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Abstract

With the transformation of cloud computing technologies from an attractive trend to a

business reality, the need is more pressing than ever for efficient cloud service manage-

ment tools and techniques. As cloud technologies continue to mature, the service model,

resource allocation methodologies, energy efficiency models and general service manage-

ment schemes are not yet saturated. The burden of making this all tick perfectly falls on

cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure

and giant workforce are there as positives, but it is far from straightforward operation from

that point. Performance and service delivery will still depend on the providers’ algorithms

and policies which affect all operational areas.

With that in mind, this thesis tackles a set of the more critical challenges faced by

cloud providers with the purpose of enhancing cloud service performance and saving on

providers’ cost. This is done by exploring innovative resource allocation techniques and

developing novel tools and methodologies in the context of cloud resource management,

power efficiency, high availability and solution evaluation.

Optimal and suboptimal solutions to the resource allocation problem in cloud data

centers from both the computational and the network sides are proposed. Next, a deep

dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-

based and non-consolidation-based solutions containing a novel dynamic virtual machine

idleness prediction technique are proposed and evaluated. An investigation of the prob-

lem of simulating cloud environments follows. Available simulation solutions are compre-

hensively evaluated and a novel design framework for cloud simulators covering multiple
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variations of the problem is presented. Moreover, the challenge of evaluating cloud re-

source management solutions performance in terms of high availability is addressed. An

extensive framework is introduced to design high availability-aware cloud simulators and

a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud

application scenarios evaluation is demonstrated using the new tool.

The primary argument made in this thesis is that the proposed resource allocation and

simulation techniques can serve as basis for effective solutions that mitigate performance

and cost challenges faced by cloud providers pertaining to resource utilization, energy effi-

ciency, and client satisfaction.

Keywords: Cloud Computing, Resource allocation, Analytical models, Systems

simulation, Virtualization, Network and systems monitoring and measurements,Cloud sim-

ulators, Scalability, Data Centers, Clouds,Web and Internet services, Energy efficiency,

High Availability.
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Chapter 1

Introduction
The substantial weight cloud computing holds in the current information technology mar-

ketplace nowadays makes it hard to remember that cloud computing started gaining this

momentum in the not-so-distant past. In 2008, a figure as big as Oracle’s CEO Larry El-

lison stated that: “The interesting thing about Cloud Computing is that we’ve redefined

Cloud Computing to include everything that we already do...I don’t understand what we

would do differently in the light of Cloud Computing other than change the wording of

some of our ads”. This was “the” Larry Ellison, quoted in the Wall Street Journal, on

September 26, 2008.[4].

Fast forward to today, and cloud computing is not the future but the present of com-

puting. Cloud technology adoption rates show that clearly. 78% of U.S. small businesses

will have fully adopted cloud computing by 20020, more than doubling the current 37%

[5]. The percentage grows to 90% when looking at large businesses (larger than 1000 em-

ployees) [6]. The U.S. Small and Medium Business (SMB) cloud computing and services

market will grow from 43 billion dollars in 2015 to 55 billion dollars in 2016 [5]. This

trend is consistent in Europe as well. The percentages of small, medium and large busi-

nesses adopting cloud technologies in UK are 46, 63 and 82% respectively. In Germany,

the percentages are 50, 65 and 86%.

There is proven potential for client demand growth as well. In a survey conducted

by the rightscale.com team, 68% of enterprises indicated they run less than a fifth of their

application portfolios in the cloud. 55% of enterprises report that a significant portion of

their existing application portfolios are not in cloud, but are built with cloud-friendly archi-

tectures [7]. This is used to serve major functions like data protection (backup), business

continuity (replication, disaster recovery), archiving and file services and office enablement

(sharing, synchronization, collaboration).
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The appeal of robust cloud computing services for clients is understandable. Short

term capital savings are a major attraction point. The flexibility offered by the pay-as-you-

go conditions relieves the clients from the burden of extensive infrastructure planning in

advance. Virtualization comes as a layer of protection for the clients against implementa-

tion complexities. Merging into the cloud is becoming a business reality for clients and for

a good reason.

However, the burden of making this all tick perfectly falls on cloud providers. Surely,

economy of scale revenues and leveraging existing infrastructure, giant workforces and

expertise are there as positives, but it is far from straightforward operation from that point.

As much as cloud computing as a paradigm redefines the service model and client priorities,

it still requires a major shake up on the cloud provider side as well. Performance and service

delivery will still depend on the providers’ policies and algorithms that affect all operational

areas. This covers a wide spectrum of aspects ranging from security, application portability

to communication efficiency and reaching energy efficiency and resource allocation in a

data center.

Cloud data center resource allocation and management represents a critical area in

need of continuous attention. Resource allocation has a direct impact on two sides that

are at the core of why the cloud is financially effective: resource utilization and energy

efficiency. Simply put, the better resource utilization is, the more client requests the data

center (cloud) can serve and the better the performance can be. As for energy efficiency, it

is a pressing issue for cloud providers. Power costs represent between 25% and 40% of the

operational expenses of a data center [8]. The carbon footprint of a data center is a political

and environmental pain point for cloud providers as well.

With that in mind, this thesis tackles a set of the more critical challenges faced by

cloud providers with the purpose of enhancing cloud service performance and saving on

providers’ cost. This is done by exploring innovative resource allocation techniques and

developing novel tools and methodologies in the context of cloud resource management,

power efficiency, high availability and solution evaluation.

A detailed discussion of some of the external and internal challenges faced by an

network-aware resource allocation methodology in a cloud data center is introduced next.
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This discussion aims at providing the reader with an elaborate context for this lively field.

After that, the contributions of this thesis are stated chapter by chapter.

1.1 Resource Allocation in a Network Based Cloud

Computing Environment: Design Challenges

Several providers have cloud computing (CC) solutions available, where a pool of vir-

tualized and dynamically scalable computing power, storage, platforms, and services are

delivered on demand to clients over the Internet in a pay as you go manner. This is im-

plemented using large data centers (DCs) where thousands of servers reside. Clients have

the choice between using private clouds which are DCs specialized for the internal needs

of a certain business organization and public clouds which are open over the Internet to

the public for use. Services are offered under several deployment models including Infras-

tructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS)

and Network as a Service (NaaS). Each provider offers a unique service portfolio with

a range of options that include Virtual Machines (VMs) instance configuration, nature of

network services, degree of control over the rented machine, supporting software/hardware

security services, additional storage, etc. To move to the cloud, clients demand guarantees

with regards to achieving the required improvements in scale, cost control and reliability

of operations. Despite its importance, providing computation power alone is not sufficient

as a competitive advantage. Other factors have gained more weight recently such as the

networking solution offerings. The network performance and resource availability could

be the tightest bottleneck for any cloud. This is seen as an opportunity for network service

providers who are building their own clouds using distributed cloud architecture.

Here, there is a need for a comprehensive resource allocation (RA) and scheduling

system for CC data center networks (DCNs). This system would handle all the resources

in the cloud providers’ DCNs and would manage client requests, dictate RA, ensure sat-

isfaction of network QoS conditions, and eliminate performance hiccups while minimiz-

ing the service provider cost and controlling the level of consumed energy. The resource

The contents of this section (1.1) have been published in [9]
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management of the DCs’ servers and the network resources while scheduling and serving

thousands of client requests on virtual machines (VMs) residing on DC servers, is a critical

success factor. First, it is a main revenue source to the service provider as excess resources

translate directly to revenue. Second, it is a key point that will make or break potential

clients’ decision to move fully to a particular cloud.

1.1.1 A Comprehensive Solution for Network Processing RA

Provisioning for cloud services in a comprehensive way is crucial to any RA model. Any

model should consider both computational resources and network resources to accurately

represent practical needs. First, excluding the computational resources during the design

of the RA model deprives the model of the main cloud service. Cloud DCs are built first

and foremost as ways to outsource computational tasks. Any model that optimizes DC

resources should include answers to questions like: How are VMS allocated? How are

processing resources modeled? What is the resource portfolio that is being promoted to

clients? How the DC resources are distributed physically? The other side of the coin is

networking services. As clients ask for tasks to be processed in the DC, they need net-

working service with adequate QoS standards to send and receive their application data.

As reported in [10], only 54% of the IT professionals surveyed about their use of cloud ser-

vices indicated that they involve network operations’ personnel, down from 62% recorded

in a similar poll in 2009. This directly affects the use of network best practices and the

attention to the health of overall traffic delivery. Also in [10], 28% of survey respondents

believed that monitoring and troubleshooting packet traces between VMs is required. In ad-

dition, 32% believed that monitoring and troubleshooting traffic data from virtual switches

is required. Bandwidth costs deeply affect the cloud clients’ financial structure. The trend

shows that network resources require more attention. A study performed by the authors of

[11], shows that a client who downloads a relatively small amount of 10 GB per day would

be charged 30$ /month when using MS Azure. This is equal to 16$/Mb while the market

price per Mb is around 8$ [11]. Therefore, optimizing the bandwidth cost represents an

opportunity of profit for providers and an opportunity of saving for clients. The network

resources weight in the cloud market has alerted network service providers to build their
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own distributed DCs with a vision to enter the CC market. They envision replacing a large

DC with multiple smaller DCs to be closer to the clients. This setup turns the network

infrastructure into a distributed cloud. That in turn helps in controlling costs and increas-

ing service differentiation. A cloud service provider caters network services to clients to

support one of three functions:

1. Connecting the clients’ private cloud (or headquarters) to VMs the client reserved

in the DCs; using Internet or VPNs as shown in Fig. 1.3.

2. Connecting the VMs on different public clouds to facilitate data exchange between

two VMs reserved by the same client.

3. Connecting VMs on the same public cloud together

It is no use to the clients if their application is producing the results needed in the

required time if these results cannot be delivered to them through a stable network con-

nection. In [4], data transfer bottlenecks are stated as one of the main obstacles cloud

client growth is facing. The authors show that when moving large amounts of data in a

distributed DC environment, the network service performance will be a critical point for

the whole process. In the example mentioned, the authors reached the conclusion that the

data transmission tardiness can cause the client to prefer sending data disks with a courier

(FedEx, for example).

Targeting a network-aware RA system brings to the front multiple challenges that

face the CC community. Addressing those issues would be of utmost importance to form a

complete solution. These design challenges can be classified into external challenges which

are enforced by factors outside the RA process and internal challenges that are related to

the way the RA is done.

1.1.2 External Challenges

1.1.2.1 Regulative and Geographical Challenges:

In the virtualization model used in cloud offerings, the client does not manage the physical

location of data. Also, there is no guarantee given by the provider as for the data physical

location in a certain moment [4]. In fact, it is a common practice to distribute client data

over multiple geographically distant DCs. Splitting the data will enhance fault tolerance,
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Figure 1.1: Network-aware Resource Allocation: Design Challenges-External Challenges

but it presents regulative and security challenges. An example would be the regulative

obligation of complying with the U.S. Health Information Portability and Accountability

Act (HIPAA) (the Health Information Protection Act (HIPA) in Canada). HIPAA does not

apply directly to third party service providers, it is imperative that health care organizations

require the third-party providers to sign contracts which require them to handle all patient

data in adherence with HIPAA standards. This raises some constraints to handling and

storing data:

1. Geographical constraints: HIPAA requires that patient data does not leave US soil.

This constraint limits the choice of DCs to allocate a VM to and limits data move-

ment maneuvers while trying to optimize performance. Additionally, when data is

stored in the cloud, it is necessary to know the physical location of the data, the

number of data copies, data modification details, or data deletion details.

2. Client actions: To get more assurance about data security, clients may require guar-

antees like instant data wiping (writing over byte by byte) instead of deletion. They

might also require storing encrypted data on the cloud. This would pose extra pres-

sure on the performance and will make it harder to comply with QoS requirements.
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3. Under HIPPA, patients have a right to access any information stored about them.

A careful study of the locations of the patients and the usage distribution of these

patients is crucial for the RA system. Considering this factor when placing the

data would minimize the distance patient data will travel in the network. Making a

decision where the data is located has a direct effect on minimizing the cost.

1.1.2.2 Charging Model Issues:

The resources management system should incorporate the clients charging model. For ex-

ample, when using Amazon EC2, a client can pay for the instances completely on demand,

reserve an instance for term contract or choose spot Instances that enable him to bid for

unused Amazon EC2 capacity. Issues to be considered here include:

1. Finding the service portfolio offering that maximizes the revenue weight of excess

resources in the DC. Examining the options available in the market, it is clear that

cost is not calculated based on static consumptions.

2. Finding the best way to integrate the virtual network usage into the cost analy-

sis. Challenges would arise because a virtual link length/distance (and in turn cost)

varies from link to link. A virtual link could even change to use another physical

path on the substrate network based on the methodology used.

1.1.3 Internal challenges

1.1.3.1 Data Locality

There is a need for systems to implement data locality features “the right way”. This means

how to combine the management of compute (processing) and data (network) resources us-

ing data locality features to minimize the amount of data movement and in turn improve

application performance/scalability while meeting end users security concerns. It is impor-

tant to schedule computational tasks close to the data, and to understand the cost of moving

the work as opposed to moving the data.

To have a full view of how to use data locality these issues need to be considered:

1. A data aware-scheduler is critical in achieving good scalability and performance. A

more specific perspective needs to be reached. This includes answering questions
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Figure 1.2: Network-aware Resource Allocation: Design Challenges-Internal Challenges

like: What information is needed by the scheduler when making a decision? What

are the policies and decision criteria for moving data? What data integration policies

should be enforced?

2. Analyzing the behaviour of data intensive applications is a very good starting point

on the road to understanding data locality and data movement patterns. This is

needed to determine data integration policies for specific data locality and move-

ment patterns. This allows the study of meta-policies that switch data integration

policies as patterns change.

3. Moving the application itself to servers in the data center where data is needed.

Many factors have to be considered, such as:

• The availability of servers in the data center

• Policy/ algorithm specifications on when to move considering future demand

might need data stored in the original location

• iii) Decision criteria as to migrate the whole VM or just move the concerned

application
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1.1.3.2 Reliability of Network Resources Inside a DC

The DC internal network affects the performance deeply. The DC internal network design

decisions affect performance and reliability of the DC resources. These decisions relate

to factors like network topology, traffic routing, flow optimization, bandwidth allocation

policies and network virtualization options.

1.1.3.3 SDN Design Challenges inside the DCs

SDN is a networking paradigm in which the forwarding behavior of a network el-

ement is determined by a software control plane decoupled from the data plane. This

paradigm can enable many advantages if it is coupled with an efficient RA model. SDN

leads to many benefits such as increasing network and service customizability, supporting

improved operations and increased performance. The software control plane can be imple-

mented using a central network controller which can handle the task of RA in the DCN by

directing all the client requests to it. This controller will execute the RA algorithms then

send the allocation commands across the network. Since it is a relatively new paradigm,

the community has to tackle the following SDN challenges:

1. Reliability - Using centralized SDN controller affects reliability. Although solutions

like stand by controllers or using multiple controllers for the network are suggested,

practical investigation is needed to reveal the problems and analyze the trade-offs

of using such solutions.

2. Scalability - When the network scales up in the number of switches and the number

of end hosts, the SDN controller becomes a key bottleneck. For example, [12]

estimates that a large DC consisting of 2 million virtual machines may generate 20

million flows per second. The current controllers can support about 105 flows per

second in the optimal case [13]. Extensive scalability results in losing visibility of

the network traffic, making troubleshooting nearly impossible.

3. Visibility - Prior to SDN, a network team could quickly spot, for example, that a

backup was slowing the network. The solution would then be to simply reschedule it

The contents of 1.1.3.3 are coauthored by Manar Jamal
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to after hours. Unfortunately with SDN, only a tunnel source and a tunnel endpoint

with UDP traffic are visible. One cannot see who is using the tunnel. There is

no way of determining the origin of the problem. The true top talker is shielded

from view by the UDP tunnels, which means that when traffic slows and users

complain, pinpointing the problem area in the network is not possible. With the

loss of visibility, troubleshooting is hindered, scalability is decreased and a delay in

resolution could be quite detrimental to the business.

4. The controller’s placement problem influences every aspect of a decoupled control

plane, from state distribution options to fault tolerance to performance metrics. This

problem includes placement of controllers with respect to the available topology

in the network and the number of needed controllers. The placement is related

to certain metrics defined by clients like latency, increasing number of nodes, etc.

According to [14], random placement for a small value of k medians will result in

an average latency between 1.4x and 1.7x larger than that of the optimal placement.

As a result, cloud clients will see network service specification as decisive factor

in their choice to move to the cloud or to choose their cloud provider. Factors like

bandwidth options, port speed, number of IP addresses, load balancing options and

availability of VPN access should be considered by any comprehensive model.

1.1.3.4 Fault Tolerance and High availability

Fault tolerance requirements are essential to clients with large sets of data. A fault tolerance

strategy affects how clients VMs are distributed across the fault domains. This distribution

often contradicts performance. The challenge here is to find the fault domain definitions

and VM distribution that complies with fault tolerance constraints without compromising

the performance.

1.1.3.5 Portability and vendor lock in

This issue is a concern for cloud clients. Clients require guarantees of the applications

being portable and easily movable to other cloud providers. This affects VM deployment

design and raises a concern for cloud providers regarding the optimal procedure when a
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certain client leaves. Which RA adjustments are made and how? Here, designing efficient

procedure is a big performance booster.

1.2 Thesis Outline and Contributions

After laying the base for this work by discussing this new field’s background, the focus

here is defining which specific challenges within the cloud computing ecosystem are to be

tackled in this thesis. The remaining chapters of this thesis discuss the following. Chap-

ter 2 Offers optimal and suboptimal solutions to the resource allocation problem in cloud

data centers from both the computational and the network sides. Chapter 3 dives deep

into the energy efficiency challenge in cloud data centers. Consolidation-based and non-

consolidation-based solutions constructed upon a novel dynamic virtual machine idleness

prediction technique are proposed and evaluated. Next, an investigation of the problem

of simulating cloud environments follows in Chapter 4. Available simulation solutions

are comprehensively evaluated and a novel design framework for cloud simulators that

covers multiple variations of the problem is presented. In Chapter 5, the challenge of eval-

uating cloud resource management solutions performance in terms of high availability is

addressed. An extensive framework is introduced to design high availability-aware cloud

simulators and a prominent cloud simulator (GreenCloud) is extended to implement and
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evaluate this framework. Moreover, real application scenarios evaluation is demonstrated

using the new tool. Finally, Chapter 6 concludes this thesis by envisioning the future steps

for the aforementioned research projects.

1.3 Contributions of the Thesis

The major contributions of the thesis are summarized as follows.

1.3.1 Contributions of Chapter 2

This chapter aims to tackle the problem of allocating client VM reservation and connec-

tion scheduling requests to corresponding data center resources while achieving the cloud

provider’s objectives. This chapter’s main contributions include the following:

.

1. The resource allocation problem for cloud data centers is formulated in order to

obtain the optimal solution. This formulation takes into consideration the computa-

tional resource requirements at a practical granularity while considering the virtu-

alization scenario common in the cloud. It also considers conditions posed by the

connection requests (request lifetime/deadline, bandwidth requirements and rout-

ing) at the same time. An important advantage of this approach over approaches

used in previous efforts is considering both sets of resource requirements simulta-

neously before making the scheduling decision. This formulation is looked at from

the providers’ perspective and aims at maximizing performance.

2. The formulation is constructed in a generic way that it does not restrict itself to the

limited environment of one data center’s internal network. The connection requests

received can come from one of many geographically distributed private or public

clouds. Moreover, the scheduler is given the flexibility to place the VMs in any of

the cloud provider’s data centers that are located in multiple cities. These data cen-

ters (clouds) represent the network communicating nodes. The complete problem is

solved using IBM ILOG CPLEX optimization library[15].
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3. Multiple heuristic methods are introduced to preform the two phases of the schedul-

ing process. Three methods are tested for the VM reservation step. Two methods

are tested for scheduling connections. The performance of these methods is investi-

gated and then compared to some of the currently available methods.

4. A suboptimal method based on relaxing the optimal solution is introduced to solve

the same problem for large scale cases. This method exploits the technique of de-

composing the original problem into two separate sub-problems. The first one is re-

ferred to as the master problem which performs the assignment of VMs to data cen-

ter servers based on a novel VM-node relation function. The second one, termed as

the subproblem, performs the scheduling of connection requests assigned by master

problem. This suboptimal method achieves better results than the heuristic methods

while getting these results in more feasible time periods in contrast to the optimal

formulation.

1.3.2 Contributions of Chapter 3

This chapter aims at offering a more complete solution for energy efficiency in cloud data

centers. As seen in TABLE 3.1, each one of the solutions surveyed, despite covering a

significant flavor of the problem, does not offer a comprehensive vision. To achieve an

outstanding solution for such a layered problem, the following contributions are offered:

1. The problem is formulated as a mathematical optimization problem with the objec-

tive of minimizing the energy consumption.

2. A new technique called Dynamic Idleness Prediction (DIP) is introduced where the

future demands for Virtual machines (VMs) are considered when placing/scheduling

the VM on a host. This technique is based on using an artificial intelligence classi-

fier (in our case REPtree classifier) to predict the nature of the load every VM will

receive in a pre-specified future period. A novel scheduling/placement technique

was constructed by combining DIP and the resource based scheduling technique we

introduced in Chapter 2. In this technique, DIP dictates VM initial placement and

VM migration in order to reach more efficient consolidation-based energy efficiency

as opposed to traditional methods like first fit, round robin or greedy methods.
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3. A novel technique for energy efficient VM management that does not depend on

consolidation (VM Migration) is introduced. The technique is called Smart VM

Overprovision (SVOP). This technique exploits the DIP technique described earlier

to dictate the overprovision of VMs by choosing the mostly idle VMS to be switched

off and in turn minimize lost requests.

4. A data set published by of Google (data center traces [16]) is used to evaluate the

two proposed methods. The performance of these methods is compared to common

scheduling algorithms in terms of critical energy efficiency metrics including: en-

ergy used per server, energy used per served request, service rate, and number of

migrations performed.

1.3.3 Contributions of Chapter 4

This chapter strives to offer a timely and comprehensive view of the cloud simulators as of

today. The contributions of this chapter can be summarized as follows.

1. This chapter examines the major cloud simulators available to researchers and in-

dustry engineers and compares them in terms of the main simulated components,

application model, network model, and architecture. This includes systematically

covering general purpose simulators as well specialized simulators or limited scale

simulators. A discussion of the merits of building a new simulator as opposed to

extending an already existing one is presented.

2. The limitations found in each simulator are presented using an approach that depicts

what it is and what it is not. The ground on which the current simulators stand is

illustrated in terms of environment assumptions they were based on. This helps in

the following step which is constructing a framework for the cloud simulator design

process which would ideally cover the industry and research community needs. This

cloud simulator design framework can serve as an elaborate design checklist for

newly initiated projects.

3. A deep analysis of the open research challenges related to this topic is offered.

Challenges covered include realistic user application patterns, cloud deployment
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and pricing, reliability and high availability, challenges originated outside the data

center and Big data considerations among others.

1.3.4 Contributions of Chapter 5

Building on the discussion from Chapter 4, this chapter addresses the need for a cloud simu-

lator that enables high availability(HA) algorithm testing in order to reach a HA scheduling

technique that does not sacrifice other performance metrics. To the best of our knowledge,

there is not a simulator that provides the detailed functionality that enables measuring HA

metrics, testing HA algorithms and producing the results in a way that can serve academia

and the industry. The aim of this chapter is to try and do just that.

1. A framework to amend cloud simulators with HA features is introduced. This

framework would enhance the cloud simulator of choice with required features in

order to turn it into an HA-aware simulator. The framework includes features related

to component failure and recovery, synchronization and functional dependency as

well as work flow features like dynamic scheduling of multi-phased tasks in addition

to a higher granularity modeling of applications.

2. GreenCloud is taken as an example of a major simulator with a direct focus on green

computing and these features are implemented as an additional measurement layer.

This is illustrated using the specifications of a phased communication application

(abbreviated henceforth as PCA).
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Chapter 2

Wind Driven Clouds: Optimal and Suboptimal

Resource Allocation Techniques in Cloud

Computing Data Centers

2.1 Introduction

The appeal of cloud computing for clients comes from the promise of transforming com-

puting infrastructure into a commodity or a service that organizations can pay for exactly

as much as they use. This idea is an IT corporation executive’s dream. As Gartner analyst

Daryl Plummer puts it “Line-of-business leaders everywhere are bypassing IT departments

to get applications from the cloud .. and paying for them like they would a magazine sub-

scription. And when the service is no longer required, they can cancel that subscription

with no equipment left unused in the corner” [18]. The idea that centralized computing

over the network is the future, was clear to industry leaders as early as 1997. None other

than Steve Jobs said:“I don’t need a hard disk in my computer if I can get to the server faster

.. carrying around these non-connected computers is byzantine by comparison” [18]. This

applies to organizations purchasing and planning large data centers as well.

However, performance remains the critical factor. If at any point doubts are cast over

a provider’s ability to deliver the service according to the Service Level Agreements (SLAs)

signed, clients will consider moving to other providers. They might even consider going

back to the buy-and-maintain model. Providers are under constant pressure to improve

A version of this chapter has been submitted for publication in [17].
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Figure 2.1: Cloud simulated environment and components

performance, offer more diverse resource deployment options, improve service usability,

and enhance application portability. A main weapon here is an efficient resource allocation

system. In the cloud scenario, clients are able to rent Virtual Machines (VMs) from cloud

providers. Providers offer several deployment models where VM configuration differs in

computing power, memory, storage capacity and platform to name a few factors. During

the rental period, clients require network capabilities. Clients will exchange data between

client headquarters (or private clouds) and VMs or between two client VMs. The task here

is to schedule VM reservation requests and connection requests in the fastest possible way

while using the data center resources optimally.

This task is getting even harder with the emergence of the big data concepts. IBM

summarized big data challenges into 4 different dimensions referred to as the 4 Vs: Volume,

Velocity, Variety, and Veracity [19]. With most companies owning at least 100 TB of data

stored and with 18.6 billion network connections expected to exist in 2016 [19], resource

allocation efficiency has never been so important.

When faced by the task of designing a resource allocation methodology, many ex-

ternal and internal challenges should be considered. An attempt to summarize these chal-

lenges can be found in [9]. External challenges include regulative and geographical chal-

lenges as well as client demands related to data warehousing and handling. These limita-

tions result in constraints on the location of the reserved VMs and restrictions to the data

location and movements. External challenges also include optimizing the charging model

in such a way that generates maximum revenue. Internal challenges discussed in [9] also

include data locality issues. The nature of the application in terms of being data intensive

should be considered while placing the VMs and scheduling connections related to this
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application.

