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Abstract 

Radiation therapy (RT) is a common treatment for brain neoplasms and is used alone or in 

combination with other therapies. The use of RT has been found to be successful in 

controlling tumors and extending the overall survival of patients; however, there are many 

unanswered questions regarding radiotherapy effects in the normal brain surrounding or 

infiltrated by tumor. Changes to the vascular and parenchyma have been documented, and 

more recently inflammatory mechanisms have been postulated to play a role in radiation 

injury. Traditional imaging techniques used within the clinic (CT and MRI) are often lacking 

in their ability to differentiate between recurrent tumor, transient treatment effects, or 

radiation necrosis. The primary goal of this thesis is to demonstrate an MRI acquisition 

method that has been shown to be sensitive to deoxygenated blood and iron content as a 

potential biomarker of radiation effect on the normal brain. Specifically, post-processing 

techniques are used to determine the applicability of qualitative images such as 

Susceptibility-Weighted Imaging (SWI) and quantitative methods such as Quantitative 

Susceptibility Mapping (QSM) and apparent traverse relaxation (R2
*) using the same 

sequence. These methods are potential surrogate markers for vascular changes and 

neuroinflammatory components that could predict sub-acute and long-term radiation effects. 

Within this thesis, R2
* is shown to be a promising marker for the prediction of radiation 

necrosis, whereas SWI and QSM are shown to be excellent modalities for detecting long-

term effects such as microbleeds. Additionally, R2
* is shown to be a potentially useful 

technique in identifying post-imaging treatment changes (pseudoprogression) following 

chemoradiotherapy for malignant glioma. Finally, the use of this non-contrast method shows 

promise for integration within a clinical setting and the potential for expansion to multi-

center clinical trials. 
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Scope of Thesis 

The following is an overview of the chapters presented in this thesis.  

Chapter One provides a review of the current clinical methodologies for diagnosing brain 

tumors in patients as well as imaging techniques used in the follow-up of their therapy. The 

current methods provide motivation for the use of the multi-echo gradient echo sequence that 

is the overarching method utilized in this thesis.  

Chapter Two contains a concise overview of the factors which influence magnetization and 

thus signal in a gradient echo sequence. Through the use of magnetic field inhomogeneity, 

the contrast from the magnitude and phase of the signal can be used to post-process images 

which contain qualitative and quantitative information regarding the local magnetic 

susceptibility of tissue. 

Chapter Three presents an animal model of radiation necrosis measuring the apparent 

transverse relaxation (R2
*) over 28 weeks and retrospectively assessed to determine its use as 

a predictive marker of radiation necrosis. The steady increase in R2
* in the hippocampus and 

internal and external capsule present a potential marker for the prediction of radiation 

necrosis up to 10 weeks before morphological imaging. 

Chapter Four provides a descriptive study on the long-term effects of radiation to the normal 

tissue within the brain of patients treated for low-grade benign neoplasms. It demonstrates for 

the first time that patients who receive radiation therapy alone could potentially be at an 

increased risk of vascular disease due to the appearance of microbleeds within the high dose 

region. Additionally, it demonstrates that white matter hyperintensities on FLAIR can be 

detected with R2
* and SWI while showing that these lesions are venocentric, a source of 

significant research in other diseases such as multiple sclerosis.  

Chapter Five describes a study in which R2
* was used to differentiate patients who have non-

specific T1-gadolinium enhancement following chemoradiotherapy for malignant glioma. It 

demonstrates that R2
* can be used a marker to distinguish between patient progression and 

treatment effect by the increased R2
* in a patient’s T1 contrast enhancing lesion’s and 

FLAIR’s non-enhancing lesion.  
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Finally, Chapter 6 presents an overview of the findings in this thesis and seeks to expand on 

the refinements for the experiments as well as discuss methods for implementation of this 

technique for multi-center trials.
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Chapter 1  

1 Brain Tumor Background 
Glioma is one of the most common primary brain tumors in adults and may present as 

low-grade (WHO Grade II), anaplastic (WHO Grade III) or Glioblastoma (WHO Grade 

IV) with Grades III and IV often being grouped under the term “malignant glioma”. 

Following treatment of glioma, the ability to determine treatment success is of utmost 

importance to select the appropriate subsequent course of action. New advances in 

medical imaging have given neuroradiologists the ability to characterize gliomas using 

both anatomic and functional techniques. Combined with new therapies introduced in the 

clinic, interpreting these multi-parametric medical images and determining the correct 

course of management can become complex as imaging changes may reflect 

combinations of treatment effect and tumor changes. When a malignant glioma patient 

initially presents, the standard therapy consists of maximal surgical resection followed by 

a course of Temozolomide (TMZ) chemotherapy and radiation therapy as suggested by a 

clinical trial by Stupp et al. in 2009 1. More recent studies have suggested radiation and 

chemotherapy may also be efficacious for patients with low-grade glioma 2,3. For 

malignant glioma, combined chemotherapy has been shown to provide superior overall 

survival (OS) of 14.6 months compared to 12.1 months for radiotherapy alone and has 

proved to increase the progression-free survival (PFS) time to 6.9 months from 5 months. 

At the time of malignant glioma recurrence, anti-angiogenic agents are commonly used 

with PFS in the range of 6 months 4,5. Within the clinic, patient monitoring during and 

shortly after therapy is necessary due to the high cost and toxicity associated with 

continuing ineffective treatments and the potential detriment to patients by discontinuing 
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effective treatments prematurely. For patients whose treatment was unsuccessful, their 

inclusion in clinical trials of new therapies may be the best option if a true progression 

diagnosis can be determined. The ability to differentiate true responders from non-

responders ensures patients fit the criteria for clinical trials and is important for 

evaluating the efficacy of new agents studied on clinical trials 6. 

1.1 Progression Free Survival as a surrogate marker for 
Overall Survival 

The success of therapies is traditionally gauged by the ability to improve the OS, which is 

measured from the time of enrollment into a clinical trial until death from any cause. 

Using OS as a marker of treatment success necessitates a longer follow-up period to 

gauge OS and may provoke confounding effects caused by sequential therapies. As a 

result, pre-clinical and clinical trials have begun to adopt alternate endpoints to help 

determine the efficacy of treatments at earlier time points. For malignant glioma, PFS, 

which is defined as the time from commencing therapy until evidence of disease 

progression or death, is a potential replacement for OS. Within the glioblastoma 

literature, Han et al. 7 demonstrated a strong correlation (R2 = 0.92) between OS and PFS. 

As further pre-clinical research and clinical trials are conducted the use of PFS as a 

marker of treatment success is becoming more prominent and allows the more efficient 

evaluation of new therapies. A limitation of PFS is the ability to diagnose patients 

correctly with true tumor progression as both clinical and imaging changes may reflect 

the effects of therapies as well as the tumor. 
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1.1.1 Confounding factors in assessing PFS 

In most cases, patients will see symptoms improve due to the removal of the tumor and 

response to radiation therapy and adjuvant chemotherapy. In addition to clinical 

assessment, imaging is also performed to gauge response to treatment. During active 

treatment, pseudoprogression and pseudoresponse are two treatment-related effects that 

can confound the assessment of PFS and potentially lead to inappropriate patient 

management by either over-calling (false positive) or under-calling (false negative) true 

tumor progression. 

Pseudoprogression is typically characterized by increased enhancement on a T1-weighted 

gadolinium MRI following treatment with chemoradiotherapy; however, patients may be 

clinically stable and may not exhibit symptoms that would typically be associated with 

tumor progression. Currently, the most widely used standard of care is to continue 

therapy for an additional 4-6 weeks and repeat imaging 8. In cases of pseudoprogression, 

on early follow-up, imaging changes typically stabilize or improve. Whereas, within 

cases of true progression, imaging changes will worsen. Correct interpretation of 

pseudoprogression would prevent abandoning an effective therapy prematurely. 

Pseudoresponse is a transient response to antiangiogenic drugs where the blood brain 

barrier becomes re-established, leading to a decrease in vascular permeability and a 

subsequent reduction in contrast enhancement on T1-weighted gadolinium MRI, rather 

than true tumor response 9. Correct interpretation of pseudoresponse is important to avoid 

continuing an ineffective therapy as tumors may progress in the absence of contrast 

enhancement while on anti-angiogenic agents. To account for the possibility of 

pseudoprogression and pseudoresponse, revised criteria that incorporate clinical and 
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therapeutic information into the interpretation of images have been proposed 8. Even such 

revised criteria are imperfect and objective imaging methods for the accurate 

determination of tumor response or progression are needed. The following is an overview 

of current imaging methods that propose to differentiate response from non-response as 

well as pseudoprogression and pseudoresponse following treatment for glioma. 

1.2 Conventional Imaging Techniques and Interpretation 

1.2.1 CT Imaging 

Computed tomography (CT) imaging was once regarded as the gold standard imaging 

methodology and is still commonly used to rule out acute intracranial pathology such as 

stroke. Prior to the introduction of MRI, CT was the primary imaging modality for the 

evaluation of brain tumors. The Macdonald criteria 10 for assessing response based on CT 

findings were developed and have been in widespread use ever since. Subsequently, the 

Macdonald criteria has been adapted and revised from CT for its use in MRI 11 and later 

evolved into the RANO and RECIST criteria described later in this article. Conventional 

CT imaging is now seldom used in the clinic for the follow-up of patients who have been 

treated for glioma, except for screening for acute pathology (such as acute bleed or 

obstructive hydrocephalus) in the case of rapid clinical deterioration, or for surgical 

guidance and radiation treatment planning. The use of CT perfusion as a potential 

functional imaging technique for glioma is discussed in later sections. 

1.2.2 Conventional MRI 

Compared to CT, MRI offers superior soft-tissue contrast and has tremendously 

improved the ability to diagnose brain tumors. The use of paramagnetic contrast agents 
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for MRI in the 1980’s also allowed clinicians to understand the breakdown of the blood-

brain barrier and allow for improved diagnoses. Gadolinium agents play an essential role 

in differentiating normal versus tumorous tissue and are used in conventional MRI 

imaging following treatment; however, some non-contrast methods that aid in 

differentiation are slowly being introduced into everyday clinical use and include 

sequences such as Diffusion-Weighted MRI and Magnetic Resonance Spectroscopy 

(MRS).  

1.2.2.1 Typical Scan Parameters 

Following completion of treatment, all patients have a follow-up MRI to determine 

whether the treatment was effective. Currently, 1.5 T MRIs and 3 T MRIs are commonly 

used in clinical settings. A consensus group assembled in 2015 recommended that at a 

minimum, the sequences listed in Table 1.1 be acquired as part of a standard imaging 

protocol for glioma 12. The consensus group also suggested acquisition parameters for 

various MRI manufacturers. 
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Table 1.1 Recommend Acquisitions for patients undergoing MRI for glioma. Post-

contrast T1-weighted image were used for the MacDonald and RECIST criteria, 

while RANO incorporates the post-contrast T1-weighted image as well as FLAIR. 

1.	 Pre-Contrast T1-
weighted mage 

IR-GRE Sagittal or axial 
acquisition 

Scan time 5-10 minutes 

2.	 Axial 2D or 3D 
FLAIR 

TSE or FSE 
Scan time 4-8 minutes 

3.	 Axial 2D T2-
weighted image 

TSE or FSE 
Scan time 2-4 minutes 

4.	 Axial 2D Diffusion 
Weighted Image 

Single-shot EPI 
2-4 minutes for 3 b-values and 3 

directions 

5.	 Post Contrast T1-
weighted image 

IR-GRE Sagittal or axial 
acquisition 
FA 10-15º 

Same parameters as pre-contrast 
image 

The images obtained in Table 1.1 form a basis to assess the treatment response of tumors. 

Until 2010, the MacDonald criteria was used extensively for 2D measurements of the 

gadolinium-enhancing lesion area and the RECIST criteria was used as a substitute with 

only 1D measurements along the long axis. With newer therapeutics and imaging 

capabilities (e.g. non-contrast imaging such as FLAIR) a re-evaluation of the methods 

was necessary and evolved into the RANO criteria that uses 2D measurements of the 

gadolinium-enhancing lesion as well as FLAIR lesion 13. In 2010, the RANO working 

group suggested alternate guidelines to assist in differentiating between responders and 

non-responders. The guidelines could also distinguish pseudoprogression and 

pseudoresponse by incorporating information from multi-parametric MRI as well as 

clinical and therapeutic information8. In 2015, further guidelines from the RANO 

working group were released for patients receiving immunotherapy 14 to address the 

delayed response to therapy and therapy-induced inflammation. 
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The current RANO criteria measures the largest five lesions in a 2D plane along their 

longest diameters in two perpendicular axes as shown in Figure 1.1. The sum of these 

areas produces the sum of the product of diameters (SPD). This measurement should be 

done after surgery but before treatment to form a baseline measurement. Following the 

baseline scan, measurements should be done after each subsequent MRI. These 

measurements compared to the baseline SPD constitute the basis to determine whether 

there is a complete response, partial response, stable disease, or progressive disease as 

shown in Table 1.2.  

 

Figure 1.1 Demonstration of how to calculate the SPD in RANO criteria. Two 

lesions are shown, but 5 lesions must be calculated. 
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Table 1.2 Summary of possible diagnosis and guidelines for use of the RANO 

criteria. 

Status	 Definition	for	T1-Gd	
enhancement	

T2-weighted	FLAIR	
Area	

Clinical	Status	

Complete	
Response	

All	target	lesions	
disappeared	
(potential	for	

pseudoresponse)	

Stable	or	
decreasing	

Stable	or	improving	

Partial	Response	 SPD	decreased	by	at	
least	50%	of	baseline	

value	

Stable	or	
decreasing	

Stable	or	improving	

Stable	Disease	 SPD	between	a	50%	
decrease	and	25%	

increase	

Stable	or	
decreasing	

Stable	or	improving	

Progressive	
Disease	

SPD	increased	by	at	
least	25%	(potential	of	
pseudoprogression)	

Increasing	 Decreasing	

The RANO criteria also accounts for pseudoresponse and pseudoprogression with these 

measurements. In pseudoresponse, a patient’s gadolinium-enhancing MRI typically will 

have a significant decrease within days of starting of anti-angiogenic therapy; however, 

since the tumor cells may co-opt blood vessels in the brain, the tumor may develop into a 

non-enhancing phenotype 15. The co-opting of blood vessels is a mechanism in which 

tumor cells obtain a blood supply from the pre-existing vasculature leading to potential 

metastasis 16. The RANO criteria accounts for this by taking a measurement of the 

FLAIR’s lesion area. If the FLAIR hyperintensities remain stable or increase, the lesion 

is marked as progressive disease. 

As previously noted, pseudoprogression is a condition that initially appears to be a 

progressive disease following treatment due to new lesions or growth of lesions within 

the radiation treatment areas. According to the RANO criteria, no determination of 

pseudoprogression or true progression should be done until 12 weeks following therapy 



9 

 

unless the new enhancing areas are outside the radiation treatment volume, the patient 

exhibits clinical deterioration, or other methods can definitively rule out 

pseudoprogression (e.g. repeat resection demonstrating viable tumor).  

1.2.2.2 RANO Drawbacks 

While RANO represents a significant consensus effort to standardize imaging 

interpretation in the era of new therapies, it remains an imperfect tool. Kazda et al. 

demonstrated that the RANO criteria does not correlate well with a clinician’s assessment 

of progression in anaplastic astrocytoma based on a composite of neurological symptoms 

and imaging 17. The authors also suggested this may be specific for anaplastic glioma or 

other WHO Grade 3 tumors as they typically have poor contrast enhancement. The 

authors emphasize the importance of considering the entire clinical context such as 

change in neurologic function or symptoms in addition to imaging measures of response 

(including quantitative methods such as RANO or RECIST). 

Perez-Larraya et al. set out to study the usefulness of the RANO criteria compared to the 

MacDonald criteria, RECIST, and RECIST + FLAIR in patients treated with 

Bevacizumab 18. Their results showed that correlation of the median PFS following 

treatments with imaging was not statistically significant with any of the criteria. Their 

results further validated the usefulness of FLAIR, as defined by the RANO and RECIST 

+ FLAIR criteria, to avoid the overestimation of PFS in patients and commented that with 

the integration of FLAIR in both 1D and 2D methods, RECIST has similar response rates 

compared to the RANO criteria. Thus, while the RANO criteria represents an 

improvement in response assessment that reflects newer therapies and imaging 

modalities, there are clinical situations where existing imaging may be ambiguous (e.g. at 
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early time points following chemoradiotherapy or response to antiangiogenic agents). In 

these situations, newer imaging analyses or modalities may be beneficial and will be 

discussed in the following sections. 

