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Abstract

With the advent of next generation DNA and RNA sequencing, scientists can obtain a more

comprehensive snapshot of the bacterial communities on the human body (known as the ‘human

microbiome’), leading to information about the bacterial composition, what genes are present,

and what proteins are produced. The scientific community is in a phase of developing the

experiments and accompanying statistical techniques to investigate the mechanisms by which

the human microbiome affects health and disease. In this thesis, I explore alternatives to the

standard weighted and unweighted UniFrac distance metric that measure the difference between

microbiome samples. These alternative weightings allow for the extraction of subtle differences

between samples and identification of outliers not visible with traditional methods. I also apply

next generation DNA sequencing and computational analysis techniques to gut microbiome data

from a nonalcoholic fatty liver disease cohort to examine the potential role of the microbiota in

this condition.

Keywords: Human microbiome, next generation sequencing, bioinformatics, nonalcoholic

fatty liver disease
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Glossary

alpha diversity: A measurement describing a single microbiome, as opposed to describing

differences between separate microbiomes. Examples of alpha diversity indices include species

richness (the number of different taxa detected), as well as Simpson’s index and the Shannon

diversity index, which take into account the proportional abundance of different taxa.

beta diversity: A measurement describing the differences between two microbiomes. Com-

monly used beta diversity indices include the unweighted and weighted UniFrac distance metrics,

and the Bray-Curtis dissimilarity.

human gut microbiome: Analysis of the human gut microbiome by next generation sequencing

technologies is generally performed on stool samples. Thus, the term ‘human gut microbiome’

refers generally to the microbiome of the lower human gut (large intestine and rectum). Note

that the ‘mouse gut microbiome’ may refer to experiments done using mouse cecal contents,

which is different from taking stool samples.

microbiome: The microbiome is a community of microbiota living in one site. The com-

munity can be complex and consist of many different taxa. For example, writing may refer to

the ‘human microbiome’ or the ‘human gut microbiome’.

operational taxonomic unit (OTU): An operational taxonomic unit is the most atomic taxo-

nomic unit used in a study that is specific to that study. Usually OTUs are grouped according to

97% sequence identity.

UniFrac: Developed in 2005[75], UniFrac is a commonly used distance metric in micro-

biome studies. It measures the distance between samples and enables subsequent multivariate

analyses such as principal coordinate analysis.
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Statement of work

Jia R. Wu performed the sample migration experiment and generated the relevant figures

for the Expanding the UniFrac toolbox chapter. He also wrote the original draft of the relevant

methods sections, however these were edited and incorporated into the chapter by myself. The

chapter has since been submitted to PLOS ONE as a standalone paper.

The sample collection and DNA extraction for the non alcoholic fatty liver disease experi-

ments were done by the Allard lab research group, as described in Appendix B. I ran a PCR to

amplify the DNA for the 16S rRNA gene tag sequencing experiment. The actual sequencing for

both the gene tag and the metageonomic experiments were performed by the London Regional

Genomics Centre. Dr. Greg Gloor ran the steps leading up to the generation of the table of

counts per taxa per sample for the 16S rRNA gene tag experiment. I completed the downstream

analysis for the 16S rRNA gene tag experiment, as well as all of the data processing and analysis

post-sequencing for the metagenomic experiment.
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Chapter 1

Introduction

This thesis focuses on the human microbiome, its relation to human diseases, and techniques

used in the analysis and exploration of data derived from it. During the course of my thesis, I

conducted one study about nonalcoholic fatty liver disease, and investigated alternate weightings

of a common microbiome analysis technique (UniFrac). Each of these topics is represented as a

chapter of my thesis.

1.1 The human microbiome

Approximately half of the cells that make up the human body are bacterial [122]. Trillions of

these bacteria live in the gut [46], and have a massive metabolic potential. For example, the gut

microbiome has been shown to produce changes in hormone levels [81], short chain fatty acid

levels [136], and ethanol levels [64], to name a few. The human gut microbiome can also digest

polysaccharides otherwise unusable by humans [35].

This massive metabolic potential produces measurable physiological effects. Transplanting

gut bacteria from obese mice to lean mice has been shown to allow lean mice to absorb more

calories from the same amount of food, thereby becoming more obese [135]. The microbiome

can also affect behavior: Completely germ free mice exhibit more anxiety-like behaviors than

specific pathogen free mice that contain a complex gut microbiome [95].

1



2 Chapter 1. Introduction

Study of the human microbiome opens up a host of possibilities for reducing the effects

of disease and improving quality of life. However, until recently, a deep understanding of

the human microbiome has been beyond the reach of available technology. For example,

Escherichia coli is a common model gut bacteria because it is easy to culture, however in reality

this species makes up less than 1% of the average human gut microbiome [4].

With the advent of next generation DNA and RNA sequencing, scientists can obtain a

more comprehensive snapshot of the bacterial composition of the microbiome, what genes are

present, and what proteins are produced [24]. We are in a phase of developing the experiments

and accompanying statistical techniques to elucidate the exact mechanisms by which the

human microbiome affects health and disease. Armed with a deeper understanding of how the

microbiome works, we may be able to modulate the microbiome to improve quality of life.

1.2 Exploring the human microbiome

The advent of next generation DNA sequencing prompted the development of various experi-

ments on sampling the human microbiome. Samples can be collected by swabbing the target

body site or collecting excretions such as saliva or stool. Products such as DNA or RNA may be

extracted from these samples as appropriate for the analysis.

A comparative study design involves an experimental group and a control group. The study

subjects can be patients with disease and healthy controls [77], people who are susceptible and

resistant to a condition [131], or patients before and after a medical intervention [45]. The

questions that scientists in this field want to answer are: Is the human microbiome driving or

associated with the difference between the two groups? If so, what is the mechanism of action?

There are also exploratory studies that try to determine the similarities in the microbiomes of

specific body sites among patients with similar medical conditions.

Section 1.4.3 expands on the role that next generation sequencing plays in microbiome

research.
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1.3 Illumina next generation sequencing

The Illumina MiSeq and HiSeq are next generation sequencing platforms. The Illumina MiSeq

machines yields up to 25 million paired end reads up to 300 nucleotides long. The Illumina

HiSeq machines yield up to 4 billion paired end reads [6]. The general sequencing workflow is

as follows:

1. DNA is amplified or fragmented to smaller pieces of approximately 1000 nucleotides or

less

2. Adaptors are joined to the ends of the DNA

3. The DNA is denatured

4. The DNA is placed on a flow cell covered in oligonucleotides complimentary to the

adaptor sequences, such that the DNA fragments are bound to the oligonucleotides

5. The DNA on the flow cell is replicated in situ to form clusters of identical sequences

6. The DNA is denatured

7. Primers, nucleotides, DNA polymerase, and fluorescently labelled deoxyribonucleotide

triphosphate terminators are added

8. A microscope can detect the fluorescently labelled nucleotide terminators for each added

base on each cluster of identical sequences, allowing the DNA to be sequenced.

9. Fluorescent terminators are removed, exposing a 3’OH

10. Steps 7-9 are repeated until the desired number of cycles is complete.

The Illumina sequencing technology is the industry standard for metagenomic studies [6],

and library preparation kits and protocols are available commercially. Roche 454 pyrosequencing

[80] and sequencing on the SOLiD platform [125] [88] are other next generation sequencing
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options. The pyrosequencing platform has the advantage of longer reads, but yields higher error

rates and is more expensive. SOLiD uses shorter read lengths and also has a higher error rate

[79] [124].

One unappreciated feature of Illumina and other next generation DNA sequencing technolo-

gies is that they deliver data as parts per machine limit, not a count of molecules in the sample

[33] [34] [42] [40] [41]. Different Illumina machines are configured to yield different numbers

of reads - the MiSeq machines yield millions of reads while the HiSeq machines yield billions

[13]. The total number of reads is not reflective of any property of the biological sample. As

parts per machine limit, the read counts should be analyzed as compositional data [1].