To achieve these performance and cost objectives, cloud computing providers need

a comprehensive resource allocation system that manages both computational and network

resources. Such an efficient system would have a major financial impact as excess resources

translate directly into revenues.

The following sections are organized as follows: a discussion of the related research

efforts is introduced in Section 2.2 leading to this chapter’s contribution. Detailed model

description is given in Section 2.3. Section 2.4 presents the mathematical formulation of

the problem. The heuristic methods are presented in Section 2.5. The suboptimal solution

is presented in Section 2.6. Results are shown and analyzed in 2.7. Finally, Section 2.8

concludes the chapter.

2.2 Related Work

Previous attempts were made to optimize a diverse set of cloud resources. In [20], Dastjerdi

and Buyya propose a framework to simplify cloud service composition. Their proposed

technique optimizes the service composition on the basis of deployment time, cost and re-

liability preferred by users. The authors exploit a combination of evolutionary algorithms

and fuzzy logic composition optimization with the objective of minimizing the effort of

users while expressing their preferences. Despite including a wide range of user require-

ments in the problem modeling and providing an optimization formulation along with a

fuzzy logic heuristic, [4] tackles the problem from the user’s prospective rather than the

provider’s. The main goal is to provide the best possible service composition which gives

the problem a brokering direction instead of the focus on cloud data center performance.

SLA conditions are considered an input guaranteed by the cloud provider regardless of how

they are achieved.

Wei et al. [21] address Quality of Service (QoS) constrained resource allocation

problem for cloud computing services. They present a game-theoretic method to find an

approximate solution of this problem. Their proposed solution executes in two steps: (i)

Step 1: Solving the independent optimization for each participant of game theory;(ii) Step

2: Modifying the multiplexed strategies of the initial solution of different participants of
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Step 1 taking optimization and fairness into consideration. The model in [21] represents a

problem of competition for resources in a cloud environment. Each system/node/machine

represents a resource that has a corresponding cost and execution time for each task. More

granularity is needed in terms of considering the multiple degrees of computational and net-

work resources when scheduling. Memory, storage, computational powers and bandwidth

(at least) should be considered separately in an ideal model. Moreover, network resource

impact is not considered thoroughly in [5]. Also, no detailed discussion for Virtualization

scenarios was given.

In [22], Beloglazov et al. define an architectural framework in addition to resource

allocation principles for energy efficient cloud computing. They develop algorithms for

energy efficient mapping of VMs to suitable physical nodes. They propose scheduling al-

gorithms which take into account QoS expectations and power usage characteristics of data

center resources. This includes, first, allocating VMs using modified best fit decreasing

method and then optimizing the current VM allocation using VM migration. Considering

challenges migration might cause in terms of performance hiccups caused by copying and

moving delays and scheduling challenges along with provider vulnerability for SLA viola-

tions, a solution that minimizes the need for VM migration is a preferable one. No deadline

for tasks is considered.

Duan et al. [23] formulate the scheduling problem for large-scale parallel workflow

applications in hybrid clouds as a sequential cooperative game. They propose a communi-

cation and storage-aware multi-objective algorithm that optimizes execution time and eco-

nomic cost while fulfilling network bandwidth and storage requirements constraints. Here,

the computation time is modeled as a direct function of the computation site location and

the task instead of using a unified unit for task size. Memory was not used as a resource.

Task deadlines are not considered. The goal is to complete a set of tasks that represent a

specific application. This model is closer to job execution on the grid rather than the model

more common in the cloud which is reserving a VM with specific resource requirements

and then running tasks on them. Moreover, the assumption presented is that data exchange

requests can run concurrently with the computation without any dependency.

One more variation can be seen in [24] in which two scheduling algorithms were

tested, namely , green scheduling and round robin. The focus was energy efficiency again
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but the model offered contains detailed network modeling as it was based on NS-2 network

simulator. The user requests are modeled as tasks. Tasks are modeled as unit requests that

contain resource specification in the form of computational resource requirements (MIPs,

memory and storage) in addition to data exchange requirements (task size variable repre-

senting the process files to be sent to the host the task scheduled on before execution, data

sent to other servers during execution and output data sent after execution). There was no

optimization model offered.

When looking at the solutions available in the literature, it is evident that each exper-

iment focuses on a few aspects of the resource allocation challenges faced in the area. We

try to summarize the different aspects in Table 2.1.

An ideal solution would combine the features/parameters in Table 2.1 to build a com-

plete solution. This would include an optimization formulation that covers computational

and network resources at a practical granularity level. Dealing with bandwidth as fixed

commodity is not enough. Routing details of each request are required to reflect the hot

spots in the network. That applies for computational resources as well. CPU, memory and

storage requirements constitute a minimum of what should be considered. Moreover, A

number of previous efforts concentrate on processing resources while some focus on net-

working resources. The question arising here is: How can we process client VM reservation

requests keeping in mind their data exchange needs? The common approach is to perform

the VM placement and the connection scheduling separately or in two different consecutive

steps. This jeopardizes the QoS conditions and forces the provider to take mitigation steps

when the VM’s computational and network demands start colliding. These steps include

either over provisioning as a precaution or VM migration and connection preemption af-

ter issues like network bottlenecks start escalating. Minimizing VM migration incidents

is a major performance goal. Off-line VM migration, however fast or efficient it may be,

means there is a downtime for clients. This does not really comply with a demanding client

environment where five 9’s availability (99.999% of the time availability) is becoming an

expectation. As for online migration, it pauses a load with more copying/redundancy re-

quired. These challenges associated with VM migration cause cloud computing solution

architects to welcome any solution that does not include migration at all.

This shortcoming calls for a resource allocation solution that considers both sides at
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the same time. This solution would consider the VM future communication demands along

with computational demands before placing the VM. In this case, the network demands

include not only the bandwidth requirements as a flat or a changing number, but also the

location of the source/destination of the requested connection. This means the nodes/VMs

that will (most probably) exchange data with the VM. As these closely tied VMs are sched-

uled relatively near each other, network stress is minimized and the need to optimize the

VM location is decreased dramatically.

In this work, we aim to tackle the problem of allocating client VM reservation and

connection scheduling requests to corresponding data center resources while achieving the

cloud provider’s objectives. Our main contributions include the following:

1- Formulate the resource allocation problem for cloud data centers in order to ob-

tain the optimal solution. This formulation takes into consideration the computational re-

source requirements at a practical granularity while considering the virtualization scenario

common in the cloud. It also considers conditions posed by the connection requests (re-

quest lifetime/deadline, bandwidth requirements and routing)at the same time. An impor-

tant advantage of this approach over approaches used in previous efforts is considering both

sets of resource requirements simultaneously before making the scheduling decision. This

formulation is taken from the providers’ perspective and aims at maximizing performance.

2- Make the formulation generic in a way that it does not restrict itself to the lim-

ited environment of one data center internal network. The connection requests received

can come from one of many geographically distributed private or public clouds. Moreover,

the scheduler is given the flexibility to place the VMs in any of the cloud provider’s data

centers that are located in multiple cities. These data centers (clouds) represent the net-

work communicating nodes. The complete problem is solved using IBM ILOG CPLEX

optimization library[15].

3- Introduce multiple heuristic methods to preform the two phases of the scheduling

process. Three methods are tested for the VM reservation step. Two methods are tested

for scheduling connections. The performance of these methods is investigated and then

compared to some of the currently available methods mentioned earlier.

4- Introduce a suboptimal method to solve the same problem for large scale cases.

This method is based on a technique of decomposing the original problem into two separate
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Private Cloud 1 

Private Cloud 2 

Stand alone Client 1 

Stand alone Client 2 

Stand alone Client 3 

VM-Node Connections  

Public Cloud 1 

Public Cloud 2 

Public Cloud 3 

Public Cloud 4 

VM-VM Connections  

Figure 2.2: An example of a cloud provider-client network : clients can connect from their
private clouds, their headquarters or from a singular machine through the Internet. The

provider data centers represent public clouds

sub-problems. The first one is referred to as master problem which performs the assignment

of VMs to data center servers based on a VM-node relation function. The second one,

termed as subproblem, performs the scheduling of connection requests assigned by master

problem. This suboptimal method achieves better results than the heuristic methods while

getting these results in more feasible time periods in contrast to the optimal formulation.

2.3 Model description

We introduce a model to tackle the resource allocation problem for a group of cloud user

requests. This includes the provisioning of both computational and network resources of

data centers. The model consists of a network of data centers nodes (public clouds) and

client nodes (private clouds). These nodes are located in varying cities or geographic points

as in Fig. 2.2 They are connected using a network of bidirectional links. Every link in this

network is divided into a number of equal lines (flows). It is assumed that this granularity

factor of the links can be controlled. We also assume that each data center contains a

number of servers connected through Ethernet connections. Each server will have a fixed

amount of memory, computing units and storage space. As an initial step, when clients
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Table 2.2: An example of a set of Resource Allocation requests

Client Request Type Start Duration Source Destination
C-1 Res VM1 High-CPU T=10 125 - -
C-2 Res VM2 High-Storage T=15 400 - -
C-1 Res VM3 Standard T=20 150 - -
C-2 Res VM4 High-Memory T=10 70 - -
C-1 Req con VM-VM T=15 10 VM1 VM3
C-1 Req con VM-C T=18 20 VM3 C1
C-2 Req con VM-VM T=25 8 VM4 VM2
C-2 Req con VM-C T=30 30 VM4 C2

require cloud hosting, they send requests to reserve a number of VMs. All of these VMs

can be of the same type or of different types. Each cloud provider offers multiple types

of VMs for their clients to choose from. These types vary in the specification of each

computing resource like memory, CPU units and storage. We will use these three types

of resources in our experiment. Consequently, each of the requested VMs is allocated on

a server in one of the data centers. Also, the client sends a number of requests to reserve

a connection. There are two types of connection requests: 1- A request to connect a VM

to another VM where both VMs were previously allocated space on a server in one of the

data centers (public clouds). 2- A request to connect a VM to a client node. Here, the

VM located in a data center node connects to the client headquarters or private cloud. The

cloud provider-client network is illustrated in Fig. 2.2 For every request, the client defines

the source, the destination, the start time and the duration of the connection. Thus, an initial

objective is to minimize the average tardiness of all connection requests. A sample of client

requests is shown in Table 2.2. Requests labeled Res indicate a VM reservation. Requests

labeled Req con indicate a connection request between a VM and a client node or between

2 VMs. An example of the VM configuration is shown in Table 2.3 [1].

2.4 Mathematical Formulation

To solve the problem of resource scheduling in cloud computing environment, we introduce

an analytical model where we formulate the problem as a mixed integer linear problem.

We model the optimization problem of minimizing the average tardiness of all reservation
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connection requests while satisfying the requirements for virtual connection requests of

different clients. This model is solved using IBM ILOG CPLEX software for a small set of

requests.

2.4.1 Notations

Environment and network parameters are described below. A set of VMs and a set of

servers are represented by VM and Q respectively. Mqm represents the amount of re-

sources (e.g. memory) available on a server where q ∈ Q and m ∈ {memory(mem),

CPUunit(cu), storage(sg)} such that Mqm = 30 indicates that available memory on

server q is 30 GB assuming that m denotes a specific type of required resource, i.e., mem-

ory on a server. Kvm is used to represent the amount of resources needed for every re-

quested VM such that Kvm = 7 indicates that the VM v ∈ VM requires 7 GB of memory

assuming that m denotes memory resource on a server. The set of network paths and a

set of links are represented by P and L respectively. alp is a binary parameter such that

alp = 1 if link l ∈ L is on path p ∈ P ; 0 otherwise. In our formulation, fixed alternate

routing method is used with a fixed size set of paths available between a node and any

other node. These paths represent the alternate paths a request could be scheduled on when

moving from a server residing in a node a to a server in any other node. bqcp is a binary

parameter such that bqcp = 1 if path p ∈ P is one of the alternate paths from server, q ∈ Q
to server, c ∈ Q; 0 otherwise. I represents a set of connection requests. Every connection

request, i ∈ I is specified by a source (si), a destination (di), requested start time (ri) and

connection duration (ti). TARD represents the allowed tardiness (accepted delay) for each

connection request. The formulation covers scenarios in which networks can divide a link

into shares or streams to allow more flexibility with the formulation and cover a wide set of

scenarios. The set of shares (wavelengths in the case of an optical network) could contain

any number of wavelengths based on the problem itself. The set λ is the set of all available

wavelengths in the network. The parameter h used in constraint 6 indicates a large number

that helps to ensure the solution is derived according to the conditions in the constraint.

In addition, the binary parameter Wij indicates if request i is scheduled before request j.

Using this parameter ensures constraint 6 is tested only once for each pair of requests.
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2.4.2 Decision Variables

Fi is an integer decision variable which represents the scheduled starting time for connec-

tion request, i ∈ I . Xvq is a binary decision variable such that Xvq = 1 if v ∈ VM is

scheduled on server q ∈ Q. Yipw is a binary decision variable such that Yipw = 1 if request,

i ∈ I scheduled on path, p ∈ P and wavelength, w ∈ λ

2.4.3 Objective Function

The problem is formulated as a mixed integer linear programming (MILP) problem. The

objective of the MILP is minimizing the average tardiness of client connection requests

to and from VMs. Tardiness here is calculated as the difference between the requested

start time by the client (represented by ri) and the scheduled start time by the provider

(represented by Fi). The solver looks for the solution that satisfies clients in the best way

while not harming other clients’ connections. The solution works under the assumption

that all clients requests have the same weight/importance to the provider. The objective

function of the problem is as follows:

MIN
∑
i

(Fi − ri) i ∈ I, (2.1)

2.4.4 Constraints

The objective function is subjected to the following constraints:

∑
q∈Q

Xvq = 1, v ∈ VM, (2.2)

∑
p∈P

∑
w∈λ

Yipw = 1, i ∈ I, (2.3)

∑
v∈VM

Xvq ×Kvm <=Mqm, q ∈ Q,m ∈ {m, c, s}, (2.4)
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Yipw + (Xsiq +Xdic − 3bqcp) <= 2,

i ∈ I, q ∈ Q, c ∈ Q, p ∈ P,w ∈ λ,
(2.5)

∑
p∈P

[(ti × alp × Yipw) + (h× alp × Yipw) + (h× alp × Yjpw)]

+Fi − Fj + h×Wij <= 3h, i, j ∈ I, l ∈ L,w ∈ λ,
(2.6)

Wij +Wji = 1, i, j ∈ I, (2.7)

Xvq, Yipw,Wij ∈ {0, 1}, (2.8)

Fi − ri >= 0, i ∈ I, (2.9)

Fi − ri <= TARD, i ∈ I, (2.10)

Fi, ri >= 0, i ∈ I. (2.11)

In Constraint 2.2, we ensure that a VM will be assigned exactly to one server. In

Constraint 2.3, we ensure that a connection request will be assigned exactly on one physical

path and one wavelength(stream/share of a link). In Constraint 2.4, we guarantee that VM

will be allocated on servers with enough capacity of the computational resources required

by the VMs. In Constraint 2.5, we ensure that a connection is established only on one of

the alternate legitimate paths between a VM and the communicating partner (another VM

or client node). In Constraint 2.6,we ensure that at most one request can be scheduled on a

certain link at a time on each wavelength and that no other requests will be scheduled on the

same link and wavelength until the duration is finished. Constraint 2.7 ensures Constraint

2.6 will only be tested once for each pair of requests. It indicates that request i will start

before request j. In Constraints 2.9 and 2.10, we ensure that the scheduled time for a request

is within the tardiness window allowed in this experiment.
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Table 2.3: VM configuration for the 3 instance (VM) types used in the experiment as
offered by Amazon EC2 [1].

Instance Type Standard Extra
large (SXL)

High Memory Extra
Large (MXL)

High CPU Extra
Large (CXL)

Memory 15 GB 17 GB 7 GB
CPU (EC2 units) 8 6.5 20
Storage 1690 GB 490 GB 1690 GB

2.5 Heuristic solution

2.5.1 Heuristic model

The proposed model in this paper tackles the resource allocation challenges faced when

provisioning computational resources (CPU, memory and storage) and network resources.

A central controller manages these requests with the objective of minimizing average tardi-

ness and request blocking. The solution aims at solving the provider’s cost challenges and

the cloud applications performance issues.

For every request, the client defines the source, destination, start time and duration

of the connection. Thus, this problem falls under the advance reservation category of prob-

lems.

The central controller (could be a Software Defined Networking controller (SDN)

for example) keeps the data tables of the available network paths, available server resources

and connection expiration times in order to handle newly arriving requests. The controller

then allocates the requested VMs on servers according to the method or policy used. It up-

dates the resource availability tables accordingly. After that, the controller schedules and

routes connection requests to satisfy the client requirements. Network path availability ta-

bles are also updated. As an initial objective, the controller aims at minimizing the average

tardiness of all the advance reservation connection requests. Also, a second objective is

minimizing the number of the blocked requests. This objective is to be reached regardless

of what path is used. Heuristic policies/techniques proposed aim at getting good, although

not mathematically optimal, performance metrics while providing this feasible solution

within acceptable amounts of time.
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Figure 2.3: The allocation process using heuristic techniques

2.5.2 Heuristic techniques for minimizing tardiness

The allocation process is divided into two consecutive steps as in 2.3.

1- Allocation of VMs on data center servers. Here, all the VM reservation requests

are served based on server resource availability before any connection request is served.

2- Scheduling of connection requests on the available network paths. This happens

after all VMs have been allocated resources and started operation on the servers.

For the first subproblem, three heuristic techniques were evaluated. For the second

step (subproblem), two heuristic techniques were tested. For a complete experiment, one

heuristic for each subproblem is used. These heuristics are divided as follows:

2.5.2.1 VM reservation heuristic techniques

a) Equal Time Distribution Technique (ED):

In this heuristic, TMi is the total time reserved by connection requests from the

virtual machine VMi (sum of the connection durations). Next, the share of one

server is calculated by dividing the total time units all the VMs have requested by
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2: Input: V irtual machine set V M, Server
3: set Q, connection request set R
4: Output: Allocation of VMs on servers,
5: TMi has the total connection time
6: requested by VMi
7: for TMi ∈ TM do
8: TMi = 0
9: end for
10: for VMi ∈ VM do
11: for Rj ∈ R do
12: if Rj .source = VMi OR Rj .dest = VMi then
13: TMi = TMi +Rj .duration
14: end if
15: end for
16: end for
17: TMtotal =

∑
i
TMi

18: ServerShare = TMtotal /|Q|
19: i = 0
20: for Sj ∈ Q do
21: ThisServerShare = ServerShare
22: while Sj isNotFull AND ThisServerShare > TMi do
23: Schedule V Mi on Sj
24: ThisServerShare = ThisServerShare− TMi
25: i = i+ 1
26: end while
27: end for

Figure 2.4: Equal time distribution heuristic technique
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the number of servers. This is based on the assumption that all servers have the

same capacity (for computational and network resources). Then, for each server,

VMs are allocated computation resources on the corresponding servers one by one.

When the server is allocated a number of VMs that cover/consume the calculated

server share, the next VM is allocated resources on the following server and the

previous steps are repeated. The algorithm is described in pseudo code in Fig. 2.4.

b) Node Distance Technique (ND):

First, the average distance between each two nodes is calculated. The two nodes

furthest from each other (with maximum distance) are chosen. Then, the maximum

number of VMs is allocated on the servers of these two nodes. Next, the remaining

nodes are evaluated, the node with maximum average distance to the previous two

nodes is chosen. The same process is repeated until all the VMS are scheduled. The

algorithm is described in pseudo code in Fig. 2.5. fillNode here is a function that

basically tries to schedule as many VMs as possible on the called node until the

node’s resource are exhausted. fillNode is illustrated in Fig. 2.6

c) Resource Based Distribution Technique (RB):

In this heuristic, the choice of the server is based on the type of VM requested.

As shown in Table III, three types of VMs are used in the experiment: i) High

Memory Extra Large (MXL) has high memory configuration; ii) High CPU Extra

Large (CXL) has a high computing power; iii) Standard Extra large (SXL) is more

suited to typical applications or the ones that need a lot of storage space. Depending

on the type of VM requested by the client, the heuristic picks the server with the

highest amount of the available resources. The VM then is allocated resources on

that server. This causes the distribution to be more balanced.

2.5.2.2 Connection reservation heuristic techniques

a) Duration Priority Technique (DP):

In this heuristic, connections with the shortest duration are given the priority. First,

connection requests are sorted based on the requested duration. The following step

is to pick the connection with the shortest duration and schedule it on the shortest

path available. This step is repeated until all connection requests are served. The
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2: Input: V irtual machine set V M, Server
3: set Q, Node set N, Path set P,
4: where Pijk is path k between nodes
5: i and j, NP is afixed Number of paths
6: between node i and node j
7: Output: Allocation of VMs on servers
8: for Ni ∈ N do
9: for Nj ∈ N do
10: A[i][j] =

∑NP
k Pijk.Length/NP

11: end for
12: end for
13: Pick 2 nodes x, y with max A[x][y]
14: U = {x, y}
15: RemVMs = |VM |
16: RemVMs = fillNode(x,RemVMs)
17: RemVMs = fillNode(y,RemVMs)
18: while U 6= N AND RemVMs > 0 do
19: maxDist = 0
20: for Ni ∈ N AND Ni /∈ U do
21: avgDist = 0
22: for Bj ∈ U do
23: avgDist = avgDist+ A[Bj ][Ni]
24: end for
25: if avgDist > maxDist then
26: maxDist = avgDist
27: NextNode = Ni
28: end if
29: end for
30: RemVMs = fillNode(NextNode,RemVMs)
31: U = U ∪ {NextNode}
32: end while

Figure 2.5: Node distance heuristic technique
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2: Function :fillNode
3: Input: V irtual machine set V M, Node x,
4: RequestedVMs, server set Q
5: Output: servers in node x filled with max
6: VMs possible
7: i = |VM | −RemVMs
8: for Sj ∈ Q and Sj residing in Node x do
9: while Sj isNotFull AND i < |VM | do
10: Schedule V Mi on Sj
11: i = i+ 1
12: end while
13: end for
14: return i

Figure 2.6: Function :fillNode

2: Input: Path set P where Pxyk is path k
3: between nodes x and y,
4: and connection request set R
5: T is the allowed tardines per request
6: Output: Scheduling of network connection
7: requests on network paths
8: Sort R in descending order based onRi.duration
9: for Ri ∈ R do
10: for t = Ri.RST to Ri.RST + T do
11: Pick shortest path Pxyk where Ri.source = x and Ri.destination = y
12: if Pxyk isAvailable(t, Ri.duration) then
13: Schedule Ri on Pxyk at time unit t
14: Move to next request
15: end if
16: end for
17: end for

Figure 2.7: Duration priority heuristic technique
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2: Input: Path set P
3: where Pxyk is path k between nodes
4: x and y is Server set Q, connection
5: request set R, NP is Number of paths
6: between node x and node y
7: T is the allowed tardines per request
8: Output: Scheduling of network connection
9: requests on network paths
10: Sort R in descending order based on Ri.RST
11: (requested start time)
12: for Ri ∈ R do
13: for t = Ri.RST to Ri.RST + T do
14: x = Ri.source
15: y = Ri.destination
16: for k = 0 to NP do
17: if PxykisAvailable(t, Ri.duration) then
18: Schedule Ri on Pxyk at time unit t
19: Move to next request
20: end if
21: end for
22: end for
23: end for

Figure 2.8: Greedy heuristic technique
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algorithm is described in pseudo code in Fig. 2.7.

b) Greedy Algorithm (GA):

In this heuristic, scheduling is based on the connection Requested Start Time (RST).

Connection requests with earlier RST are scheduled on the first path available re-

gardless of the path length.The algorithm is described in pseudo code in Fig. 2.8.

2.5.2.3 Complexity analysis of the heuristic solutions

The resource allocation problem in a cloud data center is a variation of the well known

knapsack problem. The knapsack problem has two forms. In the decision form which is

considered less difficult as it is NP-Complete- the question is: Can an objective value of

at least K be achieved without exceeding a specific weight W? The optimization form of

the problem which is the form we try to solve in this thesis- tries to optimize the possible

objective value. The optimization form is NP-Hard. This means it is at least as hard as all

the NP problems. There is no current solution in polynomial time for this form.

This motivated the introduction of the heuristic algorithms. It might be of interest to

the reader to visit the complexity of the introduced heuristic algorithms.

First, we revisit the variables covered in this analysis. VM represent the VM set, N

represent the set of nodes, S is the set of servers, R is the set of connection requests, T

is the allowed tardiness per request and D is the average duration of a connection. This

analysis is offered with the sole purpose of being an approximation of the time complexity

to show that these algorithms run within polynomial time and in turn- can be practically

used by large scale cloud networks. Looking at the introduced algorithms one by one, we

find that Equal time distribution has a complexity of O(|VM ||R| + |S|). Node distance

algorithms runs in O(|N3| + |S| + |V |). Resource based distribution runs in O(|V ||S|)
which constitutes the quickest among the 3 VM placement algorithms we introduced. As

for connection scheduling heuristics algorithms, Duration priority runs in O(|R|.lg|R| +
|R|.T.D) or O(|R|.(1+ lg|R|.+T.D). Finally, the greedy connection scheduling algorithm

run in O(R.T.D). Therefore, all the mentioned algorithms run in polynomial times and can

yield a result for large scale problem in practical time periods.
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2.6 Suboptimal Solution

Although an optimal solution can be obtained using the formulation in Section IV, this is

only feasible for small scale problems. Even when using a 5-node network with 4 servers

and 7 links connecting them, the number of optimization variables can be as big as 5000

variables when scheduling 50 requests that belong to 5 VMs. On the other hand, heuristic

methods achieve feasible solution in relatively quick times but the solution quality cannot

be proven. This motivates us to move to the next step which is finding a method that

achieves a suboptimal solution. The method introduced here is based on a decomposition

technique. We illustrate the method in the Fig. 2.9 The steps go as follows:

1- In Step 1, a set of known connection requests are preprocessed to generate inter-

dependency measurements. This is figured out by calculating the frequency of communi-

cations between each two points in the network. To be more specific, the frequency of the

connection requests between each VMi and VMj is calculated as well as the frequency of

connection requests between VMi and nodek which represent a private cloud. This gives

us an indication of which direction most of the VM’s connections go. This is closely cor-

related with the dependencies this VM has and should ideally affect where it is scheduled.

2- In the second step, a utility function is constructed based on the connection fre-

quency values generated in step 1. The utility function serves as the objective function of

the master problem that allocates VMs on hosts.

