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Abstract

The rise of mobile technologies and the Internet of Things, combined with advances in Web
technologies, have created a new Big Data world in which the volume and velocity of data gen-
eration have achieved an unprecedented scale. As a technology created to process continuous
streams of data, Complex Event Processing (CEP) has been often related to Big Data and used
as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP
market is still dominated by solutions that are costly and inflexible or too low-level and hard to
operate.

To address these problems, this research proposes the creation of a CEP system that can
be o↵ered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system
would give its users CEP functionalities associated with the advantages of the services model,
such as no up-front investment and low maintenance cost. Nevertheless, creating such a service
involves challenges that are not addressed by current CEP systems. This research proposes
solutions for three open problems that exist in this context.

First, to address the problem of understanding and reusing existing CEP management pro-
cedures, this research introduces the Attributed Graph Rewriting for Complex Event Process-
ing Management (AGeCEP) formalism as a technology- and language-agnostic representa-
tion of queries and their reconfigurations. Second, to address the problem of evaluating CEP
query management and processing strategies, this research introduces CEPSim, a simulator of
cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a
multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant
design.

To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a
selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by
experiments that showed it can simulate existing systems with accuracy and low execution
overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it
achieves the goal of o↵ering CEP functionalities as a scalable and fault-tolerant service. In
tandem, these results confirm this research significantly advances the CEP state of the art and
provides novel tools and methodologies that can be applied to CEP research.

Keywords: Complex Event Processing, Cloud Computing, Multi-Cloud, Container Man-
agement System, Simulation, Graph Rewriting
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Chapter 1

Introduction

The emergence of Big Data has been profoundly changing the way enterprises and organiza-
tions store and process data. Clearly, the sheer amount of data created by mobile devices, the
Internet of Things (IoT), and a myriad of other sources cannot be handled by traditional data
processing approaches [64]. Simultaneously, there is also a consensus that obtaining insights
and generating knowledge from these Big Data can bring a competitive advantage to organi-
zations using them. Therefore, these organizations, along with the research community, have
been actively pursuing new ways of leveraging Big Data to improve their businesses.

According to the most commonly accepted definition, Big Data is characterized by four
Vs [121]: volume, velocity, variety, and veracity. Volume refers to the quantity of data, and
velocity concerns the speed at which data are generated and need to be processed. Variety refers
to the diversity of data types and formats, and veracity relates to the accuracy and reliability
of the data [65]. Datasets can be “big” in any of these directions and, most often, in more
than one. For instance, volume and velocity are closely related, as fast data generation usually
results in a massive amount of data to be stored and processed.

As technologies created to process continuous streams of data with low latency, Complex
Event Processing (CEP) and Stream Processing (SP) have often been related to the velocity
dimension and used in the Big Data context. The processing model of CEP and SP systems
are both based on continuously running user-defined queries that dictate operations to be per-
formed on fast and often distributed input streams. The goal is usually to obtain real-time
insights and to enable prompt reaction to them. Because of the generality of this model, these
systems have been applied to a variety of use cases ranging from simple monitoring to highly
complex financial applications such as fraud detection and automated trading [65].

At about the same time, cloud computing has also emerged as a disruptive computational
paradigm for on-demand network access to a shared pool of computing resources such as
servers, storage, and applications [113]. From the infrastructure point of view, cloud comput-
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ing environments are leveraged to provide the low-latency and scalability needed by modern
applications, including CEP and SP systems [69, 128]. From the business perspective, cloud
computing provides an agile way to access infrastructure resources and services without large
upfront investments and preparation time.

Despite the paradigm shift brought about by cloud computing, today the CEP and SP mar-
ket is still dominated by a few proprietary solutions [86, 123, 139] that require huge investments
for acquisition and do not provide the flexibility that users need. Alternatively, on the other side
of the spectrum many companies adopt open-source, low-level systems [17, 18, 153], which
demand intense technical training and have high operating costs.

To address these problems, this research proposes the creation of a CEP system that can
be o↵ered in the Software as a Service (SaaS) model. This CEP as a Service (CEPaaS) sys-
tem would enable users to access CEP functionalities on-demand, over the Internet, and with
minimal management e↵ort. However, o↵ering such a service involves many challenges that
are not addressed by current CEP state of the art. This thesis discusses these challenges further
and presents a series of contributions towards the development of such a system.

1.1 Motivation

The use of CEP and SP solutions to analyze streaming data and obtain real-time insights has
the potential to profoundly change enterprises and make them more agile and responsive. This
impact has been confirmed by a recent survey, which estimated a market of $500 million in
2015 for the so-called streaming analytics solutions, with the potential to reach $2 billion in
20201. Nevertheless, despite this growing interest, this market is still dominated by a few
solutions that are costly and inflexible or too low-level and hard to operate.

The o↵ering of Software as a Service (SaaS) is a recent paradigm shift that has been at the
core of the cloud computing revolution. In the SaaS model, software traditionally only avail-
able as proprietary packages are now o↵ered as services that can be consumed on-demand and
with minimal management e↵ort. Likewise, even the computational infrastructure normally
required by enterprise systems can now be consumed as always-available services. This of-
fering of Infrastructure as a Service (IaaS), in conjunction with SaaS, brings many benefits
to enterprises, including reducing their capital investments, mitigating risks, and focusing on
innovation and di↵erentiation.

Given this scenario, it is only natural to imagine the o↵ering of CEPaaS as a way to bring
to CEP users the many advantages of the services model, such as:

1http://www.researchandmarkets.com/research/mpltnp/streaming
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• No up-front investment in hardware and software infrastructure.

• Low maintenance cost, as the service model reduces the need for infrastructure monitor-
ing and maintenance.

• Constant upgrades, mostly without interruption and at no charge.

• Ubiquitous access using the Internet.

Nevertheless, such CEP services either do not exist today or are very limited in their nature,
which can be tracked to the many challenges involved in developing them and the lack of
appropriate solutions in the current state of the art.

The first of these challenges is related to understanding current systems and reusing results
that already exist in the form of algorithms and management procedures. The current CEP re-
search landscape is still young and fragmented. A large variety of solutions exist, but they often
use inconsistent terminology and di↵erent query definition languages. Consequently, most on-
going research is performed in the context of specific systems and languages. In particular,
algorithms and procedures aimed at managing the user queries have often been developed in
such a system-specific fashion that they cannot be easily generalized and applied to other con-
texts.

The second challenge is related to evaluating and comparing CEP query processing and
management approaches. Today, this problem acquires even more challenging characteristics
because most modern CEP systems use cloud environments as their runtime platform. In this
type of environment, validating management procedures in the required Big Data scale is a
research problem per se. For example, cloud environments are subject to variations that make
it di�cult to reproduce the environment and conditions of an experiment [56]. Moreover,
setting up and maintaining large cloud environments are laborious and error-prone, and may
be associated with a high financial cost. Finally, there are also many challenges related to
generating and storing the volume of data required by Big Data experiments.

Finally, many technical di�culties are associated with the design and implementation of
a CEPaaS system. For instance, low latency is essential to many CEP use cases, but it is
di�cult to achieve in a service environment because there is no control over the locations of
event sources and consumers. Such a CEPaaS system is also inherently multi-tenancy, which
makes fault-tolerance essential because an outage can a↵ect many customers and damage the
provider’s reputation. In addition, multi-tenancy indicates that some sort of resource control
and isolation is necessary to avoid interference between workloads from di↵erent queries. Fi-
nally, by o↵ering it to anyone with Internet access, the system is expected to be highly scalable
in the number of queries and to be usable by a wide spectrum of users.
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1.2 Contributions

This research provides a series of contributions aimed to solve the challenges mentioned and,
ultimately, to enable the development of a CEPaaS system.

To solve the challenge of understanding current systems and reusing existing results, this
research introduces the Attributed Graph Rewriting for Complex Event Processing Manage-
ment (AGeCEP), a formalism that provides technology- and language-agnostic representations
of queries and of reconfiguration actions that can be applied to transform these queries.

In AGeCEP, queries are modelled as attributed graphs and described by a standard set of
attributes, whereas reconfiguration actions are expressed by graph rewriting rules. In con-
junction, these models provide a common foundation that can be used to represent queries
written in di↵erent languages and to express generic CEP management procedures. By do-
ing so, these procedures can be integrated into any modern cloud-based CEP system that uses
AGeCEP as its underlying formalism. In particular, AGeCEP is especially suitable to represent
self-management policies that can be used to manage and control autonomic CEP systems.

This research harnesses AGeCEP expressiveness by adopting it as the formal foundation
of the other contributions. To demonstrate its feasibility, AGeCEP is also used to design an
autonomic manager and to define a selected set of self-management policies. In addition,
AGeCEP viability is verified through performance measurement experiments, which show that
100 queries can be processed and rewritten by graph rewriting rules in less than one second.

The second major contribution of this research is CEPSim, a simulator for cloud-based CEP
systems. Traditionally, simulators have been used in di↵erent fields to overcome di�culties
related to the execution of repeatable and reproducible experiments [33, 34, 92, 119]. CEPSim
aims to bring simulation capabilities to CEP and to solve the challenges of evaluating and
comparing di↵erent query processing and management strategies.

CEPSim uses a query model based on AGeCEP and introduces simulation algorithms based
on a novel abstraction called event sets. CEPSim can model di↵erent types of clouds, including
public, private, hybrid, and multi-cloud environments, and simulate execution of user-defined
queries on them. Moreover, it can also be customized with various operator placement and
scheduling strategies. These features enable architects and researchers to analyze the scalability
and performance of cloud-based CEP systems and to easily compare the e↵ects of adopting
di↵erent query processing strategies.

A large set of experiments was executed to analyze CEPSim. Results show that CEPSim
can estimate the latency and throughput of CEP queries running on a real system with less than
5% error in most cases. Moreover, results also demonstrate that CEPSim simulates 100 queries
running for 5 minutes in approximately 7 seconds and using less than 40 MB of memory.
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The last major contribution of this research is the design and implementation of a CEPaaS
system. The proposed design leverages multi-cloud environments to increase the system avail-
ability and to explore the geographical diversity of cloud datacentres, creating the possibility
of strategic deployment in which system resources are positioned close to event producers and
consumers. Moreover, the design also explores container-based virtualization and container
management systems (CMS) to control the deployment and execution of system components.

In the CEPaaS system, every component, including user queries, is encapsulated in an ap-
plication container that is managed and scheduled by a CMS. By doing so, it is possible to
have a fine control over the resource usage of the components and to isolate their execution.
Moreover, the CMS also handles fault-tolerance and scalability of the containers, facilitating
the implementation of these requirements at the system level and simplifying the system op-
eration. Finally, the proposed CEPaaS system explores the idea of vertex and query templates
as a way to define queries and to enable the definition of custom event processing logic. In
practice, queries defined in such a way are transformed into an AGeCEP-based representation
and executed by an actor-based execution engine.

By putting all contributions together, the CEPaaS system was designed over a strong for-
mal foundation and, at the same time, based on e�cient algorithms and strategies that have
been tested and evaluated in simulations. This approach, in tandem with the chosen architec-
ture, enabled the creation of a robust and scalable CEPaaS system that successfully brings the
advantages of the services model to CEP. Experiments executed to validate the system show
that the strategic deployment enabled by the multi-cloud architecture reduces query latency up
to 60%. Further experiments also indicate that queries are properly isolated from each other
and can quickly recover from failures.

Notwithstanding, note that each one of the contributions presented are valuable by them-
selves and can be used separately from the others. Therefore, either by considering these con-
tributions in isolation or together, this research significantly advances the CEP state of the art
and provides novel tools and methodologies that can be applied in the context of CEP research
and development.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents core background concepts that are necessary to understand the re-
maining text. It starts with definitions of stream processing and complex event process-
ing and a discussion about how they di↵er from each other. Following that, it presents the
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nomenclature used in this research and the query lifecycle management concept. In the
second part, this chapter also discusses cloud computing and system architectures based
on multiple clouds. Finally, it concludes with a examination of container-based virtu-
alization, application containers, and container management systems. These are recent
technological trends that are used by the CEPaaS implementation.

• Chapter 3 presents an extensive review of research related to this thesis. It starts with
a review of traditional historical systems, which established most of the basic concepts
and terminology used by current CEP research. Next, it discusses the plethora of mod-
ern systems, dividing them into MapReduce-based, open source, and cloud-based sys-
tems. Each system is discussed briefly and its main contributions are highlighted. More-
over, the chapter discusses current systems that o↵er CEP-related services, or are based
on multi-cloud architectures. Finally, the chapter concludes by discussing CEP formal
models and cloud computing simulators, which are related to the AGeCEP and CEPSim
contributions.

• Chapter 4 presents the main concepts of the AGeCEP formalism. First, it examines the
AGeCEP assumptions and design principles. Second, it presents a novel classification
of CEP operators focused on their reconfiguration capabilities. This classification serves
as the basis for the standard set of operator attributes used by AGeCEP and constitutes
another major contribution of this research. Finally, Chapter 4 discusses the formalism
itself, including the notation used and examples that illustrate its basic concepts.

• Chapter 5 presents a thorough evaluation of the AGeCEP formalism. First, AGeCEP
is used to design an autonomic manager. Based on this design, a generic procedure to
express operator placement procedures and a selected set of self-management policies are
discussed. Finally, the performance of graph rewriting rules is assessed by experiments
that analyze the time needed to reconfigure queries.

• Chapter 6 presents the CEPSim simulator. It starts with a discussion about the basic
CEPSim architecture and how AGeCEP is used to internally represent the simulated
queries. Following that, it explains in detail how the simulation algorithms work, and
how the simulator can be customized with user-defined operator scheduling and operator
placement algorithms. Finally, this chapter presents a series of experiments that validate
CEPSim in di↵erent scenarios, assess the execution time and memory consumption of
simulations, and analyze the e↵ects of various parameters in the simulator performance.

• Chapter 7 presents the design and implementation of the CEPaaS system. First, a sys-
tem overview is presented, including discussions about the main system components
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and about how the system leverages CMS and multi-cloud architectures to provide fault-
tolerance and scalability. Next, this chapter discusses the concept of vertex and query
templates, and how they are employed by users to define queries. Following this, im-
plementation details are presented, including specifics of the query execution engine.
Finally, the CEPaaS system is evaluated regarding the e↵ects of multi-cloud placement
in the end-to-end query latency and regarding the fault-tolerance provided by the CMS.

• Chapter 8 finalizes the thesis by summarizing its contributions and discussing areas for
further research.



Chapter 2

Background

This chapter introduces background concepts used in the thesis. It starts with an overview of
complex event processing and stream processing, and how they relate with each other. Sec-
tion 2.2 introduces cloud computing concepts, with emphasis on multiple cloud architectures
and how they can be used to improve the quality of services o↵ered to users. In the same
context, container-based virtualization and container management systems are discussed in
Section 2.3. Containers are an essential part of the CEPaaS system discussed in Chapter 7. Fi-
nally, Section 2.4 presents autonomic computing concepts and the MAPE-K framework. This
framework is used for defining an autonomic manager in Chapter 5 and is also the basis of the
CEPaaS system management module presented in Chapter 7.

2.1 Event Processing

In recent years, many applications that require processing of high-volume continuous streams
of data have emerged. These applications range from simple alarm mechanisms to highly com-
plex trading systems that analyze thousands of transactions per second. For many years, these
applications have been implemented using ad-hoc solutions, which have led to high develop-
ment and maintenance costs and limited reuse opportunities.

It is in this context that Complex Event Processing (CEP) and Stream Processing (SP)
technologies have emerged. CEP and SP share similar goals, as both are concerned with pro-
cessing continuous data flows coming from distributed sources to obtain timely responses to
queries [41]. Nevertheless, they have been simultaneously developed for years by researchers
with di↵erent backgrounds [41], a situation that has resulted in duplicated and inconsistent
vocabularies as well as fuzzy distinctions among their concepts.

In order to overcome these inconsistencies, the next two subsections present conceptualiza-
tions of SP and CEP. Following that, the main di↵erences between them are discussed, and the

8
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terminology used in this research is introduced.

2.1.1 Stream Processing

Stream Processing (SP) or Event Stream Processing is a set of techniques aimed at processing
continuous and potentially unbounded streams of data within strict time constraints through
long-running and continuous (standing) queries [58]. SP systems are also known as Stream
Processing Engines or Data Stream Management Systems; their origin is often associated with
the Database Management Systems (DBMS) research community, which created the first SP
systems as a response to stream-processing requirements that could not be satisfied by tradi-
tional relational databases.

The traditional DBMS paradigm is based on queries that are explicitly initiated by users
and applications, whereas the SP paradigm requires active update of continuous query results.
In addition, DBMSs store data before processing them, which may limit dataset size and may
incur additional latency in the processing pipeline. On the other hand, most SP applications
are not interested in persisting streams and require low-latency response to queries.

Early research projects, such as the Aurora [1] and STREAM [19] systems, established the
basis of the discipline and have influenced most subsequent research. Later, Stonebraker et
al. [142] listed the eight main requirements of real-time stream processing systems:

1. Process data on-the-fly, using an active query model;

2. Use a query language based on SQL, with additional constructs appropriate to stream
processing;

3. Handle data streams containing delayed, out-of-order, or lost items;

4. Generate predictable and repeatable outcomes;

5. Integrate streaming data with state and historical data;

6. Guarantee data safety and availability;

7. Partition and scale applications automatically;

8. Process data and respond instantaneously.

Most of these requirements still serve as guidelines for modern SP research and development,
yet they acquired even more challenging characteristics with the advent of Big Data.
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2.1.2 Complex Event Processing

Complex Event Processing (CEP) was originally defined as “a set of tools and techniques
for analyzing and controlling the complex series of interrelated events that drive modern dis-
tributed information systems” [106]. CEP systems aim to detect complex patterns of events to
identify important situations and react promptly to them. These systems normally accept user
definitions of patterns that express complex relationships among events, including the use of
aggregation, correlation, and time-sequencing operators.

The term CEP was first used in 2002 in the seminal book by Luckham [106], which justified
the need for CEP by noting that existing tools and techniques could not manage and understand
the numerous flows of information (events) that were driving enterprise systems of that time.
To enable better understanding of events generated by these systems, two main concepts were
introduced:

• Event causality: some events cause others, and tracking these relationships helps to de-
termine the root cause of events. According to the nature of events involved in such
relationships, causality can be further classified as horizontal or vertical. The former
refers to causality between events at the same conceptual level; for example, an email
causes a response message, and a ping network packet causes a reply. The latter refers
to the fact that events generate other events at a “lower-level” layer; for instance, a busi-
ness process generates requests to many systems, which in turn generate many network
packets.

• Event aggregation: low-level events can be aggregated into higher-level business-related
events. The motivation for aggregation is twofold: first, many monitoring tools can only
observe low-level events and analyze them in isolation, providing very little information
for business-level decision making; second, many events are not explicitly generated,
and their occurrences must be inferred from other events. For example, policy or regula-
tion violations are very important for enterprises, but can be detected only if lower-level
events fail to satisfy specific rules.

According to Luckham, there are two main di↵erences between CEP and SP [107]:

• SP systems process data streams, or sequences of events ordered by time, whereas CEP
can process partially ordered sets (posets) of events. These event posets, also known
as event clouds, can be simultaneously generated by many IT systems and sources.
Therefore, an event cloud can potentially include many event streams. For example, the
temperature readings of a specific weather station form an event stream, but the whole
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weather forecasting system generates an event cloud composed of readings from many
stations and sensors, other systems, and analysis results.

• Most SP systems use SQL-like queries aimed at fast processing and at performing calcu-
lations on data streams. CEP systems, on the other hand, are more focused on detecting
complex patterns of events that include the notions of causality and aggregation.

Other researchers, such as Bass [26] and Cugola and Margara [41], have made similar distinc-
tions, yet they all acknowledge the similarities between CEP and SP.

2.1.3 Concepts and Terminology

This research defines CEP as the “processing of continuously flowing data from geographically
distributed sources with unpredictable rate to obtain timely responses to complex queries” [41].
This is a broad definition that encompasses both CEP and SP, and was originally presented
by Cugola and Margara to describe Information Flow Processing systems. In addition, this
research uses a terminology based on the Event Processing Technical Society (EPTS) glos-
sary [108] and Etzion et al. [50], which originated from the CEP literature. This terminology
has been chosen because its terms are also broadly defined and encompass most SP concepts.
Moreover, it prevents the creation of new terms for established ideas. Most terms are used as
is, but some are redefined to avoid conflict with other concepts presented in this research.

Figure 2.1 shows the main components of a system based on an event processing archi-
tecture. Event producers, also known as sources, introduce events into the CEP system. Con-
versely, event consumers, or sinks, receive events from it. Here, the term event is used very
broadly as the computational representation of something that happened in the context of in-
terest. For instance, an event can represent a sensor reading, the CPU load of a server, or the
creation of a new user on a website.

The CEP system is the main component of the architecture, and its goal is to act upon
input events to produce output events according to user-defined queries or processing rules.
Collectively, producers, consumers and the CEP system form an event processing network
(EPN).

Queries1 represent the processing that takes place between producers and consumers. For
instance, a query can detect anomalies in sensor readings and warn building administrators, or
refresh a dashboard with new CPU load data. Logically, queries are implemented by a flow of
query operators that receive one or more event streams as input and generate other streams as

1This research uses the term queries instead of processing rules to avoid conflict with graph rewriting rules,
presented in Chapter 4.
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Figure 2.1: CEP terminology.

output. Depending on its goals, a query operator can represent di↵erent kinds of processing
logic, such as filters, joins, or anomaly detectors.

2.1.4 Classification of CEP systems

The myriad of CEP systems currently available di↵er in many aspects. This section elabo-
rates on three classification criteria that are especially important for this thesis: deployment
model, interaction model, and query definition language. A more complete classification can
be consulted in Cugola and Margara [41].

Deployment Model

A CEP system deployment model refers to its runtime architecture, or how the system com-
ponents are distributed over the set of available servers at runtime. The first CEP systems
used a centralized architecture, in which all queries and system components run in a single
server. This architecture rapidly reached its limits and led to the development of distributed
CEP systems, in which user queries and system components run in more than one server and
communicate using a network.

Distributed architecture enables CEP systems to improve their scalability by running
queries on di↵erent servers. In most cases, it also implies that a larger number of events can
be processed by a single query because its operators are also distributed. Moreover, it can
also translate to better availability because distributed CEP systems usually implement fault
tolerance mechanisms, such as replication and standby components.

It is common to classify distributed CEP systems further as clustered or networked accord-
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ing to the network type that connects the servers. In a clustered system, servers are connected
to the same high-speed low-latency network and are geographically close. Conversely, in a
networked system, part of the communication links are implemented through high-latency net-
works such as the Internet.

Interaction Model

The term interaction model refers to the communication style used by EPN components to
interact with each other. More specifically, three types of interaction are characterized: from
event producers to the CEP system; between query operators; and from the CEP system to
event consumers. These interactions define the system observation model, forwarding model,
and notification model respectively. For all these models, a push and a pull style are defined.
In the former, the event origin proactively sends data to their destination, whereas in the latter,
the event destination pulls data from the origin.

Query Definition Language

In most CEP systems, users use a proprietary query definition language to define queries.
Despite standardization e↵orts [88], a great variety of languages are still in use today. Cugola
and Margara [41] classified existing languages into three groups:

• Declarative: the expected results of the computation are declared, often using a language
similar to SQL. The Continuous Query Language (CQL) [20] is the most prominent
representative of this category. The following is a CQL query example:

Select IStream(*)

From S1 [Rows 40000]

S2 [Range 600 Seconds]

Where S1.A = S2.A

• Imperative: the computations to be performed are directly specified as a sequence of
operations, usually by an imperative programming language or visually as a graph of
operators. The Aurora Stream Query Algebra (SQuAl) [1] inspired most languages in
this category. Figure 2.2 shows an SQuAl query.

• Pattern-based: queries are defined by firing conditions and a set of actions that are
executed whenever these conditions are met [41]. The firing conditions contain pat-
terns of events that usually include sequence, causality, and composition operators. The
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Figure 2.2: An SQuAl query example (adapted from Abadi et al. [1]).
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Figure 2.3: Query lifecycle.

Rapide [105] and TESLA [40] languages are examples of this category. The following
is a query example written in Rapide:

(RFQId ?id, Time ?T1) (RFQ(?Id) at ?T1 ->

[* rel ˜] (Time ?T2) Bid(RFQId is ?Id) at ?T2

where ?T2 <?T1 + Bnd);

2.1.5 Query Lifecycle

Query lifecycle management (QLM) can be defined as the set of tasks necessary to manage a
query from the time of its definition by a user up to its execution and subsequent retirement.

In this thesis, the query lifecycle is defined by the five major steps illustrated in Figure 2.3.
The cycle starts when the user creates queries using a CEP query definition language. Each
query is submitted to the CEP system, where it is first analyzed and optimized in isolation
(Single-Query Optimization) and then in conjunction with other running queries (Multi-Query
Optimization).

In the Operator Placement step, the query operators are mapped to a subset of the available
computing resources and start executing. Following, during Runtime Management, the system
maintains the query execution, responding to context changes such as hardware and software
failures. This step is typically the most important and lasts the longest because, unlike database
queries, a CEP query runs continuously for a specified period of time or until the user decides
to shut it down. In addition, during runtime, the system may need to re-optimize and re-place
queries when runtime conditions change. This dependency is represented in Figure 2.3 by
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dashed arrows from box 5 to boxes 2, 3, and 4. Finally, based on the results obtained by the
query, users can decide to refine it or to create one or more new queries, which originates a
new cycle.

In the following subsections, each of the QLM steps is detailed.

Query Definition

Query definition is the step in which users define the CEP queries they want to execute. As
mentioned in Section 2.1.4, each system usually has its own query language that is used for this
purpose. In addition, the way that users interact with the system to define and submit queries
di↵ers enormously from system to system. For example, commercial CEP packages such as
Oracle Stream Explorer [123] and Software AG Apama [139] have full-fledged interfaces that
help define queries and monitor their execution. On the other hand, many academic [128] and
lower-level systems [18] provide only programming language APIs that are mostly targeted to
software developers.

Single-Query Optimization

Single-query optimization (SQO) is the action of modifying a query to improve its e�ciency
while keeping its functional properties unchanged. The “e�ciency” of a query is usually mea-
sured with respect to some optimization criterion such as processing latency, CPU usage, or
network consumption. This step is essential because it reduces the need for technical knowl-
edge by users: non-optimized queries are corrected before they are run, reducing their impact
on the system.

SQO is executed right after a new query is created and registered. Consequently, this step
assumes no a priori knowledge about available resources or about the state of the network and
servers.

Multi-query Optimization

Multi-query optimization (MQO) consists of finding overlaps (common partial results) be-
tween queries and merging them into a single query while maintaining their logical separation.
This step usually optimizes the same criterion as the single-query optimization step. MQO
can be executed as a separate step when a new query is created or periodically to take into
account modifications in the underlying queries. In both cases, one of the greatest di�culties
is to decide which queries should be considered in the analysis.



16 Chapter 2. Background

Operator Placement

Operator placement is the step in which a query execution is mapped into the set of available
computing resources. In the context of distributed and cloud-based CEP systems, this usually
translates into determining the number and types of servers required and how the queries should
be split among multiple processors.

This step is executed during initial system deployment, when a new query is registered, and
in general whenever a reconfiguration requires a placement decision. For instance, when an op-
erator is duplicated to parallelize its execution, the placement routine is called to decide where
the new operators should be deployed. Because of this variety of scenarios in which placement
is used, it is common to use di↵erent approaches to deal with incremental and global placement
decisions, e.g. placement of a new operator versus placement of all running queries. For more
information about operator placement strategies, the survey by Lakshmanan et al. [97] can be
consulted.

Runtime Management

Runtime management refers to the self-managed evolution of a system at runtime. During this
step, queries are reconfigured in response to context changes such as violations of monitored
parameters, hardware and software failures, and sudden bursts of events. This step is the most
commonly implemented of all the steps in query lifecycle management.

To support proper runtime management, CEP systems usually define and enforce a number
of self-management policies aiming to improve or to maintain the quality of service for queries.
For instance, this may involve duplicating a query operator to parallelize its execution and
increase query throughput [38], or moving operators to underloaded servers [70].

The implementation of self-management policies in CEP systems requires two main capa-
bilities: detecting when a reconfiguration is required, and executing reconfiguration actions.
The detection step frequently involves monitoring system metrics, such as CPU load and oper-
ator queue size, and comparing them with some threshold.

The execution of reconfiguration actions, on the other hand, can have many di↵erent forms
and implementations. One possible classification of these actions focuses on their scope and
coarsely categorizes them as behavioural or structural. Behavioural actions change operator
and system parameters, but do not modify the query or the system structure. Common ex-
amples are load shedding [1], bu↵er resizing [103], and operator prioritization. Conversely,
structural actions require adapting the structure of queries and their mapping into system re-
sources. Splitting a query to distribute its execution between two servers is an example of a
structural action [38].
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2.2 Cloud Computing

Cloud computing is at the core of two main ideas presented in this research. First, o↵ering CEP
as a Service (CEPaaS) is a prime example of Software as a Service (SaaS), which is one of the
three main service types o↵ered by cloud providers. Second, the architecture of the CEPaaS
system proposed in this research is based on the assumption that multiple Infrastructure as a
Service (IaaS) providers exist and have publicly accessible resources spread around the globe.

Because of the strong relationship with this research, the next subsections discuss cloud
computing concepts and describe its main benefits. In particular, it is examined how multiple-
cloud architectures can be used to improve the quality of o↵ered services. As described later
in Chapter 7, the CEPaaS system uses a multi-cloud architecture to improve its availability and
to reduce query latency.

2.2.1 Cloud Computing Definition

The National Institute of Standards and Technology (NIST) provides the most commonly ac-
cepted definition for cloud computing [113]:

“Cloud Computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management e↵ort or service provider interaction.”

Despite di↵erences in definition, most authors point out similar characteristics for the cloud
computing model [131, 146]:

• Shared pool of resources: cloud providers usually have a large number of computing
resources (CPU, storage, network) that are pooled and shared among customers.

• Virtualization: cloud providers make extensive use of virtualization to enable resource
sharing. Virtualization is implemented by a software layer which partitions the server
hardware into many virtual servers. In practice, this usually translates to a significant
increase in the resource utilization level of a datacentre.

• Elasticity: cloud services can dynamically change how much of a resource is consumed
in response to how much is needed [131]. Therefore, elasticity enables cloud users to
allocate enough resources to match their real instantaneous demand instead of overpro-
visioning for the worst case.
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Figure 2.4: Cloud computing architecture (adapted from Zhang et al. [154]).

• Measured service (pay as you go): resource consumption is fine-grained metered, en-
abling flexible billing models. Cloud customers pay according to the type and quantity
of resources used, e.g., a small fee per CPU per hour or per gigabyte stored and trans-
mitted.

• Automation: interaction with cloud providers occurs through automated APIs and inter-
faces. This means that resources can be automatically managed and easily integrated
with other management software.

For many, the capacity to provision and release resources quickly (elasticity) in tandem
with the “pay as you” go model are the key benefits of cloud computing. Together, they
enable service providers (cloud users) essentially to eliminate capital expenditure (CAPEX)
with infrastructure. Alternatively, these expenses are transformed into operational expenditure
(OPEX), which facilitates experimentation with new services and fosters innovation.

2.2.2 Cloud Computing Architecture

Figure 2.4 depicts a common representation of cloud computing, in which each layer represents
di↵erent resources that can be managed by a cloud provider:

• Hardware: hardware resources such as servers, storage, and network devices.

• Infrastructure: a pool of storage and computing resources that are created by partitioning
physical resources using virtualization technologies.
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Figure 2.5: Simplified cloud computing architecture (adapted from Armbrust et al. [21]).

• Platform: frameworks, middleware solutions, and other tools to facilitate application
development and deployment.

• Application: applications that are deployed in the cloud infrastructure and are consumed
by the service’s customers.

This representation directly relates to the common taxonomy of cloud services known as
“X as a Service”. According to this taxonomy, cloud services are classified based on the type
of resources they o↵er to users. Therefore, services are typically classified in Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

A simplified view of this model is shown in Figure 2.5, in which only two roles are dis-
cerned: Infrastructure/Cloud Providers (IP) and Service/SaaS Providers (SP). In this view, in-
frastructure refers more generically to computing and platform resources, which are used by
SPs to o↵er end-user applications to their customers.

Alternatively, cloud providers can also be di↵erentiated according to their deployment and
usage model. Based on this perspective, clouds are generally classified as:

• Public clouds: clouds in which resources are o↵ered to the general public. This is the
original concept, which has the characteristics and advantages already discussed.

• Private clouds: clouds in which resources are o↵ered and consumed by a single orga-
nization. In this type of cloud, the datacentres are usually located on the company’s
premises, a measure that enables tighter control of security and governance aspects. The
scale of private clouds is generally measured in hundreds instead of thousands of servers,
and resources sharing is limited to a company and its partners.

• Community clouds: clouds in which resources are shared among a community of users
from organizations with shared concerns [113]. For example, a cloud might be shared
among an industry vertical or a research consortium.



20 Chapter 2. Background

This taxonomy normally also includes the concept of hybrid clouds, which is discussed in
the next section.

2.2.3 Multiple Cloud Architectures

A recent research topic in the cloud computing field is the simultaneous use of multiple clouds
to provide services. The motivation for this approach is normally related to the use of resources,
which would otherwise not be available, to improve the quality of the services o↵ered.

The use of resources from multiple clouds can be considered from the perspectives of the
cloud (infrastructure) provider or of the cloud customer [67, 96].

A cloud customer may use multiple clouds with the following goals:

• Increase availability: this goal relates to the fact that no single provider can guarantee
100% availability. The recent history of outages [9, 59, 115] in some of the largest cloud
infrastructure providers highlights this issue. Therefore, using more than one provider is
a way to avoid a single point of failure [21] and to increase infrastructure availability.

• Overcome providers’ restrictions: cloud providers may have restrictions on the services
they o↵er. For instance, Amazon EC2 [10] has a provisioning limit of 20 server instances
per region; if a user needs more, he or she must make an explicit request to the company’s
support department, and the request is subject to their approval. Other examples of
restrictions are the operating systems and hardware o↵ered by a provider, the Service
Level Agreement (SLA), and others.