1.4 Gene tag abundance

Historically, Koch’s postulates have been used to determine if a microbe is a disease-causing

pathogen. Koch’s postulates are:

1. The microbe must be present in all cases of the disease.

2. The microbe must not be present but non-pathogenic in other diseases.

3. If the microbe is isolated in pure culture, it can be used to induce the disease [62].

Fredricks et al. have created a modified set of postulates that takes DNA sequencing into

account which can be applied to differentially abundant taxa detected by gene tag sequencing

[36]:

1. A nucleic acid sequence belonging to a putative pathogen should be present in most cases

of an infectious disease. Microbial nucleic acids should be found preferentially in those

organs or gross anatomic sites known to be diseased and not in those organs that lack

pathology.
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2. Fewer, or no, copy numbers of pathogen-associated nucleic acid sequences should occur

in hosts or tissues without disease.

3. With resolution of disease (for example, with clinically effective treatment), the copy

number of pathogen-associated nucleic acid sequences should decrease or become unde-

tectable. With clinical relapse, the opposite should occur.

4. When sequence detection predates disease, or sequence copy number correlates with

severity of disease or pathology, the sequence-disease association is more likely to be a

causal relationship.

5. The nature of the microorganism inferred from the available sequence should be consistent

with the known biological characteristics of that group of organisms. When phenotypes

are predicted by sequence-based phylogenetic relationships, the meaningfulness of the

sequence is enhanced.

6. Tissue-sequence correlates should be sought at the cellular level: efforts should be made

to demonstrate specific in situ hybridization of microbial sequence to areas of tissue

pathology and to visible microorganisms or to areas where microorganisms are presumed

to be located.

7. These sequence-based forms of evidence for microbial causation should be reproducible.

However, Koch’s postulates do not account for when the same bacteria can have a very

different expression profile in health and disease, such as Lactobacillus iners in bacterial

vaginosis [77]. Gene tag abundance takes us beyond Koch’s postulates to the effect of consortia

of microbiota.

Gene tag abundance experiments provide an estimate of the proportion of different bacterial

taxa in the sample. This can be used to answer questions such as:

What bacterial taxa make up the microbial community? Scientists often want to characterize

microbiota for certain conditions. Perhaps body site microbiota of people with a condition share
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certain bacterial taxa or microbial properties. The idea is that characterizing what these core

microbiota are can lead to insight on core functions and how they can be altered when the core

microbiome is disrupted.

For example, the core gut microbiome was described by one group to have three enterotypes

[4]. The enterotype structure would have been very useful for measuring the association of

certain enterotypes with conditions, and for observing how gut microbiota transition across

enterotypes. However, when another group studied a diverse population including non-Western

people, the enterotypes did not hold [146]. A second group showed that these enterotypes were

artifacts induced by the analysis methods that depended on the abundance of the predominant

taxa [43]. The gut microbiota are highly diverse between individuals, and the enterotype model

does not capture this diversity.

An example of a successfully characterized body site is the vaginal microbiome. The

vaginal microbiome is known to be Lactobacillus dominated, except in bacterial vaginosis

[55] or anaerobic vaginitis [26], where the microbiota are much more diverse. The bacterial

composition of vaginal microbiomes in bacterial vaginosis have high variation, however their

expression profiles are similar, allowing for functional characterization in the absence of

taxonomic characterization [77].

Are there any differentially abundant taxa between conditions? Some theories of disease

progression include the involvement of bacteria as pathogens. Others involve bacteria as

probiotics, preventing disease progression.

For example, in atopic dermatitis, a flare-up is defined as an acute exacerbation of disease

despite standard treatment. Flare-ups are associated with a significant increase in the propor-

tion of Staphylococcus aureus on the skin [63]. However, the exact mechanisms by which

Staphylococcus aureus causes atopic dermatitis are unknown.

Bacteria have also been used for therapy in the treatment of Clostridium difficile. Stool

transplants have been found to be more effective than the vancomycin antibiotic [97]. Work is

being done to standardize treatments: In one study, 33 microbes cultured from a healthy donor
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were used to successfully treat symptoms, with no recurrence throughout the 6 month follow up

period [106].

Do samples from different conditions cluster together? Beta diversity distance similarities

between microbiomes can be examined for distinct sites or conditions. This is often done with

distance or dissimilarity metrics, such as the UniFrac distance and the Bray Curtis dissimilarity.

Sometimes when the data is plotted, there appears to be separation between groups, even

if specific taxa are not differentially abundant. One example of this is a study on discordant

gut microbiomes between twins in Malawi where one twin has a protein-deficient form of

malnourishment called kwashiorkor, and the other is healthy [127]. In this case the microbiota

were seen to diverge the most during treatment with ready-to-use therapeutic food.

1.4.1 16S rRNA gene sequencing experiment

The gene tag chosen for analysis throughout this thesis is the gene for the 16S subunit of

ribosomal RNA. The 16S rRNA gene is present in all known bacteria and has regions of

variability interspersed with regions of high conservation. This allows primers to be made to

match the conserved regions, such that the variable regions can be amplified, sequenced, and

used to infer taxonomy. Entire databases exist specifically to match the 16S rRNA gene with

taxonomy, such as SILVA [111], the Ribosomal Database Project [20], and Greengenes [23].

Specifically, this work uses the 16S rRNA gene primers from the Earth Microbiome Project

protocol [38], which amplify the V4 variable region of the 16S rRNA gene. This region was

identified by PrimerProspector to be nearly universal to archaea and bacteria [141].

1.4.2 Operational Taxonomic Units

Unlike more distinct species, such as mammalian species, bacteria engage in horizontal gene

transfer from phage, other bacteria, and plasmids. Bacterial genomes are highly variable, and

regions used to identify bacteria vary in a continuum rather than clusters of similar sequences.
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Historically bacteria that have 97% identity in a variable region are considered to be the

same taxa. The 97% cutoff was arbitrarily chosen to best map sequence data to bacterial

classifications. This threshold maximizes the grouping of bacteria classified as the same species

while minimizing the grouping of bacteria classified as different species. Before sequencing

bacterial classification was often done by appearance or by metabolic products, so there are

examples where bacteria classified in the same species are actually genetically very different, or

bacteria classified in different genera are genetically very similar [18].

However, it is difficult to determine how a batch of sequences should be partitioned into

groups of 97% identity. Two common ways of doing this are open reference OTU picking [114]

and closed reference OTU picking. Open reference OTU picking performs a clustering algorithm

that partitions the groups and then later assign taxonomic identity by matching the sequences

with public databases [29]. Closed reference OTU picking starts off with seed sequences from

known bacteria and performs the clustering such that the 97% identity groups are centered on

the seed sequences. In any case, the resulting taxonomic groupings are known as Operational

Taxonomic Units (OTUs), and are used consistently within the same experiment. While OTUs

can be annotated with standard taxonomic names such that results can be compared between

experiments, technically the taxonomic groupings used by different experiments are not likely

to be the same. The experiments done in this thesis use open reference OTU picking.

Finally, different variable regions of the 16S rRNA gene used to cluster the OTUs are

recommended for identifying archaea and bacteria [61]. Recent discoveries of 35 new bacterial

phyla raise the question of whether entire categories of bacterial taxa are missed by 16S rRNA

sequencing technologies [54]. For now, though it is far from perfect, the 16S rRNA gene

represents the best gene tag available.

1.4.3 General protocol and rationale

The 16S rRNA gene sequencing experiment (Fig. 1.1) uses next generation DNA sequencing

to estimate the proportional abundance of different bacterial taxa. Samples are extracted and



1.4. Gene tag abundance 9

prepared for sequencing, and then the sequenced reads are collated into counts per assumed taxa

per sample. The resulting table undergoes statistical analysis. The process by which these data

are collected and analyzed has many steps.

