein that was 

accompanied by a pattern of APP processing similar to that observed in commonly used 

mouse models of AD. The alternative splicing event in BACE1 observed in VAChT-

mutant mice is regulated my M1 muscarinic receptors (Kolisnyk et al., submitted). 

Cholinergic tone has been thought to regulate APP processing through muscarinic 

receptors (Davis et al., 2010; Nitsch et al., 1992). Specifically, M1 signalling has been 

shown to regulate the stability of the BACE1 protein (Davis et al., 2010). BACE1-501 is 

a more stable and active form of the protein (Mowrer and Wolfe, 2008). Remarkably, 

BACE1 expression is increased in late-onset AD (Hebert et al., 2008). Our data suggest 

potential mechanisms by which cholinergic regulation can affect BACE1 expression and 

AD pathology. Interestingly, our data suggest changes in alternative splicing occurs 

post-transcriptionally and independent of GSK3 signalling. Thus, cholinergic deficiency 

may affect BACE1 expression differently than previously described in AD, in which 

GSK3 can regulate BACE1 transcription by increasing promoter activity (Ly et al., 

2013). Our findings promote upstream cholinergic mechanisms as a target for 

diminishing aberrant APP processing in AD.  

In addition to increased levels of soluble A, VAChTNkx2.1-Cre-flox/flox mice also show 

tau hyper-phosphorylation, which destabilizes microtubules and significantly disrupts 

axonal transport. Tau hyper-phosphorylation may also contribute to increased 

vulnerability leading to neuronal death (Billingsley and Kincaid, 1997). In fact, VAChT-
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deficient mice show age-dependent increases in hippocampal argyrophilic staining and 

neuronal death.  

Oligomeric protein aggregation has been linked to toxicity and to neurodegenerative 

disorders, including AD (Maeda et al., 2006). The formation of NFTs alone is insufficient 

for neurodegeneration, yet oligomeric tau may contribute to neurodegeneration and 

synaptic loss in AD (Berger et al., 2007; de Calignon et al., 2012). These observed 

changes in tau in VAChT-deficient mice (i.e. increased oligomer formation), the 

associated age-dependent increase in immunoreactivity of activated caspase-3, and 

ultimately neuronal loss all support a relationship between cholinergic failure and AD-

like pathology in mice.  

Tau hyper-phosphorylation can occur due to the increased activity of GSK3, which 

subsequently leads to an array of impairments, including disruption of LTP (Hooper et 

al., 2007) and cell death in vitro (Zheng et al., 2002). GSK3 over-activation is an 

important hallmark in AD (Hooper et al., 2008). Thus, the GSK3 overactivation observed 

in VAChT-mutant mice represents a potential mechanism by which reduced cholinergic 

activity may have multiple influences in AD pathology in target cells. We tested this 

hypothesis by pharmacological inhibition of GSK3 in aged VAChT-deficient mice. GSK3 

inhibition was able to decrease tau hyperphosphorylation. Also, GSK3 inhibition partially 

restored PSD95 protein levels, but did not decrease caspase-3 activation. These 

findings demonstrate that cholinergic-induced changes in tau and in amyloid processing 

are potentially independent of each other and suggest that cholinergic dysfunction is 

contributing to the pathological outcomes in these animals by altering multiple 

pathways. The pharmacological inhibition of GSK3 was tested in mice in which certain 

pathology was already present (11-12 month-old mice). Hence, further experiments 

should test longer treatments with the compound or genetic ablation of GSK3 genes in 

VAChT-deficient mice to comprehensively dissect the contribution of overactive GSK3 

in other phenotypes.  

Aged VAChT-deficient mice showed a decrease in the number of hippocampal neurons, 

a deficiency that was not observed in young mutants, suggesting that cholinergic tone 

may play a role in guarding hippocampal neuronal health. Additionally, aged VAChT-
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deficient mice showed increased neuroinflammation and reduced number of synapses; 

which are pathologies observed in AD brains (DeKosky and Scheff, 1990; Rogers and 

Shen, 2000; Smale et al., 1995). Mice with excess acetylcholinesterase, which present 

decreased cholinergic function, also show neuroinflammation (Shaked et al., 2009). 

Furthermore, similar to our observation, mice lacking the 2 nicotinic receptor subunit 

show age-dependent loss of hippocampal neurons (Zoli et al., 1999). Of note, 

hippocampal neuronal loss is a critical feature in AD, which is not observed in mouse 

models overexpressing APP and or presenilin 1 with human AD mutations (Stein and 

Johnson, 2002). Hence, long-term cholinergic deficiency may model this aspect of AD in 

a better way. Potential mechanisms involved in cholinergic dysfunction induced 

pathology are shown on Figure 5.7.  

In line with an age-dependent loss of hippocampal neurons, we found that aged 

VAChT-deficient mice showed significant impairments in their learning strategy in the 

MWM task. Poor performance and acquisition on the MWM task has been associated 

with loss of neurons in the hippocampus (Olsen et al., 1994). This suggests that 

neuronal loss in the hippocampus has functional consequences in mice as well.  

In AD brains, we found evidence of cholinergic decline and showed a striking 

relationship between VAChT levels and tau hyper-phosphorylation. Together with the 

mouse data, these observations support the notion that deficient cholinergic signalling in 

AD may correlate to key pathological events, including Tau hyper-phosphorylation.  

Our data reveal that cholinergic deficiency can affect a number of transcriptional 

processes, disturb splicing of key genes and interfere with protein networks that 

normally protect neurons. Interestingly, recent work revealed that basal forebrain 

cholinergic neurons present intraneuronal Aβ accumulation even in young adults, which 

may contribute to their selective vulnerability in AD (Baker-Nigh et al., 2015). 

Cholinergic neurons are thought to be highly dependent on the presence of trophic 

factors for their optimal function and survival (Boskovic et al., 2014; Naumann et al., 

2002), which may also contribute to their demise. Regardless of the mechanisms for 

increased cholinergic vulnerability in AD, it seems that cholinergic dysfunction persisting 
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for a long period is highly related to hippocampal pathology and amyloid accumulation 

(Teipel et al., 2014).  

In short, our results suggest that long-term cholinergic failure per se, which we model by 

disrupting synaptic cholinergic function, can trigger AD-like pathology in mice. More 

importantly, we find that long-term cholinergic deficiency leads to age-dependent 

cognitive decline that is related to neuronal death, a key feature of late-onset AD that is 

not modeled in mice overexpressing human genes with AD-related mutations. Our 

experiments provide a mechanism to explain how decreased cholinergic tone, for 

example due to long-term use of anti-cholinergic drugs, could lead to increased risk of 

dementia (Gray et al., 2015), which may depend on global changes of RNA metabolism, 

including alternative splicing and gene expression. It remains to be determined if 

rescuing cholinergic function prior to development of AD could have an impact in the 

risk of dementia or AD-related pathology. However, it is noteworthy that recent 

observations in potential prodromal AD-affected individuals indicate that cholinesterase 

inhibition decreases the rate of hippocampal atrophy by 45% during one-year treatment 

(Dubois et al., 2015). Our data points towards cholinergic signalling being a global 

mediator of several distinct processes that when dysfunctional lead to pathology. 

Developing effective strategies to reverse the cholinergic deficits in the AD brain may 

therefore prove to be more fruitful then specific therapies based on reversing the 

individual processes it regulates.   
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Figure 5.7. Summary of findings. (A) In control animals, cholinergic input from the 

medial septum regulates target neurons in the hippocampus, through nicotinic and 

muscarinic acetylcholine receptors. Long-term cholinergic signaling maintains 

transcriptome integrity likely by a combination of muscarinic and nicotinic activation. 

These maintain balance of signaling pathways that regulate AD-like pathology. (B) 

Conversely, in cholinergic deficient mice, which models long-term cholinergic 

dysfunction, lack of signaling by muscarinic and nicotinic receptors affects differential 

expression of spliceosome-related genes and reductions in hnRNPA2/B1. BACE1 

mRNA is abnormally spliced leading to an increase of BACE1 expression. As a 

consequence, APP processing is altered, yielding accumulation of soluble Aβ peptides. 

Furthermore, abnormal gene expression influences AKT-GSK3 modulatory genes with 

consequences for AKT and GSK3 phosphorylation. These changes contribute to 

increases in pathological tau phosphorylation and misfolding, neuroinflammation, 

synaptic loss, hippocampal neuronal death and ultimately leading to cognitive decline in 

these animals. 
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Figure 5.7. Summary of findings. 
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Chapter 6 

Cholinergic Regulation of hnRNPA2/B1 Translation by M1 

Muscarinic Receptors 

 

6.1 Chapter Summary 

 
Cholinergic vulnerability, characterized by loss of acetylcholine (ACh), is one of the 

hallmarks of Alzheimer's disease (AD). Recent work has suggested that decreased ACh 

activity in AD may contribute to pathological changes through global alterations in 

alternative splicing. This occurs, at least partially, via the regulation of the expression of 

a critical protein family in RNA processing, hnRNP A/B proteins. These proteins 

regulate several steps of RNA metabolism, including alternative splicing, RNA 

trafficking, miRNA export and gene expression, providing multilevel surveillance in RNA 

functions. To investigate the mechanism by which cholinergic tone regulates 

hnRNPA2/B1 expression, we employed a combination of genetic mouse models and in 

vivo and in vitro techniques. Decreasing cholinergic tone reduced levels of 

hnRNPA2/B1, while increasing cholinergic signalling in vivo increased expression of 

hnRNPA2/B1. This effect is not due to decreased hnRNPA2/B1 mRNA expression, 

increased aggregation or degradation of the protein, but rather to decreased mRNA 

translation by nonsense mediated decay regulation of translation. Cell culture and 

knockout mice experiments demonstrated that M1 muscarinic signalling is critical for 

cholinergic control of hnRNPA2/B1 protein levels. Our experiments suggest an intricate 

regulation of hnRNPA2/B1 levels by cholinergic activity that interferes with alternative 

splicing in targeted neurons mimicking deficits found in AD. 
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6.2  Introduction 

 
Dementia affects roughly 44 million individuals worldwide and represents a large 

economic burden (Wimo et al., 2013). Individuals affected with Alzheimer’s disease 

(AD) present a profound decrease in basal forebrain cholinergic neurons (Whitehouse 

et al., 1982). These findings led to the cholinergic hypothesis of AD and the use of 

cholinesterase inhibitors to mitigate cholinergic failure (Bartus et al., 1982). Recent work 

suggests that the use of cholinesterase inhibitors for one year in possible prodromal 

AD-affected individuals halved rates of hippocampal atrophy, suggesting an intricate 

relationship between cholinergic tone and neurodegeneration (Dubois et al., 2015). 

Cholinergic tone can modulate signal processing by changing electrical properties of 

cells and by modulating intracellular signalling (Dajas-Bailador and Wonnacott, 2004; 

Soreq, 2015). In addition, it has become clear that cholinergic signalling can also 

regulate long-term gene expression, miRNAs (Shaked et al., 2009; Soreq, 2015) and 

alternative splicing (Berson et al., 2012; Kolisnyk et al., 2013a), all of which can 

modulate functional properties of cells (Blencowe, 2006; Novarino et al., 2014). A key 

protein that regulates splicing events in AD is the heterogeneous nuclear 

ribonucleoprotein (hnRNP) A2/B1, which is reduced in brains of AD patients due to 

cholinergic deficiency (Berson et al., 2012) and is reduced in mice with a conditional 

deletion of the Vesicular Acetylcholine Transporter in the forebrain (VAChT) (Kolisnyk et 

al., 2013a).   

hnRNPs are a large family of proteins which package pre-mRNA into larger hnRNP 

particles (Dreyfuss et al., 1993). Each of the hnRNPs contain distinct RNA binding 

motifs, which allows them to exert their roles in pre-mRNA processing (Black, 2003; 

Weighardt et al., 1996). hnRNPA2/B1 is one of the major hnRNP isoforms in the brain 

regulating alternative splicing and the transport of mRNA to distal cellular processes 

(Han et al., 2010). Importantly, knockdown of hnRNPA2/B1 in vivo caused impairments 

in learning and memory (Berson et al., 2012). Taken together, these findings suggest a 

critical role for this RNA binding protein in neuronal function and cognition.  
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Previous work suggests that cholinergic tone can regulate levels of hnRNPA2/B1, 

however the mechanisms involved are unclear. Here we show that hnRNPA2/B1 is a 

cholinergic controlled splicing factor. M1 muscarinic receptor activity is critical for 

cholinergic regulation of hnRNPA2B1 translation.  This work provides a new mechanism 

by which acetylcholine (ACh) can influence targeted neurons, leading to potential 

widespread changes in neuronal function. 

 

6.3  Materials and Methods 

 

6.3.1 Mouse lines 

 
All animals with targeted elimination of VAChT were generated using the VAChTflox/flox 

mouse described in (Martins-Silva et al., 2011). To eliminate VAChT from the forebrain, 

VAChTflox/flox mice were crossed with C57BL/6J-Tg(Nkx2-1-cre)2Sand/J mice (Xu et 

al., 2008) to generate VAChTNkx2.1-Cre-flox/flox (Al-Onaizi et al., 2016). To eliminate 

VAChT from the striatum the VAChTflox/flox mice were crossed with D2-Cre mice 

(Drd2, Line ER44) to generate VAChTD2-Cre-flox/flox (Guzman et al., 2011). VAChT 

overexpressing, ChAT-ChR2-EYFP mice were from the Jackson Laboratory, B6.Cg-

Tg(Chat-Cop4*H134R/EYFP)6Gfng/J (Zhao et al., 2011). Generation of TgR (Shaked et 

al., 2009), M1-KO (Hamilton et al., 1997) and M4-KO mice (Gomeza et al., 1999) were 

previously described. All procedures were conducted in accordance with guidelines of 

the Canadian Council of Animal Care (CCAC) at the University of Western Ontario with 

an approved institutional animal protocol (2008-127). Only male mice were used for all 

experiments. 

6.3.2  Immunofluorescence 

 
Immunofluorescence experiments were performed as previously described (Guzman et 

al., 2011). Primary antibodies used were anti-hnRNPA2/B1 (1:200 Santa Cruz 

Biotechnology Catalog no. sc-10035), anti-NeuN (1:200 PhosphoSolutions, Catalog no. 
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583-FOX3), and anti-GFAP (1:500 AbCam, Catalogue no. ab7260). Sections were 

visualized by Zeiss LSM 510 Meta (Carl Zeiss, Oberkochen, Germany) confocal system 

(10x, 40x, 63x objectives), a 488-nm Ar laser and 633-nm HeNe laser were used for 

excitation of fluorophores. 

6.3.3  Western Blotting 

 
Mouse hippocampi were collected, proteins were isolated, and immunoblotting was 

performed as previously described using RIPA lysis buffer supplemented with protease 

and phosphatase inhibitors (Guzman et al., 2011). Band intensities were quantified 

using FluoroChemQ software (Thermo Fisher Scientific). 

6.3.4 Subcellular Fractionation 

 
To isolate nuclear and cytoplasmic proteins from hippocampal tissue, the NE-PER 

Nuclear Protein Extraction Kit (Thermo Scientific, USA) was used following the 

manufacturer’s instructions.  

6.3.5  Sarkosyl Insolubility 

 
Isolation of Sarkosyl insoluble protein was performed as described (Bai et al., 2013). 

Hippocampal tissue was homogenized in a low salt buffer (10 mM Tris, pH 7.5, 5 mM 

EDTA, 1 mM DTT, 10% (wt/vol) sucrose, Sigma protease inhibitor cocktail, ∼10 ml 

buffer per gram tissue) to detect total protein, a detergent buffer (the low salt buffer with 

the addition of 1% (wt/vol) sarkosyl, N-Lauroylsarcosine) for the sarkosyl soluble 

fraction, and finally 8 M urea with 2% (wt/vol) SDS for the sorkosyl insoluble fraction. 

6.3.6  Ubiquitination Assay 

 
The ubiquitination status of the hnRNPA2/B1 protein was determined using previously 

described protocols (Choo and Zhang, 2009). Briefly, the hnRNPA2/B1 protein was 

immunoprecipitated using the Santa Cruz sc-10035 antibody and run on an SDS-Page 

gel. The gel was then blotted with an anti-ubiquitin antibody (Abcam ab7780). 
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6.3.7 Stereotaxic injections of adeno-associated virus 

 
Injection of AAV virus has been described (Al-Onaizi et al., 2016). Briefly, mice  were  

anesthetized  with  ketamine (100  mg/kg)  and  xylazine (25  mg/kg,  and  1  μl  (titer  of  

~1013  GC/ml)  of  AAV8-GFP-Cre-GFP  or  control  virus (AAV8-GFP, Vector BioLabs, 

Eagleville, PA, USA) was injected into the medial septum (0.98 AP, 0.1 LL and 4.1 DV) 

of VAChTflox/flox mice. A recovery period of 4 weeks was given to allow transgene 

expression, prior to subsequent analyses. 

6.3.8 RNA Sequencing 

 
Total RNA was extracted from hippocampal tissues. cDNA library was prepared using 

TruSeq Stranded Total Sample Preparation kit (Illumina) and ran in a HiSeq 2500 

platform. Datasets are available on ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) 

under accession number E-MTAB-3897. Full description and analysis of the results of 

the RNA-Sequencing dataset are found in chapter 5. 

6.3.9 qPCR and RT-PCR 

 
To measure mRNA expression, total RNA was extracted from freshly dissected 

hippocampal tissue, using the Aurum Total RNA for fatty and fibrous tissue kit (Bio-Rad) 

according to the manufacturer's instructions. cDNA synthesis and qPCR analysis were 

performed as previously described (Guzman et al., 2011). For alternative splicing 

experiments, the alternative exon levels were normalized to a constitutively expressed 

exon from the same gene. RT-PCR was performed as previously described (Ribeiro et 

al., 2007). 

6.3.10 Isolation of Polysomal RNA 

 
Isolation of polysomal RNA was performed as described (Wagnon et al., 2012). 

Samples were homogenized in 1.5 ml of ice-cold lysis buffer (20 mM Tris-HCl, pH 7.4, 3 

mM MgCl2, 10 mM NaCl, 2% sucrose, 0.3% Triton X-100, 2 mM vanadyl ribonucleoside 

complexes [VRC] supplemented with protease inhibitors (complete mini, EDTA-free, 
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Roche, Indianapolis, IN). The homogenate was then centrifuged at 10,000 g for 10 

minutes at 4°C, and the supernatant was transferred to a fresh tube. The lysate was 

treated with either 30 mM EDTA or 0.1 mg/ml RNase A for 30 minutes on ice or if they 

were to be treated with EDTA, VRC was not included in the lysis buffer. Lysates were 

then carefully layered onto 15–55% of sucrose in 25 mM Tris-HCl, pH 7.4, 25 mM NaCl, 

5 mM MgCl2 (and 30 mM EDTA for the EDTA Samples). Gradients were 

ultracentrifuged in a Beckman Instruments SW40Ti rotor at 150,000g for 2 hours and 25 

minutes at 4°C. 

To isolate RNA from the fractions, RNA was collected into 1.5 ml of 7.7 M guanidine-

HCl, 2 ml of 100% ethanol was added, and samples were stored at −20°C. Samples 

were then centrifuged at 4000 for 50 minutes at 4°C. The supernatant was removed and 

200 µL DEPC-treated H2O was added to the pellet. To precipitate the RNA, 500 µL of 

100% ethanol, 20 µL of 3 M sodium acetate, pH 5.2, and 10 µg glycogen were added, 

and the samples were stored overnight at −20°C. The samples were then centrifuged at 

14,000g for 30 minutes at 4°C. Pellets were washed with ice-cold 75% ethanol and air 

dried for 15 minutes at room temperature. RNA was re-suspended in 30 µL DEPC-

treated H2O and quantified by nanodrop, before being converted into cDNA using the 

Applied biosystems cDNA conversion kit. RT-PCR was then performed using primers 

designed to amplify hnRNPA2/B1 or -Actin. 

6.3.11Primary Neuronal Cultures 

 
Primary cultures of hippocampal neurons from E17 mouse embryos were obtained as 

described previously (Beraldo et al., 2013). Cultures were maintained in Neurobasal 

medium with 2% B-27 supplement (Invitrogen). On day 4, cytosine arabinoside (2 μM; 

Sigma) was added to prevent astrocyte growth. Half of the culture medium was 

changed every 2–3 days. Neurons were cultured for 15 days 
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6.3.12 Pharmacological manipulations in Primary Neuronal 

Cultures 

 
On the 15th day of culture, the neurons were treated with different doses of carbachol 

(0, 5, 10, or 50M) dissolved in saline and, 48 hours later, total protein was isolated and 

levels of hnRNPA2/B1 were determined by Western blotting and immunofluorescence. 

To evaluate the contribution of nicotinic and muscarinic receptors in regulating 

hnRNPA2/B1 protein levels, neurons were pre-treated with either mechamylamine (100 

M), atropine (100 M), or both. Then, 1 hour later, neurons were treated with 

carbachol (10 M). Finally, to assess the effect of M1 muscarinic activation, neurons 

were treated with different doses of AF102B (0, 10, 100, 500 M) dissolved in saline. 

6.3.13 Statistical Analysis 

 
Data are presented as mean ± SEM, unless otherwise stated. GraphPad Prism 6 

software was used for statistical analysis. Comparison between two experimental 

groups was done by Student's t test. When several experimental groups or treatments 

were analyzed, one-way ANOVA and, when appropriate, a Tukey's HSD post hoc 

comparison test was used. 

 

6.4 Results 

 

6.4.1 Cholinergic Modulation of hnRNPA2/B1 Protein Levels  

 
Previous experiments indicated that hnRNPA2/B1 is decreased in the AD brains, but 

this is not modeled in genetic mouse models of AD (Berson et al., 2012). In contrast, 

either genetic or immunotoxin disruption of cholinergic tone led to decreased expression 

of hnRNP A2/B1 (Berson et al., 2012; Kolisnyk et al., 2013a). As expected 

VAChTNkx2.1-Cre-flox/flox animals presented a robust decrease in hnRNPA2/B1 levels 

in the hippocampus (Fig. 6.1 A).  
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The Nk2.1 promoter turns on Cre expression early during development (Xu et al., 2008) 

and therefore the resulting decrease in hnRNPA2/B1 levels could potentially be a result 

of developmental suppression of cholinergic tone, rather than being cholinergic 

regulated in adult mice. To test this possibility, we deleted the VAChT gene specifically 

in medial septum neurons and parts of the diagonal band (Al-Onaizi et al., 2016), which 

provides most of the hippocampal cholinergic innervation, of adult VAChTflox/flox mice 

using AAV8-Cre virus. AAV8-Cre-injected mice showed inter-related decline of both 

VAChT and hnRNPA2/B1 proteins, whereas AAV8-GFP-injected mice did not (Fig. 

6.1B). There was a significant relationship between VAChT and hnRNP A2/B1 levels 

(r2=0.755, p<0.001) (Fig. 6.1B). In addition, we tested whether, in the striatum, 

elimination of cholinergic tone would affect hnRNPA2/B1 expression by using 

VAChTD2-Cre-flox/flox mice, with selective striatal VAChT deficiency (Guzman et al., 

2011). These mice showed no changes in hnRNPA2/B1 in their striatum (Fig. 6.1C), 

indicating hippocampal specificity of these effects.   