• Increase application distribution: cloud providers have datacentres located in a limited
number of places. This can be problematic because some regulations and policies re-
quire storage and processing of data within national boundaries. In addition, this limited
geographic range complicates the deployment of latency-sensitive applications, such as
CEP systems, where geographic proximity results in lower latency to end-users. Using
more than one provider naturally increases the geographical distribution of the available
datacentres.

• Reduce vendor lock-in: this goal is related to the use of provider-specific APIs and tools
by application developers. As a result of this specificity, some applications can become
so intrinsically tied to a provider that the cost of porting them to another provider is
greater than the benefits that portability would bring. Use of multiple clouds leads to a
reduction in dependency on a single vendor.

A cloud provider, on the other hand, may use a multiple cloud approach with the intent to:
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(a) Cloud federation model. (b) Multi-cloud model.

Figure 2.6: Multiple cloud models.

• Expand on demand: a provider can use resources from other providers if it reaches the
limits of its own infrastructure.

• Improve the o↵ered SLAs: a provider can improve the availability of its services by using
external resources in case its own fail. Similarly, providers can o↵er resources located
in places where they do not have a physical presence, or even services that they do not
implement by themselves.

As multiple cloud architectures are a recent research topic, there are some inconsistencies
in the nomenclature used in the field. This research uses the terminology proposed by Grozev
and Buyya [67], in which two main concepts are defined:

• Cloud Federation: is a model in which multiple cloud providers cooperate and lease re-
sources from each other. In this case, the cooperation initiative comes from the providers,
which form alliances to o↵er improved services to their customers and/or to maximize
their own benefit.

• Multi-Cloud: is a model in which the cloud customer is responsible for managing and
orchestrating multiple providers to achieve some (or all) of the goals discussed above.
Therefore, design decisions are made based on customer objectives, and the cloud
providers are not aware of each other.

Figures 2.6a and 2.6b depict the di↵erences between the two approaches. Note that in the
cloud federation model, the service provider (SP) is not aware of the federation and interacts
with a single cloud provider (CP). Conversely, in the multi-cloud model, the CPs do not main-
tain a mutual relationship among themselves. The establishment of individual contracts with
each provider and the management of the service as a whole is the SP’s responsibility.

Ferrer et al. [54] presented similar concepts, but also described two other models:
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(a) Hybrid cloud model. (b) Brokering model.

Figure 2.7: Alternative multiple cloud models.

• Hybrid Clouds: in this model, a private cloud is extended to use public clouds when
on-premises resources are insu�cient. Similar definitions have been proposed in other
studies, for example in Bittencourt et al. [28] and Zhang et al. [154]. Figure 2.7a presents
this architecture.

• Brokering: in this model, there is a broker that acts as an intermediary in interactions
between CPs and SPs. The broker’s role is to negotiate and aggregate resources from
multiple CPs and o↵er them to SPs as needed. Theoretically, SP applications are simpli-
fied because they no longer need to interact with multiple CPs. At the same time, CPs
do not need to manage individual contracts with customers because all interactions are
performed through the brokers. A high-level overview of this case is depicted in Figure
2.7b.

In this research, hybrid clouds are considered a special instance of the multi-cloud model in
which the role of SP / cloud user is played by the company that owns the private cloud. More-
over, brokering is not considered as a di↵erent model of organizing multiple cloud providers. In
fact, it can be argued that the broker’s role is to ease the formation of cloud federations and/or
multi-clouds, and the interaction with the broker is not the goal itself. Consequently, this re-
search considers the existence of a broker as an implementation detail of cloud federations or
multi-clouds.

2.3 Container-Based Virtualization

As discussed in Section 2.2, the virtualization concept is at the core of cloud computing and
its resource sharing model. Usually, virtualization is implemented by a software layer called
hypervisor, which is responsible for partitioning the physical hardware and presenting these
partitions to virtual machines (VMs).

The two most common hypervisor architectures are illustrated in Figure 2.8. A Type 1
hypervisor runs directly on top of the hardware, whereas a Type 2 runs as an application of
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(a) Type 1 hypervisor. (b) Type 2 hypervisor.

Figure 2.8: Hypervisor architectures.

Figure 2.9: Container-based virtualization.

a host operating system. In general, Type 1 hypervisors are more e�cient and have better
performance, whereas Type 2 hypervisors are more flexible and easier to install. Regardless
of hypervisor type, the virtual machines are independent units that can install their own guest
operating system and have access to a slice of the hardware resources.

More recently, another type of virtualization started to become widespread in enterprise
and research communities. Container-based virtualization, or operating-system-level virtual-
ization, is a type of virtualization that uses facilities provided by the operating system kernel to
implement isolation between containers. Figure 2.9 illustrates container-based virtualization.

Containers and VMs can be compared based on three main aspects [141]:

• Functionality: containers share the same OS kernel, whereas VMs have their own guest
OS. Consequently, a container crashing an OS kernel may a↵ect other containers running
in the same host. Because of their maturity, hypervisors also tend to implement function-
alities, such as live migration and reconfiguration of VMs, which are not available for
containers.

• E�ciency: because each VM has its own operating system copy, VMs tend to use more
RAM than containers.

• Performance: the overhead of running containers is smaller than that of running VMs
because containers execute directly on top of the operating system. Therefore, the per-
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formance of applications running on containers is very similar to the performance of
running them on bare metal.

In Linux systems, the origin of container-based virtualization is related to projects such as
VServer [140] and openVZ [122]. These projects introduced most of the concepts that were
later incorporated into the kernel and into the LXC tools [100] to support native containers in
Linux. Two of these main concepts are:

• namespace: enables creation of separate namespaces for resources that are usually global,
such as filesystems, process identifiers, users and networks.

• cgroups: enables creation of groups of processes and association of resource consump-
tion constraints within these groups. For instance, cgroups can be used to limit the
amount of CPU and memory that a container can use.

2.3.1 Application Containers

Containers can be classified into two main categories according to the type of workload they
execute:

• System containers, when they execute system-level processes and behave like a full op-
erating system [52]. In this case, containers are used as virtual servers similarly to the
VM approach.

• Application containers, when they execute user-level applications. In this context, con-
tainers are used to provide extra isolation between processes running on the same host.

Despite being originally envisioned in the context of system containers, the popularity of
containers really took o↵ with application containers. PaaS providers, such as Heroku [72],
use containers to pack and execute user applications in a lightweight yet isolated environment.
Moreover, companies like Google also run most of their workload in containers [148].

Today, the use of application containers is consistently associated with the Docker tool [114].
Docker adds many important features to LXC to enable portable execution of containers:

• Bundling: applications and all their dependencies are bundled together in a standardized
container image format, which is independent of the software stack used to develop the
application.

• Versioning: container images are versioned similarly to how source code is versioned
in software configuration management systems. Therefore, it is possible to track, com-
mit, and rollback changes made to an image. In addition, this mechanism also enables



2.3. Container-Based Virtualization 25

incremental download (upload) of images, in which only the di↵erences from previous
versions need to be received (sent).

• Reuse: container images can be reused as a basis for other images. This feature facilitates
development of new images and possibly reduces image transfer size because the base
image needs to be transferred only once.

• Sharing: public repositories containing images are available to facilitate their distribution
and reuse.

• Tooling: tools are available to facilitate creation of images and their distribution to image
repositories.

The process isolation mechanisms provided by container-based virtualization in tandem
with the portability of container images are important enablers of container management sys-
tems, which are described in the next subsection.

2.3.2 Container Management Systems

The use of clusters to run computational intensive tasks has been the subject of intense re-
search in areas such as High Performance Computing (HPC) and Grid Computing. Research
in these areas usually focuses on systems to manage clusters and strategies to schedule user jobs
optimizing certain criteria, such as the time to complete all jobs [27, 78] and energy consump-
tion [51]. Most of this research, however, relies on specialized hardware and infrastructure
software that are not available to everyone.

Recently, clusters of commodity servers have emerged as an important computing platform
for both Internet services and scientific applications [80]. These clusters are cheap and fast to
build, and today they power most cloud computing providers, which use them not only to run
their own workloads, but also to execute their users’ jobs and services. It is in this context that
the first Container Management Systems (CMS) have appeared.

This research defines CMS as software systems which control clusters of commodity servers
and use application containers as the basic unit of management. The container-based approach
brings two main advantages to these systems:

• By using container-based virtualization, processes running on the same server are con-
trolled and isolated with very low overhead. This significantly improves system utiliza-
tion, yet maintains application performance.

• By encapsulating all dependencies in a hermetic container image, application containers
abstract away details about the operating system and hardware on which they run [32].
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This facilitates distribution and deployment and also shifts the datacentre perspective
from machine-centric to application-centric.

Google popularized this approach with Borg [148], a CMS that has been in production
for over a decade controlling most of their workload. More recently, Google released Kuber-
netes [63], an open-source CMS based on Borg. The next section presents more details about
Kubernetes.

Kubernetes

The main goal of Kubernetes is to manage container-based applications across a cluster of
servers [63]. It builds on top of Docker a series of functionalities needed for running applica-
tions, such as naming, interconnectivity, scheduling, scaling, and monitoring.

The main concept used by Kubernetes is a pod, which can be defined as a set of containers
that are always scheduled together. A pod is usually composed of one main container (e.g., a
Web server) plus one or more containers that provide auxiliary services (e.g., log rotation or
backup services).

In Kubernetes, a pod can also have an associated replication controller, which is respon-
sible for guaranteeing that a certain number of pod replicas are always running. Replication
controllers monitor the health of replica pods and create new ones if they detect a failure.
Finally, Kubernetes also allows the definition of services, which are used to implement a ba-
sic discovery mechanism. A service has a fixed name and IP address that can be accessed
cluster-wide. Requests sent to this name or IP address are automatically forwarded to pods that
implement that service.

Figure 2.10 shows the architecture of a Kubernetes cluster. Its main components are:

• Distributed Storage: maintains information about the cluster and all running applica-
tions.

• Main Server API: provides a REST API which is used to access cluster data. It imple-
ments basic CRUD and validation functionalities.

• Scheduler: communicates with the API and schedules new pods in the cluster.

• Controller Manager: implements the replication controller logic.

• Kubelet: runs in every node of the cluster. It communicates with the other components
to enforce local actions and to provide monitoring information.

• Proxy: provides access to services from each node by forwarding requests to the appro-
priate pods.
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Figure 2.10: Kubernetes architecture (adapted from Google [63]).

• kubectl: command-line tool used to manage the cluster.

Kubernetes is a project that is still in active development. In this research, Kubernetes is
used to implement the CEPaaS system described in Chapter 7.

2.4 Autonomic Computing

Autonomic computing aims to build computing systems that can manage themselves based on
high-level objectives determined by system administrators [91].

The essence of autonomic computing is self-management. Theoretically, self-management
frees system administrators from the burden of operating and maintaining complex computing
systems, while keeping their performance optimal. Self-management is composed of four main
aspects:

• Self-configuration: autonomic systems can configure themselves in dynamic environ-
ments, finding services and providers that they depend on and broadcasting their capa-
bilities.

• Self-optimization: autonomic systems can monitor their performance and workload,
searching for opportunities to fine-tune internal parameters. Moreover, they can update
these parameters, test for improvements, and rollback unsuccessful changes.

• Self-healing: autonomic systems can diagnose failures and defects and isolate problem-
atic components. They can also update these components automatically and execute tests
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to ensure that the system is working properly.

• Self-protection: autonomic systems can protect themselves from attacks and cascading
component failures.

In autonomic computing, a system is usually controlled by an autonomic manager, which is
responsible for enforcing the system self-management capabilities. The manager implements a
control loop conceptualized by the MAPE-K framework [85], which is depicted in Figure 2.11.
The framework is named after the five functions composing it:

• Monitor: monitors events from the managed systems to infer symptoms and sends them
to analysis;

• Analyze: analyzes symptoms and infers whether changes are required. If needed, sends
request for changes to the plan function;

• Plan: selects the actions that must be performed based on the analysis results;

• Execute: executes the selected actions;

• Knowledge base: contains every required piece of information about the system, includ-
ing actions that may be performed, their representations, and the inference rules used by
the four other functions.

Note that the MAPE-K functions might not exist as separate entities, but logically all of them
are always present in an autonomic manager.

This research applies autonomic computing concepts in two main parts: first, the AGeCEP
formalism presented in Chapter 4 uses the MAPE-K framework as a standard and intuitive
way to describe self-management policies. Second, the CEPaaS system described in Chap-
ter 7 implements a simple autonomic manager to control runtime queries and guarantee their
performance.

2.5 Summary

This chapter discussed background concepts needed for the remainder of this thesis. First, it
presented an overview of complex event processing and stream processing and clarified how
they relate with each other. Next, cloud computing was discussed with special emphasis on
multiple cloud architectures and how they can be used to improve the quality of services of-
fered. Following, container-based virtualization and container management systems were also
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Figure 2.11: MAPE-K autonomic loop.

examined. Finally, autonomic computing and the MAPE-K loop were presented and discussed
in the context of the CEPaaS system.

The next chapter presents an extensive review of studies related to the contributions de-
veloped in this research, including other CEP and SP systems, CEP formal models, and cloud
computing simulators.
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Literature Review

This chapter presents research related to this thesis divided into three categories: CEP systems,
CEP formal models, and cloud computing simulators. Note that this chapter still di↵erentiates
between CEP and SP to respect the terminology used by the original authors of each study.
Clarifications are provided whenever necessary.

3.1 Complex Event Processing

This section presents a comprehensive review of the most important CEP and SP systems and
research projects related to the CEPaaS system developed in this thesis. It starts with traditional
research projects which, despite being developed over a decade ago, established current termi-
nology and introduced many techniques still in use today. Following, Section 3.1.2 presents
recent projects that leverage modern architectures to improve the quality of service o↵ered to
users. Section 3.1.3 discusses projects that aim to o↵er CEP or SP in the services model, and
Section 3.1.4 reviews systems based on multi-cloud architectures. These two ideas are rela-
tively unexplored, yet are at the core of this thesis. Next, Section 3.1.5 compares cloud-based
CEP systems with CEPaaS. Finally, Section 3.1.6 discusses all these studies in the context of
the contributions presented in this research.

3.1.1 Traditional Systems

This section presents important historical projects that have shaped modern CEP and SP re-
search. These are highly influential studies that serve as a basis for most modern systems.

30
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Stream Processing

NiagaraCQ [37] is one of the earliest SP projects. The system aimed to enable continuous
queries over XML datasets distributed over the Internet. The queries are written in a language
specific to XML files and are recurrently executed based on a timer interval or whenever the
source datasets change. The main NiagaraCQ contribution is an incremental group optimiza-
tion algorithm that can group similar queries to reuse common computations.

The Aurora [1] project is probably the most influential development in this field. Queries
in Aurora are specified using a graphical language composed of boxes and arrows, in which
the former represent query operators and the latter connection points between them. Aurora
is a centralized engine in which user-specified QoS constraints drive the behaviour of two
components: the engine scheduler, which decides the operators to run at any given time and
the number of events they consume; and the load shedding mechanism, which decides whether
discarding events can improve the system processing rate. Later on, Aurora was extended by
the Aurora* [38] and Medusa [24] systems.

Aurora* [38] extended Aurora to support distributed execution in clustered environments.
It introduced server load management using two main techniques: box sliding, which migrates
an operator to one of its immediate neighbours, and box splitting, which splits an operator
across many servers and parallelizes its execution. The Medusa system, on the other hand,
introduced a load management mechanism aimed at federated distributed systems [24]. In this
scenario, multiple participants in di↵erent administrative domains establish contracts between
each other to define a price range for processing a unit of work. Generally, a unit of work is
migrated to another participant if the local execution cost is higher than the remote cost.

Later, both Aurora* and Medusa were merged into Borealis [2]. In addition to all function-
alities just mentioned, Borealis also added features for revision of query results, dynamic query
modification and a QoS-driven load management architecture that acts at local, neighbourhood,
and global levels.

Developed at about the same time as Aurora, TelegraphCQ [36] is also an important project
in the SP field. TelegraphCQ is a general purpose continuous query system that focuses on
adapting behaviour in the face of changes in data sources, network conditions, server availabil-
ity, and user needs. One of its main contributions is the Flux operator [137], which is used
to provide parallel processing through data partitioning and to implement load balancing and
fault tolerance.

Finally, the STREAM [19] project, developed at Stanford University, should also be high-
lighted. Its main contribution is the Continuous Query Language (CQL) [20], a declarative
query definition language. CQL is remarkably similar to SQL and has influenced many subse-
quent languages. Indeed, Oracle Stream Explorer [123], which is a commercial solution, uses
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CQL as one of their query definition languages.

Complex Event Processing

The origin of Complex Event Processing is attributed to Luckham [106], who explored the
need for a new technology as a response to new challenges that enterprises had been facing
with increasing automation and interconnection of IT systems. Nevertheless, the technological
underpinnings of CEP had been in development for a long time. Indeed, Luckham’s CEP work
was based on Rapide [105], a simulator that used the concepts of event causality to model
interactions among various components of a distributed system.

The GEM language [110] is another precursor of CEP, even though the field terminology
was not established at the time GEM was published. GEM is used to define queries to monitor
distributed systems, including constructs to specify composite events, temporal constraints,
and event windows. These constructs are now part of most modern CEP query languages.

The advancement of CEP is also often related to publish / subscribe (pub-sub) systems. For
instance, Pietzuch et al. [125] published an important study describing an architecture that can
augment existing pub-sub systems with composite event detection capabilities. In their work,
the authors presented a language for specifying composite events and a distributed detection
engine based on finite-state automata. Similarly, the PADRES project [99] is also a pub-sub
system for composite event detection with its own query language. As important contributions,
the authors presented distributed event-detection algorithms that can share computation among
multiple queries and reduce network tra�c.

The Cayuga [44] project, on the other hand, was developed as a general purpose event
processing system. Cayuga uses the Cayuga Event Language (CEL) to express queries, which
are executed as non-deterministic finite-state automata. The project focused on developing
e�cient data structures to provide scalability regarding both the number of queries and the
volume of events. However, Cayuga is a centralized system that is limited to the processing
capacity of a single server.

Finally, NextCEP [134] is another general purpose CEP system with an automata-based
execution model, but with an SQL-like query language. Its main results are related to query
rewriting mechanisms and distributed execution in cluster environments.

3.1.2 Modern Systems

This section reviews recent systems that propose new approaches aimed at real-time contin-
uous processing of datasets. These projects are coarsely classified into three major groups.
The first group is composed of systems inspired by the MapReduce [43] computing platform.
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The second group is composed of open-source platforms that provide generic CEP / SP dis-
tributed computing capabilities. All these are readily available for download and have been
maintained by open-source communities for many years. Finally, the third group contains CEP
/ SP systems that leverage cloud resources to provide additional scalability and availability.

MapReduce-Based

MapReduce is a computing paradigm aimed at processing and generating large data sets [43].
The paradigm is based on a two-step computation: the first step is implemented by a map
function, which receives key-value pairs as input and generates a set of intermediate key-value
pairs as output. In the second step, a reduce function receives a set of keys and all values gen-
erated for each of these keys in the map phase, and performs a final computation aggregating
the values received.

In the original article, Dean and Ghemawat [43] presented a platform to run programs writ-
ten using this paradigm in which the map and reduce tasks are automatically parallelized and
executed on a server cluster. The platform also provides fault tolerance based on re-execution
of failed tasks. Since its introduction, MapReduce has been used in diverse scenarios and has
originated di↵erent implementations, among which Apache Hadoop [16] is the most popular.
Nevertheless, despite its success, the MapReduce paradigm is not an appropriate solution for
CEP because:

• MapReduce computations are batch processes that start and finish, whereas computations
over event streams are continuous tasks that finish only upon user request.

• The inputs of MapReduce computations are snapshots of data stored in files, and the
contents of these files do not change during processing. Conversely, event streams are
continuously generated and unbounded inputs [98].

• To provide fault tolerance, most MapReduce implementations, such as Google MapRe-
duce [43] and Hadoop [16], write the results of the map phase to local files before sending
them to reducers. In addition, these implementations store the output files in distributed
and high-overhead file systems (Google File System [57] or HDFS [16] respectively).
This extensive file manipulation adds significant latency to the processing pipelines.

• Not every computation can be e�ciently expressed using the MapReduce programming
paradigm, and the paradigm does not natively support composition of jobs.

Despite these limitations, the prevalence and success of MapReduce have motivated many
researchers to work on systems that leverage some of its advantages while trying to overcome
its limitations when applied to low-latency processing.
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One of the first projects in this direction was developed by Condie et al. [39]. In this work,
the authors proposed an online MapReduce implementation with the goal of supporting online
aggregation and continuous queries. To reduce processing latency, the map and reduce steps
are pipelined by having the map tasks send intermediate results to the reduce tasks. The au-
thors also introduced the idea of executing reducers on snapshots of the data received from the
mappers. This mechanism enables generation of partial approximate results, which is particu-
larly useful for interactive analytics scenarios. All these changes were implemented on Apache
Hadoop and demonstrated in a monitoring system prototype.

Despite these modifications, the work by Condie et al. [39] still has limitations that hinder
its use in CEP scenarios. For instance, if the reducers are not scheduled simultaneously with
the mappers, the mappers cannot push intermediate results to them. In addition, the platform
does not support elasticity, which is a very important requirement for scenarios where the event
input rate is subject to wide fluctuations and burst behavior.

Other researchers have also leveraged the familiar MapReduce programming model, but
focused on providing alternative runtime platforms. For instance, Logothetis and Yocum [102]
proposed a continuous MapReduce in the context of a data processing platform running over
a wide-area network. In their research, the execution of map and reduce functions is managed
by a stream processing platform. To improve processing latency, the mappers are continuously
fed with batches of tuples (instead of input files), and they push their results to reducers as soon
as they are available. This approach is similar to that adopted by the StreamMapReduce [31]
system, which send events (key-value pairs) directly from one processing stage to another
without the persistence of intermediate results.

Similarly, the M3 [8] project aimed to provide a memory-based MapReduce implementa-
tion. In this project, the execution engine transforms user queries into a sequence of MapRe-
duce jobs and executes them. The general idea of this transformation is to map each query
operator to a pair of map / reduce functions; the article presented examples of transformations
of filters, joins, and aggregates, but did not detail or formalize this process. The authors also
claimed that the system could provide fault tolerance and adapt to dynamic workloads, but no
implementation details or experimental results were shown.

Alternatively, the di�culty of expressing online computations using MapReduce has
also motivated the creation of alternative programming models. For instance, the Muppet
project [98] presented a new paradigm called MapUpdate, which mimics MapReduce by spec-
ifying computations as two functions (Map and Update). The main di↵erence is that the update
phase has access to slates, data structures that contain persistent state related to each update
key. In theory, these slates enable easier implementation of iterative and stateful algorithms.
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Open-Source Platforms

Recently, many open-source CEP / SP distributed computing platforms have emerged to handle
applications with low latency requirements and large data volume. The most prominent exam-
ples of this category are Storm [18], Yahoo’s S4 [117], Spark Stream [153], and Samza [17].

Storm [18] was created at Backtype, a company later acquired by Twitter. At Twitter, Storm
was used for a long time as the de facto SP platform [144] and was only recently superseded
by Heron [95]. Today, Storm is an open-source project managed by the Apache group.

Storm is based on user-defined topologies, which are directed graphs in which the vertices
define computations to be performed and the edges specify event streams flowing from one
vertex to another. Events, also known as tuples, are produced by special vertices named spouts
and processed by vertices named bolts. The platform provides spout implementations for con-
necting with di↵erent event sources such as message queues, but it is also possible to create
new ones. In addition to the processing graph, a topology also defines the number of threads
(tasks) for each bolt and how the input streams are partitioned among the available tasks. For
example, it is possible to partition an input stream randomly or based on the hash values of
specific attributes.

A Storm cluster is managed by a single master node called Nimbus, which is responsible
for scheduling topologies into worker servers. Each worker runs a supervisor, which monitors
local tasks and restarts them if needed. The supervisor also communicates the local state to
Nimbus. If a worker node fails, its local tasks are rescheduled into other nodes. Storm guar-
antees that each tuple is processed at least once by tracking tuples throughout the processing
pipeline. Recently, a new API called Trident was created over Storm. This API provides ready-
to-use CEP operators such as joins, aggregates, and filters. Moreover, it changes the processing
model from tuple-by-tuple to small batches and adds new abstractions that enable exactly-once
processing semantics.

Yahoo’s S4 [117] is based on similar concepts. A computation receives one or more event
streams as input and processes them using a sequence of processing elements (PE). In S4, each
PE is defined by a type, the type of events that it consumes, and the attributes that are part of
the event key. An important di↵erence from Storm is that a new PE instance is created for each
distinct key value on its input. Therefore, S4 also implements a garbage collector mechanism
to remove old / unused PE instances from memory and to avoid memory overflow.

An S4 cluster is formed by a set of processing nodes (PNs) that use Zookeeper [83] to
coordinate among themselves. Each PN has a PE container that manages local PEs; events are
distributed among the PNs based on a hash value derived from each event’s key attributes. A
communication layer is used by the PEs to forward events to the appropriate PN. Furthermore,
to provide fault tolerance, the S4 cluster has a (configurable) number of standby instances,
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which are used if active nodes fail. In addition, an uncoordinated checkpoint mechanism saves
the PEs state based on time intervals or event counts. This checkpoint enables faster recovery
of failed processing nodes.

Spark Stream [153] is a stream processing platform built on top of Apache Spark [152]
and based on the discretized streams (D-Stream) model. In this model, events are grouped into
short-duration batches and stored in special abstractions called resilient distributed datasets
(RDD) [152]. RDDs are in-memory partitioned data structures that can be processed only by
a set of transformations. A transformation, in turn, can generate output RDDs and maintain
auxiliary state in others. A user query is defined as a sequence of such transformations over
the input events. This processing model is significantly di↵erent from that used in other CEP
systems because, at each stage, tasks are scheduled to execute transformations and can be
discarded afterwards. This is possible because all necessary input is available as RDDs in the
cluster nodes memory. Conversely, in most other systems, the computations are continuous
processes that constantly receive and generate events.

Spark Stream’s model has three major advantages over continuous processing: first, it
unifies stream and batch programming models by expressing both as RDD transformations.
Second, it enables implementation of fault tolerance. When a node fails, the lost RDDs are
reconstructed (in parallel) by reapplying the sequence of transformations that originated them,
starting at the input events. Finally, it enables speculative execution of tasks to avoid delays
caused by stragglers. However, because events must be batched before processing, Spark
Stream’s processing latency tends to be higher compared to similar platforms.

Finally, Samza [17] is a stream processing platform created by LinkedIn and the most recent
project discussed in this section. Samza di↵ers from other platforms by defining a strong model
for event streams. In Samza’s model, event streams are seen as append-only partitioned logs,
where each partition contains a totally ordered sequence of events. Partitions provide a natural
way of consuming an event stream in parallel, yet there is no ordering guarantee between
events from di↵erent partitions. In addition, Samza’s model requires event streams to be multi-
subscriber and replayable so that an event can be repeated if a subscriber fails. In practice, event
streams are implemented by Apache Kafka [94], a message broker also created by LinkedIn.
Kafka provides partitioned topics that can be directly used as Samza event streams.

In Samza, users create jobs that perform transformations on a set of input streams and write
their results to an output stream. Because each event stream is a persistent Kafka topic, jobs are
totally decoupled from each other. This architecture brings two main advantages to the system.
First, the performance of slow consumers does not a↵ect any upstream job because events are
bu↵ered in the intermediary topics. Second, the results of any job can be easily read from the
job’s output stream, which facilitates reuse and composition. As disadvantages, this model
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adds delays to system latency and complicates the creation of multi-step processing because
there is no notion of query in the system.

Samza also has unique support for implementation of stateful jobs by providing a fast key-
value store at each node of the cluster. With this approach, jobs manipulate state data without
the overhead of accessing persistent storage via the network. However, because they are local,
these data can be lost in case of server failure. To solve this problem, Samza replicates every
operation in the local store to a special Kafka topic. This way, a job can rebuild the local store
state by replaying the operations from this topic.

Cloud-Based

Recent research projects have been leveraging cloud resources to provide robust and elastic
CEP systems. This section reviews relevant projects available in the literature.

ElasticStream was developed by Ishii and Suzumura [87] and was one of the first to use
cloud resources to improve the quality of SP systems. It uses IaaS servers to provide additional
computing capabilities in the case that local resources are insu�cient to handle the input event
streams. The authors formulated infrastructure allocation as an optimization problem that aims
to minimize expenses on cloud resources while maintaining system capacity. An optimizer is
executed periodically, and its output guides the allocation of public cloud resources and the
split of input streams between local and remote servers.

Esc [133] is another distributed SP system designed to be elastic. Queries are defined using
a directed acyclic graph (DAG) of processing elements, which are executed on a cluster of
servers. Esc uses an autonomic manager to implement self-management policies that attach
new servers to the resources pool and create more instances of processing elements. Esc has a
very simple load balancing mechanism, based on killing a worker process and expecting it to
be re-allocated on a less loaded machine.

Similarly, the goal of the StreamCloud [69] project was to create a SP engine that can handle
very large input streams. To achieve this objective, the authors presented a parallelization
strategy that splits user queries into subqueries and runs each subquery on a subset of the
available machines. In addition, logical input streams are split into many physical streams and
processed in parallel. This approach was contrasted with two other common parallelization
strategies: query-cluster and operator-cluster. According to the article results, the subquery
strategy achieved better throughput and greater scalability than the other approaches. This
research also discussed two protocols to move processing load from one server to another and
developed basic elasticity capabilities based on CPU monitoring. The system assumes a private
cloud environment in which idle servers are always available and ready to use.

The StreamHub [25] project aimed to create a high-throughput, low-latency, and scalable
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publish/subscribe system. The StreamHub design was inspired by the distributed SP frame-
works described in Section 3.1.2 - “Open Source Platforms”. The core functionalities are im-
plemented by a sequence of three operators that scale independently: access point (subscription
partitioning), matching, and exit point (dispatching). One of StreamHub’s unique character-
istics is that it can use di↵erent libraries to match publications to subscriptions, making the
system adaptable to many situations, including CEP.

The TimeStream [128] system is another SP engine designed for deployment in clusters
and cloud environments. Its main goal is to provide reliable event processing even in the
presence of failures and reconfigurations. A rule in TimeStream is specified using a declarative
language and is converted by a compiler into a DAG. To provide fault tolerance and enable
reconfiguration actions, the system uses a concept called resilient substitution, which depends
on tracking the output and state dependency of each operator. Assuming that an operator o is
in state ⌧, the state dependency is the subset of the operator’s inputs that led o to this state.
Accordingly, the output dependency of a result e is the operator’s previous state dependency
plus the input i that caused the generation of e. If an operator o fails, a new instance o0 is
created and the o state dependency is repeated, leading o0 to the same state ⌧. Similarly, a
subgraph of the DAG can be replaced by another (equivalent) by replaying state dependencies
of the original subgraph.

Nephele [103] is an SP system that can self-adapt to satisfy user-defined QoS constraints.
In Nephele, queries are also characterized by DAGs and distributed over many worker servers.
A distributed monitoring infrastructure detects QoS violations at runtime and implements two
reconfiguration mechanisms: output bu↵er resizing and task chaining. The former changes the
number of events that are bu↵ered before being sent to the next operator, whereas the latter
combines multiple operators into a single one that is logically equivalent.

Murray et al. [116], on the other hand, proposed a new computational model called timely
dataflow that can be used for data parallel cyclic dataflow programs, including but not limited to
CEP. In this model, the computations are directed graphs that can include loops, making them
especially suitable for iterative processing. Vertices of the dataflow graph can be notified when
all messages before a (logical) timestamp t have been processed. This feature enables vertices
to check for end-of-loop conditions and to implement window-based operators. The authors
presented a runtime platform for this model called Naiad, which parallelizes and distributes
dataflow graphs over a server cluster. The graphs are executed without central coordination,
yet the platform has limited elasticity and fault tolerance mechanisms.

Fernandez et al. [53] focused on an integrated approach for scaling out and fault tolerance
in cloud-based SP systems. In their approach, stateful operators implement callback functions
that explicitly convert their internal state into a set of key-value pairs. This state, along with
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the operator’s output bu↵er events and routing state, are backed up into upstream operators.
This backup is used whenever a new operator instance needs to be created, which can occur
in two di↵erent situations: an operator has failed and needs to be recreated; or an operator
has become a processing bottleneck, and new instances are needed to increase its throughput.
Note that both situations might require new VMs to be allocated. To avoid long delays in
this allocation, the system maintains a pool of pre-allocated VMs that are transferred to the
application when needed.

Google’s MillWheel [4] is the SP system used internally at Google. It is based on the fa-
miliar graph-based model, in which vertices called computations encapsulate user logic. Mill-
Wheel provides an exactly-once delivery guarantee, which di↵erentiates it from most other SP
systems. This guarantee is implemented as follows: upon receiving an event, the computation
checks for duplication by consulting a database. If the event is not a duplicate, the computation
is executed, which can result in updates to timers, internal state changes, and generation of out-
put events. Following the execution, the processed event id, the new computation’s state, and
all produced events are checkpointed to a backup database in a single atomic write. Finally, the
senders are acknowledged, and the produced events are sent downstream. By writing all state to
persistent storage, MillWheel guarantees that events are not processed more than once and also
implements transparent failure recovery. As another important contribution, MillWheel also
provides low watermarks for input streams. These low watermarks indicate a timestamp up to
which all events have been processed and can be used to implement window-based operators
and timers in computations.

The FUGU [70] system extended a commercial SP system based on Borealis [2] to provide
load balancing and elasticity capabilities. FUGU has a centralized monitoring infrastructure
which collects metrics from system nodes and moves operators when an overloaded node is
detected. The operators to be moved are selected so as to minimize the latency spikes caused
by their movement. To calculate this spike, the system considers all operators that are a↵ected
by the movement and the extra delay caused by enqueued events.

StreamMine3G [111, 112] is an evolution of the StreamMapReduce system [31]. In Stream-
Mine3G, operators are defined using a MapReduce-like programming interface and assembled
into a DAG. At runtime, operators are replicated and input data partitioned among these repli-
cas. The most distinctive features of StreamMine3G are the support for multiple fault-tolerance
schemes and a mechanism that automatically selects the most appropriate scheme based on
user-defined recovery time constraints. For instance, if long recovery is unacceptable, then the
system applies an active replication scheme in which two operator instances located in di↵er-
ent servers process all events (in duplication). On the other hand, if a longer recovery can be
tolerated, then passive replication is employed. In this scheme, a new instance is created only
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when the first one fails. This support to multiple schemes enables users to trade-o↵ between
recovery time and resource usage.