Pre-sequencing processing

There are several very general steps to the pre-sequencing process (Fig. 1.1):

Figure 1.1: 16S rRNA gene tag experiment workflow. This shows the workflow from sample
collection to data generation. The end result is a count table of reads per operational taxonomic
unit per sample.

1. Take a biological sample and extract the DNA

The sample can be collected swabbing the target body site or by collecting samples in

some other way. DNA extraction is usually done with common commercial kits.

2. Run a PCR amplification

As discussed previously, the gene tag experiments in this thesis amplify the V4 region of

the 16S rRNA gene, following the Earth Microbiome Project protocol [13]. The set of

primers used by the Gloor lab research group are combinatorial barcoded, so that all the
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samples from the same experiment can be sequenced in the same sequencing run, and be

differentiated afterwards [42].

3. Perform sequencing

I used 2x220 nucleotide paired-end sequencing on the Illumina MiSeq platform. The

220 nucleotide paired ends allows for paired sequences to be overlapped in the middle to

reconstitute the full sequence of the V4 variable region, which is 298 base pairs in size.

Post-sequencing processing

Here are the steps for going from raw sequenced reads to a table of counts per taxa per sample.

1. Assemble the paired ends of sequenced DNA

The paired sequences are overlapped in the middle, resulting in the full variable region

amplified by the primers.

2. Demultiplex the raw sequence

The barcodes are used to separate the sequences according to what sample they came

from.

3. Group the reads into operational taxonomic units (OTUs)

The Gloor lab research group uses UCLUST [28] to cluster the reads into groups of 97%

identity and UCHIME [30] to filter out chimeric sequences.

4. Annotate the OTUs with bacterial taxonomy

Annotation was done by matching our OTUs to the SILVA database [111].

5. Generate a phylogenetic tree

This can be done using the center-most sequence of each cluster that forms each OTU, and

putting the sequences in a multiple sequence alignment, using software such as MUSCLE

[27]. The multiple sequence alignment can be converted into a phylogenetic tree using

software such as FastTree [109].
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Alternatively, an Individual Sequence Unit (ISU) based approach rather than an OTU based

approach can be taken, where the individual sequences are preserved even after grouping into

OTUs, so that different strains within the same OTU can be analyzed separately [10].

Next generation sequencing experiments can deduce: Is there a significant difference in the

microbiome between the control and the experimental groups? Is this difference due to different

types of microbes present or the microbial genes present? Do separated groups exist in the data?

Are the abundances of certain taxa or genes correlated with each other, or with patient metadata?

Through metagenomic experiments and statistical analysis scientists may gather clues about the

larger questions of the mechanism of action.

In this thesis, I have performed two experiments that can be done with microbiome next

generation DNA sequencing data: gene tag abundance and metagenomic sequencing [115].

The tag used for gene tag abundance here is the conserved 16S rRNA gene, which is related to

taxonomic identity [42].

1.4.4 Data analysis

There are two goals in gene tag data analysis. First, is there any structure in the data (separation,

clustering, correlations, differentials, etc.)? Second, what drives the structure in the data?

Separation or clustering can be examined by determining the dissimilarity between each

sample, and using these dissimilarities to plot the samples as points on a principal co-ordinate

graph. The following sections will go over the most commonly used distance metric in micro-

biome research, called UniFrac, as well as the Principal Co-ordinate Analysis multidimensional

scaling method for plotting the points on a graph. Afterwards the data can be visually or

mathematically inspected for separation or clustering. The technique used for determining if

taxa are differentially abundant between groups is the same technique used for determining if

gene annotations are differentially abundant between groups in the metagenomic experiment,

and has its own section, titled Microbiome data is compositional.
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Principal Component Analysis (PCA) is a data reduction strategy used for multivariate statis-

tics. However, the OTU abundances derived from the 16S rRNA gene sequencing experiment

are proportional, so the PCA (which assumes a linear differences) is not applicable. Instead,

the data must be transformed in some way into a Euclidean distance [3]. This is the rationale

behind the development of the UniFrac distance metric. Using the pairwise UniFrac distances

between the samples, a PCA can be performed to analyze the data.

UniFrac

UniFrac is a distance metric calculated between samples [75]. With the distances between

all pairs of samples, samples can be plotted as points in a principal coordinate analysis, and

separation or clustering of groups of samples can be examined. The UniFrac calculation requires

a table of counts per OTU per sample, and a phylogenetic tree (usually calculated based on a

multiple sequence alignment of OTU seed sequences). Unlike other commonly used measures

such as the Bray-Curtis dissimilarity, this measure takes into account evolutionary distance. The

original unweighted UniFrac is based on the presence or absence of OTUs in samples [75] while

the weighted UniFrac incorporates proportional abundance [74]. Since the original UniFrac

paper was published in 2005, it has become widely used in the microbiome field and garnered

over 2000 citations, according to Google Scholar.

Unweighted UniFrac

Unweighted UniFrac is performed on two samples using a phylogenetic tree. The branch

lengths of the tree associated with OTUs present in one sample but not the other are divided by

the sum of all the branch lengths:

unweightedUniFracdistance = unsharedbranchlengths/totalbranchlengths
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The distance is maximized at 1 when the two samples have no OTUs in common, and

minimized at 0 when the set of OTUs present in the samples are the same.

The qualitative rather than quantitative nature of unweighted UniFrac makes the metric very

sensitive to sequencing depth. A greater sequencing depth generally results in the detection of a

greater number of taxa. To account for this problem, microbial ecologists use a technique called

rarefaction to normalize the sequencing depth across samples by random sampling without

replacement [14], although this is controversial [89].

In the UniFrac paper, the authors pointed out that UniFac was unstable with rarefaction and

recommended that users take the average of multiple UniFrac instances [76]. This is generally

disregarded, sometimes even by the original authors [87] [91].

In the next chapter, Expanding the UniFrac Toolbox, I describe how unweighted UniFrac is

not replicable between rarefaction instances, using work done by Jia R. Wu. This means that

any published finding done with an unweighted UniFrac analysis is suspect, especially if only

one rarefaction instance is reported or if most of the variance is not explained by the first and

second principal components. I also showcase two new UniFrac-based measurements that I

developed to extract more varied information from microbiome data.

Weighted UniFrac

Unlike unweighted UniFrac, which uses only the presence or absence of OTUs in the

calculation [75], weighted UniFrac weights the branch lengths of the phylogenetic tree using the

proportional abundance of the OTUs [74] (Fig. 1.2). This helps normalize for sequencing depth,

and rarefying the counts beforehand is not required to run the weighted UniFrac calculation.

OTUs with low counts will have highly variable counts between rarefactions, and the use

of weighted UniFrac prevents this variability from affecting the metric. Weighted UniFrac

is a linear weighting - it increases linearly with the proportional abundance. However, the

difference between values in the dataset are not linear, because the sum of the total number of
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Figure 1.2: Unweighted vs. weighted UniFrac weights. The solid line represents the weight
that unweighted UniFrac would produce with the given proportional abundance, and the dotted
line represents the weight that weighted UniFrac would produce.

reads is constrained by the sequencing machinery [37]. Alternative weightings and nonlinear

transformations of data need to be explored, and this is the focus of Chapter 2.

Principal Co-ordinate Analysis

Once the dissimilarity between each pair of samples has been calculated, they can be visualized

on a plot, with each sample represented as one point. For visualization, the data should be

placed so distances between samples are preserved as much as possible, so that clustering

and separation of samples can be clearly seen. This is done using the Principal Co-ordinate
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Analysis method of multidimensional scaling [25], shortened as PCoA. PCoA is a singular value

decomposition of the distance relationships.