1.3 Diffusion Weighted Imaging 
A Diffusion Weighted Image (DWI) is a common sequence acquired as part of a 

multiparametric MRI imaging study for CNS tumors. The most common metric 

calculated from DWI is the Apparent Diffusion Coefficient (ADC). ADC provides 

information regarding water molecules’ ability to freely diffuse. In areas of high 

cellularity, such as tumor, the water cannot diffuse as easily and has a restricted diffusion 

or low ADC values (visualized as darker areas on reconstructed ADC images). In areas of 

necrosis or within cysts, increased ADC values reflect less impeded water diffusion 

(represented by brighter areas on ADC images).  

In order to calculate the ADC, diffusion gradients of at least b=1000 s/mm2 and b=0 

s/mm2 (no diffusion weighting) are recommended, although having an extra diffusion 

gradient at b=500 s/mm2 will increase the quality of the computation 12. For ADC 

measurements, the b-value is an indicator of the strength of the diffusion gradient applied 

along at least three axis. The applied b-value of the gradient is inversely related with the 

diffusion distance of water molecules, meaning a high b-value will be preferential to 

water molecules with restricted diffusion. The Stejskal-Tanner model for the pulsed 

diffusion method is defined with the following equation 19: 

𝑏 = 𝛾&G&δ&(Δ −
δ
3)					1.1 
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where 𝛾 is the gyromagnetic ratio (Hz/T), G (T/m) is the strength of the gradient, 

δ	(seconds) is the duration of the gradient pulse, and Δ is the time between diffusion 

gradients Most clinical scanners have the software to compute ADC online. Bulik 

suggested that a mean absolute ADC value of 1.3 x10-3 mm2/s or lower within the tumor 

volume could be a cutoff for glioblastoma relapse compared to pseudoprogression 20 

based on a series of 24 patients (sensitivity and specificity of 100% and a P < 0.001). 

Applying such a threshold should not be done without other a priori knowledge, as noted 

by the authors who observed that acquisition methods and other factors such as tissue 

necrosis and vascularity may confound the computation of ADC. 

In response to these confounding factors, further studies have investigated metrics other 

than mean ADC, such as fifth percentile ADC, maximum ADC, and minimum ADC. 

Additionally, other metrics can be computed when acquiring Diffusion Tensor Imaging 

such as Fractional Anisotropy; however, to date, such methods have not demonstrated 

high sensitivity and specificity without the inclusion of other imaging modalities and 

intervention from the neuroradiologist. 21 

Chu et al. have shown that higher b-value (b=3000 s/mm2) gradients can be used to 

differentiate pseudoprogression and true progression using the ADC’s histogram at the 

expense of relative signal intensity at the high b-value. They found that by using the fifth 

percentile of ADC values within an enhancing lesion, true progression can be 

differentiated from pseudoprogression using different b-values. (b=1000 mm2/sec 

P = 0.049, b=3000 mm2/sec P < 0.001) 22. 
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The obvious limitation of such methods is that the fifth percentile of all voxels within the 

tumor disregards 95% of the information and may not take into account the heterogeneity 

of the lesion.  

Baseline mean ADC using the lower Gaussian curve of a double Gaussian distribution 

has also been shown to be a statistically significant marker of PFS and OS following 

treatment with Bevacizumab. Using a mean pretreatment threshold value of  1.2 x 10-

3 mm2/s, patients with a high ADC pretreatment had a significantly longer PFS (153 days 

versus 76.5 days, P = 0.045) and OS (376 days versus 194 days, P = 0.003) 23. 

A comprehensive review of published ADC data concluded there is a potential for using 

the baseline minimum ADC value due to its inverse correlation with tumor grade and 

PFS 24. Using previously obtained data over a 1.5 year observation period, with ADC 

cutoffs ranging from 0.6 x10-3 mm2/s to 1.0 x10-3 mm2/s, a statistically significant 

difference in mean survival rate was observed (73.8% above cutoff, 22.7% below cutoff, 

P<0.001).  

Texture analysis can also be used for second order analysis of the ADC values within the 

tumor. Measures such as entropy, skewness, and kurtosis can be calculated based on the 

heterogeneity of the ADC values. Ryu et al. 25 demonstrated that the grading of glioma is 

feasible using these metrics to differentiate Grade 2 and 3 tumors from Grade 4 tumors. 

Entropy as a measure of grading glioma yielded a higher sensitivity and similar 

specificity (78.1% and 87.5%) compared to the fifth percentile ADC values (59.4% and 

87.5%).  
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Brynoflsson et al. performed a more complex method using principal component analysis 

to determine a pseudoscore. Their methods demonstrated that many of the second order 

factors, as well as certain first order features, could identify two groups in their data with 

a median survival of 1099 days in one group and 345 days in another group (P = 0.001). 

26 

As a whole, the usefulness of ADC as a pretreatment prognostic factor and as an 

assessment of response remains ambiguous. A further limitation is the potential 

variability between vendor and imaging protocol. Tsujita et al. demonstrated significant 

variability between scanner types and ADC values in healthy brain 27; however, the 

variability between vendor types was on the same scale as between patients. In brain 

tumors, it is possible that the heterogeneity of ADC values within tumors or necrotic 

tissues may often confound routine quantitative methods; however, the quick acquisition 

time relative to the entire study time makes its acquisition worthwhile, and 

standardization of ADC acquisition and development of generalizable metrics remain 

goals of ongoing research. 

1.4 Perfusion 

1.4.1 Perfusion CT 

While contrast-enhanced CT provides inferior anatomic imaging compared to MRI, the 

quantitative nature of CT allows for more accurate determination of functional 

parameters such as blood flow. Perfusion CT is a very quick method to determine blood 

flow within the brain using a nonionic contrast and relies on the rapid acquisition of serial 

CT images throughout a constant brain volume during the injection of a bolus of contrast 
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material. Tracking passage of contrast through a brain region over a fixed time period 

allows for the calculation of a variety of vascular parameters. For example, relative 

Cerebral Blood Volume (rCBV) is a measure of blood volume in a selected area of tissue 

relative to normal brain (typically white matter) and is calculated by measuring the area 

under the concentration-time curve. Relative Cerebral Blood Flow (rCBF) is a measure of 

blood volume that passes within an area of tissue in a specific amount of time and is 

calculated by deconvolving the concentration-time curve with the arterial input function 

to get the tissue response function. The height of the tissue response function is the 

measured CBF, while the rCBF is the ratio of CBF to normal brain. Another parameter 

that is acquired is rMTT, a measure of average time blood spends within the capillary 

circulation and is calculated by dividing the area under the concentration time curve by 

the height of the tissue response function (rCBF). Depending on the processing either 

rMTT or rCBF is calculated and their relation is as follows: CBV =CBF*MTT.  

A rCBV threshold of 1.92 has been shown to differentiate between low and high-grade 

tumors with a sensitivity of 85.7% and specificity of 100% 28 in 19 patients. The same 

group also demonstrated that perfusion CT had significant differences between patients 

with treatment necrosis compared to recurrent tumor using rCBV, rCBF, and rMTT. 

Specifically, a lower rCBV (1.2±0.3 versus 2.1±0.7; P<0.001), lower rCBF (1.2±0.5 

versus 2.6±1.7; P = 0.004), and higher rMTT (1.4±0.4 versus 1.0±0.4; P = 0.018) was 

predictive of treatment effect 29. The use of perfusion CT is a quick and economical 

alternative to perfusion MRI (discussed in section 1.4.2) and is readily available in many 

imaging departments as perfusion CT has become a standard of care for stroke imaging. 

While concerns about cumulative radiation dose delivered by CT perfusion (as may be 
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necessary to monitor glioma) are being addressed through low dose CT techniques, the 

resolution of soft tissue with CT remains inferior to MRI, which may limit its adoption as 

a standard imaging technique in assessing tumor response. 

1.4.2 Perfusion MRI 

Like perfusion CT, perfusion MRI seeks to characterize vascular parameters in the tumor. 

There are two primary techniques used for perfusion MRI. Dynamic Contrast 

Enhancement (DCE, also referred to as permeability MRI), is a T1-weighted sequence 

and like perfusion CT, uses images that are acquired before, during, and after injection of 

a contrast agent. The serial acquisition of the T1-weighted images allow for a 

measurement of the signal intensity over time that reflects the tissue’s perfusion, vessel 

permeability, and extravascular-extracellular space 30. This method offers an advantage 

over the traditional static T1-weighted gadolinium image. The tissue’s response to 

contrast can be observed and quantified with derived parameters such as kTrans, a 

reproducible measure of permeability in glioma patients, or Area Under the Curve Ratios 

(AUCR) 31,32 a measure of the ratio between area under the curve at wash-in and wash-

out. For example, Suh et al. demonstrated that when using T1-weighed DCE, the ratio 

between the wash-in and wash-out AUCR is statistically significant different (P < 0.001) 

between pseudoprogression and true tumor progression groups 33. The sensitivity and 

specify of this method varied based on the method in which the cumulative AUCR was 

calculated (i.e. 25th percentile, 75th percentile, etc.) but were between 73-90 %. 

Dynamic Susceptibility Contrast (DSC) imaging is a T2 or T2
* weighted sequence also 

known as bolus tracking MRI and relies on serial imaging to track contrast flow through 

the brain. In DSC, the magnetic susceptibility of the contrast leads to a decrease in signal 
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intensity that can be measured and converted into parametric maps of CBV and CBF 34. 

Derived parameters from DSC in MRI include the rCBV (similar measurement to 

perfusion CT), rPH (ratio between the peak height within an enhancing lesion versus 

normal white matter) and PSR (percent signal recovery of the signal intensity after a first 

pass of contrast bolus). Within neuro-oncology, the vascular leakiness of tumors and 

pooling of blood make rCBV the most widely used parameter as the contrast causes 

changes in both T2 and T2
* sequences, providing robust measurement 35. A study by 

Young et al. demonstrated that the rCBV and rPH were significantly higher in groups 

with true progression compared to pseudoprogression while the percent signal recovery 

(PSR) was significantly greater in the pseudoprogression group 36. They determined that 

a rCBV <1.8 yielded a sensitivity and specificity of 100% and 75% respectively, while a 

rCBV < 2.4 yielded a 69% sensitivity and a 100% specificity for differentiating 

progression from pseudoprogression. They also demonstrated that a cutoff rPH of 1.7 

achieved 100% sensitivity and specificity in differentiating true progression from 

pseudoprogression. Gahramanov et al. demonstrated a similar rCBV value cutoff with a 

different contrast agent (Ferumoxytol) 37. The use of the rCBV cutoff with Ferumoxytol 

was also associated with a statistically significant hazard ratio (median OS for high rCBV 

163 days, median OS for low rCBV 591 days, hazard ratio 0.098, P = 0.004). In the same 

study, correcting the standard perfusion contrast (Gadoteridol) for leakage produced a 

statistically significant hazard ratio (0.12, P = 0.003). 

Standardization of CBV is a process in which the CBV is transformed into a unitless 

consistent intensity scale that is independent of scanner vendor 38. The use of 

measurement of standardized rCBV pre and post-Bevacizumab has been shown to have 
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statistically significant results for OS, and post-Bevacizumab has proved to be indicative 

of PFS 39. In this study, if the unitless standardized rCBV ranged from 0 to 50000, where 

0 indicated no rCBV and 50000 was rCBV typically found in large vessels. For 

pretreatment standardized rCBV below 4400, the mean OS was shown to be 380 days 

compared to 175 days (P = 0.024). A standardized rCBV below 4400 after Bevacizumab 

was shown to have a PFS of 167 days compared to 78 days (P = 0.006). 

1.5 Susceptibility-Weighted MRI 
One of techniques used in this thesis is Susceptibility-Weighted MRI (SWI), explained in 

further detail in the next chapter. Due to the vascular nature of tumors, SWI is slowly 

being recognized as an alternative to standard imaging techniques as it is sensitive to 

vascular changes. 

SWI can be done with or without the use of gadolinium contrast. A study by Sayyari et 

al. indicated that SWI could be better suited for delineating the tumor when using 

contrast, especially when identifying the lesion on SWI (CE-SWI) for measurement in 

ADC 40. They showed that the CE-SWI lesion was significantly smaller than the 

gadolinium-enhancing T1 lesion (P = 0.002 first time point, P = 0.004 second time point). 

Additionally, this study used parametric tests on a patient-by-patient basis showing 

elevated ADC for patients with pseudoprogression or stable disease and decreased ADC 

in tumor progression. Additionally, they found that using CE-SWI as a contrast mask for 

ADC measurements allowed for proper classification as opposed to the gadolinium 

enhanced T1 lesion. Fahrendorf et al. have recently demonstrated an increased ability to 

delineate the tumor invasion zone of a high-grade glioma using contrast-induced phase 

shift (CIPS) between a contrast enhanced and non-contrast SWI 41 allowing better 
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delineation of tumor extension beyond the boundaries detected by T1 gadolinium-

enhanced MRI. They further elaborate that CE-SWI could be a better imaging technique 

for visualization of the tumor invasion zone compared to gadolinium-enhancing T1 and 

FLAIR, especially in smaller tumors, but recommended further study among a variety of 

glioma phenotypes. 

Promising work with non-contrast SWI may lie with the processing of quantitative data 

using a multi-echo gradient echo sequence. The multi-echo sequence allows for 

measurement of the apparent transverse tissue relaxation (R2
*) and further processing of 

phase can be performed to compute measures of Quantitative Susceptibility Mapping 

(QSM). A feasibility paper demonstrated the ability to differentiate blood deposits and 

calcification using QSM 42, suggesting that QSM would be useful to identify 

oligodendroglia variants of high-grade glioma (calcification being more common in 

oligodendroglial tumors) and to monitor for calcifications developing in tumors. 

SWI has also been used to identify microbleeds following the treatment of glioma as well 

as monitoring patients following anti-angiogenic therapy 43. Lupo et al. showed that 

patients receiving chemoradiotherapy for malignant glioma had increased micro-bleed 

formation two years post radiation while patients receiving anti-angiogenic therapy had 

fewer microbleeds overall following treatment. These authors, among others, postulate 

that anti-angiogenic drugs could have a radioprotective effect on the microvasculature.  

The main drawback of SWI and its associated quantitative methods is the lack of 

standardization for post-processing leading to subjective interpretation of the data 44. 

Additionally, gradient-echo sequences are more susceptible to motion, poor magnetic 
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field shims, and titanium clips that may be used in brain surgery. Furthermore, there is 

limited clinical information that correlates SWI imaging techniques with clinical 

outcomes in the treatment of glioma. Thus, its performance in differentiating true 

progression from pseudoresponse and pseudoprogression remains to be determined. 

1.6 Other Imaging Modalities 
There exist many other experimental techniques in the diagnosing and follow-up of brain 

tumors. MRI techniques such as spectroscopy have been used in the clinic and can help 

identify patterns of important brain metabolites like NAA, Choline, and lactate. Other 

techniques such as Chemical Exchange Saturation Transfer (CEST) and hyperpolarized 

C-13 may provide imaging information at a molecular level regarding tissue pH and 

metabolism. Nuclear medicine tracers for Single Photon Emission Computed Topography 

(SPECT) and Positron Emission Topography (PET) are also areas of active research in 

attempting to understand the metabolism and molecular profiles of tumors, treatment 

effect, and radiation necrosis. While it is necessary to be aware of such methods and their 

results when developing experiments, for this work they are not elaborated upon. These 

methods are either referenced or discussed, when relevant, in subsequent chapters.  
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Chapter 2  

2 Quantitative and Qualitative Imaging with Multi-Echo 
Gradient Echo Imaging 

The previous chapter reviewed the current methodologies for glioma imaging. It 

demonstrated how edema (measured through FLAIR or ADC) and the relationship of 

blood volume and flow (measured through perfusion) have been instrumental in the 

advancement of the diagnosis and monitoring of brain neoplasms. This chapter seeks to 

describe the motivation behind the use of qualitative images and quantitative 

measurements obtained from multi-echo gradient echo (ME-GRE) sequence. 