Finally, Heron [95] is an SP engine created at Twitter to overcome Storm [18] limitations
when used at very large scale. For instance, Storm runs many tasks in the same worker process,
which complicates debugging and resource isolation. In addition, Storm assumes a homoge-
neous cluster, has a single point of failure (Nimbus), and does not support backpressure. Heron,
on the other hand, has a di↵erent architecture, yet is API-compatible with Storm. Heron runs
on a shared infrastructure controlled by an Aurora scheduler1 [15] on top of Mesos [80]. In this
architecture, each topology is scheduled as a set of application containers controlled by Linux
cgroups [100]. One container runs a Topology Master, which controls the topology lifecycle,
and every other container runs a single Stream Manager instance and a set of Heron Instances.
The Stream Manager manages communication between containers and implements the back-
pressure protocol. Each Heron Instance, in turn, maps to a topology task. By leveraging this
new architecture, Twitter improved Storm’s throughput by 14 times and latency by 15 times.
In addition, it also increased cluster utilization and system debuggability.

3.1.3 CEP Services

Loesing et al. [101] were among the first authors to propose SP as a service. They introduced
Stormy, an SP engine that uses techniques from cloud storage systems [64] to provide scal-
ability and availability. Stormy distributes queries and input events using consistent hashing
and implements a gossip protocol to disseminate the mapping of queries to nodes. To provide
availability, queries are replicated, and events are processed by all replicas. Nevertheless, the
article presented no results about system performance or scalability.

Currently, the main cloud providers also o↵er managed services that support CEP / SP
functionalities, but these are mostly targeted at application developers. For instance, Amazon
o↵ers Amazon Kinesis [12] and AWS Lambda [13], whereas Google o↵ers Cloud Pub/Sub [62]
and Cloud Dataflow [61].

AWS Lambda [13] enables users to run generic code, encapsulated in functions, in response
to triggers from other Amazon services, HTTP endpoints, or activities from mobile applica-
tions. There is no infrastructure to be managed, and the service provides automatic scaling.
Nevertheless, the service has no notion of queries, bu↵ering, or many other functionalities
needed for CEP systems.

Amazon Kinesis [12], on the other hand, is a suite of services aimed at real-time stream
processing. The main service of this suite is Amazon Kinesis Streams, which provides as a

1Not to be confused with the Aurora SP engine [1]
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managed service publish-subscribe functionalities similar to Apache Kafka [94]. To consume
data from Kinesis Streams, a developer can write programs using the Amazon Kinesis Client
Library (KCL). KCL provides a platform for running SP applications, including automatic
load balancing and input stream re-sharding. However, KCL is not a managed service, which
implies that developers must control the infrastructure in which KCL programs run.

Similarly to Amazon Kinesis Stream, Google Cloud Pub/Sub [62] is also a publish-
subscribe messaging service. Cloud Pub/Sub is globally deployed, which ensures low latency
for data sources and consumers distributed around the world. To consume data from Cloud
Pub/Sub, developers can use Cloud Dataflow [61], which provides a fully managed service for
batch and stream processing. In fact, the Cloud Dataflow service is an implementation of the
Dataflow programming model presented by Akidau et al. [5].

The Dataflow model has been created to express programs that process unbounded un-
ordered data sources and generate event-time ordered results. This model provides capabilities
that enable users to fine-tune computations and trade o↵ correctness, latency, and cost. In a
dataflow, data are represented by parallel collections of key-value pairs that can be processed
by two core primitives: ParDo for generic parallel processing, and GroupByKey for processing
data grouped by key. For unbounded streams, the GroupByKey construct is extended with a
generic window concept that can group data in fixed, sliding, and session windows. In this
case, triggers determine when window results are produced and how multiple results from the
same window relate to each other. Because it is generic, the model can be implemented by
either batch or stream processing systems. For instance, at Google, a batch and a streaming
version have been implemented in FlumeJava [35] and MillWheel [4] respectively.

3.1.4 Multi-Cloud CEP

The idea of exploring multiple cloud environments to improve the quality of service provided
by a CEP service is almost unexplored in the literature.

Photon [14] is a system in production at Google that is solely focused on joining two event
streams. The system operates under very specific circumstances, in which a primary stream of
events needs to be joined with a secondary stream that happens within seconds of the primary.
Both streams can be unordered because the events come from distributed datacentres. In addi-
tion, the primary stream can be delayed relative to the secondary. Photon maintains replicas of
the processing pipeline in multiple cloud datacentres to provide fault tolerance. These pipelines
synchronize by means of a replicated, strongly consistent global database.

JetStream [145], on the other hand, proposed a generic framework for transferring events
between geographically distributed datacentres. The proposed framework is generic and can
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integrate with di↵erent CEP systems. The main idea is to decide on a batch transfer size
autonomically based on system metrics such as network latency, input event rate, and number
of destinations. The authors also introduced the idea of using multiple routes across nodes
located in di↵erent datacentres to increase the aggregated bandwidth between them.

3.1.5 Comparison

Table 3.1 summarizes the characteristics of modern cloud-based CEP systems and of the
CEPaaS system developed in this research. The systems are compared based on the following
criteria:

• Paradigm adopted by the system: (a) SP, (b) CEP, (c) batch, (d) publish-subscribe, or
(e) function.

• Availability to be downloaded and used: (a) open source, (b) research prototype, (c) pro-
prietary software, or (d) managed service.

• Cluster types used by the system: (a) specific, if the system uses its own mechanism to
define a cluster; (b) shared, if the system runs in a cluster shared with other applications
and is controlled by a specialized cluster management software; or (c) container, if the
system runs in a cluster controlled by a container management system.

• Elasticity implementation: (a) no, if the system does not implement elasticity; (b) not
applicable, if the system runs in a shared cluster (in this case elasticity is implemented at
the cluster manager level); (c) bursting, if the system uses public cloud resources when
private resources are not su�cient; (d) pool, if the system can attach pre-allocated servers
to the cluster; or (e) regular, if the system can attach and de-attach servers to the cluster
on-demand.

• Query definition language: (a) DAG-based, (b) declarative, (c) not available, or
(d) system-specific categories, such as transformations for Spark Stream [153] and timely
dataflow for Naiad [116].

• Management implementation: (a) centralized, with or without standby replicas; (b) hi-
erarchical, if the management processes are organized in a hierarchical fashion; (c) per-
query, if each query has its own management process; (d) distributed, if management is
implemented by all participant nodes and there is no single point of failure.

• Distinctive features that di↵erentiate a system from the others.



Table 3.1: Comparison of CEPaaS and modern CEP systems.
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Most current systems are based on the simpler SP paradigm rather than on CEP, and DAG-
based query languages have been almost universally adopted2. Moreover, it is possible to note
a recent trend towards shared clusters runtime environments, both traditional and container-
based ones. These environments have been leveraged to increase resource utilization and to
reduce costs of datacentres. In addition, they greatly simplify CEP system management imple-
mentations because many features, such as server monitoring and elasticity, are now provided
by the cluster manager.

3.1.6 Discussion

The CEPaaS system proposed in this thesis is obviously influenced by the CEP / SP pioneers
discussed in Section 3.1.1. Specifically, the “box-and-arrows” query definition language pro-
posed by Aurora [1] is a natural model for specifying event processing queries, and therefore a
similar language has been adopted by CEPaaS. In addition, Aurora’s strategy of parallelizing
an operator by splitting input event streams is also used in this thesis.

The proposed CEPaaS system, however, o↵ers many unique contributions which have not
been explored in the literature. Compared with existing systems o↵ering CEP / SP services
(Section 3.1.3), CEPaaS di↵erentiates itself by operating at a higher level of abstraction. By
o↵ering pre-defined query templates, CEPaaS can be used by end users, yet it can still be
extended by developers whenever needed. CEPaaS also provides a complete solution and does
not need to integrate with other systems and services.

CEPaaS leverages multi-cloud environments to improve the system QoS, whereas most
other systems do not. Similarly to Photon [14], user queries run on multiple datacentres to
provide datacentre-level fault tolerance. In addition, CEPaaS uses multiple clouds to increase
application distribution and stay (geographically) closer to event producers and consumers. As
shown in Chapter 7, this feature considerably reduces query latency.

In terms of architecture, CEPaaS is most similar to Twitter’s Heron [95], as both are based
on application containers that are scheduled into a shared infrastructure. Nevertheless, Heron
is used to run Twitter workloads, whereas CEPaaS is a multi-tenancy service. This di↵erence
is reflected in the granularity of what resides in a container: Heron containers run many tasks
belonging to a single topology, whereas CEPaaS runs all tasks from a particular user query.
This decision has been made because it facilitates resource allocation and control according
to the tenant subscription level. Apache Samza [17] also uses containers to schedule jobs in a
YARN cluster [147], but as already mentioned, Samza does not include the concept of a query
and is not designed to be multi-tenant.

2Naiad [116] and Google Dataflow [5] languages can also be considered DAG-based.
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CEPaaS also shares similarities with the Esc system [133] because both use an autonomic
manager to control queries and the execution environment. CEPaaS, however, is based on the
AGeCEP formal model (Chapter 4) of reconfiguration actions that guarantee correctness of
reconfigured queries. Moreover, the proposed AGeCEP formalism can be extended with new
query operators that are seamlessly integrated into the autonomic manager.

Furthermore, it is important to emphasize how CEPaaS relates with other open-source SP
/ CEP platforms such as Storm [18] and S4 [117]. In fact, CEPaaS provides abstractions on
top of these frameworks, and it is even possible to use them as a query execution engine.
Nevertheless, CEPaaS opted for an implementation based on the Akka toolkit [6] because it
does not require a central manager and is lower-level, which enables more flexibility.

Finally, many of the fault-tolerance, scalability, and elasticity techniques used by modern
cloud-based systems (Section 3.1.2) can be integrated into CEPaaS and are orthogonal to this
thesis. Indeed, the authors plan to explore query parallelization and fault tolerance of stateful
operators as future work.

3.2 CEP Formal Models

The AGeCEP formalism presented in Chapter 4 was created to provide a technology- and
language-agnostic representation of queries, and to enable creation of generic and reusable
procedures for CEP query management. On the contrary, most previous research into CEP
formal models was developed in the context of specific query languages [20, 30]. These models
attach semantics to queries written using these languages yet they generally cannot be applied
to other contexts without significant adaptation.

More recent research has targeted the development of language-independent formalisms
for CEP [71, 93]. These authors recognized the importance of a generic model to enable for-
mal analysis of user-defined queries, including procedures such as correctness checking and
query equivalence determination. Nevertheless, these models di↵er significantly from AGe-
CEP because they focus only on defining query semantics and do not include reconfiguration
actions.

Sharon and Etzion [138] proposed the event processing network (EPN) formalism as a way
to specify event-based applications independently of the underlying implementation. More
recently, Rabinovich et al. [129] and Weidlich et al. [149] built upon Sharon and Etzion’s
research by implementing simulation, static, and dynamic analysis of EPNs. EPNs share simi-
larities with AGeCEP because they are also language-agnostic and use directed graphs as their
basic representation. However, the main goal of EPNs is to represent applications that can
be translated into system-specific queries, whereas the proposed AGeCEP aims to provide a
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generic query representation.
Cugola et al. [42], on the other hand, proposed an approach and an accompanying tool

called CAVE that can be used to prove generic properties about user-defined queries. They
convert queries written in di↵erent languages into a pattern-based model, which is transformed
along with the properties to be proved into a constraint satisfiability problem. If a solution to
this problem exists, then the properties are proven to be true.

The REX tool [49] is similar to CAVE, as it also aims to prove generic properties about
application queries. REX, however, uses a formalism based on timed automata. Both CAVE
and REX are very specific to their purposes and are not as appropriate to represent queries and
generic management procedures as AGeCEP.

Finally, Hong et al. [82] presented the work that most closely approximates AGeCEP ob-
jectives. In their research, queries written in both declarative and pattern-based languages are
converted to a graph-based query execution plan, and a set of transformation rules is applied to
optimize them. Note, however, that their focus is solely on multi-query optimization, whereas
AGeCEP targets procedures covering the entire query lifecycle.

3.3 Cloud Computing Simulators

Simulators have been used in di↵erent fields, such as grid computing [33], to overcome dif-
ficulties related to the execution of repeatable and reproducible experiments. More recently,
the usage of simulators in cloud computing has become widespread and a number of simula-
tors has been developed such as CloudSim [34], GreenCloud [92], and iCanCloud [119]. In
the context of CEP systems, however, there are no such simulators available. Because of this
limitation, this section reviews cloud computing simulators instead. As it will be described in
Chapter 6, one of these cloud simulators (CloudSim) is used as a basis for CEPSim.

CloudSim [34] is a well-known cloud computing simulator that can represent various types
of clouds, including private, public, hybrid, and multi-cloud environments. In CloudSim, users
define workloads by creating instances of cloudlets, which are submitted and processed by
virtual machines (VMs) deployed in the cloud. Among the most interesting CloudSim features
is the customizability of its resource management policies, such as:

• VM allocation (provisioning): determines how to map a user-requested VM to one of
the physical hosts available in a datacentre. Cloud providers normally use strategies that
try to maximize the utilization of their servers without violating existing service level
agreements (SLA).

• VM scheduling: determines how the VMs deployed on a physical host share the available
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processing elements (PEs). Currently, CloudSim provides two VM scheduling policies:
space-shared and time-shared. In the former, each VM has exclusive access to the PEs
to which it is allocated, whereas in the latter, VMs share the host PEs by executing on
slices of the available processing time.

• Cloudlet scheduling: determines how the cloudlets running in a VM share the available
VM PEs. Similarly to VM scheduling, both space-shared and time-shared strategies are
available.

The major drawback of CloudSim to simulate CEP is its simple application model, which is
more appropriate for simulation of batch jobs. Normally, a cloudlet represents an independent
finite computation with a length defined by a fixed number of instructions. Moreover, the
cloudlet’s internal state other than its expected finish time is invisible. CEP queries, on the
other hand, are continuous computations that run indefinitely or for a specific period of time.
In addition, tracking queries’ internal state during simulation is essential to the analysis of
any given CEP system. For example, by monitoring the query operators’ queue size, one
can determine whether the operators are keeping up with the incoming event rate. The work
discussed in this research circumvents the limited CloudSim application model with a new
model based on AGeCEP, as discussed in Chapter 6.

Because of its limitations, CloudSim has already originated many extensions in the litera-
ture [56, 66, 68]. Garg and Buyya [56] created NetworkCloudSim, which extends CloudSim
with a three-tier network model and an application model that can represent communicating
processes. Grozev and Buyya [66], on the other hand, presented a model for three-tier Web
applications and incorporated it into CloudSim. Finally, Guérout et al. [68] focused on im-
plementing the Dynamic Voltage and Frequency Scaling (DVFS) model on CloudSim. These
extensions are orthogonal to CEPSim because they do not focus on CEP.

Conversely, GreenCloud [92] is a cloud simulator developed as an extension of the net-
work simulator NS-2 [118]. Di↵erently from CloudSim, GreenCloud focuses on packet-level
simulation and energy consumption of network equipment, but not on modelling of complex
applications.

The iCanCloud simulator [119], on the other hand, provides functionalities that are more
similar to CloudSim. In addition, it can also parallelize simulations and has a GUI for user in-
teraction. Its application model, however, is based on low-level primitives and needs to be sig-
nificantly customized to represent CEP applications. The choice of CloudSim over iCanCloud
in this research was motivated by CloudSim’s more mature codebase, the authors’ previous
experience, and the larger number of extensions available for CloudSim.
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3.4 Summary

This chapter presented a comprehensive review of research related to the contributions devel-
oped in this thesis. It started reviewing the most important CEP / SP systems, from traditional
research projects that established current terminology to modern systems that leverage cloud-
based architectures to improve the quality of service o↵ered to users. Following, this chapter
also described projects that aim to o↵er CEP / SP in the services model and CEP systems
based on multi-cloud architectures. Finally, this chapter discussed CEP formal models and
cloud computing simulators.

In the next chapter, the first contribution of this research is presented: the Attributed Graph
Rewriting for Complex Event Processing Management (AGeCEP) formalism.



Chapter 4

Attributed Graph Rewriting for CEP
Management - Concepts

This chapter1 introduces the Attribute Graph Rewriting for CEP Management (AGeCEP) for-
malism. It starts with a discussion about AGeCEP motivation and benefits (Section 4.1) and
with an introduction of the basic ideas on which the formalism is based (Section 4.2).

As it will be detailed further, AGeCEP requires the characterization of CEP operators ac-
cording to their reconfiguration capabilities. To enable this characterization, a generic clas-
sification of CEP operators is presented in Section 4.3. Finally, Section 4.4 details how the
formalism represents queries and their reconfigurations.

4.1 Motivation

Despite the recent surge of interest in CEP systems, the current CEP research landscape is still
young and fragmented. As mentioned in Section 2.1, a large variety of solutions exist and they
often use inconsistent terminology and di↵erent query definition languages. Consequently,
most ongoing research and development is performed in the context of specific systems and
languages.

Of particular interest for this research, algorithms and techniques aimed at query lifecycle
management (QLM) have often been developed in such a system-specific fashion. For instance,
Aurora* can dynamically move processing load to neighbouring servers [38], and Nephele can
dynamically resize the output bu↵ers of query operators [103]. Both these examples illustrate
important query management techniques, in which the system self-adapts to changing condi-
tions. However, they were developed in the context of their respective systems and cannot be

1A conference paper containing preliminary results from this chapter has been published [75]. The contents of
this and the next chapter have also been submitted as a journal paper which has been accepted for publication [79].
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easily generalized.
In the context of the CEPaaS system, this fragmentation is even more critical because:

• CEPaaS is a user-facing service and, therefore, it must be flexible regarding the interface
and language used to define queries. For instance, some users may prefer to create
queries using a visual language whereas others prefer to write SQL-like statements.

• CEPaaS provides high availability, low-latency, and elasticity by leveraging cloud en-
vironments. The management of large cloud deployments leads to complex algorithms
and reinforces the need to reuse results from related research.

• CEPaaS accepts user definition of new operators. The ability to integrate them to the
query management loop and to treat them as first-class citizens is essential to the system.

To overcome these challenges, this research introduces Attributed Graph Rewriting for
Complex Event Processing Management (AGeCEP), a formalism that provides a technology-
and language-agnostic representation of queries and of reconfiguration actions that act on the
queries.

In AGeCEP, queries are represented as directed acyclic graphs whose vertices and edges
are augmented with a standardized set of attributes. These attributes characterize operators
according to their reconfiguration capabilities and can be used for decision making in man-
agement procedures. Reconfiguration actions, in turn, are defined with graph rewriting rules
based on the Single-Pushout approach [104]. AGeCEP rules consider the vertices’ characteris-
tics, as expressed by their attributes, to decide whether a rule can be applied. By doing so, the
formalism can establish correctness guarantees for reconfigurations: they are never applied to
incompatible operators and queries. In addition, AGeCEP rewriting rules are also associated to
mutators that are executed as side-e↵ect of rule application. This mechanism guarantees that
changes performed in the query models are correctly reflected in the real system.

AGeCEP query model provides a common representation to which di↵erent query def-
inition languages can be converted, including languages that accept user-defined operators.
In addition, by also providing a model for reconfigurations, AGeCEP establishes a common
ground through which most management procedures can be expressed. These procedures, in
turn, can be applied to control any CEP system that uses AGeCEP as its underlying formalism,
including the CEPaaS system. Therefore, AGeCEP facilitates not only the understanding of
procedures from existing systems, but also their reuse and application to other contexts.

Because it is a formal model, AGeCEP also enables formal analysis of user queries and
their transformations, including procedures such as structure validation, correctness checking,
and equivalence determination. These procedures, however, are out of scope of this research.
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The following sections discuss in details the AGeCEP formalism. A complete evaluation
of AGeCEP is presented in Chapter 5.

4.2 Attributed Graph Rewriting for CEP Management

The Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) for-
malism has been developed to enable specification of management procedures and, in particu-
lar, self-management policies that can be applied to QLM in CEP systems.

To achieve this goal, two main challenges have to be overcome: the first was to find a
query representation that is language agnostic, yet can encode all information required by the
management procedures. The second was to find a way to specify unambiguous reconfiguration
actions that act on the represented queries. The following subsections discuss these challenges
further.

4.2.1 Modelling Queries

AGeCEP represents CEP queries as Attributed Directed Acyclic Graphs (ADAGs). Given a
query graph, each vertex represents a query element, and each edge represents an event stream
flowing from one element to another. In such a graph, query elements are further classified as:

• event producers: sources of events processed by the query;

• event consumers: consumers of query results;

• query operators: any processing logic that can be applied to one or more input streams
and generates one or more output streams as a result.

Because the graphs used are attributed, it is possible to represent properties that qualify
the vertices and edges and enrich their representation. Here, the attributes considered should
include all pieces of information required by management procedures.

To identify these properties, a novel classification of query operators focusing on their re-
configuration capabilities was elaborated. Integrating a new operator into AGeCEP, therefore,
is simply equivalent to classifying it properly. Details of this classification are presented in
Section 4.3.

Use of ADAG as a language agnostic representation of CEP queries is a natural choice
corroborated by many studies in the literature. For instance, most CEP systems based on
imperative languages use (non-attributed) DAGs to represent user queries [1, 18, 117]. Systems
that use declarative languages, on the other hand, transform user queries into query plans to
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make them “executable”, which often leads to DAG-like structures (e.g. the STREAM system
and the CQL language [20]). Finally, systems based on pattern-based query languages may use
alternative representations that cannot be directly converted to DAGs. However, even in this
case, previous research [82] has shown that these queries can be converted to DAG structures
and consequently, to the AGeCEP representation. To demonstrate the generality of AGeCEP,
conversions from all three query language groups are further discussed in Section 4.4.1.

4.2.2 Modelling Reconfiguration Actions

In CEP systems, management procedures may act on di↵erent steps of the query lifecycle and
have various goals. In a broad sense, however, they all follow a similar structure in which: (i)
potential problems are detected; (ii) appropriate reconfiguration actions are selected; and (iii)
the selected actions are applied as a response.

In this structure, problem detection and action selection are mostly independent of the
chosen query representation. On the other hand, the representation and enforcement of recon-
figuration actions is heavily influenced by this choice. AGeCEP, therefore, also focuses on the
definition and representation of reconfiguration actions. These actions can be applied to recon-
figure queries and can be used by any procedure, including but not limited to self-management
policies. More precisely, because this research focuses on reconfiguration of queries modelled
by ADAGs, it is natural to represent the actions under consideration using a graph transforma-
tion formalism.

Such reconfigurations can be modelled formally, yet visually and intuitively by graph
rewriting rules. Graph rewriting is a well-studied technique [132] with multiple applica-
tions [124, 135], including self-management [47, 130]. In particular, a graph rewriting rule
formally specifies both a reconfiguration (i.e., its e↵ect) and the context in which it can be
applied (i.e., its applicability), enabling the study and establishment of guarantees of reconfig-
uration correctness [48, 81].

4.2.3 Discussion

In the context of self-management policies and autonomic computing, AGeCEP queries and
reconfiguration actions are part of the knowledge base (KB). Specifically, AGeCEP focuses
on representing “what and how it can be done” and not on the decision making process that
determines “what should be done”. The MAPE-K modules of an autonomic manager are
expected to use AGeCEP to implement their functions in conjunction with other information
available in the KB such as monitored events and inference rules.



4.3. Classification of CEP Operators 53

Classification

Behaviour

Complexity

Split

Operator Type

Merge

Processing

Sharing

Non-
shareable

Shareable

Sharing 
Strategy

Processing

Source

Duplication

Non-
duplicable

Duplicable

Combination

Non-
combinable

Combinable
Split type

Merge type

Selectivity

Less than 1

Equals 1

Greater 
than 1

Required 
Merge Type

Required Split 
Type

Query

Random

Attribute

Custom

Split Type

Sorted 
Union

Union

Custom

Merge Type

Merge-Split

Processing
+ Source

Multitenancy

Multitenant
aware

Non
Multitenant

aware

State 
Management

Stateless

Stateful

Figure 4.1: AGeCEP classification of operators.

In particular, it is expected that additional information will be present in the KB to model
the CEP system runtime environment. This information is also essential for QLM policies,
especially for the operator placement and runtime management steps.

Note that by limiting AGeCEP scope to queries and reconfiguration actions, it is possible
to integrate AGeCEP with existing models and techniques rather than forcing the adoption of
particular ones. By doing so, AGeCEP can be applied to a broader range of scenarios.

Section 5.1 discusses how existing representations and meta-models can be coupled with
AGeCEP to cover the whole MAPE-K loop and thereby implement a complete autonomic
manager.

4.3 Classification of CEP Operators

One underlying purpose of AGeCEP is to abstract queries and operators while expressing any
information relevant to their management. To achieve this goal, this section identifies a set
of criteria related to operator management and presents a novel classification of CEP query
operators focused on their reconfiguration capabilities.

This classification is at the core of AGeCEP approach to query reconfigurations. As it
will be discussed in Section 4.4, AGeCEP rewriting rules are applicable to virtually any set of
properly classified CEP operators.

Figure 4.1 presents an overview of the criteria on which the operators are classified. Each
criterion is detailed in the subsequent subsections.
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Figure 4.2: Operator types - examples.

4.3.1 Operator Type

The type criterion classifies operators according to the number of input and output streams.
There are four di↵erent categories in this criterion, illustrated in Figure 4.2:

• Processing: the operator has one input and one output stream only. These operators can
filter events from the input stream, transform them, or both.

• Merge: the operator has two or more input streams, which are processed together and
merged into one output stream.

• Split: the operator has one input stream, which is processed and split into two or more
output streams.

• Merge-Split: the operator has more than one input stream and more than one output
stream.

Merge operators are sub-classified according to the type of merge they execute:

• Union: input events are output as they arrive, with no ordering guarantees.

• Sorted union: input events are output sorted based on a specified set of attributes.

• Custom: a customized function defines how the input streams are merged.

Finally, split operators are also characterized based on the type of split they perform:

• Random: input events are sent to a randomly selected output stream.

• Attribute: the output stream is selected based on the values of a specified set of attributes.

• Query: input events are split according to the query from which they come. This can be
considered as a special type of attribute split in which the attribute under consideration
is the query id of the incoming event.

• Custom: a customized function defines how the input events are split.
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4.3.2 Sharing

The sharing criterion refers to the ability of a single runtime instance to be shared by two or
more occurrences of an operator. This characteristic is especially important for multi-query
optimization, in which the results of common query subgraphs are reused among queries.

This criterion is essentially determined by the operator implementation. An operator is
non-shareable if one runtime instance must be created for each operator occurrence. On the
other hand, an operator is shareable if a single runtime instance can implement more than one
occurrence. In this case, three sharing strategies are identified:

• Processing: one operator instance is shared among occurrences that execute the exact
same processing, but using di↵erent input streams as sources.

• Source: one operator instance is shared among occurrences that execute similar process-
ing using the same input streams as sources.

• Processing+Source: one operator instance is shared among occurrences that execute the
same processing on the exact same input streams.

Figure 4.3a informally illustrates an example of a processing shareable operator. In this
case, a single instance can be used to process both input streams sa and sb, as represented in
the right-hand part of the figure. This sharing is possible because the same filter (loc = 1 or 2)
is applied to both streams. Moreover, note that the operator implementation must keep track of
the event sources to send the results to the correct output stream. This type of sharing is usually
applied when an operator instance consumes a lot of memory, and it is therefore important to
create as few instances as possible.

In the example from Figure 4.3b, the filter operator is source shareable. In this case, both
filter occurrences process the same input stream sa and have predicates over the attribute loc.
The resulting filter instance implements both predicates and maintains the outputs of each
original operator. This type of sharing is applied when it is more e�cient to implement multiple
processing logics as a single operation than it is to implement these logics independently. For
instance, the predicate indexing technique presented by Madden et al. [109] enables source
shareable filters.

Finally, in Figure 4.3c the filter operator is assumed to be processing+source shareable.
In this example, the exact same data processing is executed on the same input stream, and
therefore only a single instance is necessary. However, the operator must duplicate all output
events and send them to all original output streams. This type of sharing enables savings in
both memory and CPU consumption and is the most commonly used by CEP systems.
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In addition to their sharing strategy, shareable operators can also be categorized according
to their multi-tenancy support:

• Multitenant-aware: the operator can be shared by queries from di↵erent tenants.

• Non-multitenant-aware: the operator can be shared only among queries from the same
tenant.

This criterion is important in the CEPaaS scenario because the system is used by many
customers at the same time. In this case, a multitenant-aware operator needs to guarantee that
customer-related state is kept isolated and that its implementation is independent of customer-
specific data. If these conditions are satisfied, the operator can be shared among queries from
di↵erent tenants according to the sharing strategy criterion.

4.3.3 Duplication

A common strategy used to increase operator throughput is to create more than one instance of
the operator, assign them to di↵erent servers (or cores), and split the input events among these
instances. This strategy is illustrated in Figure 4.4.

Because of the prevalence of this strategy, the proposed classification contains a duplicable
criterion, which is true when the operator can be duplicated and the processing load distributed
according to the described strategy. Moreover, when an operator is duplicable, two other as-
pects must be considered: the required split type, and the required merge type. These two
criteria determine the type of split (merge) operator that precedes (succeeds) the duplicated
operator. The possible split (merge) types are the ones defined in Section 4.3.1.

The required split and required merge types are ultimately defined by the duplicated op-
erator implementation. Generally speaking, stateless operators can be duplicated and accept
random splits because each event is processed in isolation. Conversely, stateful operators usu-
ally require attribute splits because they process together events with similar characteristics
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Figure 4.5: Combination strategy.

(same attribute values). The query split is a less common strategy that is used mostly by pro-
cessing shareable operators that are also duplicable.

Moreover, note that operators requiring random splits can actually be preceded by any type
of split. In this sense, a random split is considered weaker than the others because it imposes
fewer constraints on how the split should be done.

Finally, note that a sorted union merge type is needed in scenarios in which the output
stream must be kept ordered after duplication. For example, in Figure 4.4, there is no guarantee
that the events will reach the merge operator om in the same order they reached the split os. If
order needs to be maintained, then the operator om must be a sorted union.

4.3.4 Combination

The combinable criterion is true when two or more consecutive occurrences of an operator
o can be combined into a single operator oc, whose e↵ect is equivalent to applying all the
combined operators in any order. Figure 4.5 illustrates this criterion applied to a filter operator.
It is clear that two consecutive filters using di↵erent predicates can be combined into a single
filter with a new predicate defined as the conjunction of the original predicates.

In most cases, the combined operators oi and the equivalent one oc have the same imple-
mentation. In other cases, oc is di↵erent. For example, two binary joins may be combined as a
multiple join operator, which usually has a di↵erent implementation than the binary operator.
Hence, the implementer of a combinable operator o has the responsibility to provide:

• the implementation of operator oc resulting from the combination of o instances.

• a function that, given the parameters of successive instances of o, returns the parameters
of the equivalent combined operator oc.

This criterion is especially useful for SQO, in which operators can be combined to reduce
the number of operators in a query.
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4.3.5 Behaviour

This category groups the characteristics of an operator related to its functional behaviour. More
specifically, operators are classified according to three criteria:

• Complexity: refers to the computational complexity of an operator as a function of the
size of the input streams.

• State Management: indicates whether the operator is stateless or stateful. A stateless
operator processes each event in isolation, whereas a stateful one maintains internal state
that is regularly updated with the arrival of new events.

• Selectivity: refers to the relation between the number of output and input events. An
operator selectivity less than one means that the number of output events is less than the
number of input events, whereas a selectivity greater than one implies that the number of
output events is larger than the number of input events.

4.3.6 Discussion

The classification presented in this section has been created based on an extensive literature
review of query lifecycle management research. It focuses on intrinsic reconfiguration ca-
pabilities of query operators that are crucial to establish how they can be reconfigured. As
demonstrated in Section 5.3, these properties enable the expression of a myriad of di↵erent
procedures in the context of CEP systems.

Nevertheless, it is expected that not all properties required by current and future systems are
expressed in this classification. For this reason, the classification can be easily extended with
other criteria as needed. In addition, extrinsic operator properties, such as runtime information,
are not part of the classification because they are too numerous and tightly coupled to the
management procedures that use them. Section 4.4.1 discusses how new criteria and attributes
are handled in AGeCEP.

4.4 Representation of Queries and Reconfigurations

AGeCEP provides graph-based models to represent two fundamental aspects of dynamic CEP
systems: the system state, which is primarily defined by the running queries; and possible re-
configurations of this state, given by a set of reconfiguration actions. The following subsections
detail both models.
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4.4.1 Query Representation Using ADAGs

In AGeCEP, each user-defined query q is represented by an attributed directed acyclic graph
G. Because the graph is attributed, the vertices and edges are augmented with a set of attributes
that qualify them. Formally, such an attributed graph can be specified by a triple (V, E, ATT ),
where:

• the vertices V represent the query elements,

• the edges E represent event streams flowing from one element to another,

• and ATT is a family of attribute sets indexed by V [ E.

Formally, each set of the family ATT is defined as a sequence of triples (N, L,T ), where N, L,
and T are the attribute name, value, and type (i.e., domain) respectively.

To represent the types of elements and interactions that may be involved in a CEP system,
AGeCEP also defines stereotypes for the vertices and edges of a query graph. Each stereotype
specifies a set of attributes that are common to elements of that specific stereotype.

Vertex Attributes

The vertices from a query graph G = (V, E, ATT ) can represent event producers, event con-
sumers, or query operators, denoted as Vp, Vc and Vo respectively. Vp, Vc and Vo specify a
partition of V , i.e., all sets are disjoint subsets of V , and their union is V .

Query operators all belong to the same stereotype and therefore share the same list of at-
tributes depicted in Table 4.1. The nature of these attributes is directly related to the properties
considered relevant for defining self-management policies, which were identified in the classi-
fication presented in Section 4.3. As mentioned, this classification is extensible and new criteria
can be added as needed. In this case, the new criteria translate directly to new attributes, and
the possible values for the criteria correspond to the attributes domain.