To plot all of the samples as points in space such that the distances between each pair of

samples are preserved, multiple dimensions are required. In this data specifically, the number

of dimensions required is equal to one less than the number of samples. PCoA rescales all the

dimensions as components, so that the first component captures the largest distances, or spread

of the data, the second component captures the largest distances remaining in the data after the

first component, and so on. This way, even if only the first two components are used to plot all

the samples as points on a two dimensional graph, the data is spread out to enable visualization

of separation or clustering. Ideally the first and the second principal components should explain

most of the distance in the data.

After multidimensional scaling the data can be analyzed in several ways. The data can

be examined by k-means analysis clustering [132] or by unsupervised clustering where the

computer calculates optimal clustering without knowing the number or placement of the clusters

beforehand.

The points can also be measured for separation by looking only at their position on the first

principal component axis, especially if the first axis covers the majority of the variation in the

data set. With each sample associated with a number on the first principal component axis, one

can examine the effect size of two different groups by taking the mean positions and dividing

by the standard deviation.

There are several limitations of principal co-ordinate analysis. First, it is an indirect analysis.

If a separation between groups is found, further examination is necessary to determine the

source of separation. Second, the PCoA is only as good as the dissimilarity metric used. Lastly,

one cannot easily determine the contributions of each OTU to the principal components.
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1.5 The metagenomic experiment

Deep metagenomic sequencing provides an estimate of the proportion that each type of gene

composes out of the total genes present in the genetic material of the sample. This can be used

to answer questions such as:

What is the metabolic potential of the microbial community? The metabolic potential is

made up of all the protein functions that are encoded by the genetic material present in the

sample. Biologically speaking, these protein functions represent the enzymatic reactions that

the microbiome could produce if all the genes were expressed. For example, the human gut

microbiome is known to facilitate methanogenesis. However, methanogenesis is a common

function in rare taxonomic groups (mostly Archaea). Metagenomic sequencing shows that the

human gut microbiome has more genes related to methanogenesis than expected - a feature that

would have not been as prominent in 16S rRNA gene sequencing analysis [39].

Are any genes, functional categories of genes, or metabolic pathways made up of genes

differentially abundant between groups? In 2006, Turnbaugh et al. published a paper showing

that an obesity associated gut microbiome in mice had an increased capacity for energy harvest

[135], sparking more research into the gut microbiome and obesity related ailments such as

diabetes [68] and nonalcoholic fatty liver disease [147]. The ability to check if genes, functional

categories of genes, or pathways are differentially abundant between groups allows scientists to

find clues about the mechanisms by which the microbiome affects certain diseases. All of this

information can be determined by either imputation or actual sequencing, discussed in the next

sections.

1.5.1 Sequencing

The goal of metagenomic DNA sequencing analysis is to examine the metabolic potential of the

microbiota in the microbiome. This is done by identifying genes by DNA sequence, sorting

them by the known function of the protein that they encode (such as the catalysis of a certain
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Figure 1.3: Metagenomic experiment workflow. This shows the workflow from sample
collection to data generation. The end result is a table of number of sequencing reads per
functionally annotated gene per sample.

reaction), and checking if any functions are differentially abundant between conditions. Further

analysis can also include checking for pathway enrichment, and assembling the sequenced reads

into genomes. The general protocol for metagenomic analysis (Fig. 1.3) is as follows:

1. Take a biological sample and perform DNA extraction

The sample can be collected by swabbing the target body site or collecting excretions.

2. Prepare the DNA for sequencing

Fragment the DNA, and filter for the desired size. These steps are all part of the standard

Illumina library prep protocol for the HiSeq.

3. Sequence the DNA.

Single end sequencing was performed on the Illumina HiSeq platform by our collaborators

at the London Regional Genomics Centre, with our samples barcoded so that they could

be pooled into the same sequencing run. There are two options for read length: either 50

or 100 nucleotides. I chose the longer one for ease of assembly and mapping.
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4. Create an annotated library of reference sequences

The annotated library contains DNA sequence annotations about what kind of protein each

sequence codes for. The first step to creating the annotated library is to gather a database

of sequences. The database of sequences can be created before the sequencing is complete

by gathering all the genomes of all the bacterial strains predicted to be present in the

sample, or it can be created after sequencing by assembling the sequenced reads into parts

of genomes. The second step is to annotate the sequences with predicted protein functions.

Most publically available genomes already have protein annotations. For genomes or

partial genomes without annotations, the placement of genes can be predicted by looking

for open reading frames, and these predicted genes can be aligned with databases such as

SEED [100] or KEGG [60] to match them with functional annotations, using the BLAST

algorithm [2].

5. Map the sequenced reads to the library

Mapping is the process of annotating the sequenced reads by aligning them with sequence

that has already been annotated. I used Bowtie2 [67] to map our sequenced reads to the

annotated library created in the previous step. Bowtie2 aligns similar sequences together.

6. Determine how many mapped reads match each functional annotation

Once the sequenced reads have been mapped to the annotated reference sequence, the

number of reads sequenced for each annotation can be counted up. The end result is a

table of counts per gene annotation per sample.

Issues with sequencing and the analysis of sequencing data arise from sampling and the “fat”

nature of the data. The DNA has been randomly sampled multiple times before the sequencing

data is retrieved: The biological sample collected from the patient is only part of the full bacterial

community. The amount of DNA extracted is a sample of that sample. Only a fraction of the

extracted DNA is sequenced, and finally the DNA fragments that the sequence reads are sampled

out of the input DNA. As a result, on top of the biological variation present in the microbiomes
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being sampled, there is an additional layer of technical and random variation. High variation or

noise in the data can obscure small but biologically significant differences between experimental

conditions.

Additionally, primers used for sequencing may be biased for certain sequences more than

others [59]. Lastly, the data is very fat, which is to say that there are many more variables (in

the form of functional annotations of genes) than there are samples. This makes it difficult

to have enough power to detect small differences in the data, a concept expanded upon in the

Microbiome data involves the comparison of many features section.

1.5.2 Imputation

When it is not financially feasible to perform deep metagenomic sequencing, the sequencing

results can be imputed using a tool called PICRUSt from a gene tag experiment [66]. PICRUSt

uses the Greengenes database [23] to identify the bacterial taxa in the sample, and pulls their

genomes from the Integrated Microbial Genomes database [82]. With the genomes, the program

tries to predict what would be seen if the samples underwent deep metagenomic sequencing. For

taxa without a fully sequenced genome, PICRUSt infers the genetic content based on ancestors in

the phylogenetic tree. PICRUSt produces metagenome predictions with a Spearman correlation

coefficient of about 0.7 [66], compared to a full metagenomic sequencing experiment.

Imputation is useful for identifying potential correlations that should be explored and

validated further, but should not be used to make conclusions. The issues with imputation

include all the issues with sequencing, plus the added variation in its imperfect correlation.

1.5.3 Data aggregation, categorization, and amalgamation

Data analysis can be performed to determine if functions are differentially abundant between

samples in different groups (described in the Microbiome is compositional section), examining

functional categorizations, and checking for pathway enrichment. Sequenced genes (open

reading frames) can be grouped by common function through annotation by querying the SEED
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[100] or KEGG [60] functional annotation databases. These functions can be analyzed to see if

any are differentially abundant between experimental conditions.

Functional categorization

Figure 1.4: Example stripcharts for subsystem 2 and 3 functional categorizations. These
are the results of a study done on bacterial vaginosis, a condition that often presents with no
symptoms, but increases the chances of pregnancy complications [51] [50] and contracting
sexually transmitted disease [83] [17]. Dots on the left side are SEED subsystem 4 annotations
found to be more abundant in the healthy condition while dots on the right side are subsystem 4
annotations found to be more abundant in the bacterial vaginosis condition. Colored dots were
found to be significantly differentially abundant. Figure taken from [77].