If expression of hnRNPA2/B1 is a cholinergic-regulated process, one would expect that 

increased cholinergic tone should have opposite effects than those observed by 

decreased VAChT expression. ChAT-ChR2-EGFP mice overexpress VAChT in the 

hippocampus and consequently present increased cholinergic tone and ACh release 

(Kolisnyk et al., 2013b). These mice present increased hnRNPA2/B1 protein levels (Fig. 

6.1D), suggesting that VAChT levels critically regulate hnRNPA2/B1 expression.  

Decline of hnRNPA2/B1 could be solely related to VAChT depletion, or alternatively, it 

could reflect the functional loss of ACh signalling in the CNS. To distinguish between 

these possibilities, we tested the hippocampus of TgR mice over-expressing soluble 

AChE (Shaked et al., 2009), which causes cholinergic insufficiency. TgR mice showed 

decrease in hnRNPA2/B1 levels similar to mice with decreased VAChT (Fig. 6.1E), 

suggesting that ACh synaptic levels are causally involved in the regulation of 

hnRNPA2/B1 expression. Cre expression by itself had no effect on hnRNPA2/B1 levels 

as can be seen when we compared expression of hnRNPA2/B1 in the hippocampus of 

Nkx2.1-Cre and WT mice (Fig. 6.1F). Taken together these data give strong support for 

the hypothesis that hnRNPA2/B1 is a cholinergic regulated splicing factor.  
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RNA binding proteins such as hnRNPA2/B1 are predominantly expressed in the 

nucleus, but they can accumulate in the cytoplasm and cause neuronal toxicity (Kim et 

al., 2013; Wolozin, 2012). We therefore determined by immunofluorescence staining if 

the localization of hnRNP A2/B1 is changed in response to decreased cholinergic tone.  

Compared to controls VAChTNkx2.1-Cre-flox/flox had a decrease in hnRNPA2/B1 

immunostaining in the CA1, CA3, and Dentate Gyrus regions of the hippocampus (Fig 

6.2A-D). hnRNPA2/B1 was present mainly in the nucleus of both neurons (labeled by 

NeuN, Fig. 2-A-D) as well as in astrocytes (Fig. 6.2E) in control mice. We did not 

observe any shift in the localization of hnRNPA2/B1 in VAChT-deficient mice, only an 

overall decrease in the levels of staining. To confirm these observations we used 

subcellular fractionation to assess if VAChTNkx2.1-Cre-flox/flox mice show changes in 

hnRNPA2/B1 distribution between the nuclear and cytoplasmic fractions (Fig. 6.2F). In 

both control and VAChT-deficient mice, hnRNPA2/B1 was predominantly nuclear, 

following the distribution of the nuclear enzyme PIAS1 (Soares et al., 2013). However, 

VAChTNkx2.1-Cre-flox/flox mice showed consistently reduced nuclear hnRNPA2/B1 

levels (Fig. 6.2F). 
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Figure 6.1. Analysis of hnRNPA2/B1 protein levels in genetically modified mice 

with differential expression of VAChT. (A) Representative Western blot and 

quantification of hnRNPA2/B1 protein expression in the hippocampus of  VAChTflox/flox 

and VAChTNKx2.1-Cre-flox/flox mice. hnRNPA2/B1 expression was normalized to actin (n= 

6). (B) hnRNPA2/B1 protein levels positively correlate with AAV induced reduction of 

VAChT. The graph shows values for each individual mice injected either with GFP or 

CRE. The image is from the medial septum of a virus-injected mice (C) Striatal 

elimination of VAChT does not alter hnRNPA2/B1 protein levels in the striatum of 

VAChTD2-Cre-flox/flox mice (n=4). (D) Transgenic mice over-expressing VAChT have 

increased hnRNPA2/B1 protein levels compared to controls (n=4). (E) hnRNPA2/B1 

protein levels from the hippocampus of TgR transgenic mice (n=3). (F) No change in 

hnRNPA2/B1 protein levels compared to controls in the hippocampus of c567BL/6J-

Nkx2.1-Cre mice (n=3) (Data are mean +/- S.E.M., *p<0.05, **p<0.01).  
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Figure 6.1. Analysis of hnRNPA2/B1 protein levels in genetically modified mice 

with differential expression of VAChT. 

 

 

 

 

 

 

 



359 
 

 
 

Figure 6.2. Characterization of decreased hnRNPA2/B1 protein levels in the 

hippocampus of VAChT-deficient mice. (A) Representative images of 

staining for NeuN, hnRNPA2/B1 and Hoeschst in the CA1 region of the hippocampus in 

controls (A) and VAChTNKx2.1-Cre-flox/flox mice (B) (Scale bar, 50 um). Expression of 

hnRNPA2/B1 in the CA3 (C) and dentate gyrus (D) by immunofluorescence reveals 

general decrease of the protein and nuclear localization in VAChT-deficient mice. (E) 

Localization of hnRNPA2/B1 with GFAP glial marker in the hippocampus of VAChTNkx2.1-

Cre-flox/flox mice. (F) Subcellular fractionation assay of hnRNPA2/B1 protein shows 

hnRNPA2/B1 expression is mainly nuclear (data are mean +/- SEM, *P<0.05).  
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Figure 6.2. Characterization of decreased hnRNPA2/B1 protein levels in the 

hippocampus of VAChT-deficient mice. 
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6.4.2  Mechanisms of cholinergic modulation of hnRNPA2/B1  

 
To investigate mechanisms by which cholinergic tone may regulate the levels of 

hnRNPA2/B1 protein, we evaluated ubiquitination, a modification that can facilitate 

protein degradation by the proteasome (Hochstrasser, 1996). Immunoprecipitated 

hnRNPA2/B1 from the hippocampus of controls and VAChTNkx2.1-Cre-flox/flox mice 

was resolved by SDS-PAGE and probed with ubiquitin antibodies. VAChT-deficient 

mice showed no change in ubiquitination status of hnRNPA2/B1 protein, when 

normalized to total hnRNPA2/B1 protein levels (Fig. 6.3A).  

We also examined whether cholinergic tone affects aggregation of hnRNPA2/B1. 

Notably, hnRNPA2/B1 has a prion-like domain that favours increased aggregation when 

mutated (Kim et al., 2013). Protein aggregation was investigated by fractionating 

hippocampal extracts into sarkosyl soluble and insoluble fractions (Fig. 6.3B). In both 

controls and VAChT-deficient mice, hnRNPA2/B1 was mainly present in soluble 

fractions, unlike the U1-70k snRNP which has been shown to be present in insoluble 

fractions (Bai et al., 2013) (Fig. 6.3B). This result excluded the option that cholinergic 

tone increases aggregation of hnRNPA2/B1. Interestingly, despite different levels of 

hnRNPA2/B1 protein expression, both control and VAChT-deficient mice exhibited 

similar hnRNPA2/B1 mRNA levels as determined by RNA-Sequencing (Fig. 6.3C), as 

observed in AD brains (Berson et al., 2012).  

It has been previously reported that protein levels of hnRNPA2/B1 are directly 

proportional to changes in the RNA editing of the 3’ UTR of its mRNA, with a shift away 

from a nonsense mediated decay (NMD) sensitive transcript increasing protein levels 

(Bonomi et al., 2013) (Fig. 6.3D). We evaluated by qPCR the ratio of NMD sensitive to 

NMD insensitive versions of the hnRNPA2/B1 transcript in the hippocampus of 

VAChTNkx2.1-Cre-flox/flox mice. Compared to controls, we observed a significant shift 

towards the NMD+ product in VAChT-deficient mice (Fig. 6.3E).   

We then tested whether cholinergic tone modulation of NMD+ transcript could regulate 

hnRNPA2/B1 protein expression levels by limiting protein translation. For this, we 

studied the recruitment of hnRNPA2/B1 mRNA to ribosomes. Ribonucleotide-protein 
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complexes (RNPs) were isolated from hippocampal lysates, and sucrose density 

gradient fractionation was used to separate polyribosomes from large neuronal RNA 

granules (Fig. 6.4A) (Wagnon et al., 2012). Distribution of hnRNPA2/B1 transcripts in 

individual fractions was determined by RT–PCR in three individual mice of each 

genotype (Fig. 6.4B-C). In control mice, hnRNPA2/B1 mRNAs associated with 

polysomes and RNA granules, and treatment with EDTA, which dissociates mRNA from 

polysomes, equally distributed hnRNPA2/B1 mRNAs across fractions (Fig. 6.4D-E). 

However, in VAChTNkx2.1-Cre-flox/flox mice, distribution of hnRNPA2/B1 mRNAs was 

widespread throughout the fractions, resembling the distribution observed after EDTA 

treatment (Fig. 6.4D-E). The abundant β-actin mRNA remained unaltered between 

genotypes, demonstrating specificity towards hnRNPA2/B1 (Fig. 6.3F-G). These results 

indicate that decreased cholinergic tone leads to diminished translational capacity of 

hnRNPA2/B1 mRNA transcripts to modulate the efficiency of hnRNPA2/B1 protein 

translation. 
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Figure 6.3. Mechanisms of cholinergic regulation of hnRNPA2/B1 protein levels.  

(A) No change in ubiquitination status of hnRNPA2/B1 was observed when 

hnRNPA2/B1 from the hippocampus of VAChT deficient mice (p= 0.3067, n=7 Control 

and n=6 VAChTNkx2.1-Cre-flox/flox mice) was immunoprecipitated using anti-hnRNPA2/B1 

antibody and probed with anti-ubiquitin antibody. (B) Sarkosyl insolubility assay shows 

no aggregation of hnRNPA2/B1 in VAChTNkx2.1-Cre-flox/flox mice (n=4). (C) Transcript level 

of hnRNPA2/B1 in the RNA-Seq dataset (p=0.9124, FDR=1). (D) Cartoon of the 

alternative splicing in the 3’UTR of hnRNPA2/B1 transcripts (Figure adapted from 

(Bonomi et al., 2013), the FL transcript is predicted to be stable and undergo translation 

whereas the NMD sensitive transcript is not; primers used to assay this event are show 

in the schematic. (E) Increased in the proportion of NMD+ hnRNPA2/B1 transcripts in 

the hippocampus of VAChTNkx2.1-Cre-flox/flox mice (n=4, p<0.01).  
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Figure 6.3. Mechanisms of cholinergic regulation of hnRNPA2/B1 protein levels. 
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Figure 6.4. Forebrain cholinergic tone regulates translation of hNRNPA2/B1 in the 

hippocampus. (A) Hippocampal brain tissue was fractionated on a linear sucrose 

gradient. Fractions were collected and analyzed by spectrophotometry to determine 

position of monosome (80s), polysomes and RNA granules. (B) RT-PCR of 

hnRNPA2/B1 transcripts in VAChTflox/flox and VAChTNkx2.1-Cre-flox/flox mice in the absence 

or presence of EDTA. (C) RT-PCR of Actin transcripts in VAChTflox/flox and 

VAChTNkx2.1-Cre-flox/flox mice in the absence or presence of EDTA. (D-E) show 

quantification of data for the hnRNPA2/B1 transcripts from the three different VAChT-

deficient and three control mice in the absence or presence of EDTA. (F-G) show 

quantification results for Actin transcripts from the three different VAChT-deficient and 

three control mice in the absence or presence of EDTA. 1-12 are the fraction numbers. 

The values plotted are averaged from gels in (C) (Data are mean).   
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Figure 6.4. Forebrain cholinergic tone regulates translation of hNRNPA2/B1 in the 

hippocampus. 
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6.4.3  Muscarinic Signalling Regulates hnRNPA2/B1 Translation 

by an NMD Mechanism 

 
To further understand how cholinergic signalling regulates hnRNPA2/B1 levels, we 

treated neuronal hippocampal cultures from wild-type mice with the cholinergic mimetic 

carbachol (10µM) (Fig 6.5 A-B). This treatment effectively increased hnRNPA2/B1 

protein levels in immunofluorescence and immunoblot experiments, and this effect 

could be blocked by muscarinic, but not by nicotinic antagonist treatment (Fig. 6.5C).   

To study the contribution of muscarinic receptor subtypes, we evaluated hnRNPA2/B1 

levels in the hippocampus of muscarinic receptor knockout mice. Compared to wild-type 

mice, M1, but not M4 receptor knockout mice, showed a decrease in hnRNPA2/B1 

protein levels, resembling VAChTNkx2.1-Cre-flox/flox mice (Fig. 6.5D). Taken together, 

these experiments suggest that decreased cholinergic tone, likely due to insufficient M1 

receptor activation, changes hnRNPA2/B1 protein levels by regulating mRNA 

translation. 

To further investigate the importance of M1 muscarinic receptors in the regulation of 

hnRNPA2/B1 protein levels in hippocampal neurons we treated neuronal hippocampal 

cultures from wild-type mice with the M1 muscarinic agonist AF102B (Fisher et al., 

1989). Compared to saline treated neurons, those treated with 100 µM of AF102B 

showed a significant increase in protein levels of hnRNPA2/B1 (Fig. 6.5E). Interestingly, 

neurons treated with 500 µM of the compound did not show this effect, suggesting a “U-

shaped” dose-effect function for this effect, a reported effect for M1 muscarinic 

receptors (Thomsen et al., 2012).    

We then evaluated whether in vitro cholinergic regulation also changes the NMD+ 

product. Compared to saline treatment, carbachol shifted the expression of 

hnRNPA2/B1 RNA towards the NMD insensitive full-length mRNA product (Fig 6.5F). 

Furthermore co-treatment with atropine blocked this effect and returned the ratio to 

control levels, similar to what we observed for hnRNPA2/B1 protein levels (Fig. 6.5C). 

These data suggest that the ratio of NMD+ hnRNPA2/B1 gene products predict change 
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in protein levels, and that the regulation of NMD sensitivity is dependent on muscarinic 

signalling. 
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Figure 6.5. Muscarinic Regulation of hnRNPA2/B1 Translation. (A) Representative 

immunofluorescence images and (B) Western blots with quantification of hnRNPA2/B1 

protein levels in primary hippocampal neurons after treatment with carbachol for 48 

hours.  hnRNPA2/B1 expression was normalized to actin (n=3, Data are mean ± SEM. 

*p<0.05). (C) Representative Western blot and quantification of hnRNPA2/B1 

expression in primary hippocampal neurons after treatment with carbachol, 

 mecamylamine, and atropine. hnRNPA2/B1 expression was normalized to actin (n=4, 

*p<0.05). The values plotted are averaged from the gels of each individual experiment. 

(D) Representative Western blot and quantification of hnRNPA2/B1 expression in 

hippocampal tissue of M4 muscarinic knockout mice (n=7), and M1 receptor knockout 

mice (n=7 Control and n= 8 M1 KO mice *p<0.05). (E) M1 muscarinic receptor agonist 

AF102B significantly increased hnRNPA2/B1 protein levels in primary hippocampal 

cultures (n=5 *p<0.05). (F) Increased expression of the full-length hnRNPA2/B1 

transcripts of cells treated with carbachol is blocked by the administration of atropine 

(n=5, *p<0.05). (G) Proposed model wherein muscarinic M1 receptors signaling would 

shift the ratio of hnRNPA2/B transcripts, favouring the full length transcripts, and 

therefore increase translation of the protein.  
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Figure 6.5. Muscarinic Regulation of hnRNPA2/B1 Translation. 
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6.5 Discussion 
 

In this study we combined a variety of in vivo and in vitro techniques to evaluate the 

contribution of cholinergic signalling to expression levels of hippocampal hnRNPA2/B1 

protein. Using a number of mouse lines, we demonstrated that hnRNPA2/B1 protein 

levels in the hippocampus are exquisitely sensitive to changes in cholinergic tone.  

Interestingly, we observed no change in hnRNPA2/B1 protein levels in striatum- specific 

VAChT mutants, whereas there is a body of evidence that cholinergic signalling can 

affect the levels of this protein in both cortical and hippocampal regions in vivo (Berson 

et al., 2012; Kolisnyk et al., 2013a). Given these findings it is likely that it is an intrinsic 

property of the target cells themselves that dictate their change in hnRNPA2/B1 

translation in response to cholinergic activity. Our results highlight the critical role of the 

Gq coupled M1 muscarinic receptor in governing hnRNPA2/B1 protein levels.  

Unlike the rare hnRNPA2/B1 mutation that increases aggregation and nuclear exclusion 

(Kim et al., 2013), we did not find aggregation of hnRNPA2/B1 in mice with forebrain 

cholinergic deficiency, suggesting that in these mice, and likely in AD brains, 

hnRNPA2/B1 dysfunction occurs by a separate and distinct mechanism. Furthermore, 

we did not see an increase in ubiquitination, suggesting that changes in hnRNPA2/B1 

protein levels do not occur at the post-translational level. In line with this, we found that 

it may in fact be abnormal translation that drives regulation of hnRNPA2/B1.  

A common mechanism for the regulation of the translation of RNA binding proteins is 

regulation by unproductive splicing and translation (RUST), where the alternative 

spicing of a transcript affects its translation efficiency (Lareau et al., 2007; McGlincy and 

Smith, 2008). This may serve as a potential mechanism for cholinergic control of the 

translation of this RBP. Accordingly, we found that the levels of hnRNPA2/B1 transcripts 

were maintained in cholinergic-deficient mice or AD brains (Berson et al., 2012), but 

hnRNPA2/B1 translation was selectively decreased. Notably, hnRNPA2/B1 has been 

shown to be auto-regulated by a RUST mechanism involving alternative splicing in its 

3′-untranslated region that leads to NMD driven by mTOR1C (Dempsey, 2012; 

McGlincy et al., 2010), which is a key effector of muscarinic receptor signalling (Slack 
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and Blusztajn, 2008). Correspondingly, we found that cholinergic control of 

hnRNPA2/B1 translation is mediated by M1 muscarinic receptors (Figure 6.5G).  

Targeting the interactions between RBPs and RNA may serve as a new potential 

therapeutic avenue to restore the RNA-editing deficits observed in neurodegenerative 

diseases (Bai et al., 2013; Berson et al., 2012; Qian and Liu, 2014; Tollervey et al., 

2011). A number of substances, including regularly prescribed antibiotics, have been 

shown to non-selectively alter alternative splicing in the brain (Graveley, 2005; Kole et 

al., 2012; Tollervey et al., 2011), however this approach lacks the ability to specifically 

target “impaired” RBP-RNA interactions.  

Cholinergic failure is one of the hallmarks of AD, with the basal forebrain cholinergic 

system being heavily affected by the disease (Whitehouse et al., 1982). Data from the 

ADNI (Alzheimer’s Disease Neuroimaging Initiative) consortium, has linked cholinergic 

failure in AD to both pathological outcomes (Teipel et al., 2014) as well as cognitive 

impairments in AD (Grothe et al., 2014). Further evidence for the importance of 

cholinergic signalling to the etiology of AD comes from clinical evidence that the long-

term use of anticholinergic medication, specifically anti-muscarinic drugs, significantly 

increases the risk of developing dementia (Gray et al., 2015). Interestingly, 

administration of anti-muscarinic agents to AD patients exacerbates their symptoms 

(Lim et al., 2015). Together these results suggest a crucial role for cholinergic tone in 

AD, with specific importance of muscarinic signalling.  

The main pathological hallmarks of AD are the accumulation of Aplaques and of 

hyperphosphorylated tau (Huang and Jiang, 2009). M1 muscarinic signalling has been 

linked to both of these processes. Activation of the receptor has been shown to alter tau 

phosphorylation both in vitro (Sadot et al., 1996) and in vivo (Genis et al., 1999). 

Moreover, deletion of M1 muscarinic receptors increases Arelated pathology in a 

transgenic mouse model overexpressing mutated APP (Davis et al., 2010). 

Furthermore, M1 agonists have been shown to reverse Arelated pathology in mouse 

models of AD (Caccamo et al., 2006). These findings suggest that M1 receptors are key 

mediators of AD pathology. How hnRNPA2/B1 protein expression may contribute to 

pathology remains to be determined.  
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Cholinergic failure also plays an important role in one of the most important and 

apparent cognitive deficits of AD, memory loss (Bartus et al., 1982). There is a strong 

correlation between loss of basal forebrain cholinergic neurons and cognitive 

functioning in AD patients. Furthermore, mice with a forebrain specific deletion of 

VAChT have severe deficits in performance on the Paired-associates learning (PAL) 

touchscreen task (Al-Onaizi et al., 2016), a rodent version of the Cambridge 

Neuropsychological Test Automated Battery (CANTAB) tests used in humans, which 

has been shown to be selective for the memory impairments in AD patients (Egerhazi et 

al., 2007). Importantly, lentiviral mediated knockdown of hnRNPA2/B1 also produced 

cognition impairments in mice (Berson et al., 2012).   

Taken together, our findings indicate an intricate relationship between M1 muscarinic 

signalling and hnRNPA2/B1 translation. These findings lay the ground work for new 

therapeutic avenues for the treatment of AD. Specifically, it points to the potential of M1 

muscarinic positive allosteric modulators to improve long-term changes in RNA 

metabolism and cognitive deficits due to cholinergic malfunction in AD. Noteworthy M1 

muscarinic positive allosteric modulators have shown promising results to improve 

cognition in non-human primates (Lange et al., 2015). Our results show novel 

mechanisms by which log-term cholinergic dysfunction can regulate target cells. 
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7 Chapter 7 

Summary and Conclusion 

 

7.1  Summary of Major Findings 

 
Cholinergic dysfunction is a hallmark of Alzheimer’s disease. This dysfunction is 

hypothesized to underlie cognitive symptoms of the disease. However, the exact 

contribution of cholinergic dysfunction to the etiology of the disease is unclear. In this 

thesis, we sought out to determine whether alterations in cholinergic signalling in the 

brain (either increased or decreased) leads to changes in cognitive functioning. 

Furthermore our goal was to determine the molecular mechanisms of cholinergic 

dysfunction, and how changes in these mechanisms can contribute to the pathological 

outcomes in Alzheimer’s disease.  

 

In chapter 2 of this thesis, we characterized a mouse line which carries several copies 

of the vesicular acetylcholine transporter (VAChT) gene. We showed that increase in 

VAChT gene copy number leads to overexpression of functional VAChT with 

consequent increase in cholinergic tone. We then carried out a series of behavioural 

assays to determine the implications on cognition of increased cholinergic tone. We 

demonstrated that these mice have marked improvement in motor endurance. However, 

they also have severe cognitive deficits, including attention deficits and dysfunction in 

working memory and spatial memory. These data, taken together, showed that 

increased VAChT expression increases acetylcholine release in the brain and that this 

is severely detrimental to the cognitive processing of the animals. Although cholinergic 

tone is reduced in the Alzheimer’s brain, the data presented highlight the importance of 

striking a balance in cholinergic signalling in the brain.  

 

In chapter 3, we endeavoured to evaluate the effect of long-term cholinergic dysfunction 

in the forebrain. We evaluated the involvement of acetylcholine to forebrain function by 

genetically eliminating VAChT from this population of neurons. Included in the 
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acetylcholine innervated forebrain regions is the PFC, a key brain region in the 

regulation of executive functioning. We therefore tested mice on measures of executive 

function. This was assessed using both a pairwise visual discrimination test and a 5-

choice serial reaction time task (5-CSRT). Results of the pairwise test showed that 

VAChT-mutant mice were able to learn the initial stimulus pairing, however when the 

stimulus pairings were switched the mice failed to learn the new stimulus-reward rule. 

Similarly, on the 5-CSRT the VAChT mutant animals were able to learn the task, but 

once the stimulus presentation length was reduced (increasing attentional demand), the 

mice showed prominent impairments on the task compared to controls.  