Event producers and consumers also define their own stereotypes, which contain the first
five attributes of the operator stereotype: id, impl, params, inDegree, and outDegree. Event
producers (consumers) necessarily have an inDegree (outDegree) equal to 0.

Edge Attributes

AGeCEP uses a single stereotype for edges. The attributes of this stereotype are described in
Table 4.2. Note that except for id, all edge attributes can be inferred from the graph structure
and vertex attributes. Similarly, the inDegree and outDegree of a vertex can also be inferred
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Name Type Description

id String a unique identifier
impl String the operator implementation name

params List of Strings the operator parameters
inDegree N the number of incoming edges

outDegree N the number of outgoing edges

type {“processing”, “merge”, “split”, “merge-split”} operator type
mergeType {“union”, “sorted”, “custom”, “N/A”} if type =“merge”, the merge type
splitType {“random”, “attribute”, “query”, “custom”, “N/A”} if type =“split”, the split type

shareable Boolean Is the operator shareable?
shS trategy {“processing”, “source”, “proc+source”, “N/A”} if shareable, the sharing strategy
multitenant Boolean and the multitenant awareness

combinable Boolean Is the operator combinable?
combImpl String if combinable, the combined operator oc’s impl. name

combParam fun: List of List of strings! List of strings and oc’s parameters function

duplicable Boolean Is the operator duplicable?
reqMerge {“union”, “sorted”, “custom”, “N/A”} if duplicable, the succeeding mergeType
reqS plit {“random”, “attribute”, “query”, “custom”, “N/A” } and the preceding splitType

state f ul Boolean Is the operator stateful?
selectivity {“1”, “< 1”, “> 1” } the operator selectivity
complexity {“logn”, “n logn”, “n”, “n2”, “exp” } the operator complexity

Table 4.1: Attributes of the vertex stereotype “operator”.

Name Type Description

id String a unique identifier
sources the power set of Vp producers of events flowing through the edge
queries List of Strings the set of queries that share the edge

attrs List of Strings name of attributes according to which the events in the edge are grouped

Table 4.2: Edge attributes.

from the graph. Nevertheless, they are maintained as attributes to simplify the definition and
implementation of reconfiguration actions.

Furthermore, it should be emphasized that neither vertex nor edge attributes are closed sets
and can be extended whenever necessary. In particular, extrinsic properties such as operator
placement and runtime information can also be modelled as vertex and edge attributes.

Example: AGeCEP Query Representation

Figure 4.6 shows two queries q1 and q2 using the AGeCEP representation. To simplify the
figure, some attributes have been omitted; only attributes relevant to the experiments in Sec-
tion 5.4 are included. The notation hhopii specifies that the vertex is of the operator stereotype,
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<<op>>
id=“j1”

impl=“json_parser”
type=“processing”
combinable=“false”
duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<prod>>
id=“p1”

impl=“kafka”

<<cons>>
id=“c1”

impl=“service”

<<op>>
id=“f1”

impl=“filter”
type=“processing”
combinable=“true”

duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<op>>
id=“f2”

impl=“filter”
type=“processing”
combinable=“true”

duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<op>>
id=“xml1”

impl=“xml_conv”
type=“processing”
combinable=“false”
duplicable=“false”

id=“e1” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e2” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e3” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e4” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e5” 
sources={“p1”}
queries={“q1”}
attrs=∅

(a) Query q1 - Sequential version.

<<op>>
id=“j1”

impl=“json_parser”
type=“processing”
combinable=“false”
duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<prod>>
id=“p1”

impl=“kafka”
<<cons>>
id=“c1”

impl=“service”

<<op>>
id=“f12_1”
impl=“filter”

type=“processing”
combinable=“true”
duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<op>>
id=“f12_2”
impl=“filter”

type=“processing”
combinable=“true”
duplicable=“true”
reqSplit=“random”
reqMerge=“union”

<<op>>
id=“xml1”

impl=“xml_conv”
type=“merge”

mergeType=“custom”
combinable=“false”
duplicable=“false”<<prod>>

id=“p2”
impl=“kafka”

<<op>>
id=“fSplit”

impl=“split_random”
type=“split”

splitType=“random”

id=“e1” 
sources={“p1”}
queries={“q2”}
attrs=∅

id=“e2” 
sources={“p2”}
queries={“q2”}
attrs=∅

id=“e3” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

id=“e4” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

id=“e5” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

id=“e6” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

id=“e7” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

id=“e8” 
sources={“p1”, “p2”}
queries={“q2”}
attrs=∅

(b) Query q2 - Duplicated filtering.

Figure 4.6: JSON to XML conversion - Storm queries.

whereas hhprodii and hhconsii qualify an event producer or an event consumer. These queries
have been extracted from the Powersmiths’ WOW system [127], a sustainability management
platform that uses live measurements of buildings to support energy management and educa-
tion. In WOW, queries are implemented in Apache Storm [18] and are used to process readings
coming from building sensors managed by the platform. The conversion from Storm queries
to AGeCEP is straightforward because Storm also represents queries using DAGs.

Query q1 in Figure 4.6a is used to convert sensor readings from the JSON format to the
native WOW format (XML). The query is implemented as a sequence of four operators: first,
operator j1 converts the JSON reading to a Java object. Next, filters f1 and f2 remove in-
valid readings from the event stream. Finally, operator xml1 converts the reading to an XML
document and forwards it to the appropriate service.

Query q2 in Figure 4.6b is used for the same purpose, but has a di↵erent structure. First,
two producers are attached to the JSON parser operator j1. Following, j1 connects to a split
operator, which distributes the incoming events randomly between two instances of operator
f12. Each instance of f12 executes a processing (filtering) logic equivalent to the sequential
application of f1 and f2. In particular, for this graph, the fact that the operators process events
coming from both producers p1 and p2 is reflected in the sources attributes of edges e3 to e8.

To provide further illustration of edge attributes, additional examples are shown in Fig-
ure 4.7. In Figure 4.7a, the attribute sources of edge e1 indicates that s1 processes events
coming from producers p1 and p2. The attribute attrs of edges e2 and e3, on the other hand,
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<<op>>
id=“s1”

impl=“attrSplit”
params={“eventId”}

inDegree=1
outDegree=2
type=“split” 

splitType=“attribute”

id=“e1”
sources={“p1”, “p2”}
queries={“q1”}
attrs=∅

id=“e2”
sources={“p1”, “p2”}
queries={“q1”}
attrs={“eventId”}

id=“e3”
sources={“p1”, “p2”}
queries={“q1”}
attrs={“eventId”}

(a) attrs attribute.

<<op>>
id=“f1”

impl=“filter” 
params={“...”}

type=“processing”
shareable=“true”

shStrategy=“source”

<<prod>>
id=“p1”

impl=“Twitter”

id=“e1”
sources={“p1”}
queries={“q1”, “q2”}
attrs=∅

id=“e2”
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e3” 
sources={“p1”}
queries={“q2”}
attrs=∅

(b) queries attribute.

Figure 4.7: Additional examples of edge attributes.

shows that operator s1 splits the input events according to the eventId attribute.
Moreover, in the scenario depicted in Figure 4.7b, the queries attribute of edge e1 indicates

that p1 is an event producer shared between queries q1 and q2. Operator f1, in its turn, is a
shareable operator that produces a separate output stream for each query.

Example: Converting from Declarative Languages

Figure 4.8 exemplifies how queries written in the CQL language [20] are converted to the
ADAG format used in AGeCEP. The original queries q1 and q2 are shown in Figure 4.8a. As
it is common in declarative query languages, CQL queries are transformed into a graph-based
execution plan before being actually run. Figure 4.8b depicts the resulting plan for q1 and q2.
Both queries were processed together and transformed into a single plan.

From this plan, the conversion to the AGeCEP representation is direct: operators and queues
are mapped to vertices and edges respectively. The resulting ADAG is shown in Figure 4.8c.
Note that the graph expresses most information presented in the query plan, including the fact
that the seq window operator can be shared among queries that process the same input sources.

Example: Converting from Pattern-Based Languages

Figure 4.9 shows the conversion from a Cayuga Event Language (CEL) [44] query to AGeCEP.
CEL is a pattern-based language, even though it uses keywords that are similar to SQL. For
instance, CEL applies the operator NEXT to search for a sequence of two events that satisfy
a stated condition. This construct is characteristic of this language group. Other pattern-based
operators, such as iteration (operator FOLD) and parameterization, are also part of CEL.

In Cayuga, queries are transformed into a non-deterministic finite state automaton to be
executed. Figure 4.9a shows a query q and its corresponding automaton. Transitions between



64 Chapter 4. Attributed Graph Rewriting for CEP Management - Concepts

Q1: Select B, max(A) 
    From S1 [Rows 50,000]
    Group By B

Q2: Select Istream(*)
    From S1 [Rows 40,000],
         S2 [Range 600 Seconds]
    Where S1.A = S2.A

(a) CQL queries [20]. (b) Generated execution plan [20].

<<op>>
id=“w1”

impl=“seq_window”
type=“processing”
combinable=“false”
duplicable=“false”

shStrategy=“source”
shareable=“true”

<<prod>>
id=“s1”

<<cons>>
id=“c1”

id=“q1” 
sources={“s1”}
queries={“q1”, “q2”}
attrs=∅

id=“q3” 
sources={“s1”}
queries={“q1”}
attrs=∅

<<prod>>
id=“s2”

<<op>>
id=“w2”

impl=“seq_window”
type=“processing”
combinable=“false”
duplicable=“false”

shStrategy=“source”
shareable=“true”

<<op>>
id=“j1”

impl=“bin_join”
type=“merge”

mergeType=“custom”
combinable=“false”
duplicable=“false”

<<cons>>
id=“c2”

<<op>>
id=“i1”

impl=“i_stream”
type=“processing”
combinable=“false”
duplicable=“false”

<<op>>
id=“a1”

impl=“aggregate”
type=“processing”
combinable=“false”
duplicable=“false”

id=“q2” 
sources={“s2”}
queries={“q2”}
attrs=∅

id=“q5” 
sources={“s2”}
queries={“q2”}
attrs=∅

id=“q7” 
sources={“s1”, “s2”}
queries={“q2”}
attrs=∅

id=“q8” 
sources={“s1”, “s2”}
queries={“q2”}
attrs=∅

id=“q6” 
sources={“s1”}
queries={“q1”}
attrs=∅

id=“q4” 
sources={“s1”}
queries={“q2”}
attrs=∅

(c) AGeCEP representation.

Figure 4.8: Conversion from a CQL query to AGeCEP.
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Q: Select Price_1 As IBMPrice1, Price as IBMPrice2
   From (Filter{Name = 'IBM'  And Price > 83}(Stock))
           NEXT{$2.Price > $1.Price}
        (Filter{Name = 'IBM'}(Stock))

Name='IBM' && Price > 83

Name=‘IBM'

$2.Price > $1.Price

Price_1 -> IBMPrice1
Price -> IBMPrice2

Q0
Q1 Q2

(a) Cayuga query [44].

σ1

Stock

;θ

σ2

π1

(b) Cayuga execution plan.

<<op>>
id=“f1”

impl=“filter”
params=“Name=‘IBM’ 

&& Price > 83”
type=“processing”
combinable=“true”
duplicable=“true”

<<prod>>
id=“stock”

id=“e1” 
sources={“stock”}
queries={“q1”}
attrs=∅

<<op>>
id=“n1”

impl=“next”
type=“merge”

mergeType=“custom”
combinable=“false”
duplicable=“false”

id=“e4”
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e3” 
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e2” 
sources={“stock”}
queries={“q1”}
attrs=∅

<<op>>
id=“f2”

impl=“filter”
params=“$2.Price > 

$1.Price”
type=“processing”
combinable=“true”
duplicable=“true”

<<op>>
id=“p1”

impl=“projection”
params=“Price_1, Price”

type=“processing”
combinable=“true”
duplicable=“true”

<<cons>>
id=“c2”

id=“e5” 
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e6” 
sources={“stock”}
queries={“q1”}
attrs=∅

(c) AGeCEP representation.

Figure 4.9: Conversion from a Cayuga query to AGeCEP.

states of this automaton are triggered when the conditions in the edges are satisfied. More-
over, when a transition is triggered, a function is executed to map events from one schema to
another. Even though this automaton can be represented as a graph, its semantic is di↵erent
from AGeCEP queries. For instance, the automaton states (vertices) are associated with input
streams, whereas in AGeCEP vertices represent operators.

Hong et al. [82] presented a procedure to convert Cayuga automata to graph-based exe-
cution plans. Basically, they introduced two new query operators that implement the NEXT
and FOLD logics and a procedure to convert edge transitions to a sequence of a filter followed
by a projection. The execution plan for the example query is depicted in Figure 4.9b. Once
transformed to a graph-based execution plan, the conversion to AGeCEP is direct and results
in the ADAG shown in Figure 4.9c.

Discussion

The AGeCEP query representation has been designed to be as generic as possible. Most
queries written in imperative and declarative languages can be converted directly to an AGe-
CEP ADAG. Pattern-based languages, on the other hand, require additional procedures for
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conversion, such as the one presented by Hong et al. [82] and demonstrated in the previous
example. These additional procedures are needed because most pattern-based languages are
executed as automata that do not follow AGeCEP graph-based model. In other words, there is
a semantic mismatch between the models that must be solved before using AGeCEP to repre-
sent pattern-based queries .

Nevertheless, such mismatch should be solvable in most cases. For instance, Hong et
al. [82] mentioned that the Sase language [150] could be transformed to a graph-based execu-
tion plan using a procedure similar to that used to transform CEL queries. Similar procedures
could also be applied to TESLA [40]. The development of such procedures, however, is outside
the scope of this research and may need to be analyzed case by case.

4.4.2 Query Reconfiguration Using Graph Rewriting

In AGeCEP, query reconfigurations are formally expressed in a rule-oriented fashion using
graph rewriting rules.

Various ways of specifying graph rewriting rules have been developed in the past [132].
This research uses the graphical representation and underlying formalism of the AGG2

tool [143], a well-established graph transformation environment [136]. AGG is based on the
Single Push-Out (SPO) approach [45, 104].

Graph Rewriting Rules

The SPO approach is an algebraic technique for graph rewriting based on the category the-
ory [22], where a rule r is specified by L

m�! R, where:

• L and R are attributed graphs called the left-hand and right-hand sides of r.

• m is a partial morphism from L to R, i.e., a morphism from a sub-graph Lm of L to R.
This morphism is not necessarily injective.

A rule r : L
m�! R is applicable to a graph G if G contains an image of L, i.e., if there is

a homomorphism h from L to G. Such homomorphism is denoted as h : L ! G. Also, the
notation h(Gs) is used to denote the image of some subgraph Gs of G by the morphism h. The
application of r to G with regard to h consists of constructing the push-out [22] of m and h, as
illustrated in Figure 4.10. The result of this application is the graph mh(G).

Informally, the application of r to G with regard to h consists of replacing the image of L
in G by an image of R. This can be understood as a three step process:

2http://user.cs.tu-berlin.de/˜gragra/agg/index.html
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m

mh

L R

G m (G)h

h hm(push-out)

Figure 4.10: Construction of a push-out: application of a graph rewriting rule.

1. erasing the image by h of the part of L that is not in m’s domain, h(L\Lm).

2. adding an isomorphic copy of the part of R that is not in the image of m (a copy of
R\m(Lm)).

3. if m is not injective, i.e., if some vertices vi of L have the same image by m, then the
images of these vi by h are merged.

For the rest of this thesis, morphisms m of the introduced rules may not be explicitly shown.
Such morphisms are implicitly defined as the identity mapping between the largest common
sub-graphs of L and R, where vertices and edges are uniquely identified by their id.

The application of a rule r to a graph G is illustrated in Figure 4.11. The rule r and its
corresponding left- and right-hand sides (L,R) are depicted in Figure 4.11a. In this rule, the
morphism m from L to R is implicit and defined by the identity mapping, as described in the
previous paragraph. The highlighted nodes in L and R correspond to Lm and m(Lm) respectively.

The target graph is presented in Figure 4.11b, and the steps required to apply the rule are
shown in Figures 4.11c to 4.11e. First, a homomorphism h : L ! G is found. Next, h(L\Lm)
is removed from G, followed by the addition of an isomorphic copy of R\m(Lm). The rule has
the e↵ect of suppressing the nodes with id equal to 2 and 3 and connecting directly the nodes
with id 1 and 4.

Rewriting Rules and Attributes in AGeCEP

Vertices and edges appearing on the left- and right-hand side of AGeCEP rules are analogous
to those appearing in queries: operators, event producers or consumers, and event streams.
Hence, they can also be classified according to the stereotypes described in Section 4.4.1.

One of the main di↵erences is that attributes appearing in a rule may be defined as:

• fixed value. Fixing an attribute value in L means that the corresponding attribute in the
image by h should have the same value. A fixed value is either a parameter of the rule or
a constant written between quotes.
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id=“2”

L R

id=“1”

id=“3”

id=“4”

id=id1 id=id4id=“e1”

id=“e2”

id=“e3”

(a) Graph rewriting rule r.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(b) Target graph G.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(c) Homomorphism h : L !
G.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(d) Erasing h(L\Lm).

id=“1” id=“4”

... ...

(e) Adding an isomorphic copy
of (R\m(Lm)).

Figure 4.11: Illustration of a graph rewriting rule r and its application.

• non-fixed value. If an attribute value is not fixed in L, the corresponding attribute in
the image by h can have any value. Non-fixed valued attributes are omitted in the rule
definition.

• variable. If an attribute is associated with a variable in L, the variable is bound to the
value of the corresponding attribute in the image by h. If the variable appears more than
once in L, all its occurrences must bind to the same value; otherwise, the rule is not
applicable. A variable that appears in L can also appear in R. In this case, the variable in
R is replaced with its bound value.

• operations. Attributes may be associated with simple operations in R (typically incre-
ment or decrement of values). These operations are applied along with the rule.

Mutators: Extending Rewriting Rules with Actions on the Real System

Mutators were first introduced as a lightweight method for handling attribute changes [48].
They were described as arbitrary algorithms updating the value(s) of none, one or some at-
tributes. Any rewriting rule could be enriched with a set of mutators which were executed at
the end of its application phase.

Later on, a new kind of mutator was introduced [46] to describe actions on real systems,
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typically through method or API calls. Such mutators are called external as opposed to internal
mutators that act only on the model.

In AGeCEP, graph rewriting rules are specified as a couple (L
m�! R, ACTS ), each rule

being enriched with a set ACTS of external mutators µ that enforce model changes on the real
system through API calls.

Correctness of Rewriting Rules in AGeCEP

In dynamic systems, a crucial undesirable implication is a potential loss of correctness resulting
from system adaptations.

In AGeCEP, the correctness of a reconfiguration is linked to the reconfiguration capabilities
of the a↵ected operators: a rule describing a reconfiguration should be applied only to operators
with the proper capabilities (e.g., duplication should be applied to duplicable operators). This
is guaranteed by fixing the value of the corresponding attributes on the left-hand side of a rule.
Therefore, a properly classified operator can be safely reconfigured using the defined rules.

Examples

Figure 4.12 illustrates a graph-rewriting rule Pcomb whose goal is to combine a sequence of two
query operators into a single new operator. This rule is part of the operator combination policy,
which will be detailed in Section 5.3.1.

The left-hand side of the rule encodes all necessary conditions that operators must satisfy
to enable the combination:

1. the output of o1 is exactly the input of o2 i.e.:

(a) they are directly connected, as represented by the edge (o1, o2), and

(b) o1(outDegree) = “1” and o2(inDegree) = “1”;

2. they are combinable with each other, i.e.:

(a) they are combinable, that is, o1(combinable) =“true” and o2(combinable) =“true”,
and

(b) they have the same implementation, as represented by the attribute impl of both
operators o1 and o2 in L being associated to the same variable op impl.

The right-hand side of the rule describes the result of a combination. It consists of de-
ploying a new operator whose impl is determined by the combImpl attribute of the combined
operators, and whose parameters are calculated using the function combParam applied to
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RL

<<op>>
id=id1

impl=op_impl
params=p1

combImpl=opc_impl
combParam=“f”
inDegree=in
outDegree=“1”

combinable=“true”
type=“processing”

<<op>>
id=id2

impl=op_impl
params=p2

combImpl=opc_impl
compParam=“f”
inDegree=“1”
outDegree=out

combinable=“true”
type=“processing”

o1 o2

<<op>>
id=op_idc

impl=opc_impl
params=f(p1, p2)

inDegree=in
outDegree=out
type=“processing”

oco  ,o  :1 2

Figure 4.12: Combination of two combinable successive operators Pcomb.

<<op>>
id=“j1”

name=“json_parser”
type=“processing”
combinable=“false”
duplicable=“true”

requiredSplit=“random”
requiredMerge=“union”

<<prod>>
id=“p1”

impl=“kafka”

<<cons>>
id=“c1”

impl=“service”

<<op>>
id=“f12”

name=“filter”
type=“processing”
combinable=“true”
duplicable=“true”

requiredSplit=“random”
requiredMerge=“union”

<<op>>
id=“xml1”

name=“xml_conv”
type=“processing”
combinable=“false”
duplicable=“false”

id=“e1” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e2” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e4” 
sources={“p1”}
queries={“q1”}
attrs=∅

id=“e5” 
sources={“p1”}
queries={“q1”}
attrs=∅

Figure 4.13: Query q1 - optimized version.

o1(params) and o2(params). The rule morphism is not injective and associates both o1 and
o2 with oc. This means that oc is not, strictly speaking, a new operator, but rather the result of
merging o1 and o2. As a result, oc has the inputs of o1 and outputs of o2.

The result of applying this rule to query q1 from Figure 4.6a is shown in Figure 4.13.

4.5 Summary

This chapter has introduced the concepts of the Attributed Graph Rewriting for Complex Event
Processing Management (AGeCEP) formalism. This formalism was developed to overcome
the fragmentation of current CEP research and development landscape. AGeCEP proposes a
language-agnostic abstraction of CEP queries and a formalism to manipulate them, enabling
definition of self-management policies that can be integrated into potentially any CEP system.

AGeCEP represents CEP queries using attributed directed acyclic graphs (ADAG), a pow-
erful abstract representation to which di↵erent query definition languages can be converted. In
AGeCEP, query vertices and edges have a standardized set of attributes that encode informa-
tion relevant to self-management. These standard attributes are based on a novel classification
of CEP operators that focuses on their reconfiguration capabilities and also constitutes a major
contribution of this research.

Self-management policies may ultimately trigger the execution of system reconfigura-
tions. AGeCEP formalizes reconfigurations of queries using graph rewriting rules. Notably,
a graph rewriting rule formally specifies both a reconfiguration and the context in which it
can be applied, enabling specification of consistent reconfigurations that guarantee internal
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self-protection. Moreover, AGeCEP graph rewriting rules are enriched with mutators, which
associate API calls with the application of a rule and guarantees that model changes are also
applied in the real system.

The next chapter focuses on practical aspects of using AGeCEP and evaluates it regarding
both its expressiveness and performance.



Chapter 5

Attributed Graph Rewriting for CEP
Management - Evaluation

This chapter presents a thorough evaluation of the AGeCEP formalism. First, Section 5.1 de-
scribes the design of an autonomic manager based on AGeCEP representations of queries and
reconfiguration actions. Next, Sections 5.2 and 5.3 assess AGeCEP expressiveness by using it
to express generic operator placement procedures and a selected set of self-management poli-
cies. Finally, Section 5.4 evaluates the performance of rewriting rules applied to reconfigure
CEP queries. By considering both expressiveness and performance, it is shown that AGeCEP
can indeed be used as formal foundation of the CEPaaS system.

5.1 AGeCEP-Based Autonomic Manager

This section presents the design of an AGeCEP-based autonomic manager. The focus is not
on implementation details, but on how existing approaches can be integrated with AGeCEP to
tackle the whole MAPE-K1 loop and thus implement a complete autonomic manager for CEP
systems.

The presented design uses FRAMESELF [7], a framework that aims to enable implemen-
tation of autonomic managers that rely on the MAPE-K loop. In particular, FRAMESELF
provides meta-models and mechanisms for implementing inference rules and communication
between modules.

1Monitor, Analyze, Plan, Execute - Knowledge

72
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<<server>>
id=s1

ram=4096
cpus=2

ip=“192.168.0.1”
———

mem_usage=2512
load = 0.34

<<server>>
id=s2

ram=8192
cpus=4

ip=“192.168.0.2”
———

mem_usage=7504
load = 0.12

<<server>>
id=s3

ram=8192
cpus=4

ip=“192.168.0.3”
———

mem_usage=5104
load = 0.55

id=“c1”
———
latency=210

id=“c2”
———
latency=128

id=“c3” 
———
latency=97

Figure 5.1: Runtime environment representation.

5.1.1 Runtime Environment Representation

Modelling the runtime environment is an important aspect of CEP systems that is mostly deter-
mined by the operator placement strategy used. Previous research has traditionally represented
queries and the runtime environment as graphs [3, 97]. For the AGeCEP-based autonomic
manager presented in this section, a similar approach has been used: AGeCEP queries are ex-
tended with attributes that are relevant for placement decisions, and the runtime environment
is modelled as an (undirected, potentially cyclic) attributed graph.

Figure 5.1 shows an attributed graph that represents a runtime environment composed of
three servers. In the graph, vertices and edges represent computational resources and logical
connections between them respectively. The vertices contain intrinsic attributes that model
server characteristics such as the number of CPUs, total RAM, and a unique IP address. Ver-
tices and edges are also augmented with attributes representing runtime information such as
actual CPU load and memory usage. These attributes are important for decision making and
must be updated when the corresponding monitoring information is available.

By using this environment representation and the AGeCEP query model, the placement of
an operator into a server can be represented using two approaches: as an operator attribute
whose value contains a unique server identifier, or as an edge connecting the operator to the
server. For the remainder of this thesis, the first approach is assumed. Operator placement
procedures are further discussed in Section 5.2.

5.1.2 MAPE Modules

The following subsections discuss how the AGeCEP formalism is used by each module of the
MAPE-K loop in the AGeCEP-based autonomic manager.
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Type Event Description

Runtime QueueS ize(o, n) Queue from operator o has size n
CPULoad(s, l) CPU load from server s has value l

User NewQuery(q) New query q was created
NewQueries(Q) Set of queries Q was created

Manager Duplicated(o, q) Operator o from query q was duplicated

Table 5.1: Monitored events.

Monitor: Receiving Events

To implement the monitor module, it is assumed that the runtime environment and user queries
are instrumented to publish monitoring events to the autonomic manager. As an alternative, a
specialized monitoring module can poll the system for monitoring data and forward them to
the manager on behalf of system components. Moreover, it is expected that events representing
user interaction with the system, such as creation of new queries, will also be made available
to the manager.

Once the manager receives monitoring events, it updates the query and environment models
that are stored in the KB and continues to execute the MAPE-K loop. Note that more advanced
architectures with multiple distributed managers can also be implemented, but are outside the
scope of this research.

Table 5.1 shows common monitored events used by CEP systems. They are coarsely clas-
sified into three groups: events generated by the runtime environment, including user queries;
events initiated by the user; and events generated by the autonomic manager.

Note that instead of trying to enumerate all possible events, the table only includes events
used by the self-management policies from Section 5.3. This decision is aligned with AGeCEP
extensible and generic nature: the monitoring data that CEP systems must provide are tightly
linked to the placement procedures and self-management policies implemented by the auto-
nomic manager. Therefore, defining a fixed set of monitoring events would restrict the scope
of policies that can be implemented. Instead, AGeCEP allows policies to define the events they
need. Analogously to how rule mutators establish a contract that CEP systems must implement,
the events required by a policy define a contract of events CEP systems must provide.
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Monitor, Analyze, and Plan: Inference Rules

Inference rules are central to the monitor, analyze, and plan modules of the MAPE-K loop. In
general, these rules are used to infer new information based on the KB and on freshly received
information.

In the monitor module, the events received by the autonomic manager are processed by
inference rules to infer symptoms. The analysis module uses these symptoms along with the
AGeCEP query and environment models that are stored in the KB to generate Request for
Changes (RFC). Finally, in the plan module, the RFCs and the KB models are used by another
set of rules to create Change Plans (CP).

In the FRAMESELF framework, inference rules are implemented by inference engines
such as Jess [90] and JBoss Drools [89]. This research used JBoss Drools. Symptoms, RFCs,
and CPs are represented as plain Java objects that are exchanged between the MAPE-K mod-
ules.

Execute

The execute module is in charge of carrying out the CPs that it receives. In the AGeCEP-
based autonomic manager, a CP is simply a sequence of reconfiguration actions modelled by
graph rewriting rules that are associated with a set of side-e↵ect mutators. The execute module
enforces each reconfiguration of the CP in two steps: (1) applying the graph rewriting rule to
update the models; and (2) executing its associated mutators to update the real system.

In practice, a mutator is an API call that must be implemented by the CEP system being
managed. Accordingly, for the feasibility studies presented in this chapter, a minimal API has
been defined as follows:

• startOperator(o,m): deploys and starts an operator o in server m;

• stopOperator(o): stops and deletes an operator o;

• connect(o1, o2): creates a connection between operators o1 and o2;

• disconnect(o1, o2): removes a connection between operators o1 and o2;

• redirect(o1, o2): redirects all o1 input (output) streams to input (output) o2;

• migrate(o, s1, s2): migrates an operator o from server s1 to server s2.
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5.2 Feasibility: Operator Placement

This section discusses placement in the AGeCEP context. As mentioned in Section 2.1.5, oper-
ator placement procedures are used to determine the global initial placement of all queries, to
decide on the placement of a new query or of new operators, or to adjust the current placement
dynamically. In particular, placement can be used by management procedures that may require
placement decisions (e.g., whenever a new operator is deployed).

5.2.1 General Principle

Independently of the goal and of the algorithm used, operator placement procedures can usually
be described by a general framework composed of three steps:

1. Metrics from the operators and servers are collected to build a snapshot of the current
system status. These metrics are usually directly available, for example in the case of
operator queue sizes and server CPU load, but occasionally they need to be estimated by
specialized components that run concurrently with the system. For instance, in Pietzuch
et al. [126], each server communicates with its neighbours to estimate its coordinates in a
latency space. In the case of dynamic placement adjustments, these metrics are also used
to trigger procedure execution. For example, in Heinze et al. [70], dynamic adjustment
is triggered when an overloaded server is detected.

2. Using the collected data as input, an algorithm is executed to find the new placement.
Because the general operator placement problem is NP-hard [97], these algorithms are
usually heuristics that aim to maximize or minimize a utility function estimated from the
collected metrics. For instance, Pietzuch et al. [126] aimed to minimize network usage,
whereas Xing et al. [151] tried to maximize load correlation among servers.

3. The results of the algorithm are applied. If a placement has been calculated for new
queries or operators, then they are created in the appropriate servers. Conversely, if a
dynamic adjustment is being performed, then the operators that have changed allocation
are migrated to their new servers.

It is argued here that most operator placement procedures can be expressed using the AGe-
CEP formalism and integrated into the AGeCEP-based autonomic manager by adapting them
as follows:

1. The query and runtime environment representations are augmented with attributes cor-
responding to the monitored metrics. The metrics are collected using the same mecha-
nisms as before and are sent to the autonomic manager, which updates the corresponding
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attributes upon receipt. In the case of dynamic adjustment procedures, a monitoring
inference rule is also created to start the placement procedure based on the collected
metrics.

2. When a placement decision is required, the input data are obtained from the autonomic
manager KB, and execution of the placement procedure takes place in the same way.
At this point, the chosen environment representation determines how the input data is
collected. For instance, if placement is represented by edges connecting operators to
servers, then gathering all operators from a server requires traversing such edges start-
ing from the server vertex. On the other hand, if placement is represented by operator
attributes, then the same goal requires a search through all operator vertices.

3. Finally, with the newly calculated placement information, the operators are deployed or
migrated through rewriting rules that update the KB and invoke the API calls startOper-
ator or migrate accordingly.

5.2.2 Examples

This section presents how two di↵erent placement procedures can be expressed using AGeCEP.

Borealis (Xing et al. [151])

In their work, Xing et al. [151] presented heuristic procedures for global and dynamic adjust-
ment of placements with the goal of minimizing the end-to-end latency of queries. The general
idea of the presented heuristics is that, given an operator o that needs to be placed, a server
must be found with a current workload that is not correlated with o’s workload. To calculate
load correlation, the heuristics build a time series of each operator’s load based on monitored
data. A server load, in turn, is defined as the sum of all its operators’ loads.

To adapt these heuristics to AGeCEP, the load time series can be maintained as an attribute
of operator vertices. Calculations performed by the heuristics require only this data. As a
result of the algorithms, migration rewriting rules are executed for each operator that has been
selected to move.

FUGU (Heinze et al. [70])

Heinze et al. [70] presented a dynamic adjustment placement procedure for the FUGU system.
The general idea is to detect overloaded servers and to move operators from them to under-
loaded servers. The operators to be moved are selected based on the latency spikes that their
migration will cause; operators with small spikes are moved first.
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A server is detected as overloaded when its CPU utilization exceeds a threshold for x con-
secutive measurements. This detection can be easily implemented as a monitoring inference
rule. To decide which operators are moved, the latency spike estimation uses the following
operator metrics: load, incoming and outgoing network tra�c, state size, input rate, and pro-
cessing time per tuple. Note that these metrics can all be obtained from the query execution
engine and stored as attributes of the corresponding operator vertices in the KB.

After the operators to be moved are selected, their destination is determined based on a
heuristic analogous to the bin-packing problem, in which the server’s available CPU capacity
constitutes the bins and the operators’ loads are the items weight. Once again, these data
are readily available in the KB. Finally, the resulting migrations are enforced with the aid of
rewriting rules.

5.3 Feasibility: Self-Management Policies

This section introduces a selection of self-management policies defined using AGeCEP and
the autonomic manager presented in Section 5.1. For the sake of readability, algorithms and
inference rules are presented as informal descriptions or pseudocode. Appendix A contains the
corresponding inference rules defined in Drools Rule Language [89].

5.3.1 Operator Combination

Description

The operator combination (Comb) policy is directly related to the “combinable” criterion of
the AGeCEP classification. This policy is used to combine sequences of n combinable oper-
ators o1, . . . , on into a single operator oc which has the same e↵ect on the event stream as the
combined sequence. Figure 4.5 shows an example of such a sequence and the result of applying
this policy.