In general, gradient echo imaging has become more commonplace 1 due to better 

magnetic field homogeneity and is used in many applications. Gradient-echo sequences 

differ from spin-echoes sequences by having a lower flip angle and lack of a refocusing 

pulse. This has a distinct advantage at increasing magnetic field strengths as limitations 

on transmit radiofrequency (RF) field homogeneity, and Specific Absorption Ratio 

(SAR) can be problematic 2.  

2.1 Signal and Bulk Magnetization 

By placing a sample within a magnetic field it will exhibit a bulk magnetization (Mz) 

parallel to the magnetic field (B0) as shown in Figure 2.1. The bulk magnetization will 

precess at a certain frequency related B0 and the gyromagnetic ratio, 𝛾 = 42.577	𝑀𝐻𝑧/

𝑇, as shown in equation 2.1: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝛾 ∗ 𝐵J				[2.1] 
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Applying a radio-frequency pulse to the sample will “tip” the bulk magnetization into the 

transverse plane.  

 

Figure 2.1 Example of bulk magnetization aligned along B0 (left) and tipped into the 

x-y plane (right). 

Figure 2.1 illustrates the x’-y’ axis as the transverse plane relative to the rotating 

reference frame that precesses at the frequency in equation 2.1. 

When tipped into the transverse plane, the bulk magnetization is placed into a non-

equilibrium state, and the magnetization will return to equilibrium through spin-lattice 

(T1) and spin-spin (T2) relaxation. The precessing magnetization in the transverse plane 

induces a signal in a RF coil.  

The net magnetization has a linear relationship with the external magnetic field. 

Therefore, higher field strengths allow for the potential of higher resolution imaging, 

faster acquisitions, or a combination of both. 



28 

 

2.1.1 Spin-Lattice Relaxation 

One process by which the magnetization returns to equilibrium is through R1 (R1=1/ T1) 

relaxation. In its simplest form, this relaxation is a process in which the magnetization 

returns to equilibrium in the z-direction through interactions with the surrounding 

environment (lattice). T1 increases with field strength and is not a contributing source of 

signal loss or contrast when using gradient-echo imaging for T2
* weighting as a small flip 

angle is used (i.e. <15º) and pulse sequence repetition time (TR) is much faster than T1 

relaxation. T1 is defined as the amount of time for the bulk magnetization to reach 63% 

(1-e-1) of its original magnetization along z.  

2.1.2 Spin-Spin Relaxation 

Another process by which the magnetization returns to equilibrium is through R2 

relaxation (R2 = 1/ T2). R2 relaxation is due to tissue-specific spin-spin interactions which 

cause spins within a voxel to lose their coherence. The loss of coherence results in decay 

of the net magnetization in the x-y plane over time. In addition to these spin-spin 

interactions, spatial magnetic field variations may compound the loss of coherence 

causing the observed relaxation to be faster than the tissue specific relaxation. These 

spatial magnetic field variations are characterized by the additional terms R2
’ (relaxivity 

caused by magnetic field inhomogeneities) and R2
* (relaxivity from all sources) with their 

relations expressed in the following equations:  

1
𝑇&∗
	= 	

1
𝑇&
+
1
𝑇&N
				 2.2	𝑎  
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𝑅&∗ 	= 	𝑅& + 𝑅&N 			[2.2	𝑏] 

In spin-echo imaging component of the loss of coherence can be recovered through the 

use of a 180° refocusing pulse; however, in gradient echo imaging the refocusing pulse is 

not used, resulting in a faster decay of the spin coherence. The contributing effects of 

magnetic field inhomogeneity, which causes the dephasing, can be largely attributed to 

the mesoscopic field and the macroscopic field that will be defined in the following 

section. 

It should be noted that the effects of the macroscopic and mesoscopic field can be a factor 

in spin-echo imaging. As molecules diffuse over time, they may be exposed to variations 

in the magnetic field. Being exposed to variation of the magnetic field will result in 

molecules not being “refocused” when using the refocusing pulse. The choice of time 

between the excitation pulse and refocusing pulse (or multiple refocusing pulses) is an 

important consideration when using spin-echo sequences to measure contributions that 

arise only from the T2 decay. 

The T2 (or T2
*) time constant is defined as the amount of time needed for 37% of the 

signal to decay in the transverse plane (e-1). 

2.2 Influence on signal 

As previously mentioned, in T2
*-weighted MRI there are two main contributing factors to 

the signal decay in the transverse plane in addition to T2 decay. They are, 1) the variation 
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of the macroscopic field that is slowly varying across the sample and 2) the mesoscopic 

field that influences the local magnetic field on a submillimeter scale. 

2.2.1 Macroscopic Field 

The variation of the macroscopic magnetic field is typically on the order of many 

imaging voxels. Variations of the macroscopic field are caused by air-tissue susceptibility 

differences 3–5 or general magnetic field imperfections that arise from placing an 

inhomogeneous sample within the scanner. Before imaging, major variations of the 

magnetic field can be “shimmed” by using various orders of shimming coils to offset the 

magnetic field variations. 

2.2.2 Mesoscopic field 

The mesoscopic field provides useful local information regarding the magnetic field 

inhomogeneity that is caused by paramagnetic or diamagnetic substances. In addition to 

affecting the local T2
* that causes changes in the magnitude image, its influence can be 

detected on filtered phase images (discussed further in section 2.3). 

2.2.2.1 Paramagnetism 

Paramagnetism is caused by certain materials with unpaired electrons enhancing the main 

magnetic field. In humans and animals, MRI paramagnetism is often attributed to the 

presence of iron. Sources of iron include deoxygenated blood, originally shown by 

Ogawa 6, hemosiderin, or increases in iron content due to inflammation 7,8.  
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2.2.2.2 Diamagnetism 

Diamagnetism is caused by materials that are repelled by the main magnetic field and 

induce an opposite local magnetic field. Typically, myelin, cerebral spinal fluid, and 

calcifications are diamagnetic 9. 

2.2.2.3 Paramagnetism and Diamagnetism as a Source of 

Contrast 

Both paramagnetic and diamagnetic compounds affect the local magnetic field in such a 

way as to influence T2
*; however, when it comes to measuring the accrued phase, which 

is discussed in the next section, one must set a reference value. While the measured phase 

is referenced to the global frequency over the sample, the interpretation of such data 

would make quantification between patients and between sites difficult. To overcome this 

limitation, common areas such as the frontal or occipital white matter are used as a 

reference 10,11. Using the white matter as a reference, paramagnetism will produce a 

decrease in accrued phase while calcification and CSF will result in an increase in phase 

accrual. 

2.3 Multi-echo gradient echo imaging 

Signal acquired from MRI imaging is inherently complex valued and can be recombined 

as a complex valued image. In most clinical applications the phase is discarded, and only 

the magnitude image is viewed; however, within the research setting the phase provides 

complementary information that can be used to enhance images (discussed in 2.3.2). 
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Post-processing techniques include forming magnitude images as well as phase (or 

frequency) images. 

2.3.1 Magnitude 

Figure 2.2 shows the magnitude image of three separate echoes from a six-echo gradient 

echo acquisition. The magnitude of the image is simply the absolute value of the complex 

data acquired from the scanner. It can be observed that there is an increase in T2
* related 

contrast with longer echo times. Echo 1 has a more proton density-like contrast while 

Echo 6 has pronounced T2
* weighting contrast due to the strong differential decay of 

regions with different T2
* values. An advantage of multi-echo imaging is that an average 

of all magnitude images can be created to simplify visualization and potentially increase 

signal-to-noise ratio. 

 

Figure 2.2 Example of various echoes acquired from a multi-echo gradient echo 

sequence and an average image of all echoes. TR: 40 ms, FA 13°, TE1=3.75 ms, 

TE3=11.95 ms, TE6=24.25 ms. 
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2.3.2 Phase 

As previously discussed, the MR signal received from the magnetization is a complex 

vector. The orientation of the magnetization vector within the transverse plane can be 

described by a phase(𝜑). The measured phase arises from differences in the z component 

of magnetic fields (microscopic, mesoscopic, and macroscopic) over a sample causing 

slight variations in frequency in the range of 1-100 Hz. While the main nuclear 

precession frequency is linearly related to the main magnetic field and the gyromagnetic 

frequency as was shown in equation 2.1, differences in the main magnetic field can be 

expressed much the same way, as shown in equation 2.3 and 2.4. 

∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝛾∆𝐵			 2.3  

Where ∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the change in frequency and ∆𝐵 is the change in magnetic field. 

The frequency offset measured at a specific echo time (TE) can be characterized as the 

accrued phase (𝜑). 

𝜑 = 𝛾∆𝐵 ∗ 𝑇𝐸		[2.4] 

In equation 2.4 the ∆𝐵 term are contributions from both the local and global field 

inhomogeneity; however, the phase contrast that is due to the local variations of magnetic 

field inhomogeneity (i.e. mesoscopic and microscopic field) is of most interest. In order 

to extract such detail, the acquired phase must be further processed. 
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2.3.3 Unwrapping and Filtering 

The phase of the complex image acquired from the MRI is inherently bound between [-𝜋 

to 𝜋] due to the nature of signal acquisition. This wrapped phase is not an accurate 

representation of the true relative phase within an image as the accrual of phase can be 

greater than 2𝜋. The relationship between wrapped phase and unwrapped phase is shown 

in equation 2.5: 

𝜑(𝑟)VWXYZ[[\] = 	𝜑(𝑟)XYZ[[\] + 2𝜋𝑚			[2.5] 

Where m is a positive or negative integer accounting for the number of wraps. An 

example of wrapped phase is shown in the top row of Figure 2.3.  

Phase unwrapping attempts to remove any integer (m) of 2	𝜋 from the image, and 

methods to unwrap phase that are acquired with a single echo are not trivial12,13. With 

multiple echo imaging, it is possible to set the relative phase of the first image to zero 

during reconstruction, and temporally unwrap the remaining echoes 14. As such, only five 

echoes from a six echo sequence have information regarding the phase. Any remaining 

spatial wraps can be removed by adding or subtracting 2𝜋 at an area of wrapped phase. 

This unwrapped phase contains contribution of the local mesoscopic field and global 

field. The corresponding unwrapped phase is also shown in the middle row of Figure 2.3. 

Once the unwrapped image is computed, the final stage is to remove the contributions of 

the globally varying magnetic field. As previously mentioned, these components have 

low spatial frequency and can be filtered using a Gaussian high-pass filter. An example 

of the filtered image is shown in bottom row of Figure 2.3. 
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Figure 2.3 Examples of Wrapped Phase, Unwrapped Phase and Filtered Phase using 

a Gaussian high-pass filter for the second and sixth echo after processing the first 

echo to have zero phase. 
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While high-pass filtering is shown in Figure 2.3, other methods can remove the unwanted 

background field such as homodyne filtering 8,15, SHARP filtering 11, or Projection onto 

Dipole Fields 16. All these techniques offer the ability to remove the unwanted 

contribution from the global field while retaining the local information. The amount of 

filtering that is performed is largely user and center specific, with a lack of 

standardization across sites. This lack of standardization causes the definition of global 

field variations and local field variations to differ between sites. 

2.3.4 Post-Processing Techniques 

Using the above data set, images can be processed into a final form that is viewable and 

provides qualitative or quantitative information. Methods such as Susceptibility-

Weighted Imaging (SWI), Quantitative Susceptibility Mapping (QSM), or apparent 

transverse relaxation (R2
*) are typical images that are computed with multi-echo gradient 

echo. 

2.3.4.1 SWI 

Susceptibility-Weighted Imaging, originally called BOLD venographic MRI 17, is a 

method in which the phase data can be used to enhance a magnitude image. The multi-

echo technique is focused on computing a frequency mask, which is calculated by doing 

a least squares weighted fit through the multiple echoes 18. Rewriting equation 2.4 and 

only taking into account the variations in local magnetic field the relationship between 

frequency and phase can be expressed as follows: 

𝜑
𝑇𝐸 = 𝛾∆𝐵_`aZ_		 	2.6	𝑎  
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∆𝐹_`aZ_ =
𝛾
2𝜋 ∆𝐵_`aZ_		 	2.6	𝑏  

where the	∆𝐹_`aZ_ can be expressed in hertz or radians (dependent on the 2𝜋 term). This 

step is used in multi-echo SWI to provide a single image that is representative of the 

Local Frequency Shift (LFS). The LFS represents the changes in frequency within a 

voxel that is caused by the mesoscopic and microscopic field. The LFS map is used as a 

substitute for a phase-mask that can also be calculated based on the relationship in 

equations 2.6a and 2.6b. From this step, an appropriate frequency mask as shown in 

equation 2.7 can be created to process the LFS in a way that is sensitive to paramagnetic 

compounds such as deoxygenated blood, hemosiderin, or iron. 

𝑚𝑎𝑠𝑘 = 				

1		𝑖𝑓	∆𝐹_`aZ_ > 0
∆𝐹_`aZ_
|𝑓aVj|

+ 1	𝑖𝑓		𝑓aVj < 	∆𝐹_`aZ_ < 0

0	𝑖𝑓	∆𝐹_`aZ_ < 	𝑓aVj

				[2.7] 

The above mask causes any positive frequency to be set to 1, preserving the contrast in 

the magnitude image. Any negative frequency larger than a specified cut off is set to 0, 

with a linear transition between the cutoff frequency and 0. This amplifies the effect of 

negative frequency shifts on the magnitude image, yielding superior contrast, especially 

in the visualization of paramagnetic compounds such as deoxygenated blood. The linear 

transition is arbitrary and can be replaced with any transition function, or the mask could 

simply be a step function at 𝑓aVj =	0. Allowing for a gradual transition can provide for a 

smoother transition of negative frequency between 0 and 𝑓aVj	providing for more pleasing 

contrast in the images 18. 
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The final step is to multiply the mask into the magnitude. The image can be multiplied n 

times, to enhance the visualization of the negative frequency components; however, too 

many multiplications may increase the noise of the image. A multiplication of 3-5 times 

often yields high contrast while limiting noise 4,18. An example of the implementation of 

SWI is shown in Figure 2.4. 

 

Figure 2.4 Example of the post-processing technique used to calculated SWI 

One can take the additional step of using a minimum intensity projection through many 

slices to visualize veins that may appear in adjoining slices. This is often useful when 
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trying to distinguish veins from pathologies such as microbleeds, a topic which will be 

discussed in the subsequent chapters. 

2.3.4.2 Quantitative Susceptibility Mapping 

As was shown in equation 2.4 the accrued local phase is related to the product of the 

gyromagnetic ratio, changes in local magnetic field (∆𝐵), and TE. While this is useful for 

calculating the change in frequency as shown in equation 2.6, it is also possible to extract 

information about the susceptibility of the tissue within a voxel r. The magnetic field 

variation is related to the magnetization and the point-dipole response 19 as shown by the 

convolution in equation 2.8 

∆𝐵(𝒓) = 𝜇J𝑀(𝒓) 𝐺 𝒓 						[2.8]	 

where M(r) is the local magnetization along B0 (or z-direction), and G(r) is the Green’s 

function for the point-dipole response function. 

𝐺 𝒓 =
1
4𝜋 ∗	

3	𝑐𝑜𝑠&𝜃 − 1
𝑟r 							[2.9] 

Where 𝜃 is defined as the angle between the local magnetization along B0 and the phase 

at voxel r.  

For magnetic susceptibility values 𝜒 << 1, one can approximate the relationship between 

magnetization and susceptibility to be the following: 

𝜇J	𝑀 𝒓 ≈ 𝐵J	𝜒 𝒓 			[2.10] 
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Therefore, the change in magnetic field at a specific point (r) can be expressed as follows:  

∆𝐵(𝒓) = 𝐵J	𝜒 𝒓 𝐺 𝒓 						[2.11	𝑎] 

∆𝐵(𝒓) = 𝐵J	𝜒 𝒓 	
3	𝑐𝑜𝑠&𝜃 − 1

4𝜋𝑟r 								 [2.11	𝑏] 

While solving this equation may seem simple, it must be solved for every voxel in the 

image. With the number of voxels approaching tens of millions, this becomes a 

computationally expensive problem. 