I use the SEED annotation [100], which has four different levels of categorization. Subsystem

4 is the most atomic categorization level and describes the specific function of the protein group,

for example, “Isovaleryl-CoA dehydrogenase (EC 1.3.99.10)”. Subsystem 3, 2, and 1 are

increasing more general levels of categorizations, from enzyme families to large categorizations

such as genes related to carbohydrate metabolism. These levels are simply aggregations of

subsystem 4 levels, and one subsystem 4 annotation can be found in one or more higher level

groups.

An effect size is measured by taking the difference in means between two groups of data,

and dividing by the standard deviation within groups. The effect size is stronger when there

is less overlap between the two groups. Even if the subsystem 4 functional categories are not
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significantly different between groups, they each have an effect size with a direction. Stripcharts

can be used to plot the effect sizes of the subsystem 4 categories for a larger category (Fig.

1.4). For example, by plotting the effect sizes of all the subsystem 4 categorizations under

Carbohydrate Metabolism, one can visually see if there are any obvious directional trends

for carbohydrate metabolism functions being relatively abundant in the experimental group

compared to the control.

Pathway enrichment

Biological pathways can be thought of as made up of a series of chemical reactions, each

catalyzed by a protein enzyme, which is encoded by a gene. KEGG (Kyoto Encyclopaedia of

Genes and Genomes) is a manually curated annotation database that matches genes to pathways

[60]. This database allows researchers to see if there is differential abundance of pathways

encoded by functionally annotated genes, even when the genes may not be differentially

abundant by themselves. This is an alternate amalgamation of the data.

1.6 Points of failure

The Huttenhower lab has organized the Microbiome Quality Control project (MBQC) at

http://www.mbqc.org/. Preliminary results show that despite being given the same samples,

different participating labs can come up with vastly different results. This lack of reproducibility

is caused by a lack of consensus on the correct way to analyze microbiome data. The following

sections explore different aspects of microbiome collection, sequencing, and data that contribute

to this.

1.6.1 Collection methods differ

The 16S rRNA gene sequencing experiments are very sensitive to batch effects. Microbiome

composition is often naturally highly diverse between different individuals. The high amount
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of variation means that the effect size of a difference between groups can be small [34].

Next generation sequencing is also a sensitive technology, and the data can be confounded

by contaminants [118] or batch effects. These artifacts can overpower real biological effects.

Wherever possible, all samples should be processed in the same batch. Analysis should also

be done to check if samples extracted on different dates or sequenced with different primers

separate into clusters, to make sure that there is no systematic bias in the data.

1.6.2 Microbiome data is highly variable between individuals

The gut is often studied but the gut microbiome can be affected very strongly by diet [137].

This among other factors lead to a highly diverse gut microbiome between subjects for reasons

unrelated to the disease being studied. This can create a lot of variability, potentially obscuring

real effects or even creating the appearance of false effects.

Generally experiments of this nature typically have low sample sizes due to budget con-

straints, sample collection difficulties, patient compliance, and other issues. To increase cost

effectiveness and reduce batch effects (such as from kit contamination [118]), I run all the

samples in an experiment on the same sequencing run, by means of a combinatorial barcode

primer design [42].

There are several models for computationally analyzing the variance within conditions in

order to determine if operational taxonomic units are significantly differentially abundant, such

as LEfSe [120] and Metastats [103] for microbiome analysis. Most of these were originally

designed for RNA-seq experiments on single organisms [101]. Currently the most popular

tools for analyzing differential abundance are EdgeR [117], DESeq2 [72], MetagenomeSeq

[104], and LEfSe [120]. EdgeR was cited by 52 papers that mentioned the microbiome in 2015

according to Google Scholar. DESeq2 and MetagenomeSeq are part of the QIIME pipeline,

which was cited by 1,080 microbiome papers in 2015. LEfSe has been cited by 145 microbiome

papers in 2015.
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EdgeR and DESeq2 use the negative binomial distribution. The negative binomial distribu-

tion allows the variance of data to be estimated given the mean, through a function. The function

is determined by collecting the mean and variance for all the counts for each OTU in each

experimental condition, and fitting the variances according to the negative binomial distribution.

This vastly underestimates the variance at low counts, which represent the sampling of low

abundance OTUs, and can be very different between replicates. Underestimating the variance at

low counts produces spurious low p-values for low count OTUs [33].

MetagenomeSeq uses the Zero-Inflated Gaussian (ZIG) model, which is a binomial distribu-

tion of counts (that may include zero counts), plus a function to predict how many extra zeros

there will be. This does not work well when the total number of reads are not well matched,

because then there will be many more zeros in the data set with less reads, due to having a lower

sequencing depth, and a consistent total read count is required between samples according to

page 2 of the supplementary material in the first metagenomeSeq paper [104].

LefSe stands for the Linear discriminant analysis (LDA) Effect Size method [120]. It

identifies significantly differentially abundant OTUs, checks for consistency in the differential

abundance with the Wilcoxin rank sum test, and uses linear discriminant analysis to estimate an

effect size per feature. This method assumes that microbial communities can be split by a linear

combination of OTUs (for example the line ax + by, where a and b are constants and x and y are

OTU abundances). However, bacterial abundances in both count form and proportions do not

grow at a linear rate.

EdgeR, DESeq2, and MetagenomeSeq all work by using a statistical model to make a

point estimate of the mean and variance of the data. Using the estimated mean and variance,

differential abundance is tested statistical significance. However, a point estimate obscures

technical variation in the data. That is, if a technical replicate were performed by resequencing

the samples, a different set of point estimates would be calculated. In contrast, Bayesian methods

model the distribution of the mean and variance.
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For my differential abundance analysis, I’ve used ALDEx2, which samples from the Dirichlet

distribution to model variation in the data [34]. After a number of samples, the mean value and

mean variance are used to determine if OTUs are differentially abundant between groups, an

approach that is believed to result in greater specificity and equivalent sensitivity compared to

the point estimate approach [34].

1.6.3 Microbiome data involves the comparison of many features

Oftentimes, the number of taxa or gene functions is more than a magnitude larger than the

samples. This is known in statistics as having more variables than observations, or having

fat data. The higher the ratio of variables to observations are, the less likely the principal

components analysis or pairwise comparison is to be reliable [99].

One way to conceptualize the problem is through combinatorics. Hypothetically, there could

exist many bacterial taxa that are equally present in both conditions, but have a low abundance

such that a 0 or 1 count is often detected. In this case the chances of observing all 0 counts

in one condition and all 1 counts in another condition by simple combinatorics is quite high.

This situation is common in microbiome data, where most of the bacteria are abundant in low

proportions, sample sizes are often low, and a typical 16S rRNA gene sequencing experiment

detects hundreds of OTUs.

Multiple test corrections assume that the experiment has more samples than variables, and

result in very high p-values when this condition is not met. However, when using p-value based

tests, researchers should include multiple test corrections to ensure that the results they are

reporting are not all false positives. Unfortunately many studies have been published in peer

reviewed journals without multiple test corrections. For example, four out of five papers in the

literature about the gut microbiome and non-alcoholic fatty liver disease did not use a multiple

test correction [57] [147] [112] [144] [8] (See Fig. 3.1 in the chapter on The human microbiome

and nonalcoholic fatty liver disease).
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1.6.4 Microbiome data is compositional

In both gene tag sequencing and metagenomic sequencing experiments, the data is in the form

of a list of counts per feature, with the features composing an aspect of the microbiome for

each sample. Therefore, the number of counts observed is arbitrary and not related to number

of counts in the original environment. For example, an oral sample (107 Colony Forming

Units/ml) and a gut sample (1010 CFU/ml) will give same number of counts ( 1 × 105) after

DNA sequencing. This is compositional data. There are several core truths about microbiome

data and its compositional nature that should be considered when making an analysis strategy.

First, the total number of reads per sample is irrelevant to the biological implications of the

data. The number of reads is determined mainly by the chosen sequencing platform (i.e. Roche

454, Illumina MiSeq, or Illumina HiSeq). The absolute abundance of reads per sample cannot

be used to make biological inferences.