This policy is mostly used in the single-query optimization step and reduces the number
of operators constituting the query, which brings savings in memory consumption. It can also
improve query latency and throughput because the number of operators that are traversed from
event generation to event consumption is reduced.

Realization Using the MAPE-K Loop

Monitor A new query q is submitted by the user, which is signalled by a NewQuery(q) event.
The event is simply forwarded as a NewQuery(q) symptom to the analysis module.
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Algorithm 5.1: CombineAll(q) action, combination of all combinable operator sequences
in q.

while exists a homomorphism h : Lcomb ! q do
apply Pcomb rule to q w.r.t. h;

end

Analysis When a NewQuery(q) symptom is received, the analysis module checks whether at
least one pair of successive operators (o1, o2) are combinable. This is equivalent to checking
whether there is a homomorphism h : Lcomb ! q, where Lcomb is the left-hand side of the graph
rewriting rule shown in Figure 4.12. If such a homomorphism exists, a Combine(q) request for
change (RFC) is sent to the plan module (Algorithm A.1).

Plan Upon receipt of a Combine(q) RFC, the CombineAll(q) action is inserted into the
change plan.

Execute The execution of the CombineAll(q) action is described by Algorithm 5.1. The Pcomb

rule is specified in Figure 4.12; its applicability and e↵ect have been described in Section 4.4.2.
This rule operates at the model level only and therefore has no associated mutator.

5.3.2 Operator Duplication

Description

Operator duplication (Dupl) is a policy used to parallelize an operator execution by creating
multiple instances of the operator and splitting input events among these instances. As shown
in Figure 4.4, the original input stream of an operator o is split by an operator os such that
os(type) = “split”, and the outputs are merged back into a single stream by an operator om such
that om(type) = “merge”. The attributes o(reqS plit) and o(reqMerge) determine os(splitType)
and om(mergeType) respectively.

Dupl can be used to achieve load balancing by distributing the operator instances over
several servers, or to improve query throughput. Generally, query throughput can be improved
when the following conditions are satisfied:

1. the operator processing rate is lower than the incoming event rate.

2. additional resources exist to which extra instances of the operator can be allocated.

However, this policy may also lead to an increase in resource consumption due to the deploy-
ment of supplementary operators.
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Realization Using the MAPE-K Loop

Monitor The autonomic manager receives periodic events containing operators performance
metrics. Based on these data, a monitoring rule might identify an operator as a bottleneck if it
is not outputting events as fast as it is receiving them. Whenever a bottleneck is pinpointed, a
Bottleneck(o) symptom is sent to the analysis module (Algorithm A.2).

Analysis Whenever a Bottleneck(o) symptom is received, the analysis module checks whether
o is duplicable. If this condition is satisfied, a Duplicate(q, o) RFC is sent to the plan module
(Algorithm A.3).

Plan When planning a Duplicate(q, o) operation, two scenarios must be considered (Algo-
rithm A.4):

• o has not yet been parallelized, which implies that duplication requires deployment of
a new instance of o and of the appropriate split and merge operators. In this case, the
placement procedure is invoked to determine the place of these new operators and an
InitialDuplication(q, o, ss, so, sm) action is inserted into the change plan, where ss, so,
and sm are the placements determined for the split, the new instance of o, and the merge
operator.

• o has already been parallelized, or more precisely, adequate split and merge operators
have already been deployed. Therefore, duplication consists only of adding a new oper-
ator instance. In this case, the placement so of this new operator is determined and the
AdditionalDuplication(q, o, so) action is added to the change plan.

Execute Depending on the change plan received, two di↵erent actions may be executed: an
InitialDuplication(q, o, ss, so, sm) or an AdditionaDuplication(q, o, so) action.

The InitialDuplication(q, o, ss, so, sm) action is described by Algorithm 5.2. Rules
Pinit1

dupl(id, ss, so, sm), Pinit2
dupl(id, ids), and Pinit3

dupl(id, idm) used by the algorithm are depicted in Fig-
ure 5.2. Some attributes of o, o1, and o2 are not shown because of space constraints, but the
copies o1 and o2 have the same values as o for all attributes described in Table 4.1, except for
id, inDegree, and outDegree. The algorithm consists of three steps:

1. Pinit1
dupl(id, ss, so, sm) is applied to q with respect to the unique possible homomorphism.

Hereafter, when a single morphism is acceptable, it is omitted. Application of this rule
creates the respective split os and merge om and two instances of operator o. Note that op-
erators os, o2, and om are created in servers ss, so, and sm as indicated by the “placement”
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Algorithm 5.2: InitialDuplication(q, o, ss, so, sm) action, execution of an initial duplica-
tion.

id  o(id);
apply Pinit1

dupl(id, ss, so, sm) to q ;
while exists a homomorphism h : Linit2

dupl(id, ids)! q do
apply Pinit2

dupl(id, ids) to q w.r.t. h;
end
apply Pinit3

dupl(id, idm) to q;

attribute value. In addition, operator o1 is created on the same server as the original
operator o. The mutators executed for this rule are API calls to startOperator(os, ss),
startOperator(o1, s), startOperator(o2, so), and startOperator(om, sm).

2. Pinit2
dupl(id, ids) is repeatedly applied as long as possible to redirect all input edges previ-

ously connected to o towards os. This rule is associated with the mutators disconnect(v, o)
and connect(v, os).

3. The Pinit3
dupl(id, idm) rule merges o and om. As a result, all output edges previously con-

nected to o are redirected to om, and the original operator o is deleted. These changes are
performed on the system by the mutators redirect(o, om) and stopOperator(o).

The AdditionalDuplication(q, o, so) action, on the other hand, is accomplished by applying
the Padd

dupl(id, so) rule shown in Figure 5.3. It consists of the simple addition of a new instance
of o connected to the already existing split os and merge om. This rule is associated with the
mutators startOperator(on, so), connect(os, on), and connect(on, om).

5.3.3 Removal of an Unnecessary Merge/Split

Description

The removal of an unnecessary merge/split (RemMS) policy describes the removal of a partic-
ular pattern of a merge operator followed by a split whose impact on the event streams is null.
Such a pattern has null impact if:

• The merge does not modify the streams that it processes. According to the AGeCEP
classification, union is the only merge type satisfying this condition.

• The split operator does not strengthen the stream specificities, or in other words, the
output streams of the split have the same or fewer constraints than the input streams of
the merge.
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RL

<<op>>
id=id

impl=op_impl
inDegree=M
outDegree=N

type=“processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

———
placement=s

<<op>>
id=op_id_1
impl=op_impl
inDegree=“1”
outDegree=“1”

type=“processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

———
placement=s

<<op>>
id=ids

inDegree=“0”
outDegree=“2”
type=“split”

splitType=rSplit
———

placement=ss

<<op>>
id=idm

inDegree=“2”
outDegree=“0”
type=“merge”

mergeType=rMerge
———

placement=sm

<<op>>
id=op_id_2
impl=op_impl
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outDegree=“1”

type=“processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

———
placement=so
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(a) Step 1 - Pinit1
dupl(id, ss, so, sm) - operator duplication.
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(b) Step 2 - Pinit2
dupl(id, ids) - redirect input edge.
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(c) Step 3 - Pinit3
dupl(id, idm) - redirect output edges.

Figure 5.2: Pinit
dupl(id): initial duplication.
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Figure 5.3: Padd
dupl(id, so): additional duplication.

The following discussion considers only the case where the number of input streams in the
merge is equal to the number of output streams in the split.

The impact of this policy is positive on both system performance and on resource con-
sumption because unnecessary operators are suppressed. Hence, this policy is used whenever
possible.

Realization using the MAPE-K loop

Monitor A new query q is submitted by the user, resulting in the NewQuery(q) event be-
ing forwarded to the analysis module as a NewQuery(q) symptom. In addition, whenever an
operator o from query q is duplicated, a Duplicated(q, o) event is also sent to analysis as a
symptom.

Analysis Whenever a NewQuery(q) or a Duplicated(q, o) symptom is received, the analysis
module checks for the existence of an unnecessary merge/split sequence as follows:

1. There is a homomorphism h : Lbyp
rem(idm, ids, ei, eo) ! q, where Lbyp

rem(idm, ids, ei, eo) is the
left-hand side of the Pbyp

rem(idm, ids, ei, eo) rule depicted in Figure 5.4a;

2. The split operator does not strengthen the stream specificities. This condition cannot be
checked for “custom” splits. For the other cases, let om(pred) be the set of all incoming
edges of om and os(succ) be the set of all outgoing edges of os. This condition is met if
there is a bijective function f : om(pred)! os(succ) such that for all ei 2 om(pred), with
eo = f (ei), one of the following conditions is satisfied:

• os(splitType) = “query” and ei(queries) = eo(queries);

• os(splitType) = “attribute” and ei(attrs) = eo(attrs);
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Algorithm 5.3: RemoveMergeS plit(q, om, os, f ) action, execution of a removal.
idm  om(id);
ids  os(id);
forall the edges ei 2 om(pred) do

apply Pbyp
rem(idm, ids, ei, f (ei)) to q;

end
apply Psup

rem(idm, ids) to q;

• os(splitType) = “random”.

For each pair (om, os), a RemoveMergeS plit(q, om, os, f ) RFC is created using an arbitrarily
selected function f that satisfies condition 2 (Algorithm A.5).

Plan Upon receiving a RemoveMergeS plit(q, om, os, f ) RFC, the action
RemoveMergeS plit(q, om, os, f ) is inserted into the change plan.

Execute Algorithm 5.3 details how to remove an unnecessary merge/split pattern. The algo-
rithm is executed in two parts. First, the unnecessary merge and split are bypassed using the
Pbyp

rem(idm, ids, ei, eo) rewriting rule defined in Figure 5.4a. This rule is repeated for all pairs of
edges (ei, eo) returned by the function f described in the analysis step. In the second part, the
bypassed merge/split is removed using the Psup

rem(idm, ids) rule (Figure 5.4b).
Note this policy may be executed in a running query. In such a case, each applica-

tion of rule Pbyp
rem(idm, ids, ei, eo) triggers the mutators disconnect(oi, om), disconnect(os, oo)

and connect(oi, oo), whereas the rule Psup
rem(idm, ids) triggers stopOperator(om) and

stopOperator(os).

5.3.4 Processing Sub-Streams (ProcSubS)

Description

The processing sub-streams (ProcSubS) policy transposes to CEP the strategy of dividing a
problem into the solution of several sub-problems. The policy considers an operator o process-
ing the result of a merge om, as illustrated on the left-hand side of Figure 5.5a. Ideally, the
operation performed by o should be parallelized and conducted on each of the merged streams.
In rough terms, o and om should be “swapped”, as shown on the right-hand side of Figure 5.5a.

This transformation is equivalent to multiple duplications of o followed by removal of the
initial merge om and the new split introduced by the duplication. Figure 5.5b illustrates the
query after n duplication steps, where n is the number of om input streams. The merge and
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(b) Step 2 - Suppressing the merge/split Psup
rem(idm, ids).

Figure 5.4: Prem(idm, ids): removal of an unnecessary merge/split.

split sequence highlighted in the figure can be removed by the RemMS policy, resulting in the
desired final situation. The policy realization described in this section leverages this fact and
reuses the Dupl and RemMS policies described in Sections 5.3.2 and 5.3.3.

This policy can be applied under various circumstances:

• If there are enough resources to process o instances in parallel, then this policy can be
used to improve query throughput and latency. This e↵ect is even more pronounced when
o(selectivity) < 1. In this case, the policy can also be applied in the SQO step because
the total number of events processed by the merge om may be significantly reduced.

• If o processes groups of events and o(complexity) is greater than linear, then this policy
reduces the query total CPU consumption;

• In general, the policy can be used to split the load of processing o with other servers and
cores.

Realization Using the MAPE-K Loop

Monitor This policy can be triggered at runtime whenever a bottleneck of operator o is de-
tected, which results in the Bottleneck(o) symptom being sent to analysis.

Analysis When a Bottleneck(o) is received, the analysis rule first checks if the policy can
indeed improve query throughput. For instance, it can verify whether the selectivity of operator
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(b) Intermediate step.

Figure 5.5: Processing sub-streams policy.
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o is less than 1. If this is true, the rule searches for a sequence formed by a merge om and a
duplicable operator o by checking for a homomorphism h : Lproc ! q, where the graph Lproc is
indicated in Figure 5.5a. Finally, the rule verifies whether the found sequence om and o satisfies
the following conditions:

1. The merge has more than one input stream,

om(inDegree) > 1;

2. The merge om followed by the split introduced by the duplication of o produces a remov-
able pattern, which translates to:

(a) The merge type of om is “union”,

om(mergeType) = “union”;

(b) The split os introduced during duplication of o does not strengthen stream speci-
ficities. In the RemMS policy, it was shown that a “random” split is always valid,
whereas a “custom” split cannot be considered. In the other cases:

• if o(reqS plit) = “query”, then for each stream e entering om, |e(queries)| = 1;

• if o(reqS plit) = “attribute”, then for each stream e entering om, e(attrs) =
os(param), meaning the streams are already grouped with respect to the same
attributes that the split discriminates.

If these conditions are satisfied, then the processing sub-stream policy can be applied. To
achieve this, the rule inserts n requests for duplication of operator o (Algorithm A.6). Because
the RemMS policy is already executed after each duplication, there is no need to request it
explicitly. In addition, note that even though RemMS is triggered n times, only the last time
succeeds because the others cannot find the mapping function f required by the RemMS policy.

Plan There is no specific plan for this policy.

Execute There is no specific execution for this policy.
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Figure 5.6: Ppred: predicate indexing.

5.3.5 Predicate Indexing

Description

This policy (PredIndex) implements the predicate indexing MQO technique introduced by
Madden et al. [109]. The technique detects when two or more filters process the same in-
put stream and have predicates over the same attributes and replaces both occurrences with
a single filter. This is an example of source sharing, as explained in Section 4.3.2. In this
case, the filter under consideration has special data structures that enable it to evaluate multiple
(range) predicates more e�ciently than evaluating each predicate independently.

Realization Using the MAPE-K Loop

Monitor A set of queries Q is submitted by the user, resulting in a NewQueries(Q) event
being forwarded to the analysis module as a symptom.

Analysis The analysis module checks whether a pair of filters can be shared by searching for
a homomorphism h : Lpred ! Q, where Lpred is the left-hand side of the graph rewriting rule
Ppred in Figure 5.6. If a homomorphism exists, the module also checks whether the predicates
range over the same attributes. If so, a PredicateIndex(Q) RFC is sent to the plan module
(Algorithm A.7).

Plan Upon receipt of the PredicateIndex(Q) RFC, the PredicateIndexAll(Q) action is in-
serted into the change plan.
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Execute Execution of this policy is equivalent to repeatedly applying rule Ppred, described in
Figure 5.6. Note that the two producer vertices p1 and p2 shown in L actually represent the
same input source, as they are associated with the same implementation and parameters. The
resulting grouped filter is logically equivalent to the execution of both predicates. This policy
is applied only at the query model level, and therefore there is no associated mutator.

5.4 Viability: Performance Evaluation

This section discusses the viability of AGeCEP as a formal foundation for developing generic
CEP algorithms and management procedures. The analysis focuses on the time required to
transform CEP queries using both simple and complex graph rewriting rules.

In the following, the AGG tool [143] was used to define and apply the graph rewriting
rules. The experiments were conducted on a server with two six-core processors (Intel Xeon
E5-2630, 2.6GHz) and 96GB of RAM. The server was running Ubuntu Linux 14.04 and Java
1.7.0 75.

5.4.1 Simple Policy

The first experiment verified the execution time and scalability of the actions executed by the
Comb policy (Section 5.3.1). This is a simple policy that consists of a single rewriting rule in
which only two vertices are matched.

The total number of queries to which the rule was applied varied from 100 to 1000, and
for each number, three query compositions were tested. In the first composition, 20% of the
queries were clones of query q1 (Figure 4.6a), and 80% were clones of q2 (Figure 4.6b). In
the second and third compositions, query q1 represented 50% and 80% of the total queries
respectively. Note that only query q1 has a sequence of combinable filters f1 and f2.

The graph in Figure 5.7 shows the average execution time of 30 runs along with the 99%
confidence interval. The growth in execution time is close to linear. For all three compositions,
100 queries were processed in less than one second, and 1000 queries in less than 14 seconds.
For the 80% composition, this is equivalent to rewriting 800 queries according to the operator
combination policy.

5.4.2 Complex Policy

This experiment verified the performance and scalability of complex sequences of actions. To
perform this experiment, the analysis was divided into two parts. First, the execution time
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Figure 5.7: Comb policy execution time.
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Figure 5.8: Query q2 - optimized version.

for applying the Dupl policy (Section 5.3.2) was assessed. Following, the execution time for
applying Dupl followed by RemMS (Section 5.3.3) was analyzed.

Both parts were executed using the same numbers of queries and the same query compo-
sitions as in the previous experiment. In this case, however, the duplication was applied only
to the operator j1 belonging to query q2 clones (Figure 4.6b). Note that after j1 duplication,
the newly created merge forms a void sequence with the f S plit operator. Applying RemMS
therefore caused this sequence to be removed, resulting in the query depicted in Figure 5.8.

Figure 5.9a depicts the execution time of the Dupl policy as a function of the number of
queries for all three compositions. For each duplication, four rewriting rules were applied:
Pinit1

dupl once to create the two instances of j1 connected to a new split and merge; Pinit2
dupl twice

to redirect j1 inputs (p1 and p2) to the new split; and Pinit3
dupl to connect the new merge to the

j1 successor ( f S plit). For the 20% composition, 1000 queries were processed in less than 40
seconds, which still is within reasonable time bounds.
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(a) Dupl execution time. (b) Dupl followed by RemMS execution time.

Figure 5.9: Dupl and RemMS policies execution times.

The execution time to apply Dupl followed by RemMS is shown in Figure 5.9b. To exe-
cute the RemMS policy, three more rewriting rules were applied: Pbyp

rem twice to connect each
instance of j1 to an instance of f12, and Psup

rem once to remove the redundant merge and split.
Therefore, Dupl followed by RemMS requires the application of seven rewriting rules in total.
The graph clearly shows an exponential growth that is especially pronounced in the 50% and
80% scenarios. In these scenarios, rewriting all queries may take minutes. Indeed, for the 80%
scenario there are no data point for 900 and 1000 queries because the execution time exceeded
the established timeout of 15 minutes.

It is important to discuss these results under proper assumptions about how these rules
will be applied in practice. Finding homomorphisms in graphs is a well-known NP-complete
problem [55]. Nevertheless, most of the time, these rules will be applied to a much smaller
number of queries. For example, SQO policies are executed in response to new queries, and
therefore only them need to be analyzed. Similarly, most runtime management rewriting rules
are applied only to the small subset of running queries that need to be rewritten. For instance,
as described in Section 5.3.2, duplication is performed only after a bottleneck has been pin-
pointed. The extreme cases described in this section were investigated for theoretical purposes
and for completeness of analysis.

5.5 Summary

To demonstrate the feasibility of AGeCEP for specification and enforcement of self-
management policies, this chapter introduced the design of an autonomic manager based on
AGeCEP and a selection of five policies built on this design. Furthermore, it presented a
generic procedure to adapt operator placement procedures to AGeCEP. Finally, this chapter
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investigated the viability of AGeCEP by executing performance measurements of query recon-
figurations. By considering both expressiveness and performance, these results suggest that
AGeCEP can be e↵ectively used to develop algorithms for application and integration into
diverse modern CEP systems.

The next chapter discusses CEPSim, a simulator of cloud-based CEP system that uses AGe-
CEP as query representation model.



Chapter 6

Complex Event Processing Simulator

This chapter1 introduces CEPSim, a simulator that has been developed to overcome the dif-
ficulties of evaluating CEP systems and of comparing query management and processing ap-
proaches. The chapter starts with a discussion about CEPSim motivation and benefits. Fol-
lowing this discussion, Sections 6.2 and 6.3 introduce CEPSim design principles and the foun-
dational concepts on top of which CEPSim is built. Finally, the simulation algorithms and a
thorough evaluation of CEPSim are presented in Sections 6.4 and 6.5.

6.1 Motivation

The resurgence of interest in CEP systems caused by the new Big Data world has been accom-
panied by the use of cloud environments as their runtime platform. Clouds are usually lever-
aged to provide the low latency and scalability needed by modern applications [25, 69, 128].
Other systems, such as the CEPaaS system proposed in this research, also explore cloud com-
puting to facilitate o↵ering CEP functionalities in the services model. In this context, the
development of e�cient operator placement and scheduling strategies is essential to achieve
the required quality of service. However, validating these strategies at the required Big Data
scale in a cloud environment is a di�cult problem and constitutes a research problem per se.

First, cloud environments are subject to variations that make it di�cult to reproduce the
environment and conditions of an experiment [56]. Moreover, setting up and maintaining large
cloud environments are laborious, error-prone, and may be associated with a high financial
cost. Finally, there are also many challenges related to generating and storing the volume of
data required by Big Data experiments.

Simulators have been used in many di↵erent fields to overcome the di�culty of execut-

1The content of this chapter has been published as a conference paper [76] and as a journal paper [77].
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ing repeatable and reproducible experiments. Early research into distributed systems [105]
and grid computing [33] used simulators, as well as the more recent field of cloud comput-
ing [34, 92, 119]. Generally, cloud computing simulators make it possible to model cloud
environments and to simulate di↵erent workloads running on them. Nonetheless, these simu-
lators are mostly based on application models and simulation algorithms that cannot represent
properly the dynamics of CEP systems. To overcome these limitations, this research presents
CEPSim, a flexible simulator of cloud-based CEP systems.

CEPSim extends CloudSim [34] using a query model based on AGeCEP and introduces
simulation algorithms based on a novel abstraction called event sets. CEPSim can be used
to model di↵erent types of clouds, including public, private, hybrid, and multi-cloud environ-
ments, and to simulate execution of user-defined queries on them. In addition, it can also be
customized with various operator placement and scheduling strategies. These features enable
system architects and researchers to analyze the scalability and performance of cloud-based
CEP systems and to easily compare the e↵ects of di↵erent query processing strategies.

6.2 System Overview

CEPSim is a simulator for cloud-based CEP systems that can be used to study the scalabil-
ity and performance of CEP queries and to compare the e↵ects of di↵erent query processing
strategies. It has been developed with the following design principles as goals:

• Generality: it can simulate di↵erent cloud-based CEP systems independently of query
definition languages and platform specificities.

• Extensibility: it can be extended with di↵erent operator placement and operator schedul-
ing strategies.

• Multi-Cloud: it can run simulations that span multiple clouds;

• Reuse: it can reuse capabilities that are present in CloudSim and comparable simulators.

Because of its maturity and extensibility, CloudSim was chosen as the base cloud simulator
on top of which CEPSim was built. Figure 6.1 shows an overview of CEPSim and how it is
related to CloudSim.

CloudSim provides the basic simulation framework and two main groups of functionalities:
datacentres and policies. The former group includes abstractions used to represent the phys-
ical cloud environment, whereas the latter consists of customizable strategies that control the
dynamic aspects of the environment.
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Figure 6.1: CEPSim overview.

CEPSim significantly extends these functionalities to enable simulation of CEP queries.
In Figure 6.1, these extensions are also organized into two groups: foundation and simulation.
The former group contains the fundamental CEPSim abstractions and is detailed in Section 6.3,
whereas the latter implements the CEP simulation logic and is described in Section 6.4.

To achieve the generality goal, CEPSim assumes that user queries can be converted to the
AGeCEP query model described in Section 4.4.1. As discussed previously, AGeCEP provides a
technology- and language-agnostic representation of queries to which diverse query languages
can be converted.

Once converted, CEPSim assumes that the queries run continuously, processing input events
that are constantly pushed into the system. The input streams are expected to be unbounded,
but the user must specify for how long the simulation should run.

To simulate distributed (networked) queries, CEPSim’s distribution model assumes that
parts of the query ADAG are allocated to di↵erent VMs and that these VMs communicate with
each other using a network. In addition, CEPSim assumes that multiple queries may be running
simultaneously in the same VM and that they can belong to di↵erent users.

Finally, CEPSim does not execute any form of single-query or multiple-query optimization
because it expects that the submitted queries have already been optimized. Nevertheless, to
support these optimizations, CEPSim allows event sources and operators to be shared among
queries according to the strategies described in Section 4.3.2.

Currently, the main limitation of CEPSim is the fact it only supports scenarios in which
the number of simulated queries is fixed and these queries are neither reconfigured nor fail at
runtime. However, most often this limitation can be circumvented by running and comparing
two simulations: one of a scenario before reconfiguration, and another of a scenario after.
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Figure 6.2: CEPSim query example.

6.3 CEPSim Foundation

This section presents CEPSim foundation concepts on top of which the simulation algorithms
are implemented. First the CEPSim query model, which is used to define the simulated queries,
is discussed. Following, the event set and event set queue abstractions are described.

6.3.1 Query Model

CEPSim uses AGeCEP as its formal foundation. Therefore, every user-defined query q is
represented by an attributed directed acyclic graph G = (V, E, ATT ), where each vertex v 2 V
represents a query element and the edges (u, v) 2 E represent event streams flowing from an
element u to another element v. In addition, the set of vertices V is partitioned into Vp, Vc,
and Vo representing event producers, event consumers, and operators respectively. Figure 6.2
shows an example of a query q. Some attributes have been omitted for the sake of clarity.

CEPSim overcomes CloudSim batch application model by using AGeCEP query model,
which can represent complex data processing flows consisting of multiple interconnected steps.
In addition, as discussed in Section 4.4.1, most existing CEP query languages can be converted
to the AGeCEP model, which emphasizes the generic aspect of CEPSim.

Moreover, CEPSim extends AGeCEP representation in order to make it more appropriate
for simulations. First, every vertex is extended with a new attribute ipe, which represents
the number of CPU instructions needed to process a single event. This is an important piece of
information required by the simulation algorithms. For event producers, this attribute estimates
the number of instructions required to take an event from the system input and forward it to
query execution. In other words, it does not include the e↵ort required to generate the event
because event generation does not usually occur within the CEP system.

Second, every edge (u, v) 2 E is extended with a selectivity attribute that determines how
many of the events processed by u are actually sent to v. In Figure 6.2, the query edges are
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Figure 6.3: Windowed operator attributes.

annotated with their selectivity values. For instance, edges e4 and e5 selectivity are both 0.5.
Therefore, if s1 processes 100 events, 50 of them will be sent to f1 and the other 50 to f2. A
selectivity can be greater than one in the case where the operator outputs more than one event
based on a single input, e.g., creating two alarms from a single sensor reading. Note that in
AGeCEP, selectivity is also a vertex attribute that refers to the total number of events that are
output as a function of the number of input events. In other words, the vertex selectivity is the
sum of all its outgoing edges selectivity.

Third, CEPSim also introduced the “windowed” stereotype to characterize operators that
process windows of events and combine them in some manner. Typical examples are aggrega-
tion operators that count events or calculate the average value of attributes. This new stereo-
type is necessary because the simulation of windowed operators is implemented by a di↵erent
algorithm that requires information not included in the regular “operator” stereotype. In par-
ticular, windowed operators have three extra attributes: a window size, an advance duration,
and a combination function.

Figure 6.3 illustrates the window and advance concepts. The window specifies the period
of time from which the events are taken and the advance duration defines how the window
slides when the previous window closes. Finally, the combination function is defined as:

f : Rm
�0 ! R�0 (6.1)

where m is the number of operator predecessors. This function regulates the number of events
that are sent to the output given the number of events accumulated in the input. Commonly,
it is defined as a constant function f (~x) = 1, meaning that for each window only one event is
generated (e.g., for counting events).

Finally, every event producer p in CEPSim is associated with a generator function gp that
determines the total number of events produced by p given a point in time. Formally, the
generator function is defined as a monotonically increasing function from the time domain to
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the set of positive integers:

gp : R�0 ! N, s.t. x  y then gp(x)  gp(y) (6.2)

6.3.2 Event Sets

An event set is an abstraction that represents a batch of events and is the basic processing unit
used by CEPSim. This abstraction has been created to improve the simulator performance
and to assist in calculating the simulation metrics. Operators exchange event sets instead of
individual events, and all system queues and temporary bu↵ers are composed of event sets.

Formally, an event set e is an instance of an EventS et class that contains the following
attributes2:

• cardinality (cn): number of events in the set. The notation |e| is used hereinafter as a
shortcut for e.cn.

• timestamp (ts): a timestamp associated with the set, which can be used for various pur-
poses. Most often, it contains the timestamp at which the set has been created.

• latency (lt): the average of the latencies of the events in the set. Event latency is defined
as the period of time elapsed from the event creation to the moment at which the event is
added to the set.

• totals (tt): a map that, for each producer vp 2 Vp, stores the number of events that must
have been produced by vp to originate the events currently in the set. The goal of this
attribute is to track caused by (or is result of ) relationships between the events in the set
and the produced events.

In addition to these attributes, four operations are also defined for event sets: sum, extract,
select, and update.

• Sum: is applied to two event sets e1 and e2 and results in a new event set er containing all
events from both sets. It is defined as:

er = e1 + e2 (6.3a)

2Hereafter, the dot notation is used to access object attributes.
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such that

|er| = |e1| + |e2| (6.3b)

er.ts =
|e1| · e1.ts + |e2| · e2.ts

|e1| + |e2|
, (6.3c)

er.lt =
|e1| · e1.lt + |e2| · e2.lt

|e1| + |e2|
, (6.3d)

er.tt : Vp ! R�0, s.t. er.tt[vp] = e1.tt[vp] + e2.tt[vp] (6.3e)

• Extract: is applied to an event set e and the number of events to be extracted n. The
results are an event set er consisting of the extracted events, and an event set em containing
the remaining events from e,

(er, em) = e � n (6.4a)

such that

|er| = n (6.4b)

er.tt : Vp ! R�0, s.t. er.tt[vp] = (n/|e|) · e.tt[vp] (6.4c)

|em| = |e| � n (6.4d)

em.tt : Vp ! R�0, s.t. em.tt[vp] = e.tt[vp] � er.tt[vp] (6.4e)

and the latency and timestamp attributes from er and em are the same as in e.

• Select: is applied to an event set e and a selectivity s. It selects a subset of events from
the event set:

er = e ⇤ s (6.5a)

such that
|er| = |e| · s (6.5b)

and the remaining attributes from er are the same as in e.

• Update: is applied to an event set e and a timestamp ts. It simply brings the event set
latency and timestamp up to date:

er = update(e, ts) (6.6a)



100 Chapter 6. Complex Event Processing Simulator

Algorithm 6.1: Event set queue - dequeue operation.
Data: . Q, Event set queue
. n, Number of events to be extracted

1 function dequeue(Q, n)
2 e empty event set
3 while n > 0 and !isEmpty(Q) do
4 h dequeue(Q) // Extract the head of the queue Q
5 if |h| > n then
6 (h, r) h � n
7 prepend(Q, r) // Return r to the head of the queue Q
8 end
9 e = e + h

10 n n � |h|
11 end

such that

er.ts = ts (6.6b)

er.lt = e.lt + (ts � e.ts) (6.6c)

and the remaining attributes from er are the same as in e.

6.3.3 Event Set Queues

An event set queue is simply a queue where the elements are event sets. As with any regular
queue, it is possible to enqueue and dequeue elements in a first-in, first-out manner. In addition,
an event set queue has an overload dequeue operation that receives the number of events to be
extracted and returns an event set representing these events.

Algorithm 6.1 shows this operation in pseudo-code. The algorithm removes event sets from
the queue Q until the resulting event set e reaches size n. When the removed event set h has
more events than what is required to complete n, the algorithm extracts the necessary events
from h and returns the remaining events to the queue (lines 5-8).

Finally, an event set queue Q also has a cardinality defined as the sum of the cardinalities
of all event sets in the queue:

|Q| =
X

e2Q

|e| (6.7)
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Figure 6.4: Placement definitions.

6.4 CEPSim Simulation

This section presents the CEP simulation logic implemented by CEPSim. First it is discussed
the role of operator placement and scheduling strategies in the simulation. Following, the
simulation procedures are presented both at operator and at placement level. Finally, it is
described how CEPSim calculates the simulation metrics.

6.4.1 Operator Placement

Once the queries are modelled, the next step in any simulation is to define a set of placements.
Each placement maps a set of query vertices to the VM where they will execute. Note that the
vertices from a single query can be mapped to more than one VM, which implies distributed
execution of the query. A placement can also contain vertices from more than one query.
Figure 6.4 illustrates the placement concept: Placement1 maps all vertices from Query1 and
some from Query2 to Vm1, whereas Placement2 maps the remaining Query2 vertices to Vm2.

Defining placement for a query is part of its lifecycle, as discussed in Section 2.1.5. This
mapping is one of the most determining factors of a CEP system performance. Because of this
importance, CEPSim is pluggable and enables the use of di↵erent placement strategies. By
default, users must manually specify the mapping of vertices to VMs when submitting a query
to CEPSim.

6.4.2 Operator Scheduling

Operator scheduling is the procedure that, given a set of running queries and their internal
state, defines which operator should run next and for how long it should run. A scheduling
strategy can fundamentally determine the performance of a CEP system by optimizing for
di↵erent aspects of the system, such as overall QoS [1] or memory consumption [23]. Because
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of this significance, CEPSim also allows di↵erent scheduling strategies to be plugged in and
used during a simulation.

CEPSim contains two built-in scheduling strategies, and both are based on an auxiliary
allocation strategy. In this context, the allocation strategy divides the available instructions
among the placement vertices, whereas the scheduling strategy determines how the vertices
are traversed and how the allocated instructions are used.

The two allocation strategy implementations provided by CEPSim are:

• Uniform allocation: divides the available instructions equally among all placement ver-
tices.

• Weighted allocation: divides the available instructions proportionally to the ipe attribute
of each vertex.

These two strategies can be combined with the provided scheduling strategies, which work
as follows:

• Simple scheduling: the vertices are sorted in topological order and traversed only once
according to this order. Each vertex receives the number of instructions determined by
the allocation strategy, independently of the number of instructions required.