 

Given the impaired cognition of the animals, we performed in vivo magnetic resonance 

spectroscopy, to assess potential changes in PFC circuitry and neuronal function. This 

analysis showed changed levels of the metabolites taurine and lactate. The results 

suggested changes in neuronal metabolism in the PFC of the VAChT-deficient mice. 

The PFC of the mice showed a severe decrease in the protein levels of the RNA binding 

protein heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1). Accordingly, a 

number of genes in the PFC of VAChT-deficient mice were found to be alternatively 

spliced. Amongst these genes was pyruvate kinase M, a key enzyme involved in lactate 

metabolism. In chapter 3, we were able to determine the impact of cholinergic 

dysfunction in the forebrain and furthermore were able to determine some of the 

molecular mechanisms that result from cholinergic dysfunction. We therefore sought to 

expand upon these two key findings in the following chapters. 

 

Chapter 4 was specifically designed to dissect the mechanism underlying cholinergic 

control of attention, based on our findings in chapter 3 that mice lacking release of 

acetylcholine into the PFC were impaired on a task of attention. Chapter 4 was 

dedicated to determining the roles of nicotinic cholinergic receptors in this task. 

Significant literature exists examining the role of 2 nicotinic receptors (b2nAChR) on 

the 5-CSRT, however, the role of the α7 nicotinic ACh receptor (α7nAChR) in attention 

is ambiguous. To clarify the role of the receptor on the task, we trained α7nAChR 

knockout mice on the 5-CSRT task. α7nAChR knockout mice showed impairments in 
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measures of sustained attention. This was assessed by comparing the performance on 

the first half of the task to the second half. We were able to completely reverse these 

impairments by treating mutant mice with an agonist of the β2nAChR. In addition, 

treating α7nAChR knockout mice with β2nAChR agonist activated the same 

biochemical response in the PFC as did the administration of a α7nAChR agonists in 

control, non-transgenic mice. The work presented in chapter 4 of this thesis details a 

complex interplay between the α7nAChR and β2nAChR receptors. This complex 

relationship regulates attentional performance on the 5CSRT task in mice. These data 

provide detailed mechanistic insight into cholinergic regulation of attention. 

 

In chapter 5, we pursued the specific molecular mechanisms that underlie long-term 

cholinergic dysfunction in the brain. To achieve this, we used mice with a deletion of 

VAChT in the forebrain in order to model cholinergic aberrations. We then employed 

RNA-sequencing of hippocampal samples from these mice to study genome-wide 

transcriptome changes. Using this approach we were able to show that cholinergic 

dysfunction produces alterations in RNA metabolism. We then determined the impact of 

these changes in RNA metabolism by focusing our studies on changes in key 

transcripts. We showed that VAChT-mutant mice had abnormal splicing of 

the BACE1 gene, and that this was regulated by hnRNPA2/B1. This change in BACE1 

splicing lead to an overall increase in protein levels of BACE1, altered APP processing 

and accumulation of soluble Aβ1-42 in the brain of these animals. These pathological 

changes also involved age-related increased tau hyper-phosphorylation, and other 

neuronal abnormalities, ultimately leading to neuronal death in the 

hippocampus.  These results indicate that alterations in RNA metabolism are a key 

mechanism by which cholinergic signalling in the brain can trigger Alzheimer’s-like 

pathology in mice.  

 

In chapter 6, we identified specific cellular mechanisms underpinning cholinergic 

regulation of hnRNPA2/B1. In both chapters 3 and 5 we provided evidence of the 

importance of this relationship to neuronal function. To study this relationship, we 

employed a series of genetically modified mouse models, pharmacology, and a 
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combination of in vivo and in vitro techniques. In VAChTNkx2.1-Cre-flox/flox transgenic mice, 

we showed that reducing cholinergic signalling decreased protein levels of 

hnRNPA2/B1. Genetic manipulations that increased cholinergic signalling, by increasing 

gene copy number of VAChT, had the opposite effect, increasing hnRNPA2/B1 protein 

levels. We then provided biochemical evidence that regulation of hnRNPA2/B1 protein 

levels is not mediated by transcription, protein aggregation, or protein degradation. We 

found however that cholinergic signalling regulates the translation of hnRNPA2/B1. 

Furthermore, by combining in vitro and in vivo experiments, we demonstrated that M1 

muscarinic receptors control hnRNPA2/B1 protein levels. In this chapter we outlined a 

sophisticated regulatory mechanism of hnRNPA2/B1 by cholinergic activity, 

complimenting findings of previous chapters.  

 

7.2 Limitations and Future Studies. 
 

 

The mouse line used for studies presented in Chapter 2, the ChAT-ChR2-EYFP mice 

were originally designed for optogenetic experiments. In these mice, the BAC construct 

was engineered to express an excitatory rhodopsin specifically in cholinergic neurons. 

However given the unique organization of the cholinergic gene locus (See Chapter 

1.2.1), the VAChT gene is present in the BAC. Given our findings that these mice 

present several additional functional gene copies of VAChT, the utility of these mice for 

optogenetic experiments is questionable. Therefore future endeavours should focus on 

this question. A second mouse line was also generated using this same approach (Zhao 

et al., 2011), the B6.Cg-Tg(Chat-COP4*H134R/EYFP,Slc18a3)5Gfng/J mouse line. 

Evaluating whether or not this second mouse line also has additional copy numbers of 

VAChT would be critical. If these mice do not have a functional increase in VAChT it 

would be of importance to compare findings from optogenetic stimulation in the ChAT-

ChR2-EYFP mice to evaluate the contribution of VAChT overexpression to these 

studies.  

 



385 
 

 
 

In chapter 3 of this thesis we used a genetic method to target the elimination of VAChT 

from the basal forebrain. This method is not without limitations and differential 

approaches should be used to confirm our findings. We have validated the use of 

stereotaxic injection of Cre viruses into specific populations of neurons to delete VAChT 

(Al-Onaizi et al., 2016). Delivering a Cre virus to the nucleus basalis magnocellularis 

(NBM) would provide a means to evaluate the specific contribution of cholinergic tone in 

the PFC, without manipulating acetylcholine release in other brain regions. Viral 

mediated elimination of VAChT to the NBM would also rule out potential developmental 

changes contributing to the phenotype of forebrain VAChT-deficient mice.     

The major phenotype we identified for α7nAChR knockout mice in chapter 4 was 

impaired sustained attention. We were able to reverse this phenotype by activating 

2nAChRs. A critical step would be to provide electrophysiological evidence that the 

drug effects occur in the PFC, as we only provided correlative evidence that the 

interaction between these receptors occurs in the PFC. One possibility is that the 

interplay between these receptors occurs at the same synapses in the PFC. 

Conversely, it is possible that the α7nAChR signalling and the 2nAChR signalling are 

separate and distinct. In agreement with the former possibility, α7nAChR (Duffy et al., 

2009) and 2nAChR (Poorthuis et al., 2013) are found both pre and post-synaptically in 

the PFC. Genetically eliminating these receptors from specific synaptic locations would 

provide valuable insight into the exact interaction between these receptors and their 

relative contributions to attention.   

 

In Chapter 5 of the thesis we used an in silico analysis of the data from our RNA-

Sequencing experiment, to identify hnRNPA2/B1 as one of  the RNA binding protein 

which mediates the alternative splicing in the hippocampus of forebrain VAChT-mutant 

mice. However hnRNPA2/B1 was not the sole RNA-binding protein identified by this 

analysis. Other candidates for potential splicing factors, identified in chapter 5 are RNA 

binding proteins that have also been implicated in neurodegenerative disorders such as 

CLEF4 (Gallo and Spickett, 2010), SRSF2 (Raj et al., 2014)  and SART3 (Stamper et 

al., 2008). Similar in vivo and in vitro approaches used to study hnRNPA2/B1 in 
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chapters 5 and 6 could elucidate how cholinergic tone could regulate these proteins. 

Furthermore, the RNA binding protein analysis was limited to exon inclusion events, 

leaving an entire half of the data (the exon exclusion events) to be subjected to the 

same analysis. Analysing the exon exclusion event data will allow us to expand upon 

our findings and determine novel mechanisms by which cholinergic signalling can 

regulate RNA-metabolism. 

The basis of the argument in chapter 5 is that VAChT deficiency leads to increased 

BACE1 activity, by mediating hnRNPA2/B1 protein levels. We proposed that this 

increase in BACE1 alters APP processing and increases soluble A. It will therefore be 

critical to evaluate this hypothesis in vivo. To determine a causal role for BACE1 in the 

observed altered APP processing in the forebrain VAChT mutant mice, it would be 

important to inhibit BACE1 in vivo. This could be done either genetically or 

pharmacologically, and APP processing and soluble Alevels should then be assessed.  

In chapter 6 we provided evidence that M1 muscarinic receptors regulate the translation 

of hnRNPA2/B1in hippocampal neurons. The M1 muscarinic receptor is a Gq coupled 

receptor and can signal through Gq and Gs (Thomas et al., 2008). This receptor can 

signal through various second messenger pathways including PKC signalling, PIP2  and 

modulation of intracellular calcium levels (Delmas and Brown, 2005). Given the potential 

signalling diversity of this receptor, determining the specificity of how M1 muscarinic 

receptors increases translation of hnRNPA2/B1 is critical to target this interaction for 

potential therapeutic benefits.  

It would also be an important line of study to determine the time course of cholinergic 

regulation of hnRNPA2/B1. All in vitro studies presented in chapter 6 involved treating 

cultured neurons for 48 hours. Determining the shortest amount of time needed to 

change hnRNPA2/B1 protein levels would be critical for understanding the mechanism 

of regulation. These findings could then be validated in vivo. This could be achieved by 

pharmacological or chemogenetic based approaches, to stimulate M1 muscarinic 

pathway in mice. 
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7.3 Significance of Research and Conclusion. 

 
Although the specific mechanisms by which cholinergic signalling in the brain can 

regulate cognition and neuronal function remain elusive, the data put forward in this 

thesis demonstrate the importance of cholinergic tone to both cognition and AD 

molecular pathology. A long line of literature has examined the role of cholinergic 

signalling in cognitive functioning. The data presented in this thesis advance this body 

of knowledge and expands upon how the different receptors for acetylcholine regulate 

different cognitive functions. In addition, we categorized for the first time the molecular 

hallmarks of long-term cholinergic dysfunction, using a wide range of approaches. In 

this thesis, I demonstrated a clear link between cholinergic dysfunction and the 

development of age-dependant molecular pathology in mice. Notably, I showed that 

some of these molecular changes brought on by long term cholinergic dysfunction are 

mediated by M1 muscarinic receptors. The data provided evidence that targeting this 

receptor may be beneficial to correct molecular alteration in patients with 

neurodegenerative disorders.  

The current primary treatment for Alzheimer’s disease in the clinic are 

acetylcholinesterase inhibitors. This line of treatment has shown improvements in 

cognition have been observed in patients, and are viewed as being moderately 

beneficial for patients (Courtney et al., 2004; Dubois et al., 2015; Kaduszkiewicz et al., 

2005; Raina et al., 2008; Winblad et al., 2006). The data put forward in the thesis 

highlights key mechanisms by which cholinergic signalling in the brain can regulate 

cognition and molecular pathology. These mechanisms may serve as novel targets for 

the development of novel therapeutic interventions in humans affected by dementia. 

The discovery and development of positive allosteric modulators of cholinergic 

receptors (especially M1 muscarinic receptors) present an exciting new approach to the 

development of therapeutics for dementia, which could serve to target many of the 

mechanisms studied in this thesis.  
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Regulation of cholinergic activity by the vesicular acetylcholine transporter
Vania F. PRADO* 1, Ashbeel ROY* , Benjamin KOLISNYK*, Robert GROS* § and Marco A. M. PRADO* 1

*

Acetylcholine, the first chemical to be identified as a
neurotransmitter, is packed in synaptic vesicles by the activity
of VAChT (vesicular acetylcholine transporter). A decrease in
VAChT expression has been reported in a number of diseases,
and this has consequences for the amount of acetylcholine loaded
in synaptic vesicles as well as for neurotransmitter release. Several
genetically modified mice targeting the VAChT gene have been
generated, providing novel models to understand how changes in
VAChT affect transmitter release. A surprising finding is that most
cholinergic neurons in the brain also can express a second type of
vesicular neurotransmitter transporter that allows these neurons
to secrete two distinct neurotransmitters. Thus a given neuron

can use two neurotransmitters to regulate different physiological
functions. In addition, recent data indicate that non-neuronal cells
can also express the machinery used to synthesize and release
acetylcholine. Some of these cells rely on VAChT to secrete
acetylcholine with potential physiological consequences in the
periphery. Hence novel functions for the oldest neurotransmitter
known are emerging with the potential to provide new targets for
the treatment of several pathological conditions.

Key words: Alzheimer’s disease, heart failure, Parkinson’s
disease, sepsis, synaptic vesicle, vascular dementia.

INTRODUCTION

Cholinergic neurons in the CNS (central nervous system) and in
the periphery secrete the neurotransmitter ACh (acetylcholine)
to regulate a plethora of physiological functions. In addition to
ACh, many cholinergic neurons in the brain can also secrete
the neurotransmitter glutamate [1], whereas cholinergic neurons
in the periphery can also secrete a number of peptides and
ATP, suggesting the potential for sophisticated modulation of
physiological functions by these neurons. Moreover, ACh is also
present in a number of non-neuronal cells, where it may have
paracrine or autocrine functions [2,3]. Given its cationic nature,
ACh does not diffuse effectively through membranes; therefore,
a transport mechanism is required for this neurotransmitter to be
secreted. Although certain organic cation transporters can carry
ACh [2], both in neurons, as well as certain non-neuronal tissues,
this chemical messenger is first stored in vesicles prior to being
released by exocytosis [4–6].

ACh synthesis (Figure 1) depends on the uptake of
the ACh precursor choline by CHT1 [high-affinity choline
transporter/SLC5A7 (solute carrier family 5 member 7)] that is
mainly expressed in cholinergic neurons [7], although it can also
be found in certain non-neuronal cells [2,5]. In the cytoplasm
of nerve endings, ACh is synthesized by the enzyme ChAT
(choline acetyltransferase) (EC 2.3.1.6) and is then loaded into
synaptic vesicles by VAChT [vesicular ACh transporter/SLC18A3
(solute carrier family 18 member 3)] [4,8]. VAChT is a 12
transmembrane domain protein that is part of a Major Facilitator
Superfamily of transporters [9]. This superfamily also includes
the neurotransmitter transporters VMAT (vesicular monoamine
transporter) 1 and VMAT2, which share a high degree of

homology with VAChT in their transmembrane segments. These
transporters use the electrochemical gradient generated by a V-
type proton ATPase to transport and accumulate neurotransmitters
in vesicles [8].

Synaptic vesicles accumulate thousands of ACh molecules
to form a quantum. Interestingly, in vitro analysis suggests
that VAChT is a very slow transporter [10], thus serving as a
limiting factor in the recycling of functional cholinergic synaptic
vesicles (loaded with ACh) to maintain neurotransmitter release.
Indeed, recent experiments in neurons using glutamate uncaging
indicate that the VGLUT (vesicular glutamate transporter) is also
a very slow transporter [11]. Therefore expression of vesicular
transporters and their activity may have major influences on the
release of ACh. In the present review we will evaluate novel
genetic insights regarding the role of VAChT for transmitter
release in neuronal and non-neuronal cells as well as the functional
consequences of alterations in VAChT expression. Excellent
reviews on the use of genetically modified mice to probe for the
specific roles of subtypes of muscarinic and nicotinic receptors
have been published previously [12–18], so we will not discuss
these results.

VAChT BIOCHEMISTRY AND CELL BIOLOGY

The structure of VAChT has not been resolved experimentally,
but a three-dimensional model for this transporter has been
proposed based on structural information from two members
of the Major Facilitator Superfamily (lactose permease and
glycerol 3-phosphate) [9]. The 12 transmembrane domains of
VAChT are proposed to fold into two main bundles comprising

Abbreviations used: ACh, acetylcholine; ChAT, choline acetyltransferase; CHT1, high-affinity choline transporter 1; CNS, central nervous system;
DA, dopamine; GABA, γ-aminobutyric acid; GI, gastrointestinal; hnRNP, heterogeneous nuclear ribonucleoprotein; IL, interleukin; KD, knockdown; KDHET,
heterozygous KD; KDHOM, homozygous KD; KO, knockout; LDCV, large-dense core vesicle; LTP, long-term potentiation; MEPP, miniature-endplate potential;
MSN, medium spiny neuron; MWM, Morris water maze; NMJ, neuromuscular junction; OCT, organic cation transporter; PKC, protein kinase C; VAChT,
vesicular ACh transporter; VGLUT, vesicular glutamate transporter; VMAT, vesicular monoamine transporter.

1 Correspondence may be addressed to either of these authors (email or ).
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Figure 1 Schematic drawing of ACh storage and release

(1) Uptake of the ACh precursor choline by CHT1 that is mainly expressed in cholinergic neurons. (2) In the cytoplasm of nerve endings, ACh is synthesized by the enzyme ChAT, and then it is
loaded into synaptic vesicles (3) by VAChT. (4) Upon arrival of the nerve impulse, vesicles fuse to the plasma membrane and release the neurotransmitter that can then signal through nicotinic (N)
and muscarinic (M) receptors (5). ACh is rapidly degraded into acetate and choline (6) by the enzyme AChE (acetylcholinesterase). The number of transmembrane domains for CHT1 is 13 [160] and
for VAChT is 12. These are not shown faithfully in the Figure due to space limitations. Ch, choline.

transmembrane helices I–VI and VII–XII respectively [19], with
N- and C-terminal regions directed to the cytoplasm. According
to this model, a central transport path is formed by these two
bundles and a rocker motion of the bundles allows for exposure
of the substrate-binding site to the cytoplasm or to the interior of
the synaptic vesicle. VAChT exchanges two luminal protons for
each cytoplasmic ACh molecule [20]. Site-directed mutagenesis
studies suggest that the ACh-binding site is located close to Trp331

at the beginning of transmembrane helix VIII, in the luminal part
of the transport channel [21]. Asp398 is suggested to be involved
in translocation of one of the protons [22,23].

Studies in PC12 cells overexpressing human VAChT [10]
indicate that transport of [3H]ACh by VAChT is saturable, with an
apparent Km value of 1 mM and a Vmax value of 580 pmol/min/mg.
In vivo, VAChT concentrates ACh inside synaptic vesicles by
100-fold. This gradient is around 30-fold smaller than that
predicted from the available free energy from the exchange
of two protons [8], suggesting that ACh storage is regulated
[4,24]. Although the mechanisms for regulation are unknown,
it has been demonstrated that the amount of ACh stored per
vesicle depends on the amount of VAChT that is expressed
[25–27]. Thus VAChT is likely to be rate limiting for ACh
release. Indeed, early pharmacological experiments using the drug
vesamicol [( − )-trans-2-(4-phenylpiperidino) cyclohexanol], the
prototype VAChT inhibitor, provided evidence that ACh storage
in synaptic vesicles is critical for release; although considerations
of pharmacological specificity in vivo need to be considered
(for a review see [24]). For example, early work used high
concentrations of vesamicol and binding to other unrelated
targets was observed in the peripheral nervous system [28].
Also, interaction with sigma receptors in the brain has been
described. However, novel vesamicol analogues have been pro-
duced showing higher specificity for VAChT [29,30].

In the striatum, cholinergic neurons were shown to express
VGLUT3, and this transporter activity influences ACh loading in

synaptic vesicles by a process named vesicular synergy [31]. The
exact mechanism is not yet clear, but it is likely that negatively
charged glutamate may affect the �pH value to increase transport
activity [1,32]. Hence, in addition to accumulating glutamate
inside cholinergic vesicles, VGLUT3 may also influence ACh
storage. Dopaminergic neurons, on the other hand, express
VGLUT2, and DA (dopamine)/glutamate co-transmission has
been suggested to play important roles during development and
to regulate DA-dependent functions [33,34]. Interestingly, recent
experiments suggest that the closely related transporter, VMAT2,
mediates release of GABA (γ -aminobutyric acid) in the striatum
[35]. This adds to the remarkable lack of specificity for these
transporters. Indeed, choline can also be taken up by VAChT,
although the affinity for ACh is 7-fold higher than that of choline
[36,37].

Vesamicol, a tertiary amine that spontaneously passes through
membranes, binds to VAChT and inhibits the transport of ACh
[8,22,23,38]. Vesamicol is a non-competitive inhibitor of
ACh transport, exhibiting a dissociation constant of 20 nM.
Phosphorylation of VAChT at a PKC (protein kinase C) site in
the C-terminal domain of VAChT blocks inhibition of transport
by vesamicol and a high-affinity analogue of vesamicol [39–
41]. However, it has not been determined whether VAChT
phosphorylation is important for the modulation of ACh storage
in vivo. Vesamicol and related compounds bind to VAChT with
high affinity and readily cross the blood–brain barrier, therefore
intensive efforts have been dedicated to develop analogues of
vesamicol that emit either a positron or a gamma photon, suitable
for imaging by PET (positron emission tomography) or SPECT
(single-photon emission computed tomography) respectively
[29,30,42–44]. These compounds have potential applications in
the diagnosis of a number of diseases characterized by cholinergic
dysfunction including Alzheimer’s disease, Down’s syndrome,
Parkinson’s disease, autonomic dysfunction in cardiovascular
diseases and schizophrenia.
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VAChT LOCALIZATION AND TRAFFICKING

The molecular basis for localization of vesicular transporters in
synaptic vesicles has been reviewed elsewhere [45,46]. VAChT
is found predominantly in synaptic vesicles in nerve terminals
[47]. Early work on the trafficking of VMATs and VAChT
indicated that, in cultured cells, these transporters differ in
their localization; VAChT was predominantly present in synaptic
vesicles, whereas VMATs were found mostly in LDCVs (large-
dense core vesicles) [48-50]. Synaptic vesicles and LDCVs are
present in most neurons and may regulate the secretion of
classical neurotransmitters and peptides or other neuromodulators
respectively. Additional studies demonstrated that the C-terminal
region of VAChT contains a di-leucine motif required for clathrin-
mediated endocytosis [51–54]. Interestingly, this di-leucine motif
is regulated by a phosphorylation site that can alter the proportion
of VAChT present in small synaptic vesicles or LDCVs [49],
suggesting that ACh storage in distinct types of vesicles might
occur and be subject to regulation. The C-terminal region of
VAChT is also important for its localization in small synaptic
vesicles [50,53,55]. Extensive mutational analysis failed to
uncover other motifs in the C-terminal tail, other than the di-
leucine motif, that can influence VAChT trafficking [53,55].
Interestingly, endocytosis of CHT1, which is also located in
synaptic vesicles, is dependent on clathrin and on a di-leucine-like
motif present in its C-terminal tail [7,56–58].

A small number of proteins have been described to interact
with VAChT. Notably, clathrin adaptor proteins interact with the
C-terminal tail of VAChT [52]. In addition, a functional interaction
between VAChT and synaptobrevin has also been described in
Caenorhabditis elegans [59]. These interactions are believed to
participate in VAChT trafficking. SEC14, a phosphatidylinositol
transfer protein, has also been shown to interact with VAChT
[60]; however, the functional consequences of this interaction are
unknown.