Fortunately, a convolution in image space can be expressed as a multiplication in Fourier 

domain as such: 

𝐹 ∆𝐵 𝑟 = 𝐹 	𝜒 𝑘 ∗
1
3 −

𝑘v&

𝑘& 						[2.12] 

where 𝑘& = 𝑘w& + 𝑘x& + 𝑘v& and kx, ky and kz, represent the distances along the x, y, and z 

axes in the Fourier domain (or k-space). When k=0, which corresponds to the magic 

angle where the numerator of the Green’s function in equation 2.11 is equal to 0 

(𝜃 = 54.74º). This causes an ill-defined problem when attempting to solve for magnetic 

susceptibility 𝜒 in the Fourier domain due to the division by zero that may lead to 

streaking artifacts in the image reconstruction without optimization methods 10. A simple 

optimization method could be to threshold values lower than a certain value to avoid 

dividing by 0. 

Attempting to overcome this ill-posed problem is an area of active research with many 

algorithms currently proposed 10,20,21. These methods typically involve using prior 
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information such as the edge information in the magnitude and phase and optimization 

methods to estimate the susceptibility. 

2.3.4.3 R2
* Mapping 

The measurement of the apparent transverse relaxation rate, R2
*, is the final post-

processing step of multi-echo gradient echo sequences and the one used in all chapters of 

this thesis. The simplest form of R2
* mapping is done by performing a best fit line 

through each of the acquired echoes assuming a mono-exponential decay, as shown in 

equation 2.13: 

𝑆 𝑇𝐸 = 𝑆J 𝑒z{|(}~
∗) 	 			[2.13] 

By acquiring S(TE) at known TE, solving for R2
* appears to be rather trivial; however, 

there are some confounding factors in the computation of R2
*. The first confound is that 

the acquired signal has superimposed noise from many sources that introduces error in 

the acquired data; therefore, a line of best fit through the discrete time points is used to 

model R2
* decay. Throughout this thesis, a non-linear least squares method is used to 

model the line of best fit for equation 2.13. Further complications may arise when fitting 

data that approach the noise floor, although care is typically taken to avoid this situation 

by excluding data that are below some multiple of the noise. 

The second confound is the contribution of the macroscopic fields that could affect the 

accurate measurement of R2
* within the tissue. Several correction methods for the 

compensation of the macroscopic field exists, such as voxel spread functions 22 or sinc 

corrections 23. These corrections are most needed when the slice thickness is much 
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greater than the in-plane resolution. When the slice becomes large, the macroscopic field 

can no longer be assumed to be linear, and the dephasing within voxels is influenced by 

the macroscopic field. These methods attempt to correct for the dephasing caused by the 

macroscopic field. While these the voxel spread function described in [21] was used for 

the experiment in this thesis, it was found that the slice thickness compared to in-plane 

resolution (either 1:1 or 1:2) did not play a major contributing factor to the dephasing of 

signal. 

2.4 ME-GRE Application within this thesis 

Together, the two previous chapters have given an appreciation of the role the vasculature 

plays in glioma and subsequent imaging of treated gliomas. Additionally, multi-echo 

gradient echo sequences have been shown to be susceptible to contributions of 

deoxygenated blood that is present in tumors. The paramagnetic contributions of iron and 

diamagnetic contributions of calcifications and myelin content will be investigated in the 

next chapter, and non-contrast methods that could be expanded for clinical use will be 

demonstrated. 
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Chapter 3  

3 R2
* as a Marker for the Prediction of Radiation Necrosis 

in a Rat Model 

3.1 Introduction 
There is long history of the use of external beam Radiation Therapy (RT) to treat many 

forms of diagnosed brain neoplasms. While the ability to deliver conformal radiation to 

the tumor has improved over the years, delivery of radiation is still associated with 

significant doses to the adjacent brain parenchyma, and as such may cause side-effects in 

various stages of the treatment 1. Side-effects are usually divided into acute, sub-acute, 

and late-effects 1,2. Acute side-effects include brain encephalopathy secondary to 

increased edema and tends to be associated with larger brain volume treatment or larger 

dose per fraction treatments. Sub-acute or early-delayed side-effects are thought to be 

caused by transient demyelination causing somnolence syndrome and is related largely to 

the volume of brain radiated. In most cases, sub-acute side-effects either spontaneously 

recover or are managed with the temporary use of steroids. Late-effects can be 

irreversible and cause symptoms such as cognitive or neurological deficits. Among these 

late-effects, Radiation Necrosis (RN) represents a form of focal brain injury and the risk 

of RN is felt to be a complex interplay of total dose, dose per fraction, region, volume of 

brain treated, and host factors 3.  

The permanent effects of RN are one of the reasons guidelines on the total deposited 

doses have been developed. Guidelines such as the Quantitative Analyses of Normal 

Tissue Effects in the Clinic (QUANTEC) 4 have been developed to attempt to limit the 
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incidence of RN. With the use of once-daily fractionation of less than 2.5 Gy/fraction, the 

incidence of RN for partial brain radiotherapy has been reported at 5% and 10% with a 

biologically effective prescription dose of 120 Gy3 or 150 Gy3, respectively. For 

radiosurgery, the toxicity and risk of radiation necrosis increases with the target volume, 

with increasing toxicity for a single fraction dose larger than 12 Gy and volumes larger 

than 5-10 cm3. In addition to these guidelines, research has suggested reducing the 

volume of brain irradiated and avoiding exposure to certain eloquent regions such as the 

hippocampus, brainstem, and corpus callosum during RT should help to prevent 

neurocognitive decline and/or focal deficits 4–7.  

To optimize radiation treatment plans, improvements in radiotherapy techniques such as 

image guidance, 3D conformal RT, Intensity Modulated Radiotherapy (IMRT), and 

proton therapy have been shown to decrease radiation to the surrounding margins around 

the planning treatment volume for certain brain tumors 8. These techniques allow 

conformal RT of the neoplasm to reduce dose to surrounding brain and associated 

structures while maintaining a sufficiently high dose to the planning treatment volume. 

While efforts continue to optimize treatment plans, understanding the etiology of RN 

could potentially aid in predicting or preventing its occurrence over the long-term. 

Prognostic markers could allow for higher doses of RT to be delivered or toxicity to be 

further reduced. The most prominent RN hypotheses supported over the past decades are 

the vascular hypothesis 9–11 and the glial hypothesis11–13; however, neither fully explain 

RN10,11.  

The vascular hypothesis theorizes that RN is secondary to an ischemic event in the white 

matter and is thought to result from small vessel obliterative vasculitis induced by 
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radiation. Previous works have shown vessel wall thickening and vessel dilation 9,10 as 

well as decreases in blood vessel density and length following radiation 14. 

The glial hypothesis suggests that radiation directly causes damage to the white matter 

precursor cells 15, which causes a demyelination process a few months to years following 

RT. Studies have also shown that RN can be associated with apoptosis of 

oligodendrocytes precursor 16 cells leading to the loss of mature oligodendrocytes and 

damage to the astrocytes leading to a breakdown of the blood-brain barrier 17. It has been 

shown that damage to endothelial cells may lead to increased cytokine production 18 and 

elevated levels of vascular endothelial growth factor that lead to edema and necrosis 19–21. 

Despite this work, the exact mechanism of RN is still uncertain and the potential for 

prevention and/or ameliorating the effects of RN remains an area of active research. More 

recently, a role for ongoing neuro-inflammatory processes has also been postulated 18. 

While histological analysis provides a fundamental understanding into the cellular 

processes at play, this information is limited in its ability to track the evolution of 

radiation changes and requires invasive sampling, limiting its clinical application. In-vivo 

imaging potentially allows continuous monitoring and could serve as a non-invasive 

biomarker of tissue changes associated with radiation injury. The use of novel MRI 

sequences and higher magnetic fields for MRIs has added new ways in which radiation 

injury can be studied in pre-clinical and clinical settings. While traditional MRI 

techniques are usually inadequate for proper differentiation of RN and tumor recurrence 

22,23, quantitative methods such as Diffusion Tensor Imaging 24,25, Magnetization Transfer 

Contrast 26 and Chemical Exchange Saturation Transfer 27 have been shown to correlate 

with RN and show promise in distinguishing between these entities. 
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As radiation necrosis is thought to be vascular, glial, or inflammatory in nature, it can be 

hypothesized that the use of higher field strength MRI and novel MRI sequences targeted 

at imaging vascular changes would allow us to detect and track the development of 

radiation injury in a pre-clinical model. To this end, this experiment sought to monitor 

animals receiving high dose partial brain radiation using imaging at a regular intervals 

using a 9.4T MRI scanner and performed quantitative and qualitative imaging over the 

course of 28 weeks. The techniques used were Susceptibility-Weighted Imaging (SWI) 

and apparent transverse relaxation rate (R2
*) mapping, which have previously shown to 

be sensitive to venous vasculature 28 and tissue microstructure such as iron or myelin 

content 29,30. These techniques were used in conjunction with the current gold-standard 

for imaging radiation necrosis, gadolinium-enhancing T1 MRI. 

3.2 Materials and Methods 

3.2.1 Rat Selection and Imaging Time Points 

All experiments were conducted with the approval of the Animal Use Subcommittee 

protocol at the University of Western Ontario. Male Fischer 344 (strain code 002) rats 

from Charles River were obtained at an age of approximately eight weeks and a weight 

range of 150-170 grams. Upon arrival, rats were acclimatized for three days and were 

then scanned for a baseline (week 0) 3-5 days after arrival at the animal facility. Rats 

were kept in a conventional housing room with a 12 hour (7am/7pm) light cycle. Seven to 

ten days after arrival, rats were irradiated using the methods described below. Rats were 

imaged on the MRI one week and two weeks after receiving their radiation and 

subsequently every 2-4 weeks until 28 weeks after irradiation at which point they were 

sacrificed. Some rats were sacrificed at earlier times points for histology or due to illness 
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(typically a 15-20% weight loss). Rats were divided into three cohorts; 1) micro-CT 

radiation (n=8), 2) x-Rad 225 radiation (n=10), 3) control (n=4). 

3.2.2 Magnetic Resonance Imaging 

Magnetic resonance imaging was performed on an Agilent 9.4 T horizontal small bore 

animal scanner. Rats were anesthetized with isofluorane combined with medical air (4% 

induction for 2-4 minutes, 1.5-2% maintenance). A custom-built two-channel head 

conformal transceive RF coil was used for imaging. Rats were placed on a stereotactic 

frame and secured with ear bars for the duration of the scan (1.5-2 hours). The acquisition 

protocol consisted of a bSSFP sequence (TR 5.0 ms / TE 2.5 ms, matrix size 

250x180x180, FOV 43.8 mm x 31.5 mm x 31.5mm, scan time 11 minutes) and 

3 averages of a 7 or 8 echo multi-echo gradient echo sequence (FA 10°, TR 30ms, TE 2.5 

ms, ESP 2.7ms - 3.0ms, matrix size 250x180x180, FOV 43.8 mm x 31.5 mm x 31.5mm, 

scan time 16 minutes). At later time points, a T2-weighted fast spin-echo sequence was 

also acquired. Gadolinium T1 images were acquired at 12, 17, and 24 weeks using a 

similar anesthetization protocol. A T1-weighted gradient echo (FA 30°, TR 45 ms, TE 2.5 

ms, matrix size 130x90x90, FOV 43.8 mm x 31.5 mm x 31.5mm, scan time 6 minutes) 

was acquired approximately 2 hours following an intraperitoneal injection of the 

gadolinium contrast agent Magnevist (1mL/100g). It should be noted that the week 8 time 

point for control rats had to be discarded due to a malfunction of the gradient coil chiller 

causing unreliable data. 
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3.2.3 Partial Brain Radiation 

The first irradiation was performed on a micro-CT irradiator 31. A schematic of the 

delivered radiation plan is shown in Figure 3.1. The treatment plan consisted of 10-30 Gy 

delivered to the right hemisphere using a 150 kVp beam. Dose step gradients were 

performed using the micro-CT jaws as shown in Figure 3.1. The delivered dose rate was 

calculated to be 30 cGy/min; however, due to heating of the x-ray tube radiation delivery 

had to be done in blocks allowing for cool-down over the course of radiation delivery. 

The effective dose rate (delivered dose / total time) was calculated to be approximately 

10-15 cGy/min depending on total delivered dose when delivered over the course of three 

hours. The micro-CT had imaging capabilities allowing us to confirm the dose delivery to 

the proper area.  

 

Figure 3.1 Illustrative dose plan superimposed on bSSFP image. On the left is a 

schematic dose distribution for animals irradiated on the xRad-225 platform up to 
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40 Gy (n=10). On the right is a schematic of the dose distribution of the micro-CT 

platform. The red box indicates a dose of 30 Gy, the yellow box a dose of 20 Gy and 

green box a dose of 10 Gy. 

The second platform used was an IGRT x-Rad 225 irradiation device. Dose rate was 

calculated to be approximately 2.3 Gy/min and the entire dose was delivered over 17.5 

minutes using a 225 kVp beam. This resulted in a total dose of 40 Gy to the right half of 

the brain, delivered by a single appositional field directed superior to inferior through the 

brain. Dose planning was performed using custom-built Monte-Carlo analysis. 

Additionally, the x-Rad 225 had image localization allowing confirmation of the dose 

delivery to the right hemisphere. A schematic dose plan is also shown in Figure 3.1 (a). 

In both cases, a dose deposition gradient differential of approximately 5 Gy over the 

superior-inferior direction due to the kV-beam was calculated. Finally, control rats 

underwent sham radiation by being anesthetized for 15 minutes using similar conditions 

for irradiated rats. 

 

Figure 3.2 Illustrative timeline of protocol 
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3.2.4 Image Processing and Segmentation for Image Analysis 

Manual segmentation was performed using the ITK-Snap software 32. Any radiation-

induced lesions, both hippocampi, and right hemispheric white matter were manually 

segmented. Lesions were segmented by using co-registered images of the gadolinium-

enhancing T1 image and the average image of all echoes. With the mutual information 

from both images, it was easier to exclude the CSF, striatum, and blood vessels 

surrounding the gadolinium-enhancing lesion.  

Using the Oxford Centre for Functional MRI of the Brain Linear Image Registration Tool 

registration toolbox (FSL FLIRT), the segmented radiation necrosis region of interest was 

retrospectively overlayed on earlier time point images with registration errors no greater 

than 1-2 voxels. Proper registration was confirmed by using the contralateral 

internal/external capsule junction and anterior corpus callosum as a landmark. These 

retrospectively applied regions were used to determine if there were vascular changes 

detected with the R2
*and SWI images at earlier time points that preceded the onset of 

frank necrosis. 

Both left and right hippocampus were manually segmented, avoiding areas that were 

adjacent to the air-tissue interface. Finally, the white matter tracts (which included the 

corpus callosum and the internal and external capsule) were manually segmented. In all 

segmentation, the Paxinos atlas 33 was used as a guide. Care was taken to minimize 

partial volume effects. 
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3.2.5 SWI Processing 

Before SWI processing, a four slice sliding window (convolution filter) was applied 

along the direction of the magnetic field, which was also the direction of the slice 

selection, as described by Haacke 34. Following this step, high-pass filtering using a 

7 mm Gaussian filter was applied and a weighted non-linear least squares fit through each 

echo was used to obtain a local frequency shift map 35. A cutoff frequency value of 17 Hz 

was applied to get a frequency mask that was multiplied four times into the magnitude 

data. Final SWI maps were then minimum intensity projected through 5 slices (875 µm). 

3.2.6 Statistical Analysis 

Statistical analysis was performed using Prism version 6.0h. The statistical analysis 

compared irradiated rats to control rats using a repeated measures multiple comparison 

two-way ANOVA using Sidak correction for multiple comparisons. 

3.2.7 Histology 

Following the last time point scan, rats were sacrificed by increasing the level of 

isofluorane to 5% until there was no more response to stimuli and perfused using an 

intracardiac catheter with a saline/heparin flush followed by 10% formalin solution. The 

excised brain was placed in a 10% formalin solution for at least seven days before being 

processed and blocked. 