3- Next, a master problem in which we handle the assignment of VMs to servers and

connections to specific paths without scheduling them is generated. In other words, we

solve for the decision variable Xvq without considering any scheduling constraints. This

produces a feasible assignment for VMs that aims at scheduling interdependent VMs close

to each other.

4- After getting the VM assignment locations, A subproblem in which we try to find

the optimal scheduling for the input connections under these specific VM assignment con-

ditions. In other words, we solve for the decision variable Yipw, Fi in the subproblem. The

minimum tardiness produced from the subproblem is the objective value we are looking

for. As in any decomposition based optimization, the success of the decomposition tech-
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Figure 2.9: The suboptimal method step by step
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nique depends on the way the solution of the master problem is chosen. We formulate the

master problem and the subproblem as follows.

2.6.1 Master Problem Formulation

We first introduce Distance function. It represents the distance between two nodes mea-

sured by the number of links in the shortest path between them. A frequency function based

on connection duration is also added. This is a function where the connection duration is

preferred as dominant factor. The frequency function is a value that will represent interde-

pendency between two VMs or between a VM and a private cloud (client node). Another

alternative here is depending on the number of connections requested between these two

points rather than the total amount of connection time. Once we calculate the frequency

function values, the utility function is constructed as:

MIN
∑

v∈VM

∑
u∈VM

∑
s∈Q

∑
q∈Q

(Freqvu ×Distancesq ×Xvs ×Xuq), (2.12)

Subject to

2.2, 2.4. (2.13)

The master problem finds the VM allocation that maximizes the value of point to

point interdependency.

2.6.2 Subproblem

As the subproblem focuses on scheduling, its objective function is the same as in the opti-

mal form, i.e., minimizing the average connection tardiness. In this case, the final value of

the relaxed objective will come directly from the solution of the subproblem. The differ-

ence is that the subproblem already knows where the VMs are allocated and is scheduling

connections accordingly. The objective of the sub-problem is as follows:
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Table 2.4: Experiment parameter configuration.

Parameter Value
Total number of servers 132
Servers/ data center 44
VM reservation requests 200
Connection requests 10000
RST distribution Poisson with Lambda = 10
Connection duration distribution Normal with mean = 200 time units
Source and destination distribution Uniform
Allowed tardiness per request ranging from 1 to 500 time units
Total experiment time 70,000 time units

MIN
∑
i

(Fi − ri) i ∈ I, (2.14)

2.3, 2.5to2.11 (2.15)

2.7 Results

2.7.1 Simulation Environment

The problem is simulated using a discrete event based simulation program and solved on

a more practical scale using the heuristic search techniques discussed in the previous sec-

tions. The network used for the experiment is the NSF network. It consists of 14 nodes

of which 3 are data center nodes and the rest are considered client nodes. Nodes are con-

nected using a high speed network with link granularity chosen goes up to 3 lines (flows)

per link. Fixed alternate routing method is used with 3 paths available between a node and

any other node. Server configuration and request data parameters are detailed in Table 2.4.

Preemption of connection requests is not allowed in this experiment.

2.7.2 Heuristics

As explained in the previous sections, every experiment includes two phases and hence two

heuristics are needed: one to schedule VMs on servers and the other to schedule connection
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requests. The five techniques explained earlier yield 6 possible combinations. However,

We chose to show the results from the best 4 combinations (best 4 full-solutions). This

is due to space constraints. The 4 chosen combinations cover all the 5 heuristics. The

simulation scenarios and combined heuristics used for the two subproblems are as follows:

1-ED-GA: Equal Time Distribution technique and Greedy algorithm.

2-RB-DP: Resource Based Distribution technique and Duration Priority technique.

3-ED-DP: Equal Time Distribution technique and Duration Priority technique.

4-ND-DP: Node Distance technique and Greedy algorithm.

In figures 2.10 and 2.11, the results for blocking percentage are shown for the four

methods. Fig. 2.10 shows a comparison between the blocked requests percentage produced

when using each one of the four methods where the allowed tardiness is very small (1 time

unit). Fig. 2.11 shows the same comparison when the allowed tardiness per request is

large (30000 time units). It can be seen from both figures that ED-DP and RB-DP methods

have shown a clear advantage. This indicates a clear advantage of using DP over GA when

scheduling connection requests in tight or real time conditions. As it shows in Fig. 2.13,

RB-DP has shown a decent advantage over ED-DP in terms of blocking percentage.

As for the average tardiness per request, the measurements are shown in Fig. 2.12

The figure shows a comparison between the average tardiness per request produced when

using each one of the four methods, where the allowed tardiness is small (25 time unit).

Once more, ED-DP and RB-DP methods have shown a clear advantage. Also, it is noticed

from the figure the ED-DP produces slightly better results (less average tardiness) than

RB-DP. Therefore, using RB-DP method is more suitable to scenarios where there is an

emphasis on serving the largest number of requests. On the other hand, using ED-DP is

more suitable to scenarios where the individual request performance or service level is

prioritized over serving more requests.

2.7.3 Relaxed Solution Results

With regards to the network we tested on, a 5-node network was used in these tests with 2

as data center nodes and the rest are client nodes (private clouds). 4 servers were used in

the tests with 2 servers in each data center. To connect the nodes in the substrate network, 7
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Table 2.5: Optimal Vs. Relaxed solution values and execution times

Number of
Requests

Network
Load

Optimal Solution Relaxed Solution

Average
Tardiness
Value

Execution
Time

Average Tar-
diness Value

Execution Time

30 0.86 0 3 Sec 5.73 8.14 Sec
50 0.86 0 7 Sec 10.12 9 Sec
200 0.86 0 2 M 24 Sec 10.785 1 M 2 Sec

links were used and 20 different paths were defined. Two alternate routing paths were de-

fined for each couple of nodes. The input contained data corresponding to 5 VM instances.

The choice of this network is due to two factors. First, condensing requests in an archi-

tecture with limited resource puts the network under high load to eliminate the effect the

network capacity would have on the result. This would allow more control by eliminating

any factors related to network design or node distribution that might ease the pressure on

the scheduling algorithm. This way, the problem size is controlled directly using only the

parameters we are testing for which are the number of requests, their specification and their

distribution. Second, it makes it easier to compare results and execution times of relaxed

solution to those of the optimal solution.

For the connection requests coming from the clients, as in [25], their arrival rate val-

ues were set according to a Poisson process. The connection request lifetime (duration) was

normally distributed with an average of 100 time units and the total number of connection

requests was gradually increased from 20 up to 3000 requests. Every connection request is

associated with a source, a destination, a requested start time and a duration. The source

nodes/VMs were uniformly distributed.

To evaluate the optimal and relaxed solutions, we used the IBM ILOG CPLEX op-

timization studio v12.4. Both the optimal and relaxed solution were programmed using

Optimization Programming Language (OPL) and multiple testing rounds were performed.

Both solutions were tested for multiple values of normalized network load.

Table 2.5 shows a comparison between the objective values obtained using the opti-

mal scheme vs. the values obtained from the relaxed (decomposed) scheme for small scale

problems (up to 200 requests). While the optimal solution was able to schedule all requests
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Table 2.6: Execution times & average tardiness for connection requests for large scale
problems when increasing the average connection duration to 100 Time units

Network
load

Heuristic Solution (RB-
DP) average tardiness
(percentage of dura-
tion/lifetime)

Relaxed Solution
average tardiness

Relaxed Solution
execution time

0.86 19.81% 2.88% 8 Min 21 Sec
0.93 21.18% 6.36% 8 Min 54 Sec
1 22.54% 9.08% 11 Min 31 Sec

without any delay (tardiness), the relaxed solution achieved an acceptable average tardiness

in comparison. As noticed from the table, the execution times for the optimal scheme are

slightly better for small data sets, but as the number of requests grows, the difference in

execution times becomes evident. This goes on until the optimal solution becomes infea-

sible while the relaxed solution still executes in a relatively short period. The maximum

number of requests the optimal solution is able to solve depends on the machines used and

the network load parameters used to generate the input data.

Concerning large scale problems, the experimental results shown in Table 2.6 illus-

trate that the relaxed solution has achieved an acceptable average tardiness in comparison

to the optimal solution. The effect of increasing the problem size on the value of average

tardiness when using the relaxed solution is evident. The average tardiness achieved is less

than 10% of the average request duration (lifetime). This is well within the bound set in

[26] for acceptable connection tardiness which is half (50%) the lifetime or requested du-

ration of the connection. This is also a considerable improvement over the performance of

the heuristic solution which is shown in the same table (average tardiness values around

20% of request lifetime). The table also shows an increase in the average tardiness when

increasing the number of requests (problem size). This is due to the fact that tardiness

accumulates as priority is given to the request arriving earlier. In terms of execution time,

as the number of requests grow, the difference in execution time between the optimal and

relaxed solutions becomes evident. The optimal solution becomes infeasible while the re-

laxed solution still executes in a relatively short period scheduling 3000 requests in around

in a period between 8-11 minutes depending on the network load. This -of course - is

an example of offline execution on a personal computer which is we mainly use here for
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Table 2.7: Connection Requests Acceptance rate for different network loads using the
Relxed solution

Allowed tardiness (percentage of request lifetime or
duration)

50% 200 % 1000%

Acceptance rate 86% 87% 100%
Average tardiness for accepted requests 1.98% 16.72% 219.767%

benchmarking purposes.

To illustrate the impact of the allowed tardiness parameter on the request acceptance

ration, the results in Table 2.7 are presented. Using the heuristic solution with the com-

bination RB-DP, the table shows the increase in the acceptance ration as we increase the

allowed tardiness per request for a specific network load.

To measure the acceptance ratio, we introduced a maximum waiting period param-

eter. This parameter represents the period of time a connection request will wait to be

served before it is considered blocked. For that, an ideal value is the same value used in

[26], namely, half the request lifetime. In other words, If the connection waited for more

than 50% of its duration and it was not scheduled then it is blocked or not served. Table 2.6

shows the acceptance ratio and the average tardiness for requests with an average duration

of 100 time units.

Considering this scenario where requests with high tardiness are blocked presents a

trade off between average connection tardiness and the percentage (or number) of blocked

connections. It is noticed that the average tardiness decreases as we remove the requests

with high tardiness and consider them blocked. An average tardiness of less than 2% of

a request lifetime can be guaranteed if we are willing to sacrifice 13% of the requests as

blocked.

Deciding weather to use this scenario or not is up to the cloud solution architects.

This depends on the client sensitivity to the precision/quality vs. the speed of achieving

results.

2.7.4 Comparison with Previous Solutions

When planning the comparison between the proposed solution and solutions available in

the literature, we are faced with a challenge. As discussed in detail in Section II, the avail-
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able solutions are diverse in terms of the parameters considered and the covered sides of

the cloud resource allocation problem. This limits the number of solutions that can realis-

tically be used to solve this particular flavor fo the problem. However, we were able to use

the algorithms implemented in [22] (Modified best fit decreasing method) and [3] (GREEN

scheduling) to solve the same problem and compare them to method we developed. The

focus was the network capacity (minimizing blocking percentage) and performance(when

blocking is not an issue, minimizing the average tardiness per served request). this com-

parison was performed for a smaller network first, in order to explore the stress effect on

a cloud network. Then, the same comparison is performed for a larger network scenario.

as in the previous experiments, the tests were performed for different problem sizes and

various levels of allowed tardiness per requests.

2.7.4.1 Small network results

Fig. 2.13 shows the results of the request blocking percentage for the three algorithms

as the allowed tardiness level increases. The figure show that out technique(RB-DP) first

performs consistently better the Green scheduling algorithm while performing at the same

level as MBFD before showing clear advantage for hig allowed tardiness. In terms of av-

erage tardiness, Fig. 2.14 shows that RB-DP starts by performing on the same level to the

other two algorithms and while we increase the allowed tardiness level for requests, RB-DP

shows clear advantage. The effect of increasing the allowed tardiness is basically eliminat-

ing the need to block requests in the experiments and instead focusing the experiment on

showing the algorithm that can serve/schedule requests in the most efficient way and this,

in turn, decreases the average tardiness per requests.

2.7.4.2 Large network results

The same trends carry on while testing on large scale networks. In Fig. 2.15, blocking

percentage for the three algorithms for different problem sizes (represented by the number

of requests submitted to the central controller per cycle). These results are shown for

allowed tardiness level= 5 time units (very low level) which adds extra pressure to serve

requests within a short period of their arrival and focuses the algorithms work on serving
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Figure 2.14: Request average tardiness results for scheduling methods when allowed
tardiness changes
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Figure 2.15: Request blocking percentage results for scheduling methods with allowed
tardiness=5 units(very low)

the highest number of requests without focusing on tardiness levels. The figure shows that

out technique(RB-DP) performs consistently better than the other two algorithms under

high loads.

Fig. 2.16 explores the performance of the algorithms under high allowed tardiness

levels. RB-DP offers clear advantage in terms of the blocking percentage metric for various

allowed tardiness levels.

Moving to the second metric, Fig. 2.17 show the performance of the three algo-

rithms in terms of average request tardiness while changing the allowed tardiness levels (

or request lifetime) RB-DP performs on a comparable level to the other two algorithms for

small allowed tardiness levels and then exceeds the performance of MBFD starting medium

levels of request lifetimes and then clearly exceeds both algorithms with the higher levels

starting 400 time units.

These results prove the potential our solution has in terms achieving better perfor-

mance in both blocking percentage (more accepted connection requests and less network

congestion) and average tardiness (better Quality of service conditions for cloud users).
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2.8 Chapter Summary

We introduced a comprehensive solution to tackle the problem of resource allocation in a

cloud computing data center. First, the problem was formulated as a mixed integer linear

model. This formulation was solved using an optimization library for a small data set.

However, finding the optimal solution for larger more practical scenarios is not feasible

using the optimal mathematical formulation. Therefore, we introduced 5 heuristic methods

to tackle the two sides of the problem, namely VM reservation and connection scheduling.

The performance of these techniques was analyzed and compared. Although the solution

scale issue is solved, a heuristic solution does not offer optimality guarantees. This con-

stituted the motivation to introduce a suboptimal solution. The solution contained 4 steps

that exploited the VM interdependency as a dominant factor in the VM allocation process.

This allows us to solve the scheduling phase optimally in the following step which causes

the solution to improve considerably. The relaxed solution achieved results matching with

parameters preset in the literature for average connection tardiness. The results were also

shown for the scenario where request blocking is allowed. Results were achieved without

sacrificing the computational feasibility which shows our method to be a valid solution

for reaching acceptable connection tardiness levels. Furthermore, the proposed solution

was compared to two of the prominent algorithms in the literature. The proposed solution

was shown to be advantageous in terms of minimizing both average request tardiness and

blocking percentage for multiple cloud network scenarios. This makes it a strong candidate

to be used in cloud scenarios where the focus is on metrics like more accepted connection

requests and less network congestion or request average tardiness (better quality of service

conditions for cloud users.
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Chapter 3

An Evergreen Cloud: Optimizing Energy

Efficiency in Green Cloud Computing

Environments Based on Virtual Machine State

Prediction

3.1 Introduction

To adapt to the surge in cloud technology demand levels, cloud providers are expected to

implement more innovative and effective solutions for a list of long standing challenges

faced by the industry. The aim here for a cloud provider is to serve the high volume of

request which are received continuously from a diverse set of constantly changing (and

moving) devices. As illustrated in Fig. 3.1, This is done by successfully receiving the

request data from client device and then scheduling these requests to the corresponding

virtual machine in the cloud data center based on the functionality or application required.

From there, the computational part is done and then the results are sent back to the client.

A major challenge in this scenario is how to serve these requests with the required perfor-

mance while minimizing the energy the cloud data center users.

Energy efficiency in the cloud data center (DC) is one of the more pressing issues

near the top of that list. As DCs expand, so does their energy consumption. U.S. data cen-

ters are on track to consume roughly 140 billion kilowatt-hours of electricity annually by

A version of this chapter has been submitted for publication in [27].
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Figure 3.1: Heterogeneous network clients sending diverse computational requests to the
public cloud
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2020, equivalent to the output of 50 large power plants (each with 500 megawatts capacity)”

[28]. This is not only due to the increasing amount of servers per DC, but also the individ-

ual server consumption of energy has increased too. The increase in energy consumption

is a major concern to the data center owners because of its effect on the operational cost.

It is also a major concern for governments because of the increase in data centers’ carbon

footprint.

Cloud technology adoption rates are another factor to look out for. 78% of U.S.

small businesses will have fully adopted cloud computing by 2020, more than doubling the

current 37%. [5] The percentage grows to 90% when looking at large businesses (larger

than 1000 employees) [6]. The U.S. Small and Medium Business (SMB) cloud computing

and services market will grow from 43 billion dollars in 2015 to 55 billion dollars in 2016.

[5] This trend is consistent in Europe as well. The percentages of small, medium and large

businesses adopting cloud technologies in UK is 46, 63 and 82% respectively. In Germany,

the percentages are 50, 65 and 86%.

There is proven potential for client demand growth as well. In a survey conducted

by the rightscale.com team, 68% of enterprises indicated they run less than a fifth of their

application portfolios in the cloud. 55% of enterprises report that a significant portion of

their existing application portfolios are not in cloud, but are built with cloud-friendly archi-

tectures [7]. This is used to serve major functions like data protection (backup), business

continuity (replication, disaster recovery), archiving and file services and office enablement

(sharing, synchronization, collaboration).

Power consumption in cloud data centers is a pressing issue for cloud providers.

Power costs represent between 25% and 40% of the operational expenses of a data center.

[8] The Natural Resources Defense Council (NDRC) published a data center efficiency

assessment in Aug. 2014, as an attempt to depict the scale of data centers the world over.

[28] The study mentions that . “If worldwide data centers were a country, they would be

the globe’s 12th-largest consumer of electricity. Another fact here is their assessment of

energy efficiency. ”An analysis by the NRDC in partnership with Anthesis finds that up

to 30% of servers are obsolete or not needed and no longer needed, other machines are

grossly underutilized.” Persistent issues obscuring efficiency include:

• Peak provisioning.
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• Limited deployment of virtualization technology.

• Failure to power down unused servers,

• Challenges with efficiency incentive programs.

• Competing priorities : (keeping costs low and maintaining high levels of security,

reliability, and uptime for their clients.)

These are 5 out of the 8 main factors cited that affect power efficiency and stand in the way

of a staggering 40% potential improvement in power consumption. These 5 factors are

all largely affected by data center load planning and management. An efficient scheduling

energy- aware algorithm is in need. This algorithm should exploit the benefits that come

from virtualization technologies, optimal demand driven provisioning, and efficient load

modeling.

In this work, we explore the possible venues to reach this efficient energy effi-

ciency solution for cloud environments. This includes introducing a mathematical op-

timization model for the problem, a novel VM consolidation-based method and a novel

non-consolidation based method. These methods are evaluated in terms of multiple critical

energy efficiency metrics.

In the following Sections, we start by visiting the related work and defining our

main contributions in Section 3.2. Section 3.3 presents the system model and then we

proceed to present the mathematical formulation for the energy efficiency problem in vir-

tualized cloud data centers in Section 3.4. In Section 3.5, a consolidation-based energy

efficiency solution is proposed and details are put forward. Section 3.6 presents our novel

non-consolidation-based energy efficiency solution: Smart VM Over Provision (SVOP).

We describe the experimental setup in Section 3.7 then proceed to present and analyze the

experimental results in Section 3.8. Section 3.9 concludes the chapter.

3.2 Related work

3.2.1 Server Consolidation

The classic solutions to the energy efficiency problem in the cloud -if we disregard the

cooling process- all stem from two major ideas: consolidating the loads on fewer servers
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(hosts) or using variations of dynamic voltage and frequency scaling (DVFS). The latter

includes algorithms that exploit dynamic power management in servers. Server compu-

tational power/speed can be toned down and thus energy consumption decreases. Server

consolidation can be seen in early papers like [29]. The algorithm proposed in [29] exe-

cutes the consolidation of different applications on cloud computing data center servers.

The idea is to consolidate VMs on the least amount of servers and then switch the unused

servers off or to an idle state. That problem is modeled as a bin-packing problem with the

assumption that the servers are the bins and they are full when their resources reach a pre-

defined optimal utilization level. This utilization level is calculated and set beforehand. The

optimal utilization is a level where the a balance is reached between the resource utilization

and performance degradation caused by pressuring the resources. The issues faced by over

utilization are cache contentions, conflicts of CPU functional units, desk scheduling and

desk write buffer issues and that is only from the computational side of things.

The final objective is to minimize energy consumption per transaction. Resources

used are processor and disk space. The heuristic algorithm is then used to allocate work-

loads to servers or bins. This heuristic tries to maximize the Euclidean distance between

the current allocations of the servers and the optimal utilization point of each server. There

were no comparisons to the optimal solution. Also, power consumption by network com-

ponents is not considered. Another issue here is that it is debatable whether finding an

optimal point for each server is only based on utilization without considering other factors

like the type of the application.

Another approach can be seen in [30], where methods for live migration of VMs ac-

cording to the current utilization of resources are introduced. Each node has a CPU, which

can be multi core, with performance defined in Millions of Instructions Per Second (MIPS).

Besides that, a node is characterized by the amount of RAM and network bandwidth. The

aim is to prevent service level agreement (SLA) violations which occur when a VM cannot

get the requested amount of resource, which may happen due to VM consolidation. A de-

centralized resource allocation system is offered containing a dispatcher, global and local

managers.

Only utilization of CPU is considered. “The main idea of the policies is to set upper

and lower utilization thresholds and keep total utilization of CPU created by VMs sharing
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the same node between these thresholds” using live migration. A challenge here is to

determine values of the utilization limits (thresholds).

In [31], the authors offer a migration algorithm that depends on copying the VMs and

dividing the original CPU allocation among the copied VMs while keeping the memory al-

located at the same level. This would cause an additional resource consumption. Allocation

is done using dynamic programming and a local search is run after to find opportunities for

consolidation. This algorithm is run periodically to improve performance. The period the

algorithm is run can have a great impact on the success of the method. The balance be-

tween the running cost and the running gain along with the workload change period should

be investigated.

The work in [32] tackles the power management problem for minimizing the total

electricity cost. This paper aims at minimizing the total electricity cost under multiple

electricity markets environment while guaranteeing quality of service geared to the location

diversity and time diversity of electricity price. The problem is modeled as a constrained

mixed-integer programming and an efficient solution is proposed. Extensive evaluations

based on real-life electricity price data for multiple cloud data center locations to illustrate

the efficiency and efficacy of our approach.

The work in [33] focuses on the live migration strategy of multiple virtual machines

with different resource reservation methods. A live migration framework of multiple virtual

machines with resource reservation technology is introduced. Then a series of experiments

to investigate the impacts of different resource reservation methods on the performance of

live migration in both source machine and target machine are introduced. Additionally,

the efficiency of parallel migration strategy and workload-aware migration strategy is an-

alyzed. The metrics such as downtime, total migration time, and workload performance

overheads are measured. Based on the observed results, corresponding optimization meth-

ods to improve the migration efficiency are offered.

The authors of [34] present formulations and solutions for Green Cloud Environ-

ments (GCE) to minimize its energy consumption under new models by considering static

and dynamic portions of cloud components, to reduce environmental impacts. Energy con-

sumption patterns are investigated including measurable metrics based on runtime tasks to
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rationally compare the relation existing between energy consumption, cloud workload and

computational tasks, as well as system performance.

Often, Cloud distributed systems leverage commodity server hardware in mass quan-

tity, similar in theory to many of the fastest Supercomputers in existence today while also

exploiting the dynamic frequency and voltage scaling techniques. The authors of [35]

present the design and implementation of an efficient scheduling algorithm to allocate vir-

tual machines in a DVFS-enabled cluster by dynamically scaling the supplied voltages.

The algorithm is studied via simulation and implementation in a multi-core cluster. Test

results and performance discussion justify the design and implementation of the scheduling

algorithm.

3.2.2 Adaptive Allocation

Consolidation is far from a standalone solution though. For changing workload patterns,

the cost of moving VMs in and out of a server in terms of performance and power could

be worse than keeping them where they are. A careful consideration of the amortization

period of the migration costs is required for a successful decision. The authors of [36]

consider this when presenting their solution. They propose a central controller (termed

Mistral) that balances steady state performance and power with the dynamic adaptation

costs under changing workloads.

The authors assume workloads from multi-tiered applications are being scheduled

on cloud VMs. Each application type is associated with a set of transaction types through

which users access its services. Each transaction type correspond to a unique call graph

of some of the application types. “The workload for each application is then defined as a

vector of the mean request rates for each transaction type”. Mistral controllers are called

periodically to impact the VM locations and their CPU allocations.

“Costs of these adaptation actions are measured experimentally offline for different

workloads and VM placements, and are stored in tables used at runtime”. This includes

adaptation duration, change in response time for the application being adapted as well

as co-located applications, and change in power consumption during the adaptation. A

model is introduced to predict workloads of each component and define the stability interval



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 60

following the current adaptation. No details are offered as for the structure or operation of

the workload predictor. Experimental results were shown for data centers of up to just 8

servers. Also, calculating the costs offline sacrifices precision and often would not take

interactions into account as it assumes that every time the decision will cost the same in

terms of power and performance for example.

3.2.3 Other Efforts

We can see a detailed discussion of the network resource energy consumption in the cloud

data centers in sources like [37]. VMs are assigned to servers with the objective of re-

ducing the amount of traffic and generating favorable conditions for traffic engineering.

Moreover, the number of active switches and balance traffic flows is decreased depending

on the relation between power consumption and routing, to achieve energy conservation.

There are a few existing schemes that transition a CPU into various low-power and

sleep states to reduce its idle power. One of the more recent efforts using this approach is in

[38]. The paper offers a method to predict which CPUs will be idle based on analyzing the

reading of each CPU hardware parameters. This helps the decision making process in order

to achieve intelligent sleep states. This means that a more accurate prediction of the period

a CPU might be idle reflects on the choice of which sleep state the CPU is moved into.

the CPU performance metrics monitored are IPC, cache miss rates, structure occupancies,

branch predictor statistics, and others. These readings are used as an input to an expert

system based on classifiers like boosted regression trees. The output is the length of the

CPU idle interval. The cost of monitoring here could be a decisive factor. Decision based

CPU readings are on different level of speed to processes like running a VM on a server or

switching off the server.

As one of the most detailed cloud simulators available, Greencloud arises as a pow-

erful tool to evaluate energy efficiency in cloud environments. GreenCloud was developed

as a simulator with a focus on energy efficiency and fine grained networking capabilities.

The prime purpose cited for building GreenCloud is mitigating overprovision issues [3].