VAChT expression levels have been shown to change in
response to drug treatments [61], as well as in diseases including
Alzheimer’s disease [62,63], sepsis [64], hypertension [65] and
Huntington’s disease [66]. Small changes in the expression of
VAChT in vesicles may have the potential to change synaptic
transmission, as the amount of transmitter released by a single
vesicle does not seem to be enough to saturate post-synaptic
receptors [67]. This appears to be the case at the neuromuscular
junction, as suggested by the extensive variability of quantum
size [24]. In central cholinergic terminals, especially where
cholinergic terminals do not have opposed post-synaptic cells
forming classical synapses, volume transmission may not be
enough to saturate ACh receptors [68]. However, classical forms
of neurotransmission may also be relevant for ACh in the brain.
For example, VAChT-expressing terminals are found close to α7
nicotinic ACh receptors thus suggesting that classical synapses
are involved in fast transmission of information by ACh in the
brain, in addition to volume transmission [69].

REGULATION OF ACh RELEASE BY VAChT

The relationship between ACh storage and release is complex
[24]. Experiments using vesamicol and vesamicol analogues
have demonstrated that inhibition of ACh transport into synaptic
vesicles decreases ACh release from nerve terminals [8,24].
Overexpression of VAChT in immature neurons [25] has also
been used to investigate the in vitro relationship between ACh
storage and release. These elegant experiments demonstrated that
increased VAChT expression augmented the amplitude (quantal
size) and frequency of miniature excitatory currents, presumably

by increasing the number of vesicles capable of storing ACh
[25]. In addition, mice with increased VAChT expression show
increased ACh release [70]. Other experiments demonstrated that
VAChT activity is required for physiological storage of ACh,
as VAChT-KO (knockout) mice do not survive following birth
owing to compromised respiratory activity [71]. Decreased levels
of VAChT affect both the peripheral nervous system and the CNS
[26,27,71–76], suggesting that, in contrast with the VMAT family
which has two members [77], VAChT is the unique transporter
for ACh. Neuromuscular phenotypes in VAChT-KO mice were
similar, if not identical, to phenotypes described for ChAT-KO
mice [78,79]. The normal apoptotic process that prunes the
number of motoneurons during development is compromised
by lack of VAChT and motoneuron numbers are increased.
At the NMJ (neuromuscular junction), nerve endings show
increased size and number. Moreover, skeletal muscle presents
degeneration and atrophy indicating that, during development,
secretion of ACh required for neuromuscular development
depends mainly on VAChT activity. Remarkably, the levels of
ACh in terminals lacking VAChT were increased, suggesting
that feedback inhibition of ACh synthesis is not operational in
cholinergic nerve terminals [71].

Surprisingly, electrophysiological analysis of VAChT-KO mice
detected small-amplitude MEPPs (miniature-endplate potentials)
of very low frequency in the NMJ preparations of null embryos,
suggesting that some diffusion and accumulation of ACh in
synaptic vesicles occurs in the absence of VAChT. However,
this process is insufficient to sustain minimal levels of ACh
release at the NMJ. In agreement with these data, release of
newly synthesized ACh from brain synaptosomes is completely
abolished in VAChT-KO mice [71].

Interestingly, a 50 % decrease in VAChT expression in
heterozygous VAChT-KO mice did not affect muscular function
[72]. Conversely, these mutant mice present behavioural deficits
in object recognition memory [72,80]. These results suggest that
central cholinergic synapses are much more dependent on VAChT
than NMJ terminals to sustain neurotransmitter release. This is
probably because of reduced numbers of synaptic vesicles, or
their frequent reuse, in central nerve terminals compared with
the NMJ. Further insight into the mechanisms through which
altered VAChT expression regulates ACh release came from
studies using VAChT-KD (knockdown) mice [26,27]. VAChT-
KDHET (heterozygous KD) mice show a 40% decrease in VAChT
expression. Similar to heterozygous VAChT-KO mice, VAChT-
KDHET mice do not present muscular dysfunction. Microdialysis
analysis in freely moving mice showed that VAChT-KDHET mice
have decreased levels of ACh release in the brain. These mutants
show deficits in object recognition memory and social recognition
memory [26]. These results suggest that the NMJ has a much
higher safety factor than central synapses to maintain ACh release.
VAChT-KDHOM (homozygous KD) mice have a 70% decrease
in VAChT expression and provide a model for understanding
the consequences of profound decrease in VAChT expression for
ACh release. Quantal analysis demonstrated that VAChT-KDHET

mice have normal MEPP frequency and slightly reduced MEPP
amplitude, indicative of the amount of ACh within vesicles.
In contrast, VAChT-KDHOM mice show reduced amplitude of
MEPPs, consistent with decreased ACh storage, but also a 50 %
decrease in the frequency of MEPPs [26,27]. As a consequence
of these molecular changes, VAChT-KDHOM mice are myasthenic.
Moreover, endplate potentials were also reduced in these mutants
[27]. Independent analysis of exocytosis and endocytosis using the
fluorescent dye FM1-43 indicated that synaptic vesicle fusion and
recycling were not affected in these mutant mice. Furthermore,
post-tetanic potentiation is compromised in the NMJ of these
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Figure 2 Cholinergic nerve terminal in mice with decreased VAChT expression

The left-hand side shows a nerve terminal in wild-type (WT) mice. The right-hand side shows a nerve terminal in VAChT-KDHOM mice. Some synaptic vesicles will have no transporter and will be
unable to store significant levels of ACh. These vesicles will compete for release sites and decrease fusion of vesicles fully loaded with ACh. An animated version of this Figure can be found at
http://www.biochemj.org/bj/450/0265/bj4500265add.htm. Ch, choline; M, muscarinic receptor; N, nicotinic receptor.

VAChT mutant mice, suggesting that ACh storage can regulate
synaptic plasticity [27]. Together, these experiments suggest that
reduced levels of VAChT affect ACh storage in synaptic vesicles
(Figure 2).

The number of copies of VAChT in a synaptic vesicle
is unknown. Studies considering other vesicular transporters
estimated that one to three transporters are present in one synaptic
vesicle [24]. However, central synapses may contain up to ten
copies of neurotransmitter transporters [81]. It is tempting to
hypothesize that, in conditions of reduced VAChT expression,
some synaptic vesicles will have no transporter and will be unable
to store significant levels of ACh (Figure 2). These vesicles
would not be able to sustain ACh release; however, because
exocytosis and endocytosis in these ACh-empty vesicles is
normal, they would compete for releasing sites at the NMJ. The net
effect would be a reduction in the frequency of fusion of vesicles
containing ACh, which can be detected using electrophysiology
(MEPP frequency). These results suggest that even small changes
in the levels of VAChT found in Alzheimer’s disease and other
pathological conditions would have drastic effects on ACh release
in the brain, with a reduction in the amount of transmitter released
by vesicles, but also a decrease in the number of synaptic vesicles
capable of sustaining ACh release.

VAChT AND CHOLINERGIC TONE IN THE CNS

Cholinergic tone has been proposed to modulate a number of
brain functions including learning, memory, attention, arousal,
sleep, food intake and drug abuse [82–88]. Owing to space
limitations we will not discuss these effects in the present review;
rather, we will focus on novel aspects of cholinergic neurotrans-
mission uncovered in recent years.

It has been shown that a large number of cholinergic neurons
in the CNS co-express a member of the vesicular glutamate-
transport protein family and therefore have the potential to co-
release glutamate. To note, cholinergic neurons in the habenula
co-express VGLUT1 [89], whereas basal forebrain cholinergic
neurons projecting to the amygdala [90] as well as tonically active

cholinergic interneurons in the striatum co-express VGLUT3 [91].
In the retina, GABA has been shown to be co-released with ACh
[92]. In cultured cholinergic neurons from the basal forebrain,
glutamate release has been shown to occur [90]. More recently,
evidence from optogenetic studies indicates that cholinergic
neurons can co-release glutamate in brain slices [89,93]. Brief
photostimulation of cholinergic axonal terminals was shown
to induce fast excitatory post-synaptic currents mediated by
glutamate receptors [89,93], whereas tetanic photostimulation
generated slow post-synaptic currents mediated by nicotinic
receptors in the habenula [89].

Genetic approaches have been used to investigate the
physiological significance of ACh/glutamate co-transmission in
the striatum (Figure 3). Studies using mice with null expression
of VGLUT3 (VGLUT3-KO) show evidence that VGLUT3 is co-
expressed with VAChT in synaptic vesicles and facilitates ACh
filling of these vesicles [31]. VGLUT3-KO mice are hyperactive,
more responsive to cocaine and less prone to haloperidol-
induced catalepsy than their wild-type littermates [31]. Given
that mice with ablated cholinergic neurons in the striatum show
a similar phenotype [94,95], it was initially suggested that these
behavioural changes resulted from the decreased striatal ACh
release observed in VGLUT3-KO mice [31]. Recently it was
demonstrated that mice with selective elimination of VAChT
from striatal cholinergic interneurons (VAChTD2 − Cre − flox/flox mice)
are not hyperactive and show minimal alteration in behavioural
responses to cocaine. These results strongly suggest that glutamate
released from cholinergic neurons, rather than ACh, is critical
for cocaine-induced behavioural manifestations [76]. Conversely,
it was shown that elimination of striatal ACh release affects
DA metabolism. It also appeared to affect the response of
MSNs (medium spiny neurons) to DA where up-regulation
of DA receptors and a change in behavioural responses to
dopaminergic agonists was observed [76]. These data indicate
that cholinergic interneurons use two distinct neurotransmitters
to differentially regulate behaviour. Moreover, synchronized
activity of cholinergic interneurons was shown to depolarize DA
nerve terminals directly and evoke DA release, independently
of the action potentials in DA soma [96,97], indicating that the
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Figure 3 ACh/glutamate co-transmission in the mammalian striatum, and the effects of molecular manipulations

(A) Schematic representation of the normal ACh/glutamate co-transmission and vesicular synergy in the striatum. (B) Loss of VGLUT3 results in elimination of glutamate release. (C) Targeted KO of
VAChT in the striatum results in loss of ACh release.

ACh-driven DA signal has crucial outcomes for DA nerve
function. Striatal cholinergic neurons can also regulate MSNs by
activating GABA release from interneurons and silencing MSNs
[98]. Importantly, these findings demonstrate that co-transmission
has the potential to significantly affect the functioning of
striatal neurons and hence of basal ganglia. Additionally, these
results suggest that other roles previously attributed to ACh in
striatal function might either result from glutamate released from
cholinergic interneurons or depend on the combined action of
both transmitters.

Basal forebrain cholinergic neurons, which provide the
major input to the cortex and hippocampus, undergo moderate
degenerative changes during normal aging, and the resulting
cholinergic hypofunction has been associated with age-related
memory deficits [99]. A more profound alteration in basal
forebrain cholinergic cells is thought to underlie some of
the cognitive and behavioural symptoms observed in both
Alzheimer’s disease and vascular dementia as well as in
Parkinson’s disease [100–102]. Importantly, VAChT levels are
decreased in the brains of Alzheimer’s disease patients [62,63].

Studies using animal models of cholinergic dysfunction
generated by ablation of basal forebrain cholinergic neurons using
electrolytic or excitotoxic methods, as well by the more selective
strategy of cholinergic immunolesion, have given inconsistent
results concerning the cognitive and behavioural processes that
are affected by altering cholinergic transmission [103]. These
studies have been hampered by the fact that both non-cholinergic
and cholinergic projection neurons are destroyed in many cases, or
that the lesions produced do not fully deplete cholinergic neurons.
Moreover, these studies cannot separate potential roles of ACh
and glutamate that have the potential to be secreted together
by these neurons. Genetically modified mice with selective
elimination of VAChT expression in forebrain cholinergic neurons
provide a model to isolate the consequences of cholinergic
deficiency in dementia [75]. Behavioural analysis of mice with
selective forebrain VAChT deficiency (VAChTSix3 − Cre − flox/flox mice)
indicates that these mice are hyperactive [75]. Other mouse
lines with decreased cholinergic tone also show augmented
locomotion [74]. Hyperactivity in mice is related to a number
of possible psychiatric-like behaviours, including a potential
increase in anxiety-like behaviour, but this is not the case
in these mutant mice. Importantly, the hyperactivity observed

in VAChTSix3 − Cre − flox/flox mice is not due to elimination of
VAChT in the striatum [76]. Thus these data highlight the
importance of basal forebrain cholinergic neurotransmission for
the modulation of locomotor activity. Additionally, forebrain
VAChT deficiency compromised the ability of mice to use spatial
cues to find the platform in the MWM (Morris water maze)
[75]. Although these mice show deficits on MWM acquisition,
they develop alternative strategies to recall the correct location
of the platform in probe trials. Interestingly, forebrain VAChT
deficiency impaired the capacity of mice to extinguish a previous
location and learn a new platform location, suggesting that
ACh is important for behavioural flexibility. Accompanying
this spatial memory impairment, we found an impairment
in LTP (long-term potentiation) in VAChTSix3 − Cre − flox/flox mice.
This effect on LTP did not involve changes in glutamatergic
synaptic transmission, as input/output relationship and paired-
pulse facilitation were not affected [75]. Together, these
results suggest that VAChTSix3 − Cre − flox/flox mice have cellular and
behavioural deficits that prevent proper encoding of spatial
memory information, which is one of the first behavioural
deficits observed in Alzheimer’s disease patients. Hence, these
mice may provide a more reliable model of neurochemical
changes in Alzheimer’s disease and other types of dementia.
Potential long-term functions affected by cholinergic deficiency
are still largely unknown. Exciting new data suggest that loss
of the nuclear ribonucleoproteins hnRNP (heterogeneous nuclear
ribonucleoprotein) A/B family, which is observed in the entorhinal
cortex of Alzheimer’s disease patients, is induced by cholinergic
deficiency [104]. Furthermore, loss of the hnRNP splicing factors
was shown to cause alternative splicing impairments, dendrite
loss in primary neurons and cognitive impairments [104].

REGULATION OF CHOLINERGIC TONE IN THE AUTONOMIC
NERVOUS SYSTEM BY VAChT

ACh is the primary chemical neurotransmitter at parasympathetic
nerve endings and modulates the function of many peripheral
organs in the body. VAChT-positive neurons have been
identified in several different organs including the retina, GI
(gastrointestinal) tract and respiratory tract, as well as the heart
[105].

c© The Authors Journal compilation c© 2013 Biochemical Society



270 V. F. Prado and others

In the heart, co-ordinated interplay between the two branches
of the ANS (autonomic nervous system) is important in
maintaining proper function. Activation of the sympathetic branch
increases heart rate and contractile force, whereas activation of
the parasympathetic branch reduces heart rate by altering the
conduction velocity of both the sinoatrial and atrioventricular
nodes [106]. It has long been recognized that overactivation
of the sympathetic tone contributes to cardiac dysfunction
[107–109]; in contrast, much less is known about the role
of failing cholinergic neurotransmission in cardiac disease.
Vagal stimulation has been shown to improve the outcomes
in experimental heart failure [110–118] and it is an approach
currently being explored to ameliorate a number of diseases
in humans. Recent studies using VAChT-KDHOM mice, which
show a systemic reduction in VAChT, provided direct evidence
that decreased cholinergic neurotransmission also causes plastic
alterations that contribute to heart dysfunction [73,119]. The
hearts of VAChT-KDHOM mice have altered calcium handling,
show changes in myocyte contractility and express several
markers of cardiac stress, which are activated during cardiac
remodelling and heart failure [73]. Importantly, all of these
changes can be reversed through treatment with pyridostigmine,
a peripheral cholinesterase inhibitor, suggesting that cardiac
dysfunction in these mice results from a deficiency in cholinergic
tone [73]. Mice lacking M2 muscarinic receptors show increased
cardiac stress [120], and experiments using mice lacking one
of the high-affinity choline transporter alleles confirmed that
decreased cholinergic tone affects heart function [121].

The cholinergic system is important in regulating the innate
immune response. In fact, several studies have provided novel
insight into the specific mechanisms through which neuronal
ACh can act peripherally to control the immune response. This
inflammatory reflex, termed the cholinergic anti-inflammatory
pathway, is dependent on the peripheral actions of ACh released
from the vagus nerve [110,122,123]. ACh binds to α7 nAChRs
(nicotinic acetylcholine receptors) on macrophages and thereby
inhibits the release of pro-inflammatory cytokines including
TNFα (tumour necrosis factor α), IL (interleukin)-1β and IL-
6 [122,123]. Inhibition of cytokine release has been shown to
be beneficial in several disease states, including endotoxaemia,
sepsis and heart failure [124–127]. Consistent with these results,
VAChT-KDHOM mice have been shown to develop an increased
inflammatory immune response when infected with parasites
[128], indicating disturbance of the cholinergic anti-inflammatory
reflex in this mutant.

In the retina, ACh is released in response to light stimulation
and leads to direct and rapid excitation of the retinal ganglion
cells [129]. Release of ACh in the enteric nervous system
induces smooth muscle contractions in the GI tract [130,131].
Cholinergic signalling also leads to smooth muscle contraction
in the respiratory tract [132]. Whether decreased cholinergic tone
has pathological implications related to eye function, the enteric
system or the respiratory tract has not yet been systematically
investigated.

NON-NEURONAL CHOLINERGIC MACHINERY

ACh is also produced in many different cell types, leading
to the idea that a non-neuronal cholinergic system plays a
significant role in regulating various physiological functions
[133]. Indeed, the machinery necessary to produce ACh as well
as the neurotransmitter itself has been identified in a range of
cells including lymphocytes [134,135], epithelial cells [136–
138], vascular endothelial cells [139] and the α-cells of the

pancreas [6]. Furthermore, this machinery has been identified
in cardiomyocytes [5,140,141].

Immune cells, including lymphocytes, possess the machinery
necessary to synthesize ACh [134,135,142,143]. It has been
recently demonstrated that a small population of T-lymphocytes
can synthesize and release ACh in response to autonomic nervous
system activity in the spleen as part of the cholinergic anti-
inflammatory pathway [144]. It is important to note that T-cells
as well as macrophages express both muscarinic and nicotinic
ACh receptors and are also able to produce ACh [145]. The exact
mechanism by which ACh is released from these cells to regulate
the immune system has not yet been uncovered.

The ability of epithelial cells to synthesize ACh is well
characterized; in fact, it has previously been reported that this
molecule can be secreted from cultured bronchial epithelial cells
[137]. However, ACh release from epithelial cells does not
appear to be dependent on VAChT, but rather on the organic
cation transporters OCT (organic cation transporter) 1 and OCT2
[146,147]. ACh released by epithelial cells acts through both
nicotinic as well as M1 muscarinic receptors and increases their
proliferation rate [148]. Moreover, in a number of cancer cells,
particularly in lung cancer, ACh has been shown to play an
autocrine role [149–151].

ACh is important in regulating insulin release from β-cells
of the pancreas. It has long been suggested that the source of
this ACh is the parasympathetic nerve endings in the endocrine
pancreas, which can trigger insulin release following binding
to the M3 muscarinic receptor [152,153]. Interestingly, recent
work has revealed that, although insulin secretion from β-cells
is regulated by neuronal parasympathetic signalling in mice,
humans possess the machinery to synthesize and release ACh
from α-cells. VAChT plays an important role in the release of
ACh from α-cells as positive immunostaining was observed for
the transporter in these cells and pharmacological manipulation
blocked ACh release. This suggests that ACh is maintained in
exocytotic vesicles within α-cells and is released quantally in a
manner similar to that observed in neurons [6]. Owing to the fact
that β-cells are mostly localized close to α-cells in the pancreatic
islets, the non-neuronal ACh released by α-cells can act as a
paracrine molecule on neighbouring β-cells and initiate the insulin
secretion cascade [6].

Vascular endothelial cells play a critical role in the regulation
of blood pressure by inducing the relaxation of vascular smooth
muscle cells. This pathway is well characterized and ACh is
known to mediate vasodilation through binding to muscarinic
ACh receptors on endothelial cells. This interaction leads to the
production of the EDRF (endothelium-derived relaxing factor),
now known to be nitric oxide, which leads to vasodilation [154].
Although ACh appears to have a profound effect on vascular
function, it is important to note that parasympathetic innervation
of endothelial cells is virtually non-existent and there are high
levels of acetylcholinesterases in circulation. It is now evident
that endothelial cells have the ability to synthesize and secrete
ACh via a PKC-independent mechanism [139,155]. Importantly,
previous work has confirmed the presence of VAChT in two
different endothelial cell culture models, suggesting that ACh may
be released from these cells via a VAChT-dependent mechanism
[156,157].

It has previously been proposed that cardiomyocytes are
able to synthesize and release ACh at the cellular level as
they possess the machinery for production of ACh [140,141].
Owing to limited innervation of ventricular cardiomyocytes
by parasympathetic neurons [158,159], it has been suggested
that ventricular cardiomyocytes may synthesize ACh. VAChT
was shown to be present in vesicles in cardiomyocytes [141]
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suggesting a quantal release of ACh from these cells [5]. In
cell culture models, isoproterenol and other adrenergic activators
can induce cellular hypertrophy and remodelling. ACh released
by cardiomyocytes plays an important role in protecting these
cells against isoproterenol-induced cardiomyocyte remodelling
[5]. Furthermore, expression of both VAChT and ChAT was
increased in cultured cardiomyocytes treated with adrenergic
drugs [5], suggesting a potential mechanism for regulation
of this machinery. This non-neuronal ACh may then act in
an autocrine/paracrine fashion to enhance neuronal cholinergic
signalling. Although demonstrated only in vitro, these results
suggest a novel mechanism to protect the heart under stressful
conditions. These data provide for an unanticipated mechanism by
which non-neuronal ACh, secreted from VAChT-positive vesicles,
may play an important role in cardiac function.

CONCLUSION

The potential to uncover novel physiological functions of ACh
using genetically modified mice, in which the cholinergic
machinery can be spatially and temporally targeted, has already
changed our understanding of functions by this neurotransmitter.
Otto Loewi’s [161] findings of ACh as a neurotransmitter can
now be expanded to a role in paracrine/autocrine communication
in a number of non-neuronal cells. By using the Cre/lox system,
BAC (bacterial artificial chromosomes) transgenic mice and
optogenetics, we now have the ability to activate or inactivate
the cholinergic machinery or cholinergic neurons at will. These
novel approaches will lead to increased knowledge of how
ACh contributes to different bodily functions. Additionally,
these approaches will be fundamental to unravelling how
different populations of cholinergic neurons in the brain can
regulate distinct biochemical and physiological processes. It
is tempting to speculate that optogenetics, used to activate
or inactivate cholinergic neurons in the peripheral nervous
system, may be effectively used in the future as treatment for
a number of pathologies involving dysregulated sympathetic
or parasympathetic activity. Finally, inactivation of cholinergic
machinery in non-neuronal tissues using genetically modified
mice will provide the ultimate proof for the physiological
significance of non-neuronal release of ACh.
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Archiv. 189, 239–242

Received 1 November 2012/15 November 2012; accepted 22 November 2012
Published on the Internet 15 February 2013, doi:10.1042/BJ20121662

c© The Authors Journal compilation c© 2013 Biochemical Society



401 
 

 
 

 

 

Appendix B 

 

Hyperactivity and attention deficits in mice with decreased levels 

of stress inducible phosphoprotein 1 (STIP1) 

 

This is a copyedited, author-produced PDF of an article accepted for publication in 

Disease Model Mechanisms following peer review. 

 

Beraldo FH, Thomas A, Kolisnyk B, Hirata PH, De Jaeger X, Martyn AC, Fan J, 

Goncalves DF, Cowan MF, Masood T, Martins VR, Gros R, Prado VF, Prado MA. 