Standard tissue staining was performed at the adjacent hospital’s pathology laboratory. 

Tissues were block and stained with Hematoxylin and Eosin (H&E) and Luxol Fast Blue 

(LFB). H&E is a histology stain that is commonly used for nuclei (stained by the 

hematoxylin and viewed as blue or purple) as well as cytoplasm and erythrocytes (stained 
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by eosin and viewed as red or cherry red, respectively). LFB is a basic myelin stain used 

to detect myelination within the central nervous system. Microscopy was performed 

using an Aperio digital pathology slide scanner. 

3.3 Results 

3.3.1 Animal Behavior and weight 

Animals irradiated using the micro-CT exhibited similar growth patterns compared to 

control rats. Animals irradiated using the xRad-225 exhibited a slower weight gain 

following irradiation; however, the weight gain was constant, and the animal’s weight did 

not vary by more than 15% compared to control. The mean weights and standard 

deviations are shown in Figure 3.3. 
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Figure 3.3 Graph of weight distributions with mean and standard deviations for 

each time point. Data points with no error bar indicate standard deviation smaller 

than the point. 

Rats irradiated with the xRad-225 exhibited a hunched appearance towards the end of the 

experiments, but they did not exhibit other symptoms. The ipsilateral front incisors had to 
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be cut approximately 16 weeks following treatment for rats treated with the xRad-225 

and subsequently trimmed every 2-4 weeks as necessary. 

Only three rats that were irradiated with the xRad-225 survived until week 24. Originally, 

four rats were planned to be sacrificed along the timeline for histology, and three rats had 

to be sacrificed at earlier time points than planned due to weight loss. The specific source 

of weight-loss was due to refusal of water, food, or soft-mash in two rats, while one 

suffered from exsanguination from the ear on the irradiated side.  

3.3.2 SWI and Gadolinium MRI 

Throughout the study, there were no qualitative changes observed on the processed SWI 

images. 

Gadolinium MRIs were performed on rats irradiated using the micro-CT before being 

sacrificed, and no rats demonstrated visible morphological changes. For rats irradiated 

with the xRad-225, morphological changes on Gadolinium MRI were apparent on all 

imaging sequences at week 24 as illustrated in Figure 3.4.  
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Figure 3.4 Radiation necrosis developed at the internal and external capsule, as 

shown by T1-gadolinium enhancing MRI (a) and increased R2
* (b). 

The enhancing gadolinium lesion on MRI can be attributed to the breakdown of the 

blood-brain barrier due to radiation necrosis; this was subsequently confirmed by 

histologic examination (Figures 3.5 and 3.6). 

3.3.3 H&E and Luxol Fast Blue Histology 

While histology was performed on all three rat cohorts (Control, Micro-CT irradiated, 

and xRad-225 irradiated), only rats irradiated on the xRad-225 exhibited changes at later 

weeks as shown in Figures 3.5, 3.6 and 3.7. The Luxol Fast Blue stain shows 

hypointensities on Figure 3.5 and 3.6 indicated a loss of myelin content. The H&E stain 

also shows hypointensities indicating possible loss of tissue or disruption of the collagen. 

Vessel dilation was also apparent as early as week 16. 
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Figure 3.5 H&E stain (a) and LFB stain (b) demonstrating white matter necrosis 

within the internal capsule within the black box. Zoomed image of Internal Capsule 

(C) shows vessel dilation and hypointensity. Panels A and B are at 1x magnification; 

panel C is at 20x magnification. 
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Figure 3.6 Combined H&E with LFB stain at week 20. Arrow indicates area of 

demyelination at the external capsule shown as hypointense purple. 
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Figure 3.7 H&E slide for brain at week 16. Top is 1X magnification and bottom is 

20X magnification 
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3.3.4 Differences in R2
* 

Rats irradiated on the micro-CT did not develop imaging evidence of necrosis nor were 

any statistically significant changes in R2
* in the segmented normal tissue structures 

detected. The remaining results pertain to those rats irradiated on the xRad-225 platform 

or controls. 

The raw R2
* values within the region of eventual radiation necrosis in the three rats 

irradiated on the xRad-225 who survived until week 24 appear in Figure 3.8. An upward 

trend of R2
* appears around the Week 14 time point, which was 8-10 weeks before any 

morphological changes appeared on the gadolinium-enhancing T1 or bSSFP. 
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Figure 3.8 Measured R2
* within lesion for each rat. An increasing trend of R2* is 

apparent as early as week 14. 

The number of rats used for analysis in Figures 3.9, 3.10, 3.11, and 3.12 are provided in 

Table 3.1. 
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Table 3.1 Number of rats used in analysis 

Week	#	 Number	of	Control	
rats	

Number	of	Irradiated	
rats	

Reason	for	loss	of	
Irradiated	Rat	

0	 4	 10	 X	

1	 4	 10	 X	

4	 4	 8	 1	Histology	
1	Weight	Loss	

12	 4	 5	 1	Histology	
1	Weight	Loss	

1	Exsanguination	
from	ear	

16	 4	 5	 X	
20	 4	 4	 1	Histology	
24	 4	 3	 1	Histology	

Within the ipsilateral hippocampus, a statistically significant mean difference of R2
* 

between control and irradiated rats occurred at week 12 (95% CI: 0.1-2.4 s-1, P < 0.05) 

with significance at each subsequent time point as shown in Figure 3.9. In addition to 

differences between irradiated and control rats, a statistically significant mean difference 

between the ipsilateral and contralateral irradiated hippocampi within irradiated rats is 

evident at week 20 (95% CI: 0.5-3.0 s-1, P < 0.01), as shown in Figure 3.10. There was no 

statistical significance for the mean difference between the left hippocampus in both 

irradiated and control rats, although a trend of increased R2
* in the irradiated contralateral 

hippocampus is readily apparent as shown in Figure 3.11.  
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Figure 3.9 Mean difference of R2
* between irradiated and control right 

hippocampus, error bars represent 95% confidence intervals, significance is 

represented by * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

Figure 3.10 Mean difference of R2
* between irradiated ipsilateral and contralateral 

hippocampus, error bars represent 95% confidence intervals, significance is 

represented by * P < 0.05, ** P < 0.01. 



66 

 

 

Figure 3.11 Mean difference of R2* between contralateral and control left 

hippocampus, error bars represent 95% confidence intervals. While there are no 

significant results, a weak trend of increasing R2
* is apparent. 

Within white matter tracts significant changes to the R2
* between ipsilateral radiated and 

control white matter tracts were not apparent; however, a steady increase in the mean 

difference over time was observed as shown in Figure 3.12. 
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Figure 3.12 Mean difference of R2
* between irradiated and control white matter 

tracts, error bars represent 95% confidence intervals. While there are no significant 

results, a trend of increasing R2
* is apparent. 

3.4 Discussion 
This study has demonstrated a model in which increases of R2

* in white matter tracts and 

hippocampus precede the morphological appearance of necrosis on gadolinium T1-

weighted imaging and bSSFP. In this specific cohort of rats, the R2
* consistently 

increased in the external and internal capsule over time. This finding appears to be at 

odds with the vascular hypothesis, as an ischemic event in the irradiated area should be 

associated with a decreased R2
* due to lower blood volume and blood flow in the region. 

Thus, the mechanism of RN may be more complex than radiation induced vascular injury 

and occlusion leading to ischemia. Increases in R2
* could be indicative of vascular effects 

from neuroinflammation or vascular changes other than occlusion at the lesion site. 

Should small vessels be obliterated at the radiation site, as suggested by the vascular 
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hypothesis, residual by-products of vasculature (such as de-oxygenated hemoglobin) 

would increase the R2
*. In fact, on histologic examination vascular dilation in the region 

where radiation necrosis was detected can be noted as early as week 16 as shown in 

figure 3.7, suggesting vascular effects are part of the mechanism, and further research is 

needed to relate changes on R2
* to histology. If changes are happening at the capillary and 

small venules level, it is possible that the BOLD effect 36 of larger vessels dominate 

within a voxel due to the larger venules remaining intact as previously shown by 

histology 37, reducing the sensitivity to ischemic events in the capillaries. Additionally, it 

has been suggested small vessel changes occur in the hours or days following RT 11 and 

there are transient/variable changes in blood flow that may not have been detected with 

isolated imaging sessions. 

While the data did not find any statistically significant changes in R2
* within the white 

matter tracts, a trend towards an increase in R2
* in white matter regions is apparent. Inter-

week and inter-animal R2
* differences of 1.5 s-1 were measured, which were attributed to 

partial volume during the segmentation. In most areas, the white matter tract was no 

wider than 2-3 voxels making proper segmentation difficult. It is possible that in humans, 

whose white matter tracts are larger and can span more voxels, longitudinal differences in 

R2
* would be less sensitive to segmentation errors. The measured increase in R2

* could be 

a neuroinflammatory mechanism in which there is increased iron content due to the 

presence of macrophages within the white matter tract. Further histologic examinations of 

the treated animals and examination among larger cohorts of animals would be needed to 

confirm this hypothesis.  



69 

 

The statistically significant increases in R2
* within the hippocampus also support 

neuroinflammatory mechanisms within the hippocampus that have recently been 

suggested as mediating cognitive changes following radiation 38. The decreased mean 

difference trend at week 1 could be supportive of decreased deoxygenated blood, again 

supporting the notion that RN is a complex process that evolves over time. The non-

statistically significant trend of increased R2
* within unirradiated hippocampus could be 

due to the high interconnectivity of the hippocampi along the corpus callosum. Larger 

cohorts and further immunohistochemistry investigations are necessary to identify the 

cause of this trend. 

Of interest, the choice of radiation platform influenced the development of radiation 

injury. It is possible that the lower dose 39 or lower dose rate associated with the micro-

CT (maximum 30 Gy at 30 cGy/min) compared to the xRAD-225 accounted for lack of 

RN lesions noted. Specifically, animals irradiated on the micro-CT at an effective dose 

rate of 3-5 mGy/min to 30 Gy partial brain volume did not develop any necrosis at 28 

weeks after radiation, at which point they were sacrificed per the ethics protocol. It 

cannot be refuted that necrosis may have developed at a time point later than 28 weeks; 

however, this time point represents approximately 15-25% of the rats’ expected lifetime, 

and previous established models of necrosis in rat occur between 18-26 weeks following 

RT 25,40,41. In comparison, all animals irradiated on the xRAD-225 at 2.3 Gy/min to 40 Gy 

partial brain volume developed RN lesions. Thus, future studies examining RN in pre-

clinical models should take into account dose rate as a potential confounding factor are 

warranted 42,43. 
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This study provides motivation for further research on the R2
* dependence on RN, and 

further evaluations that correlate with histology and immunohistochemistry could provide 

further insight into the mechanisms increasing R2
*. Given the small sample size of 

animals with RN, further validation of the findings in larger cohorts and alternate pre-

clinical models are necessary. Another extension of this work would be to examine the 

utility of this imaging in pre-clinical models of glioma. In particular, these models could 

be used to explore whether RN can be differentiated from residual tumor using R2
*.  

3.5 Conclusions 
In a pre-clinical model of RN, R2

* acquired at 9.4T was able to detect early parenchymal 

changes that preceded the development of overt necrotic lesions. Variable temporal and 

spatial patterns of R2
* suggest RN is a complex interplay between neuroinflammation and 

vascular and glial injury. 

This chapter provided motivation for the future experiments within this thesis as data 

obtained suggest this technique is highly sensitive to increases in the vasculature and 

potentially neuroinflammatory components following RT. The next chapters will 

investigate whether changes in the vasculature are detectable in humans in the sub-acute 

and long-term time periods following therapy for both benign and malignant glioma. 

Chapter 4 will investigate vascular effects within the high dose regions of benign 

neoplasms and the subsequent effects it could have on the long-term health of these 

patients. Finally, Chapter 5 will investigate whether the differences in R2
* as shown in 

this chapter can be applied to non-specific post-treatment imaging changes following 

chemoradiotherapy to differentiate between glioma recurrence and treatment effect. 
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Chapter 4  

4 Assessing Vasculature and Microstructural Changes in 
Low-Grade and Benign Brain Tumors Using Ultra-High 
Field MRI Techniques 

4.1 Introduction 
External beam radiotherapy (RT) is commonly employed as a treatment for many brain 

neoplasms. In benign and low-grade neoplasms (meningiomas, neuromas, low-grade 

gliomas), safe maximal surgical resection combined with RT is usually the standard of 

care. The prescribed dose is typically a course of 54-60 Gy in 30 fractions using 

conformal delivery with techniques such as intensity modulated radiation therapy. These 

dose plans attempt to follow specific guidelines such as QUANTEC to limit dose to 

radiosensitive areas such as the uninvolved brain, brain stem, optic nerve, and optic 

chiasm 1, as well as the hippocampus that is known for its role in neurogenesis 2,3. Due to 

the infiltrative nature of some neoplasms such as low-grade gliomas or the proximity of 

tumors to normal brain in other neoplasms, even conformal radiation techniques can 

result in some volumes of normal tissue receiving radiation. The dose delivered to the 

normal brain can potentially cause long-term effects later in the patient’s life.  

Following RT, there are numerous reports of clinical sequela that are classified into 

acute, early-delayed, or late-effects 4. Acute and early-delayed side-effects are usually 

temporary and resolve spontaneously with minimal treatment or steroids. Late-effects are 

typically much more severe as they cause permanent changes to the brain parenchyma 

that include radiation necrosis (RN), cavernous angiomas, and microbleeds 4 resulting in 

ongoing neurologic deficits. 
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RN is a side-effect that may present itself a few years following RT; however, it can 

occur as early as six months and as late as ten years following RT. In some patients, 

regions of RN may be small and do not produce symptoms. In others, progressive RN can 

be seen with significant effects on the patient's quality of life 5. Symptoms ranging from 

headaches and drowsiness to memory loss, seizures, and focal deficits have been 

documented. Treatments of RN range from observation to steroids or anti-angiogenic 

agents 6. In some patients, surgical resection is required to debulk necrotic areas to 

alleviate symptoms. 

The exact cause and time-course of RN is not fully understood, but the two main 

hypotheses developed in the past 50 years are related to vascular and glial damage 4. The 

vascular hypothesis suggests that radiation necrosis is secondary to an ischemic event, 

while the glial hypothesis suggests that white matter precursor cells are damaged during 

RT. Recently, the role that the immune response plays following RT has been 

documented 7,8. The theory proposes that neuroinflammation could be another 

mechanism contributing to the development of RN. 

In addition to frank RN, microbleeds that occur at later time-points and are detected on 

imaging following RT are a recent discovery 9,10. Microbleeds may serve as a marker for 

future vascular disease such as stroke 11. Not only do microbleeds indicate that more 

serious diseases could occur in the future, but the patient could be put at risk of more 

significant intracranial bleeding if started on anticoagulants 12. Techniques such as 

Susceptibility-Weighted Imaging (SWI) are becoming more prominent with higher 

magnetic field strengths available clinically (3T) or for research (>7T). These techniques 

make locating microbleeds increasingly easier, as the spatial resolution can be increased 
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with higher magnetic fields and the paramagnetic effect of the hemosiderin deposit 

increases linearly with field strength. Consequently, the increased resolution can also lead 

to false-positives in microbleed detection as small venous vasculature that runs parallel to 

the magnetic field can be misinterpreted as microbleeds. SWI, Quantitative Susceptibility 

Mapping (QSM) and apparent transverse relaxation (R2
*) have been previously shown to 

be extremely sensitive to the vasculature and hemosiderin rich microbleeds 13,14. These 

techniques are also sensitive to white matter lesions, as shown in various multiple 

sclerosis (MS) studies 15,16. Previous work from Raichenbaich et al. 17 estimates that these 

techniques are sensitive to venous vasculature of approximately 100-200 micrometers in 

diameter.  

Among brain tumor patients, most studies to date have investigated microbleeds and 

radiation necrosis among patients who have high-grade neoplasms 18,19; however, long-

term RN studies in this patient population may be less feasible due to the shortened life 

expectancy for most patients with malignant glioma. Additionally, these studies involve 

patients who are treated with chemotherapy, which has been shown potentially to 

influence the number of microbleeds present in the brain 10,20 and may confound the 

estimates of microbleeds due to radiation alone. 