Overprovision happens in a data center due to the loads constantly changing on the com-

putational and communication resources. The average load can be as low as 30% of the
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data center server and network capacity [3]. This, in turn, causes the data center to system-

atically use more power than the optimal value. In GreenCloud, solutions implementing

server consolidation and dynamic server power management are simulated with an option

to expand to a hybrid solution containing both.

GreenCloud offers simulation capabilities including multiple topology choices (2

layers and 3 layers) and it offers communication through packets using the underlying NS-

2 simulator features. GreenCloud also offers the choice of scheduling tasks (user requests)

on hosts directly or on virtual machines which reside on hosts. Tasks are modeled as unit

requests that contain resource specification in the form of computational resource require-

ments (MIPs, memory and storage) in addition to data exchange requirements (task size

variable representing the process files to be sent to the host the task scheduled on before

execution, data sent to other servers during execution and output data sent after execution).

3.2.4 Contribution

Upon reviewing the available solutions, a need arises for a more complete solution for

energy efficiency in cloud data centers. As seen in Table 3.1, each one of the solutions sur-

veyed, despite covering a significant flavor of the problem, does not offer a comprehensive

vision. A mathematical model would be crucial to provide the theoretical base for the solu-

tion. To achieve an outstanding solution for such a layered problem, we offer the following

contributions:

1- We first formulate the problem as mathematical optimization problem with the

objective of minimizing the energy consumption.

2- A new technique called Dynamic Idleness Prediction (DIP) is introduced where

the future demands for VMs are considered when placing/scheduling the VM on a host.

This technique is based on using an artificial intelligence classifier (in our case REPtree)

to predict the nature of the load every VM will receive in a pre-specified future period.

A novel scheduling/placement technique was constructed by combining DIP and the re-

source based scheduling technique we introduced in an earlier publication [25]. In this

technique, DIP dictates VM initial placement and VM migration in order to reach more
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efficient consolidation-based energy efficiency as opposed to traditional methods like first

fit, round robin or greedy methods.

3- We introduce a novel technique for energy efficient VM management that does not

depend on Migration. The technique is called Smart VM Overprovision (SVOP). This tech-

nique depends on the DIP technique described earlier to dictate the overprovision of VMs

by choosing the mostly idle VMS to be switched off and in turn minimize lost requests.

4- We use a data set published by of Google (data center traces [16]) to evaluate

the two proposed methods. The performance of these methods is compared to common

scheduling algorithms in terms of critical energy efficiency metrics including: energy used

per server, energy used per served request, service rate, and number of migrations per-

formed.

3.3 System Implementation Scenario

A typical cloud data center contains hosts that are available for clients with multiple lease

terms on offer. Every client profile is tailored based on their budget, applications and gen-

eral portfolio. For every rented VM, a client specifies the time scale (or at least the start

time), the resource requirements in terms of computational and network resources, and

operating systems in some of the cases. While the VM is alive in the data center, a con-

tinuous stream of requests arrive at the data center. Requests (tasks or Cloudlets) Tasks

are modeled as unit requests that contain resource specification in the form of computa-

tional resource requirements (MIPs, memory and storage) in addition (sometimes) to data

exchange requirements.

The power consumption in the data center amounts to the total power consumption of

all the resources residing in it. As the computational resources -specifically the hosts- con-

sume most of the data center power, we will focus our optimization efforts on optimizing

the power consumed by hosts not the network resources like switches, routers, etc. Power

calculation models used in the literature are mostly utilization based [3] [29] [36]. We will

introduce the formula in detail in the following section. Therefore, workload distribution

on available hosts and VMs has a prime impact on the energy efficiency. This includes, VM

initial placement, migration decision management in terms of migration frequency and the
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Table 3.1: A comparison of energy efficiency virtualization based efforts in cloud
environments- Part1

Technique Offer
Opti-
mization
model

Scheduling
considers
network &
computational
resources

VM modeling Application
layer

network
model

[9] No No CPU and storage
requirements

No No

[10] No No MIPs,ram,BW,
VMs can be
resized

No BW

[11] Not full No VM host applica-
tions of different
types and up to one
replica per VM

Yes No

[12] Yes No CPU & memory re-
quirements (repli-
cas of a VM share
CPU), 1 client per
VM

Yes No

[13] Yes Yes Fixed scheduling,
no migration

No Full

[14] No No N/A N/A N/A
[15] No No CPU, stor-

age , memory,
BW,communication
demands

Tasks
request
Comp+
network
resource

BW +fixed
source and
destination
network

This So-
lution

Yes No Detailed re-
sources;User &
workload profile

Yes No



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 64

Table 3.2: A comparison of energy efficiency virtualization based efforts in cloud
environments-Part 2

Computational
resources

Live migration (major
method used)

Guaranteed
reservation

Centralized
/ decen-
tralized

Scheduling algorithm

CPU (numer-
ical) & stor-
age Counting
by usage not
absolute

No migration, Best
allocation at a desired
utilization level vs.
degradation consid-
ered

Yes C Bin packing modified
+maximize euclidean
distance

CPU (multi-
core) ram

Live migration accord-
ing to current utiliza-
tion of resources

SLA violation D Multi dimensional bin
packing

CPU Yes ( for replicas of
Apps and for VMS)

Adaptable
(affects
performance)

C Multi layer Bin
packing Looking
for to satisfy power-
performance while
minimizing the num-
ber of hosts

CPU & mem-
ory

No migration, Dy-
namic programming

Yes C Dynamic algorithm to
place VMs and local
search to check servers
to be consolidated

No No Yes C Focused on traffic
engineering (network
optimization in the
cloud)

CPU No N/A C No scheduling algo-
rithm, CPU idle inter-
vals dynamically pre-
dicted

CPU, Mem,
storage

Enabled enabling
DVFS Using multiple
power models

Yes C (green-scheduling and
round robin schedul-
ing

CPU, Mem-
ory, storage,
user defined
resources

Migrated VM chosen
via VM idleness esti-
mator

Yes C or D First fit / Round
Robin/ Resource
Based Scheduling +
Dynamics prediction
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choice of the migrated VM and also the scheduling of Cloudlets (requests) on the corre-

sponding VMs. Regardless weather the Cloudlets belong to one client or multiple clients,

efficient scheduling that focuses on energy efficiency is a demand. In the following section,

we offer a substantiation of this problem in the form of mathematical formulation. This is

a preceding step to discussing a more scalable solution in Section 3.5.

3.4 System Model

To solve the problem of scheduling tasks in a cloud computing environment while min-

imizing the energy efficiency, we introduce an analytical model where we formulate the

problem as a mixed integer linear problem. The optimization problem is modeled focusing

on two objectives, namely, minimizing the required power to serve a specific load of tasks

and minimizing the load that needs to be migrated/recovered in case of a data center com-

ponent failure. This model’s purpose is to demonstrate the major constraints imposed on

the problem and the potential search space size.

3.4.1 Notations

Environment parameters are described below. A set of resource providers (servers or VMs)

are represented by S. CLT is a set of tasks (Cloudlets) sent by cloud clients. These

tasks demand specific amounts of resources to run as per the scenarios discussed in ear-

lier sections. CAPsm represents the amount of resources (e.g. memory) available on a

server(resource provider) where s ∈ S andm ∈ {memory(me), CPUunit(c), storage(st)}
such that CAPsMem = 30 indicates that available memory on server s or memory capacity

is 30 GB. DEM is used to represent the demand matrix or the amount of resources needed

for every requested task(Cloudlet). Memory and storage requirements are measured by GB

while CPU requirements are measured by the task size shown in Million instructions(MI)

or million instruction per second ( MIPs) and duration. They could alternatively measured

by the fraction of processor power required. Moreover, the same model could be applied

when using other common metrics for processing demand like (the amount of employee

data processed per hour (employee/hour or Java server side operations per second(JOPs).
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DEMCletCPU = 700 indicates that the task (Cloudlet) Clet ∈ CLT demands computa-

tional power to run 700 Million instructions, v ∈ V requires 7 GB of memory assuming

that m denotes memory resource on a server.

The matrix D contains the deadline of every Cloudlet (denoting request lifetime).

DC let = t means that Cloudlet Clet ∈ CLT has to be served before time unit t. All

the specification of a Cloudlet could in the same way applied to VMs depending on the

problem in terms of if the problem is just scheduling Cloudlets on VMs(servers) or that

it is scheduling both VMs on servers and Cloudlets on VMs. The parameters Pidles and

Pmaxs indicate the amount of power consumed by server s at the idle state and at maxi-

mum utilization respectively.

3.4.2 Decision Variables

YsClet is a binary decision variable such that YsClet = 1 if Cloudlet Clet ∈ CLT is

scheduled on server(resource provider) s and 0 otherwise. XtClet is a binary decision

variable such that XtClet = 1 if Cloudlet Clet ∈ CLT is served at time unit t and 0

otherwise.

3.4.3 Objective Function

The problem is formulated as a mixed integer linear programming (MILP) problem with

two possible objectives. The first one is to minimize power consumption needed to perform

a specific load (minimize the kilo watt hours required to run a specific set of tasks(requests)).

The second objective is more high availability-oriented. The goal is to minimize the po-

tential migration load in case of a failure to any server (or by extension to any component

in the data center hierarchy). Scheduling the tasks in a way that minimizes the migration

load affects the performance positively as it decreases the performance hiccup induced by

failures and aids in reaching a more seamless failure event handling. This decreases the

amount of resources dedicated to maintain high availability as the work load is less.
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3.4.3.1 Power Consumption

Formulating power consumption in severs is a standing challenge in the literature. Some of

the commonly used efforts can be seen in [3] [29] where linear models are proposed. These

models are based on the assumption that servers consume minimal power when idle and

that level of consumption increases linearly while the computational capacity is increases.

Thus, power consumption at a specific processor utilization percentage u is calculated as:

Pu = Pidle + (Pmax − Pidle)× u (3.1)

Hence, power consumption can be minimized by directly minimizing the average utiliza-

tion.

MIN Z1 (3.2)

Z1 =
∑
t∈T

∑
s∈S(Pidles + (Pmaxs − Pidles)×

(
∑
Clet∈CLT XtCletYsCletDEMCletCpu)÷ CAPsCPU ))

(3.3)

3.4.3.2 Migration Load

It is desirable to minimize the load to be migrated in case of component failures. That

translates to the data load on the server at the moment of failure. To minimize that we use

a min max approach where we try to minimize the maximum computational load on any of

the servers in the data centers. This is calculated based on the computational capacity of

Cloudlets (tasks) scheduled on servers. However, it can be easily adjusted to accommodate

other components (VMs, racks, etc) or to take into consideration other resources when

calculating the load.(like memory, storage, bandwidth).

MINMAX Z2 (3.4)

Z2 =
∑
Clet∈CLT XtCletYsCletDEMCletCpu

∀s ∈ S ∀t ∈ T
(3.5)
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This model assumes an equal Mean Time To Fail(MTTF) for all servers in the data center.

A weighted function based on the MTTF would be added in case of using varying values

for servers.

3.4.4 Constraints

The objective function is subjected to the following constraints:

∑
t∈T XtClet >= DEMCletCpu/CapCletCpu,

∀Clet ∈ CLT
(3.6)

∑
s∈S

YsClet = 1, ∀Clet ∈ CLT (3.7)

∑
Clet∈CLT XtCletYsCletDEMCletm <= CAPsm,

∀t ∈ T, s ∈ S,m ∈ {me, c, st}
(3.8)

XtClet.t <= DClet

∀Clet ∈ CLT, ∀t ∈ T
(3.9)

XtClet, YsClet,∈ {0, 1} (3.10)

In Constraint 3.7 , we ensure that a Cloudlet (request) will be assigned exactly to

one server(service provider). In Constraint 3.6, we ensure that a Cloudlet is scheduled

for enough time units to satisfy its computational demand given the server computational

capacity. In Constraint 3.8, we guarantee that Cloudlets will be allocated on servers with

enough capacity of the computational resources required by the Cloudlets. In Constraint

3.9, we ensure that a Cloudlet is served before its deadline. Constraint 3.10 guarantees the

binary constraints of the problems.

3.5 Consolidation-based energy efficiency

Moving to more practical solutions, we start by proposing a consolidation-based solution.

Then, we move to discussing the impacts of consolidation-based solutions and live migra-
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tion leading to the proposal of a novel non consolidation-based solution.

3.5.1 VM Dynamic Idleness Prediction (DIP)

The challenge of choosing which VM to move or migrate is central to any consolidation

technique and therefore crucial to energy efficiency policies. a core activity of consolidation-

based energy efficiency is migrating VMs in order to empty a machine so it can be switched

off or moved to an idle state. This decision affects the performance highly, first by spec-

ifying the amount of data to be moved and the nature/amount of resources required at the

destination host. In addition, regardless of how much algorithms are able to minimize the

live migration time, there will always be a certain amount of delay or performance degra-

dation. This means that depending on the load expected of the VM and SLA agreement, an

SLA violation is highly possible. This way, the priority should be given to VMs with more

strict SLAs, and critically, with less activity when the migrated VMs are chosen. We pro-

pose to tackle this challenge by introducing a scoring system for the VMs to decide which

ones to shut down and move based on the use of an expert system. The hypothesis here is

that with the successful prediction of which VMs will be idle (or least active) and for how

long, we will have a clear advantage in terms of migration decision management and the

consolidation process in general. This step, which we termed dynamic idleness prediction

(DIP) will make an instant impact in terms of the total power consumed by the data center

with all the other factors unchanged.

3.5.2 Classification Parameters

The classification parameters are the parameters used by the system to predict the state of

the VM for a preset future period. They include variables that would affect the system’s ex-

pectation of the VM future behavior. Some of these variables would affect the VM activity

directly (for example: redundancy models specifies the frequency of backup/redundancy

activities). Some affect the VM indirectly and contribute to behavior patterns than are not

specified explicitly (for example: User location or the type of application served by the

VM). The more parameter values that can be collected for the VM, the more reflective the
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profile built by the classifier will be. In turn, the results will be more reflective of the VM

activity level. Examples of parameters that can be used to build a profile for the VM are:

• User ID

• User location

• User VMs

• Type of contract (rental term)

• VM reserved resources

• VM start time/reserved time

• Redundancy model

• Redundancy activity frequency

• Component type

• Request types and frequency

• Communication/data exchange request

• Dependencies

• Response time required

3.5.3 How DIP Works

First, the classifier is fed a list of records containing the parameter readings or values for

the VMs and their resulting states for a certain time period. This would be the training

data set Then the classifier uses this training data set to build behavioral models for the

VMs in question. Alternatively, cross validation method can be used. These behavioral

models would depend on the classification method used (for example: decision trees, Naive

Bayes or Support vector machines). From now on, the Classifier would be able to predict

(classify) the number of requests sent to the VMs in a fixed future period. Next, this

information can be used by the scheduling component (centralized to for the whole data

center or decentralized) to rank the VMs and either:

A- Choose the VM with predicted least received requests in time period t2-t1

B- Set a cutoff threshold (CO) such that VMs with incoming future request in a

pre-specified period less than CO are considered idle.
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Once the idle VMs list is generated, the list is used in the consolidation step as

explained in the algorithm in Fig. 3.2.

3.5.4 The Proposed Consolidation-Based Algorithm

The proposed method is illustrated in the flowchart in Fig. 3.2 First, the algorithm starts

by initializing the major parameters including parameters in Table 3.3. VMs are placed

based on one of the following 3 methods: first fit scheduling, round robin or the resource

based scheduling technique with the variation proposed in [25]. Then, as the requests for

resources keep arriving, these request are scheduled based on the availability of host and

VM resources. Periodically, and based on a preset consolidation trigger parameter, the

VM shuffle process starts. This trigger defines the period or the frequency of revisiting

the VM placement and running the shuffle process and the consolidation function. The

shuffle process starts by constructing a list of VMs to be switched off. These VMs are

chosen based on VM choice method parameter (or in other words, idle VMlist construction

technique). We chose 4 options to test in our experiment. These options are choosing the

VMs randomly, choosing the VMs based on a greedy method that chooses VMs hosted on

the least used server(s), exploiting the proposed technique DIP as explained in the previous

subsection and finally, we set the fourth option to be keeping the VMs running without

any switching off. This would aid us in calculating how much of an improvement these

techniques are offering as opposed to not using any technique. Next, after constructing

the Idle VMlist, these VMs are switched off and the data center loads are consolidated

into fewer servers. This shuffle process is repeated on a periodical basis depending on the

trigger parameter mentioned earlier. Another step that is done periodically is swapping the

VMs that are switched off in order not to starve a certain VM and to ensure fairness. In the

following section, we propose a solution based a technique using DIP that is not dependent

of live migration. Then, we present the experimentation results for both migration-based

and non-migration based techniques. Fig. 3.3 shows the pseudo code for the Idle VMlist

construction function.
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Figure 3.2: Consolidation-based energy efficiency flowchart
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Table 3.3: Energy Efficiency Problem - Major Parameters

Parameter Description
Placement Method How are VMs initially scheduled on hosts round

robin, First fit or Resource based scheduling pro-
posed [25]

Switched off(consolidated) VM
choice method (Idle VMlist con-
struction technique)

no switch off, DIP, random, greedy-servers

cutoff limit (CO) the amount of requests in the future below which the
VM is considered idle

Consolidation Trigger the frequency of revisiting the VM placement and
running consolidation function

Migration allowed if migration is used for this experiment or fixed VM
placement is imposed

2: Function: constructIdleList()
3: Input: V irtual machine set V M,
4: where VMi.state is either

′idle′ or ′running′,
5: getClassifierPredictedV alue(v, FP ) retrieves
6: the number of incoming requests for
7: VM v for a pre specified future
8: period (FP ) as predicted by the classifier,
9: CO is the cutoff limit to consider a VM idle
10: Output: VM state values assigned correctly
11: for VMi ∈ VM do
12: if ( getClassifierPredictedV alue(v, FP ) <= CO) then
13: VMi.P redictedReqs = idle
14: end if
15: end for

Figure 3.3: Idle VMlist construction function using Dynamic Idleness Prediction
technique (DIP)
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3.6 Non-Consolidation-based energy efficiency

3.6.1 Live Migration: Why Not?

Taking migration as automatic solution is far from agreed upon. Migration typically im-

poses performance degradation to the extent of having an off time which is not welcome

by the clients. This time could span through an unexpected range based on the efficiency

of the process and the network bottlenecks in the data center at the time and the amount

data included. VMware, for example, offers live migration as major feature introduced

in vMotion where a VM can be moved from a host to another without having to shut it

down. Larger providers like Amazon, for example , do not depend on this. Reasons, cited

in, [39], include the fact that AWS (and Rackspace as well) keep the VM data in the local

disk. This makes it harder to send all the data across the network. “Evacuating a given

host, particularly one at capacity can take hours”. This casts doubts over the practicality

of using live migration in principle. More so, it casts doubts on using migration with the

freedom and frequency suggested in some of the energy efficiency solutions, where VMs

are to be consolidated periodically in fewer servers. Finding a solution that does not depend

on live migration or at least minimizing the number of migrations performed is a pressing

requirement.

3.6.2 Smart VM Overprovision(SVOP)

We introduce a novel technique for energy efficient VM management that does not depend

on migration. The technique is called Smart VM Overprovision (SVOP). This technique

depends on the DIP technique described earlier to dictate the overprovision of VMs by

choosing the mostly idle VMS to be switched off and in turn minimize lost requests. SVOP

is illustrated in the flowchart Fig. 3.4 This method works in two phases. First, the initial

VM profile building phase. Then, the regular VM operation phase. The first phase starts by

the initializing the parameters then scheduling the VMs on the corresponding host based on

RB scheduling explained the previous section. Next, a test batch of requests is scheduled

to build each VM’s profile. These requests can be real requests demanded by the VM or

client. They can alternatively be a training set of request constructed based on the client
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and VM profile in order to be used for the following steps. After that, the classifier builds

a profile for the VM and a predicted value of the future demand is calculated. Then the

overbook-shuffle process is started. An idle VMlist is constructed using the DIP technique

discussed previously. The list of idle VMs are separated from the active VMs. They are

scheduled on a separate set of hosts where the concept of overbooking is applied. An

overbooking factor is used to define the overbooked load on each of these overbooked hosts.

For example, if the host’s capacity is 4 VMs and the overbooking factor is 150%, then the

Overbook-idle-list function will book up to 6 VMs on this host(assuming all VMs have

requested equal amounts of resources in that case). From here, these VMs can alternatively

share the overbooked resources (which is the concept we used in our implementation).

Another technique that can alternatively be used here is dividing resources between the

VMs in a way that each one would have reduced capacity. In the second phase of the

SVOP technique, the operation phase, the incoming requests are served based on the setup

in the first phase. Another step that is done periodically is swapping the VMs that are

switched off in order not to starve a certain VM and to ensure fairness. Fig. 3.5 contains

the pseudo code for Idle VMlist overbooking function included in the SVOP method.

3.7 Experimental Setup

3.7.1 Data Set

To perform the experiment, we used a data set taken from Google’s cluster workload traces.

These are traces of workloads running on Google compute cells. The dataset provides

traces from a Borg cell that were taken over a 7 hour period. The workload consists of a

set of tasks, where each task runs on a single machine. Tasks consume memory and one

or more cores (in fractional units). Each task belongs to a single parent; a parent may have

multiple tasks (e.g., mappers and reducers). In our work, the parent is represented by the

VM the task belongs to. ”The data have been anonymized in several ways: there are no task

or job names, just numeric identifiers; timestamps are relative to the start of data collection;

the consumption of CPU and memory is obscured using a linear transformation. The data
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Figure 3.4: Consolidation-based Energy efficiency flowchart
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2: Function: overbookIdleList()
3: Input: V irtual machine set V M,
4: where VMi.state is either

′idle′ or ′running′

5: with states assigned based on
6: Constructidlelistfunction()
7: (OBF ) as overbooking factor
8: Output:VMs with idle state are
9: scheduled using SV OP method
10: hostS = leastUsedServer()
11: for VMi ∈ VM do
12: if ( VMi.state = idle) then
13: ScheduleV M(i, S,OBF )
14: if ( isHostfull(S,OBF ) then
15: S = leastUsedServer()
16: end if
17: end if
18: end for

Figure 3.5: Idle VMlist overbooking function

are structured as blank-separated columns. Each row reports on the execution of a single

task during a five minute period.

• Time (int) - time in seconds since the start of data collection

• parentID (int) - Unique identifier of the job to which this task belongs (may be called

ParentID)

• TaskID (int) - Unique identifier of the executing task

• Type (0, 1, 2, 3) - class of job (a categorization of work)

• Normalized Task Cores (float) - normalized value of the average number of cores

used by the task

• Normalized Task Memory (float) - normalized value of the average memory con-

sumed by the task Using classifiers

3.7.2 Classifier and Classification Tool

Machine learning (ML) classifiers automatically analyze a large data set composed of sev-

eral attributes and decide what information is most relevant. This builds the classifier’s

ability to predict the values of a specific preselected attribute. This value (which could be



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 78

Table 3.4: Classifier Prediction Precision Comparison

Classifier(as named in Weka) Relative Absolute Error
Decision Table 18.6%
MSRules 19.0%
Conjunctive Rule 55.0%
Gaussian Processes 52.0%
Multi Layer perception 34.9%
IBK 17.3%
KStar 11.9%
LWL 44.8%
meta bagging 10.0%
Random sub space 16.2%
Regression by discretization 13.0%
MSP tree 17.2%
REPtree 7.8%

qualitative or quantitative) is the classification. Classifiers are used in many application

fields. A commonly used tool that has a variety of the most common classifiers readily

implemented is Weka [40].

The tool has “incorporated several standard ML techniques into a software “work-

bench” called Weka”[40]. Once the data is formatted in the format readable by Weka (.arff

format) which defines what is the relation name, the attributes and their possible values

and the data rows themselves, the tool can pre-process and classify. The relation defined

for this work to predict the number of future requests is VM-predictor. We have tested

multiple classifiers to find the classifier most suitable to our DIP technique and the energy

efficiency problem. Table 3.4 contains the classifier names as in Weka and the classification

precision measured using root absolute error. It is seen from the table that classifiers differ

in their achieved precision. The highest performing classifiers for this specific case is REP-

tree with a root absolute error of 7.8% and then meta bagging and KStar classifiers. Fig.

3.6 show a sample fo the visual results gained for individual prediction using the REPtree

classifier. Most of the values lie in or around the line which has a slope of 1. This indicates

the equality of the predicted and the actual values of the number of future requests.
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Figure 3.7: Comparing request acceptance rate for different placement methods

3.7.3 Simulation Parameters

A discrete event simulator was built in C++ to evaluate and compare the aforementioned

techniques. As for the VM resource specification, we based it on some of the offered VMs

by Amazon AWS.[1]. The simulated time reached 6500 time units. The power calculation

model used is a linear power consumption model as in [3]. This could easily be swapped

with any other model as per the cloud provider’s preference. Each request was consid-

ered a fixed-duration request for the corresponding memory and CPU values that are taken

from the Google data trace. This helps in eliminating any distortion caused by the request

duration distribution and increasing the dominance of the evaluated parameters over the re-

sults. More details on the specifications of each of the evaluated techniques in the following

section.
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3.8 Result Analysis

3.8.1 Comparing Placement Methods

We start by a comparison of the placement methods used in the VM initial placement step.

A look at Fig. 3.7 shows the major advantage each of FF and RB methods has over RR

when either of these methods are combined with any of the idle list construction (switch off

factor) methods. This is due to the fact round robin mainly focuses on distributing the load

on as many hosts as possible. This means starting many “unnecessary” hosts and while this

method has advantages in terms of high availability and minimizing network bottlenecks,

it is not really suitable for energy efficiency purposes. Moreover, the other two techniques

perform comparatively mainly because of their tendency to fill the hosts before looking at

using new ones. This happens in a greedy way (FF) or in resource oriented way (RB).

3.8.2 Evaluated Methods (Energy Efficiency Solutions)

Next, we evaluate the aforementioned solutions in terms of a number of critical metrics,

namely, energy used per server, energy used per served request, request acceptance rate,

and number of migrations performed. It can be seen that the multiple factors considered

in this problem and the possible methods employed can yield a high number of solution

permutations. Due to space constraints, we will show the results for the 9 methods with

high performing or significant results for any of these metrics. Table 3.5 Explains each

method in terms of nature and the techniques used in it. The table specifies if the method

is consolidation-based or not (depends on migration or not), which placement method is

used for the initial placement, how the idle VM list (mentioned in flowcharts 1 and 2)

is constructed, if the VM switch off act is permanent (until the end of the experiment)

or temporary and interchangeable between VMs as explained in the previous section and

finally, it discusses the frequency the VM consolidation technique is called whenever it is

used. The last factor was added to show the effect of increasing the frequency of calling

the VM consolidation method on the evaluated metrics. From this point on, we will refer

to each of the evaluated methods with the abbreviated name used in Table 3.5.
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3.8.3 Consolidation Frequency

Consolidation frequency defines how often the consolidation function is called to look for

space on the hosts to be saved. The effect of increasing the consolidation frequency can be

seen by comparing the metric readings for RB-DIP-TmpSW and RB-DIP-TmpSW-Hfreq

in figures 3.8 to 3.12. It can be inferred that increasing the consolidation increases the

acceptance rate significantly. However, this increase is paid in the form of system load.