• Dynamic scheduling: the vertices are sorted in topological order and traversed in one or
more rounds. In each round, each vertex receives the minimum between the number of
instructions determined by the allocation strategy and the number of instructions required
to process all events in the input queues. The process is repeated until there are no more
instructions left to be allocated or events to be processed. This strategy tries to redirect
non-used instructions to overloaded vertices and thereby improve query throughput.

6.4.3 Operator Simulation

In CEPSim, the simulation of an operator execution is accomplished by reading event sets from
the operator’s input queues, processing them, and writing output event sets to its output queues.
The general procedure used to simulate an operator execution is detailed in Algorithm 6.2.

The algorithm operates in three main steps:

1. Lines 2-6: Calculates the number of input events that can be processed. This number is
the minimum between the total number of events in all input queues and the maximum
number of events that can be processed given the number of allocated instructions n.
This maximum is obtained by dividing n by the operator ipe attribute.
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Algorithm 6.2: Operator simulation.
Data: . op, operator with attributes:
- ipe, instructions per second
- pred, operator predecessors
- succ, operator successors
- input, map of input event set queues
- selectivity, map of outgoing edge selectivities
- ouput, map of output event set queues
. n, number of instructions
. ts, start timestamp

1 function simulate(op, n, ts)
2 totin  0
3 forall the vp 2 op.pred do
4 totin  totin + |op.input[vp]|
5 end
6 evt  min(totin, n/op.ipe)
7 e empty event set
8 forall the vp 2 op.pred do
9 no (|op.input[vp]|/totin) ⇤ evt

10 e e + dequeue(op.input[vp], no)
11 end
12 e update(e, ts)
13 forall the vs 2 op.succ do
14 en e ⇤ op.selectivity[vs]
15 enqueue(op.output[vs], en)
16 end

2. Lines 7-11: Dequeues events from the input queues and builds a new event set e repre-
senting the dequeued events. The number of events dequeued from each input queue is
proportional to its size. This procedure aims to balance the queues by processing more
events from queues with more elements.

3. Lines 12-16: Enqueues the recently created event set e into the operator output queues.
While enqueuing, the selectivity value of the edge connecting the operator to each of its
successors vs is taken into consideration.

Event producers and consumers are simulated in a similar way. Because event producers
do not have predecessor vertices, the input events are read from the generator associated with
them. Event consumers, on the other hand, do not have output queues. The processed events
are accumulated into a single output event set that consolidates all events consumed during the
simulation.
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Algorithm 6.3: Windowed operator simulation.
Data: . w, with all regular operator attributes plus:
- window, window size
- advance, advance period
- f , combination function
- acc, accumulation data structure
- index, current slot in the accumulation data structure
- next, next timestamp at which a window closes
. n, number of instructions
. ts, start timestamp

1 function simulate(w, n, ts)
2 slots w.window/w.advance
3 while ts > w.next do
4 generateOutput(w,w.index, ts)
5 w.next  w.next + w.advance
6 w.index (w.index + 1) mod slots
7 reset(w.acc,w.index)
8 end
9 totin  0

10 forall the vp 2 w.pred do
11 totin  totin + |w.input[vp]|
12 end
13 evt  min(totin, n/w.ipe)
14 forall the vp 2 w.pred do
15 no (|w.input[vp]|/totin) ⇤ evt
16 e dequeue(w.input[vp], no)
17 accumulate(w.acc, w.index, vp, e)
18 end

Simulating windowed operators is di↵erent because output events are generated only when
a window closes. In addition, whenever a window does not close, the input events must be
correctly processed and accumulated.

Algorithm 6.3 describes the simulation procedure of a windowed operator w. To imple-
ment the simulation, every windowed operator has an auxiliary data structure that is used to
accumulate the processed events. Figure 6.5 shows an example of a windowed operator and its
corresponding data structure.

The data structure works as a circular array divided into l slots, on which each slot repre-
sents a timeframe equivalent to one advance period within the time window. For example, the
windowed operator from Figure 6.5a has a window size of 30 seconds and an advance period
of 10 seconds, resulting in an array of size 3. Initially, slots 0, 1, and 2 represent the intervals
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Figure 6.5: Windowed operator simulation.

between 0-10, 10-20, and 20-30 seconds respectively. Each position of this array contains one
event set for each operator predecessor (p1 and p2). These event sets accumulate events coming
from the predecessors during each slot period.

To use this data structure, the windowed operator maintains two auxiliary variables, index
and next. The index variable points to the slot where the accumulation should currently take
place, whereas next stores the next timestamp at which the window closes.

These variables are primarily used between lines 2 and 8 of Algorithm 6.3. First, when a
window closes, an auxiliary procedure generateOutput is invoked to generate the output event
set (Algorithm 6.4). Following this invocation, the next and index variables are adjusted, and
the next slot is reset. Note that this loop can be executed more than once if more than one
window has closed since the last simulation.

The following lines (9 to 18) are similar to the stateless operator simulation presented in
Algorithm 6.2, but instead of writing the processed event sets into the output queues, they are
accumulated at the current time slot.

The last part of the windowed operator simulation is the generateOutput procedure shown
in Algorithm 6.4. The loop between lines 4 and 11 builds an event set for each predecessor
and a sum of these event sets sumt. This step is also shown in Figure 6.5b, in which sum(p1) is
calculated as e1 + e3 + e5, sum(p2) as e2 + e4 + e6, and sumt is the sum of sum(p1) and sum(p2).

From lines 12 to 16, the output event set out is built according to the idea that this event set
is caused by, or is a result of, all events accumulated in the window:

• cardinality (out.cn) is set to the result of the combination function f . This function
receives as argument a set of event sets, each one encapsulating all events received from
a specific predecessor vp during the window timeframe, and returns the number of events
that must be generated.

• latency (out.lt) is set to the average latency of all events in the window (sumt.lt) plus
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Algorithm 6.4: Windowed operator - generate output.
Data: . w, windowed operator
. index, current index in w(acc)
. ts, start timestamp

1 function generateOutput(w, index, ts)
2 sum empty map
3 sumt  empty event set
4 forall the vp 2 w.pred do
5 e empty event set
6 for i = 0 to slots do
7 e e + w.acc[i][vp]
8 end
9 sumt  sumt + e

10 sum[vp] e
11 end
12 out  empty event set
13 out.cn f(sum)
14 out.lt  sumt.lt + (ts � sumt.ts)
15 out.ts ts
16 out.tt  sum(w.acc[index]).tt
17 forall the vs 2 w.succ do
18 en out ⇤ w.selectivity[vs]
19 enqueue(w.output[vs], en)
20 end

their average waiting time. The waiting time is calculated as the di↵erence between the
current timestamp (ts) and the average timestamp of all events in the window (sumt.ts).

• timestamp (out.ts) is set to the current timestamp.

• totals (out.tt) is set to the sum of all totals from the event sets in the current slot only, as
events in previous slots have already been considered in past windows.

6.4.4 Placement Simulation

After describing how CEPSim simulates operators, this subsection focuses on the algorithm
used to simulate queries. A pseudo-code description of this procedure is presented in Algo-
rithm 6.5.

The first thing to note is that the basic unit of simulation is a placement, not a query,
which implies that all vertices allocated to a VM are simulated at once. This approach enables
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Figure 6.6: Execution of a simulation tick.

operator scheduling strategies to consider simultaneously all vertices in a VM and potentially
make better decisions regarding their scheduling optimization criteria.

This procedure simulates execution of a placement for the duration of a simulation tick. As
shown in Figure 6.6, the CloudSim simulation framework repeatedly invokes this procedure to
represent the passing of time. Therefore, the simulation tick length is a parameter that enables
users to trade o↵ precision against computational cost. For example, if the tick is long, the
procedure will be invoked fewer times, but the produced events will be grouped into relatively
large event sets and processed as such. On the other hand, a shorter tick translates into smaller
event sets and potentially more precise results.

The following parameters are required by the procedure: a pre-allocated number of in-
structions n, the simulation time at which the procedure has been invoked ts, and the CPU
capacity cp (measured in MIPS) available to the placement. The CloudSim simulation frame-
work determines these arguments at each invocation: first, a cloudlet scheduler calculates cp
by distributing the total CPU processing power among all processes concurrently running on
the VM. In Figure 6.6, the placement p1 has only cp1 MIPS available because it shares the
same VM with two cloudlets c2 and c3. Following, the number of instructions n is derived by
multiplying the available capacity cp by the simulation tick length. In Figure 6.6, the value of
n is equivalent to the area encompassed by each process.

In summary, there are three main steps in Algorithm 6.5:

1. All generators associated with the placement event producers are activated to determine
the number of events that have been generated from the last simulation tick to the current
one (lines 2-4);

2. The scheduling strategy associated with the placement is invoked to define the order in
which the vertices will be simulated and the number of instructions allocated to each
vertex (line 5).
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Algorithm 6.5: Placement simulation.
Data: . S chedule, Operator scheduling strategy
. p, placement to be simulated
. n, number of instructions
. ts, start timestamp (in ms)
. cp, allocated CPU capacity (in MIPS)

1 function simulate(p, n, ts, cp)
2 forall the vp 2 p.producers do
3 generate(vp, ts)
4 end
5 it  schedule(p, n)
6 while next  it.next do
7 v next.v
8 nv  next.n
9 simulate(v, nv, ts)

10 adjustTime(ts)
11 forall the vs 2 v.succ do
12 en dequeue(v.output[vs])
13 enqueue(vs.input[v], en)
14 end
15 end

3. All vertices are traversed and simulated according to the specified order (lines 6-15).
The scheduling strategy returns an iterator of pairs, each one containing a vertex pointer
(next.v) and the number of instructions allocated to it (next.n). With these two parame-
ters, the operator simulation procedure is invoked (line 9). Next, the current timestamp
ts is adjusted to reproduce the passing of time (line 10). Finally, the event sets in each
of the vertex output queues are moved to the input queues of their respective successors
(lines 11-14).

Networked Queries

To simulate networked (distributed) queries, the CEPSim placement simulation from Algo-
rithm 6.5 received two main modifications.

First, at the moment that event sets are moved from the operator output queues to the
input queues of its successors (lines 11-14), the algorithm checks whether the successor vertex
belongs to the same placement or not. If it does, the event set is moved to the destination queue
as usual. If it does not, then the event set and the destination vertex id are sent to a network
interface, which executes three main steps:
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Figure 6.7: Networked query simulation.

1. Locate the placement where the successor vertex resides by consulting the
CepS imBroker (implementation details can be examined in Appendix B).

2. Calculate the delay in transferring the event set to the destination VM. This calculation
depends on the network interface implementation in use.

3. Schedule a simulation event on the destination VM signalling the arrival of the event set.
This event is scheduled using the simulation framework provided by CloudSim.

The second modification is in the main loop between lines 6 and 15. Before each iteration,
the algorithm checks whether any simulation event (representing the arrival of an event set) is
scheduled during the operator time slice. If one is, the time slice is split in two at the event set
arrival time, and the event set is enqueued into its destination queue between the two slices.

This procedure is illustrated in Fig. 6.7. In the query from Figure 6.7a, vertices p3, f3, and
f4 are placed into one VM, and the remaining vertices are placed into another. The diagram in
Figure 6.7b shows the placements schedule as a function of time. At the end of the first itera-
tion, vertex f4 “sends” an event set to its successor m3. This step is represented by scheduling
a simulation event on the destination placement after the period of time required to transfer the
event set from f4 to m3. In the second iteration, the simulation algorithm detects the scheduled
event before starting the m3 simulation. The m3 time slice is split into two halves (m03 and m003 ),
and the event set is enqueued right after m03 finishes.

Bounded Queues

Most CEP systems limit the size of operator queues to avoid memory overflow and to maintain
overall system performance. Because of this characteristic, CEPSim also supports the defini-
tion of bounded input operator queues. When using this feature, it is necessary to define the
behaviour of the system when new events arrive at an already full queue. Currently, CEPSim
supports the application of backpressure to vertex predecessors.
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When using backpressure, at the end of the simulation procedure operators inform their
predecessors about the maximum number of events accepted for the next iteration. The pre-
decessors limit their output on the next tick if needed. Nevertheless, when an operator limits
its output, it may also accumulate events in its own input queues and consequently apply back-
pressure on its predecessors. Ultimately, the backpressure arrives at the event producers, which
may choose to discard extraneous events or accumulate them in their own queues.

6.4.5 Metrics

One of the most important parts of any simulator is the set of metrics obtained as a result of
the simulation. As CEP queries performance are usually measured in terms of its latency and
throughput, CEPSim provides built-in implementations for these two metrics.

Query Latency

The query latency metric is defined for every consumer vc as the average number of millisec-
onds elapsed from the moment an event arrives at the query to the moment it is consumed by
vc. In other words, it measures how long a query takes to process an event.

This metric can be easily obtained because event consumers have an output event set that
accumulates all events that have been consumed during a simulation. Therefore, the value of
latency(vc) is simply the latency of the vc output event set:

latency(vc) = vc.output.lt (6.8)

Figure 6.8 exemplifies how the event set latencies are calculated and updated during a
simulation tick. The event sets es1 and es2 were generated at timestamp ts = 5. At ts = 10
the producer p1 sends es1 to f1, and at ts = 13 producer p2 sends es2 to f1. Note that es1

and es2 latency attributes are updated to take into account the time elapsed from the event set
generation to the moment they are output. When processed by f1, both event sets are summed
according to Equation 6.3a, resulting in a new event set es12. At ts = 15, a new event set es3 is
created by updating es12 timestamp and applying ( f1, f2) selectivity to it:

es3 = update(es12, ts) ⇤ ( f1, f2).selectivity (6.9)

Following, the es3 event set is sent to f2, where a similar procedure is executed and a new event
set es4 is created. Finally, es4 is sent to the consumer c1, where the final event set es5 is created
and added to the output event set.
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Query Throughput

The query throughput metric is calculated for each consumer vc as the average number of
events processed per second during its lifespan.

The throughput value of an event consumer vc is also obtained with the aid of vc’s output
event set. In this case, its totals attribute contains the number of events generated by each
producer that have resulted in the events in the set. Therefore, the throughput can be obtained
by summing the values for all producers and dividing this sum by the query simulation time (in
seconds). However, if there is more than one path from a producer vp to the consumer vc, then
the output event set contains duplicates incorporated into the totals values for vp and needs to
be fixed.

Figure 6.9 shows a scenario in which this duplication occurs. The operator s1 splits es1 into
two event sets es2 and es3, which are transformed into es4 and es5 and combined again into
es6. In the m1 output, es6.tt(p1) = 20, yet the correct value should be 10. The metric can be
simply fixed by dividing it by 2 because there are two paths from p1 to m1.
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Figure 6.10: Storm topologies.

Formally, the query throughput of a consumer vc is given by:

throughput(vc) =
✓ X

vp2Vp

vc.output.tt(vp)
|paths(vp, vc)|

◆
/q.time (6.10)

where |paths(vp, vc)| is the number of paths from producer vp to consumer vc and q.time is the
total query simulation time.

6.5 Evaluation

This section describes the experiments that have been performed to analyze the CEPSim simu-
lator. First, CEPSim is validated by comparing the latency and throughput metrics obtained by
running queries on a real CEP system and by simulating them on CEPSim. Second, the sim-
ulator performance is assessed by analyzing the execution time and memory consumption of
various simulation scenarios. Finally, it is also investigated the e↵ects of di↵erent parameters
on the simulator behaviour.

6.5.1 Case Study

The queries used in the experiments in this section have been extracted from Powersmiths’
WOW system [127], a sustainability management platform that draws on live measurements
of buildings to support energy management. Powersmiths’ WOW uses Apache Storm [18] to
process in near real-time sensor readings coming from buildings managed by the platform.

Figure 6.10 shows the Storm queries (topologies) used in the experiments in this section. A
spout in the Storm terminology is equivalent to an event producer, whereas a bolt is equivalent
to an operator. There is no concept analogous to an event consumer in Storm.

There are three main steps in the query q1 from Figure 6.10a: the OutlierDetectorBolt
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Table 6.1: Storm VM cluster specification.

VM # CPU Mem. Description
1 1 core - Intel Xeon E5-2630 2.6 GHz 512 MB zookeeper
2 1 core - Intel Xeon E5-2630 2.6 GHz 768 MB nimbus
3-6 1 core - Intel Xeon E5-2630 2.6 GHz 2048 MB workers

detects and filters anomalous sensor readings, the ReadingAverageBolt groups readings into
windows of 15 seconds and calculates their average, and the DBConsumerBolt stores the cal-
culated average in a database. By aggregating the sensor data into 15-second windows, the
query reduces the amount of data that is written to the database.

The query q2 presented in Figure 6.10b, on the other hand, is used to convert from the JSON
format to the native WOW format (XML). This query is used because some existing sensors
cannot be modified to send data according to the WOW interface. The query is composed
of three main steps: the JsonParserBolt parses the JSON request, the ValidateReadingBolt
validates the request values, and the XmlOutputBolt converts the request to XML format. The
last bolt (LatencyMeasurerBolt) is used only to measure the latency and throughput of the
conversion process.

6.5.2 Environment

Table 6.1 describes the cluster of virtual machines used in the experiments to run Storm topolo-
gies. All six VMs were deployed on the same physical server (12 cores Intel Xeon E5-2630,
2.6GHz / 96GB RAM). VMs #1 and #2 run zookeeper (which coordinates cluster communica-
tion) and nimbus (which assigns Storm tasks to workers). The workers VMs #3 to #6 are the
ones which e↵ectively execute the queries. The VM memory sizes have been dimensioned to
not be a bottleneck in the experiments. A similar physical server hosted the database system
and was also used to run all CEPSim simulations described in the experiments.

The software used in the experiments is presented in Table 6.2. All Storm topologies have
been implemented using Storm’s Java API and use standard Java libraries for database access
and XML processing.

6.5.3 Set-Up

Before any simulation, the Storm queries had to be converted to AGeCEP formalism. This
conversion was straightforward because both Storm and AGeCEP use DAGs as their underlying
query model.



114 Chapter 6. Complex Event Processing Simulator

Table 6.2: Software specification.

Name Version Description
Ubuntu 14.04.2 Physical server Operating System
CentOS 6.5 VM Operating System
VirtualBox 4.3.24 Virtualization Software
OpenJDK 1.7.0 75 Java Runtime Environment
Apache Storm 0.9.3 CEP system
MySQL 5.5.41 Database system
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———

ipe=“18000”
f=“(# of Sensors)”

<<op>>
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———
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<<cons>>
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impl=“log”
———
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(a) Query q1.
<<prod>>
id=“p2”

impl=“randomSensorSpout”
ipe=“1000”

gp=“10 * (# of Sensors)”

<<op>>
id=“j1”

impl=“jsonParserBolt”
———

ipe=“41250”

<<op>>
id=“v1”

impl=“validateReadingBolt”
———

ipe=“25000”

<<op>>
id=“x1”

impl=“xmlOutputBolt”
———

ipe=“31250”

<<cons>>
id=“c2”

impl=“log”
———

ipe=“1000”
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<<op>>
id=“l1”

impl=“latencyMeasurerBolt”
———

ipe=“17000”

1.0

(b) Query q2.

Figure 6.11: Storm queries converted to the AGeCEP model.

Figure 6.11 depicts the AGeCEP model of both queries presented in Section 6.5.1. At-
tributes not used by the simulation are omitted from the figure. Each edge connecting two
vertices is annotated with its corresponding selectivity. In both queries, an event consumer is
also added to group all events consumed by the query.

To estimate the operator’s ipe attribute, two methods have been used:

• Latency estimation: the operator is fed with random events at increasing rates and the
average processing time (in milliseconds) is calculated for each rate value. The minimum
average is assumed to be the operator latency opl. The ipe attribute is then calculated as:

op.ipe = (cpum · 106)/
 
1000
opl

!
(6.11)

where cpum is the CPU processing power estimated in MIPS.

• Maximum throughput estimation: the maximum throughput opt is estimated by feeding
the operator process with as many events as possible. The ipe attribute is then estimated
as:

op.ipe = (cpum · 106)/opt (6.12)

Experimental results have shown that the “latency” method provides better estimation for
lower throughput operators, such as the DBConsumerBolt, whereas the “maximum through-
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Table 6.3: Simulation parameters.

Parameter Value

CloudSim
VM Processor 2 x 2500 MIPS
VM Allocation Policy Simple
VM Scheduler Time shared

CEPSim

Simulation Tick Length 100ms
Placement Strategy User defined
Allocation Strategy Uniform
Scheduling Strategy Dynamic
Generator Uniform
Queue size 2048

put” method is better for higher throughput operators. This di↵erence exists mainly because it
is hard to estimate latency accurately when the time spent processing each event is very short.

For the experiments in this research, all ipe values were calculated using the “maximum
throughput” method, except for DBConsumerBolt.

6.5.4 Validation

The first step in CEPSim validation was to unit test all components and to execute a set of sanity
checks to detect programming bugs and inconsistent behaviour. After this phase, a set of exper-
iments was executed aiming to compare the performance metrics obtained by running queries
on a real CEP system (Apache Storm) and by simulating them on CEPSim. This validation
approach is similar to the ones adopted by other simulators, such as NetworkCloudSim [56],
iCanCloud [119], and Grozev and Buyya [66].

In all simulations, CEPSim was used to create an environment as close as possible to the
Storm VM cluster. Table 6.3 summarizes the main parameters used in the simulations. VMs
have been modelled as having two processors, even though only one physical processor was
allocated for each. This was done because the processors used in the experiments are hyper-
threaded, which enables a higher degree of parallelism than regular processors. The queue size
was set to 2048 because by default Storm has bu↵ers with 1024 elements at both the output
and input of each operator, but in CEPSim, accumulation happens only at the operators’ input
queues.

Single Query

This first experiment validated CEPSim simulation of a single query running entirely on a
single VM.
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(a) Latency. (b) Throughput.

Figure 6.12: Metrics estimation results - query q1.

To obtain the Storm metrics, both queries from Fig. 6.10 were first instrumented to output
the average throughput and latency every minute. In addition, the query S pouts (event produc-
ers) were modified so that the user could define the number of sensors n that send data to the
query. Each sensor generated 10 sensor readings per second, of which 5% were anomalies.

The graphs from the experiments were obtained by varying the number of sensors n, which
consequently varied the number of events generated per second. For each n, the queries were
run for 15 minutes and the average latency (throughput) for each of the last 10 minutes were
collected. Note that each data point is an observation from a sampling distribution of the
average query latency (throughput). CEPSim results were also obtained by varying n and by
collecting metrics of the last 10 minutes of 15 minutes simulations. The graphs show the
mean value of these averages and their 99% confidence interval (in other words, the confidence
interval of the sampling distribution). In most cases, the confidence interval is small and not
visible in the graphs.

Figure 6.12 shows query q1 latency and throughput as a function of the input rate. Generally
speaking, CEPSim achieved very high accuracy for both metrics when compared to Storm. The
latency estimation error was less than 1% up to 1000 events/second and was kept below 7.5%
up to 20000 events/second. The throughput calculation was even more accurate, with almost
no error up to 20000 events/second.

The major estimation error occurred at 22500 events/second, at which point the latency
obtained by CEPSim was lower than the real value. Further analysis showed that at this point,
the Storm query overloaded, and its behaviour became very unpredictable, as can be seen
in the high variance of this data point. Nevertheless, CEPSim still correctly predicted the
maximum query throughput around 21000 events/second, as shown in the throughput drop in
Figure 6.12b.

Results for the latency and throughput of query q2 are shown in Figure 6.13. The latency
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(a) Latency. (b) Throughput.

Figure 6.13: Metrics estimation results - query q2.

axis in Figure 6.13a has a log scale because the measured values encompass five orders of mag-
nitude. Once again, the throughput calculation exhibited very small error, and the maximum
query throughput was closely estimated at approximately 21000 events/second.

The latency estimation at slow input rates showed some error because it is extremely hard
to estimate latency accurately at sub-millisecond precision. At 100 events/second, the simula-
tion values approached those obtained with Storm and remained close up to the overload point
at 22500 events/second. After this point, the simulation latency plateaued, whereas the Storm
value spiked. This di↵erence was caused mainly by the way that CEPSim handles full queues
by using backpressure and discarding generated events. Storm, on the other hand, delays gen-
eration of events, but does not discard them.

Networked Query

This experiment aimed to validate CEPSim simulation of distributed queries. To perform
this experiment, the query from Figure 6.10a was distributed into two VMs, such that the
DBConsumerBolt was placed into the worker2 server and all remaining vertices into worker1.

A constant delay network interface was used to simulate this query. In this network imple-
mentation, every event set sent through the network takes a fixed amount of time to arrive at
its destination. This is a reasonable approximation because all VMs from the experiment were
running on the same physical server and no real network tra�c was generated. The delay was
estimated as 1 ms in a separate experiment. Furthermore, a simulation tick length of 10 ms was
used to improve the simulation precision (see discussion on Section 6.5.6).

Figure 6.14 shows the simulated latency and throughput were very accurate and precise.
The latency error was less than 7% up to 27500 events/second. At 30000 events/second, the
Storm query started to overload and the error increased, but the CEPSim results remained
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(a) Latency. (b) Throughput.

Figure 6.14: Metrics estimation results - networked query q1.

within the confidence interval. Moreover, CEPSim estimated the maximum throughput as ap-
proximately 34000 events/second, which is very close to Storm’s overload point.

Multiple Queries

This experiment analyzed CEPSim’s behaviour when simulating multiple queries running con-
currently. To do so, first a Storm cluster was created at the Amazon EC2 service [10]. The
setup was similar to the one presented in Table 6.1, but all VMs were configured as instances
of the m4.large type (2 vCPUs and 8GB of RAM).

Four placements were then compared in a scenario where four copies of query q1 were
simultaneously run:

1. Placement1: one VM, with all four queries placed on it;

2. Placement2: two VMs, with two queries placed on each;

3. Placement3: two VMs, with all four instances of DBConsumerBolt placed on one VM
and the remaining bolts on the other;

4. Placement4: four VMs, with one query placed on each.

To avoid possible bottlenecks in the database server, DBConsumerBolt was replaced by a
mock implementation which does not access the database, but spins in a busy loop for 4.5 ms
(the average time spent to process a single event, as measured by the methodology described
in Section 6.5.3).

Table 6.4 presents the average latency of all four queries for both Apache Storm and CEP-
Sim and for all four placements. The CEPSim column also shows the relative estimation error.
Each query was set up to process 10,000 events/second. The throughput metric has been omit-
ted from the table because it was correctly measured as 10,000 events/second in all scenarios.
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Table 6.4: Multiple queries experiment - Latency measurements (in ms).

Apache Storm CEPSim
Placement1 12921.11 13234.15 +2.42%
Placement2 9840.91 10117.70 +2.81%
Placement3 12575.42 12030.00 -4.33%
Placement4 9795.91 10061.83 +2.71%

The results from this experiment demonstrated that CEPSim can accurately simulate multi-
ple queries running on the same VM and can be used to analyze di↵erent placement strategies.
For instance, the experiment showed that running two instances of query q1 on the same VM
does not greatly a↵ect their performance, as illustrated by the small latency increase from
Placement4 to Placement2. It is also clear from Placement1’s latency that placing four queries
on the same VM can overload it and may not be a good option depending on the users’ QoS
requirements.

6.5.5 CPU and Memory Overhead

This section presents two experiments that measured the execution time and memory consump-
tion of CEPSim simulations.

Figures 6.15a and 6.15b depict the results from the first experiment. This experiment simu-
lated a single VM running n instances of query q2 from Fig. 6.10b. The simulation time was set
to 5 minutes and each query processed 100 events/second. For each value of n, the simulation
was executed 10 times and the execution time and memory consumption were recorded. The
graphs show the average of these values alongside the 99% confidence interval. CEPSim was
able to simulate 100 queries in approximately 7 seconds and using less than 40 MB of memory.
Furthermore, both metrics grew sub-linearly as a function of the number of queries.

The results from the second experiment are shown in Figure 6.16. In this experiment, each
VM ran a fixed number of queries, and the number of VMs in the datacentre was varied. The
graphs show results for two di↵erent combinations. In the first, the number of queries per VM
was set to 10 and the number of VMs varied from 10 to 1000; in the second, the number of
queries per VM was set to 100 and the number of VMs varied from 1 to 100. Both combinations
resulted in the same number of total queries, but enabled comparison of the e↵ects of di↵erent
query placements on CEPSim performance.

The results for the two combinations were very similar. The maximum simulation time was
approximately 7 minutes for a total of 10000 queries, which translates to 1 million events per
second. Less than one 1 GB of memory was needed to run this simulation. Once again, both
execution time and memory consumption scaled sub-linearly. This same behaviour is expected
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(a) Execution time. (b) Memory consumption.

Figure 6.15: Execution time and memory consumption - single VM.

(a) Execution time. (b) Memory consumption.

Figure 6.16: Execution time and memory consumption - multiple VMs.
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(a) Latency. (b) Throughput.

Figure 6.17: Parameters experiments - Scheduling and allocation strategies.

as long as the available RAM is larger than the memory required by the simulation.

6.5.6 Simulation Parameters

The two experiments described in this section aimed to evaluate the e↵ect of di↵erent param-
eters in the simulations. First, it was analyzed how scheduling and allocation strategies a↵ect
the simulation metrics estimation. In addition, the e↵ects of simulation tick length on CEPSim
was assessed.

Operator Scheduling

To analyze the e↵ects of operator scheduling strategies, query q1 latency and throughput were
estimated using the default and dynamic scheduling strategies combined with the uniform and
weighted allocation strategies. Figure 6.17 summarizes the results obtained when query input
rate was configured to 100, 500, and 10000 events/second.

When the default scheduling strategy was used in high input rate scenarios, the throughput
was considerably underestimated and the latency overestimated. This occurred mainly because
DBConsumerBolt was scheduled at every simulation tick, even though it receives events only
when its predecessor ReadingAverageBolt window closes. This problem was even more pro-
nounced when weighted allocation was used. In this case, the number of instructions that
DBConsumerBolt received was proportional to its ipe, which is much higher than the other
operators’ ipes.

When using dynamic scheduling strategy, CEPSim better approximated Apache Storm’s
results in all scenarios. Nevertheless, when used with weighted allocation, dynamic scheduling
underestimated the average latency in the 10000 events/second case. In this combination, the
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Table 6.5: Parameters experiments - Simulation tick length.

Query Tick length Latency (ms) Execution
(ms) time (ms)

Local 10 10078.43 - 63400.43
100 10140.53 0.62% 9645.23

1000 10415.02 3.34% 2811.64
Networked 10 9730.00 - 66385.91

100 9865.01 2.78% 10058.58
1000 12636.47 29.87% 3106.90

dynamic strategy prioritized DBConsumerBolt whenever there are events on its input queues,
resulting in lower latency at the cost of lower maximum throughput.

Simulation Tick Length

To evaluate the e↵ects of simulation tick length on CEPSim, query q1 was simulated using
di↵erent simulation tick lengths in both local and networked cases. The results are summarized
in Table 6.5. The latency column shows the metric values estimated by the simulation. The
execution time column displays the average of 10 simulations, each one including 100 instances
of the query running for 5 minutes.

The results show that the simulation tick length enables users to adjust the trade-o↵ be-
tween precision and computational cost. A longer tick introduced estimation error for both
scenarios, but the execution time was significantly reduced. The error was more pronounced
in the networked query case because of the way network communication is implemented in
CEPSim: if a message is sent to a placement that has already been scheduled, then the message
will be processed on the next simulation tick only.

6.5.7 Discussion

The experimental results described in this section showed that CEPSim can e↵ectively model
real CEP queries and simulate them in a cloud environment. Execution time measurements
also demonstrated that CEPSim has excellent performance, being able to simulate 100 queries
running for 5 minutes in 7 seconds only.

One of the main CEPSim use cases is to understand query behaviour at various input
event rates. The experiments described in Section 6.5.4 showed that this study can be per-
formed using CEPSim with relatively good accuracy and precision for both distributed and
non-distributed queries and for both high and low input rate scenarios.

As another important use case, the experiments described in Section 6.5.4 - “Multiple
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queries” showed that CEPSim can also be used to simulate multiple queries running on the
same VM. The latency estimation error was kept fairly low during the experiment and enabled
comparison of di↵erent operator placement strategies.

The limitations showed by CEPSim to simulate query q1 at the maximum input rate high-
lighted the di�culty of simulating a system in an overloaded state. Further analysis con-
cluded that, at this point, most of the query latency consisted of I/O waiting time, as the
DBConsumerBolt writes to the database every event it receives. In this situation, the oper-
ating system continues to schedule other threads and processes, which can continue to process
events on their turns. CEPSim uses a simplified model in which operator latency is caused by
processing time spent on CPU only. In addition, the metric calculation errors at high input
rates were also caused by di↵erences in the strategy adopted to control the query load: while
CEPSim uses backpressure, Storm follows a pull strategy on which events are requested from
the producer only when there is available space at the operator queues.

As a final observation, it is claimed that CEPSim can be e�ciently used for Big Data sim-
ulations. Results from the experiments in Section 6.5.5 demonstrated that the simulator scales
well and handles large numbers of queries with a small memory footprint. In addition, CEP-
Sim customizability also enables the user to fine control the simulation by changing parameters
such as the simulation tick length and scheduling strategy. Moreover, even though Storm has
not been stressed at a larger scale, most experimental results are also applicable to these sce-
narios. This is true because, in practice, the distribution of Storm (and other CEP systems)
queries is limited to a few nodes. In other words, distinct VMs usually run independent pieces
of computation that can be simulated in isolation from others.

6.6 Summary

This chapter presented CEPSim, a simulator for cloud-based CEP systems. CEPSim can model
di↵erent CEP systems by converting user queries to the AGeCEP representation. The mod-
elled queries can be simulated on di↵erent environments, including private, public, hybrid,
and multi-clouds. In addition, CEPSim also allows customization of operator placement and
scheduling strategies, as well as the queue size and data generation functions used during sim-
ulation.

Experimental results have shown that CEPSim can simulate a large number of queries run-
ning on a large number of virtual machines within a reasonable time and with a very small
memory footprint. Furthermore, the experiments also demonstrated that CEPSim can model
a real CEP system (Apache Storm) with good accuracy and precision. Together, these results
validated CEPSim as an e↵ective tool for simulation of cloud-based CEP systems in Big Data
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scenarios.
By using CEPSim, architects and researchers can quickly experiment with di↵erent config-

urations and query processing strategies and analyze the performance and scalability of CEP
systems. Hopefully, the availability of a simulator may also encourage research in this field.