This research study presents initial results that focus on imaging the microvasculature and 

microbleeds using techniques such SWI, QSM, and R2
* on patients treated for benign or 

low-grade neoplasms. These patients have a longer overall survival (OS) following 

successful treatment and as such are at higher risk of eventually experiencing delayed 

adverse RT effects. Thus, it is hypothesized that SWI, QSM, and R2
* may be a useful 

imaging technique to detect late radiation changes among this patient population and in 
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doing so, identify patients who might be at risk of longer-term sequelae of their treatment 

(cognitive effects or focal brain injury). 

4.2 Materials and Methods 

4.2.1 Patient Recruitment 

The study was approved by the Human Subjects Research Ethics Board of the University 

of Western Ontario. Ten patients (two males, eight females) were recruited from the 

London Regional Cancer Program (LRCP) and were screened for eligibility by the 

treating radiation oncologist. Eligibility requirements included patients who were over 18 

years old, Karnofsky Performance Status > 60, and who were treated for a benign or 

WHO Grade 1 or 2 brain neoplasm within 12-36 months of their recruitment for the 

study. Treatments for their neoplasms could have included surgical resection followed by 

radiotherapy or primary radiotherapy alone. As per protocol, patients underwent an initial 

imaging session at the time of enrollment and a second session 12-24 months later to 

detect any change in imaging features. 

4.2.2 MRI 

Patients were scanned on a 7T MRI at the Robarts Research Institute in London, Ontario. 

The first MRI for all patients was performed on an Agilent/Siemens 7T MRI with a 15 

channel transmit / 31 receive channel coil. Three of the patients had their second carried 

out after a major upgrade to a Siemens 7T Magnetom Step 2.3 MRI with an 8 channel 

transmit / 32 receive channel coil while three patients had both MRIs on the Agilent 

scanner. An anatomical T1-weighted image was performed (Agilent: MPRAGE, 1 mm 

isotropic voxel, scan time 5 min 45 seconds / Siemens: MP2RAGE, 0.8 mm isotropic 
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voxels scan time 8 minutes 26 seconds) and a CSF attenuated MPFLAIR (Agilent: 1 mm 

isotropic resolution, scan time 12 minutes 42 seconds, SEIMENS: not acquired) was 

acquired for registration to clinical scans. A multi-echo gradient echo (Agilent: Multi-

echo gradient echo, 1 mm in-plane resolution, 1.5 mm slices, TR=40 ms, TE=2.4 ms, 

ESP=3.3 ms, echoes=6, FA 13° GRAPPA 2.1 / Siemens: Multi-echo gradient echo, 1 mm 

in-plane resolution, 1.5 mm slices, TR=40 ms, TE=4.9 ms, ESP=4.5 ms, echoes=6, FA 

13°, GRAPPA 2) was acquired.  

4.2.3 Post Processing 

The multi-echo gradient echo data set was acquired and post-processed into SWI, R2
* and 

QSM maps using in-house software. The implementation of QSM used a pre-conjugate 

gradient method and was compared to QSM using the MEDI toolbox 21; however, the 

data from the Agilent scanner was not optimized for MEDI processing. R2
* was computed 

using a non-linear least squares mono-exponential fit with a voxel spread function for 

correction 22. An 11-mm Gaussian high-pass filter was used to filter the phase and the 

phase was fit with respect to TE using a weighted non-linear least squares function to 

calculate the local frequency shift map. A frequency-mask of 15 Hz was then applied to 

an average magnitude image from all echoes to create SWI. Finally, MATLAB (The 

MathWorks Inc. Natick, MA) was used to create a minimum intensity projection image 

(mIP) through 7 mm (7 slices) of the SWI. 
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4.2.4 Dose Plan Overlay 

Treatment dose plan, as well as planning CT and MRIs, were retrieved from the LRCP 

and were registered to the research MRI using FSL’s FLIRT toolbox 23. CERR 24 was 

used to export the dose plan. 

4.2.5 Microbleed counts, Vasculature and White Matter 
Abnormalities 

Images (SWI, MPRAGE, and FLAIR) were reviewed by a neuroradiologist blinded to the 

history of the patient. The neuroradiologist was asked to count the microbleeds on all 

images and assess for vasculature and white matter abnormalities. 

Once identified, the microbleeds were segmented on the SWI using ITK-snap 25 for 

analysis using R2
* and QSM. 

4.3 Results 

4.3.1 Clinical Findings 

Ten patients consented to imaging and were enrolled in the study. A full description of 

their cases, treatment, and current clinical status is provided in Table 4.1. A mini-mental 

status exam (MMSE) was performed at the first visit and a mean score of 29/30 ± 0.9 

indicated patients were grossly cognitively intact at assessment. Patients were imaged at a 

mean of 26.7 ±7.5 months following their treatment, and six of ten patients returned for a 

second MRI between 12-24 months (17.3 ± 7.3) following their first MRI. Four patients 

did not return for this second scan. Two patients became ill for unrelated health reasons; 

one patient opted not to return for their second research scan and one patient’s low-grade 

glioma evolved into a malignant glioma, and their clinical condition precluded reimaging.  
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Table 4.1 Patient Clinical Status. DNR indicates did not return, V1 indicates Visit 1, 

V2 indicates Visit 2. 

Patient/ 
Sex 

Age at time of 
treatment 

Diagnosis RX 
(Gy/Fraction) 

Time btw 
RT-V1/ 
Time btw 
V1-V2 
(months) 

Current Clinical Status 

1 (F) 29 WHO Gr. 2 
Meningioma 
Rt. Sphenoid Wing 

Surgery + 
60/30 

30/11 Employed Part-time. Aug 2015 
MRI stable post surg. Changes 
and post-RT WM changes. 

2 (F) 32 Midline Recurrent 
Atypical Meningioma 

Surgery + 
66/30 

14/DNR Stable MRI findings no 
evidence of progression, stable 
residual masses next to treated 
area. 

3 (F) 57 WHO Gr. 1 
Meningioma occipital 
region 

Surgery + 
54/30 

30/DNR Asymptomatic from 
meningioma, no evidence of 
recurrence, unrelated thyroid 
treatment. 

4 (F) 57 Craniopharyngioma 54/30 13/14 Reduction in size of 
craniopharyngioma, 
stable FLAIR hyperintensities 
in the hippocampi bilaterally. 

5 (F) 57 Left acoustic neuroma 
and posterior fossa 
meningioma 

Surgery + 
54/30 

23/10 Working full time, occasional 
dizziness bending over or 
working on ladders. Stable 
right cerebellopontine angle 
meningioma. 

6 (F) 63 Meningioma of the 
left sphenoid wing 

Surgery + 
66/30 

17/22 Retired, well with no 
symptoms and no evidence of 
progression/recurrence on 
MRI. 

7 (F) 55 Brain Stem Glioma 
WHO Gr. 1 

54/30 23/22 Elevated prolactin due to 
pituitary dysfunction, possible 
treatment effect. Some facial 
twitching similar to initial 
presentation of tumor, but not 
requiring treatment. Near 
complete response. 

8 (M) 33 Recurrent 
Meningioma of base 
of skull 

54/30 20/12 Working full time with mild 
fatigue. Short term memory 
problems, history of WBRT for 
ALL in 1982. 

9 (M) 50 Left posterior fossa 
meningioma 

60/30 14/DNR Stable on follow-up imaging 
with decreasing enhancement 
in cerebellum. 

10 (F) 45 Left temporal lobe 
Mixed 
oligoastrocytoma 
WHO Gr. 2 

60/30 14/DNR Developed glioblastoma, no 
follow-up. 
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4.3.2 Imaging Findings 

4.3.2.1 Venous Vasculature 

On a whole, no gross abnormalities or venous vessel density discrepancies were observed 

on the SWI. One patient (Patient 8) had a cavernous angioma that had been previously 

detected on conventional MRI before enrollment in this study. 

4.3.2.2 Microbleeds 

Six of ten patients had microbleeds on the post radiation imaging. All microbleeds 

occurred in areas of high dose (>45 Gy). Some microbleeds resolved between the initial 

and follow-up scan. The full list of microbleeds is reported in Table 4.2. In all patients, 

microbleeds had an R2
* greater than 80 s-1 and QSM values lower than -250 ppb. Most 

microbleeds had a halo artifact as shown in Figure 4.1 that aided in their detection.  

Table 4.2 Microbleed count per visit. 

Patient	 Visit	1	
Microbleeds	

Visit	2	
Microbleeds	

New	
Microbleeds	

Resolved	
Microbleeds	

1	 7	 4	 2	 5	

2	 5	 X	 Did	not	return	 Did	not	return	

3	 4	 X	 Did	not	return	 Did	not	return	

4	 0	 0	 0	 0	

5	 2	 2	 0	 0	

6	 2	 0	 0	 2	

7	 0	 0	 0	 0	

8	 0	 0	 0	 0	

9	 1	 X	 Did	not	return	 Did	not	return	

10	 5	 X	 Did	not	return	 Did	not	return	
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Figure 4.1 Illustration of microbleeds (white arrow) for Patient 1 in optic tract’s 

(top row) and lobar microbleed (bottom row). The mIP SWI image shows venous 

vasculature in areas of high dose similar to the contralateral area. 

4.3.2.3 White Matter Abnormalities 

Three patients had periventricular or lobar lesions on their MPRAGE and FLAIR images 

in the mid (>30 Gy) to high dose (>45 Gy) regions consistent with white matter changes 

reported after RT 26,27. Upon examination of the post-processed QSM and R2
* images, the 

periventricular white matter lesions have less volume than on FLAIR and MRPAGE 

(Figures 4.2 and 4.3), and this has been documented previously in literature as FLAIR 

tends to overestimate the amount of white matter change especially in the periventricular 

lesions 28. The lesions’ low R2
* strongly suggests demyelination, but the patients in this 

series were asymptomatic. Therefore, the clinical relevance and future clinical course of 
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these white matter findings is unknown, although others have reported the presence of 

asymptomatic white matter changes on long-term follow-up after radiotherapy. An 

interesting observation is that these lesions have penetrating veins, as can be seen in 

Figure 4.2, 4.3, and 4.4 as is often seen in MS.  

 

Figure 4.2 Patient 2 showing areas of residual tumors near midline as well as white 

matter damage in high dose regions. Venous vasculature is apparent in damaged 

white matter on R2
* and SWI as shown by the white arrows. 
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Figure 4.3 Patient 3 showing periventricular lesions that appear to be venocentric as 

indicated by the white arrow on FLAIR (hyperintense) and R2* (hypointense). 

Adjoining to the lesion, a microbleed is evident on R2
*, which is indicated by a 

yellow arrow on QSM 

 

Figure 4.4 Zoom in on Figure 4.3, where the microbleed is apparent on SWI and R2
* 

and the venocentric lesion is indicated with white arrow. 
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4.3.2.4 Current Clinical Status 

As shown in Table 4.1, most patients who enrolled in this study are clinically stable 

following treatment for their neoplasms. Aside from Patient 10, who developed a 

glioblastoma, their symptoms are not directly related to their diagnosis or treatment. 

4.4 Discussion 
It is believed that this is the first study that investigates vasculature and white matter in 

patients who have been treated for low-grade or benign neoplasms with radiation and 

surgery only. The potentially long survival of this patient population post-treatment 

increases the chance that they may experience late radiation side-effects compared to 

patients with higher grade lesions. Imaging biomarkers that could identify patients at risk 

of delayed radiation sequelae could be useful in this patient population to refine radiation 

delivery techniques and to explore mitigating strategies like pharmacologic interventions 

29. 

The main focus of this study was to determine what effect RT would have on the normal 

parenchyma during the late-effect time window (3-5 years after therapy). Gross 

abnormalities were not expected, as these patients were clinically stable and on 

conventional imaging, but it was hypothesized that it could be possible to detect 

subclinical lesions in the brain receiving significant doses of radiotherapy. The detection 

of these subclinical lesions may be useful for future time points should these subclinical 

lesions develop into necrosis. Therefore, this warrants further studies of a longer period 

for this patient subset. It is known that microbleeds appeared in patients treated with 

chemotherapy or radiotherapy for high-grade neoplasms 10. Additionally, Liu et al. 



88 

 

demonstrated the ability to distinguish microbleeds from venous vasculature using 

quantitative methods [17]. Therefore, an investigation into the occurrence of microbleeds 

and demyelinating lesions as a potential imaging biomarker of late radiation effects in 

patients treated for low-grade brain neoplasms was performed. 

In this cohort, six of ten patients showed microbleeds within the high dose regions and in 

five of six patients, no microbleeds were observed outside the high dose region. Long-

term follow-up is required to correlate with clinical endpoints like future vascular 

incidents or cognitive side-effects to determine if microbleed monitoring could be of 

significant importance in these patients. 

Although these patients do not have the number of microbleeds as shown in other studies 

of high-grade neoplasms, the appearance of microbleeds is indicative of endothelial 

damage within the high dose region. This suggests the importance of long-term 

monitoring in this low-grade cohort as these patients could be at a higher potential for 

symptomatic vascular or cognitive changes later in life 30,31. The appearance of 

microbleeds could also indicate that further studies are required to look at the effect of 

anticoagulants. Certain studies have already shown that appearance of microbleeds in 

other disease states could be a contraindication for use of anticoagulants 32 and these 

findings suggest strategies attempting to limit radiation injury through the use of anti-

platelet agents or anti-coagulation in this patient population should be evaluated 

cautiously.  

Further to venous vasculature being present in high dose regions, veins within 

demyelinated lesions in the area of high doses can be observed. This is a common finding 
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in MS and acute disseminate encephalomyelitis 33. The white matter lesions have 

previously been reported in the past 26,27,34 with reports of cognitive decline. A recent 

communication has shown that a 43-year-old patient developed similar MS-type lesions 

following RT 35. In MS, these lesions have been shown to have an immune response that 

could be indicative of neuroinflammation. The ability to show that these lesions have 

venules running through them suggests further studies are warranted to test this 

hypothesis of neuroinflammation as a mediator of late radiation effects. Supporting this 

finding was the detection of FLAIR hyperintensities coupled with the low R2
* values that 

would indicate demyelination. Neuroinflammation as a mediator of radiation late cerebral 

effects and as a potential therapeutic target is an area of active investigation 29 and these 

findings suggest imaging biomarkers like SWI and R2
* might be useful tools for non-

invasive monitoring of neuro-inflammatory processes. 

This method also corroborates other results that show that the use of multi-echo gradient 

echo can be of practical importance in the post-treatment monitoring of patients. In 

addition to SWI and R2
*, QSM can be used to differentiate between small veins and 

microbleeds. The halo effect and large susceptibility value of the microbleed on QSM is 

something that could lead to reduced burden for neuroradiologists when detecting 

microbleeds through the use of automated methods. Additionally, the high R2
* can help 

distinguish microbleeds and small venules that have much lower R2
* values (20-40 s-1).  

A limitation of this study is the limited number of participants and inability to acquire 

follow-up imaging for all patients. This preliminary experience illustrates the feasibility 

of the technique in this population and suggests a study of larger cohorts of patients with 

this imaging technique may be warranted.  
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Another limitation of SWI techniques, in general, is that titanium clips used following 

surgery cause blooming artifacts on post-processed images. The artifacts are caused by 

the magnetic field perturbation caused by these clips and causes the signal to decay at a 

much higher rate, causing more issues with lengthened TE. Finally, SWI is limited in its 

ability to view the arterioles; however, Bian et al. 36 have shown that arteries and veins 

can be imaged in the same acquisition. This method also can decrease false-positives and 

to improve microbleed detection. This method would also be beneficial in observing 

damage to the arterioles. 