RB-DIP-TmpSW-Hfreq scores highest in terms of the number of migration per VM (in

Fig. 3.11) and in terms of the total number of servers used for a fixed load (in Fig. 3.12). A

balanced level of frequency needs to be reached for each specific case to reach a trade off

between the load caused by the high number of migrations might cause the gain in accepted

requests caused by updating the system to reflect the momentarily loads states of the VMs.

3.8.4 Permanent Vs. Temporary Switch Off

As seen in figures 3.9 and 3.10, using permanent switch off for inactive VMs will yield

significant power savings. This applies regardless of the Idle list construction technique.

In Fig. 3.10 for example, FF-DIP-PermSW consumes 7251.6 compared to the 18811 con-

sumed by RB-DIP-TmpSW while RB-Greedy-PermSW consumes 21672 compared to the

26616 consumed by RB-Greedy-TmpSW. However, the acceptance rate losses caused by

the permanent switch off of idle VMs are very high. As in Fig. 3.8, both FF-DIP-PermSW

and RB-Greedy-PremSW gain largely discounted acceptance rates (58.35% and 80.80%)

compared to their counter part methods (79.39 % and 100%). This confirms the notion that

using permanent switch off even for the most idle VMs is not effective in terms of schedul-

ing fairness and general acceptance rate. Therefore, using permanent switch of should be

saved only for cases where the data center cannot serve the load for all the VMs requested

at a certain moment.

3.8.5 DIP technique’s Impact on the Consolidation based Techniques

Looking at DIP’s impact when it is introduced as the technique of choice to construct the

Idle List during any consolidation based technique, it is found that this impact is significant.
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In Fig. 3.10, we notice that FF-DIP-PermSW and RB-DIP-TmpSW have a clear advantage

in terms of power consumed per server specially compared to the other consolidation-based

techniques. This is supported by an advantage in terms of power consumed per request

where these two methods ranked 1 and 2 again. RB-DIP-TmpSW specifically performs

favorably in terms of energy efficiency and acceptance rate. (81% of request). However,

when looking at the number of migrations per VM, we notice that this technique requires

a relatively high number. In the cases where migration is not a preferred option, there is

a critical need for another method which performs comparatively to RB-DIP-TmpSW and

that does not depend on migrations.

3.8.6 Smart VM Over Provision(SVOP) as a Method that is Not

Dependent on Migration

Two methods which serve as a benchmark for our solution are the No switch off methods

(RR-NoSW and FF-NoSW). In these two methods, the initial placement of the VMs is

the only step performed. All VMs are given high priority for the resource allocation. No

Vm is switched off or migrated. Naturally, this means that most or even all requests are

accepted. However, the energy efficiency is far from optimal. Also, the initial placement

method is the dominant factor that affects the method performance. A look at Figures

3.9 and 3.10 shows that RR-NoSW method has the highest value for power consumed per

request and power consumed per server metrics and by a distance. Fig. 3.12 (as discussed

earlier) shows that the same method used a higher percentage of the data center servers

even than some of the methods that use migration. This leaves as with FF-NoSW. When

comparing our proposed method SVOP with the best performing non-consolidation-based

method (which is FF-NoSW), encouraging results are seen. Although SVOP does not quite

reach 100% acceptance rate, SVOP consumes lower power per server than FF-NoSW and

comes third for that metric only after FF-DIP-Perm and RB-DIP-TmpSW. Both of those

methods are consolidation-based and both achieved lower acceptance rates than SVOP. As

for the power consumed per request metric, SVOP comes in third and consumes lower

power than all methods with 80% acceptance rate or higher. SVOP consumed power per

request is close to the value achieved by the best consolidation-based technique RB-DIP-
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Figure 3.8: Request acceptance rate for different energy efficiency methods

TmpSW. SVOP also offers the advantage of not needing any migrations in the operation

phase and using considerably lower number of servers on average than RB-DIP-TmpSW.

Therefore, from combining the previous results, the consolidation-based method

RB-DIP-TmpSW (which depends on the proposed DIP technique) is the best performing

method in terms of energy efficiency with a viable acceptance rate. However, the proposed

non consolidation-based method SVOP comes very close in terms of energy efficiency

while offering the added advantage of less/no migration load.

3.9 Chapter Summary

Energy efficiency in cloud data centers is one of the more pressing issues cloud providers

are faced by. Cloud clients require certain levels of performance in aspects like high avail-

ability, request acceptance rate and deployment options. To satisfy those demands, cloud

providers are in constant pursuit of a system that satisfies client demands for resources,

maximizes availability and other service level agreement metrics while minimizing energy

consumption and, in turn, minimizing cloud providers’ cost.



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 86

1347.88 

2569.81 
3238.53 

2909.03 2886.77 

3783.57 

5560.31 

2878.64 2674.66 

0 

1000 

2000 

3000 

4000 

5000 

6000 

Power Consumed Per Request  

Figure 3.9: Power consumed per request for different energy efficiency methods

7251.6 

18811 

29341 
21672.2 

26616 
32803.5 

51266 

26541 
20675.1 

0 

10000 

20000 

30000 

40000 

50000 

60000 

Power Consumed Per Server  

Figure 3.10: Power consumed per for different energy efficiency methods



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 87

0.44 

0.72 

0.92 

0.32 
0.4 

0.92 

0 0 0 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Number of Migrations per VM 

Figure 3.11: Number of migrations per VM for different energy efficiency methods

9 

44 

65 

9 

25 

46 

25 

9 10 

0 

10 

20 

30 

40 

50 

60 

70 

Total % of Servers used  

Figure 3.12: Percentage of used servers for different energy efficiency methods



Chapter 3: An Evergreen Cloud: Optimizing Energy Efficiency in Green Cloud Computing Environments
Based on Virtual Machine State Prediction 88

We introduced a novel mathematical optimization model to solve the problem of

energy efficiency in a cloud data center. Next, We offered a solution based on VM mi-

gration that tackles this problem and minimizes energy efficiency in comparison to other

common solutions. This solution includes a novel proposed technique to be integrated in

any consolidation-based energy efficiency solution. This technique depends on dynamic

idleness prediction (DIP) using machine learning classifiers. Potential classifiers were

evaluated and a recommendation with regards to the most suitable classifiers was made.

Moreover, a robust and efficient energy efficiency scheduling solution that does not de-

pend on VM consolidation or live migration. This method, termed Smart VM Over Provi-

sion(SVOP), offers a major advantage to cloud providers in the cases where live migration

of VMs is not preferred. 9 candidate solutions with multiple energy efficiency techniques

were evaluated for a number of critical metrics, namely, energy used per server, energy

used per served request, acceptance rate, and number of migrations performed.

The experimental results gained from testing these methods on data taken from the

Google trace data set showed that the consolidation-based method RB-DIP-TmpSW (which

depends on the proposed DIP technique)was the best performing method in terms of energy

efficiency with a viable acceptance rate. However, the proposed non consolidation-based

method SVOP came very close in terms of energy efficiency while offering the added ad-

vantage of less/no migration load.
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Chapter 4

Building a Cloud on Earth: A Study of Cloud

Computing Data Center Simulators

4.1 Introduction

As the cloud computing client base grows, the cloud service providers face the challenge of

adapting to the needs of this growth in both the technical and business dimensions. Cloud

providers should maintain this gradual enhancement without losing focus on delivering the

level of service their clients demand. The dynamic and unpredictable nature of cloud com-

puting adds extra layers of complexity to the providers’ tasks. This challenge is magnified

by the rise of Big Data concepts that are pushing a new wave of solutions and use case

scenarios. Newly developed cloud solutions should be able to handle the scale client data

have reached. It is expected of the available infrastructure and software stack to serve the

2.5 Quintillion Bytes (2.3 trillion Gigabytes) that are created every day [19]. IBM esti-

mates that there will be 18.9 billion network connections by 2016. This covers all types

of connections especially the ones originated at smartphones carried by any one of the 6

billion expected carriers all over the world.

In [43], the author presents an example of this change.“With machine to machine

(M2M), though, this paradigm changes. Systems generate vast amounts of data indepen-

dent of human business processes –collecting, analyzing and then deploying this informa-

The contents of this chapter have been published in [41] and [42]

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.
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tion for use represents a net-new activity for most organizations, in both IT and business

operations.”

When you add to this mix the number of technical/performance related parameters

involved in forming a cloud solution, the task looks increasingly challenging. Providers

need efficient tools to support solution design decisions related to deployment models, re-

source allocation, scheduling, and performance adjustments. Evaluating solutions directly

and from the beginning of the solution development process using the real infrastructure is

not always practical due to cost factors. The idea of benchmarking using a subset of the

infrastructure (like a set of servers with the same configuration and the same topology of

the data center for example) would not guarantee a wholesome vision of scalability issues.

Scalability is a key player in this scenario and it (along with the cost) constitutes a chal-

lenge when using real testbeds. Solution evaluation using analytical methods is rendered

infeasible due to the increasing complexity as the scale of the problem grows. Simulation

arises here as a tool that - while is not enough alone to handle the whole cloud solution

evaluation process- can rather play major roles before a solution is deployed on real hard-

ware. These roles can be considerably less expensive and with less risk. Cloud simulation

involves modeling a real or a proposed cloud system using computer software. It is notably

useful when changes to the actual system are either difficult to implement, involve high

costs, or are impractical.

Several attempts have been made to develop a competitive cloud simulator. Each

cloud simulator differs in vision, the focal points and the resulting features. In this work,

we examine the major cloud simulators available to researchers and industry engineers and

compare them in terms of the main simulated components, application model, network

model, and architecture. Previous attempts to survey cloud simulators can be seen in [44],

[45], and [46]. In this work, we strive to offer an updated and more comprehensive view

of this topic. We present the limitations found in each simulator using an approach that

depicts what it is and what it is not. We also aim at illustrating the ground on which the

current simulators stand. This helps us to construct a framework for the cloud simulator

design process which would ideally cover the industry and research community needs.

Moreover, a deep analysis of the open research challenges related to this topic is

offered. Challenges covered include realistic user application patterns, cloud deployment
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and pricing, reliability and high availability, challenges originated outside the data center

and Big data considerations.

The coming sections are divided as follows:

Section 4.2 details the specific roles expected of a cloud simulator. Section 4.3 is

a discussion of the design decisions included in the process of developing a cloud simu-

lator in terms of visions for hardware, applications and network sides. Next, Section 4.4

traverses a chosen set of common cloud simulators, giving significant attention to a few

simulators that contain interesting implementation concepts. This simulator comparison is

then consolidated in Section 4.5. We then proceed to discuss pros and cons of building

a new simulator as opposed to extending a current one. Finally, an illustration of some

of the research challenges and future work is presented in Section 4.6 and the chapter is

concluded.

4.2 The Roles of a Cloud Simulator

To better understand expectations of the stakeholders, a clear perspective of the cloud sim-

ulator roles needs to be defined. This can be done by depicting the potential cloud service

planning activities a simulator can serve in a cloud environment. Each activity can be

matched with a use case where using a cloud simulator can achieve the required impact.

These activities can be summarized in the following [2, 9, 47, 48, 49, 50]:

1. Define: Develop greater understanding of process details. Service deployment

options, green data center policies and high availability policies are examples of aspects

that are affected by several conditions that work simultaneously. Understanding their inter-

action on the lowest level is a must if efficient resource management is to be achieved.

2. Pinpoint: Identify problem areas or bottlenecks in a process that affect execution

speed or increase the solution cost.

3. Maneuver: Test different “What if?” scenarios to better predict how a real life

problem evolves under specific conditions.

4. Analyze: Evaluate the effect of system or process changes such as demand, sup-

ply, resources specifications, and constraints
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Figure 4.1: The expected roles a cloud simulator may play
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5. Decide: Compare the impact of alternative policies to determine their points of

strength. A simulator is an accurate way to quantify the advantages and disadvantages of

newly developed policies.

6. Scale: Run real life scenarios on different scales as needed and repeat them as

many times as the verification and validation process requires.

7. Confirm: Use it as a last step to confirm the behavior of proposed solutions when

a failed solution has high risk or high cost associations. This includes tuning performance

bottlenecks before deployment. The simulator roles are illustrated in Fig. 4.1.

An example of a use case in which the simulator would play these roles is a scenario

where the architects are developing a multi layered resource allocation policy for a cloud

data center. This use case constitutes developing a solution that performs the resource al-

location for the cloud in order to minimize user request latency to comply with service

level agreements (SLAs). The cloud simulator first would help us define the problem by

answering questions like: Which elements are involved in this experiment (environment)?

Which resources are affected? When do we apply the resource allocation algorithm? Then,

it would help us pinpoint potential bottlenecks that would cause this solution to underper-

form: Is it the VM placement? Is it the resource allocation for the VMs? Is it the chosen

topology? Is it the network resources? Then, it would help us maneuver by testing multiple

“what if?” scenarios in terms of testing different data sets or use cases or edge cases. Now,

we analyze the effect of every factor on the resource allocation process. For example, we

might notice that the algorithm performs with sparse heavy requests better than numerous

light requests or that it performs better with high-CPU VMs. Based on that, we can gauge

and decide which factors have more importance and give them more weight in our schedul-

ing policy. Next step is to scale by testing our scheduling algorithm for a very large data

center, large internal network, heavy communication and a large number of requests and

see where/when it breaks. Finally, it can be used for final tuning before the algorithm is

tested on a real test bed to schedule real requests.

The potential users taking advantage of these simulator roles include:

1. Cloud providers and solution architects: Naturally, cloud providers represent

the main stakeholder as they would use this to develop, evaluate and improve their solu-

tions.
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2. Cloud clients: Typical cloud client list include large companies that have the

capabilities to run their own clouds. A cloud simulator would be beneficial to compare dif-

ferent providers, evaluate currently deployed solutions or for studies of the client workload

and to support decisions regarding private vs. public clouds.

3. The research community: simulators are a critical preliminary step for re-

searchers who are developing new cloud technology before testing on a real setup.

4. Other external players: Simulators can be a useful supportive for any parties

concerned of evaluating cloud solutions. This could involve auditing and consulting teams

or government teams investigating the energy efficiency or carbon print of a cloud for

example.

4.3 Comparisons methodology

4.3.1 Cloud Simulator Design Decisions

The process of designing a simulator includes informed decisions related to: components

being produced, served, or acted upon by the simulation process. Typical components in

the cloud include servers, racks, switches, links, applications, and users. Furthermore, the

layout should cover the simulation process flow, its associated resources and events or pro-

cess steps. A special attention should be given to event frequency and duration. The choice

of which probability distributions better characterize execution uncertainties and process

variations is crucial. Table 4.1 summarizes the list of elements to be considered when de-

signing the ideal cloud simulator. The first prototype of the simulator can be generated

based on these elements.

4.3.2 Cloud Simulator Ingredients

A major objective of this work is to examine each cloud simulator and discuss the funda-

mental aspects presented by each one of them. We start by introducing a framework of

design components for simulators. This cloud simulator design framework is illustrated in

Fig. 4.2.
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Table 4.1: Simulator basic elements as an initial set of design decisions

Design Element Examples
Entities/components Servers, VMs, racks, data centers, clouds, switches (ac-

cess, aggregation, etc), links. users (clients)
Entity attributes Capacity, power consumption
Simulation scheme Stochastic, deterministic
Events Client arrival, new task, new application, task completed
Event frequency and duration Covering traffic models and client request generation pro-

cess (Exponentially distributed, normally distributed, uni-
formly random, deterministic frequency)

Activities Schedule a VM, schedule a task, migrate a VM
Process sequence Relations defined between events,activities and outcomes

Scheduling & Load balancing  

Simulated components  

Presentation 

Application model  
Network  

model 

Customizability  
Extension 
capability 

Scalability 

Simulator vision  

Figure 4.2: Cloud simulator design framework
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4.3.2.1 Simulator motivation and vision

The motivating purpose of the developing team when constructing the simulator drives the

construction process and built-in features. For example, when the team aims to test cloud

computing deployment solutions, a special consideration is given to user request patterns,

geographical distributions, types of resources requested and pricing packages. On the other

hand, if the prime purpose is performance enhancement, the focus is shifted to request

scheduling algorithms, data center network topology options, and general virtualization ef-

ficiency. Furthermore, a cloud simulator created to test power consumption methodologies,

will contain extensive policies for power consumption recording, variety of power saving

techniques revolving around server consolidation or hardware solutions.

4.3.2.2 Simulated physical components and architecture

As discussed previously, the choice of simulated components included affects the simula-

tor architecture and general organization. First, a cloud simulator by definition will contain

components representing servers, server resources, and at least symbolic network represen-

tation. This is especially important as most of the simulators focus on the Infrastructure as

a service (IaaS) aspects of the cloud offerings not Platform as a Service (PaaS) or Software

as a Service (SaaS). The choice of server resources to include differs from a simulator to

another. Memory, storage capacity, processing units are almost always there. Some config-

urations add more resources like chips with a certain purpose, for example. The number and

capacity of data centers come into play here. Moreover, the vision of distributing clients

in terms of different locations and varying request probability distributions is a point to

discuss. Virtual machine (VM) offerings and resource allocation are other critical factors.

Some simulators will go with a predefined set of VMs with fixed resource amounts allo-

cated to these VMs. This gives the user a choice of VM types or models to choose from [1].

Another alternative is assigning the VM a chunk of resources and then scaling this amount

up or down based on the VM real time usage. This will require a more elaborate adaptive

resource scheduling and allocation despite it seeming like a more efficient method.
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4.3.2.3 Application model

Cloud simulators vary in how they represent user requests and execution components. A

subset of the simulators go for the direct method of representing user requests as a list of re-

source specifications (required processing time or Million Instructions per Seconds (MIPs),

required memory, required storage, preferred start time, duration, and/or a deadline). An

enhancement of this method can been seen when requests are abstracted into applications

or application components. This scenario, to represent reality more accurately, would have

to include request inter-dependability and input/output control. In addition, effects on re-

quest scheduling will have to be considered. Moreover, dynamic scalability is one of the

defining attributes of the cloud. the ability to scale in and out should be accounted for

in the application model. This includes increasing the number of components serving a

specific application and the increasing the capabilities. Sometimes, these two options are

differentiated by calling the former scale out and the latter scale up.

4.3.2.4 Network model

a) Topology representation

Laying out the data center network includes multiple aspects. The topology used

arises as a critical issue. When a simulator supports multiple topologies and becomes open

for adding new ones, it inherently supports a much larger set of experiments. Tree based

topologies are common in cloud data center designs. Server centric topologies like DCell

[51] and BCube [52] and switch centric topologies like jellyfish [53] and fat-tree [54], [55]

are all possible solutions.

b) Network request representation

Another issue is choosing how to represent data communication (network) requests.

The alternatives here are the packet model or the flow model [47]. In the flow model,

network requests are dealt with as flows from point A to point B and the aim is to find links

with available bandwidth capacity. Some simulators go with an even simpler model that

considers bandwidth a commodified resource in a similar manner to memory or storage. In
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Figure 4.3: Cloud simulated environment and components

this method, the source and destination of a network request are not looked at. Each host is

assigned a bandwidth capacity and requests demand is deducted from this capacity during

the request lifetime.

c) Other network model concerns

Many challenges that are faced when designing a cloud computing system still face

software architects when they try to produce a cloud simulator. Deciding which techniques

to be used for routing of a network request (both initially and rerouting) is one of them. Re-

ducing tardiness here is the main objective. More elaborate simulators could even introduce

alternatives for traffic decision similar to what is available in cloud data centers. These al-

ternatives include: implementing traffic decision by the relay switch, implementing traffic

by a central controller (similar to techniques used in Software Defined Networking(SDN)

controllers) or even letting the user make the decision. The last alternative is being pro-

moted now using the term Routing as a Service [56].

The choice between fixed and flexible bandwidth allocation is another decision.

However, this issue can be mitigated much easier in a software environment as the switch

between these two methods does not prove costly or complicated.

4.3.2.5 Resource scheduling, allocation and load balancing

When faced by the task of designing a resource allocation methodology, many external and

internal challenges should be considered. An attempt to summarize these challenges can
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be found in [9]. External challenges discussed include regulative and geographical chal-

lenges as well as client demands. This results in constraints on the location of the reserved

VMs and restrictions impacting the data location and movements. External challenges also

include optimizing the charging model in such a way that generates maximum revenue.

Internal challenges also include data locality issues. The nature of the application in terms

of being data intensive should be considered while placing the VMs and scheduling con-

nections related to this application. All these factors should be put into consideration when

choosing the resource scheduling policies. Supporting multiple preconfigured policies is a

strong point for any simulator. Moreover, allowing the user to plug in their own policies is

another plus that enables users to evaluate their policies precisely. Resource scheduling has

a critical role affecting power efficiency, availability, and general data center performance.

Fig.4.3 encompasses the elements in play in the resource allocation process within a cloud

environment.

4.3.2.6 Extension capability and customizability

A successful cloud simulator, like any software product, gains more client market penetra-

tion when the cost to customize is less. Changing the software to meet clients’ function

automation can take one of two forms:

a) Configuration: where the cloud simulator has the required capabilities and what

remains is selecting the correct setup options (configuration) or adding minor GUI compo-

nents.

b) Customization: where additional functionality or features that did not exist before

are to be added.

The chief concerns regarding customizability that arise for clients requiring cloud

simulators are:

a) Lack of wide vision:

It is found that many simulators are built to serve a specific research purpose or

model. These simulators are then extended/presented as a general cloud simulator when

they achieve success. This leads to this simulator being beneficial to researchers/industry

parties working in a similar topic. This topic could be power consumption, scheduling
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efficiency or cloud pricing options. However, for parties working on a different topic, the

customization process proves non trivial. This could lead to increasing the customization

cost to exceed the value of building new software components.

b) Availability issues and other typical open source software challenges:

For open source cloud simulators, lack of documentation and support is a consistent

issue. Besides, simulator reliability is something to consider.

4.3.2.7 Scalability

The ability of the simulator to scale up to realistic use cases is an important factor when

considering whether to build a new simulator from scratch or extend an already existing

one. A simulator should have the ability to handle complex topologies and a number of

requests large enough to represent real cloud environments. The used algorithms’ space

and time complexity is a prime indicator here. The type of environments/programming

languages a simulator is based on may add scalability challenges as well. Some cloud

simulators are based on simulation engines that govern event creation/succession and status

updates. This base engine might impose limitations on the size of the solved problem, the

number of nodes or the request arrival rates. A simulator that might solve a problem in an

acceptable amount of time might not be able to do the same when faced with a problem of

larger scale. Determining the acceptable period of time to get a solution for an instance of

the problem depends mainly on the client tolerance and the problem urgency.

4.3.2.8 Presentation issues

Well designed appearance and detailed GUI are desirable features in a simulator. Although

a new GUI can be built for basically any simulator if it is deemed to have the required

core capabilities, having that in place saves time and effort. An issue cloud simulator

architects should consider here is including all the simulator critical input values in the

input forms/screens. This would save effort for any teams working to extend the simulator

in the future.
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4.4 Cloud Simulator Detailed review

In this section, a select set of simulators are put under a magnifying glass. The objective

is to take a closer look at the Why, What, and How of their implementation. More specif-

ically, a focus on the motivation, distinct features not available elsewhere, strong points

and limitations. This survey does not, by any means, target exhausting every single cloud

simulator. The aim, instead, is to focus on simulators with high impact and interesting de-

sign concepts in order to cover a high percentage of the variations of available simulators.

The simulators covered include, CloudSim, NetworkCloudSim, GreenCloud, iCanCloud,

TeachCloud, GroudSim, CloudAnalyst, CDOSim, MDCSim, GDCSim, SPECI, and Big-

House. In the interest of saving space and not repeating the content in each simulator,

we have explored the ingredients of the first three simulators in more detail. Then, for

simulators towards the end of the section, we included the first ingredient (motivation for

building the simulator). Moreover, in the second subsection (main features), we focused

on the unique features and major additions appearing in each simulator and not repeated in

the previous simulators.

4.4.1 CloudSim

4.4.1.1 Description and motivation

CloudSim is one of the most commonly used cloud simulators. CloudSim is a simula-

tion toolkit and an application that enables modeling of single clouds or cloud networks.

The designers of the system cited the existing distributed system simulators inapplicability

to evaluate: “the performance of cloud provisioning policies, application workload mod-

els, and resources performance models in a repeatable manner under varying system and

user configurations and requirements” [2], as their leading motive to develop CloudSim.

CloudSim is not a standalone fixed-scenario simulator. CloudSim users have the ability

to develop the cloud scenario that most fits their needs, design the input parameters and

evaluate the output patterns. CloudSim uses robotics simulator Gazebo and is based on an
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underlying toolkit called SimJava [57]. SimJava uses a discrete event simulator. It includes

facilities for representing simulation objects as animated icons on screen.

4.4.1.2 Simulated physical components and architecture

Through CloudSim, large cloud data centers can be simulated. This includes hosts, virtual

components, federated cloud scenarios. Moreover, CloudSim enables users to define and

control resource allocation and provisioning policies, virtualization techniques, and energy

consumption management techniques. On the operational side, CloudSim supports adding

elements dynamically and pausing/resuming the simulation.

a) CloudSim architecture

Studying CloudSim design would give potential architects the insight they need in

terms of the required components and layers they will need to build. In [2], the authors

explain the layered organization of the CloudSim software framework in detail. SimJava

is the discrete event simulation engine that administers tasks like queuing and event pro-

cessing, creates the system components, and manages the clock. GridSim toolkit is above

SimJava. It performs two roles: (i) implementing infrastructure components similar to the

ones used in grid applications like networks and traffic distributions;(ii) critical operational

components like resource types, data sets, and workload traces. CloudSim is implemented

at the highest level containing core cloud functionalities related to data center design and

virtualized cloud resources. Finally, on top of the simulation stack comes the user code.

The user defines parameters related to resource configuration and the number of servers,

number of users, and cloud deployment in terms of brokering options.

b) Simulated physical components

The model used by CloudSim employs a set of classes to represent basic cloud func-

tionality. We will consider two of the critical classes mentioned in [2] as an example.