Second, spurious correlations can arise from proportional microbiome data, and should be

avoided. In the late 19th century, many studies were being published about how organ sizes

(normalized by dividing the size by the individual’s height) were correlated. However, it was

discovered that when two sets of uncorrelated data are both divided by a third set of uncorrelated

data, the two sets will appear spuriously correlated [105]. This is analogous to microbiome data

where raw counts are normalized by dividing by the total number of counts [105].

Additionally, the constrained sum causes the abundance of different taxa to appear to be

negatively correlated with each other when analyzed by conventional statistics. When one taxa

increases in abundance, the counts detected in other taxa decrease in proportional abundance,

even if the taxa are not decreasing in absolute abundance biologically. This negative correlation

bias arises when the data are treated as univariate, when it should be analyzed as multivariate

data. All non-parametric tests (Principal Co-ordinates Analysis, correlations, etc.) assume that

the abundance measured for each feature is independent. This is true in ecology where the

abundance of different species is measured in an area of land where animals can move freely in

and out. It is not true in next generation sequencing where the abundance of different species is
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Figure 1.5: Counting vs. sequencing. In ecology, where all the animals in a given area
are counted, there is no upper limit on the number of animals that can be detected. In se-
quencing, there is a constraint on the total number of sequences detected by the sequenc-
ing platform. If one were to detect one more ladybug, one would have to detect one less
lion. Figure courtesy of Dr. Greg Gloor, http://gloorlab.blogspot.ca/2016/04/
sequencing-is-not-counting-idea-of.html.

measured by a sequencing platform with a limited number of measurements, such that detecting

extra members of one species means detecting less members of another species (Fig. 1.5).

Third, removing an entire variable (an OTU in gene tag sequencing, or a functional annota-

tion in deep metagenomic sequencing) from the analysis should not change correlations between

OTUs. This is true with counts but not true with proportions [73]. A correlation between two

OTUs is suspect if it is dependent on the presence of an additional unrelated OTU. Removing

variables occur routinely in microbiome research. For example, rare OTUs are thought to

not be very informative, and low counts have high variability, so they are often filtered out.

Additionally, primers may be biased against certain taxa, which are underrepresented in the data.

Finally, some experiments are performed only on taxa of interest (as is the case with qPCR),

and all other OTUs are not considered in the analysis. Without the proper data transformation,

removing variables from the full set will change the correlation between variables [1].

To ensure that these conditions are met, data should be analyzed in a compositional way.

In Euclidean space, data points can increase or decrease freely. Compositional data is under a

sum constraint, and exist in a non-Euclidean space known as the Aitchison simplex [1]. Many

http://gloorlab.blogspot.ca/2016/04/sequencing-is-not-counting-idea-of.html
http://gloorlab.blogspot.ca/2016/04/sequencing-is-not-counting-idea-of.html
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operations are not valid for data on a simplex. These include addition and subtraction, covariance,

and correlation. A data transformation can be performed to put the data into Euclidean space, so

that it can be analyzed with standard statistical methods that depend on Cartesian co-ordinates

and linear relationships.

Several types of log ratio data transformations are recommended to allow the data to be

analyzed by standard Euclidean methods [1]. The type that makes the most sense for microbiome

data is the centered log ratio transform. The centered log ratio transform is performed by dividing

each proportional abundance by the geometric mean of all the proportional abundances, and

taking the logarithm. Here xi is one proportional abundance within a sample, and there are n

OTUs in total.

clr(xi) =
xi

n
√∏n

i=1 xi

The geometric mean acts as a baseline abundance in microbiome data. Taking the logarithm

of the ratio allows for a symmetric measurement whether the large number is in the numerator

or denominator of the ratio.

The centered log ratio transform prevents the total number of reads from affecting the

measurement, so long as the geometric mean is a relatively stable baseline. The geometric mean

is stable when the total number of reads is constant, or the per feature variation is random. The

latter condition is met in a typical microbiome data set. The centered log ratio transform also

allows for coherent subcompositional data analysis as the ratios between the remaining values

are not affected when entire variables are removed. Note that a logarithm cannot be performed

when the data contain one or more zero counts, which is problematic as microbiome data is

sparse. This issue is discussed in the next section.

Compositional techniques such as those espoused in the ANOVA-Like Differential Expres-

sion 2 (ALDEx2) software [34] and the Analysis of Composition of Microbiomes (ANCOM)
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framework [78] should be used to promote consistent data analysis. ALDEx2 models the

technical variation using the Dirichlet distribution and then performs a log ratio transform while

ANCOM uses log ratio analysis to make point estimates of the variance and mean, without any

distributional assumptions.

However, these techniques are not yet mainstream in the field, resulting in many conclusions

that are not reproducible. One example of this is referenced in the chapter about the gut

microbiome and non alcoholic fatty liver disease, where five papers have been published on the

same topic with almost completely non overlapping results (Fig. 3.1).

1.6.5 Microbiome data is sparse

One of the fundamental challenges in analyzing differential abundance is accounting for zeroes.

Unlike a presence/absence test, a zero does not necessarily mean that the OTU is not there.

The OTU could be present in an amount smaller than the resolution of the test, or it could

be present but missed due to random sampling. This is a problem because when statistical

methods are used to examine significantly different OTU abundance, as the comparison of

zero values to non-zero values are likely to come out as significant whether or not the OTU

abundance is differential. However, a 0 and a 1 count are easily interchangeable between

technical replicates and the difference is not biologically significant [41] [33] [34]. Additionally,

the log transformations used in compositional data analysis cannot be performed on zeros.

Statisticians often recommend that any sample with at least one zero count be removed during

compositional data analysis, but for microbiome data this would often result in the removal of

all the samples [1].

One solution to make zeros compatible with a compositional data log transformation is to

add a small arbitrary value to each zero [1]. The value used can be 0.5, representing uncertainty

as to whether the zero represents an absence of the feature or if the feature is actually present but

was missed due to random sampling or sequencing depth. In a Bayesian model, the 0.5 value is

a prior. The second method is to estimate the likelihood that a zero was observed because of
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sampling depth. This is implemented by the cmultRepl command in the zCompositions package

in R, with the ‘count multiplicative zeros’ option [102].

The microbiome field is quite new, and has been undergoing many exciting developments.

Gold standards must be set to ensure that studies are replicable, and that published research

represents the biological reality.

1.7 The gut microbiome in patients with nonalcoholic steato-

hepatitis compared to healthy controls

Non alcoholic fatty liver disease (NAFLD) is the deposition of fat in the liver, for reasons

unrelated to alcohol consumption, and often related to obesity. In its asymptomatic form it is

known as simple steatosis (SS), however, it can cause inflammation and scarring of the liver, a

condition called non alcoholic steatohepatosis (NASH). Symptoms include feeling lethargic and

dull abdominal pain where the liver is. Presence of NASH decreases a patient’s 5 year survival

rate to 67% [110].

There is a substantial body of literature dedicated to examining the relationship between

the gut microbiome and obesity. Studies have been published showing differentially abundant

bacterial phyla (particularly Bacteroidetes) in the gut of obese humans compared to healthy

controls [134] [70]. In mice, lean germ free mice mice have been shown to extract more calories

from the same food after receiving transplant gut microbiota from genetically obese mice [135].

As non alcoholic fatty liver disease is associated with obesity, and because the mechanisms

and triggers of the progression process remain unclear, study of the relationship between the

gut microbiome and NAFLD is warranted. So far studies examining the gut microbiome and

NAFLD [144] [147] [57] [112] [8] have not come to a consensus about which bacterial taxa are

differentially abundant in the gut microbiomes of healthy patients compared to patients with

NAFLD, and the reasons for this are discussed in the The human microbiome and nonalcoholic



30 Chapter 1. Introduction

fatty liver disease chapter of this thesis. Research recommendations for generating more

reproducible data in this field are explored in the final overall discussion chapter.