Hyperactivity and attention deficits in mice with decreased levels of stress inducible 

phosphoprotein 1 (STIP1). Dis Model Mech. 2015 Sep 17 

 

Contributions to publication: BK performed self-grooming behaviour analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESEARCH ARTICLE

Hyperactivity and attention deficits inmicewith decreased levels of
stress-inducible phosphoprotein 1 (STIP1)
Flavio H. Beraldo1,*, Anu Thomas1, Benjamin Kolisnyk1,2, Pedro H. Hirata1, Xavier De Jaeger1,
Amanda C. Martyn1, Jue Fan1, Daniela F. Goncalves1, Matthew F. Cowan1, Talal Masood1,2,
Vilma R. Martins3, Robert Gros1,4, Vania F. Prado1,2,4,5,* and Marco A. M. Prado1,2,4,5,*

ABSTRACT
Stress-inducible phosphoprotein I (STIP1, STI1 or HOP) is a co-
chaperone intermediating Hsp70/Hsp90 exchange of client proteins,
but it can also be secreted to trigger prion protein-mediated neuronal
signaling. Some mothers of children with autism spectrum disorders
(ASD) present antibodies against certain brain proteins, including
antibodies against STIP1. Maternal antibodies can cross the fetus
blood-brain barrier during pregnancy, suggesting the possibility that
they can interfere with STIP1 levels and, presumably, functions.
However, it is currently unknown whether abnormal levels of STIP1
have any impact in ASD-related behavior. Here, we used mice with
reduced (50%) or increased STIP1 levels (fivefold) to test for potential
ASD-like phenotypes. We found that increased STIP1 regulates the
abundance of Hsp70 and Hsp90, whereas reduced STIP1 does not
affect Hsp70, Hsp90 or the prion protein. Interestingly, BAC
transgenic mice presenting fivefold more STIP1 show no major
phenotype when examined in a series of behavioral tasks, including
locomotor activity, elevated plus maze, Morris water maze and five-
choice serial reaction time task (5-CSRTT). In contrast, mice with
reduced STIP1 levels are hyperactive and have attentional deficits on
the 5-CSRTT, but exhibit normal performance for the other tasks. We
conclude that reduced STIP1 levels can contribute to phenotypes
related to ASD. However, future experiments are needed to define
whether it is decreased chaperone capacity or impaired prion protein
signaling that contributes to these phenotypes.

KEY WORDS: Touchscreen, Autism, ASD, Stress-inducible
phosphoprotein 1, Attention deficits, Mouse model, BAC

INTRODUCTION
In autism spectrum disorders (ASD), alterations in genetic variance
and neurodevelopmental are both thought to contribute to
phenotype heterogeneity. Womb environment and autoimmune
responses have been proposed to contribute to the complex

behavioral alterations observed in ASD, which include, but are
not limited to, abnormal socialization and communication and
stereotyped behavior (Brimberg et al., 2013; Goldani et al., 2014).
Several distinct groups have investigated the existence of antibodies
against fetal brain tissue in mothers of ASD children (Bauman et al.,
2013; Braunschweig et al., 2012b, 2013; Dalton et al., 2003;
Nordahl et al., 2013). Passive transfer of maternal anti-brain
antibodies to pregnant experimental animal models (including mice,
rats and non-human primates) has shown that their offspring
develop a number of endophenotypes that resemble phenotypes in
ASD (Bauman et al., 2013; Braunschweig et al., 2012b; Dalton
et al., 2003). Indeed, a recent study indicated that the prevalence of
antibodies against fetal brain proteins is increased fourfold in
mothers of an ASD child compared with control groups (Brimberg
et al., 2013). Proteomics analysis has identified six brain proteins as
targets for ASD antibodies, including lactate dehydrogenase A and
B (LDH), cypin, stress-inducible phosphoprotein protein1 (STIP1),
collapsine response mediator proteins 1 and 2 (CRMP1, CRMP2)
and Y-box-binding protein (YBX1) (Braunschweig et al., 2013).
Interestingly, injection of maternal antibodies that recognize LDH,
STIP1 and CRMP1 in developing mouse embryos causes an
increase in cortical neural precursor proliferation and cortical
neuron volume, with consequent increase in brain size and weight
(Martinez-Cerdeno et al., 2014). These phenotypes are consistent
with the notion that the presence of maternal autoantibodies can
affect neuronal development.

STIP1, also known as heat-shock organizing protein (Hop) or
STI1, is a co-chaperone that interacts concomitantly with heat-
shock proteins 70 and 90 (Hsp70 and HsP90) (Abbas-Terki et al.,
2002; Chen et al., 1996; Nicolet and Craig, 1989; Picard, 2002;
Smith et al., 1993). The chaperone machinery is thought to provide a
buffer for cells to respond to environmental challenges; disturbance
of Hsp70/90 chaperone activity decreases cellular resilience to
stress (Chen et al., 2015; Hashimoto-Torii et al., 2014; Taipale et al.,
2010, 2014). The absence of STIP1 in mice has important
consequences for development, including increased apoptosis,
DNA damage and death (Beraldo et al., 2013). These phenotypes
are rescued by transgenic BAC expression of STIP1 (Beraldo et al.,
2013).

In addition to its intracellular role as a co-chaperone, STIP1 is also
secreted by a variety of cells (Erlich et al., 2007; Eustace and Jay,
2004; Hajj et al., 2013; Lima et al., 2007; Wang et al., 2010) via
extracellular vesicles (Hajj et al., 2013). Extracellular STIP1 can
signal via the prion protein (PrPC) to produce a myriad of effects
related to brain development (Beraldo et al., 2010, 2013; Caetano
et al., 2008; Lopes et al., 2005; Soares et al., 2013). Here, we used
Stip1 heterozygous mice (STI1−/+ mice), as well as mice
overexpresssing four- to fivefold more STIP1 (STI1TGA mice), to
investigate the consequences of alteration of STIP1 levels in vivo.Received 30 July 2015; Accepted 4 September 2015
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We report that decreased, but not increased, STIP1 levels affect
attention and cause hyperactivity in mice, two phenotypes that are
related to ASD-like phenotypes. Our results suggest that interference
with STIP1 functions, which presumably occur in the presence of
STIP1 antibodies, has the potential to contribute to ASD-like
phenotypes.

RESULTS
We initially confirmed previous data to show that STI1−/+ mice
present 50% of STIP1mRNA levels in their brain, whereas STI1TGA

mice express almost sixfold more mRNA (Fig. 1A; one-way
ANOVA; revealed main effect of genotype F(2.15)=8.521,
P<0.0001). In contrast, mRNA levels of known STIP1 interaction
partners PrPC (Fig. 1B; one-way ANOVA F(2.16)=1.475, P=0.2580),
Hsp70 (Fig. 1C; one-way ANOVA F(2.16)=0.301, P=0.744)
and Hsp90 (Fig. 1D; one-way ANOVA F(2.8)=1.249, P=0.337)
were not altered in the brain of the two lines, compared with
control mice.
Protein levels for STIP1 followed mRNA levels for both STI1TGA

(Fig. 2A; t(15)=4.721, P=0.003) and STI1−/+ (Fig. 2B; t(14)=6.433,

P<0.0001). PrPC protein levels were not different from controls in
both lines (Fig. 2C,D; t(10)=1.049, P=0.391 and t(13)=1.128,
P=0.279, respectively). Interestingly, levels of Hsp70 were
decreased by 50% in STI1TGA brains (Fig. 2E; t(7)=5.846,
P=0.0006), whereas no change in Hsp70 levels was detected in
STI1−/+ mice (Fig. 2F; t(7)=0.123, P=0.9051), compared with
controls. Additionally, Hsp90 levels detected with a pan Hsp90
antibody were doubled in STI1TGA brains (Fig. 2G; t(22)=4.618,
P=0.0001) but not changed in STI1−/+ brains (Fig. 2H; t(10)=0.308,
P=0.7639), compared with controls. We then evaluated expression
levels of Hsp90α (inducible form) and Hsp90β (constitutive form)
in the brains of STI1TGA mice and observed that both forms were
significantly increased (Fig. 2I,J; t(22)=4.618, P=0.0016 and
t(16)=5.954, P<0.0001, respectively).

Spontaneous locomotor activity in a new environment can
provide information on neuropsychiatric phenotypes in mice
associated with genetic mutations. The increased number of Stip1
copies, with concomitant overexpression of Hsp90 and decreased
expression of Hsp70 in STI1TGA mice did not seem to have any
major impact on spontaneous locomotion (Fig. 3A,B; t(29)=1.140,
P=0.942) or time spent in the center of the box, which provides
insight on anxiety-like behavior (Fig. 3C; t(29)=1.236, P=0.8669).
In contrast, locomotor activity and total locomotion in a new
environment were increased in STI1−/+ mice (Fig. 3D,E;
t(44)=1.879, P=0.0078). However, STI1−/+ mice did not show
increased anxiety-like behavior, as determined by the time spent in
the center of the box (Fig. 3F; t(40)=1.221, P=0.341). We also
examined another cohort of STI1−/+ mice using automated
metabolic cages. In this experiment, which mimics the home cage
environment, STI1−/+ mice again showed hyperactivity during the
day and night periods, considering both total activity (Fig. 3G;
t(14)=2.558, P=0.0228 and t(14)=2.230, P=0.0426) and ambulatory
activity (Fig. 3H; t(14)=2.420, P=0.00297 and t(14)=2.230,
P=0.0426). Given this increased motor activity, STI1−/+ mice also
demonstrated less sleep time (periods of inactivity) (Fig. 3I;
t(14)=3949, P=0.0015 and t(14)=2.724, P=0.0165). Also, STI1

−/+

mice showed increased consumption of O2 during the light and dark
cycle (Fig. 3J; t(14)=2.464, P=0.027 and t(14)=2.169, P=0.047) and
CO2 production during the dark cycle, but not in the light cycle
(Fig. 3K; t(14)=2.307, P=0.036 and t(14)=1.360, P=0.195). No
differences were observed in other parameters such as respiratory
ratio (Fig. 3L; t(14)=0.4455, P=0.6627 and t(14)=0.459, P=0.653),
food consumption (Fig. 3M; t(14)=0.5216, P=0.6101 and
t(14)=0.6134, P=0.5494), water consumption (Fig. 3N;
t(14)=1.801, P=0.0933 and t(14)=0.2752, P=0.7872), and heat
production (Fig. 3O; t(14)=1.014, P=0.3276 and t(14)=0.1935,
P=0.8494) comparing STI1−/+ to STI1+/+ mice for both cycles
(light and dark).

In order to test for other neuropsychiatric-like behaviors as a result
of altered STIP1 levels we tested both STITGA and STI1−/+ mice for
anxiety-like behavior (Fig. 4A-D) and depression-like behavior
(Fig. 4E,F). Given the hyperactivity of STI1−/+ mice, we also
decided to investigate whether they had alterations in compulsive-
like behavior, assessed by measurement of self-grooming and
marble burying (Fig. 4G-I). There was no difference in the behavior
of either STITGA (Fig. 4A,B,E) or STI1−/+ (Fig. 4C,D,F-I) mice
compared with control mice in all these behavioral tasks: time spent
in the open arm (Fig. 4C; t19=0.310, P=0.7590), time spent in the
closed arm (Fig. 4D; t(19)=0.3730, P=0.7133), forced swim test
(Fig. 4F; t(12)=1.184, P=0.2594), grooming bouts (Fig. 4H;
t(20)=0.7848, P=0.4418), time grooming (Fig. 4G; t(20)=0.6072,
P=0.5505) and marble burying (Fig. 4I; t(21)=0.4956, P=0.6253).

TRANSLATIONAL IMPACT

Clinical issue

Autism spectrum disorders (ASD) represent a range of
neurodevelopmental disorders with no cure. ASD is characterized by
difficulties in communication and socialization, repetitive movements,
hyperactivity, impulsivity, and an impaired ability to concentrate and
attend to simple tasks. Genetic variance and neurodevelopmental
alterations are both thought to contribute to the heterogeneity of the ASD
phenotype. Recent studies have demonstrated that some mothers of
children with ASD produce antibodies against six specific proteins
present in the fetal brain; presumably, these antibodies can interfere with
protein function in the developing brain. One of these antibodies targets a
protein known as stress inducible phosphoprotein 1 (STIP1). Moreover, a
polymorphism for STIP1 was recently identified as a potential risk factor
in attention deficit hyperactivity disorder, which shares some phenotypes
with ASD. STIP1 is a co-chaperone that mediates the Hsp70/Hsp90
exchange of client proteins. It also triggers prion protein-mediated
neuronal signaling.

Results

Here, to investigate the potential involvement of STIP1 in ASD, the
authors examinemice that express reduced (50%) or increased (fivefold)
levels of STIP1. They show that increased STIP1 levels regulate the
abundance of Hsp70 and Hsp90. By contrast, reduced STIP1 levels
have no effect on Hsp70, Hsp90 or prion protein levels. Notably,
however, mice expressing increased levels of STIP1 show no major
phenotype when examined using a range of behavioral tasks, whereas
mice expressing reduced levels of STIP1 exhibit attention deficits and
are hyperactive.

Implications and future directions

Because attention deficits and hyperactivity are present in ASD, these
findings suggest that interference with STIP1 functions (but not
increased STIP1 levels) can contribute to ASD-like phenotypes.
Changes in STIP1 levels, possibly triggered by the presence of
maternal anti-STIP1 antibodies during brain development, might
interfere with the development of brain circuits that affect ASD-like
behavior. Additional experiments are required to determine whether
decreased STIP1 contributes to ASD-like phenotypes by decreasing
chaperone capacity in the developing brain, by impairing prion protein
signaling, or through some other mechanism, and to define fully the
consequences of disturbed STIP1 activity in ASD.
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Next, we investigated spatial navigation memory in both Stip1
mutant mice using the Morris water maze (MWM). Neither
STI1TGA nor STI1−/+ mice presented deficits in acquisition
or retrieval of spatial memory in the MWM. For both STI1TGA

and STI1−/+, performance during the 4-day acquisition phase was
indistinguishable from their wild-type controls in terms of latency to
find the target (Fig. 5A; RM-ANOVA F(1,13)=0.062, P=0.806) or
speed (Fig. 5C; F(1,10)=0.215, P=0.652). When spatial memory
retrieval was performed on the day-5 probe trial, again no
differences were observed between STI1TGA and STI1−/+ mice,
compared with their wild-type controls, for time spent investigating
the target quadrant (Fig. 5D; F(1,13)=1.046, P=0.3251) or latency
(Fig. 5E; F(1,10)=0.215, P=0.294).
Given the hyperactivity phenotype and genetic data suggesting

the potential of STIP1 to be linked to ADHD (Mick et al., 2011), a
trait commonly found in ASD (Gadow et al., 2006; Goldstein and
Schwebach, 2004; Lee and Ousley, 2006; Mulligan et al., 2009), we
also determined whether changes in STIP1 levels affected
attentional processing. For this, we used the 5-CSRTT. After mice
were trained to perform to a criterion (>80% accuracy, <20%
omissions) at a 2 s stimulus duration, we assessed attentional
performance by using reduced stimulus durations in probe trials
(1.5, 1, 0.8 and 0.6 s stimulus durations) as previously described
(Romberg et al., 2011). We observed no differences in attentional
performance in STI1TGA mice compared with their littermate
controls. There was no difference in accuracy (Fig. 6A; RM-
ANOVA showed no effect of genotype F(1,20)=0.0057, P=0.9403,
main effect of stimulus duration F(3,60)=12.14, P<0.0001 and no
significant interaction F(3,60)=0.1328, P=0.9402) or omission rates
(Fig. 6B; RM-ANOVA showed no effect of genotype
F(1,18)=0.2429, P=0.6281, main effect of stimulus duration
F(3,54)=17.62, P<0.0001 and significant interaction F(3,54)=3.854,
P=0.0143). Post-hoc analysis showed that there was no significant
difference between STI1TGA mice and controls. There was also no
difference in premature responses, a measure of impulsivity
(Fig. 6C; RM-ANOVA showed no effect of genotype
F(1,9)=0.00056, P=0.9419, no effect of stimulus duration
F(3.27)=0.8254, P=0.4914 and no significant interaction

F(3,27)=1.109, P=0.3625). Moreover, we did not find any
difference in motivation, measured as latency to touch the screen
(Fig. 6D; RM-ANOVA showed no effect of genotype F(1,9)=3.399,
P=0.0983, main effect of stimulus duration F(3.30)=4.281, P=0.0125
and no significant interaction F(3,30)=2.332, P=0.0941).
Compulsivity and motivation were not altered either, as assessed
by perseverative responses (Fig. 6F; RM-ANOVA, showed no
effect of genotype F(1,9)=3.974, P=0.0774, main effect of stimulus
duration F(3,27)=4.808, P=0.0083 and no significant interaction
F(3,27)=0.1773, P=0.9108) and reward collection latency (Fig. 6E;
RM-ANOVA showed no effect of genotype F(1,10)=1.291,
P=0.2824, no effect of stimulus duration F(3,30)=2.162, P=0.1132
and no significant interaction F(3.30)=0.7372, P=0.5381).

In contrast, when attentional demand was increased, STI1−/+

mice presented decreased accuracy (Fig. 6G; RM-ANOVA, main
effect of genotype F(1,25)=6.872, P=0.0147, main effect of stimulus
duration F(3,75)=41.95, P<0.0001, significant interaction effect
F(3,75)=4.170, P=0.0087) and increased omission rates (Fig. 6H;
RM-ANOVA, main effect of genotype F(1,25)=6.584, P=0.0167,
main effect of stimulus duration F(3,75)=24.62, P<0.0001,
significant interaction effect F(3,75)=3.401, P=0.0220). Post-hoc
analysis revealed that the STI1−/+ mice were significantly impaired
in both accuracy and omissions at the 0.6 s stimulus duration. The
worse performance of STI1−/+ mice was not related to changes in
motivation (latency to respond to the stimulus, RM-ANOVA, no
effect of genotype F(1,25)=0.01856, P=0.8925, no effect of stimulus
duration F(3,75)=1.720, P=0.1702, no interaction F(3,75)=1.070,
P=0.3669). There was also no difference in latency to retrieve the
reward following a correct response (RM-ANOVA, no effect of
genotype F(1,25)=0.03176, P=0.8600, no effect of stimulus duration
F(3,75)=0.3997, P=0.7536, no interaction F(3,75)=1.785, P=0.8284).
Moreover, we detected no increase in premature responses (RM-
ANOVA, no effect of genotype F(1,25)=0.0958, P=0.7595, main
effect of stimulus duration F(3,75)=2.907, P=0.0401, no interaction
effect F(3,75)=2.017, P=0.1187) or perseverative responses (RM-
ANOVA, no effect of genotype F(1,25)=0.04188, P=0.8395, main
effect of stimulus duration F(3,75)=6.975, P=0.0003, no interaction
effect F(3,75)=1.139, P=0.3389).

Fig. 1. Analyses of mRNA for STIP1
partners in STI1+/+, STI1−/+ and STI1TGA

mouse brains. (A) STIP1 mRNA
expression (n=9 STI1+/+, n=5 STI1TGA and
n=4 STI1−/+). (B) PrPC mRNA expression
(n=8STI1+/+,n=4STI1TGAandn=7STI1−/+).
(C) Hsp70mRNA expression (n=8 STI1+/+,
n=4 STI1TGA and n=7 STI1−/+). (D) Hsp90
mRNA expression (n=3 STI1+/+, n=4
STI1TGA and n=4 STI1−/+). Results are
presented as means±s.e.m.; data were
analyzed and compared byone-wayANOVA
and Bonferroni multiple comparisons
post-hoc test; **P<0.001 and ***P<0.0001
compared with control.
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DISCUSSION
The present experiments tested whether alterations in STIP1 levels
have consequences for psychiatric-like behaviors in mice. Our
results suggest that decreased, but not increased, STIP1 levels cause
significant behavioral alterations in mice. Spatial learning and
memory, as well as anxiety and depression-like behavior do not
seem to be affected by reduced STIP1 levels. However, mutant mice
deficient for STIP1 are hyperactive and present attention deficits.
STIP1 has recently emerged as a protein of potential interest in

ASD and endophenotypes related to ASD. Maternal autoantibodies
against STIP1 have been identified in mothers of children with ASD
(Braunschweig et al., 2013). Moreover, recent global-wide
association study (GWAS) analysis identified a polymorphism in
STIP1 (the human gene coding for STIP1/HOP) as a potential risk
factor in a population of individuals diagnosed with attention-deficit
disorder (Mick et al., 2011), a co-morbidity often associated with
ASD (Brimberg et al., 2013; Goldani et al., 2014). The consequences
of this polymorphism for STIP1 expression is unknown, but the
presence of autoantibodies against STIP1 might affect expression
levels of the protein, given that antibodies can penetrate the blood
brain barrier of the fetus during pregnancy (Braunschweig et al.,
2012a; Diamond et al., 2009; Fox et al., 2012; Zhang et al., 2012).
Indeed, maternal antibodies that recognize STIP1 and other targets
when injected in pregnant rodents or developing pups can lead to
offspring with abnormal neurons and behaviors that relate to ASD

(Braunschweig et al., 2012b; Camacho et al., 2014). To a degree,
STI1−/+ mice model this early developmental deficit in STIP1 levels.
However, in STI1−/+ mice STIP1 expression is persistently decreased
through life, which could also have important consequences for the
phenotypes described.

STIP1 is a modular protein containing several tetratricopeptide
(TRP) repeat domains and aspartate-proline (DP) reach domains
(Taipale et al., 2010). TRP1 and TRP2B can interact with Hsp70
(Flom et al., 2007; Scheufler et al., 2000), whereas TPR2A is required
for interactionwithHsp90 (Flom et al., 2007, 2006). Hsp90 activity is
regulated by STIP1 and previous work has shown that in mice no
other co-chaperone can replace STIP1 (Beraldo et al., 2013). Recent
experiments have indicated that the chaperone machinery, activated
by the transcription factor heat shock factor 1 (HSF1), is responsible
for preventing damaging effects from environmental factors in the
developing brain (Hashimoto-Torii et al., 2014). Indeed, the
chaperone machinery can buffer many stresses at the cellular level
and, therefore, it is not surprising that functional changes in its
components have physiological consequences.