First, the DataCenter class is a core class to the simulator functionality. A similar class is

expected to be seen in every major cloud simulator. Server sets can be homogeneous or

heterogeneous in terms of resource types and available allocations. Moreover, a DataCen-

ter object instantiates a generalized resource provisioning component that implements a set

of resource allocation policies. Attributes of a data center include: Architecture, Operating
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system, List of machines, Allocation policy, Time or space-shared, and Resource price per

time unit(which represents cost of memory, storage and bandwidth(BW).

Second, is the DatacenterBroker class. The broker’s responsibility is standing be-

tween service providers and cloud clients. The purpose is to find the most suitable solution

package to the client’s required resources and Quality of Service (QoS) conditions.

4.4.1.3 Application model

User application in CloudSim is represented through Cloudlet class. Application size (com-

plexity) is represented based on computational demands (instruction length). This is trans-

lated into two numbers: instruction length and amount of data transfer (both pre and post

fetches totaled). CloudSim does not specify any VM dependencies or data exchange re-

quirements apart from that. Properties of a Cloudlet include: (i) length (in Million instruc-

tions - MI); (ii) file Size; (iii) output Size; (iv) number of CPUs.

4.4.1.4 Network model

CloudSim reads the data center topology using an input file in the BRITE format. For

every node, the file contains attributes specifying x and y-axis coordinates, in-degree and

out-degree of the node. For each edge, it includes specifications of the source, destination,

Euclidean length, propagation delay, bandwidth and type.

Despite reading the topology details, this information was not mainly used in the

CloudSim until NetworkCloudSim was added. The network inside the data center is not

explored in detail either.

4.4.1.5 Power consumption features

CloudSim contains basic energy consumption recording statistics (energy consumed, CPU

utilization, etc.). The CloudSim team members have performed a detailed implementation
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of multiple energy conservation policies. These policies are mostly based on two energy

conservation concepts:

(i) DVFS: A simulation of a heterogeneous power-aware data center that only applied

Dynamic voltage and frequency scaling (DVFS), but no dynamic optimization of the VM

allocation; and

(ii) Server consolidation/VM migration: Simulations of heterogeneous power-aware

data centers testing multiple VM allocation policies and VM selection policies (migrated

VM selection method) The goal is to arrive at the combination that performs best in terms

of energy consumption.

These used policies include: (i) VM allocation techniques (like Inter Quartile Range

(IQR), Local Regression (LR), Local Regression Robust (LRR), Median Absolute Devia-

tion (MAD) and Static Threshold (THR)); (ii) VM selection policies like (Maximum Cor-

relation (MC), Minimum Migration Time (MMT), Minimum Utilization (MU) and Ran-

dom Selection (RS)). There was no consideration for different energy power sources in

CloudSim.

4.4.1.6 Scalability testing results

We tested CloudSim on our machine that has 8 cores and 64 GB of memory. Parameters

are included in Table 4.3.

a) Execution times

We scaled the problem up by changing the number of VMs, Cloudlets and hosts.

Apart from the problem size, many factors may affect the speed of the execution. For

example, a considerable increase in the time delay is noticed when the VM/application

load is more than the hosts could handle. This might be due to limitations in the VM

placement algorithms. It is noticed that if the simulator cannot allocate the VM, it will go

through every single host and report that they do not have enough space to allocate it.

b) Testing different types of loads/applications

To further specify the factors that affect CloudSim runtime, we performed additional

tests on a load of 20K VMs, 40K Cloudlets and 10K hosts with 4 processors per host.

This time, the controlled parameters included: (i) simulated data center host processing
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Table 4.2: A summary of CLoudSim features

Feature Available? Details
Ability to model user requests Partially Applications represented by a workload ob-

ject that contains user workloads (by MIPS)
Ability to model inter-VM de-
pendency

No -

Ability to model multiple DCs Yes -
Ability to model servers Yes With fixed set of attributes
Ability to model network ele-
ments

limited Data center network is modeled using
BRITE” format but not used. Internal net-
work not represented.

Ability to model VMs Yes Resource configuration and placement
Ability to model inter-VM con-
nectivity

No BW required by a VM is treated as a fixed
commodity

Ability to model fail-
ures/recoveries

No -

Ability to model energy power
sources mix (24 hour source
types

No -

Ability to model power usage
per VM, Server, Facility

Yes Multiple power management methods are im-
plemented Basic power usage statistics are
available

Ability to model security mea-
sures (attacks, firewalls)?

No -

Ability to model network flows? No -

Table 4.3: CloudSim test parameters

Data Center Parameter Values VM parameters
a-system architecture= “x86”
b-operating system= “Linux”
c- processing resource cost= 3.0
d- memory resource cost = 0.05
e- storage resource cost = 0.1
f- BW resource cost = 0.1

a-image size = 10000 MB
b-VM memory = 512 MB
c- MIPS = 1000
d-BW = 1000
e-number of CPUs = 1
f-VMM name = “Xen”

Host parameters Cloudlet(application) parameters
a-host memory (2048 MB)
b-host storage = 1000000
c-BW= 10000

a-length = 1000 MI
b-file size = 300
c-output size = 300
d-required CPUs = 1
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Table 4.4: CloudSim Execution times for different load amounts

Number of
VMs

Number of
Apps (cloud
lets)

Number of Hosts Execution time

20 40 10 3 Sec
2K 4k 1k 4 Sec
10 K 20 K 5 K 1 Min.44 Sec
20 K 40 K 10 K 8 Min. 43 Sec
100K 200K 30K 267 Min

Table 4.5: CloudSim Execution times for different load types when for 10K hosts, 20K
VMs,40K Cloudlets with 4 processors per hosts.(the changed parameter in each line is put

in bold).

VM capacity
(in MIPS)

Cloudlet size
(in mi)

Host processing ca-
pacity (in MIPS)

Average execution
time

1000 1000 2000 8.33 Sec
2000 1000 2000 8.23 Sec
100 1000 2000 8.30 Sec
1000 10000 2000 8.29 Sec
1000 100 2000 8.21 Sec
1000 1000 5000 8.28 Sec

capacity; (ii) simulated VM assigned processing speed (in Million instructions Per Second

(MIPS)); (iii) simulated requested CLoudlet size (in MI). The results in Table 4.5 show that

the load type does not have a significant effect on CloudSim runtime if the load amount does

not change. If we look at one of the major cloud providers, we can find that ”Amazon data

centers house between 50,000 and 80,000 servers, with a power capacity of between 25 and

30 megawatts.” [58] In comparison, Google’s major data centers are supported by at least

50 megawatts of electric power, with some estimates ranging as high as 103 megawatts

[59] which supports the 2013 estimates in [60] which put their server count at 900000

in 13 data centers at the time. (Averaging around 70000 servers per data center). When

Rackspace reached 70000 servers, it was only the sixth company to reach this amount

(in total servers operated).[61] This number is in all of its data centers in 6 cities around

the world.[62] Therefore, the largest experiment we have conducted on CloudSim (30000

servers) is fairly close to the biggest data centers on the planet and would cover most of the

other data centers.
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4.4.2 NetworkCloudSim

4.4.2.1 Description and motivation

NetworkCloudSim is an extension of CloudSim that focuses on network capabilities. The

major motive is enhancing CloudSim with complex application models such as message

passing applications and workflows in addition to supporting a scalable network model for

cloud data centers. As for the first point, other simulators like CloudSim and MDCsim

model application requirements in the form of instruction length or other variations of the

computational resource requirements. A more detailed definition of the client applications

is required to cover tasks like parallel applications and workflows.

As an extension to CloudSim, it is similar in operation to it. NetworkCloudSim is

capable of simulating Data center networks (DCNs) and applications of communicating

tasks such as an MPI. The authors have designed a network flow model for cloud data

centers utilizing bandwidth sharing and latencies to enable scalable and fast simulations

[47].

4.4.2.2 Application model

In typical simulators, you can send a request to define a task on more than one proces-

sor. What really happens is they are scaled to the computational time of one processor

which is not the real scenario. Tasks in a real cloud computing scenario have to com-

municate. NetworkCloudSim introduced the NetworkCloudlet class to represent a task

executing in several phases/stages of communication and computation. CloudSim Archi-

tecture diagram [2] shows how the areas/classes in CloudSim architecture are affected by

the changes/extensions of NetworkCloudSim. To model the application precisely, a class

called AppCloudlet is introduced. Each application contains several communicating ele-

ments (NetworkCloudlets). Each element runs in a VM and consists of stages where it

either performs data exchange tasks (communicating) or computing tasks. These stages

are: execute, send data, receive data or finished. Computing stages can be defined by MIPS

while data transfer tasks are characterized by the amount of data. When in the send stage,
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the VM scheduler submits a packet to the send-packet-queue of the VMs. After the exe-

cution stage of each NetworkCloudlet, VM scheduler forwards theses packets to VMs on

the same host or to switches. In NetworkCloudSim’s implementation, no messages will be

blocked even if the destination is not ready to receive the message. The receiver VM has the

option either to process other tasks or to be blocked until the message arrives. The authors

summarize: “This communication model allows the Simulation of the non-blocking mes-

sage passing paradigm (such as MPI Isend() and MPI Irecv()), which is a common practice

in parallel applications” [47].

4.4.2.3 Network model

Quality of Service conditions required by a cloud client often take a hit because of network

request latency. NetworkCloudSim aims at modeling realistic network requests in terms

of topology, request size, and hierarchy. CloudSim lacks the ability to facilitate intra–data

center communication. Bandwidth sharing on network links is not modeled. This is an

obstacle to modeling features like VM migration. There are two questions posed while

extending network capabilities. These question where addressed in detail in [47]. First,

designers should choose if they want to go with flow model or packet model. Flow model

has the advantage of lower computational overhead despite having much less details. The

second issue is VM interconnection topology. A fully connected model is not common in

real data centers. NetworkCloudSim tackled this issue by adding root, aggregate and edge

(access) level switches. This gives users the freedom of configuring switches and ports

according to their use cases. A bandwidth allocation algorithm should be included here in

the case multiple simultaneous flows use the same link. The simulator adds present latency

based on the link length as well.

To model a network within the data center, Switch class has been introduced as a

network entity (switch or a router) that can also model forwarding latency. Moreover,

NetworkPacket and HostPacket classes represent data flow out of the VM. A HostPacket

is transferred using the virtual network. A NetworkPacket goes from a server to another

through the physical network. Being an extension of CloudSim, the other sides of Network-
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Table 4.6: A summary of NetworkCloudSim features

Feature Available? Details
Ability to model user requests Yes Can model communicat-

ing/dependent applications
Ability to model inter-VM dependency Yes -
Ability to model multiple DCs Yes -
Ability to model servers Yes With fixed set of attributes
Ability to model network elements Yes Internal DC network is modeled in-

cluding switches
Ability to model VMs Yes Resource config and placement
Ability to model inter-VM connectivity Yes -
Ability to model failures/recoveries No -
Ability to model energy power sources
mix (24 hour source types

No -

Ability to model power usage per VM,
Server, Facility

Yes Multiple power management meth-
ods are implemented, basic power
usage statistics are available

Ability to model security measures (at-
tacks, firewalls)?

No -

Ability to model network flows? Yes The designers chose flow model
over packet model to send/receive
data

CloudSim are largely similar to the original simulator. We will not traverse these sides in

the interest of saving space.

4.4.3 GreenCloud

4.4.3.1 Description and motivation

GreenCloud is a cloud simulator with a focus on energy efficiency and enhanced capabil-

ities for network communications. The prime purpose cited for building GreenCloud is

mitigating overprovision issues. Overprovision happens in a data center due to the chang-

ing loads on its computational and network resources. The average load can be as low as

30% of the data center server and network capacity [3]. This, in turn, causes the data center

to systematically use more power than the optimal value.
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GreenCloud is an open source extension of the network simulator NS-2. Data trans-

fer processes are modeled on a packet level. Most of the code (80%) is in C++ and the

rest is in Tool Command Language (TCL). The simulator records energy consumption for

servers, switches, and links as well as having workload patterns. On the other hand, a chal-

lenge faced by GreenCloud is the limited scalability to small data centers due to very large

simulation time and high memory requirements.

4.4.3.2 GreenCloud architecture

The increasing scale to which data centers are growing (tens of thousands of hosts) and

the increase in the percentage of internal communications (70% of all communications

performed by data center components) [3] call for more attention to the data center archi-

tecture robustness and efficiency.

GreenCloud offers three options for the possible data center topology:

a) Two-tier data center architecture:

Racks of servers form the tier-one of the network. Network Layer-3 (L3) switches

facilitate full mesh connectivity using 10 GE links. Two-tier data centers in Greencloud

may support up to 5500 nodes.

b) Three-tier data center architectures:

Access, aggregation, and core layers are included in this architecture which increases

supported number of servers to 10000. This architecture supports an 8-way equal cost multi

path routing(ECMP) with 10 GE Line Aggregation Groups (LAGs). This gives the client

the ability to address several links with a single MAC address. However, LAGs are known

to limit network flexibility and performance. As the authors put it: “LAGs make it difficult

to plan the capacity for large flows and make it unpredictable in case of a link failure. In

addition, several types of traffic patterns, such as ICMP and broadcast are usually routed

through a single link only” [3].

c) Three-tier high-speed data center architecture:

This architecture adds 100 GE links (IEEE 802.3ba) between aggregation and core

switches. This leads to reduction in the core switches and avoiding the disadvantages of

LAGs as well as cabling reduction and supporting data center scale ups.
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4.4.3.3 Application model

Host objects represent servers containing typical data center resources. Scheduling tech-

niques include round robin and energy aware scheduling. Tasks can either be scheduled on

the hosts directly or on the VMs residing on the hosts. Users can control transmission rates

to support power saving with several options available (for GE links, 10 Mb/s, 100 Mb/s,

and 1 Gb/s are available).

a) Task and user request specification

A workload object consists of a computational part that is measured by MIPS and a

network request part. The authors set the task network demands to consist of three parts.

First, the task size which is transmitted from the root node to the hosting server. This

represents the task code or instructions along with the input data. Second, the data the

task communicates with other servers in the data center. Third, the server transmits the

task output to the client (represented by sending it to the root node). GreenCloud enables

choosing a distribution to configure the task arrival pattern (like exponential or Pareto) or

even generating data from trace log files.

b) Types of tasks:

User applications are modeled in objects called tasks. Three types of tasks or work-

loads are available in GreenCloud: Computationally Intensive Workloads (CIWs), Data-

Intensive Workloads (DIWs) and Balanced Workloads (BWs) [48]. The comparison of the

varying types in Table 4.8 is especially helpful when faced by the task of setting up user

workloads.

c) Power consumption features

Power consumption efficiency is GreenCloud’s primary target. Basic statistics are

available for all data center components power consumption (computational and network

resources). The equation used to calculate server power consumption is taken from [63].

It calculates the power consumed as a function of the resource utilization of each resource

type. The equation introduced to calculate the power consumed by a switch is as follows:

Pswitch = Pchassis + nlinecards + Plinecard +
∑
i∈R

nports,r + Pr (4.1)
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Table 4.7: Types of workloads/tasks at GreenCloud

Features/Application
type

Computationally
Intensive Workloads
(CIWs)

Data-Intensive
Workloads (DIWs)

Balanced Workloads
(BWs)

Real life Applica-
tion Modeled

High-Performance
Computing (HPC)
applications that solve
advanced computa-
tional problems

Applications like
video sharing (for
each request there is a
streaming process.)

Applications with
computing communi-
cation requirements
(geographic informa-
tion systems)

Computational vs.
network load

high computing load,
low network load

no computing load,
high network load

load the computing
servers and com-
munication links
proportionally.

Scheduling central
point

Server energy ef-
ficiency is critical
(server consolidation)

No network conges-
tions

Network becomes the
bottleneck
Constant exchanged
feedback is a must-
Both computational
and network portions.

Pr represents power consumed by a port running at a rate valued r. GreenCloud

implements three energy efficiency techniques:

(i) Dynamic voltage and frequency scaling (DVFS); (ii) Dynamic power management

(DPM); (iii) A hybrid scheme of both.

d) Testing Results

We tested GreenCloud on our machine that has 8 cores and 64GB of memory. Green-

Cloud works on Linux Ubuntu. The results shown in Fig.4.4 are for a relatively small prob-

lem (144 servers) and it took around a minute (65 seconds). When moving from the testing

architecture (3-tier-debug) to the two larger architectures (3-tier and 3-tier-high-speed) that

contain 1536 servers while keeping the other factors without change, the simulator times

increase vividly to around 20 minutes. Execution times are shown in Table 4.9. Clearly,

GreenCloud commands more execution time than CloudSim. This is due to multiple design

factors including NS-2 dependency and using the packet network model. A detailed repre-

sentation of the multiple power consumption metrics is displayed as soon as the simulation

is over. A sample output is shown in Fig. 4.4.

Due to the lack of space, we will henceforth conduct a high level analysis of the
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Table 4.8: A summary of GreenCloud features

Feature Available? Details
Ability to model user requests yes CIWs,DIWs,BWs
Ability to model inter-VM dependency no Can configure Tasks to communi-

cate with a random server
Ability to model multiple DCs no -
Ability to model servers Yes With fixed set of attributes
Ability to model network elements yes 3 different topologies available

switches and links modeled packets
sent over the network

Ability to model VMs Yes Resource configuration and place-
ment

Ability to model inter-VM connectivity yes Can configure Tasks to communi-
cate with a random server

Ability to model failures/recoveries No No mention of recovery in their doc-
umentation

Ability to model energy power sources
mix (24 hour source types

No

Ability to model power usage per VM,
Server, Facility

Yes Multiple power management meth-
ods are included Basic power usage
statistics are available

Ability to model security measures (at-
tacks, firewalls)?

No -

Ability to model network flows? Yes It is based on NS2, TCP/IP enabled.

Table 4.9: A sample of GreenCloud execution times for different architectures with a data
center load of 70 per cent

Architecture Server count Execution time
3-tier-debug 144 56 Sec
3-tier-hi-speed 1536 19 Min 8 Sec
3-tier (default) 1536 19 Min 20 Sec
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Figure 4.4: GreenCloud output

remaining simulators. We will illustrate the standing out aspect of each simulator in terms

of purpose or functionality. We will also take a look at the scalability of the rest of the

simulators at the end of Section 4.4.

4.4.4 iCanCloud

4.4.4.1 Description and motivation

The designers of iCanCloud used Simcan framework to build their cloud simulator [64].

They have built a full GUI where users can configure, manage and run VMs, data centers

and experiments for different cloud scenarios. Distributed experiments are also supported

as iCanCloud can run an experiment on multiple machines. The challenge of predicting

and structuring cost in cloud data centers is well studied.

4.4.4.2 Main features

Apart from the basic cloud simulation, iCanCloud combines a set of features that stand

out among cloud simulators. iCanCloud simulates the hypervisor module used by cloud
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providers. The hypervisor module handles brokering between cloud clients who send jobs

and cloud data centers where these jobs can be served. Data centers represent a set of VMs,

each one configured with pre-defined features such as CPU, storage, memory, and network.

Cloud clients in iCanCloud represent entities that submit a set of jobs to be executed on

specific VM instances. Those submissions arrive directly to the hypervisor module. The

hypervisor manages the brokering process by insuring efficient distribution of the jobs to

the data centers and VMs inside them. This is done using preset brokering policies which

can be amended by customization. The available brokering policies are cost based policies,

execution time-based policies and resource allocation-based policies. The hypervisor also

handles managing VMs and the execution of the jobs on VMs, and defining cost policies

for each VM instance type. This aids in integrating and testing brokering policies.

Moreover, features like flexibility in modeling architectures and VMs that represent

single or multi-core hosts are supported. Storage gets a special attention in iCanCloud

as it supports models for local or remote storage systems as well as parallel storage and

RAID designs. In regards to the development environment, POSIX API and an adapted

MPI library is available to build and run simulation experiments. In their article [64], the

authors explain that they experimented on an application named Phobos where processors

are used to calculate the trajectories of Phobos, the Martian moon, over a tracing interval.

This is done by dividing the overall tracing interval in identical subintervals, each of them

executed by a different task. The same task load distribution was simulated on iCanCloud

and produced the same results in terms of the calculated performance cost.

4.4.5 TeachCloud

4.4.5.1 Description and motivation

TeachCloud was built for a specific purpose, namely education [65]. TeachCloud shows a

GUI through which researchers or industrial engineers can configure and perform experi-

ments based on cloud scenarios.
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4.4.5.2 Main features

TeachCloud is an extension of CloudSim. On top of the CloudSim Framework, the de-

signers added a GUI and a module that generates cloud related workload. Architectures

like VL2, BCube, Portland and Dcell are supported. The simulator contains modules that

monitor data center components, show the impact on system effectiveness and allow recon-

figuration of the experiments.

4.4.6 GroudSim

4.4.6.1 Description and motivation

GroudSim is a discrete event simulator that runs simulations specific to scientific appli-

cations on grid and cloud environments. The simulation core processes are performed by

SimEngine. Groups of events can be created using features of the SimEventReference [66].

4.4.6.2 Main features

GroudSim can be integrated into ASKALON environment [67] and that enables users

to import experiments that represent real applications from that environment. Although

GroudSim’s vision involves executing jobs for the grid, it still includes basic cloud comput-

ing features like task implementation, cost estimation and resource loading and scheduling.

Failures of grid sites and data transfer between cloud resources are features that can be seen

in GroudSim.

However, not many bases are covered on the network side. In addition, performance

issues arise when the scale of the experiment reaches hundreds of nodes.
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4.4.7 CloudAnalyst

4.4.7.1 Description and motivation

CloudAnalyst is another extension of CloudSim. The motive behind CloudAnalyst is ana-

lyzing and evaluating geographically distributed user workloads [68]. Requests that come

from distant locations with heterogeneous distributions and sizes constitute a challenge

when cloud providers plan their cloud deployments solutions. These scenario is also chal-

lenging when choosing the resource allocation policies for the data centers. In this case,

the quality of service received by multiple users distributed all over the map is evaluated

while varying the experiment parameters.

4.4.7.2 Main features

Through CloudAnalyst, experiment conditions can be collected. The use of Java Swing

to extend CloudSim makes it easier to extend CloudAnalyst. Additionally, CloudAnalyst

provides a GUI where users specify the experiment parameters, the data center distribution

and user location along with the network setup.

4.4.7.3 Configurable parameters

CloudAnalyst offers a wide range of configurable parameters. All CloudSim parameters are

included in Table 4.10 . In addition, Internet characteristics, simulation configuration, Data

center configuration and user distribution/load parameters are supported. The output from

CloudAnalyst compare the response times/user experience from different geographically

distributed bases.
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Table 4.10: CloudAnalyst test parameters

Internet characteristics User parameters
1-Region/region delay matrix :
transmission delay between regions in (mil-
liseconds)
2-Region/region bandwidth matrix (available
bandwidth between regions)

1-User grouping factors in user bases (how
many simultaneous users from the same base)
2-User grouping factors in data centers (how
many simultaneous users on the same host)
3-Instruction length/ request (bytes)
4-Load balancing policies
a-round robin b-equally spread current execu-
tion load c-throttled

Simulation configuration Data center configuration
1-Simulation time
2-User bases:
a-average number of users at peak time b-
average number of users at off-peak time c-
region d-request/user/hour and request size.
e-daily peak hours
3-Broker service policy:
a-closest data center b-optimize response time
c-reconfigure dynamically

1-Region
2-Architecture
3-OS
4-VMM
5-VM cost
6-Storage cost
7-Data transfer cost
8-Physical hardware units
9-Server configuration:
a-memory b-storage c-BW d-number of pro-
cessors e-processor speed f-VM policy (time
shared or space shared)
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4.4.8 CDOSim

4.4.8.1 Description and motivation

Cloud Deployment Simulator (CDOSim)’s purpose is, as the name indicates, optimizing

cloud deployment options. This includes measuring delays, Service Level Agreement vio-

lations and the subsequent costs based on a specific cloud deployment option from a client

perspective. CDOSim provides features that support client decision making in terms of

choosing the cloud provider, the runtime deployment policies and VM resource configura-

tion.

4.4.8.2 Main features

CDOSim enables cloud clients to compare the cost and effectiveness of a specific cloud

solution with those of other solutions. This aims at mitigating the cloud clients’ lack of

knowledge over cloud platform options. Features like real life user trace integration and

independence of programming languages are available [69].

4.4.9 MDCSim

4.4.9.1 Description and motivation

Multi-tier Data Center Simulator (MDCSim) was built to constitute a scalable platform to

conduct system evaluation and power consumption measurements for cloud environments.

The authors demonstrated the abilities of the simulator using studies that included three

types of applications [70].

4.4.9.2 Main features

As a general purpose cloud simulator, MDCSim support data center component definition
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and configuration. Moreover, it includes features related to analyzing and evaluating of In-

finiband Architecture (IBA) and 10GigE performance under varying cluster sizes, network

load, and with different tier configurations. It also supports basic power measurement and

configuration features. Still, more work is required to enhance the network model and

strengthen power efficiency features for network component. In addition, the proprietary

nature of MDCSim has affected its market penetration and extensibility.

4.4.10 GDCSim

4.4.10.1 Description and motivation

Green Data Center Simulator (GDCSim) is another simulator whose central purpose is

reaching the completely green cloud. The designers aim at creating a framework to eval-

uate new resource allocation policies or energy efficiency techniques. Conditions to be

tested include topologies, workload distribution, platform power management schemes,

and scheduling algorithms. In fact, both statements are correct. GDCSim contains a CFD

component and its contribution and results are validated against traditional CFD simula-

tors. The authors of GDCSIm clarify that GDCSim -when used in the context of cloud

data center energy efficiency analysis- has four major advantages compared to a typical

CFD simulator. Those are automated processing, online analysis, and more importantly,

workload management and cyber physical interdependency. Compared to other cloud sim-

ulators, GSCSim is an example of a simulator with more focus on the thermal side of energy

efficiency. Feedback on temperature and air flow patterns in the data center is used by the

management algorithms.

To avoid the challenge of high complexity and slow execution of CFD simulation,

the authors opted to use the CFD component GDCSim is built upon, BlueSim, only for a

partial task. The CFD simulator module, BlueSim, was used to generate the thermal map

of the data center and was not used in conjunction with the resource management module.

Furthermore, GDCSim was validated against established Computational Fluid Dynamics

(CFD) simulators like Flovent CFDSim [71].
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4.4.10.2 Main features

GDCSim supports online analysis and adjustment as users can manage the simulation sce-

narios while the simulator is running. This gives users the chance to adjust and modify

based on physical resource changes. GDCSim also supports thermal analysis features, in

which the thermal conditions at a given moment are recorded and analyzed. Cooling poli-

cies can be tested in detail. Power modes can be controlled in terms of servers’ status. An

added feature here is considering “cyber-physical interdependency, which enables feedback

of information on temperature and air flow patterns in the data center to the management al-

gorithms and the closed loop operation of the servers and cooling units (CRAC) to achieve

energy efficient operation” [71].