The next chapter presents the last contribution of this research: the design and prototype
implementation of the CEPaaS system.



Chapter 7

Complex Event Processing as a Service

This chapter presents the design and implementation of a Complex Event Processing as a Ser-
vice (CEPaaS) system. First, the motivation and goals of this system are discussed in Sec-
tion 7.1, followed by an overview of its architectural features in Section 7.2. Next, the system
architecture, design and implementation are detailed in Sections 7.3, 7.4 and 7.5. Finally, the
system is evaluated regarding its processing latency and fault tolerance in Section 7.6.

7.1 Motivation

Despite a recent surge of interest in CEP motivated by its use in Big Data scenarios, today the
CEP market is still dominated by a few proprietary solutions [86, 123, 139] that require large
investments for their acquisition, but are still not as flexible as desired. Alternatively, on the
other side of the spectrum, many companies adopt open-source, low-level systems [17, 18, 153]
whose deployment demands intense technical training and high operating costs.

To address these problems, this research proposes the creation of a CEP as a Service
(CEPaaS) system to enable the o↵ering of CEP functionalities in the cloud services model.
This model brings many advantages to the system users, such as no up-front investment, low
maintenance cost, and ubiquitous access via the Internet.

Nevertheless, o↵ering such a service involves many challenges, which is reflected in the
limited number of similar services today. First, low latency is essential to many CEP use
cases, but is di�cult to achieve in a service environment because there is no control over the
locations of event sources and consumers. In addition, some use cases impose an unpredictable
and variable load over the system, requiring the implementation of elasticity capabilities in the
system.

Moreover, CEPaaS is inherently multi-tenancy, which also brings many implications to
the system architecture and design. For instance, a multi-tenancy system has to have high

125
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availability because an outage a↵ects many customers and can seriously damage the service
provider reputation. It is also necessary to control the resource usage of user queries and
guarantee their isolation so that they do not interfere with each other.

By o↵ering it to anyone with Internet access, the system is expected to scale primarily in
the number of queries rather than in the input event rate of a small number of queries. Finally,
by targeting such a wide spectrum of users, the system must be usable by non-specialists, but at
the same time should not prohibit the definition of custom processing logic by advanced users.

The next sections discuss in detail the architecture, design and implementation of a CEPaaS
system that aim to solve the mentioned challenges.

7.2 System Overview

To handle the challenges associated with o↵ering CEP as a managed service, the CEPaaS sys-
tem is built on three main pillars: a multi-cloud architecture, container management systems
(CMS), and an extensible multi-tenant design. The first two are leveraged at the architectural
level to provide a scalable and fault-tolerant runtime environment for queries. The third pro-
vides a novel design in which the system applicability increases with the number of users.

Figure 7.1 shows an overview of the system architecture. The figure depicts one primary
and two secondary deployments of the system, each one running in a di↵erent cloud. In this
context, cloud is loosely defined as a cluster of servers o↵ered by a cloud provider that are
connected via a high speed network and are geographically close to each other. In terms of
Amazon’s and Google’s nomenclature, this definition implies that the servers from a cloud are
running on the same region or zone.

This architecture is not strictly compliant with the multi-cloud definition provided in Sec-
tion 2.2.3, which requires clouds managed by di↵erent providers. The CEPaaS system, on the
other hand, only demands clouds that are physically apart. Note, however, that this less archi-
tecture already brings the two most important advantages of multi-cloud to the CEPaaS system.
First, it increases system availability, as it is possible to continue to process user queries even
if an entire cloud goes o↵-line. Second, it enables exploration of the geographical diversity
of clouds, creating the possibility of a strategic deployment in which system resources are
positioned close to event sources and consumers.

It is important to emphasize the architecture does not need to be modified whether the
clouds are managed by di↵erent providers or not. In both cases, all three deployments from
the figure contain a set of system components that are required for running user queries. The
primary deployment also hosts components used for user interaction. Note that the number of
secondary deployments is not fixed and depends on the quality of the service that the provider



7.2. System Overview 127

Container Mgmt
System (CMS)

Images
Registry

Message BrokerMessages

Q1 Q2Config
Manager
Config

Manager
Query Analyser 

& Manager
Query Analyzer 

& Manager (QAM)

CEPaaS CoreCEPaaS Core CEPaaS 
UI

CEPaaS
Web

Q3

UI

API

Data
Storage

Container Mgmt 
System (CMS)

Images
Registry

Message Broker Messages

Q4

Config
Manager
Config

Manager

Query Analyser 
& Manager

Query Analyzer 
& Manager (QAM) Q5

Primary Deployment

Secondary Deployment 1 Secondary Deployment 2

System
Components

User
Queries

Provided
Components 

Communication
Boundary

Container Mgmt 
System (CMS)

Images
Registry

Message Broker Messages

Q6

Config
Manager
Config

Manager

Query Analyser 
& Manager

Query Analyzer 
& Manager (QAM) Q7

Figure 7.1: CEPaaS system architecture.

wants to o↵er.

Another important aspect of the CEPaaS architecture is that every deployment is man-
aged by a CMS, which is either provided as a managed service, such as Amazon Container
Service [11] and Google Container Engine [60], or is pre-installed in the cloud servers. By
encapsulating every system component as an application container it is possible to isolate and
control their resource usage. This encapsulation also facilitates and encourages independent
upgrade of system functionalities. These benefits are similar to the ones brought by VMs, yet
with less execution overhead and more e�cient usage of resources (Section 2.3). Moreover, the
infrastructure provided by a CMS guarantees that all containers are constantly running, which
drastically simplifies the implementation of fault-tolerance in the system.

It is important to note that even user queries are executed as application containers in
CEPaaS. This is a very important design decision that brings two additional benefits to the
system. First, scalability in the number of queries is naturally handled as new query containers
are created and scheduled by the CMS. Second, because queries have di↵erent resource re-
quirements and workload profiles, an intelligent scheduling strategy can significantly increase
the utilization level of the cloud servers.

On top of this architecture, the CEPaaS system adopts an extensible multi-tenant design
based on a query template mechanism that relieves users from learning query definition lan-
guages. In the CEPaaS system, queries are created by simply instantiating query templates.
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In addition, advanced users can still create new query templates based on a library of oper-
ator templates or create new operator templates based on a Java API. Finally, because query
and vertex templates can be shared among customers, this design promotes a strong library of
operators and queries that is maintained and reinforced by the users themselves.

7.3 System Architecture

The CEPaaS system architecture is based on one or more deployments, which run in clusters
of servers in multiple cloud environments. All CEPaaS deployments are managed by a CMS
and contain three system components necessary for running user queries: the Config Manager,
which maintains the system configuration; the Message Broker, which functions as the system
communication hub; and the Query Analyzer and Manager (QAM), which is responsible for
managing the lifecycle of user queries. The primary deployment also hosts the CEPaaS Core,
CEPaaS Web and Data Storage components, which together provide an API and a Web Appli-
cation that can be used to interact with the CEPaaS system. In the following subsections, these
components and their interactions are discussed in detail.

7.3.1 Container Management System

CEPaaS architecture assumes that every cloud used by the system is controlled by a CMS.
From the architectural standpoint no specific CMS implementation is required as long as it
provides all functionalities expected. In theory, even di↵erent implementations could be used
simultaneously, only requiring the adaptation of the pieces of code and scripts that interact
directly with the CMS.

The following list summarizes the features that must be provided by the CMS:

• Docker support: every CEPaaS component has an associated Docker [114] image, and
the CMS must support the creation of multiple containers based on this image.

• Container scheduling: once a container is created, it must be automatically scheduled in
one of the cloud servers.

• Container fault-tolerance: a system administrator specifies the number of replicas for
each container type, and the CMS must guarantee that this number is respected. In
other words, the CMS must automatically detect failed containers and restart them if
needed. In CEPaaS, every system component is replicated at least twice to guarantee
high-availability of the system.
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• Dynamic attachment of volumes: the CMS must be capable of associating a container
to a data volume and of automatically attaching it to the server in which the container
is scheduled. This attachment must be dynamic because the server in which a container
runs is unknown beforehand. In CEPaaS, the Config Manager, Data Storage, and Mes-
sage Broker components require persistent data and, therefore, use this feature.

• Automatic load balancing: when multiple replicas of the same container are created,
the CMS must support the creation of a service associated with an external IP and must
automatically forward requests sent to this IP to the container replicas. This is necessary
to guarantee that the CEPaaS Core and Web components are externally accessible and
have a load balancing mechanism in place.

• API access: the CMS must provide an API that other pieces of software can use to control
and monitor the runtime environment. In particular, the QAM component requests the
creation and removal of query containers, and both QAM and CEPaaS Core examine the
runtime status of existing query containers.

These other features are also expected even though they are not essential:

• Image registry: ideally, the CMS should have a local registry that can be used to store the
container images used by the system. If a registry is not available, public registries can
be used. In this case, however, the CMS must have Internet access as a way to contact
them.

• Advanced scheduling capabilities: a good scheduling strategy should guarantee that the
servers have enough resources to run all containers allocated to them and the load of
all servers is relatively balanced. At the same time, the scheduler should maintain the
utilization level of all servers as high as possible to reduce the cost of running the system.
Finally, the scheduler should allocate replicas from the same container in di↵erent servers
in order to improve the availability of each service.

Note that the interaction with the CMS takes place at two distinct moments. The first
moment is when a new CEPaaS deployment is created and all system components must be
set up. This step is usually performed by a system administrator and results in the creation of
the system component containers. After a deployment is created, the QAM and CEPaaS Core
components constantly interact with the CMS to create new queries and poll for their status.

Currently, the Kubernetes [63] system described in Section 2.3.2 is the only CMS which
provides all functionalities required by CEPaaS, and, therefore, it was adopted in this research.
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7.3.2 Message Broker

The Message Broker component is the communication hub of the CEPaaS system. Its main
purpose is to decouple producers and consumers of messages, and to guarantee that messages
are delivered to their intended destinations even in the case of failures. Currently, the Message
Broker is used for the following:

• QAM monitored events: the QAM component uses the Message Broker as the source of
its input events. These events include user requests to create and remove queries, and
also monitoring information about the status of running queries and servers.

• Queries input events: all events processed by CEPaaS queries are sent from the event
producers to the Message Broker, and then processed from there. Most event producers
are external to CEPaaS and, therefore, it is fundamental to decouple them from system
internals.

Every CEPaaS deployment has a cluster of message brokers that serve as destination of all
messages addressed to its local components. Similarly to CMS, CEPaaS can use di↵erent im-
plementations of message brokers as long as they provide all guarantees required by CEPaaS.
More specifically, the message broker is expected to be fault-tolerant, to handle a high volume
of events, and to provide some mechanism that enables parallel consumption of events from
the same topic. Currently, the CEPaaS system uses Apache Kafka [94] as the Message Broker.

Figure 7.2 shows an overview of Apache Kafka architecture. In Kafka, messages are
grouped into topics and each topic is divided into a number of partitions. Each partition,
in turn, contains a sequence of messages and is internally structured as an append-only log file.
To guarantee durability and fault-tolerance, Kafka replicates every partition to other nodes of
the cluster. The number of replicas is configurable, and in CEPaaS this number is currently set
to three. In Figure 7.2, both topics are illustrated with three partitions (P0, P1 and P2) and two
replicas for each partition.

When messages are sent to a topic, the client application determines a target partition based
on a hash value of key attributes or some customized logic. To read messages from the topic,
a consumer application can subscribe to a specific topic and set of partitions to receive the
respective messages. For each partition, consumers read messages from the partition leaders
only, which are shown in bold in Figure 7.2. Although it is guaranteed that messages from a
single partition are delivered in an ordered fashion, the same does not apply between messages
from di↵erent partitions and topics.

Alternatively, one or more consumers can form a consumer group and subscribe to the
entire topic. In this case, Kafka automatically divides the partitions and assigns them to con-
sumers belonging to the same group. Furthermore, Kafka also monitors this assignment and
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Figure 7.2: Apache Kafka architecture.

re-evaluates it in case new consumers are added or removed. This situation is illustrated in
Figure 7.2 by consumer groups 1 and 2. The topic partitions are evenly divided between the
consumers from the group. This is an important feature because it facilitates parallel consump-
tion of events from the same topic.

7.3.3 CEPaaS Core /Web / Data Storage

The CEPaaS Core component implements the main API used for interaction with the CEPaaS
system. For example, this API is used to create new event producers and queries and to remove
running queries.

The API is provided as a REST interface and the data exchange format is JSON. Internally,
CEPaaS Core is implemented using Play! Framework1, and most of the application state is
kept in the Data Storage component. For instance, this storage contains information about the
system users, available operator templates, and the list of created queries. Runtime information,
such as the status of a query, is directly obtained from the CMS and from the query containers.
A detailed description of the API is provided in Appendix C.

The Core and Data Storage components are only available at the primary deployment.
Therefore, if this deployment is o↵-line, all services provided by the API are not accessible.
This is a current limitation of the CEPaaS architecture that exists because it is di�cult to
maintain Data Storage replicas consistently synchronized, especially when they are separated
by a high-latency WAN network and can be concurrently modified. CEPaaS currently uses

1https://www.playframework.com
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MongoDB2 as storage, which does not support this scenario. In future work, this limitation
will be lifted.

The CEPaaS Web component, on the other hand, is a traditional Web application that acts
as the Core frontend and complement of the API. It is implemented using traditional Web
technologies HTML 5, CSS 3, Bootstrap3 for layout, and jQuery4 library to facilitate JavaScript
programming. All communication between Web and Core is performed via the REST interface.

7.3.4 Config Manager

The Config Manager is responsible for all configuration information needed by the system,
such as the IP address of messages brokers, the name of topics used to receive data from
external agents, and others.

The decision to store this information logically separated from the Data Storage has been
taken because it is important to have configuration data always available and strongly consis-
tent. Because these data rarely change and their size are much smaller than the size of applica-
tion data, it is possible to use a storage solution that has trade-o↵s and consistency guarantees
distinct from the Data Storage. In addition, systems that are commonly used to store config-
uration data, such as Zookeeper [83] and etcd5 also provide extra functionalities that can be
applied to coordinate distributed components.

The current CEPaaS prototype maintains the configuration data in a MongoDB database,
which is also used as the Data Storage component in primary deployments. The configuration
data is manually synchronized between the MongoDB instances whenever they change. The
CMS monitors these instances and restarts them as soon as a failure is detected, which reduces
the down time in case of failures. In the future, MongoDB will be replaced by a specialized
configuration manager with better support for data synchronization and distributed coordina-
tion.

7.3.5 Query Analyzer and Manager

QAM is the component responsible for managing the lifecycle of user queries and of the run-
time environment. Every CEPaaS deployment has a set of QAM replicas that process events
from the local deployment.

QAM implements an autonomic manager similar to the one described in Section 5.1. Its
main responsibilities include:

2https://www.mongodb.com
3http://getbootstrap.com
4https://jquery.com
5https://coreos.com/etcd/
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• Create query: requests to create new queries are sent by the Core component on behalf
of the system users. When receiving such requests, QAM optimizes the query graph and
initializes the Message Broker to receive events intended for the query.

• Start query: requests to start a query are also sent by the Core component on behalf of the
system users. In this case, QAM resolves all query configurations, converts the queries
to the AGeCEP format, and invokes the CMS to create new query containers.

• Stop query: when QAM receives a request to stop a query, it simply invokes the CMS to
remove the corresponding query container.

• Query monitoring: monitoring information is sent periodically by the query containers to
QAM containing metrics about query performance, such as the size of operator queues,
processing latency, and throughput. This data is processed by self-management policies,
which can react to the monitored data and execute reconfiguration actions to improve the
query quality of service.

Details of these procedures are provided in Section 7.5.

7.4 System Design

The CEPaaS system is designed to be multi-tenant, flexible, and accessible for non-technical
users. To enable this, it leverages the idea of query templates as pre-defined event process-
ing recipes that can be customized and instantiated. A class diagram showing CEPaaS core
concepts is shown in Figure 7.3.

7.4.1 Tenant

A tenant is a company, group, or a single individual that uses the system. In a scenario in
which the CEPaaS system is o↵ered as a paid service, the tenant is the entity that establishes a
contract with the service provider.

Associated with each tenant there is a set of users, who are the ones who operate the system.
A user has an email and password that are used to log into the Web application and to authorize
API calls sent to the Core component. In addition, every tenant also registers a set of event
sources, representing systems, devices, or any other source that produces events consumed
by the tenant queries. For instance, a tenant that uses the system to monitor the resource
consumption of buildings can register as event sources electricity meters, temperature sensors,
or any other device that produces data and needs to be integrated into the system.
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Figure 7.3: Class diagram of the CEPaaS system.

Finally, each tenant also has an associated library that contains the vertex and query tem-
plates that its users are allowed to use. Details about templates are discussed next.

7.4.2 Vertex Templates

Vertex templates constitute the query template building blocks. According to the role they have
in a query, vertex templates are classified as producer, operator, or consumer templates.

A producer template represents a certain way to introduce events into the system. For
instance, CEPaaS has a built-in “kafka” producer template that reads incoming events from
the Message Broker. Nevertheless, other types of producer templates can also be used to read
events from alternative sources such as Amazon Kinesis [12] and Google Pub/Sub [62].

An operator template, on the other hand, represents a piece of logic that can be reused in the
context of event processing queries. In practice, every operator template instance is associated
with a set of classes that implement the processing logic and are used at runtime. Details of
this association are presented in Section 7.5.2. Currently, CEPaaS provides a set of built-in
operator templates that can be used by any user with access to the system. In the future, users
will also be able to create their own operator templates and (optionally) share with others.

Finally, consumer templates are used to represent actions executed on the query results.
For instance, query results can be translated into alerts, such as email messages to system
administrators, or can be published into the CEPaaS Message Broker. Like the other vertex
template types, CEPaaS provides built-in implementations for the most common cases and
additional ones can be added if needed.

Independently of its type, every vertex template is associated with a set of parameters and
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configurations. Parameter values are used to customize template behaviour, and are set by the
users. For example, the “filter” operator template has a parameter named “expression” that
stores the boolean expression to be evaluated by the filter. Configuration values, on the other
hand, are used to bind templates to the runtime infrastructure in which they are running. For
instance, the “kafka” producer template has a configuration named “broker list” that contains
the IP addresses of the local Apache Kafka brokers. Unlike parameters, configurations are not
related to business logic and are automatically resolved by the CEPaaS infrastructure when a
query is started.

7.4.3 Queries

Using the three types of vertex templates as building blocks, a query template is defined by
connecting them into a coherent graph structure that implements some event processing logic.
Similarly to vertex templates, users can also share query templates they created with other
users. In this way, the system aims to build a strong collection of query templates that are
sourced from its own user base.

There are only a few constraints about what constitutes a valid query template. First, the
graph must be acyclic. Second, a query template is not allowed to have more than one producer
template associated with the same event source. Finally, each query template can have only one
consumer template. Note this constraint does not restrict the number of event consumers of a
query: the consumer template simply represents an action that is executed on the query results.
For instance, the “kafka” consumer template forwards the query results to the system Message
Broker and, from there, they can be read from any number of other queries and external entities.

Moreover, it is important to note that a query template is not a runtime entity, but simply
a description of a potentially reusable event processing logic. An actual running query is only
created when a query template is instantiated. At this moment, the user must provide values
for all vertex template parameters that do not have default values.

Figure 7.4 illustrates these concepts further. The far left of the figure shows a set of vertex
templates belonging to the tenant library. In the centre, a selected set of these vertex templates
are connected together to create a new query template in which a window operator groups
events to calculate the average value of a certain attribute and a filter is executed over this
average. For example, this query template can be used to detect sensor readings that are above
or below a threshold.

The right part of the figure depicts two queries created from this query template. Note
that for each query a di↵erent set of parameters is provided, which results in the same logic
being executed in two di↵erent contexts. For instance, one query can be used to monitor the
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Figure 7.4: CEPaaS core concepts.

temperature of the IT room, whereas the other can verify a transformer temperature. Details of
the query creation procedure are described in Section 7.5.4.

7.5 System Implementation

This section discusses implementation details of the CEPaaS system. It starts by examining
how events are represented. Following that, it details how a vertex template is defined and
presents the list of vertex templates currently built into the system. Finally, it describes the
query execution engine including details of the transformation from query templates to con-
tainers and of the fault-tolerance guarantees provided by the system.

7.5.1 Events

In the CEPaaS system, events are defined as the computational representation of something that
happened in the context of interest. Because CEPaaS is a multi-tenant system not tied to any
specific domain, this definition is intentionally generic. For instance, depending on the domain
to which the system is applied, an event can represent a sensor reading, the CPU consumption
of a server, or the creation of a new user on a website.

Independently of their semantics, all events are represented as JSON documents [29].
JSON is a lightweight, structured representation of data that is used in most APIs available
today, including in the CEPaaS Core.

Figure 7.5 depicts two events represented in JSON. The event in Figure 7.5a represents a
sensor reading and contains three simple attributes. The event in Figure 7.5b also contains a
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{
   "sourceId": 120,
   "timestamp": 1461112695065, 
   "value": 10.0
}

(a) Sensor reading.

{
   "name": "qam_server1"
   "server_ip": [
      "192.168.1.134",
      "10.0.1.22”
   ],
   "timestamp": 1461112909072, 
   "cpu_load": 0.34,
   "memory": {
      "used": 2155,
      "available": 1941 
   }
}

(b) Server monitoring information.

Figure 7.5: Events - JSON representation.

list attribute (server ip) and a nested document (memory).
Because of the chosen representation, events in CEPaaS are also schema less. In other

words, events are not associated with a formal description of its structure (attributes and
datatypes). Therefore, event streams exchanged between operators are not “strongly typed”
and the system does not check for output and input compatibility between operators when a
query template is defined.

Because of this limitation, the user who instantiates a query is responsible for guaranteeing
that the input events contain all data needed by the query template and the data has the correct
datatypes. The disadvantage of this approach is that some errors are only detected at runtime,
which complicates initial configuration and tests. Nevertheless, this also brings two advantages
to the system. First, it reduces the runtime overhead because events are processed as they come
without further checking. Second, it facilitates the creation of generic operators that can be
used in a variety of query templates.

During processing, the processed events are encapsulated into objects called tuples and
exchanged between query operators. Tuples keep additional information about events, such as
the timestamp at which they entered the system and the sequence of operators that they have
been through. This extra information is used to calculate operator performance attributes and
the query quality of service.

7.5.2 Vertex Template Logic

In CEPaaS, every vertex template is defined by two main parts: the metadata and the imple-
mentation. Figure 7.6 shows the definition of the “filter” operator template.

The metadata is defined by a JSON document and includes basic information about the
template, such as its name, description, and the set of parameters and configurations it uses.
Moreover, the metadata also contains the template classification according to the AGeCEP
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{
 “name”: “filter”,
 “description”: “…”, 
 “parameters”: [
  { “name”: “expression”, “type”: “simple”, “kind”: “string” }
 ],
 “configurations”: [ ],
 “classification”: {
  “duplicable”: “true”, “requiredSplit”: “random”, …  
 }
}
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Figure 7.6: Vertex template definition.
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criteria presented in Section 4.3. This classification is essential because it tells how an operator
can be managed by the CEPaaS system. For instance, the duplicable criterion indicates if an
operator can be duplicated to parallelize its execution. All these metadata are provided by the
user who created the template and are stored in the Data Storage component.

The implementation part of a vertex template, on the other hand, is defined by a set of
classes that implement three distinct interfaces: Initializer, Resolver, and Logic. The defini-
tions of these interfaces are shown in Figure 7.7. Note that a vertex template does not imple-
ment Logic directly, but one of its sub-interfaces according to its type.

To show how each of the vertex template classes are employed, Figure 7.8 illustrates the
typical states of a CEPaaS query and how the template classes are linked to query state tran-
sitions. When a query template is instantiated, a query is created and the setup method from



7.5. System Implementation 139

Created Started Stopped
create start

resolver

stop

restart

resolver

remove

initializer
(setup)

event logic

initializer
(teardown)

Figure 7.8: Query state machine diagram.

all vertex initializers used in the query is executed. The vertex initializers are responsible
for preparing the environment for query execution by setting up any resource needed by the
templates. For instance, during setup the “kafka” producer initializer checks in the Config
Manager to learn whether the event source associated with it already has an allocated partition
in the Message Broker. If it does not, then an allocation is created. Conversely, the initializers
also have a teardown method which is run when a query is removed from the system.

The template resolver, on the other hand, is executed every time the query is started or
restarted. Its main goal is to resolve all the vertex configurations by interacting with the Config
Manager. For instance, in the “kafka” producer case, the resolver reads configurations about
the brokers IP addresses, the tenant’s topic name, and the event source partition.

Finally, the logic part is the one that defines the event processing logic itself. Note there is
one specific interface for each vertex template type: Producer, Operator, and Consumer. They
all inherit from a common interface Logic and therefore share the method init, which acts as the
constructor of the Logic object. For example, in this method the “kafka” producer establishes
connections with all Kafka brokers.

The main logic of a Producer is defined in the method read, which returns a future of
a sequence of tuples. By using a future as the return type, CEPaaS enables the producer
implementation to control when the method should return and, therefore, to regulate how data
is transferred from the producer to the query. At runtime, every time a future is fulfilled the
method read is invoked again to request the production of more tuples.

Analogously, an Operator main logic is implemented in the process method, which re-
ceives a tuple as input and returns a sequence of tuples and a destination to which these tuples
must be sent. Note that di↵erent implementations of the Destination interface enable the op-
erator to fine control the target of the tuples: to an Error queue, to a S ingle successor, to
Multiple successors, to All successors, or to None of them. More details can be consulted in
Appendix D, which contains a complete definition of the “filter” operator template.

The CEPaaS system also provides an alternative way to define operator templates by using
the Drools Rule Language [89] (DRL) instead of Java code. All operator templates defined this
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Figure 7.9: A DRL rule definition.

way are associated with the same DroolsOperator class, which is configured to read a DRL
file with the rule content.

Figure 7.9 shows a DRL example. Values specified in curly brackets are parameters of
the operator template that must be specified by the user when instantiating a query template.
DRL rules are declarative in nature and enable the specification of pattern-based conditions,
including the use of quantifier operators and event windows. In this example, an alarm is
created whenever the average value of a certain sensor over the last windowS ize seconds is
higher than an upperLimit.

Finally, the process method contains the event processing logic for Consumers. The
method is similar to the Operator’s read method, but it simply returns a Try object signal-
ing the success or failure of the processing.

7.5.3 Built-In Templates

The CEPaaS system provides a set of built-in vertex templates that can be used by any tenant to
define query templates. These built-in vertex templates provide common event processing logic
that are reused and integrated with user-defined operators to implement the tenant’s business
requirements. The list of currently available built-in vertex templates are:

• Kafka Producer: reads incoming events of a specified event source from the built-in
Message Broker. This producer assumes that each tenant has its own topic with a con-
figurable number of partitions (by default 20), and the tenant event sources are evenly
distributed among these partitions. Figure 7.10a shows a schematic of how topics and
partitions are organized. Each partition of the tenants’ topics receives data from many
event sources. For instance, partition 1 from tenant 1 receives data from sources s1, s3,
and s8.

This design has been chosen over a design having one topic per event source to avoid the
creation of too many topics in the broker. However, this design implies that a producer
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Figure 7.10: Kafka Producer and Consumer.

may receive events from more than one event source when reading from a single parti-
tion. In this case, events that are not addressed to the producer are simply discarded. For
instance, the producer p3 from Figure 7.10a receives data from s1, s3, and s8 but only
forwards s3 events.

Moreover, this producer template can be configured to periodically checkpoint the o↵set
of the last processed event into the Messsage Broker. By doing so, it can continue to
process events from the last checkpoint after a restart. More details about this recovery
mechanism are provided in Section 7.5.4.

• Filter: removes events that do not satisfy a boolean expression from the event stream. It
supports expressions consisting of boolean, relational, and simple arithmetic operators.

• Projection: extracts a subset of attributes from the input events and creates new events in
the output that contain only this subset.

• Augmentation: augments input events with new attributes that are derived from existing
attribute values. It also supports boolean, relational, and simple arithmetic operators, in
addition to string concatenation.

• Windowing: groups input events into windows, and emits tuples containing the grouped
events. The current implementation is based on the window size and advance parameters,
and is similar to the windowed operator described in Section 6.3.1.

• Kafka Consumer: sends the query results to the Message Broker. As in the producer
template, each tenant also has a topic to store its resulting events. In this case, however,
the events are partitioned per kafka consumer instance (and consequently, per query).
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Figure 7.10b shows an schematic of how topics and partitions are organized for the con-
sumers case. Each consumer sends data to a single partition of the tenant topic.

• Email Consumer: sends the query results to a configurable email address.

For all these built-in templates, the Data Storage is pre-populated with their corresponding
metadata, and the operator logic classes are included in query execution engine binaries.

7.5.4 Query Execution Engine

CEPaaS query execution engine is built on top of Akka [6], a programming toolkit created to
facilitate the implementation of distributed, scalable, and fault-tolerant applications. To achieve
these goals, Akka applies the actor model of concurrent computation presented by Hewitt et
al. [73].

The actor model is based on the principle that a program can be modelled as a set of actors
that only communicate with each other through a set of asynchronous messages. When an actor
receives a message, it can react by sending other messages, by designating the behaviour to be
used in the next message, or by creating new actors. This relatively simple model relieves the
programmer from dealing with thread management and locking issues because the actor state
is only accessible by itself. In other words, if one actor needs to access another actor’s state,
it needs to explicitly request it with a message and the response is received later in another
message. The concurrency in such a program primarily happens between actors processing
their own set of messages.

The Akka toolkit adds more functionalities to this model and adapts it to distributed and
fault-tolerant scenarios. In Akka, distribution is primarily achieved by making actors location-
transparent. An actor communicates with others using actor reference objects, which can point
either to local or to remote actors. From the sender point of view, communication with remote
actors is indistinguishable from local communication. Fault tolerance, on the other hand, is
based on a supervision hierarchy model in which an actor monitors its children actors for
failures and decides what to do when such a failure is detected.

In runtime, every Akka actor is part of an actor system, which hosts a series of services
that are shared among its actors (e.g., logging and configuration). Every actor system also has
a dispatcher that manages actor scheduling and execution. In practice, a dispatcher is usually
implemented via a thread pool. Finally, to exchange messages, every actor is associated with
a mailbox that is used to hold messages destined for it. By default the mailbox is a simple
unbounded queue, but other implementations are available and can be used to adapt the actor
to di↵erent scenarios.
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The CEPaaS system leverages Akka functionalities to provide a robust and fault-tolerant
environment for query execution. The following subsections discuss how a user query is cre-
ated and transformed into Akka actors for execution.

Query Creation

Figure 7.11 depicts a sequence diagram that details query creation in CEPaaS. When the
CEPaaS Core component receives a creation request, it first inserts the new query into the
Data Storage. Next, it determines in which CEPaaS deployment the query should run. Cur-
rently, each tenant is associated with a single deployment to which all its queries are allocated.
Once determined, a “create query” message is sent to the Message Broker from that deploy-
ment. This message is eventually consumed by QAM, which invokes the Initializers for all
vertices and prepares the environment for the query execution.

Query Start

Starting a query is a complex process that involves most CEPaaS components. To facilitate
its understanding, this process is depicted in two sequence diagrams. The first, in Figure 7.12,
shows it from the moment a request is received up to the query container creation. The second,
depicted in Figure 7.13, illustrates how the Akka actors are created and mapped to a query.

When CEPaaS Core first receives a request to start a query, it determines in which de-
ployment the query has been created and forwards the request to the corresponding Message
Broker. This message is eventually consumed by QAM, which then executes the following
steps:

1. Invokes the Resolvers for all vertices in the query. Here, most resolvers will interact with
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the Config Manager to determine its configuration.

2. Converts the query to the AGeCEP model. Note that for queries based on query templates
the conversion to AGeCEP model is direct because the query template is a DAG and every
vertex template is, by definition, already classified according to AGeCEP criteria. In the
future, queries will be defined in other languages, and this step will normalize them to
the universal AGeCEP representation.

3. Creates a JSON description of the AGeCEP query. This description contains all infor-
mation needed to execute the query, including configuration values (determined in the
previous step), name of vertex template implementation classes, and tenant details.

4. Requests the CMS to create a query container.

The query container receives as parameter the JSON document created in step 3 and passes
it to the main method of the query application. In the main method, the application creates
an actor system and a query actor to manage the execution of the AGeCEP query specified in
the JSON. The query actor, in turn, iterates through all query vertices in backwards topological
sort order and for each vertex creates the corresponding Logic class, invokes the init method,
and creates a vertex actor to encapsulate the logic. Finally, a start message is sent to the query
actor to signal the execution start.
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Figure 7.13: Sequence diagram - query start - part 2.

Query Execution

Figure 7.14 illustrates how application containers and the Akka framework are used to run
AGeCEP queries. Each query is encapsulated in a Docker container and is scheduled by the
CMS. Inside the container, an Akka actor system runs on top of a Java Virtual Machine (JVM)
and hosts all actors that are part of the query.

As explained in the previous section, every query has at least one corresponding query
actor that is responsible for creating the vertex actors and for supervising them. The vertex
actors, in turn, execute the event processing logic according to the encapsulated vertex:

1. Producer actors: on initialization, the actor invokes the read method from the encapsu-
lated Producer. When the returned future completes, the actor forwards the produced
events to its successor and invokes the read method again.

2. Operator actors: when an operator actor receives events from its predecessors, it for-
wards the events to the encapsulated operator logic and processes the results of this
invocation. As explained in Section 7.5.2, the resulting events can be forwarded to one,
multiple, or all successors. Alternatively, they can be discarded or sent to an error queue
in case of problems.
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Figure 7.14: Runtime view of a query.

3. Consumer actors: the consumer actor works similarly to the operator actor: the events
received are forwarded to the encapsulated consumer logic and the results are processed.
Because consumer logic never produces new events, the only two possible outcomes are
success, in which case the events are assumed to be successfully consumed, and failure,
in which case the input events are sent to an error queue.

Fault Tolerance

Fault tolerance of the CEPaaS queries is implemented by a two-level supervision hierarchy.