In addition to its intracellular chaperone function, STIP1 is also
secreted by a myriad of cells, including astrocytes via an
extracellular vesicle population, which includes exosomes (Hajj
et al., 2013). Extracellular STIP1 also mediates important
physiological responses in the brain. Acting as a trophic factor to
engage PrPC to signal in neurons, it regulates neuritogenesis and

Fig. 2. Analyses of protein levels for STIP1 partners in STI1+/+, STI−/+ and STI1TGAmouse brains. (A,B) STIP1 expression in STI1TGA (n=9 STI1+/+ and n=8
STI1TGA) and STI1−/+ mice (n=8 STI1+/+ and n=8 STI1−/+). (C,D) PrPC expression in STI1TGA (n=6 STI1+/+ and n=6 STI1TGA) and STI1−/+ mice (n=6 STI1+/+

and n=9 STI1−/+). (E,F) Hsp70 expression in STI1TGA (n=5 STI1+/+ and n=4 STI1TGA) and STI1−/+ mice (n=5 STI1+/+ and n=4 STI1−/+). (G,H) HSP90 expression
in STI1TGA (n=10 STI1+/+ and n=14 STI1TGA) and STI1−/+ mice (n=6 STI1+/+ and n=6 STI1−/+). (I,J) Hsp90β (n=10 STI1+/+ and n=8 STI1TGA) and Hsp90α (n=5
STI1+/+ and n=4 STI1TGA) in STI1TGA mice. Results are presented as means±s.e.m.; data were analyzed and compared by Student’s t-test; *P<0.05 and
***P<0.0001 compared with control.
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neuronal survival (Beraldo et al., 2010; Lopes et al., 2005; Roffe
et al., 2010). STIP1 has a role in functional recovery in stroke
(Beraldo et al., 2013; Lee et al., 2013). Moreover, STIP1 also
modulates toxicity of Aβ peptides in models of Alzheimer’s disease
(Brehme et al., 2014; Ostapchenko et al., 2013).
It is remarkable that mice with increased levels of STIP1 (up to

almost fivefold) do not present any major behavioral alteration. In

the extensive evaluation of cognitive phenotypes in this study,
which included anxiety and depression-like behaviors, spatial
memory and attention, we showed that STI1TGA mice perform as
well as littermate controls. These results suggest that strategies to
increase STIP1 levels should not cause toxicity with consequences
for brain functions. This is important, given that increased STIP1
levels might be protective against insults such as stroke-mediated

Fig. 3. Locomotor activity in STI1TGA and STI1−/+mice andmetabolic analyses in STI1−/+mice. (A) Horizontal locomotor activity in an open-field for STI1TGA

(n=14) and STI+/+ control mice (n=14). (B) Cumulative 1 h locomotion for STI1TGA (n=14) and STI+/+ control mice (n=14). (C) Time spent in the center of the
locomotion boxes for STI1TGA (n=14) and STI+/+ control mice (n=14). (D) Horizontal locomotor activity in an open-field for STI1−/+ (n=8) and STI+/+ control mice
(n=8). (E) Cumulative 1 h locomotion for STI1−/+ (n=22) and STI+/+ control mice (n=24). (F) Time spent in the center of the locomotion boxes for STI1−/+ (n=22)
and STI+/+ control mice (n=24). (G) Total activity in metabolic cages for STI1−/+ (n=8) and STI+/+ control mice (n=8). (H) Ambulatory activity in metabolic cages
for STI1−/+ (n=8) and STI+/+ control mice (n=8). (I) Sleep time for STI1−/+ (n=8) and STI+/+ control mice (n=8). (J) VO2 for STI1

−/+ (n=8) and STI+/+ control mice
(n=8). (K) VCO2 for STI1

−/+ (n=8) and STI+/+ control mice (n=8). (L) Respiratory exchange ratio for STI1−/+ (n=8) and STI+/+ control mice (n=8). (M) Food
consumption for STI1−/+ (n=8) and STI+/+ control mice (n=8). (N) Water consumption for STI1−/+ (n=8) and STI+/+ control mice (n=8). (O) Energy expenditure for
STI1−/+ (n=8) and STI+/+ control mice (n=8). Results are presented as means±s.e.m.; data were analyzed and compared by Student’s t-test; *P<0.05 compared
with control.

1461

RESEARCH ARTICLE Disease Models & Mechanisms (2015) 8, 1457-1466 doi:10.1242/dmm.022525

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



cell death and in Alzheimer’s disease (Beraldo et al., 2013;
Ostapchenko et al., 2013). Interestingly, whereas increased levels of
STIP1 seem to affect the chaperone machinery, prion protein
expression is not affected by decreasing the level of Hsp70 and
increasing Hsp90. These consequences of increased STIP1 seem to
occur at the post-translational level, given that mRNAs for Hsp70
and 90 were not affected. It is unknown at the moment whether
increased STIP1 levels stabilize a complex containing Hsp90,
preferentially leading to increased turnover of Hsp70.
At present, the exact mechanism by which decreased STIP1 levels

affect psychiatric-like behavior is still unknown. Although it is
possible that decreased levels of STIP1 during early development
have persistent effects in brain circuits, culminatingwith hyperactivity
and attentional deficits, we cannot discard the possibility that
STIP1 plays a role in regulating circuitry function in the adult brain.
Our experiments at the moment do not discriminate whether the
phenotypes observed in mutant mice result from decreased STIP1co-
chaperone function, diminished STIP1 extracellular signaling or both.
Our results suggest that reduced levels of STIP1 have important
consequences for behavior and seem to affect brain circuits that
regulate attention. It is possible that exposure to STIP1 antibodies
during pregnancy could reduce STIP1 levels, which, based on the
present results, would have important consequences. Future
experiments are required to define potential mechanisms as well as
the consequences of disturbed STIP1 activity in ASD.

MATERIALS AND METHODS
Animals
STI1−/+ and STI1TGA mice were generated as described (Beraldo et al.,
2013). Both mouse lines were in the C57BL/6J background. All
experimental procedures were conducted in compliance with the
Canadian Council of Animal Care guidelines for use and care of animals
and in accordance with approved animal use protocols at the University of
Western Ontario (2008/127). Animals were housed in groups of two or four

per cage. Mice were kept in a temperature-controlled room with a 12/12
light/dark cycle (7 am/7 pm) with food and water provided ad libitum unless
stated otherwise. For behavioral studies, only male mice were used. Mice
were randomized and the experimenter was blind to genotypes. For most of
the behavioral tasks, software-based analyses were used to score mice
performance with minimum human interference.

qPCR and Western blot
For real-time quantitative PCR (qPCR), brain tissues were homogenized in
Trizol and total RNAwas extracted using the Aurum Total RNA kit for fatty
and fibrous tissue (Bio-Rad, Hercules, CA, USA). qPCR were performed as
previously described (Martins-Silva et al., 2011). Primer sequences:
STIP1-F, 5′-GCCAAGAAAGGAGACTACCAG-3′; STIP1-R, 5′-TCATA-
GGTTCGTTTGGCTTCC-3′; HsP90-F, 5′-CCACCCTGCTCTGTACT-
ACT-3′; HsP90-R, 5′-CCAGGGCATCTGAAGCATTA-3′; HsP70-R,
5′-ACCTTGACAGTAATCGGTGC-3′; HsP70-F, 5′-CTCCCGGTGTGG-
TCTAGAAA-3′; PRP-F, 5′-GAACCATTTCAACCGAGCTG-3′; PRP-R,
5′-CATAGTCACAAAGAGGGCCAG-3′; Actin-F, 5′-TGGAATCCTGT-
GGCATCCATGA-3′; and Actin-R, 5′-AATGCCTGGGTACATGGTGG-
TA-3′. Immunoblot analysis was carried out as described previously
(Beraldo et al., 2013). The antibodies used were anti-STIP1 (1:5000, in-
house antibody generated by Bethyl Laboratories Montgomery, USA using
recombinant STIP1) (Beraldo et al., 2013), anti-Hsp90 (1:1000), anti-Hsp70
(1:1000), anti-Hsp90α (1:1000), anti Hsp90β (1:1000) (Cell Signaling,
Danvers, USA) and anti-PrP 8H4 (1:2000) (Abcam, Cambrige, UK).

Locomotor activity
Mice were acclimated to the testing room for 30 min prior to beginning the
test; locomotor activity was automatically recorded (Omnitech Electronics
Inc., Columbus, USA). Mice were placed in the center of the apparatus and
locomotor activity was measured at 5 min intervals for 1 h as described
previously (Martyn et al., 2012).

Elevated plus maze
To access anxiety-like behavior, mice were acclimated to the testing room
for 30 min prior to beginning the test and then placed in the center of the

Fig. 4. Anxiety-like behavior, depression-like behavior, social
behavior and compulsivity in STI1TGA and STI1−/+ mice.
(A) Percentage of time spent in the closed arm for STI1TGA (n=17)
and control mice (n=14). (B) Percentage of time spent in the open
arm for STI1TGA (n=17) and control mice (n=14). (C) Percentage
of time spent in the closed arm for STI1−/+ (n=13) and control
mice (n=10). (D) Percentage of time spent in the open arm for
STI1−/+ (n=13) and control mice (n=10). (E) Immobility time in the
forced-swimming test for STI1TGA (n=17) and control mice
(n=14). (F) Immobility time in the forced-swimming test forSTI1−/+

(n=6) and control mice (n=8). (G,H) Time spent grooming and
number of grooming bouts for STI1−/+ (n=11) and control mice
(n=11). (I) Marbles buried by STI1−/+ (n=12) and control mice
(n=12).
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elevated plus maze (Med Associates Inc., St Albans, USA). The activity was
recorded and videos were analyzed using ANY-maze software (Stoelting
Co., USA) to determine the amount of time spent in the closed and open
sections of the maze.

Forced swimming test
Depressive-like behavior was assessed by a forced swim test (FST) as
described previously (Martyn et al., 2012). Briefly, mice were placed in a 2 l
beaker containing 1.7 l of water at 25-27°C for 6 min. Experimental sessions
were recorded and immobility time was evaluated using ANY-Maze
Software (Stoelting Co., USA). Data obtained from the last 4 min of testing
were used for the analysis.

Morris water maze
The spatial version of Morris water maze (MWM) was conducted as
described previously (Kolisnyk et al., 2013; Martyn et al., 2012; Vorhees and
Williams, 2006). Briefly, the task was performed in a 1.5-m diameter/1-m
deep pool filled with water at 25°C. Spatial cues, 40×40 cm boards containing

black symbols (vertical and horizontal stripes, triangles, squares and circles),
were placed on the walls distributed around the pool and the platform was
submerged 1 cm below the surface of the water. Mice were submitted to four
training trials a day (90 s each) for four consecutive days with a 15 min
intertrial interval. On day 5, memory was assessed by a single 60 s trial on
which the platform was removed and the time spent in the target quadrant was
evaluated.All the experimental sessionswere recorded and analyzed using the
ANY-Maze Software.

Five-choice serial reaction time task
The five-choice serial reaction time task (5-CSRTT) was used to
evaluate attention in mice as described previously (Kolisnyk et al., 2013;
Romberg et al., 2011). Mice were trained in the 5-CSRTT in automated
Bussey–SaksidaTouch screen systems (Campden Instruments Limited,
Loughborough, EN) and the data collected using ABET II Touch software
V.2.18 (Lafayette Instruments, Lafayette, USA). Mice were submitted to a
pre-training program, which consisted of first habituating the mouse to the
testing chamber with the lights off for 10 min. The next day, the mouse was

Fig. 5. Spatial memory in STI1TGA and STI1−/+ mice. For
the tests, n=14 STI1+/+ and 14 STI1TGA mice were used to
test spatial memory in STI1TGA mice and n=11 STI1+/+ and
11 STI1−/+ for STI1−/+ mice. (A) Latency to find the platform.
(B) Distance traveled. (C) Speed for STI1TGA mice.
(D) Percentage time spent by STI1TGA mice and controls in
target quadrant (T) and in opposite (O), right (R) and left (L)
quadrants was measured on day 5 in a 60 s probe trial with
the platform removed. (E) Latency to find the platform.
(F) Distance traveled. (G) Speed for STI1−/+ mice.
(H) Percentage time spent by STI1−/+ mice and controls in
each quadrant was measured on day 5 in a 60 s probe
trial with the platform removed. Results are presented as
means±s.e.m.; data were analyzed and compared by
two-way ANOVA; ***P<0.001 and ****P<0.0001 compared
with time spent in target quadrant.
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put in the chamber with the lights off for 20 min. After two days of
habituation with no reward been offered, the reward tray was primed with
11% fat strawberry milkshake (Nielson - Saputo Dairy Products) and a tone
was played when themouse entered the reward tray. This was repeated for the
next 2 days for 40 min sessions. Whenever the mouse returned to the reward
tray, the reward was offered and paired with a tone (phase I). The following
training phase consisted in pairing the reward with the presentation of a
random stimulus (flash of light in one of the five windows), which is
removed after 30 s. At this phase, if the mouse touched the screen when the
stimulus was displayed, it received a reward. This cyclewas repeated until the
mouse completed 30 trials or 60 min timeout (phase II). At phase III of the
training, the stimulus was displayed randomly in one of the five windows.
The mouse had to touch the window where the stimulus was displayed to
receive the reward paired with a tone. Similar to phase II, this cycle was
repeated until themouse completed 30 trials or 60 min timeout. The next step
(phase IV) was identical to phase III except by the fact that the mouse had to
poke its nose into the reward trail to initiate the task. This process was
repeated in the last phase of the pre-training (phase V); however, if themouse

touched an incorrect screen, it received a 5 s timeout and the light in the
chamber was turned on. After the mouse had finished pre-training and
reached criterion at 4 s and 2 s stimulus duration (80% accuracy, 20%
omission for three consecutive days), mice were probed for attention deficits
following probe trial schedules: each mouse was tested over two sessions at
1.5, 1.0, 0.8 and 0.6 s stimulus duration (the order of the probe trial sessions
was randomized and the groups counterbalanced). Between each different
stimulus duration, each mouse was returned to a 2 s stimulus for two
consecutive sessions. Number of trials to criterion, accuracy, omission,
reward collection latency and perseverative response were analyzed.

Metabolic assessments
Oxygen consumption, carbon dioxide production, respiratory exchange
ratio (RER), carbon dioxide production, water and food intake and physical
activity were simultaneously measured for adult STI1+/+ and STI1+/− mice
by using the Comprehensive Lab Animal Monitoring System (CLAMS)
interfaced with Oxymax Software (Columbus Instruments, Columbus, OH,
USA) as previously described in detail (Guzman et al., 2013; Kolisnyk et al.,

Fig. 6. Five-choice serial reaction time task used tomeasure attention inSTI1TGA andSTI1−/+. For the tests, n=10STI1+/+ and 10STI1TGAmicewere used to
test attention in STI1TGA mice and n=13 STI1+/+ and 13 STI1−/+ for STI1−/+ mice. (A) Accuracy during probe trial sessions. (B) Rate of omission. (C) Premature
responses. (D) Response latency. (E) Reward collection latency. (F) Perseverative responses for STI1TGA mice. (G) Accuracy during probe trial sessions.
(H) Rate of omission. (I) Premature responses. (J) Response latency. (K) Reward collection latency. (L) Perseverative response for STI1−/+ mice. Results are
presented as means±s.e.m.; data were analyzed and compared by RM-ANOVA; *P<0.05, **P<0.001 compared with control.

1464

RESEARCH ARTICLE Disease Models & Mechanisms (2015) 8, 1457-1466 doi:10.1242/dmm.022525

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



2013). Briefly, mice were individually housed in the metabolic chambers
with ad libitum access to water and food. Following a 16-h habituation
period, all measurements were obtained every 10 min for 24 h (12 h light/
12 h dark).

Marble burying task
A marble burying task was used to assess repetitive and anxiety-like
behavior as previously described (Deacon, 2006).

Assessment of self-grooming
Self-grooming was assessed to evaluate repetitive behavior, as previously
described (McFarlane et al., 2008). Briefly, each mouse was placed
individually in a clean, empty, cage and given a 10 min habituation period,
after which the mice were filmed for another 10 min. Cumulative time spent
grooming and number of grooming bouts were counted by an experimenter
blinded to the genotypes of the mice.

Statistical analyses
Data are presented as mean±s.e.m. Statistical analyses were performed using
SigmaStat 3.5 software. Student’s t-test was used to compare two
experimental groups and for comparison of several experimental groups,
two-way ANOVA or two-way repeated-measures ANOVA were used as
required. Tukey’s post hoc comparison was used when required.
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Abstract
Cholinergic dysfunction has been associated with cognitive abnormalities in a variety of neurodegenerative and
neuropsychiatric diseases. Here we tested how information processing is regulated by cholinergic tone in genetically modified
mice targeting the vesicular acetylcholine transporter (VAChT), a protein required for acetylcholine release.Wemeasured long-
term potentiation of Schaffer collateral-CA1 synapses in vivo and assessed information processing by using a mouse
touchscreen version of paired associates learning task (PAL). Acquisition of information in the mouse PAL task correlated to
levels of hippocampal VAChT, suggesting a critical role for cholinergic tone. Accordingly, synaptic plasticity in the hippocampus
in vivo was disturbed, but not completely abolished, by decreased hippocampal cholinergic signaling. Disrupted forebrain
cholinergic signaling also affected working memory, a result reproduced by selectively decreasing VAChT in the hippocampus.
In contrast, spatialmemorywas relatively preserved,whereas reversal spatialmemorywas sensitive to decreased hippocampal
cholinergic signaling. This work provides a refined roadmap of how synaptically secreted acetylcholine influences distinct
behaviors and suggests that distinct forms of cognitive processing may be regulated in different ways by cholinergic activity.

Keywords:Alzheimer’s disease, long-term potentiation, Morris watermaze, paired associates learning, vesicular acetylcholine
transporter, working memory

Introduction

Basal forebrain cholinergic neurons provide input to the entire cor-
tex and hippocampus. In particular, the hippocampus receives
most of its cholinergic innervation from neurons in the medial
septal nucleus (MS) and vertical limb of the diagonal band of
Broca (vdB), whereas the cerebral cortex and the amygdala receive
cholinergic inputs from neurons located in the nucleus basalis of
Meynert (NBM) (Mesulamet al. 1992; Kitt et al. 1994). Abnormalities
in forebrain cholinergic nuclei have been implicated in several

cognitive disorders (Bartus 2000; Mesulam 2004), including Alzhei-
mer’s disease (AD ; Grothe, Schuster, et al. 2014; Teipel et al. 2014).
Moreover, cumulative use of drugs with anticholinergic activity is
associated with increased risk for dementia and AD (Gray et al.
2015). However, the relationship between cholinergic dysfunction
and maintenance of cognitive abilities in these diseases is not
fully understood, due to concomitant pathologies that may con-
tribute to cognitive abnormalities (Mesulam 2013).

Cholinergic signaling is involved in the regulation of hippo-
campal synaptic transmission and plasticity (Ji et al. 2001;
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Leung et al. 2003; Seeger et al. 2004; Ge and Dani 2005; Gu and
Yakel 2011). Septal cholinergic activation, either by electrical
stimulation or by optogenetics, allows the expression of distinct
time-dependent forms of hippocampal plasticity (Gu and Yakel
2011). Pharmacological (Decker and Majchrzak 1992; Anagnos-
taras et al. 1999; Gale et al. 2001;Wallenstein andVago 2001; Chu-
dasama et al. 2004; Pichat et al. 2007; Timmermann et al. 2007;
Ragozzino et al. 2012) and genetic studies (Anagnostaras et al.
2003; Seeger et al. 2004; Poulin et al. 2010) have shown that
modulation of cholinergic receptors influence learning and
memory processes. Indeed, both nicotinic receptors (nAChRs)
and muscarinic receptors (mAChRs) have been linked with vari-
ous forms of plasticity (Vidal and Changeux 1993; Gray et al. 1996;
Ji andDani 2000; Seeger et al. 2004; Gautamet al. 2006; Giessel and
Sabatini 2010; Zheng et al. 2012). For example, M1 knockout mice
exhibit selective cognitive impairments in tasks requiring inter-
actions between the hippocampus and cortex (Anagnostaras
et al. 2003), while M2 knockout mice display impairments in
working memory, cognitive flexibility, and hippocampal plasti-
city (Seeger et al. 2004). Moreover, recent evidence shows that
activation of M1 mAChRs induces long-term potentiation (LTP),
suggesting thatM1mAChRs could play a role in regulating hippo-
campal plasticity (Dennis et al. 2015). Furthermore, the nAChR
β2-subunit knockout mice are impaired in learning the MWM,
suggesting that the β2-subunit may mediate effects of ACh on
learning and memory (Zoli et al. 1999). However, long-term
changes in cholinergic activity, as observed in a number of
neurodegenerative diseases, are more complex to model using
specific receptor knockouts, given the plethora of subtypes of
muscarinic and nicotinic receptors.

Onewidespread alternative to mimic cholinergic dysfunction
is the selective elimination of these neurons using toxins in ro-
dents (Baxter and Bucci 2013; Prado et al. 2013). It is somewhat
controversial whether selective 192 IgG-saporin lesion of septo-
hippocampal cholinergic neurons can lead to significant impair-
ments in hippocampal-dependent learning andmemory tasks in
rodents, with some authors finding little effect (Berger-Sweeney
et al. 1994; Baxter and Gallagher 1996; Pizzo et al. 2002; Frick et al.
2004; Parent and Baxter 2004), whereas others find a miriad of
deficits (Walsh et al. 1996; Janis et al. 1998; Gil-Bea et al. 2011).
In addition, cholinergic neurons have been shown to contain
more than one class of neurotransmitter transporters and se-
crete 2 neurotransmitters (Gras et al. 2008; El Mestikawy et al.
2011; Guzman et al. 2011; Prado et al. 2013; Nelson et al. 2014;
Saunders et al. 2015). Therefore, it is difficult to interpret results
with toxin lesions for specific contributions of neurotransmitters
in neurons that release 2 chemical messengers. Indeed, recent
work has shown that some basal forebrain cholinergic neurons
can also secrete GABA which acts as a neurotransmitter in the
cortex (Saunders et al. 2015).

Genetic targeting of either the vesicular acetylcholine trans-
porter (VAChT; Guzman et al. 2011; Martyn et al. 2012) or choline
acetyltransferase (ChAT; Patel et al. 2012) using the Cre/lox sys-
tem has provided a way for investigating specific contributions of
ACh when there is co-transmission (Prado et al. 2013). Decreased
VAChT levels severely compromise packaging of acetylcholine
(ACh) into synaptic vesicles and thus reduce ACh release by nerve
terminals (Prado et al. 2006; de Castro, De Jaeger, et al. 2009). Con-
versely, overexpression of VAChT enhances ACh secretion propor-
tionally (Song et al. 1997; Kolisnyk, Guzman, et al. 2013) .

The recent development of automated touchscreen behavior-
al testing for rodents has greatly improved mouse behavioral as-
sessment. Touchscreen tasks were designed using almost
identical paradigms and methodologies used in humans,

facilitating translational studies between species (Morton et al.
2006; Talpos et al. 2009, 2010; Romberg et al. 2011; Mar et al.
2013). The paired associates learning (PAL) test has been shown
to efficiently detect cognitive alterations that are consistently ob-
served in AD (Swainson et al. 2001; Blackwell et al. 2004; de Rover
et al. 2011) and schizophrenia (Wood et al. 2002; Barnett et al.
2005). In dementia, PAL has been shown to differentiate between
mild cognitive impairment andAD (Blackwell et al. 2004). Herewe
investigated cognitive performance in mice with deletion of
VAChT, a protein required for synaptic release of ACh, in either
forebrain cholinergic neurons or selectively in septohippocampal
cholinergic neurons. Our experiments reveal that dysfunction in
hippocampal cholinergic activity influences synaptic plasticity in
vivo and disturbs performance in PAL and working memory,
whereas spatial navigation seems relatively preserved.

Material and Methods
Animals

Generation of VAChTflox/flox mice was previously described (Mar-
tins-Silva et al. 2011). VAChTflox/flox mice (mixed C57BL/6J × 129/
SvEv background, backcrossed to C57BL/6J for 5 generations) were
crossed to VAChTNkx2.1-Cre-flox/flox mice so that offspring from this
mating provided control and test littermates. VAChTNkx2.1-Cre-flox/

flox mice were generated by crossing VAChTflox/flox with the
Nkx2.1-Cre mouse line (C57BL/6J-Tg(Nkx2-1-cre)2Sand/J), pur-
chased from The Jackson Laboratory (JAX stock no. 008661).
This line has been previously used to eliminate ChAT from fore-
brain neurons (Patel et al. 2012). Unless otherwise stated, all con-
trol mice used for behavioral studies were VAChTflox/flox

littermates. The reporter mouse line Nkx2.1(td-Tomato) was gener-
ated by crossing B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice,
purchased from The Jackson Laboratory (JAX stock no. 007909)
with the Nkx2.1-Cre mouse line (JAX stock no. 008661).