4.4.11 SPECI

4.4.11.1 Description and motivation

Simulation Program for Elastic Cloud Infrastructures (SPECI) is another cloud simulation

tool that allows studying large data centers closely [72]. SPECI studies the performance

of the data center nodes as a unit. It focuses on the efficiency of the middleware policies

used in a cloud data center. The authors define middleware here as the layer of software

that handles job scheduling, load-balancing, security, virtual networks, and resilience. It is

basically the management layer of the data center. SPECI focuses on handling communi-

cation policies between the simulated hardware components inside a data center specially

in the case the number of these components (or nodes) increases sharply. These nodes

communicate with each other and therefore need to be aware of each other’s states. Each

of these nodes can be functioning (“alive”) or not (“dead”) and this state needs to be com-

municated to nodes that work with this node. SPECI offers an environment to simulate this

process in order to evaluate communication protocols and data center load.

Basically, nodes (which can represent cloud hosts) are connected through a network

with a configurable topology. Nodes are susceptible to random failures. Any component
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which cooperates with a set of other components, is thus interested in the aliveness of each

of these components and performs queries to find about their states. This state retrieval

gets more complicated and it causes more data exchange over the network as the number

of components (nodes) increases.

Several architectures of state or heartbeat retrieval can be configured. Examples in-

clude having a central node sharing all the states, a hierarchical design where data is shared

or a P2P data sharing model. SPECI aims at observing the behavior of the whole system

under different architectures, setup parameters and protocols especially as the number of

nodes scales up.

4.4.11.2 Main features

SPECI is based on the SimKit framework [73] which offers the core simulation functional-

ities. The challenge faced in this scenario is scalability. The data center size increases and

some middleware properties do not scale in a linear way with the number of components.

SPECI consists of two packages. The first one deals with data center architecture and

topology. The second contains the modules dealing with simulation and measurements.

Status updates are critical to the designers as they aim to evaluate the impact on component

failure and policy changes. In terms of failure observance, the notions of hardware compo-

nents being alive or dead are presented. These states are exchanged in a subscription based

scheme. When the simulator is initialized, an object is created for each node and network

link in the data center. Each node is subscribed to the states of a list of other nodes based

on a predefined distribution. Next, the communication policy is loaded and the rest of the

simulation is run by the event queue.

4.4.12 BigHouse

4.4.12.1 Description and motivation

BigHouse is another simulator with some unique features. BigHouse developing team

introduced it as a simulator with a higher degree of abstraction. This is coupled with a focus
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on the statistical view and execution time minimization. The motivation is to use simulation

to approximate the performance of complex queuing models like G/G/1 or G/G/k queues

(generalized inter-arrival and service time distribution with 1 or k servers).

4.4.12.2 Main features

In BigHouse, like most of the main simulators, Tasks are represented by random variables

that describe their parameters including resource requirements, arrival and service time

details. Examples of the workloads used include Departmental DNS and DHCP server

under live traffic, Departmental POP and SMTP server under live traffic, Shell login server

under live traffic, executing a variety of interactive tasks, Leaf node in a Google Web Search

cluster, HTTP server under live traffic. Once workload distributions have been generated,

a system model in terms of power consumption and performance distribution is specified

and then estimate results can be derived.

BigHouse is based on the stochastic queuing simulation (SQS) methodology. This

deals with the requests/tasks as high level components that run in time in the order of mil-

liseconds instead of on an instruction by instruction level. Consequently, “BigHouse can

simulate server systems in minutes rather than hours” [74]. Architecturally, BigHouse con-

tains two main models. The first one handles constructing the data center components and

the event sequences like any discrete event simulator. The second one mainly contains the

reporting tools and handles the statistical modules. The authors have shown some results

showing the parallel performance of BigHouse which is interesting in terms of scalability

of the simulator [74]. Running time can be tweaked by changing the limit of accuracy or

confidence in results.

A notable limitation to BigHouse is the network model. The examples previously

mentioned model client-server scenarios. More realistic models (including a step to three

tier topology for instance) are not included unless changes to the simulator are made.

4.5 Simulator Comparison

When looking at the previous efforts, we can divide them into two sets:
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4.5.1 Simulators with a Specific Purpose or Working on a Limited

Scale

This purpose could be educational like TeachCloud or related to a specific functionality like

CDOSim. We note here that some of the simulators are not only developed by academic

teams but also are meant to serve academic purposes mainly.

4.5.2 Simulators Operating on a More General Scale

This set includes simulators that include features in which users can test general cloud

computing problems and solutions. The criteria here are: the simulator’s extensibility, the

simulator containing the critical scheduling and energy efficiency recording abilities and

the simulator including a rich networking model. In Table 4.13 and Table 4.14, a compar-

ison of the general features, strength and limitations of each of the simulators discussed

previously can be found.

4.5.3 When Do I Need a New Simulator?

The major reasons that might push a research or an industrial team towards the choice of

building a new cloud simulator include one of the following points.

4.5.3.1 Scalability

There is need for a simulator that is proven to work for large scales reaching data centers

with a size in the order of 10000 to a 100000 nodes(hosts). Intense comprehensive testing

is a key requirement. We have taken a look at the scalability properties of CloudSim and

GreenCloud. More on the scalability of the rest of the surveyed simulators in the following

subsection.
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4.5.3.2 Portability

Many available simulators are subject to platform, environment, and hardware limitations.

These limitations need to be examined and the new simulator should consider all the envi-

ronments/conditions that may be called upon in the required future work.

4.5.3.3 Customizability

An in-house developed simulator offers advantages in terms of customization to the ever

expanding needs of R&D departments.

4.5.3.4 Training and Knowledge transfer

An in-house simulator also offers an advantage in terms of training/knowledge transfer over

other simulators. This covers even open sources simulators as documentation and support

challenges usually arise.

4.5.4 A Look at Simulators’ Scalability

by examining [47], [64], [65], [68], [66], [69], [70]. [71], [72], and [74], we gain a sense

of the scale each simulator works on. For iCanCloud for example, the simulator was tested

for experiments to run up to 250000 jobs on up to 5000 VMs. Those experiments used

jobs whose input size is 5 MB, output size is 30 MB, and processing length is 1200000 MI.

VMs computing capacity was up to 9500 MIPS, which simulate a standard small instance

type provided by Amazon EC2. the largest experiment finished in about 10000 seconds (2

hours and 45 minutes).

For NetworkCloudSim, the experimental setup contained 4 servers, 8 VMs and up to

8 processes per VM. An MPI application was modeled, with the main process generating

several random numbers and then send the data to all other processes. Each host has 2

Xen VMs, each one with 2 cores and 1.5 GB RAM. All the hosts are connected by a 100

megabits switch. varying number of communication messages up to 1000000 MPI INT

elements transferred from one process to another. This took around 2.5 seconds. In terms
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of experimenting on scheduling policies, the same topology was used to test scheduling

requests with an arrival rate of 200 pr second.

For CloudAnalyst, the problem can be described as follows: Up to 3 data centers

containing up to 75 VMs receive connection requests from users distributed along 6 user

bases around the world. The total number of users can range from 180000 to 1800000

depending on peak hours. But that number is actually grouped by a factor of 1000. The

VM size is 100 MB. VMs have 1 GB of RAM and have 10 MB of bandwidth. servers

have 2 GB of RAM and 100 GB of storage. Each machine has 4 CPUs, and each CPU

has a capacity power of 10000 MIPS. A time-shared policy is used to schedule resources

to VMs. Each user request requires executing 250 instructions. Requests are grouped by a

factor of 100.

For GroudSim, a number of jobs ranging from 5000 to 32000 was executed on a

number of cloud instances from 8 to 32000. ”The type of Cloud resources is not relevant

to these experiments, as we are only interested in how fast a certain number of jobs on a

certain amount of resources can be simulated, independent of their real execution time.”

[66] If we look at CDOSim, the problem representation is slightly different as it uses a

workload intensity function origins from a service provider for digital photos producing

5000 requests (method calls) per minute on a data center ranging in sizes between 4 and 7

nodes. The experiment took around a day and a half in total.

For MDCSim, the case study major components included clients, WS tier, AS tier

and DB tier. A simple round-robin web switch emulation was implemented to distribute

client requests to the web server tier nodes. This included up to 128 nodes in the 3 tiers

with a number of communicating clients up to 5600 clients. The exchanged message size

was around 5 kb. In the GDCSim experiment, there were two rows of five industry standard

42U racks in each row, laid out in hot/aisle cold aisle configuration. These racks consisted

of five 7U chassis each. The data center tends to be smaller due to GDCSim interest in the

energy efficiency and thermal component of the data center operation.

As for SPECI, Scaling is easier in terms of the number of components as it focuses

on the component livelihood status rather than execution of complex requests. Simulations

data center networks of the size of 100000 hardware components are possible.
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Lastly, when looking at the scalability of BigHouse, it is found that simulation of a

10 servers cluster takes less than a minute. The time increases approximately linearly until

biggest recorded size which 10000 server data center where the simulation finishes in hours

rather than days.

These results are summarized in Table 4.11 and Table 4.12 in addition to experimen-

tal results shown for CloudSim and GreenCloud in tables 4.4 and 4.5.

4.5.5 Previous Experiments and Problems Solved using Surveyed

Cloud Simulators

The previously discussed simulators have been used variably for multiple projects. Some

of these projects were attempts to solve a specific problem or demonstrate certain cloud

scenario using the simulator. Some of these projects were done by the same team with the

purpose of building upon the simulator and some was done by different teams who used

the simulators mostly under the open source licensing schemes.

A look at the literature and the websites of active simulators would give us an idea of

the sort of audience following these projects and the sort of extensions/solutions built upon

them. In Table 4.15 we provide the list of topics and problems each simulator was used to

evaluate or solve. This is another step towards helping the reader in the process of deciding

which simulator is the most suitable to their project.

4.5.6 A Summary of Cloud Simulators Comparison

Finally, based on our analysis offered in this chapter and based on multiple factors includ-

ing scalability, main features, environments, and previous experiments, we have provided a

general recommendation that would help the reader directly choose the most suitable sim-

ulator(s) to start from based on the requirements or purpose. These are summarized in Fig.

4.5.

However, looking at the nature of the topic and vast list of variations between every

cloud related problem and the other, this recommendation should be looked at as a general

guideline to the reader instead of being a definite (right or wrong) fact. It should not be
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Table 4.11: A comparison of the cloud simulator scalability using solved problem sizes

Simulator Number
of Nodes

Experiment Parameters Execution Time

iCanCloud 5,000
VMs

250,000 jobs, input size is 5 MB, output size
is 30 MB, processing length is 1,200,000
MI, VMs computing capacity up to 9,500
MIPS

10,000 seconds (2
hours and 45 min-
utes)

NetworkCloudSim 4 servers,
8 VMs and
up to 8
processes
per VM

Each host has 2 Xen VMs, VM has 2 cores,
1.5 GB RAM, Hosts have 100 Mbps switch,
Communication messages up to 1,000,000
MPI elements, arrival rate of 200 requests
per second

2.5 seconds

CloudAnalyst Up to
3 data
centers
containing
up to 75
VMs

Total number of users ranges from 108 to
1,080, users make a request every 5 simula-
tion minutes and each 100 request are gath-
ered together, VM size is 100 MB, VMs
have 1 GB of RAM, VMs have 10 Mbps
of bandwidth, Servers have 2 GB of RAM
and 100 GB of storage, Each machine has
4 CPUs, Each CPU has a capacity power of
10,000 MIPS, Each user request requires ex-
ecuting 25,000 instructions. Simulated pe-
riod is one day

Overall average
response time
for a combined
request 121.07
milliseconds (A
total of 2 minutes
for all requests)

GroudSim On a
number
of cloud
instances
from 8 to
32,000.

Jobs ranging from 5000 to 32,000, 1,000 MI
per second (MIPS) for each CPU, 100,000
jobs, with minimal size

16 seconds for
1,000,000 jobs
of minimal size,
50 seconds per
job consisting of
3,500 activities (of
fixed MI), 0.2-0.3
seconds per job
for jobs consisting
of 200 activities
(of fixed MI )

CDOSim A data
center
ranging
in sizes
between
4 and 7
nodes .

Problem representation is slightly different,
uses a workload intensity function that orig-
inates from a service provider producing
5,000 requests (method calls) per minute

Around a day and
a half in total
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Table 4.12: A comparison of the cloud simulator scalability using solved problem sizes

Simulator Number
of Nodes

Experiment Parameters Execution Time

MDCSim Up to 128
nodes in
3 tiers,
commu-
nicating
clients up
to 6,400
clients

Major components include clients, Web Server
(WS) tier, Application Server (AS) tier and DB
tier. Round-robin web switch emulation to dis-
tribute client requests to the web server tier
nodes, message size 5 kb

Depending on
the scenario the
latency reaches
around 0.9 sec-
onds per client
amounting to an
experiment time
of around an hour
and a half

GDCSim 2 rows of
5 industry
standard
42U racks
in each
row, racks
consisted
of 5 7U
chassis
each

GDCSim’s main focus is on the structural side
of the data center in terms of the heat dustribu-
tion and other thermal factors not the task/job
scheduling side. Therefore, data centers tested
on GDCSim tend to be smaller.

9,000 seconds ex-
periment time (2
hours 30 minutes)

SPECI 100,000
nodes

Simple message exchange (state=alive/dead),
Heartbeat retrieval events drawn from a uni-
form distribution with a delay between 0.8 and
1.2 seconds and reschedule themselves with a
delay from the same distribution, number of
subscriptions= square root of the number of
nodes,run for 3600 simulation time seconds,
SPECI-2 shows 5.5GB RAM JVM memory
footprint when executed for similar experiments

hours

BigHouse 10-10,000
servers

number of simulated events takes from 0-6,000,
the experiment varies both processor and mem-
ory settings, the performance setting space is 2-
dimensional; for each variation the number of
maximum queries (request) per second (QPS)
is increased on a scale of percentages of a pre-
set maximum load, the measured result is the
95th percentile latency when applying for the
specific variation and QPS

10 servers clus-
ter takes less than
a minute, 10,000
server data center
takes from hours
up to a full day
based on the sce-
nario
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Figure 4.5: Recommended Cloud Simulators depending on User Priorities

forgotten that the nature of software development process is that with enough time and

effort, a capable team can extend any software to include many more features.

4.6 Open research challenges

As we weigh pros and cons of building a new simulator versus using a current one, research

challenges, and learned lessons present themselves. We try to summarize these in the

following points to serve as a blueprint of issues that need attention or open research topics.

4.6.1 Lose the Grid Perspective

It is common for simulators that were based on previous grid simulators to inherit much

functionality. The point here is not inheriting the vision too. The grid model is principally
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Table 4.13: A summary of the cloud simulators features: External view

Feature/ param-
eter

Underlying
toolkit/ plat-
form

Programming
language

Availability Simulation time
(estimate)

CloudSim SimJava Java Open Source Seconds
GreenCloud NS2 C++/TCL Open Source Minutes /tens of

minutes
iCanCloud OMNET, MPI C++ Open Source Seconds
MDCsim CSIM C++/Java Commercial Seconds
NetworkCloudSim CloudSim Java Open source Seconds
CloudAnalyst CloudSim Java Open source Seconds
GroudSim SimEngine Java Academic Seconds
TeachCloud CloudSim Java Open source Seconds
CDOSim CloudSim Java Academic Minutes
GDCSim BlueSim Java/XML Academic Minutes
SPECI SimKit Java Open source Minutes /tens of

minutes
BigHouse Mac/ Linux/

Windows
Java/Python Open source Minutes

different than the cloud. The job submission and waiting model does not apply to the cloud.

The cloud has more of an interactive environment of leased machines. Simulators based

on the grid should be revised to adopt new packaging that is based on unified commercial-

ized packages of PC-like resource components. This is more accurate to the cloud client

expectation than the distributed cluster/super computer assumptions of grid clients. This

will generally affect the way resources are modeled, service packaging and pricing, user

data modeling, and resource scheduling and allocation in the cloud simulator. The user

experience in the cloud is more engaging; reliability and availability is a concern on the

scale of a millisecond.

4.6.2 More Work towards Realistic User Application Patterns

Although multiple current simulators allow simulator users to test using any data sets they

require, that does not seem to be enough. More work is required towards designing the user

application models and data sets. We have seen efforts discussing the types of applications

user request data specify in terms of being communication intensive or computationally in-
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Table 4.14: A summary of the cloud simulators features:Strengths and limitations

Simulator / Pa-
rameter

Focus/ strength Limitations

CloudSim Most commonly used (many extension
projects)
Supports large scale problems
Inclusive support for DCs, VMs and re-
source provisioning techniques.

Communication model on the
packet level is not supported di-
rectly

GreenCloud Focus on power management and en-
ergy consumption techniques testing
Packet level communication supported

Runtime
Detailed brokering model

iCanCloud Trade-off between costs and perfor-
mance.
Full GUI
Parallel execution of 1 experiment over
several machines

Cost policies focus is on pay-as-
you-go policies
No focus on energy consump-
tion
No full network model

MDCsim General purpose functionalities avail-
able

Commercial
No full network model

NetworkCloud -
Sim

Extension of CloudSim
Extra communication features like
message passing
Full application model

No networking on packet level.
Less focus on power/cost mod-
els
Issues of CloudSim apply

CloudAnalyst Has a full GUI
Focus on geographical factors

Focus on Specific Purpose.
No full network model

GroudSim Works for Grid and cloud systems.
Works for large scale problems (high
number of requirements)
General features available

Basic Network functionalities
Basic power consumption opti-
mization functionalities

TeachCloud For Educational purposes. Simple to
use GUI

Basic features
Only for academic purposes

CDOSim Focus on Deployment Options
Extension of CloudSim

Unproven for general purposes
and on a large scale

GDCSim Focus on low level power saving meth-
ods and cooling

Unproven for general purposes
and on large scales

SPECI Focuses on component status update
exchange and middleware policies

Does not cover computational
resource reservation or variety of
cloud applications, focused on
the number of failures in a DC

BigHouse showcases queuing models, parallel
performance , result accuracy can be
traded off with runtime

offered network model is limited
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Table 4.15: Topics and problems cloud simulators were used to tackle

Cloud Simulator Topic/Problem
CloudSim Cloud workflow preparation and execution, Allocation based on Mixed-

Integer Programming, VM dynamic performance change, Auction-based
Services, Cloud provider migration planning, Web session modeling,
MapReduce modeling simulation [75], Fault Tolerance [76]

GreenCloud Power efficiency, Communication models and architecture evaluation[77,
78, 79, 80, 81, 82, 83], Data replication solutions [84], Network-As-A -
Service (NaaS) implementation [85], Scheduling for opportunistic grids
[86], High availability in the cloud [41]

iCanCloud Efficient service brokering [87], Storage modeling [88], Live migration
[89], Energy efficiency [90]

NetworkCloudSim Cloud network modeling [91], Cloud resource allocation [92, 93],
CloudAnalyst Service brokering [94, 95] , Load balancing polices [96, 97]
GroudSim Efficient scheduling of scientific workflows [98, 99],Fault tolerant execu-

tion of scientific workflows [100]
CDOSim Cloud deployment options [101] , Cloud provider migration [102]
MDCsim Cloud resource allocation [103], Malicious activity detection through pre-

dictive modeling [104] ,
GDCSim Energy efficiency and cooling inside a data center [71]
SPECI Component subscription networks monitoring [105, 106], Hierarchical

cloud network modeling [107],
BigHouse Cloud workload modeling and planning [108, 109, 110] , Resource alloca-

tion [108, 110], MapReduce modeling simulation [111]
TeachCloud Resource allocation [112, 113], MapReduce modeling simulation[114]
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tensive. However, there is certainly a demand for a detailed application stack that represents

interacting software components. The generic data exchange request or computational re-

quest does not represent the dynamic process that is a full user application.

For example, the four indicators of Big Data: Volume, Velocity, Variety and Veracity

[19] have a big say in specifying the final form of the client application. The impact will not

stop at the real client data though; it will spread to affect simulated use cases, request size,

percentage of error and application components distribution. The simulator designers will

have to put into consideration more complex scenarios where the degree of interdependency

will reach a new level. Security considerations under Big data conditions are another topic

that will influence this process heavily.

4.6.3 Cloud Deployment and Pricing

Deployment options and pricing packages are covered with the current set of simula-

tors. Brokering is offered through CloudSim. The primary objective there is choosing the

provider that satisfies client’s resource request and service conditions with minimal price.

Assuming a client can move between providers freely is not realistic in this case. Provider

lock-in is a well documented issue that can cause client reluctance. The complications of

moving between providers on the technical side (delay, portability, etc) and business side

(release clauses, notice time constraints, price difference) should be considered in an ideal

cloud simulator.

4.6.4 Deeper Look at Reliability and High Availability

Every hardware or software component is bound to fail sometime. Minimizing this time is

a must in an environment where the 5 nines guarantee (99.999% of the time availability)

is becoming a precondition sooner rather than later. This gains more importance as cloud

providers aim at attracting telecommunication carriers (or when telecommunication carriers

are themselves cloud providers). A deeper, more structured look at simulating component

failure, repair, recovery and their potential effect on the applications/services is required.

Providers will prefer any simulator with the opportunity to simulate and test redundancy

policies as well. This does not only mean storage components, but also servers, racks,
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VMs, and software components. Moreover, availability of network components should be

included as part of a more inclusive simulation scenario.

4.6.5 Widen your Horizons: Outside the Data Center

It is noticed that most of cloud simulators do not consider the source of the cloud client data

outside the data center. This is due to the fact that cloud clients access data center through

the Internet. However, with the diverse set of connections seen in a cloud scenario, it would

be interesting to study the effect of the connection method. Will the client connect from

their private clouds? From a hand held device connected to a base station? From a PC?

The client geographic distribution might have an effect as well. Enabling the simulator

users to implement this sort of layout will add great value. The source of energy could

have an effect on the consumption evaluation. It would be interesting to know the effects

of alternating between sources of energy that differ in their “Greenness” as the amount of

energy allowed to be used can change also.

4.6.6 Exploiting High Performance Computing features

Building a new simulator gives the chance to investigate HPC technology features. HPC

offers robust and scalable high computing power methods including using a hybrid plat-

form of CPUs/GPUs and modular design concepts. HPC technologies are not modeled in

any of the aforementioned cloud simulators despite some of them supporting distributed

architecture.

As seen in the previous sections, most of the simulators model the computing

power either as:

• Reserved/not reserved processing unit (termed time shared)

• A million instruction per seconds (MIPs) commodity resource (termed space shared)

In the second method, requests or VMs reserve some of this capacity. This is understand-

able because it is easier to treat a resource as a simple integer.

However, a more sophisticated model of Processing units would be beneficial. It

would be interesting to have a simulator that models a cloud facility that offers HPC capa-

bilities to clients through the cloud. The major impact of implementing HPC in the cloud
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Table 4.16: Research challenges to be tackled by future cloud simulators

Research challenge Areas most included/affected
Lose the grid perspective Resource modeling, service packaging, pricing, user

data modeling, resource scheduling, reliability
More work towards realistic user
application patterns

Application models, user data modeling, data exchange
design, network model

Cloud deployment and pricing Portability, brokering, user geographical distribution,
cloud dynamic pricing, user SLAs

Deeper look at reliability and
high availability

Component failure,repair and recovery, Redundancy,
interdependency, user SLAs

Widen your horizons: outside
the data center

Network model, user geographic distribution, power
consumption, power sources, security

Exploiting High Performance
Computing features

Data center topology, resource modeling, service pric-
ing, user request modeling

Modeling Cloud Storage Redundancy, storage distribution, resource modeling
Modeling Containers along with
VMs

Resource modeling, performance monitoring

would come from the flexibility offered by virtualization. A cloud setup offers the ability

to customize the virtual machine as per the scientists’ specific needs offered by a cloud set-

ting compared to the strictly-preserved system software in traditional HPC offerings. In the

cloud simulator, the ability to model these differences would assist HPC system designers

or supercomputer designers in tackling challenges like pricing, scheduling model changes

from their traditional grid-like model (submit a job and wait) and other traditional cloud

challenges customized to the specific environment of supercomputing (security, portability,

etc).

[115] surveys some of the previous efforts tackling the challenges of coupling HPC

and the cloud. Studying and solving these challenges would be assisted by a simulation

tool that precisely represents HPC resources and typical applications. This should include

modeling features of the application like the percentage of code that can be executed in a

parallel setting.

4.6.7 Modeling Cloud Storage

Cloud storage in general has not gained enough attention by the surveyed simulators.

In GreenCloud, for example, storage is considered to have fixed capacity for a resource
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provider (host, or VM) and a fixed demand by the task (just a number). ”File size” is

considered in CloudSim, while some simulators do not consider storage whatsoever. iCan-

Cloud has a more detailed storage modeling among the current simulators as it supports

models for local or remote storage systems as well as parallel storage and RAID designs.

Missing a full network representation makes the model incomplete in this case. Cloud

storage modeling should be included in a cloud simulator at large. This would cover the

storage components distribution, redundancy and direct and indirect connection between

computational resources like hosts and storage resources. User data storage is a critical

part of the application performance and a solution cannot be evaluated without considering

data locations and connectivity. The impact on pricing is also an area that is continuously

drawing the attention of cloud architects and therefore should be included in a cloud simu-

lator feature list. In addition, modeling the specific database solutions implemented in the

cloud would be a valuable addition that would help understand solution performance.

4.6.8 Modeling Containers along with VMs

Containers are an abstraction performed at the operating system (OS) level that promises

more efficient use of the hardware resources over VMs. Containers are gaining traction in

the cloud providers’ circles as a replacement for VMs either fully or for a specific set of

applications and use cases. When using containers, the user space gets abstracted instead

of the whole hardware stack like in the VM case. [116][117][118] The overhead produced

by running the whole operating system is not incurred every time when using multiple con-

tainers so this saves on memory and CPU compared to VMs running the same workloads.

Doubts over security and efficient management are still there for containers and a balance

of when to use them vs. when to use VMs is still materializing. However, none of the cur-

rently available cloud simulators offer the option to model applications inside containers

covering the resource allocation options along with performance comparison between both

solutions.
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4.7 Chapter Summary

Cloud providers are under constant pressure to deliver highly reliable and continuously

inventive service. The cutting edge in this market will come from better performance met-

ric values or newly added services that clients cannot find somewhere else. This requires a

strong cloud simulation comprehensive solution. This cloud simulator would perform roles

that range from defining the problems to pinpointing bottlenecks and from evaluating poli-

cies to testing the solution endurance and scalability. The process of building a simulator

includes multiple design decisions and requires specifying the shape of many simulator in-

gredients. We have discussed these ingredients and introduced our vision for the simulator

design framework. We then traversed a select set of common cloud simulators, stressing

the main features and limitations within simulator environments.