4.5 Conclusions 
This chapter presented a preliminary study examining the long-term effects that radiation 

therapy has on patients treated for benign or low-grade neoplasms. It was demonstrated 

that these patients are susceptible to microbleeds as well as demyelinating lesions. This 

study suggests this subset of patients requires further long-term monitoring as they are 

potentially at an increased risk for vascular and/or cognitive events given the preclinical 

changes detected and their anticipated longer overall survival. The presence of 

microbleeds suggests prophylactic treatment with anti-platelet agents or anti-coagulation 

as a strategy to prevent late vascular events as used in other cerebrovascular diseases may 

not be advisable. Finally, this study shows that the demyelinating lesions in these patients 

do have venules that are penetrating through the white matter, as shown in Figures 4.2, 

4.3, and 4.4. The finding of venocentricity is similar to other disease processes with a 

neuroinflammatory component, such as Multiple Sclerosis, supporting current research 

investigating anti-inflammatory agents as a potential therapeutic strategy to reduce late 

cerebral effects from radiotherapy. 
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Chapter 5  

5 Apparent Transverse Relaxation (R2
*) as a method to 

differentiate treatment effect and progressive disease in 
pseudoprogression 

5.1 Introduction 
Pseudoprogression (psPD) is a diagnosis given to patients recently treated for high-grade 

gliomas with chemotherapy and radiation therapy who exhibit transient post-treatment 

MRI changes such as worsening gadolinium contrast enhancement within the treated 

area. While psPD has been reported with radiation alone 1, this finding is most commonly 

seen in the setting of combined chemotherapy and radiation for glioma. The routine 

addition of Temozolomide (TMZ) to current treatment regimens for malignant glioma as 

recommended by Stupp 2,3 and with evidence to support the increased use of 

chemotherapy in the treatment of lower grade gliomas 4, correctly identifying psPD has 

become an urgent clinical problem 5. The reason for the transient enhancement in psPD 

as seen with MRI has yet to be determined; however, it has been proposed that damage to 

vascular supply and neuroglial cells caused by alkylating agents such as TMZ cause an 

exaggerated cellular response to radiation within the tumor. This reaction leads to 

damaged astrocytes, disrupted vessel supply, inflammation, and subsequently damage to 

the blood-brain barrier 6. Supporting this hypothesis is the observation that psPD is more 

commonly seen in malignant gliomas with the methylated O6-methylguanine-DNA-

methyltransferase enzyme (MGMT), a biomarker of increased sensitivity to treatment 7. 

The increased awareness and features associated with psPD prompted revised guidelines 

for the RECIST 8 and RANO 9 criteria to assist neuroradiologists and oncologists in 
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interpreting post-treatment enhancing lesions. Regarding psPD, the guidelines 

recommend that any T1-weighted gadolinium enhancements within the treatment area be 

monitored for up to 12 weeks while maintaining adjuvant therapy. If any enhancement 

appears outside the treated area, a diagnosis of progressive disease (PD) is favored.  

Taking a passive approach to the monitoring of possible PD leads to anxiety for the 

patient and potentially prolongs ineffective treatment with possible clinical deterioration 

in patients who truly have PD. Alternatively, those with psPD who are incorrectly 

identified as having PD may be switched from a potentially effective therapy to less 

effective or more toxic alternatives and could skew the results of salvage clinical trials. 10. 

For example, Bevacizumab is a commonly employed salvage therapy for patients for 

progressive disease and has been shown to reduce enhancement through stabilization of 

the tumor vasculature; however, Bevacizumab may not only reduce radiation-induced 

vascular leakiness but may also lessen the efficacy of TMZ in patients who express the 

MGMT promoter 11. Thus, patients with actual psPD who are most likely to respond to 

TMZ could be switched to a potentially deleterious agent if incorrectly identified as PD. 

Newer MRI sequences have been used in an attempt to differentiate psPD from PD with 

varying degrees of success; however, there is still no clear method in which a patient with 

a gadolinium-enhancing T1-weighted MRI after therapy can be differentiated between 

treatment effect and PD.  

Of the newer MRI sequences that have become commonplace, Diffusion Weighted 

Imaging, which can measure the Apparent Diffusion Coefficient (ADC), and perfusion 

MRI are currently the most applicable within a hospital setting. ADC has the distinct 
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advantage in that it can be acquired quickly and does not need a T1-altering exogenous 

contrast agent. This makes it an attractive option for serial imaging; however, the 

heterogeneity of the tumors has been cited as a limiting factor in differentiating between 

psPD and PD using ADC 12. 

Perfusion MRI, specifically Dynamic Susceptibility Contrast (DSC) MRI, has become a 

useful tool to measure Cerebral Blood Volume (CBV) and Cerebral Blood Flow (CBF) 

amongst other measurements. In single institution studies, increased CBV and CBF have 

been found to be associated with PD, allowing successful differentiation from psPD 13,14. 

DSC is the method of choice due to its speed and ease of acquisition, but may suffer from 

susceptibility artifacts from air-tissue interfaces, contrast leakage, or high blood volume 

areas leading to over or underestimating of rCBV 12,15. It is also difficult to standardize 

across institutions 16. 

Building on the previous literature, the apparent transverse relaxation rate (R2
*) of 

patients treated with chemoradiotherapy who exhibited transient post-treatment imaging 

enhancement where there was clinical uncertainty as to whether changes were related to 

psPD or PD was examined. R2
* maps are calculated voxel-by-voxel using a multi-echo 

gradient echo sequence and fitting the signal decay over echo time. R2
* measurements 

have been shown to be highly sensitive to white matter content 17, calcifications, 

vasculature 18,19, and inflammation 20. An increased R2
* is most often attributed to an 

increased iron content from deoxygenated blood or iron-rich macrophages. A decrease in 

R2
* can usually be attributed to calcifications or edema. 
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It was hypothesized that the differential vascular and inflammatory changes seen in PD 

vs. psPD would be reflected in different patterns in the R2
* maps. In particular, it was 

hypothesized, based on previous perfusion literature  14,21, that PD would be associated 

with an increase in blood volume and would exhibit an increased R2
*. Comparatively, 

psPD would be associated with a decreased blood volume and would exhibit a decrease 

in R2
*. Also, it was hypothesized that susceptibility-weighted imaging (SWI) could be 

helpful in distinguishing areas rich in deoxygenated hemoglobin that would correlate 

with an increase in R2
*. 

5.2 Methods 

5.2.1 Patient Selection 

All patient recruitment was approved by and adhered to the University of Western 

Ontario’s Human Subjects Research Ethics Board. All patients had initial surgery with 

histologic confirmation of malignant glioma. They were treated according to the Stupp 

protocol with combined TMZ and radiation followed by adjuvant TMZ. Standard of care 

1.5T MRI imaging was used to follow patients during treatment with follow-up scans at 

1-month post chemoradiation and subsequent scans after every 2-3 cycles of adjuvant 

chemotherapy. Patients with possible psPD or PD were identified from the 

neuroradiologist clinical report with correlation with the neuro-oncologist’s interpretation 

of the imaging and clinical findings. Routine clinical imaging in this situation was an 

early interval scan at 6 weeks after possible psPD was detected. Potentially eligible 

patients with scans that were ambiguous for psPD vs. PD were offered participation in 

this study where the additional research scan was obtained within the six-week period 

before repeat clinical imaging. Patients who exhibited claustrophobia, were under the age 
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of 18, or whose KPS was less than 60 were excluded from the study. The research scan 

was performed between 4 to 21 days following their clinical MRI. Patients were scanned 

on a Siemens 3T Prisma MRI Scanner. The patient’s clinical status and subsequent 

clinical imaging after the research scan was reviewed to determine whether the patient’s 

imaging changes resolved (consistent with psPD) or worsened (consistent with PD). 

5.2.2 Image Acquisition 

The following were acquisitions performed for this study: 1) an anatomical T1-weighted 

MPRAGE sequence (FA 8°, TR/TI/TE= 2300 ms/900 ms/2.27 ms, 1 mm isotropic 

resolution, scan time 4 minutes), 2) a CSF-attenuated FLAIR sequence (TR/TE 

12000 ms/ 139ms, resolution 1 mm x 1 mm x 3.0 mm, scan time 5 minutes), 3) DWI (2D 

EPI diffusion-weighted, b=0 s/mm2 and b=1000 s/mm2, resolution 0.6 mm x 0.6 mm 

x 2.0 mm, scan time 3 minutes) and 4) a 6 echo multi-echo gradient echo sequence (ME-

GRE) (FA=12°, TR/TE/ESP=45 ms/6.41ms/6.12 ms, GRAPPA 2, resolution = 0.5mm x 

0.5 mm x 1mm, FOV=22.4cm x 16.8cm x22.4 cm, echo fraction 5/8, scan time 12 

minutes, 22 seconds).  

5.2.3 Segmentation and Registration 

Contrast-enhanced T1 images and FLAIR images were segmented to form the Contrast-

Enhancing Lesion (CEL) and Non-Enhancing Lesion (NEL), respectively. The CEL was 

defined as enhancement on the clinical T1-weighted gadolinium image and the FLAIR 

image while the NEL was defined as hyperintensities on the FLAIR image only. In all 

cases, the enhancing lesion on the contrast T1-weighted image and FLAIR was semi-

automatically segmented using ITK-SNAP 22 for manual and region growing 
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segmentation and Matlab for further delineations of the CEL and NEL. The Matlab code 

is included in Appendix A. 

Both FLAIR and contrast-enhancing T1 were registered to the ME-GRE’s magnitude 

echo average image or the computed ADC map. All images were registered using FSL’s 

FLIRT toolbox using normalized mutual information 23. A contrast-enhancing T1-

weighted image misregistration of 1-mm was considered acceptable due to the contrast-

enhancing T1-weighted image being acquired on a separate day. The frontal and occipital 

horns, as well as the contralateral sulci, were used as landmarks for registration.  

The qualitative gadolinium-enhanced T1 and FLAIR images, and their subsequent masks, 

were registered to qualitative datasets to avoid interpolation errors during registration. 

The necrotic core that was surrounded by the gadolinium enhancement on T1 was not 

included in the region of interest as analysis of R2
* within the necrotic core was noted to 

be low in both psPD and PD. Therefore, the assessment of R2
* in this tumor region was 

felt to be non-informative. 

5.2.4 Multi-Echo Image Processing and Computation 

From the ME-GRE data, an average magnitude of all echoes (MEA), Susceptibility-

Weighted Images (SWI) and R2
* maps were computed. SWIs were created using in-house 

software using a frequency based approached initially described by Brainovich et al. 24. 

The background phase was removed using an 11 mm Gaussian filter and a linear 

frequency mask with a 15 Hz cutoff described by Quinn et al. 25 was used to preserve the 

venous vasculature. The frequency mask was set between 0 and 1 and was multiplied 

three times into the magnitude image. 
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R2
* maps were also computed using an in-house method fitting every voxel’s magnitude 

data to a mono-exponential decay using a nonlinear least squares fit. The data were 

corrected with a Voxel Spread Function (VSF) as described by Yablonskiy 26. 

Mean R2
* for the CEL and NEL were calculated by computing the average signal 

intensity of all VSF corrected voxels within each region of interest and fitting the data 

using a mono-exponential decay curve using a non-linear least squares fit as described 

above. In most cases the data at each echo were normally distributed; however, in one 

case the later echoes had a binomial distribution (Patient 4), this case was documented 

and investigated further as described in the discussion and Figure 5.2.  

5.2.5 R2
* Comparisons 

Comparisons of R2
* between the CEL and the NEL, as well as the ratio of R2

* in the CEL 

to NEL, were made to determine whether differences in R2
* within these regions could 

provide insight into the disease pathology. The hypothesis was that the presence of 

greater blood volume, a greater hypoxic region, and leakier vessels in PD would increase 

the R2
* in the CEL of PD patients. Conversely, lower vascular load within psPD would 

lower the R2
* within the CEL.  

5.2.6 ADC Computations 

ADC maps were processed online using the Siemens Prisma software. The same CEL 

and NEL regions of interest were registered to and applied to the ADC maps. ADC 

histograms were analyzed and reported as the mean and median values, unless otherwise 

stated. Some patient’s ADC histograms had a binomial distribution and are documented 

in Table 5.1. 
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5.3 Results 

5.3.1 Lesion R2
* 

Nine of eighteen patients imaged had useable multi-echo gradient studies. Reasons for 

non-useable data included motion artifact (n=8) or magnetic susceptibility caused by the 

surgical clips at the site of the craniotomy (n=1). In this specific instance, the titanium 

clip interfered with the contrast-enhancing lesion leading to artificially increased R2
*.  

Of the nine patients who were analyzed in this study, four patients had continued 

progression on subsequent imaging indicative of PD. Additionally, four patients had a 

psPD at the site as indicated by improvement of subsequent imaging with one of these 

four subsequently developing imaging changes that were suggestive of progressive 

disease after the initial improvement. Finally, one patient had a mixed response with 

imaging changes being characterized as both psPD and PD (later confirmed 

histologically). 

As shown in Table 5.1, patients who were subsequently diagnosed with PD had an 

increased R2
* within the CEL compared to the NEL with a R2

* ratio of CEL/NEL > 1.3. 

For patients who were diagnosed with PD, a cluster of increased R2
* can be seen, as 

illustrated in Figures 5.1 and 5.2. 
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Table 5.1 Reported R2
* and ADC values with clinical outcome of patients 

Patient	 R2
*	CEL	

(s-1)	
R2

*	NEL	
(s-1)	

Mean	R2
*	

CEL/NEL	
ratio	

ADC	CEL		
Mean/Median	
(x	10-6mm2/s)	

ADC	NEL		
Mean/Median	
(x	10-6mm2/s)	

Outcome	

1	 10.3-11.0	 10.3-11.0	 1.0	 1358/1398	 1315/1362	 psPD	at	site,	
metastasis	elsewhere	

2	 14.1-14.6	 11.1-11.7	 1.3	 1373/1340	 1461/1457	 PD	
3a	 9.7-11.4	 9.4-11.3	 1.0	 1456/1449	 1475/1524	 psPD	
4	
	

10.2-11.0	 10.5-11.5	 1.0	 1172/1153b	

	
1274/1295b	

	
psPD	at	site,	clinical	
deterioration	with	
reduction	of	steroids	

5	 17.9-18.8	 12.9-14.1	 1.4	 1132/1077	 1009/1025	 PD	

6	 16.1-17.2	 11.8-13	 1.3	 1101/1092	 1353/1301	 PD	
7	 19.1-21.4	 13.9-15.1	 1.4	 1182/1058b	 1332/1281b	 PD	
8	 18.2-21.0	c	

	
10.3-11.3	c	 1.8	 1328/1240b	 1247/1206b	

	
Residual	tumor	at	
margins	and	necrosis	

9	 12-13.2	c	 11.4.-12.7c	 1.0	 1335/1329	 1314/1329	 psPD	followed	by	
progression	

a: ME-GRE sequence was fit over only 4 echoes due to severe motion artifact at echoes 5 
and 6. 
b: ADC histogram had a binomial distribution indicative of PD and psPD. 
c: Later ME-GRE echoes had binomial distribution of data, this could be due to a mixture 
of PD and psPD tissue within the lesion. 
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Figure 5.1 Patient 7 shows gadolinium enhancement on T1 (A) and FLAIR 

enhancement (B) in the posterior right frontal lobe near the right frontal horn. 

Corresponding R2
* maps (C) shows increased R2

* near the right frontal horn 

indicative of tumorous tissue. Red arrow shows artefact from titanium clip, where 

yellow arrow shows PD. 
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Figure 5.2 Patient 8 shows both suspected necrotic lesions (psPD) (A) and tumorous 

tissue (PD) (B) in separate slices. Both areas are indicated by the white arrow in the 

respective panel. 

Patients who were subsequently diagnosed with psPD had a similar R2
* within the CEL 

and NEL with a ratio of CEL/NEL =1. As well, a slightly lower R2
* in the NEL of psPD 

patients compared to the NEL of PD patients was observed. 

A rim with an increased R2
* surrounding the necrotic lesion in all patients who were 

subsequently diagnosed with psPD is also observed. The increase in R2
* is associated 

with a decrease in FLAIR intensity and decrease signal on the SWI average as shown in 

Figure 5.3.  
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Figure 5.3 Patient 4 developed progression at a the frontal horn (not shown). An 

example of the rim with increased R2
* is shown. This is most likely a hypoxic zone as 

the area appears to be rich in deoxygenated blood shown on the SWI. The SWI also 

show microbleeds indicated by the white arrow 
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5.3.2 ADC Values 

A comparison of mean ADC values with a cutoff of 1200 x 10-6 mm2/s as suggested in 

the literature 27 was performed. A mean ADC below 1200 x 10-6 mm2/s was shown to 

indicative of PD and above 1200 x 10-6 mm2/s was shown to be indicative of psPD in the 

referenced study. In most cases this mean cutoff agreed with the diagnosis; however, in 

two of the cases, the mean ADC values did not agree with clinical outcome. Further 

examination of the mean and median, as well as the clinical outcome, shows a mixed 

outcome (both PD and psPD) for patient 8. Patient’s 2 mean and median ADC are both 

above the cut-off that would be indicative of PD. 