Animals were housed in groups of 3 per cagewithout environ-
mental enrichment in a temperature controlled room (12:12 light
to dark cycles), and food and water were provided ad libitum for
most experiments. Animals that underwent touchscreen testing
were housed in pairs; food restricted to nomore than 85% of their
original weight, and they were maintained at the target weight
for the duration of behavioral testing. Male mice 3 months old
were used for behavioral studies. We followed the ARRIVE guide-
lines (Kilkenny et al. 2010); hence, mice were randomized for be-
havioral tests and the experimenter was blind to the genotype.
All procedures were performed in accordance with the Canadian
Council of Animal Care guidelines at the University of Western
Ontario with an approved animal protocol (2008–127).

Immunoflourescence Microscopy

Mice were anesthetized with ketamine (100 mg/kg) and xylazine
(25 mg/kg) in 0.9% sodium chloride, and then sacrificed by trans-
cardial perfusion: phosphate-buffered saline (PBS, pH = 7.4) for
3 min and 4%paraformaldehyde for 5 min. Brainswere harvested
and placed in 4% paraformaldehyde in 1× PBS at 4 °C for 4 h; they
were kept at 4 °C until sliced using a vibratome. Brain sections
(40 µm) were prepared and free-floating sections in 1× PBS
(1 perwell in a 24-well plate)were permeabilizedwith 0.4% Triton
X-100 in 1× PBS for 1 h. Non-specific epitopes were blocked using
a solution of 1× PBS/0.4% Triton X-100 containing 0.1% glycine
(wt/vol), 0.1% lysine (wt/vol), 1% BSA (wt/vol), and 1% normal
donkey serum (wt/vol). The primary antibodies used were
anti-VAChT (catalog no. 139103; Synaptic Systems), anti-ChAT
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(1:200) (catalog no. AB144P, Merck Millipore), and anti-Choline
Transporter (CHT1; 1:200), which was kindly donated by
Dr R. Jane Rylett, University of Western Ontario, London, Ontario.
The primary antibody was incubated in blocking buffer overnight
at 4 °C. Sections were then washed 5 times in 1× PBS/0.4% Triton
X-100 (10min each). Hoechst 3342 (Life Technologies, Bibco, Carls-
bad, CA, USA) (2–5 µg/mL) and secondary antibodies (1:500; anti-
488, catalog no. A-11034, ThermoFisher; 1:500 anti-633, catalog
no. A-21082, ThermoFisher) were diluted in blocking buffer and
slices were incubated for 1 h at RT. Sections were visualized by
Zeiss LSM 510Meta (Carl Zeiss, Oberkochen, Germany) confocal
system (63 × objective, 488-nm Ar laser and 633-nm HeNe laser
were used for excitation of fluorophores).

Western Blotting

Immunoblotting was performed as previously described (Martins-
Silva et al. 2011; Kolisnyk, Al-Onaizi, et al. 2013; Kolisnyk, Guzman,
et al. 2013). Antibodies used were anti-VAChT (catalog no. 139103;
Synaptic Systems) and anti-Synaptophysin (catalog no. S5768;
Sigma-Aldrich).

Training on the PAL Task

Prior to training, both groups of mice (3 months old) were food re-
stricted until they reached approximately 85% of their original
weight. Training of the animals to the PAL task was previously de-
scribed (Talpos et al. 2009). Briefly, the training phase for the mice
in the touchscreen chambers involved a habituation session,
where they were placed in the chambers with the lights off for
20 min to habituate to the environment for 2 days. Next, mice
were put in the chamber with the same parameters as in the ha-
bituation phase, but this time a 150 µL reward (strawberry milk-
shake; Saputo Dairy Products, Canada) was introduced in the
reward receptacle. Every time the mouse attended to the reward
in the reward receptacle, a tone was played. This 40 min training
sessionwas done for the next 2 days untilmice completed 36 trials
in 60min (Habituation; Phase 1)

Themicewere then trained to associate the rewardwith a 30 s
presentation of training stimuli, which varied in brightness,
shape, and pattern, on one of the 3 screens (Initial touch training;
Phase 2). Mice were required to touch any of the screens when-
ever the stimulus was presented to receive the reward, which
was paired with a tone. A new trial was automatically initiated
once the mice collected the reward. This was done until the
mice completed 36 trials in 60 min for 1 day. Next, mice are re-
quired to touch the stimulus that is displayed randomly in one
of the 3 windows to receive the reward (must touch stimuli train-
ing; Phase 3). Mice are onlymoved to next training after complet-
ing 36 trials in 60 min for 1 day. In the next training phase, food is
delivered and tray light is turned on. The mouse must nose poke
and exit the reward tray before a stimulus is displayed randomly
on the screen (Must initiate; Phase 4). This was done until mice
completed 36 trials in 60 min for 1 day. Next, animals go to the
last phase of the training program required for the PAL task.
This training phase is referred to as “punish incorrect” (Phase
5). This phase is similar to the previous one, but if the mouse
touched the incorrect screen, that is, one of the blank screens,
it was presented with a 5-s time-out. This time-out was ac-
companied by the presentation of a bright light in the chamber.
Criterion to successfully proceed from this training phase
was 23 correct responses out of 30 trials in 60 min for 2 consecu-
tive days. Next, both experimental groups were subjected to ac-
quisition training, where 2 stimuli are displayed at the same

time during a trial. One will be in the correct location (S+) and
the other will be in the incorrect location (S−). Mice were required
to touch the correct stimulus (S+) presented on one of the 3 screens
to completea trial and receive the reward. In this acquisition phase,
micewere on an unpunished version inwhich touching the S−was
ignored. A completion of a trial was only considered when the
mouse touches the S+. Criterion for this training phase is comple-
tionof 36 trials in 1 session (1 day). Allmice fromboth experimental
groups were able to reach criterion in acquisition training.

PAL Task

After successfully completing the training phase, the mice were
placed on a PAL task (dPAL), which involves a different stimulus
being presented in each trial. A trial starts in dPAL when the
mouse initiates it by touching the food receptacle, which triggers
the display of both S+ and S− on the screen. S+ refers towhen the
stimulus is in the correct location, and S− refers to when the
stimulus is in the incorrect location. There were 6 possible trial
types and 3 different stimuli were presented (flower, plane, and
spider).Within trials, an S+ is theflower presented in the left win-
dow, the plane in the middle window, or the spider in the right
window. Thus, mice are required to learn to associate a stimulus
to its correct location. A response by touching the S− resulted in a
10 s time-out and the chamber light was activated for 10 s, acting
as an indication for an incorrect response for the mouse. After
10 s, the next initiation by themousewas considered a correction
error trial, where the same S+ and S− were presented as for the
unsuccessful previous trial. The number of correction trials was
not counted toward the total number of trials performed per ses-
sion. An S+ response, however, led to a tone, aswell as the reward
being dispensed in the receptacle.

Electrophysiology

Animals were anesthetized with urethane (1 g/kg i.p.) and placed
in a stereotaxic apparatus. Atropine methyl nitrate was adminis-
tered (5 mg/kg i.p.) to reduce airway secretions during stereotaxic
surgery. Animal body temperature was monitored between
36.5 °C and 37 °C using a feedback controlled rectal thermometer
and heating pad. Stimulating electrodeswere placed into stratum
radiatum at P 1.8, L 2.3 or P 2.5, L2.4 (Franklin and Paxinos 2008) to
stimulate Schaeffer collaterals projecting from CA3 to CA1
(Hutchison et al. 2009). A silicon probe, with 16 electrodes sepa-
rated by 50 µm on a vertical shank, was placed in area CA1 at
P 2.2, L 1.8. Laminar profiles of the average (4 sweeps) field excita-
tory postsynaptic potentials evoked by single pulse stimulation
of the Schaffer collaterals at 1.5-2 × threshold stimulus intensity.
Current-source density analysis using 100 µm step size was used
to determine current sources and sinks. The maximal slope (of
1 ms duration) during the rising phase of the excitatory sink, at
its maximum in CA1 stratum radiatum, was used for LTP assess-
ment. After a stable baseline of the excitatory sink slope was es-
tablished for 30 min (coefficient of variation [SEM/mean] of the
sink slopes <0.05), a high-frequency tetanus (100 Hz for 1 s) was
delivered at 2–3 times the threshold intensity, and the response
was measured for 120 min after the tetanus. For each mouse,
the slope of the excitatory sink was normalized by the average
value of the baseline, and LTP across mice was averaged and re-
ported as a multiple of the baseline slope.

Rotarod and Neuromuscular Tests

The rotarod task was conducted as previously described (Prado
et al. 2006; de Castro, Pereira, et al. 2009). Forelimb and hind
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limb grip strength was assessed using a previously described
protocol (Prado et al. 2006). The hang-wire experimentswere per-
formed as described (Sango et al. 1996).

Morris Water Maze

The spatial version of theMWMwas performed as previously de-
scribed (Vorhees andWilliams 2006; Martyn et al. 2012; Kolisnyk,
Guzman, et al. 2013). Testing was performed in a 1.5-m diameter
pool with 25 °C water. A hidden platform was submerged in a
constant location 1 cm below the surface of the water in one of
the 4 arbitrarily defined quadrants, and spatial cues were distrib-
uted around the pool. Briefly, mice were given four 90-s trials for
the duration of 4 days to find the hidden platform, with an ITI of
15 min. The animals were introduced to the pool from different
locations within the pool for each trial. Mice that did not find
the platform within the 90 s were gently guided to the platform.
On the fifth day, spatial memory recall was tested by a 60-s probe
trial, where the hidden platform is removed and the amount of
time the animal spends in the target quadrant is calculated. To
test reversal learning, the hidden platform was relocated to the
opposite quadrant, where the animals were given four 90-s trials
for 4 days. On the fifth day, the animals were given a 60-s probe
trial. Data were analyzed using ANY-Maze video tracking soft-
ware (Stoelting Co.).

Two-Trial Morris Water Maze

A task used to assessworkingmemorywas the 2-trial variation of
the MWM. The task was carried out using previously described
protocols (Vorhees and Williams 2006; Kolisnyk, Guzman, et al.
2013). The mice were trained on the task over the course of
5 days. During the training period, the mouse was first given a
90-s trial with a 15 s inter-trial interval. Next, the mouse was
given a second trial with the same platform location and starting
point; this was repeated 3 additional times. After completing the
training phase, the mouse was first given a 90 s trial with a 15 s
inter-trial-interval. The mouse was then given a second trial
with identical platform location and starting point. This was re-
peated with 4 unique starting location/platform location com-
binations a day. Mean latency and distance savings ratios were
then calculated as previously described (Kolisnyk, Guzman,
et al. 2013). Sessions were recorded for both tests and were ana-
lyzed using the ANY-Maze video tracking software (Stoelting Co.)

Spontaneous Alterations Y-maze

To assessworkingmemory in themice, weused the spontaneous
alternations Y-maze as previously described (Kolisnyk, Guzman,
et al. 2013). Briefly, mice were placed in a symmetrical plastic
Y-maze apparatus, and both the number and order of armentries
were recorded. A spontaneous alternation was defined as when
the mouse visited all 3 of the arms in a row, without having re-
visited a previous arm of the maze. Sessions were recorded and
analyzed using the ANY-Maze Software.

Stereotaxic Injections of Adeno-Associated Virus

To obtain selective deletion of VAChT in themedial septum,mice
were anesthetized with ketamine (100 mg/kg) and xylazine
(25mg/kg) in 0.9% sodium chloride, and 1 µL (titer of ∼1013GC/mL)
of adeno-associated virus (AAV)8-GFP-Cre- or control virus
(AAV8-GFP, Vector BioLabs, Eagleville, PA, USA) was injected
into the medial septum/vertical limb of the diagonal band (0.98
AP, 0.1 LL and 4.1 DV) of VAChTflox/flox mice. The injecting

micropipette was inserted and left for 2 min to stabilize. After
stabilization, a 0.2 µL/min infusionwas performed using amicro-
pump followed by a 30 min rest period to allow local diffusion of
the virus and avoid virus efflux. The micropipette was then
slowly removed and the scalp sutured. A recovery period of
4 weeks was given before behavioral testing to allow transgene
expression.

Statistical Analysis

All data are expressed asmean ± SEM. Sigmastat 3.5 softwarewas
used for statistical analysis. Comparison between 2 experimental
groups was donewith Student’s t-test. When several experimen-
tal groups or treatments were analyzed, 2-way analysis of vari-
ance (ANOVA) or 2-way ANOVA with repeated measures (RM)
were used as required. When appropriate, a Bonferonni post hoc
analysis test was used.

Results
Deletion of VAChT in Forebrain Projection Neurons

Nkx2.1-driven Cre is expressed in forebrain cholinergic neurons
as assessed using a reporter mouse line (see Supplementary
Fig. 1A and Table 1). Immunoblot analysis shows that VAChT
levels in the prefrontal cortex (t(4) = 6.162, P = 0.0035), hippocam-
pus (t(4) = 4.461, P = 0.0097), and striatum (t(4) = 8.625, P = 0.0010)
were severely diminished in VAChTNkx2.1-Cre-flox/flox mice (see
Supplementary Fig. 1B–D). In contrast, VAChT levels remained
unchanged in the brainstem of VAChTNkx2.1-Cre-flox/flox compared
with controls (t(4) = 1.040, P = 0.3571, see Supplementary Fig. 1E).
Moreover, immunofluorescence imaging indicated decreased
VAChT immunoreactivity in the hippocampus of VAChTNkx2.1-

Cre-flox/flox mice compared with controls (Fig. 1A,B). Importantly,
these mice presented no neuromuscular deficits (see Supple-
mentary Fig. 2A–C). We have previously shown that reduced
VAChT levels proportionally decrease the release of ACh in vivo
and in vitro (Prado et al. 2006; Guzman et al. 2011; Kolisnyk,
Al-Onaizi, et al. 2013; Kolisnyk, Guzman, et al. 2013).

Forebrain VAChT is Required for Performance in the PAL Task
We tested VAChTNkx2.1-Cre-flox/flox mice on the PAL task, which re-
quires sophisticated processing of information for proper associ-
ation of images with specific locations. VAChTNkx2.1-Cre-flox/flox

mice and their matched controls were assessed on the dPAL
task using an automated touchscreen system (Fig. 1C and see
Supplementary Videos 3 and 4). Prior to being subjected to the
PAL task, both experimental groups are trained on a different
training sessions (initial touch,must touch stimuli, must initiate,
and punish incorrect) to learn how to operate the touchscreen,
which includes learning to touch the screen when a stimulus is
presented and initiating the task by inserting the head into the
reward chamber. In the “punish incorrect” training, when only
one stimulus is presented randomly in one of the 3 screens,
mice are taught to touch the screen that shows the stimulus.
Mice from both experimental groups were able to reach criterion
in this phase of the training and no differenceswere observed be-
tween the 2 genotypes (t(12) = 0.0749) (Fig. 1D), indicating that
VAChT-deficient mice are able to learn that they need to touch
the screen when an image is shown. Additionally it argues that
VAChT-deficient mice do not present any major visual impair-
ment. During the course of the 9 weeks that mice were tested
on the dPAL task, we observed that control mice significantly im-
proved their accuracy performance, while VAChT deletion
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mutants did not (2-way RM ANOVA shows significant effect
of weeks F8,48 = 21.11, P < 0.0001, an effect of genotype F1,6 = 56.94,
P = 0.0003, and an interaction effect F8,48 = 2.871, P = 0.0074,
Fig. 1E). VAChTflox/flox mice (controls) were able to improve per-
formance reaching 77 ± 1% accuracy by Week 9 (Fig. 1E). In con-
trast, peak accuracy performance of VAChTNkx2.1-Cre-flox/flox mice in
thedPAL taskduring the sameperiodwas58 ± 2% (Fig. 1E). Although
VAChTNkx2.1-Cre-flox/flox mice were able to perform the 36 trials re-
quired in each 1-h session, they failed to associate the stimulus to
its correct location. Their poorer performance was also reflected in
the number of correction errors performed (Fig. 1F). VAChTNkx2.1-Cre-

flox/floxmice failed to decrease the number of correction errorsmade
over the courseof 9weeks,while controlmice improved thenumber
of correction errors performedduring the course of the study (2-way
RMANOVA shows significant effect of weeks F8,48 = 12.05, P < 0.0001,
an effect of genotype F1,6 = 39.41, P = 0.0008, and an interaction effect
F8,48 = 1.224, P = 0.0306, Fig. 1F). Correct response latencywas not dif-
ferent between the 2 groups over the course of 9 weeks (2-way RM
ANOVA shows significant effect of weeks F8,48 = 7.508, P < 0.0001,
no effect of genotype F1,6 = 2.437, P = 0.1695, and no interaction
F8,48 = 1.195, P= 0.3220, Fig. 1G). Furthermore, VAChTNkx2.1-Cre-flox/flox

mice were no different from controls when the latency to collect
the reward was measured, which indicated that motivation
was not a factor in their poorer performance (2-way RM ANOVA
showsa significant effect ofweeks F8,48 = 7.596, P < 0.0001, no effect
of genotype F1,6 = 0.0001380, P = 0.7681, and no interaction F8,48 =
0.6061, P = 0.7681 Fig. 1H). In summary, VAChTNkx2.1-Cre-flox/floxmice
were able to learn that they had to touch the screen when the
images were shown; however, they failed in making associations,
that is, theywereunable toassigneach image toa specific position.

Hippocampal LTP is Disrupted in Forebrain-Specific VAChT
Knockout Mice In Vivo
Formation of associations might depend on lasting increases in
synaptic strength. To determine whether VAChTNkx2.1-Cre-flox/flox

mice have intact synaptic plasticity, we examined LTP of the syn-
apse of the Schaffer collaterals on hippocampal CA1 neurons in
anaesthetized mice in vivo. VAChTNkx2.1-Cre-flox/flox mice showed
decreased LTP which lasted about 90 min post-tetanus delivery
while LTP in VAChTflox/flox mice was maintained for 120 min
(Fig. 2A,B). This indicated that the lack of cholinergic signaling
disturbs synaptic plasticity in hippocampal CA1 area in vivo.

Figure 1. VAChTNKx2.1-Cre-flox/flox mice display impairments in the acquisition of dPAL. (A) Representative 3-dimensional reconstructed Z stack immunofluorescence

images of VAChT (green) and Hoechst (blue) in the CA1 and CA3 regions of the hippocampus in VAChTflox/flox (n = 3) and (B) VAChTNkx2.1-Cre-flox/flox mice (n = 3) (Scale

bar = 100 µm). (C) Image depicting a mouse performing the task, where the flower is shown as S+ and the airplane as S−. (D) Number of sessions required by both

experimental groups to reach criterion during the operant conditioning, pretraining, and training phases. (E–H) Data for the acquisition of the dPAL task for VAChTflox/flox

(n = 7 clear squares) and VAChTNKx2.1-Cre-flox/flox (n = 7 dark circles) mice. Each week represents 5 testing sessions of 36 trials. (E) Mean accuracy; (F) Mean correction

errors; (G) Response latency; (H) Reward collection latency (Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.0001).
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To specifically evaluate the contribution of hippocampal cho-
linergic tone to PAL performance, we stereotaxically injected
AAV8-GFP-Cre or AAV8-GFP virus to the medial septum and ver-
tical limb of the diagonal band (MS/VDB) of VAChTflox/flox mice
(AAV8-GFP-Cre n = 13; AAV8-GFP n = 7). Mice were trained on the
dPAL task 1 month after viral injection. Following completion of
the task, mice were sacrificed to evaluate VAChT protein levels.
Given the length of the experiment (≈4 months), and the obser-
vation that viral injection was only partially effective to reduce
hippocampal VAChT levels (see Supplementary Fig. 6B), we did
not exclude any mouse from the analysis, even if viral mediated
recombination was not effective to eliminate the transporter.
Instead, we correlated VAChT levels in the hippocampus from
both AAV8-GFP-Cre and AAV8-GFP to their performance on the
PAL task.

Performance on the final week of the experiment was posi-
tively correlated to VAChT protein levels in terms of response
accuracy (Pearson’s r = 0.5208, CI = 0.1015–0.7829, P = 0.0186,
Fig. 3A) and negatively correlated to number of correction errors
(Pearson’s r =−0.6518, CI =−0.8494 to −0.2940, P = 0.0018, Fig. 3B).
We also evaluated the relationship between hippocampal VAChT
protein levels to learning the PAL task. We calculated the rate of
learning as the slope of the learning curve of both response
accuracy and correction errors across all the weeks of the task.
VAChT protein level was positively correlated to the rate of
learning of response accuracy (Pearson’s r = 0.5053, CI = 0.08072–
0.7747, P = 0.0231, Fig. 3C) and negatively correlated to the correc-
tion error rate of learning (Pearson’s r = −0.1799, CI = −0.7982 to
−0.1418, P = 0.0120, Fig. 3D). Importantly, VAChT protein levels

did not correlate to mean response latency across the task (Pear-
son’s r = 0.1349, CI =−0.3273 to 0.5450, P = 0.5708, Fig. 3E) or mean
reward collection latency across the task (Pearson’s r = −0.1799,
CI = −0.5676 to 0.2731, P = 0.4352, Fig. 3F), suggesting that re-
sponse patterns and motivation are unaltered by reduced
VAChT levels. Taken together these results show that the less
VAChT protein in the hippocampus the worse is the mouse per-
formance in the dPAL task, indicating that dPAL learning is
modulated by septohippocampal cholinergic signaling.

VAChT and Spatial Navigation

Given the strong deficit of association of the image with its cor-
rect location in the PAL task, it seemed of importance also to
evaluate spatialmemory in thesemice. Spatialmemory is widely
used to assess information acquisition and storage in the hippo-
campus, but cholinergic dysfunction has only mild effects in
the MWM in mice (Moreau et al. 2008; Martyn et al. 2012). Our
data showed that spatial learning on the MWM was relatively
normal in VAChTNkx2.1-Cre-flox/flox mice compared with controls
(see Supplementary Fig. 5A–C). On the probe trial of the MWM,
both groups ofmice spent significantlymore time in the target quad-
rant compared with the opposite quadrant (2-way ANOVA shows a
significant effect of quadrant, F3,80 = 39.58, P < 0.0001, and an inter-
action effect F3,80 = 2.914, P=0.0394, see Supplementary Fig. 5D), post
hoc analysis revealed that both groups spent significantlymore time
in the target quadrant. However, VAChTNkx2.1-Cre-flox/flox mice had
significantly fewer platform crosses compared with littermate
controls (t(20) = 2.795, P = 0.0112, see Supplementary Fig. 5E).