Open research challenges and areas/topics that are in need of attention from the sci-

entific community were compiled. Covering all these topics along with any new challenges

related to security, and power consumption will enhance the cloud simulator position as a

critical tool for cloud providers. As this area keeps growing, a cloud simulator with proven

efficiency and effectiveness will continue to draw the attention both of the industry and

academic parties.
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Chapter 5

Simulating High Availability Scenarios in Cloud

Data Centers : A Closer Look

5.1 Introduction

With the increased migration of business applications to the cloud, more familiar challenges

related to service performance are arising. The Cloud tenants require certain levels of

performance in aspects like high availability, pricing options and general reliability. On the

other hand, Cloud providers strive to satisfy their clients’ demands according, first, to their

resource requirements and, second, to their service quality requirements. Cloud providers

are in constant pursuit of the holy grail of cloud management systems. This translates to a

system that satisfies client demands for resources, maximizes availability, minimizes power

consumption and, in turn, minimizes cloud providers’ cost.

A main challenge cloud providers face to achieve these goals is ensuring high avail-

ability (HA). Client are becoming more demanding in that aspect and the 5 nines require-

ment (guaranteeing that the data center service is available for 99.999% of the time) is

becoming a reality. High availability includes the combined reliability for components of

all categories including hardware and software components. This covers Network and pro-

cessing resource sides. It also includes the availability of components of all layers (cloud,

racks, servers, VMs, applications, application components).

HA received major attention as soon as the cloud solutions started being deployed. In

[119] for example, we notice a solution depending on RAID-technology used to accomplish

The contents of this chapter have been published in [42]
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the task of managing data across multiple cloud storage providers. Factors like geographic

location, quality of service, providers’ reputation, and budget preferences are taken into

consideration. Early efforts up to 2012 are summarized in [120] which focused on HA

techniques based on multi-core processing, virtualization, and distributed storage. In more

recent work, the authors of [121] presented the HA constraints within the context of a

multiple objective resource scheduling problem in the cloud environment. Their algorithm

was tested on a real life social news application with synthetically generated costs and

loads. Another variation is the one seen in [122], where a failover strategy is presented.

The tested technique combines load balancing algorithms with multilevel checkpointing so

as to decrease checkpointing overheads. In their paper published in 2014, the authors of

[123] offer an architecture for automatic failover between multiple Platform-as-a-Service

(PaaS) cloud providers.

Virtualized storage and redundancy are of prime interest as well. In addition, other

works can be found discussing experiments on VM migration analysis, including security

related aspects [124] and performance analysis of migration algorithms [125]. Finally, in

[126], a solution is provided to ensure HA in cloud storage by decreasing virtual machine

reboot time.

Cloud simulators play a critical role while developing the optimal cloud data center

management System. A cloud simulator offers an environment to implement scheduling

policies and operation scenarios with clear cost advantage and decreased risk. A cloud

simulator serves as the first barrier that can examine resource allocation algorithms, energy

efficiency techniques and HA-aware scheduling algorithms. A comprehensive survey and

feature comparison of the available cloud simulators can be found in [41].

The most popular simulators tried to cover cloud functionality in a generic view that

covers components, processing components and data center management as can be seen in

efforts like CloudSim (along with the extensions) [2][47], GreenCloud [3] and MDCsim

[70]. With all the efforts to propose HA solutions for the different elements composing the

cloud, we still lack a Cloud simulator that can simulate the behavior of multi-tiered appli-

cations, while considering the different failures that can occur in the Cloud, and quantify

their impact on the applications availability.
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Figure 5.1: GreenCloud output
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Therefore, there is a need for a cloud simulator that enables high availability algo-

rithm testing in order to reach a HA scheduling technique that does not sacrifice energy

efficiency. To the best of our knowledge, there is not a simulator that provides the detailed

functionality that enables measuring HA metrics, testing HA algorithms and producing the

results in a way that can serve academia and the industry.

In this work, we introduce a framework to amend cloud simulators with HA features.

We take GreenCloud as an example of a major simulator with a direct focus on green com-

puting and implement these features as an additional measurement layer. This is illustrated

using the specifications of a phased communication application (abbreviated henceforth as

PCA).

Section II introduces a framework to enhance the cloud simulator of choice with

required features in order to turn it into an HA-aware simulator. Section III presents the en-

hanced GreenCloud architecture and added features. Section IV explains the experimental

setup. Section V shows some of the testing results achieved after enhancing GreenCloud

with HA-awareness and then we present conclusions in section VI.

5.2 A framework to implement HA-awareness in cloud

simulators

The notion of guaranteeing a certain standard of high availability has a direct effect on

performance and specially energy consumption in a cloud environment. Implementing

redundancy which is a prerequisite to any highly available algorithm causes the amount

of resources required to serve a certain load to increase linearly. The increase factor in

this case will depend on the number of redundant hardware components. In addition, the

activities required to implement redundancy require computational and network resources

just like user requests. This will, in turn, increase the demand for data center resources

and naturally increase energy consumption. Hence, a careful consideration of the effect

HA algorithms have on the energy efficiency in the cloud is needed. This will assist cloud

providers in making the decision as to which HA algorithm achieves the best trade-off for

them in terms of availability and energy efficiency.
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To enable any cloud simulator to measure availability and evaluate different HA al-

gorithms in a cloud data center, it has to include the following features.

1. HA Features

(a) Component Failure

Components failure simulation means that simulator users would be able to

inject failure events based on any specific time series or distribution that suits

their input. Components covered should ideally include all GreenCloud com-

ponents. This includes servers, racks, virtual machines, switches (all types)

and other network components. This includes the case of the whole data cen-

ter failing in case of a major power problem for example. Another issue here

is the domino effect of failure. If a host fails, all VMs on it and tasks sched-

uled on them would have to suffer failure too. All these resource consumers

(as termed in GreenCloud) would be rescheduled on other servers(resource

providers).

(b) Component Recovery

In a real data center, failed components naturally come back to a running state

after a period of time.

(c) Synchronization Redundancy and Server Groups

Based on the roles they can perform, servers are divided into groups . A

task in phase I is only scheduled on a server in the corresponding(matching)

group. As shown in Fig. 5.2 and the flowchart in Fig. 5.3, as the task in

the first phase (for instance, PCA client phase) is executed, the following task

is added to the scheduling queue matching the next phase(PCA). When that

phase is over, the following task is added to the following queue(IMS-CSCF)

until the last phase. That simulator also guarantees that if a task in the IMS-

CSCF phase fails for any reason(server failure or VM failure for example),

the task will only be scheduled on a server from the same server group(IMS-

CSCF server group).

2. Workload Modeling and Scheduling

(a) Higher Granularity Modeling of Application

i. Adding User-defined Resources
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A task as defined in GreenCloud includes the attributes seen in Table 5.1.

The ability to add extra types of resources means more shades of problems

can be represented. We can represent scenarios in which specific servers

have resources other servers do not. For example, some servers would be

able to offer DB service for a specific number of requests per second. This

can be helpful in simulating scenarios where each server group performs

a predefined role.

ii. Defining Tasks with User-defined Resource Requirements

Emphasizing on the previous feature, task resource specification has to be

amended with the amount the task would request of the new resource (I.O

percentage or number of HTTP requests the task contains for example).

iii. Defining Applications with Diverse Set of Tasks Representing Execution

in Dynamically-defined Phases

A request in this case moves from being just a simple task disjoint from all

other tasks and defined by only its computational resource requirements

and data exchange requirements to something more inclusive. A request

consists of a set of tagged tasks that have functional dependency between

them. The first task would represent the first phase in implementing the

complete request. The request would be fully executed when the task rep-

resenting the last phase gets executed. As seen in the figure , the request

consists of tasks being processed at the App front end component, app

core , app back end then the app core again and the front end component

once more before eventually sending the results to the client. Each one

of these components could be scheduled on a distant VM on a separate

server along the data center or event in other data centers.

(b) Functional Dependency and Dynamic Scheduling of Phases (based on re-

source requests)

Once the request is constructed of a set of tasks that differ in resource re-

quirements, the scheduler is supposed to take that into consideration while

scheduling. A task will only be scheduled on a server with the sufficient re-

sources and also the server with the suitable functionality. Tasks in phase i
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Table 5.1: tasks in GreenCloud- Defining attributes

Variable name Attribute
task(size) Input data to be sent to host the task is scheduled on
task(memory) [Byte] of used RAM
task(storage) [Byte] of disk space
task(duration) computing deadline of tasks in seconds(can be set as pa-

rameter
task(duration) computing deadline in seconds
task(outputsize) standard- Size of output on task completion
task(outputsize) Size of output on task completion
task(outputsize) low comm- Size of output on task completion
task(intercom) Size of inter-task communication

will not be processed or scheduled before tasks in phase i-1 are completed.

3. Monitoring and Reporting

(a) Reporting Availability Status The measurements shown in figure 1 are some-

thing to start with. The metrics included are:

• Failure cases/component (server, VM, etc)

• Failure events/task

• Total outage time and percentage.

The availability of a complex component like a data center can be calculated

factoring in the availability of its subcomponents (server, racks, switches ,

etc).

(b) Reporting Service Total Exec Time & Outage Time

The average completion time of a full request is shown in Fig. 5.1. This

means the total time to complete all of its tasks (phases).

5.3 Enhancing GreenCloud with HA features

5.3.1 GreenCloud scheduling environment

As one of the most detailed cloud simulators available, Greencloud arises as a powerful

tool to implement the proposed functionalities. GreenCloud was developed as simulator
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with a focus on energy efficiency and fine grained networking capabilities. The prime pur-

pose cited for building GreenCloud is mitigating overprovision issues [3]. Overprovision

happens in a data center due to the loads constantly changing on the computational and

communication resources. The average load can be as low as 30% of the data center server

and network capacity [3]. This, in turn, causes the data center to systematically use more

power than the optimal value.

GreenCloud offers simulation capabilities including multiple topology choices (2

layers and 3 layers) and it offers communication through packets using the underlying NS-

2 simulator features. GreenCloud also offers the choice of scheduling tasks(user requests)

on hosts directly or on virtual machines which reside on hosts.

Tasks are modeled as unit requests that contain resource specification in the form

of computational resource requirements (MIPs, memory and storage) in addition to data

exchange requirements (task size variable representing the process files to be sent to the

host the task scheduled on before execution, data sent to other servers during execution and

output data sent after execution).

5.3.2 GreenCloud Scalability parameters

How can we measure GreenCloud scalability and solution scalability using GreenCloud?

scalability of the GreenCloud input scenario is controlled using the following 4 parameters.

1. Data center Load which corresponds to the number of generated tasks. This can be

seen in the following equation.

GenerationRate = TotalDCentermipsCapacity/Task(mips) ∗DataCenterTargetLoad
(5.1)

2. The data center chosen topology which decides the number of servers and network

layers.

3. Task Specification: The resource requirements of a task can make it take longer to

execute. the task size also affect the task scheduling in terms of the host availability.

4. Simulated time: The duration of the experiment is a critical factor too.
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5.3.3 HA enhancements made to GreenCloud

We have implemented the HA features discussed in the previous section in GreenCloud.

As illustrated in Fig. 5.1, failure injection feature was added to GreenCloud. Failures

and recovery can be injected at preset times or taken from a file. Related recovery pro-

cedures were also added. Corresponding service and outage metrics are also available in

the enhanced GreenCloud as seen in the figure. Functional dependency and synchroniza-

tion dependency were implemented including implementing task tagging, server grouping

and the related service metrics. Major changes to the GreenCloud Scheduler are illustrated

in the flowchart in Fig. 5.3. For a start, we distinguish between hardware resource like

RAM, CPU, disk, bandwidth and Functionality resource like the HTTP capabilities, the

availability of DB implementation on the server and so on.,

The scheduler starts by filtering out the list of the all servers, leaving only those that

do include the functionality recourse producing a Func list. Next, the servers that do not

satisfy the hardware resources from the Func list are filtered out and hence an Eligible list

is produced. This list is ordered based on a combination of consumption of energy, relia-

bility (MTTF) and queue size. The task is then scheduled on the most eligible server. This

is done in every phase the task is in until the whole request is served.

In the following paragraphs, the scenario used to test these features is illustrated.

5.3.4 Phased Communication application(PCA) Scenario

The scenario we chose to evaluate the framework through is a case where the cloud client

uses leased cloud resources to simulate the implementation of Phased Communication ap-

plication(PCA). This application makes communication services accessible to developers

using technologies like HTTP and WebRTC. Without loss of generality, this scenario is

used as it demonstrates functional dependency, synchronization dependency and the tagged

tasks phases.

5.3.4.1 Registration

In this scenario, a Web Access component allows HTTP-based clients to connect to an

IMS network. The PCA receives HTTP/REST-based requests from a web client and sends
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these requests to the IMS network. The PCA receives requests from the IMS network and

sends them as events over an event channel to the web client. these requests allow clients

to register to the IMS Core Network. The resource requirements for requests in this phase

are as follows. (i) CPU: 1200 registrations per second where each registrations consumes

2 MIPS; (ii) Memory: 1 active registration, uses 13905 bytes of RAM for the duration of

the registration; (iii) Network: 1 HTTP POST per registration (TCP); 2 SIP Register per

registration (UDP); (iv) Duration of the registration is assumed to be 24 hours.

Once a registration is successful, PCA will automatically re-register the request at

regular interval 3600 seconds (default).Re-registration consumes very little RAM.The re-

source requirements for requests in this phase are as follows. (i)CPU: 2400 re-registrations,

each re-registration uses 1.625 MIP (ii)Network: 2 SIP Register per registration (UDP) This

scenario is illustrated in the sequence diagram in Fig. 4.

5.3.4.2 Audio-Video Calls

A registered PCA Web Client can initiate an audio/video call to a remote user and the call

is accepted/started. The resource requirements for requests in this phase are as follows. (i)

CPU: 1000 calls per second where each call consumes 2.4 MIPS; (ii) Memory: 1 active

call, uses 200210 bytes of RAM for the duration of the call; (iii) Network:2 HTTP POST

per call (TCP); 2 HTTP GET;1 SIP INVITE (UDP);1 SIP ACK (UDP); 1 SIP BYE (UDP);

(iv) Call Mean Hold Time is assumed to be 180 seconds. This scenario is illustrated in the

sequence diagram in Fig. 5.

When implementing this scenario in the enhanced GreenCloud, phases of the full

request can be defined by determining the steps where messages are exchanged and pro-

cessing is required by the PCA and the components interacting with it.

For example, in the registration scenario, a request would go through the following

phases and each phase would yield a task to be scheduled and served.

PCA− App→ PCA→ IMS − CoreNet.
In the next section, initial testing results of the HA enhanced GreenCloud are pre-

sented.
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Figure 5.4: Sequence diagram of the PCA scenario-Register

Table 5.2: Simulation Parameters

Parameter Value/calculation Method
Server count tested for 144 and 1536 servers
Topology 3-tier topology
CPU configuration HP ProLiant BL460c Gen8 Server Blade
Problem size 10 up to 100 requests/second
Average server outage
time

∑n
i=1(average outage for servers in groupi)

Average service comple-
tion time

∑n
i=1(average execution time for tasks in phasei)

Total simulated time up to 3000 time units(seconds)
Average Experiment time 1-2 hours
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Figure 5.5: Sequence diagram of the PCA scenario-Audio-Video Call
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5.4 Experimental Results

Major simulation parameters used include typical data center configuration parameters like

the ones in Table 5.2. server count, topology and server resource configuration all go under

that category. Simulator and input configuration parameters like input size, request resource

specifications and total simulated time are also important here. In addition, the methods of

calculating average service time and average outage time are also documented in Table 5.3.

As mentioned in the previous sections, we used the enhanced GreenCloud to test the

implemented HA features and in order to implement PCA scenario which spans all these

features. Moreover, we show the effect of some of the parameters on major metrics like the

request average response time.

First, Table 5.3 shows some of the results for testing the PCA scenario while chang-

ing the problem size (represented by the number of request/second). The obvious trend

here is an increase in the average response time as the problem size (arrival rate ) grows.

We used minimal number fo servers in order to stress the system as much as possible in

this scenario.

Table 5.4 shows the impact of increasing the dequeuing rate of the phased request.

As the request finished the first phase it goes into the scheduling queue to be executed for

the following phase. this queue is dequeued with the rate shown in the table. As the rate

grows the average execution time (response) for a request decreases of up to 37%. It keeps

decreasing until a limit where it stabilizes and then starts increasing the average response

time. This happens because the dequeuing process adds no more value and just causes an

overhead for the simulator. the simulator runs the dequeuing process while the queue is

empty.

Table 5.5 show the effect of changing the server group sizes on the average response

time of a request. To show that and also to show that this scenario works for large data

center, we tested the same set of features for a large data center of 1536 ( the three-tier

topology configuration in GreenCloud). A gain of up to 17% in the average response time

can be reached by controlling the server group sizes even for the very small load of 10

requests per second. The lesson to be learned here is that the parameter configuration in

terms of server group distribution and dequeuing rate can be have positive impact if they
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Table 5.3: pca scenario simulation results- impact of increasing the arrival rate on average
service time

Dequeuing
Rate

Total
servers

Group 1
size

Group 2
size

Requests
per sec

Average service time

1 call/sec 2 1 1 10 0.36190456
1 call/sec 2 1 1 50 0.74810514
1 call/sec 2 1 1 100 1.24199910

Table 5.4: PCA scenario simulation results-impact of the dequeuing rate on the average
service time

Dequeuing Rate Total
servers

Group 1
size

Group 2
size

Requests
per sec

Average service
time

1 call/sec 140 70 70 100 1.22678165
4 calls/sec 140 70 70 100 0.84924532
1000 calls/sec 140 70 70 100 0.77226364
1 call/sec 2 1 1 100 1.24199910
4 calls/sec 2 1 1 100 0.89261223
1000 calls/sec 2 1 1 100 0.79194872

were adjusted to the exact demands of the input request set. A closer look at the resource

requirements and life time of each phase of the request has the potential to produce sizable

gains in response time and power consumption. An effect on the power consumption metric

was recorded as well. For the large data center setup (1500 servers), A gap of 14.5 kW*h

was recorded between the two server group configurations used. This gap could grow as

the load starts increasing to meet the data center capacity. The lesson to be learned here is

that the parameter configuration in terms of server group distribution and dequeuing rate

can be have positive impact if they were adjusted to the exact demands of the input request

set. A closer look at the resource requirements and life time of each phase of the request

has the potential to produce sizable gains in response time and power consumption.

Table 5.5: pca scenario simulation results-large data center

Group 1
size

Group 2
size

Average service time Power consumption

750 750 0.26823299 17111.9 kW*h
1500 1 0.31653402 17095.4 kW*h
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Table 5.6: sample research questions that can be investigated using the extended tools

Question Corresponding feature in GreenCloud
A message shall be routed through the WCG system
in < 50ms in 85% of time when its average CPU
<= 75%

Service completion time

max processing delay that a HTTPS message should
incur traversing the WCG shall be <=100 ms.

Average service time (or phase time)

support 99.999% availability Outage/available percentage
handle up to 6M subscribers. number of tasks handled
Single fault should not completely stop a system Implementing dependencies
Should automatically reject calls/tasks in order to
avoid an overload

Tasks do not get scheduled in case of
Overload

Node shall generate a response to a service request
within 750 ms in 95% of the cases

Time for a task to be scheduled?

At an offered load of 150%, there shall be at least a
throughput of 85%

Load is measured & Number of suc-
cessful tasks is measured

At an offered load of > 150%, the throughput shall
show a graceful decrease.

data center crashes can be measured

Reboot Time 150 sec It can be measured

5.5 Chapter Summary

The cloud computing environment current state of affairs imposes the need for cloud so-

lutions that enables high availability capabilities without sacrificing energy efficiency. To

address this need, researchers need resilient comprehensive algorithms as well as sufficient

tools that enables them to evaluate new techniques. We introduced a framework to amend

GreenCloud cloud simulator with HA features. The sides covered were HA features, work-

load modeling and scheduling features,and reporting/monitoring. This was illustrated using

the specifications of the PCA example.

After implementing the PCA scenario for different topologies and data center con-

figurations, the results show that gains in the average response time can be achieved by

controlling parameters including the server group distributions and dequeuing rate. This

includes adjusting the scheduling decisions and the parameter configuration according to

the demands of the input request set. A closer look at the resource requirements and life

time of each phase of the request has the potential to produce sizable gains in response time

and power consumption. Finally, a list of examples of real scenarios/questions that can be
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answered oe evaluated using the extended tool can be seen in Table 5.6.
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Chapter 6

Conclusion
With the transformation of cloud computing technologies from an attractive trend to a busi-

ness reality for clients and providers, the need is more pressing than ever for efficient cloud

service management tools and techniques. As cloud technologies continue to mature, the

service model, resource allocation methodologies, energy efficiency models and general

service management schemes are far from saturated.

It can be seen that as much as cloud computing as a paradigm redefines the ser-

vice model and client priorities, cloud computing requires a major shake up on the cloud

provider side as well. Performance and service delivery will still depend on the providers’

policies/algorithms that affect all operational areas. This ranges from security, applica-

tion portability to communication efficiency and reaching energy efficiency and resource

allocation in a data center.

cloud Data center resource allocation/management represents a critical area in need

of urgent attention. Resource allocation has a direct impact on two sides that are at the core

of why the cloud is financially effective: resource utilization and energy efficiency. Simply

put, the better resource utilization is, the more client requests the data center (cloud) can

serve and the better the performance is. As for energy efficiency , it is a pressing issue for

cloud providers. Power costs represent between 25% and 40% of the operational expenses

of a data center. [8] The carbon footprint of a data center is a political and environmental

challenge for cloud providers as well. The objective this thesis aimed for is to tackle a set

of the more pressing challenges faced by cloud providers in order to enhance cloud service

performance and save on providers’ cost. This is done by exploring innovative resource

allocation techniques and developing novel tools and methodologies in the context of cloud

resource management, power efficiency, high availability and solution evaluation.
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6.1 Thesis Summary and Future Work

6.1.1 Resource allocation in a network-aware cloud environment

Chapter 2 starts by offering a comprehensive solution to the resource allocation problem in

a network-aware cloud data center. This offers a response to the wind of incoming request

to the cloud provider in the form of VM reservation requests or communication requests

from existing VMs. The optimal solutions tackles the constraints of computational resource

scarcity, network resource scarcity and requests deadline(lifetime) in order to achieve to

objectives. These objectives are minimizing blocked requests ( or maximizing served re-

quests) and minimizing average tardiness(service delay per requests. The Chapter tackles

the problem complexity by , first, evaluating multiple heuristics. This heuristics are much

faster than the optimal solution and are considered more practical specially for numerous

requests (hundreds or requests or more). However, heuristics are ( as the name indicated)

offer no optimality(or sub-optimality ) guarantees which motivates the third solution of-

fered int he chapter. A suboptimal solution based on relaxing the optimal formulation is

offered and evaluated compared to the previous solutions.

A logical future step is exposing the solutions to higher scrutiny to further evaluate

their suitability to cloud environment. Despite initially proving the potential efficiency of

this solution, the solution can be enhanced by further investigation into additional problem

parameters.

Examples include:

1. the effect of different communication parameters on this scenario in terms of vary-

ing topologies, traffic models and distributions.

2. More layered computational resource models. VMs are not monopolizing virtual-

ization at the moment as was the case earlier. Containers are gaining momentum and

this could affect the application model in terms of resource separation and deeper

virtualization imposed by containers and the impacts this could cause for perfor-

mance and data security/

3. The resource model can be further structured to reflect the virtualized cloud tech-

nology. Resources like demanding a specific application or a specific service to be
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running on the server a request is placed on can be part of the demand matrix. This

cloud replace the conventional resource allocation model (X MIPs, Y GB, etc) with

a more layered resource request matrix (a machine with X Http request per second

capabilities for example) along with all challenges this would bring.

6.1.2 Energy efficiency resource allocation in cloud environments

Chapter 3 addressed the Second concern of resource allocation in the cloud, energy effi-

ciency. After formulating the problem, A novel consolidation based technique is offered

where VM state prediction is employed. the evaluation of this technique against conven-

tional technique shows an encouraging potential in terms of metrics like acceptance rate

(served requests) and power consumed per server and per served request. However, with

the uncertainty around the live migration impact on performance a solution that offers the

best possible energy efficiency without the need to depend on consolidation is important.

Chapter 3 offers that technique and show its potential in terms of power consumed per

server, power consumed per request, acceptance rate and the percentage of serves used at

the data center.

future avenue for this work’s expansion are detailed as follows.

1. The rise of the container as a VM replacement offers an interesting challenge. The

more specialized and granular nature of containers means the current model of mi-

grate and switch off energy efficiency algorithms employ cannot be left as is. A

more complex view of the relation between neighbor containers is required here.

2. The nature of requests and distribution of request lifetime are under major trans-

formation with the increasing penetration of Internet of Things applications. The

traffic is going towards a model with more requests with less resource required.

The impact this has on the performance bottlenecks is a deciding factor for future

resource allocation algorithms.

3. Combining our methods with Dynamic Voltage and Frequency(DVFS) scaling is

something to be explored. DVFS is a common method of controlling the power

consumption of a server by adjusting the processing power to the utilized comput-
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ing power. This could prove an interesting addition to the algorithms proposed in

Chapter 3

6.1.3 Cloud simulators as a performance enhancement tools for

cloud solutions

Chapter 4 and 5 aim to enhance the solution quality assurance process in cloud environ-

ments. This is done by investigating the cloud simulation tools in terms of the application

model, architecture and performance. This is followed by stating the design challenges

faced by cloud simulator architects and then offering a framework to dictate the cloud sim-

ulator design process. Chapter 5 follows by putting this process to the test. This is done by

focusing on enhancing a specific performance aspect in a cloud data center which is high

availability of cloud data center components. The required features were compiled and

GreenCloud cloud simulator was extended with these features. Real application scenarios

were implemented using the enhanced simulator as well to demonstrate the new scheme.

The challenges still to be addressed regarding cloud simulators topics were addressed

in detail in Section 4.6. Each of these challenges would represent a possible avenue for this

work’s expansion. Finally, the primary argument made in this thesis is that the proposed

resource allocation and simulation techniques can serve as basis for effective solutions to

mitigate the performance and cost challenges faced by cloud providers pertaining to energy

efficiency, user demands’ satisfaction, and resources utilization.
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