I performed both a gene tag sequencing experiment and a metagenomic experiment com-

paring patients with NASH to healthy controls. My hypothesis for the gene tag sequencing

experiment was that I would find significantly differentially abundant taxa. For the metagenomic

experiment, I hypothesized that I would find significantly differential groups of gene functions.

I compared the gut microbiome of 29 patients with nonalcoholic steatohepatitis (NASH), 14

patients with simple steatosis (SS), and 24 healthy controls. I found no significantly differentially

abundant features between groups. However, the effect sizes of OTUs between extreme and

intermediate groups appear to be correlated with a subset of the samples selected with more

stringent clinical criteria. I believe that there may be a real difference between patients, if a

study were performed with sufficient power.



Chapter 2

Expanding the UniFrac toolbox

Introduction

In 2005, Lozupone et al introduced the UniFrac distance metric, a measure to calculate the

difference between microbiome samples that incorporated phylogenetic distance [75]. The

goal of the UniFrac distance metric was to enable objective comparison between microbiome

samples from different conditions. In 2007, Lozupone added a proportional weighting to the

original unweighted method [74]. Since then, papers reporting these metrics have garnered

over a thousand citations, and enabled research about everything from how kwashiorkor causes

malnutrition [127] to how people can have similar microbiomes to their pet dogs [128]. Except

for generalized UniFrac, used to make hybrid unweighted and weighted UniFrac comparisons

[16], few advances in the metric have occurred since 2007. In this chapter I examine data sets

where UniFrac gives misleading results, and present and discuss some alternative weightings

for UniFrac.

Operational Taxonomic Units

Unlike more distinct species, such as mammalian species, bacterial species are not well defined.

Bacterial genomes are highly variable, and regions used to identify bacteria vary in a continuum

rather than clusters of similar sequences.

31
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Historically bacteria that are have 97% identity in a 16S rRNA gene variable region are

considered to be the same taxa [18]. The 97% cutoff was arbitrarily chosen to best map sequence

data to bacterial classifications. This threshold is thought to maximizes the grouping of bacteria

classified as the same species while minimizing the grouping of bacteria classified as different

species [11]. Before sequencing bacterial classification was often done by appearance or by

metabolic products, so there are outliers where bacteria classified in the same species are actually

genetically very different, or bacteria classified in different genus are genetically very similar.

However, it is difficult to determine how a batch of sequences should be partitioned into

groups of 97% identity. One way is to perform a clustering algorithm (using software such as

UCLUST [28]) that partitions the groups and then later assign taxonomic identity by matching

the seed or central sequences with public databases, such as SILVA [111], the Ribosomal

Database Project [20], or Greengenes [23]. Another method is closed reference OTU picking,

which starts off with seed sequences from known bacteria and perform the clustering such that

the 97% identity groups are centered on the seed sequences. In any case, the resulting taxonomic

groupings are known as Operational Taxonomic Units (OTUs), and are used consistently within

the same experiment. While OTUs can be annotated with standard taxonomic names such

that results can be compared between experiments, technically the taxonomic groupings used

by different experiments are not the same, except with closed reference OTUs, or individual

sequence unit methods. Individual sequence unit (ISU) methods which do not use OTUs can be

run with software such as DADA2 [10]. Grouping of amplicon sequences into OTUs allows for

the data to be summarized into a table of counts per OTU per sample.

2.0.1 Data

UniFrac requires two pieces of information: a phylogenetic tree and a table of counts per

inferred taxa per sample. These are derived from a gene tag sequencing experiment, such as the

commonly used 16S rRNA gene [133]. The sequenced gene contains a variable region, allowing

the sequences to be grouped into OTUs as described in the previous section. A count table can
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then be generated with the number of reads per OTU per sample. The center sequence of each

OTU group can be put into a multiple sequence alignment, from which a phylogenetic tree can

be inferred.

The phylogenetic tree is created through a multiple sequence alignment with the represen-

tative OTU sequences, using software such as MUSCLE [27] and FastTree [109], or using a

guide tree, such as through Greengenes [23] or the QIIME software [12]. Each leaf of the tree

represents one of the OTUs, and each of the branches of the tree has a length. Additionally,

the tree needs to be rooted for the UniFrac calculation to be performed. This is often done by

rooting the tree at its midpoint.

2.0.2 Compositional Data Analysis

Microbiome data is in the form of a list of counts per feature (OTUs in this case), with the

features composing an aspect of the microbiome for each sample. This is compositional data

because the total sum of reads for a sample is arbitrary, being determined by the capacity of the

sequencing instrument [33] [34] [42]. There are several core truths about microbiome data and

its compositional nature that should be considered when making an analysis strategy.

First, the total number of reads per sample is influenced by sample collection, extraction,

sequencing library preparation, and sequencing platform, and is irrelevant to the biological

implications of the data. Additionally, the constraint of the count total causes the abundance

of different taxa to appear to be negatively correlated with each other when analyzed by

conventional statistics [73]. When one taxa increases in abundance, the counts detected in

other taxa decrease in abundance, even if the taxa are not decreasing in abundance biologically.

For example, one study compared the microbiome of vaginal swab samples from women with

bacterial vaginosis (BV), women without BV, and women with intermediate BV, using qPCR to

quantify the taxa [148]. Prevotella was found to increase through non-BV to intermediate to BV,

while Lactobacillus iners stayed relatively the same [148]. If the same samples were put through

a gene tag sequencing experiment where the taxa could not be quantified and the total read
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counts were constrained, one might incorrectly conclude that the abundance of Lactobacillus

iners was decreasing while Prevotella was increasing.

To prevent incorrect conclusions, data should be analyzed in a compositional way. In

Euclidean space, data points can increase or decrease freely. Compositional data is under a

sum constraint, and exist in a non-Euclidean space known as the Aitchison simplex [1]. A data

transformation can be performed to put the data into Euclidean space, so that it can be analyzed

with standard statistical methods that depend on Cartesian coordinates and linear relationships.

These transformations involve examining the ratios of different OTU abundances to each other,

so that the total number of reads do not unduly affect the result [41] [40]. In the example with

bacterial vaginosis, using ratios of taxa to each other would elucidate the nature of the biological

change in the data.

2.0.3 Unweighted UniFrac

Unweighted UniFrac [75] uses an inferred evolutionary distance to measure similarity between

samples. It requires a reference phylogenetic tree containing all the taxa present in the samples to

be examined, plus information about which taxa were detected in each sample. The calculation

is performed by dividing the branch lengths that are not shared between the two samples by the

branch lengths covered by either sample. Figure 2.1 shows example calculations for UniFrac

based on the tree overlap. A distance of 0 means that the samples are identical, and a distance

of 1 means that the two samples share no taxa in common.

As UniFrac is a binary test of absence, it is sensitive to sequencing depth, and assumes that

the data has been normalized to a common sequencing depth [76]. Thus, rarefaction prior to

unweighted UniFrac has become a standard part of the microbiome analysis workflow, with

built in rarefaction functions in QIIME [12] and mothur [119].
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Figure 2.1: Unweighted UniFrac. When two samples do not share any branches of the
phylogenetic tree, the unweighted UniFrac distance is maximized at 1. When two samples share
half of their branch lengths on the phylogenetic tree, the unweighted UniFrac distance is 0.5. If
the two samples contain exactly the same taxa, the unweighted UniFrac distance is minimized
at 0, since the samples share all branches.

2.0.4 Weighted UniFrac

Weighted UniFrac [74] is an implementation of the Kantorovich–Rubinstein distance in mathe-

matics, also known as the earth mover’s distance [32]. Rather than looking only at the presence

or absence of taxa, each branch length of the phylogenetic tree is weighted by the difference in

proportional abundance of the taxa between the two samples.