To specifically evaluate the contribution of hippocampal cho-
linergic tone to learning and memory performance in the spatial
version of the MWM, we stereotaxically injected AAV8-GFP-Cre
(n = 25) virus to the MS/VDB in another cohort of VAChTflox/flox

mice (see Supplementary Fig. 6A,B). VAChTflox/flox mice injected
with AAV8-GFP (n = 14) were used as controls. AAV8-GFP-Cre-in-
jected mice that showed more than 50% of hippocampal VAChT
protein levels (n = 11) compared with controls were excluded
from the analysis (see Supplementary Fig. 6E). In AAV8-GFP-
Cre-injected mice with reduced hippocampal VAChT levels,
VAChT protein in the prefrontal cortex was not changed (97% of
AAV8-GFP VAChT levels, t(4) = 0.453, P = 0.665, see Supplementary
Figure 6C,D). AAV8-GFP-Cre-mediated deletion of VAChT from
the medial septum did not significantly alter acquisition of the
spatial version of the MWM (Latency, 2-way RM ANOVA shows
an effect of days F3,39 = 22.84, P < 0.0001, no effect of Cre virus in-
jection F1,13 = 0.2228, P = 0.6447, and no interaction, F3,39 = 1.302,
P = 0.2876, Fig. 4A). Similar results were obtained for distance
travelled (2-way RM ANOVA shows an effect of days, F3,39 = 23.5,
P < 0.0001, no effect of Cre expression F1,13 = 0.3125, P = 0.5856,
and no interaction, F3,39 = 1.329, P = 0.2787, Fig. 4B). In the probe
trial, mice injected with the AAV8-GFP-Cre virus did not differ
from controls in terms of preference for the target quadrant
(2-way ANOVA shows a significant effect of quadrant, F3,104 = 37.81,
P < 0.0001, no effect of Cre expression, F1,104 = 0.6452, P = 0.4237, and
no interaction F3,104 = 0.3988, P = 0.7541, Fig. 4D) or platform crosses
(t(26) = 0.9547, P = 0.3603, Figure 4E). Taken together, these results
suggest that decreased levels of hippocampal cholinergic activity
do not seem to affect MWM performance.

VAChTNkx2.1-Cre-flox/flox mice were also tested on the reversal
learning protocol of the MWM. During the course of 4 days, con-
trol mice significantly improved in their latency to find the hid-
den platform in contrast to VAChTNkx2.1-Cre-flox/flox mice (2-way
RM ANOVA shows a significant effect of days F3,30 = 8.632,
P = 0.0003, main effect of genotype F1,10 = 11.17, P = 0.0075, and

Figure 2. Hippocampal LTP is disrupted in forebrain-specific VAChT knockout

mice in vivo. (A) Normalized slopes of the excitatory sink recorded at CA1

stratum radiatum (apical dendrites) of VAChTflox/flox (clear squares, n = 5) and

VAChTNkx2.1-Cre-flox/flox (dark circles, n = 6) mice. Baseline was monitored for

30 min prior to tetanus delivery (t = 0), and posttetanic response was monitored

for 120 min. A 1-s 100 Hz train, delivered at 2–3 times the threshold intensity

(arrow), induced higher and more prolonged potentiation in VAChTNkx2.1-Cre-flox/flox

mice than VAChTflox/flox controls. Insets show representative current sink time

response taken at 80 min (red traces), overlaid on the pretetanus baseline

response (black traces), from each genotype. (B) Normalized excitatory sink

slope averaged across 30-min time intervals (mean ± SEM) in VAChTflox/flox and

VAChTNkx2.1-Cre-flox/flox mice, with significant difference between mouse groups

at 90–120 min (t(9) = 3.911, P = 0.0036).
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no interaction F3,30 = 1.501, P = 0.2342, Fig. 5A–C). Notably, on the
probe trial, control mice spent considerably more time in the tar-
get quadrant compared with the other quadrants (2-way ANOVA

shows a significant effect of quadrant, F3,80 = 7.226, P = 0.0002, and
an interaction effect F3,80 = 3.133, P = 0.0301, Fig. 5D), while
VAChTNkx2.1-Cre-flox/flox mice visited all quadrants almost equally.

Figure 3.Medial septum AAV8-GFP-Cre-injectedmice show deficits in dPAL. (A,B) Linear regression and correlation between response accuracy (r = 0.5208, P = 0.0186) and

correction errors (r =−0.5154, P = 0.0168) onWeek 9 and hippocampal VAChT protein expression levels for AAV8-GFP (clear squares, n = 7) and AAV8-GFP-Cre (dark circles,

n = 13) injected mice. (C,D) Linear regression and correlation between response accuracy (r = 0.4460, P = 0.0487) and correction errors (r = -0.1799, P = 0.0120) across all the

weeks of the PAL task and hippocampal VAChT protein expression levels. (E,F) The relationship between response latency (r = 0.1349, P = 0.5708) and reward collection

latency (r =−0.1799, P = 0.4352) across all the weeks of the PAL task and VAChT expression levels.

Figure 4. Performance of medial septum AAV8-GFP-Cre-injected mice in the MWM. VAChTflox/flox injected with AAV8-GFP virus (clear squares, n = 14) or AAV8-GFP-Cre

virus (dark circles, n = 14) were tested in the spatial paradigm of the MWM. Data average of four 90-s trials per day were plotted. (A) Latency to reach the platform, (B)

distance to reach the platform, (C) speed to reach the platform, (D) the percentage of time spent in each quadrant of the pool measured on Day 5 in a 60-s probe trial

with the platform removed. (E) Number of platform crosses during the probe trial. (F) Representative path traces of 2 AAV8-GFP and 2 AAV8-GFP-Cre-injected mice in

the probe trial. The target quadrant is in the upper right. Data are mean ± SEM. *P < 0.05. T, target; O, opposite; L, left; R, right.
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The number of platform crosses was also higher for control mice
compared with VAChT mutants (t(20) = 2.797, P = 0.0111, Fig. 5E).
These results indicate that, different from control mice,
VAChTNkx2.1-Cre-flox/flox mice were unable to extinguish the previ-
ously learned position and relearn the newposition of the hidden
platform.

To account for compromised striatal cholinergic signaling in
VAChTNkx2.1-Cre-flox/flox mice for the performance in the MWM
(see Supplementary Fig. 1D), we also tested a mouse line with

selective deletion of VAChT in striatal neurons (VAChTD2-Cre-flox/

flox), but spared hippocampal VAChT (Guzman et al. 2011; see
Supplementary Fig. 7). Interestingly, VAChTD2-Cre-flox/flox mice
did not differ from controls (VAChTflox/flox) in both acquisition
and reversal versions on the MWM (see Supplementary Fig. 7D–
H). These results suggest that deficits seen in reversal learning
in VAChTNkx2.1-Cre-flox/flox mice are not likely due to impaired stri-
atal cholinergic transmission, but rather a result of hippocampal
or cortical deficits or combined cortical hippocampal

Figure 5. Reversal learning is affected inVAChTNkx2.1-Cre-flox/flox andmedial septumAAV8-GFP-Cre-injectedmice. VAChTflox/flox (clear squares, n= 11) andVAChTNkx2.1-Cre-flox/flox

(dark circles, n = 11)were tested in the reversal paradigmof theMWM.Data average of four 90-s trials per daywere plotted. (A) Latency to reach the platform, (B) distance to

reach the platform, (C) speed to reach the platform, (D) the percentage of time spent in each quadrant of the poolmeasured on Day 5 in a 60-s probe trial with the platform

removed. (E) Numberof platformcrosses during the probe trial. (F) Representative path traces for 2 VAChTflox/flox and 2VAChTNkx2.1-Cre-flox/flox in the probe trial. The target

quadrant is in the upper left. (G–L) AAV8-GFP (clear squares, n = 14) or AAV8-GFP-Cre (dark circles, n = 14)-injected mice were tested in the reversal paradigm of the

MWM. The data average of four 90-s trials per day were plotted. (G) Latency to find the platform, (H) distance, (I) speed, (J) the percentage of time spent in each

quadrant of the pool was measured on Day 5 in a 60-s probe trial with the platform removed. (K) Number of platform crosses during the probe trial. (L) Two AAV8-

GFP- and 2 AAV8-GFP-Cre-injectedmice in the probe trial. The target quadrant is indicated with a T. Data aremean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.0001. T, target; O,

opposite; L, left; R, right.
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dysfunction. To discern among these possibilities, we used virus-
injected mice.

Selective reduction of hippocampal cholinergic tone in
virus-injected mice also increased latency to find the platform
in reversal learning (2-way RM ANOVA shows an effect of
days, F3,39 = 21.96, P < 0.0001 and a significant interaction effect,
F3,39 = 7.507, P = 0.0004), with post hoc analysis revealing that
AAV8-GFP-Cre-injected mice performed significantly worse on
Day 4 compared with controls (Fig. 5G). During the probe trial,
mice injected with AAV8-GFP-Cre virus showed significant im-
pairments, failing to show a preference for the target quadrant
(2-wayANOVA shows a significant effect of quadrant, F3,104 = 23.3,
P < 0.0001, and an interaction effect, F3,104 = 7.173, P = 0.002,
Fig. 5J). Post hoc analysis revealed that the AAV8-GFP-Cre mice
did not prefer the target quadrant compared with the other
quadrants, while the AAV8-GFP-injected controls had a strong
preference for the target quadrant. Furthermore, the AAV8-GFP-
Cre-injected mice showed a decrease in the number of platform
crosses (t(26) = 0.9547, P = 0.0010, Fig. 5K). These results reveal
that disruption of hippocampal cholinergic tone, but not striatal
or cortical cholinergic activity, compromises information
processing in the MWM reversal learning.

Regulation of Working Memory by Septohippocampal
VAChT

To determine whether other cognitive domains of importance in
neuropsychiatric disorders that could contribute to the PAL defi-
cits may also be regulated by synaptically released ACh, we eval-
uated the performance of the VAChTNkx2.1-Cre-flox/flox mice on 2
measures of working memory: the working memory version of
the MWM and spontaneous alternations in the Y-maze. In the
working memory version of the MWM, VAChTNkx2.1-Cre-flox/flox

mice failed to improve their performance from the first to the
second trial resulting in significant impairments in measures of
latency savings (t(12) = 3.580, P = 0.0030, Fig. 6A) and distance
savings (t(12) = 2.852, P = 0.0127, Fig. 6B), suggesting that the

VAChTNkx2.1-Cre-flox/flox mice have impaired working memory.
Similarly, VAChTNkx2.1-Cre-flox/flox mice revisited arms in the
mazemore often than controls resulting in a significant decrease
in spontaneous alternations in the Y-maze (t(12) = 2.674,
P = 0.0182, Fig. 6C), suggesting that forebrain VAChT is required
for normal working memory performance.

When tested on the working memory MWM test, mice with
selective elimination of septohippocampal VAChT by virus injec-
tion (same cohort used in the MWM) also showed impaired la-
tency savings ratio (t(26) = 2.847, P = 0.0111, Fig. 6D) and distance
savings ratio (t(26) = 2.149, P = 0.0473, Fig. 6E). On the spontaneous
alternations Y-maze task, AAV8-GFP-Cre-injected mice showed
impairments on working memory, measured as a significant de-
creased rate of spontaneous alternations (t(26) = 3.347, P = 0.0041,
Fig. 6F). It is interesting to note that working memory deficits ob-
served for AAV8-GFP-Cre-injected mice were similar to deficits
observed for VAChTNkx2.1-Cre-flox/flox mice. Taken together these
results indicate that working memory is highly sensitive to hip-
pocampal cholinergic tone.

Discussion
The present work shows that selective inhibition of cholinergic
signaling in the hippocampus in mice leads to disruption of syn-
aptic plasticity and specific cognitive impairments. In particular,
we show that hippocampal cholinergic signaling is important for
the modulation of cognitive tasks shown to be impaired in
schizophrenia and dementia, including the PAL task. Interesting-
ly, some hippocampal-dependent tasks appear to bemore sensi-
tive to decreased cholinergic signaling than others. Our results
provide a comprehensive map of cholinergic-regulated hippo-
campal cognitive processing that may be useful to understand
similar deficits in humans with cholinergic deficiency.

Notably, we report novel data indicating the importance of
cholinergic signaling in regulating the PAL task. Clinically, the
PAL task has been suggested as a potential cognitive marker of
decline in psychosis (Wood et al. 2002). Significant impairments

Figure 6. Working memory depends on hippocampal cholinergic tone. (A) Latency savings ratio and (B) distance savings ratio for VAChTflox/flox (clear, n = 7) and

VAChTNkx2.1-Cre-flox/flox (dark, n = 7) mice in the working memory version of the MWM. (C) Spontaneous alternations in the Y-maze for VAChTNkx2.1-Cre-flox/flox. (D)

Latency savings ratio and (E) distance savings ratio for AAV8-GFP (clear, n = 14) and AAV8-GFP-Cre (dark, n = 14) mice in the working memory version of the MWM. (F)

Spontaneous alternations in the Y-maze for virus-injected mice. Data are mean ± SEM. *P < 0.05, **P < 0.01.
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in PAL have been observed in patients with schizophrenia with a
positive correlation between failure on the PAL task and negative
symptoms (Barnett et al. 2005). Additionally, hippocampal acti-
vation during PAL is changed in patients with mild cognitive im-
pairment compared with aged-matched controls (de Rover et al.
2011). Hence, PAL has also been considered a sensitive task for
predicting cognitive decline in AD (Swainson et al. 2001; Black-
well et al. 2004).

Nonetheless, whether cholinergic signaling is required for ac-
quisition of the task has not been clearly established. Systemic
administration of donepezil, a cholinesterase inhibitor, improved
post-acquisition PAL performance in mice, an effect that was at-
tenuated with administration of muscarinic antagonists (Bartko,
Vendrell et al. 2011). Similar results have been observed in mon-
keys where both mecamylamine (nicotinic antagonist) and sco-
polamine (muscarinic antagonist) induced deficits in PAL
performance (Taffe et al. 2002; Katner et al. 2004). These results
suggest that cholinergic signaling might be relevant for PAL.
Also, rats previously trained in PAL that received injections into
the dorsal hippocampus of either scopolamine or mecamyla-
mine and that were re-tested did not show deficits in perform-
ance, suggesting that hippocampal cholinergic signaling might
notmodulate recall in this task (Talpos et al. 2009). Our results in-
dicate that disruption in forebrain cholinergic tone disturbs PAL
learning. Additionally, our data suggest that dysfunctional hip-
pocampal cholinergic signaling may decrease PAL performance,
as performance ofmice in the PAL task correlateswith hippocam-
pal VAChT protein levels. Importantly, these deficits occurred in
the absence of alterations in latency to touch the screen or to col-
lect the reward, indicating that motivation was not a factor in the
poorer performance of mice with lower cholinergic tone. Interest-
ingly, mice deficient for the M1 receptor presented no differences
comparedwith controls in their acquisition of the PAL task (Bartko,
Romberg et al. 2011), suggesting that nicotinic and/or other mus-
carinic receptors might be involved in mediating learning in this
hippocampal-dependent task.

Performance in PAL, as well as in other paired-associated
tasks, may depend on intact hippocampal function in humans
and rats (Talpos et al. 2009; de Rover et al. 2011). For example,
short-lasting inactivation of the rat hippocampus using lidocaine
(non-selective Na+ channel blocker) significantly impairs per-
formance postacquisition of the PAL task, suggesting that the
hippocampus is required at least for performance in this task
(Talpos et al. 2009). In addition, human fMRI studies have
shown bilateral BOLD activation of the hippocampus during the
encoding phase of the PAL task (de Rover et al. 2011). Interestingly,
subjects with memory deficits showed decreased hippocampal
activation with increased memory demand, whereas healthy
controls showed the opposite (de Rover et al. 2011). Moreover,
PAL performance correlates with hippocampal volume loss in
schizophrenia and mild cognitive impairment (MCI) (Keri et al.
2012). Intriguingly, recent reports indicate that mice with hippo-
campal lesions are still able to acquire the PAL task (Delotterie
et al. 2015; Kim et al. 2015). One possible explanation (Kim et al.
2015) regarding these findings is that with a functional hippo-
campus the task is acquired in a hippocampal-dependent man-
ner, but with a dysfunctional hippocampus, the task can be
learnt using an alternative hippocampal-independent strategy.
For example, mice with hippocampal lesions could have used
the dorsal striatum to acquire the task (Delotterie et al. 2015). In-
deed, the development of such behavioral plasticity has been
shown in rats with unilateral hippocampal lesions (Zou et al.
1999). Our findings that forebrain VAChT-deficientmice seemun-
able to acquire the task, whereas decreased VAChT levels in the

hippocampus decrease acquisition performance, suggest that
the hippocampal cholinergic tone may facilitate acquisition of
the PAL task. However, it is unlikely that only one brain region
is involved in such a complex task.

The mechanisms by which ACh tone facilitates PAL perform-
ance are not fully understood. It is possible that cholinergic tone
is required for specific types of synaptic plasticity. Indeed, hippo-
campal LTP in vitro is disturbed in a different mouse line lacking
forebrainVAChT (Martyn et al. 2012).We corroborated thisfinding
in vivo in VAChTNkx2.1-Cre-flox/flox mice and demonstrated that in
the absence of VAChT expression, hippocampal LTP is compro-
mised, suggesting that disturbances of synaptic plasticity might
contribute to the deficit. To note, previous studies have shown
that levels of VAChT are correlated to levels of ACh release
(Prado et al. 2006; de Castro, Pereira, et al. 2009, reviewed in
Prado et al. (2013)); an increase in VAChT levels increases ACh re-
lease whereas decreased levels have the opposite effect (Song
et al. 1997; Prado et al. 2006; Kolisnyk, Guzman, et al. 2013).
VAChT is decreased in AD (Parent et al. 2013). These results sug-
gest that correlating levels of VAChT detected with PET ligands
(Efange 2000) to performance in the PAL test (Harel et al. 2013)
might provide a potential biomarker of remaining cholinergic
function and cognitive reserve.

We showed that acquisition of the spatial version of theMWM
and recall of platform location was mildly affected in
VAChTNkx2.1-Cre-flox/flox mice, while AAV8-GFP-Cre-injected mice
did not show any deficit in this behavioral task. Similarly, im-
pairments in the spatial version of theMWMhave been observed
in rats with combined lesions of MS/VDB and nucleus basalis
magnocellularis (NBM) cholinergic neurons produced by im-
munotoxin 192 IgG-saporin (Pizzo et al. 2002), while rats with im-
munotoxin lesions restricted to MS/VDB did not show any
impairment (Berger-Sweeney et al. 1994; Baxter and Gallagher
1996; Pizzo et al. 2002; Frick et al. 2004). Interestingly, rats with
192 IgG-saporin lesions restricted to NBM also did not show be-
havioral impairments in the MWM (Pizzo et al. 2002). These
data suggest that forebrain cholinergic signaling is necessary
for reference spatial learning and memory assessed using the
MWM; however, it seems that both the cortical and hippocampal
cholinergic projections need to be compromised to produce a
severe spatial deficit. Thus, providing that cortical cholinergic
projections are intact, hippocampal cholinergic activity is not
absolutely required for this behavioral task. It remains to be es-
tablished whether GABA or glutamate, which could potentially
be co-released with ACh (Guzman et al. 2011; Saunders et al.
2015) in both the hippocampus and cortex, may contribute to
regulation of spatial memory by cholinergic neurons.

In contrast to the referencememory test, both VAChTNkx2.1-Cre-flox/

flox and AAV8-GFP-Cre-GFP-injected mice when tested in the
MWM reversal learning task presented extensive deficits,
suggesting a prominent role for hippocampal cholinergic signal-
ing in reversal learning. The impairments seen in VAChT-
deficient mice in reversal learning could relate to the loss of
muscarinic presynaptic inhibition of excitatory feedback within
cortical circuits (Hasselmo and McGaughy 2004), which would
slow the extinction of a previously learned strategy (Hasselmo
et al. 2002; Hasselmo 2006). To note, the findings with
VAChTNkx2.1-Cre-flox/flox mice recapitulated the deficits seen in re-
versal learning in a different mouse line with deficient forebrain
cholinergic tone we generated previously (Martyn et al. 2012;
Kolisnyk, Al-Onaizi, et al. 2013). Interestingly, rats with 192 IgG-
saporin lesions restricted to NBM also show behavioral flexibility
impairments (Cabrera et al. 2006). Taken together, these results
suggest that both NBM-cortical and septohippocampal cholinergic
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signaling might be critical for the mediation of this form of cog-
nitive flexibility.

The most common form of LTP underlying hippocampal syn-
aptic plasticity in spatial memory depends on the activation of
NMDARs (Collingridge et al. 1983; Martin et al. 2000; MacDonald
et al. 2006). Intracerebroventricular administration of a NMDAR
antagonist (AP5) significantly impaired performance of rats dur-
ing reversal testing in the MWM (Morris et al. 1990). Moreover,
genetically modified mice with deletion of the GluN2B subunit
of NMDARs in the CA1 region of the hippocampus exhibited im-
pairments in reversal learning (von Engelhardt et al. 2008). Simi-
larly, mice with corticohippocampal deletion of GluN2B present
deficits in hippocampal synaptic plasticity, highlighted by abol-
ished long-term depression (LTD), a partial deficiency of LTP,
and memory impairments (Brigman et al. 2010). The impair-
ments observed in VAChTNkx2.1-Cre-flox/flox mice in LTP and rever-
sal learning suggest that long-term cholinergic signaling may
regulate NMDAR-mediated synaptic plasticity required for rever-
sal learning in the MWM.

Both prefrontal cortex and hippocampus have been impli-
cated in working memory (Yoon et al. 2008). A number of studies
indicate that cholinergic neurotransmission is crucial for modu-
lation of working memory in various behavioral tasks (Levy et al.
1991; Baxter et al. 1995; Furey et al. 2000; Hironaka et al. 2001).
Whether cholinergic modulation of working memory is depend-
ent on ACh acting on prefrontal cortex, hippocampus, or in
both structures simultaneously is not known. Our results
show that deficits in the working memory version of the
MWM task and the Y-maze alternating task are equally severe
in both forebrain VAChT mutants (VAChTNkx2.1-Cre-flox/flox mice)
and hippocampus VAChT mutants (AAV8-GFP-Cre-injected
mice), suggesting that hippocampal cholinergic tone is vital
in regulating information processing in working memory
tasks. Taken together, these results suggest that ACh may
exert important roles in working memory via modulation of
hippocampal function. Whether these working memory defi-
cits somehow contribute to the poor performance in PAL
remains to be established.

Imaging studies involving volumetric measurement of basal
forebrain cholinergic nuclei in humans reveal a drastic decrease
in the volume of basal forebrain neurons in AD andMCI patients,
in comparison to healthy elderly controls (Grothe et al. 2010,
2012; Grothe, Ewers, et al. 2014; Teipel et al. 2014). Given that in-
dividuals with dementia may present long-term changes in cho-
linergic tone, our mouse lines and approaches may be directly
relevant to understandmolecular, cellular, circuitry, and behav-
ioral consequences of cholinergic malfunction. The present
work is relevant to understand how drug-induced cholinergic
dysfunction or degenerative changes in cholinergic neurons
contribute to cognitive alterations in several neuropsychiatric
disorders (Severance and Yolken 2008; Scarr et al. 2009). In
summary, hippocampal cholinergic activity does not seem to
be critical for spatial reference learning and memory, but has
fundamental roles on working memory, reversal learning,
and paired associates learning. As PAL performance may be
dependent on cholinergic integrity, it is tempting to speculate
that the PAL task could be used to identify individuals with
cognitive dysfunction linked to cholinergic abnormalities.

Supplementary Material
Supplementary material can be found at http://www.cercor.
oxfordjournals.org/ online.
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