5.4 Discussion 
A method in which quantitative R2

* maps are used to differentiate PD from psPD is 

presented. The findings suggest that increases of R2
* in the CEL as shown by absolute 

measurements and ratios of R2
* in the CEL compared to the NEL may stratify patients 

with PD, psPD, or mixed PD and PsPD. In particular, patients whose R2
* ratio of CEL to 

NEL was closer to 1 had a diagnosis of psPD upon further clinical follow-up. Those 

patients with a mean R2
* that was between 3-6 s-1 higher in the CEL compared to the 

NEL, and a R2
* ratio between the CEL and NEL >1.3, subsequently exhibited 

radiographic worsening and clinical signs of PD. This is shown in Figure 5.1, where 

Patient 7’s R2
* is remarkably increased and subsequent imaging revealed progressive 

disease. 

The increase in R2
* is most likely due to an increase in deoxygenated blood due to the 

leakiness of the blood vessels within the tumorous tissue. It should also be noted that 
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intrapatient differences of R2
* between the CEL and NEL have the distinct advantage of 

the possibility of multi-center implementation as the patient’s NEL could serve as their 

own control metric. This would reduce variables such as scanner type dependence or 

difference in magnetic field shimming that could confound the use of an absolute R2
* as a 

metric. Potential disadvantages are the sensitivity to motion artifact and tissue 

inhomogeneities, though these can be addressed with faster R2
* mapping sequences. 

The R2
* maps provided valuable insight into the potential disease pathology. For example, 

Patient 8 showed deterioration five months after her initial psPD diagnosis and had to be 

re-operated. Upon surgery, she was diagnosed with radiation-induced tissue necrosis with 

infiltrating tumor at the margins of the necrotic region. The initial R2
* within the CEL was 

remarkably higher than the NEL, indicating probably tumor; however, the 95% 

confidence of the R2
* had a variation of 3 Hz, showing the possibility of a mixture of 

voxels within the area of interest. As shown in Figure 5.2, most of the treated site is 

surrounded by a rim of high R2
*; however, there are clusters of high R2

* voxels around the 

treatment site hypothesized to be residual tumor. Thus the R2
* imaging findings are 

consistent with the later histologic picture of a mixed treatment and tumor progression 

effect. 

A similar clinical outcome occurred for Patient 9. While initially there was no signs of 

PD, he deteriorated 3 to 4 months following his research scan visit with a follow-up 

clinical scan indicative of stable disease. The R2
* ratio between the CEL and NEL is 

approximately 1; however, examination of the R2
* map shows mild increases near the left 

frontal horn which is within the initial treatment site as shown in Figure 5.4. While it was 

not possible to obtain R2
* measurements following his subsequent clinical visit, this case 
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illustrates that serial monitoring of R2
* may be useful as some patients may exhibit mixed 

pictures of psPD/PD and evolution of PD after psPD. 

 

Figure 5.4 Patient 9, initially diagnosed with psPD but presented with PD at a later 

time point. The R2
* map (A) corroborates psPD diagnosis; however, zoomed near 

the left frontal horn, area of slight R2
* increase is evident, potentially indicative of 

PD. 

There is a rim of increased R2
* no greater than 1-1.5 mm (2-3 voxels) thick at the 

interface between the necrotic core and enhancing rim of tumor in all patients. Upon 

closer examination of the SWI and FLAIR, a hypointensity in this rim can be observed in 

both methodologies as shown in Figure 5.3. References relating to the increased R2
* in the 

rim in previous literature was not found, and this unique finding requires evaluation in 

larger cohorts of patients. Given the fact that changes in blood flow and volume between 

PD and psPD has been noted using MR perfusion techniques, it is possible that the R2
* 
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rim may also be influenced by changes in blood flow. Whether the R2
* rim noted could be 

used as a surrogate marker for perfusion changes remains to be investigated. 

In passing, it was noted that microbleeds (shown in Figure 5.3) appear around the treated 

site for all patients, corroborating other findings in published literature 28–30. There was 

no difference in the distribution of microbleeds within this cohort suggesting this might 

not be a useful imaging biomarker for distinguishing PD from psPD. While the 

quantitative measures of R2
* provide us with valuable insight regarding the primary 

disease, microbleed detection is best accomplished using mIP SWI maps. Whether better 

assessment of microbleeds by mIP SWI maps would be a useful biomarker for psPD vs. 

PD requires further investigation. 

Absolute ADC values have been proposed as an effective means of distinguishing PD 

versus psPD. In this series, in 7/9 patients mean ADC was able to predict PD from psPD 

using a cutoff of 1200 x 10-6 mm2/s as recommended by a Lee et al. 31. In Patient 4, the 

proposed ADC cutoff incorrectly identified the patient as psPD while the R2
* 

measurements correctly identified them as PD suggesting R2
* and ADC may provide 

complementary information. Given that both ADC and R2
* can be acquired without 

contrast, combined ADC and R2
* maps may be worth exploring as an alternative imaging 

biomarker for psPD compared to contrast-enhanced perfusion MRI which is preferred in 

the clinic due to shorter imaging time and higher signal 12. 

This study offers promise and warrants further investigation; however, some limitations 

were observed throughout this study that should be refined in future research. Firstly, 

patient motion artifacts were a severely limiting factor for this study. Patients were put 
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into the head cradle with sufficient padding to reduce head movement; however, the sub-

millimeter in-plane resolution acquired for the ME-GRE sequence was not robust against 

motion. Additionally, the long scan time of the sequence (12 minutes) was not well 

tolerated by many patients. A lower-resolution scan could be sufficient for clinical 

application. A typical clinical scan’s duration ranges from 4-6 minutes, and a resolution 

of 0.8mm in-plane by 1.5 mm thick axial slices would be easily achievable in this time 

range. In addition to a faster sequence, there would be an increase in SNR which could 

accelerate the sequence further. The use of enhanced patient immobilization devices 

could also be considered to reduce patient motion but may be less practical than 

optimizing the sequence parameters. Another opportunity for optimization would be 

integrating the R2
* imaging into the routine clinical imaging. This would reduce errors 

related to registering different scans acquired on different days and in different positions. 

This was seen in this study in one patient where technical difficulties in registering the 

clinical and study scans precluded analysis. 

Finally, this technique is also prone to susceptibility artifacts. Figure 5.1 (c) has an 

excellent example of the titanium clip artifact posterior to the lesion. Also, artifacts 

caused by air-tissue interfaces such as the sinuses or ear canals could hamper this 

technique. 

5.5 Conclusions 
This research demonstrates a feasibility study in which PD can be differentiated from 

treatment effect using R2
*. Patients whose R2

* was increased within the CEL lesion 

compared to the NEL were diagnosed as true progressive disease, while patients whose 

R2
* had similar values between the CEL and NEL were diagnosed as having treatment 
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effect. This method also shows promise to be adapted to multi-center trials as patients 

could potentially serve as their own control metric using the NEL. Opportunities exist to 

optimize the R2
* acquisition and integrate into clinical scanning protocols to facilitate 

adoption and use in larger cohorts and across institutions. 
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Chapter 6  

6 Conclusions and Future Work 
This thesis sought to determine the feasibility of implementing a multi-echo gradient 

echo sequence and its post processing techniques within the pre-clinical and clinical 

environment to detect for radiation necrosis and pseudoprogression. The post-processed 

images used in this thesis were SWI, R2
* and QSM. The results of this thesis in both an 

animal model and human patients show promise for integration within a clinical 

environment. This chapter seeks to summarize the content of this thesis and discuss 

relevant future work necessary for its implementation in clinical trials or within the clinic 

for the long term implication of radiation to the central nervous system (Chapters 3 and 

4) and patients treated with chemoradiotherapy who present with post-treatment 

radiographical worsening following treatment (Chapter 5). 

6.1 Context of Findings 

While MRI has become an essential tool within the clinic in the diagnosis and follow-up 

imaging of patients, traditional techniques are still preferred due to their proven success 

and familiarity. In recent years, the increased availability of MRIs and breakthroughs in 

technological advancements has rapidly made newer techniques available to attempt to 

address urgent clinical problems; however, many of these techniques require longer 

acquisition times or are more technically challenging, making integration within a clinical 

setting difficult. As such, this thesis sought to use a widely available sequence and post-

processed images in attempts to solve clinical needs. 

Chapter 3 addressed the ability of R2
* to predict areas of radiation necrosis retrospectively 

in a rat brain. A major challenge in the clinic is the capacity to differentiate necrosis from 
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tumorous tissue using traditional T1-enhancing image and T2-weighted images 1. While 

the fundamental molecular mechanisms are different in both pathologies, both exhibit 

similar imaging changes. The use of ADC and perfusion techniques have been shown to 

aid in differentiation of pathologies 2,3, yet once tissue necrosis is established, the tissue is 

no longer salvageable and may need to be debulked should patients exhibit neurological 

symptoms.  

The fundamental mechanisms that lead to RN have been researched extensively over the 

years as contributions from vasculature ischemia, glial cell death, and neuroinflammation 

4,5. Increases of R2
* within this chapter remained non-specific as markers of histology 

beyond H&E and LFB were not performed. The ability to predict changes in both the 

hippocampus and internal/external capsule warrants further study as there exists a 

potential of harnessing a missing link between in-vivo imaging and histology and 

immunohistochemistry.  

Chapter 4 addressed the usefulness of SWI, R2
* and QSM as a technique that could be 

used for long-term monitoring of patients who have undergone radiotherapy for benign or 

low-grade neoplasms. This is the first study to show microbleeds within the high dose 

region of radiotherapy with radiation alone. The long-term clinical impact of these 

microbleeds remain to be established; however, as discussed in chapter 4 there is the 

potential for increased risk of vascular abnormalities (e.g. stroke). In addition to this 

finding, hyperintense lesions on FLAIR appear to be venocentric on SWI, R2
* and QSM. 

This common finding in MS is indicative of a neuroinflammatory process 6. This study 

reinforces the need for long-term monitoring of these patients since their longer expected 
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OS may yield a predisposition for neurovascular disease as well as long-term necrosis, 

neurological symptoms or cognitive deficits. 

Finally, the findings in Chapter 5 indicate that R2
* and SWI could serve as a marker to 

differentiate between pseudoprogression and true progression. This technique was 

effective in retrospectively determining pseudoprogression from true progression. 

Additionally, this technique was demonstrated to have increased R2
* within a contrast 

enhancing lesion in patients with progression as well as an increase of R2
* between the 

contrast and non-contrast enhancing lesion. A large-scale study is needed to establish the 

sensitivity and specificity of this technique with correlations to PFS and OS. 

6.2 Future Work 

6.2.1 Future Experiments 

As was previously discussed, Chapter 3 provides a solid foundation for further research 

to establish R2
* as a predictor of radiation necrosis. The two most immediate refinements 

that need to be addressed are correlations with histopathological findings and comparison 

to a tumor model. Previous studies have shown radiation to the CNS increases the 

immunoreactivity of glial fibrillary acidic protein, a marker of astrocyte activation, as 

early as hours following radiation and as late as six months in mice 7,8. In addition to this 

marker, increases in tumor necrosis factor alpha and intercellular adhesion molecule one 

were also shown.  

A comprehensive histological in a C57BL/6 mouse study showed that markers such as 

MHC II expression, CD3, and CD11c are evident as early as 30 days following radiation 

with up to 35 Gy 9. While one can speculate that these markers are the underlying source 

of inflammation and therefore increases R2
*, actual correlations would add value to this 
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technique. 

Additionally, comparison to the tumor model would determine whether R2
* is a method 

that can differentiate radiation necrosis tumor progression. The increased vasculature in 

tumors may prove to be a confounding factor in the interpretation of R2
*.  

In Chapter 4, the main unaddressed questions are the relevance of the microbleeds within 

the high dose region as well as the finding that the white matter lesions appear to be 

venocentric. Venocentric lesions are common in MS and may be ground zero for the 

immune response. While microbleeds appear within the high dose region in this specific 

cohort of patients, a study with age-matched controls could shed further light onto the 

significance of these microbleeds. Also, as was noted in the study, some of these 

microbleeds appear to resolve at the one-year follow-up. The significance of this finding 

demonstrates that the vascular system may still be re-adapting itself years after therapy. 

The feasibility and large cohort necessary for such a long-term study limit the possibility 

of pursuing this over a Ph.D. degree. 

The method presented in Chapter 5 is promising; however, a larger cohort spanning many 

centers is needed to address the issue of sensitivity and specificity of this technique. 

Further to this specific issue, correlations with the methylation of the MGMT promoter 

could add value to this technique. Methylation of the MGMT promoter has previously 

been shown to correlate with pseudoprogression 10. Finding an imaging correlate of 

MGMT expression would be useful as second-line salvage therapy such as Bevacizumab 

is unadvised in such a patient cohort 11. Further refinements to the acquisition techniques 

must be performed to make the acquisition tolerable for these patients. Patients may need 

to be placed in a more confined restraint system to limit motion or techniques to increase 
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the speed of the acquisition must be taken. Increasing the voxel size may lead to a faster 

acquisition; however, the appropriate voxel size should be established to optimize 

imaging time with the loss of resolution (e.g. imaging small veins, microbleeds, etc.). 

Other methods for a fast acquisition could include using multiband techniques to 

accelerate further, using a higher GRAPPA factor. Different techniques for acquisition 

such as Wave-CAIPI 12 or more common methods such as EPI could be used to acquire 

images faster 

6.2.2 In Closing 

While there exists motivation for future work in each of the chapters, an overarching 

problem with the implantation of the multi-echo gradient echo and its post-processing 

techniques is the lack of standardization across multiple sites. This issue has already been 

demonstrated in other techniques such as DWI and perfusion by having vendor 

dependence (both scanner and software) as well as implementation dependence (use of 2 

or 3 diffusion gradients) 13,14. 

A consensus on the post-processing methods of multi-echo gradient echo sequences also 

needs to be established. Specifically, the filtering of phase (e.g. what are considered local 

and background contributors to phase) for processing of SWI, as well as the methods in 

which QSM is calculated to avoid artifacts from the ill-defined problem, is needed.  

The way in which R2
* is calculated needs to be addressed as different methods for post-

processing exist, all adding complexity to the computation. Commercial vendors such as 

Siemens provide a quick method to calculate R2
*, yet as shown in Figure 6.1, there are 

differences compared to a robust and computationally expensive technique such as non-

linear least squares optimization with background field correction for intra-voxel 
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dephasing 15.  Areas of high susceptibility and low signal appear prone to errors in 

calculation while differences of R2
* in the veins are also apparent. 

 

Figure 6.1 Example of R2
* calculated using the method in this thesis (NLLS), 

calculation from SIEMENS, and a subtraction of the two. 

In conclusion, this thesis presents new methods in which the response of the central 

nervous system to radiation therapy is investigated. This non-contrast technique makes 

this sequence easily implementable in routine clinical imaging and could serve as a tool 

to assist neuroradiologists and neuro-oncologists to assess properly patients treated with 

radiotherapy. 
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Appendix A 
Matlab code used to identify CEL and NEL in chapter 5: 

Clear all; close all; 

GADroi_nii=load_untouch_nii('GAD_on_MEA_brain_Seg.nii.gz'); 

FLAIRroi_nii=load_untouch_nii('FLAIR_on_MEA_brain_Seg.nii.gz'); 

GADroi= GADmask_nii.img; 

FLAIRroi= FLAIRmask_nii.img; 

GADroi (FLAIRroi ==0)=0;   
FLAIRroi(GadROI==1)=0; 

GADroi_nii.img=GADroi 

FLAIRroi_nii.img=FLAIRroi 

Save_untouch_nii(GADroi_nii,’actual_GAD_ROI_.nii') 

Save_untouch_nii(FLAIRroi_nii,’actual_FLAIR_ROI_.nii') 
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