The first level occurs internally to the query container and is managed by the Akka toolkit.
As mentioned in the “Query Execution” section, every query container has a query actor that
creates the vertex actors and, as such, is responsible for supervising them. If a vertex actor
fails, the error is detected by the supervisor, which restarts the failed actor. To avoid continuous
restarts, the supervisor implements an exponential back-o↵ algorithm that increases the time
delay between restarts every time a child actor fails. In addition, if the restart delay reaches a
configurable maximum (by default one minute) then the query actor itself (and the container)
will also fail.

The second level of supervision is managed by the CMS. Every query container scheduled
by the CMS is associated with a replication controller, which is responsible for maintaining
one replica of the query container running. Therefore, if a server crashes, or a query container
stops working, the replication controller detects it and requests the creation of a new container
to replace it.

Because events sent by the external producers are persisted in the Message Broker before
delivery, these producers are unaware of possible problems with their queries and no event is
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lost in case of a query failure. Upon restart, the “kafka” producer retrieves from the Message
Broker the last committed checkpoint and restarts processing events from this position. This
mechanism guarantees that all events are delivered at-least-once to the query, but does not
guarantee they are all processed. For instance, an already checkpointed event that is part of
an aggregation window may be lost if a failure occurs. In addition, the calculated state of this
window is also lost upon a failure and needs to be rebuilt starting from the next consumed
message.

CEPaaS recovery mechanism, therefore, implements gap recovery and is similar to the
amnesia approach presented by Hwang et al. [84]. Mechanisms that implement recovery with
stronger guarantees have been thoroughly studied in the literature and will be incorporated to
the CEPaaS system as future work [17, 53, 84].

Monitoring

In addition to the basic query creation and removal functionalities, the QAM component also
monitors running queries to adjust them to changing conditions and to provide runtime infor-
mation for the system users.

Monitoring information is collected periodically by the query actors and is sent to a special
Message Broker topic. This information includes the number of events in the operator queues,
total events processed, average query throughput, and average query latency. The monitoring
topic is partitioned by the tenant ID and is read by a set of QAM replicas belonging to the
same consumer group. As described previously, the Message Broker automatically distributes
these partitions among consumers, enabling parallel consumption of events and significantly
improving QAM scalability.

Upon receiving monitoring information, QAM executes the MAPE-K loop described in
Section 5.1. First, query representations stored in an in-memory knowledge base are updated
with the received information. This information is then fed to the monitoring module and to the
set of self-management policies present in the KB. The execution of inference rules is managed
by Jboss Drools [89]. Currently, only simple rules that detect whether a query is overloaded
are executed. As future work, the policies described in Section 5.3 will be incorporated into
QAM.

7.5.5 Limitations

The CEPaaS implementation presented in this chapter does not explore its multi-cloud archi-
tecture to the full extent. In particular, there are two main limitations that will be lifted in
the future. First, the CEPaaS system currently does not tolerate the failure of an entire cloud
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(deployment). Fault-tolerance at the cloud level, however, is essential for a cloud-based high-
available system because no single provider can guarantee 100% availability. To provide such
capabilities, the system will implement mechanisms to detect deployment failures and to move
the execution of queries between deployments.

Second, the deployment at which queries execute is selected based on pre-defined configu-
rations that associate each tenant with a deployment. Ideally, this selection should be dynamic
based on the location of event producers and consumers. Even further, a query can be split into
more than one container that are scheduled into di↵erent deployments. This dynamic schedul-
ing can enable further reduction of the end-to-end query latency and provide an even better
experience for the end user.

Another limitation of the CEPaaS system is the lack of native support for enrichment use
cases, in which events are enriched with historical data previously stored in a database. Cur-
rently, the Data Storage is accessible only by CEPaaS components and cannot be read nor
written by user queries. Therefore, it is the user responsibility to maintain a database in his or
her own environment to be accessed by his or her queries. In the future, the CEPaaS system
will provide a managed database that can be used for this purpose.

7.6 Evaluation

This section presents an evaluation of the CEPaaS system focused on two main aspects. First,
a set of experiments were executed to measure the latency of CEPaaS queries and to assess
the e↵ects of the multi-cloud architecture in this latency. Second, another set of experiments
validated the fault-tolerance mechanism provided by the CMS and estimated the recovery time
of failed queries. The results presented here confirm that the proposed CEPaaS architecture can
indeed be used to handle the challenges associated with o↵ering CEP as a managed service.

7.6.1 Set-Up

For all experiments presented in this section, the Google Container Engine (GKE) [60] service
was used to create two deployments of the CEPaaS system. The first deployment was created
in the us-central1 zone, located in Council Blu↵s, Iowa, USA, whereas the second deployment
was created in the asia-east1 zone, located in Changhua County, Taiwan. GKE enables the
creation of clusters of servers controlled by Kubernetes managed instances, which eliminates
the need for installing and configuring it.

Each deployment was set up with five servers of type n1-standard-4, which has four virtual
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Figure 7.15: Query used in the CEPaaS experiments.

CPUs6, 15 GB of memory and a 100 GB hard drive. From the five servers, three were reserved
to run system components and the remaining two were used to run user queries. This sepa-
ration was artificially implemented to isolate the queries from interference from other system
components. Note that, in practice, this separation is not necessary and the CMS may place
queries in any of the servers available in the cluster.

Figure 7.15 shows the AGeCEP representation of the query used in the experiments. This
query has also been adapted from the Powersmiths WOW [127] system and aims to convert
JSON requests, which are sent by temperature sensors, to the native WOW format (XML docu-
ment). The query is composed of three main steps. First, a “filter” removes invalid temperature
readings from the event stream. Second, an “augmentation” operator is used to include a new
attribute in the event containing the temperature reading converted to Fahrenheit. Finally, the
last operator creates a XML document based on the attributes included in the JSON. This is a
user-defined operator created specifically for this experiment.

To measure the end-to-end query latency, the following procedure was executed: for each
query, both a producer client and a consumer client were deployed in a single server. The
producer sent events to the CEPaaS system at a specified rate, and every event sent was times-
tamped with the server local time. The consumer, in turn, read the query results from the
CEPaaS Message Broker. For every event read, the consumer registered the receiving times-
tamp and compared it with the timestamp that was sent in order to obtain the latency. Note
that because both producers and consumers were deployed in the same server, it was possible
to avoid clock synchronization issues and to obtain more precise measurements.

Finally, all client servers were deployed in the Amazon EC2 [10] service and not in Google’s
cloud. This setup enabled measurements that are closer to a real user using the system via In-
ternet because it avoids high-speed links that exist between datacentres from the same provider.

6A virtual CPU is implemented as a single hardware hyper-thread on a 2.6 GHz Intel Xeon E5 (Sandy Bridge),
2.5 GHz Intel Xeon E5 v2 (Ivy Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) [60]



150 Chapter 7. Complex Event Processing as a Service

Figure 7.16: Query latency - 95% percentile - client in us-east-1 region.

7.6.2 Latency Evaluation

To evaluate the end-to-end query latency and to measure the e↵ects of the multi-cloud archi-
tecture in this latency, two experiments were executed.

In the first experiment, a client located in the us-east-1 (Northern Virginia, USA) AWS
region was used to access queries running in the us-central1 and asia-east1 CEPaaS deploy-
ments. Figure 7.16 shows the results of this experiment. For each deployment, clients for 1,
2, 4, and 8 queries were run at 1 event/sec and 100 events/sec generation rate. Each measure-
ment ran for 11 minutes, and the graphic shows the 95% percentile latency value for the last
10 minutes.

The results show that for both 1 and 100 events/sec the latency of the asia-east1 deployment
is larger than of the us-central1. The increase in latency ranges from 70% for the 8 queries and
1 event/sec case to 172% for the 1 query and 100 events/sec case. The results also demonstrate
that increasing the number of queries up to 8 (4 queries in each server) has little e↵ect on the
latency (40% increase in the worst case). Finally, it is also possible to note that increasing the
event generation rate naturally increases the 95% percentile latency value, because more events
are generated and they spend more time in the system queues before being processed.

The second experiment executed is similar, but the client was located in the asia-northeast-
2 (Seoul, South Korea) AWS zone. The results for this experiment are shown in Figure 7.17.
Once again, there is significant improvement for clients when they access nearby deployments
(ranging from 60% to 70% in this experiment). An increase in latency at higher generation
rates was also noticed.

The results obtained by these experiments conform to the hypothesis that geographical
proximity translates to lower query latency. The experiments also validated the CEPaaS ap-
proach of leveraging multiple clouds to position system components closer to the clients.
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Figure 7.17: Query latency - 95% percentile - client in asia-northeast-2 region.

7.6.3 Fault Tolerance

To test the fault tolerance mechanism provided by the CEPaaS system, two experiments were
executed.

The goal of the first experiment was to assess the time required to recover from failures.
To achieve this goal, an instance of the query shown in Figure 7.15 was created in the us-
central1 deployment. The query was configured to checkpoint the o↵set every five seconds.
In addition, a client located in the us-east-1 AWS region was created and configured to send
events at 1 event/sec rate. At time t = 30, the query container was killed, which activated the
fault tolerance mechanism. Because o↵set checkpointing was turned on, the query restarted its
execution from the last committed o↵set.

Figure 7.18 shows the latency measured for each event sent during the experiment. The y
(latency) axis is in log scale. In general, the latency oscillates between 50 and 100 ms, and for
only the four events between t = 35 to 39 the measured latency was higher. The maximum
value of 4 seconds was measured at t = 35. This result shows that the query could quickly
recover from the failure and return to its normal behaviour.

To assess the overhead of o↵set checkpointing, Figure 7.18 also shows the same experiment
executed for a query without this mechanism activated. The measured latencies are similar in
both cases, which shows that the overhead is small. In addition, the result also shows that
the recovery time in both cases are similar, even though some messages are lost when o↵set
checkpointing is disabled.

In the second experiment, a more complex fault tolerance scenario was also analyzed. In
this scenario, four instances of the query in Figure 7.15 were created in the us-central1 deploy-
ment and distributed between two servers. As in the first experiment, four clients were created
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Figure 7.18: Query latency - fault tolerance experiment.

Figure 7.19: Query latency - fault tolerance experiment in a complex scenario.

in the us-east-1 AWS region and configured to send events to the queries at 1 event/sec rate.
At time t = 30, two queries from the same server were killed and forced to be rescheduled into
the other server.

Figure 7.19 shows the results of this experiment. Queries 1 and 3 are the ones that were
killed and rescheduled. First thing to note is that the latency for queries 2 and 4 were not
a↵ected during the whole experiment, which shows that queries are properly isolated from
concurrent activities happening in the system. Moreover, the time needed to recover from
failure and relocate the queries to another server is similar to the recovery time in the first
experiment, in which the failed query was rescheduled in the same server.

These experiments show the fault-tolerance mechanism implemented by the CEPaaS sys-
tem is e↵ective and can quickly recover failed queries without losing messages.
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7.7 Summary

This section presented the design and implementation of a CEP as a Service (CEPaaS) system
and evaluated it in a series of experiments.

The proposed CEPaaS system is based on a novel architecture that uses multiple clouds to
improve the system fault-tolerance and to explore the geographical diversity of public cloud
datacentres. The architecture also explores application containers as a way to encapsulate
system components, and uses CMS to schedule and to manage containers execution. Finally,
the system proposes query templates as an extensible mechanism to define new queries without
the need of learning query definition languages.

The experiments demonstrated that multi-cloud architecture can be explored as a way to
reduce the query latency. In addition, they also showed that the fault-tolerance mechanism
provided by the system is e�cient and can quickly recover queries from failures.

The next chapter concludes this thesis by reviewing its main contributions and by discussing
possible directions for future work.
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Conclusion

This research has presented a series of contributions towards the development of a Complex
Event Processing (CEP) system that can be o↵ered as a service and used over the Internet. The
development of this CEP as a Service (CEPaaS) system aims to bring the advantages of the
services model to CEP, but it involves many challenges that encompass the whole research and
development cycle. In particular, this work identified and proposed solutions for three open
problems:

• The problem of understanding and reusing existing CEP procedures and algorithms that
is caused by the large variety of current solutions, the use of inconsistent terminology,
and the lack of a standard query definition language.

• The problem of evaluating CEP systems and comparing them with existing approaches
that is caused by di�culties in executing repeatable Big Data experiments in cloud envi-
ronments and the lack of proper tools.

• The problem of designing and implementing a CEPaaS system, caused by functional
and non-functional requirements that must be satisfied by the implementation, such as
multi-tenancy, fault-tolerance, and low-latency query execution.

More importantly, even though they were identified and discussed in the context of the
CEPaaS system, these problems are general and often found in the context of similar research.
Therefore, either by considering the contributions presented in isolation or together, this work
significantly advances the CEP state-of-the-art and provides novel tools and methodologies that
can be applied to CEP research and development.

In the next section, the contributions of this research are reviewed. Opportunities for future
work are identified in Section 8.2.

154
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8.1 Contributions

To solve the problem of understanding and reusing existing CEP procedures and algorithms,
this research proposed the Attributed Graph Rewriting for Complex Event Processing Man-
agement (AGeCEP) formalism. Its main goal is to provide a formal way to express queries and
query reconfigurations independently of query definition language and technology. By doing
so, it provides a common ground through which management procedures can be expressed.
Moreover, it also enables procedures expressed in AGeCEP to be applied to systems that adopt
it as the underlying formalism.

Queries in AGeCEP are directed acyclic graphs whose vertices and edges are augmented
with a standardized set of attributes used for decision making in runtime management proce-
dures. These attributes are defined based on a novel classification of CEP operators, which
has also been developed in this research and focuses on reconfiguration capabilities of CEP
operators.

Query reconfigurations, on the other hand, are represented as graph rewriting rules based
on the Single-Pushout approach [104]. In AGeCEP, the rewriting rules consider the vertices’
characteristics, as determined by their attributes, to determine whether a rule can be applied.
Therefore, the formalism can establish correctness guarantees for the reconfigurations: rules
are never applied to incompatible operators and queries. In addition, AGeCEP rewriting rules
are also associated with a set of mutators, which are executed as a side-e↵ect of rule application.
This mechanism guarantees that changes performed in the query models are correctly reflected
in the real system.

The applicability of AGeCEP has been demonstrated in this research at many levels. First,
it was shown that queries written in diverse language paradigms, such as Storm topologies [18],
CQL [20], and CEL [44] queries, can be converted to AGeCEP ADAG format. In addition, a
design for an autonomic manager based on AGeCEP was proposed along with a specially se-
lected set of self-management policies, including procedures introduced by other researches
such as operator duplication [38] and predicate indexing [109]. Furthermore, this work pre-
sented a generic methodology to adapt operator placement procedures to AGeCEP and exem-
plified it by showing how the procedures by Xing et al. [151] and Heinze et al. [70] can be
expressed using this approach. Finally, AGeCEP has been used in the other contributions of
this work. Both CEPSim and the CEPaaS system use AGeCEP query representation, and the
CEPaaS QAM component is based on the AGeCEP autonomic manager.

The second major contribution of this research is CEPSim, a simulator of cloud-based CEP
systems. This tool has been developed to overcome the challenges of evaluating CEP sys-
tems in Big Data scenarios and comparing them with existing approaches. CEPSim can model
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di↵erent types of cloud environments and can simulate the execution of AGeCEP queries on
them. Furthermore, it can be extended with new operator scheduling and operator placement
strategies. In conjunction, these features enable quick comparison of di↵erent query process-
ing and management approaches without the hassle of setting up and maintaining large cloud
environments and data sources. Moreover, CEPSim can also streamline the execution of long
running and dynamic tests.

To implement these features, CEPSim extended CloudSim [34] and adapted it to CEP. At its
core, CEPSim provides algorithms to simulate operators and queries running in single or mul-
tiple servers. These algorithms are based on a novel concept called event sets, which represents
a small batch of events and constitutes the smallest unit of data exchanged by simulated opera-
tors. Event sets are used by CEPSim both to improve the simulation performance and to assist
in the calculation of query metrics. In addition, CEPSim algorithms also contain extension
points to which new operator placement and scheduling strategies can be attached. By doing
so, the user can customize the behaviour of the simulator and analyze the e↵ects of di↵erent
strategies on query performance.

Experiments were executed to assess the simulation of queries running on single and mul-
tiple servers in both private and public clouds. The results demonstrated that CEPSim can
e↵ectively simulate CEP queries and estimate query performance metrics with good accuracy.
Moreover, they also showed that even very large simulations can be executed by CEPSim in a
reasonable amount of time and without excessive consumption of resources.

As the final major contribution, this research also tackled the challenge of designing and
implementing a CEPaaS system. The resulting prototype implementation was discussed in
Chapter 7.

The proposed CEPaaS system adopts an architecture based on multi-cloud environments
controlled by a CMS. By leveraging multiple clouds, the system can resist failures of entire
datacentres and even cloud providers. In addition, it can also explore the geographical diversity
of clouds to position system components closer to the event sources in order to reduce query
latency. The CMS, on the other hand, manages the runtime environment and provides many
functionalities needed by the system, such as scheduling of components and monitoring of
containers for fault-tolerance. In addition, the CMS collects metrics and logs of the running
containers and underlying infrastructure, which can be used both by system administrators and
by users who are looking for more information about their queries.

The CEPaaS system also leverages a multi-tenant extensible design to provide CEP func-
tionalities as services. It explores the concept of vertex templates as a way to encapsulate event
processing logic. These vertex templates are put together in query templates, which specify
event processing recipes that can be shared among system users. In this context, queries are
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defined as instances of query templates. The user instantiates a query template and provides
the required parameters to customize the template to its own needs. In runtime, queries are
encapsulated in application containers and use the Akka toolkit [6] as the execution engine.

Finally, experimental results showed that the proposed architecture satisfies the require-
ments of a CEPaaS system. Query latency can be significantly reduced by deploying them
closer to the event producers and consumers. Also, fault tolerance is e�ciently handled by the
CMS.

8.2 Future Work

Despite the significant contributions of this research, the CEP research area is still young and
has many open challenges. Therefore, the work presented here can be extended in many di-
rections to advance even further the state of the art. In particular, it should be noticed that the
CEPaaS system presented here is only a minimum viable product built to validate the proposed
architecture. The development of such prototype, however, enabled the identification of many
research challenges that can be addressed in the future.

The following is a list of future directions to which this research can be extended:

• The AGeCEP formalism can be extended to include other aspects commonly found in
CEP management scenarios. In particular, proposing a formal model to represent modern
runtime environments is an interesting research problem. This model would need to
consider complex datacentre organizations, including the relationship among servers,
virtual machines, and, possibly, containers. It would also need to include modelling of
the physical and logical networks, as well as of multiple types of clouds. The simple
model presented in this research does not take all of these aspects into consideration,
which may be needed for more complex placement procedures.

• The AGeCEP-based autonomic manager described in Chapter 5 needs to be thoroughly
tested in real scenarios. Even though the CEPaaS QAM component is based on this
manager, the lack of support for operator migration and distributed query execution
limited the management policies that could be tested with CEPaaS. A more complete
evaluation of the AGeCEP autonomic manager would include testing additional policies,
and also applying the same set of policies to manage di↵erent CEP systems. Notably,
this autonomic manager can be integrated with CEPSim to facilitate testing of new self-
management policies.

• Even though it is already capable of simulating various scenarios, CEPSim has limited
functionalities regarding simulation of dynamic scenarios. Currently, queries cannot be
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added or removed during a simulation, and there is no support for operator migration.
Another interesting functionality that should be added is to enable users to define their
own load shedding strategies and compare their e↵ects on query performance metrics.

• CEPSim also needs to be extended with better runtime environment modelling capabil-
ities. For instance, it can include the notion of clients that interact with the queries and
possibly associate them with a geographic position so as to enable modelling of access
latency. Moreover, it is also necessary to study the implications of simulating application
containers.

• CEPSim performance can be further improved, especially regarding execution time.
Most computers today have multiple cores and it is essential to leverage them to speed
up the simulations. User queries are often independent and therefore can be simulated in
parallel.

• The CEPaaS system approach to query execution creates a whole new era for operator
and query placement algorithms. Because the queries are encapsulated in application
containers, the placement problem can be translated to dividing the query into containers
and placing them into the cluster. To the best of our knowledge, there is no existing
research that models the operator placement problem in this way. In this context, a good
scheduling strategy can significantly increase the datacentre utilization level and improve
the query quality of service. From the architectural point of view, this also creates another
challenge about how to integrate the CMS scheduler with CEPaaS query management
modules.

• Currently, the allocation of queries to CEPaaS deployments is fixed, but this could be dy-
namically decided based on the geographical position of event sources and consumers.
Furthermore, the system could automatically spawn new deployments when it detects a
cluster of event sources from an area that is not currently attended by current deploy-
ments.

• CEPaaS should be better equipped to deal with scalability in the volume and velocity of
events from a single stream in addition to scalability in the number of queries. This type
of scalability is traditionally achieved by splitting the query execution into sub-queries
that run in distinct servers and communicate via the network. In CEPaaS, this problem
is intimately related to the placement of query containers.

• The CEP literature is vast and, therefore, existing CEP techniques can be integrated into
the CEPaaS system to make it more robust and resilient. For example, possible future
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work could integrate checkpoint of stateful operators so that the operator state is not lost
upon restarts. Other techniques, such as upstream backup and persistence of intermediate
messages, can also be explored.

• Even though the system was designed to incorporate user-defined logic, this functionality
still needs to be completely implemented. The idea is to dynamically download and
load the operator logic classes in query containers that need them. This functionality
can significantly improve the system applicability and, therefore, is an important future
roadmap.

• There is a challenge related to the execution of self-management policies in very large
CEPaaS deployments. Currently, each QAM replica consumes events from a subset of
tenants only, which implies that no replica has a complete picture of the system. In
this context, self-management policies can only reason based on queries managed by
the same replica. Moreover, the QAM knowledge base (KB) does not contain a runtime
environment representation, which also limits the type of rules that can be enforced. To
solve these limitations, two approaches can be explored. First, it is possible to design a
hierarchy of QAMs in which top-level managers take “global” decisions whereas low-
level managers are responsible for query-local actions. Another approach is to implement
a distributed memory KB, in which each QAM replica has access to the whole KB that
is shared and distributed among them.

• Current CEPaaS implementation does not handle privacy and security. Access to send
and receive data from the Message Brokers must be granted only to authorized users.
Access to vertex and query templates should also be controlled according to the users’
sharing configuration. Furthermore, user-defined vertex templates should run in a man-
aged environment in order to avoid the execution of malicious code and potential security
breaches. These features obviously need to be integrated into the system before it goes
to production.

• Additional producer templates should be implemented alongside the infrastructure
needed to provide them. Right now, most external communications is provided via
Apache Kafka. Despite its great performance and scalability, Apache Kafka uses a bi-
nary protocol to communicate with clients, and client libraries are not available in many
languages. Therefore, alternative ways of receiving data can facilitate the interaction
with external agents. For instance, REST HTTP and MQTT [120] are protocols that can
be used for this purpose. Similarly, additional consumer templates can also be added.
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Results of queries can be written to database tables or feed dynamic monitoring dash-
boards.

• The CEPaaS system can be extended to provide a lightweight way of defining schemas
for events and vertex templates. By doing so, it will be possible to guarantee consistency
of query templates at design time.

• Finally, an important feature for a production CEPaaS system is to define di↵erent QoS
levels for the paying tenants and to enforce them during query execution. To achieve this
goal, a number of mechanisms can be used, such as limiting the input event consumption
rate and output production rate, automatically constraining the number and size of query
containers that a tenant can have, and prioritizing tenant workloads. Furthermore, the
system also needs to properly audit tenant usage so they can be correctly charged.
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rales, Nikolaus Forgó, Tabassum Sharif, and Craig Sheridan. OPTIMIS: A holistic
approach to cloud service provisioning. Future Generation Computer Systems, 28(1):
66–77, January 2012. doi: 10.1016/j.future.2011.05.022.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. ISBN 0716710455.

[56] Saurabh K. Garg and Rajkumar Buyya. NetworkCloudSim: Modelling Parallel Ap-
plications in Cloud Simulations. In 2011 Fourth IEEE International Conference on
Utility and Cloud Computing, pages 105–113, Victoria, NSW, Australia, 2011. doi:
10.1109/UCC.2011.24.

[57] Sanjay Ghemawat, Howard Gobio↵, and Shun-Tak Leung. The Google file system.
ACM SIGOPS Operating Systems Review, 37(5):29–43, December 2003. doi: 10.1145/
1165389.945450.
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Appendix A

Self-Management Policies Inference Rules

This appendix presents the inference rules used in the MAPE loop by the self-management
policies from Section 5.3. The rules are written in Drools Rule Language [89], a declarative
language based on the event-condition-action paradigm.

Algorithm A.1: Operator combination - analysis inference rule.

Algorithm A.2: Operator duplication - monitoring inference rule. A bottleneck is de-
tected if an operator queue size is trending up considering the last 5 monitoring events.
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Algorithm A.3: Operator duplication - analysis inference rule.

Algorithm A.4: Operator duplication - plan inference rule. The left-hand side of rule
Padd

dupl(id, so) (Figure 5.3) is used to verify if the appropriate merge and split operators are
already in place.

Algorithm A.5: Removal of an unnecessary merge/split - analysis inference rule. The
method hasMapping searches for the bijective function f defined in Section 5.3.3.
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Algorithm A.6: Processing sub-streams - analysis inference rules. It finds a sequence of
a merge and a duplicable operator by searching for an homomorphism Lproc ! q. The
method checkS ubS tream verifies the sub-stream conditions defined in Section 5.3.4.

Algorithm A.7: Predicate Indexing - analysis inference rule.



Appendix B

CEPSim Implementation

This appendix details the CEPSim implementation. It starts with an overview of the simulator
components, and it is followed by a description of the core classes. The integration of CEPSim
with CloudSim is also discussed.

B.1 Overview

Based on the design principles and goals presented in Chapter 6, CEPSim has been designed
with three main components, as shown in Figure B.1:

• CEPSim Core: implements the CEPSim concepts shown in Figure 6.1. It provides APIs
that enable the definition of queries and the creation of operator placement and schedul-
ing strategies. In addition, it also implements the simulation logic described in Sec-
tion 6.4.

• CloudSim: implements the CloudSim concepts shown in Figure 6.1. It provides the over-
all simulation framework, which controls the main simulation loop and the scheduling of
simulation events. It is also used to define the cloud computing environment where the
queries are simulated and to customize resource allocation policies.

• CEPSim Integration: implements the pieces necessary to integrate the CloudSim simu-
lation engine with the CEP-specific logic provided by CEPSim Core. It guarantees loose
coupling between the two and enables future integration with other simulators.

The following subsections detail the CEPSim Core and Integration components.
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Figure B.1: CEPSim components.
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Figure B.2: Class diagram - event and query model packages.

B.2 CEPSim Core

CEPSim Core classes and interfaces can be grouped into four main packages: event, which
contains the event set and event set queue definitions; the query model, which contains the base
classes used to describe queries; the query executor, which manages the query simulation; and
metrics, which contains the metrics calculation framework.

The class diagram in Figure B.2 shows the main parts of the event and query model pack-
ages. Event sets and event set queues are implemented by classes with the same respective
names in the event package. The Query class represents CEP queries and, as determined by its
definition, is composed of one or more Vertex objects and one or more Edges.

Two subclasses of Vertex have been identified: OutputVertex and InputVertex. The for-
mer represents vertices with outgoing edges, and the latter represents vertices with incoming
edges. Note that both OutputVertex and InputVertex are associated with one or more in-
stances of the EventS etQueue class representing their output and input queues respectively.

The EventProducer class describes event producers and therefore is a subclass of
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Figure B.3: Class diagram - query executor and metrics packages.

OutputVertex only. Similarly, EventConsumer characterizes event consumers and is a sub-
class of InputVertex. An Operator is both an OutputVertex and an InputVertex because it
receives events from some vertices and sends them to others. The Operator class also has a
WindowedOperator subclass that is used to represent windowed operators.

Finally, note that every EventProducer is associated with a Generator instance, which
implements the generation function defined in Equation 6.2. CEPSim currently provides two
implementations of this function:

• Uni f ormGenerator: generates a constant number of events per simulation interval;

• Uni f ormIncreaseGenerator: generates a uniformly increasing number of events until it
reaches a maximum rate. After this point, this maximum rate is maintained until the end
of the simulation.

The main classes and interfaces of the query executor and metrics packages are shown
in Figure B.3. The Placement class is the central entity, representing the mapping of one or
more vertices to the VM in which they will be executed. To create these placements, CEPSim
users must provide an implementation of the OpPlacementS trategy interface, which defines
an operator placement strategy. Currently, CustomOpPlacementS trategy is the only strategy
provided by CEPSim, but others can be easily added. In this strategy, users must manually
specify the mapping of vertices to VMs.
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Figure B.4: CEPSim integration with CloudSim.

The PlacementExecutor class encapsulates a Placement and implements the place-
ment simulation algorithm described in Section 6.4.4. This class uses an instance of the
OpS cheduleS trategy interface, which defines the operator scheduling strategy to be used dur-
ing the simulation. Note that implementations for the scheduling and allocation strategies
described in Section 6.4.2 are provided out-of-the-box by CEPSim.

In addition, the PlacementExecutor also interacts with one or more in-
stances of the MetricCalculator interface to calculate the simulation metrics. The
LatencyThroughputCalculator class shown in the figure is a built-in implementation
that computes both metrics described in Section 6.4.5.

B.3 CEPSim Integration

In accordance with the reuse design principle, CEPSim leverages many functionalities provided
by CloudSim to enable the simulation of CEP queries. This section describes how CloudSim
has been extended and integrated with the CEPSim core. The main parts of this extension are
depicted in the class diagram in Figure B.4.

The main part of this extension is the CepQueryCloudlet class, a Cloudlet specialization
that encapsulates the PlacementExecutor class described in the preceding section. During the
simulation, a CepQueryCloudlet orchestrates a PlacementExecutor execution by invoking the
simulate method at each simulation tick.

The other main classes created for the integration are:

• CepS imBroker: a mediator between cloud users and providers [34]. The CepS imBroker
extends the CloudSim broker to handle CepQueryCloudlets. It also maintains a mapping
of all vertices to the VMs to which they have been allocated.
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• CepS imDatacenter: this datacentre specialization handles CepQueryCloudlets and guar-
antees that the state of all simulated entities is updated at equally spaced intervals.

• CepQueryCloudletS cheduler: a cloudlet scheduler defines how the processing power
of a VM is shared among all cloudlets allocated to it [34]. This research extends the
time-shared policy to handle infinite or duration-based cloudlets.

The sequence diagram in Figure B.5 summarizes how these classes work in tandem to
implement a simulation cycle. First, the CepS imDatacenter receives a Vm Datacenter Event
signal, which is a CloudSim simulation event used to update the state of all simulated entities in
a datacentre. By default, this event is signalled when cloudlets resume or end their execution.
In CEPSim, this behaviour has been changed so that the event is signalled at regular intervals
with the length of a simulation tick. This guarantees that the CEP queries are periodically
updated and renders the simulation more precise.

After receiving this event, CepS imDatacenter invokes the updateVmsProcessing method
in all hosts in the datacentre. Note that the current simulation time is passed as a parameter
of this method call and therefore all hosts share the same clock. Following, each host calls
another updateVmsProcessing method in all VMs currently deployed on it. At this point, the
host also informs the number of MIPS allocated to each VM, which is obtained based on the
VM scheduling policy in use.

Next, the VM delegates the update task to the cloudlet scheduler, which determines the
number of instructions available to each cloudlet running on that particular VM based on
the time-shared policy. Finally, the method updateCloudletFinishedS oFar is invoked on
every CepQueryCloudlet, which delegates the simulation to the encapsulated instance of
PlacementExecutor.



Appendix C

CEP as a Service API

CEPaaS Core API is mostly composed of CRUD methods for the core entities of the sys-
tem. The API has been modeled according to the REST and Resource Oriented Architecture
paradigm [74], and all data is exchanged in the JSON format [29].

Table C.1 shows the main resources of the API. Most entities are namespaced by the tenant
to which they belong. Query and vertex templates have their own namespace, but private
templates are accessible only by the user who created them.
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Table C.1: CEPaaS Core API.

Resource HTTP Method Description
/querytemplates GET Obtain all query templates.

PUT Create a new query template.
/querytemplates/{id} GET Obtain details of a query template with the specified id.

POST Update the query template with the specified id.
DELETE Delete the query template with the specified id.

/vertextemplates GET Obtain all vertex templates.
/vertextemplates/{id} GET Obtain details of a vertex template with the specified id.

DELETE Delete the vertex template with the specified id.
/tenants/{tenantId}/libraries GET Obtain a list of all libraries from a tenant.
/tenants/{tenantId}/users GET Obtain a list of all users from a tenant.

PUT Create a new user associated with the tenant.
/tenants/{tenantId}/users/{id} GET Obtain details of a user with the specified id.

POST Update the user with the specified id.
DELETE Delete the user with the specified id.

/tenants/{tenantId}/queries GET Obtain a list of all queries from a tenant.
PUT Create a new query.

/tenants/{tenantId}/queries/{id} GET Obtain details of a query with the specified id.
DELETE Delete a query with the specified id.

/tenants/{tenantId}/queries/{id}/start POST Start to run a query with the specified id.
/tenants/{tenantId}/queries/{id}/stop POST Stop a query with the specified id.
/tenants/{tenantId}/eventsources GET Obtain a list of all event sources from a tenant.

PUT Create a new event source associated with the tenant.
/tenants/{tenantId}/eventsources/{id} GET Obtain details of an event source with the specified id.

POST Update the event source with the specified id.
DELETE Delete the event source with the specified id.



Appendix D

CEP as a Service Operator Template
Definition

This appendix contains the complete definition of the “filter” operator template. An operator
template is composed of two main parts: the metadata (Figure D.1) and the implementation
(Figure D.2).

The metadata is a JSON document that describes an operator, including its name, parame-
ters, and AGeCEP classification. The implementation is a Scala or Java code that implements
one of the vertex templates interfaces described in Section 7.5.2. In the code shown in Fig-
ure D.2, the method con f igure initializes the operator instance by parsing the “condition”
parameter, and the method process sends to the vertex successors only events which satisfy
the condition specified.

Figure D.1: Filter operator metadata.
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Figure D.2: Filter operator implementation.
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