This technique reduces the problem of low abundance taxa being represented as a 0 or by a

low count depending on sampling depth. In unweighted UniFrac, such taxa would flip from

absent to present, and could skew the measurement: this would be especially problematic if the

taxa are on a long branch. In weighted UniFrac, low abundance taxa have a much lower weight

and so will have a lower impact on the total distance reported by the metric.
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UniFrac is constituted as either a binary weighting (unweighted UniFrac) [75], a linear

proportion (weighted UniFrac) [74], or some combination of the two (generalized UniFrac) [16].

However, it is a misconception that the data are linear because the sum of the total number of

reads is constrained by the sequencing machinery [37] [33] [34] [73] as described above.

Microbiome communities can exhibit tremendous variation in their total bacterial count.

For example, a stool sample may produce more highly concentrated DNA extract than a skin

swab sample. However, the DNA is diluted to a standard concentration before sequencing.

The original samples contain different numbers of input molecules, but the total number of

reads output by the sequencing runs are similar. Vaginal samples from patients with bacterial

vaginosis compared to patients without can have DNA extract concentrations that differ one

magnitude [148]. Alternative weightings and non-linear transformations of data need to be

explored. Furthermore, unweighted UniFrac is known to be unreliable, but it is not generally

understood how this can impact results.

Materials and Methods

2.0.5 Analytical techniques

Rarefaction

Rarefaction normalizes the samples OTU counts to a standard sequencing depth by sampling

without replacement [126]. This resulting table can be thought of as a random point estimate

of the dataset, as the output is a sub-sample without replacement of the original table. This

standardization process is recommended by the authors of UniFrac [14] in order to account for

the sensitivity of UniFrac to sequencing depth. Rarefactions can be performed using the QIIME

software [12] or using the vegan package in R [98].

Unweighted UniFrac

Unweighted UniFrac is calculated based on the presence or absence of counts for each branch



37

in the phylogenetic tree, when comparing two samples. A branch belongs to a sample when

at least one of the OTUs in the leaves below it have a non-zero abundance. The formula for

unweighted UniFrac is as follows, where b is the set of branch lengths in the phylogenetic tree,

A and B represent the two samples being compared, 4 is the symmetric difference between two

sets, and ∪ is the union between two sets:

UnweightedAB =

∑
bA4bB∑
bA ∪ bB

The sum of the branch lengths that belong to one sample but not the other is divided by the

sum of the branch lengths that belong to one or both samples.

Note that the implementation of unweighted UniFrac in QIIME (see Fig. 2.2) and also

GUniFrac (see Supporting figures 2.9, 2.10, and 2.11) includes a tree pruning procedure,

where the tree is pruned to only include OTUs that are present in each pairwise sample com-

parison. Except for in figure 2.2 and supporting figures 2.9, 2.10, and 2.11, the scripts

used in this chapter do not prune the tree, in order to be consistent with weighted UniFrac. In

weighted UniFrac, pruning the tree makes the measurement a dissimilarity rather than a distance

(Supporting Information 2.14).

Weighted UniFrac

Weighted UniFrac [74] also incorporates each branch length of the phylogenetic tree, and

weights them according to proportional abundance of the two samples. The formula for weighed

UniFrac is as follows, where A and B are the two samples, b is the set of branch lengths, and Ai
AT

and Bi
BT

are the proportional abundances associated with branch length bi:

WeightedAB =

∑n
i bi ×

∣∣∣∣ Ai
AT
−

Bi
BT

∣∣∣∣∑n
i bi
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Information UniFrac

Information UniFrac is calculated by weighing each branch length by the difference in the

uncertainty of the taxa abundance between the two samples. Uncertainty or information (I) is

calculated as follows, where p is the proportional abundance [123]:

I = −p × log2(p) (2.1)

If a sample is composed of 50% taxa A and 50% taxa B, then the proportional abundances

have maximum uncertainty about what taxa is likely to be seen in a given sequence read. If a

sample is 80% taxa A and 20% taxa B, then there is less uncertainty about both taxa, because a

given sequence read is more likely to be taxa A and less likely to be taxa B. When the amount

of uncertainty that a taxa has in one sample corresponds with the amount of uncertainty the

same taxa has in a different sample, the abundance of that taxa is mutually informative between

samples. Weighting UniFrac by uncertainty combines the the concept of uncertainty with

phylogenetic relationships to identify taxa that are differentially informative between groups.

The formula for Information UniFrac is as follows:

In f ormationAB =

∑n
i bi ×

∣∣∣∣ Ai
AT

log
(

Ai
AT

)
−

Bi
BT

log
(

Bi
BT

)∣∣∣∣∑n
i bi

Information UniFrac approaches a minimum of zero when a sample is composed of a

monoculture. It also related to the Aitchison distance in compositional data analysis [31].

Ratio UniFrac

In complex microbiome communities, there may be a large number of bacterial taxa with few

counts, such that the data is sparse. Taking the geometric mean of the proportional abundances

of taxa in a microbiome sample represents an unbiased baseline of the average abundance of

features with geometric growth characteristics - such as bacteria which divide by fission [1].
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Experiments generally do not have power to detect differences at abundances below the mean

[33]. Centering the proportional abundances around the geometric mean thus allows one to

examine the data in this context, muting differences that are close to the baseline abundance and

accentuating OTUs that are much more abundant than the mean. The formula for ratio UniFrac

is as follows, where gm is the geometric mean:

RatioAB =

∑n
i bi ×

∣∣∣∣∣∣ Ai
AT

gm(Ai)
−

Bi
BT

gm(Bi)

∣∣∣∣∣∣∑n
i bi

Note that the geometric mean is calculated by combining all children in the subtree of bi

into Ai
AT

for sample A or Bi
BT

for sample B, and including the rest of the single taxa proportional

abundances separately. The one combined proportional abundance and the remaining single

taxa proportional abundances are input into the geometric mean formula, as set a:

gm(a) =

 n∏
i

ai

1/n

One challenge when it comes to the analysis of read count data is that the data is very sparse.

Whether a low-abundance taxa or feature appears in the data as a zero or a low positive count

is up to chance, and assuming that a zero count represents the absence of a taxa can be very

misleading [33]. A Bayesian approach can be used to give a posterior estimate of the likelihood

for zero count OTUs: this is implemented by the cmultRepl command in the zCompositions

package in R [102].

The use of ratio weighting for UniFrac produces measurements that violate the metric

triangle inequality, such that Euclidean statistics are technically invalid. Thus this metric, like

the Bray-Curtis metric, is a dissimilarity, not a distance.
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For the analysis of the data in this chapter, I calculated UniFrac metrics using a custom R

script, which includes unweighted UniFrac, weighted UniFrac, information UniFrac, and ratio

UniFrac [142]:

Bray-Curtis dissimilarity metric

The Bray Curtis dissimilarity metric [5] quantifies how dissimilar two sites are based on counts.

A Bray-Curtis index of 0 means that two samples are identical, while a Bray-Curtis index of 1

means samples do not share any species. It is computed as a proportion through the formula:

Ci j = 1 −
2Ci j

S i + S j

where Ci j = dissimilarity index bound by [0,1]

S i = Specimen counts at site i

S j = Specimen counts at site j

2.0.6 Data preparation

The data used comes in the form of a table of counts per operational taxonomic unit per sample,

plus a phylogenetic tree. All of our data are derived from 16S rRNA gene tag sequencing

experiments, and the data and scripts can be accessed at https://github.com/ruthgrace/

r_scripts [143].

Tongue dorsum data set

The tongue dorsum data set is a collection of 60 microbiome samples taken from the tongues

of healthy participants. There were 0.3 million reads across 554 OTUs, and a minimum and

maximum of 659 and 17176 reads per sample.

https://github.com/ruthgrace/r_scripts
https://github.com/ruthgrace/r_scripts
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Samples from this experiment were sourced from the Human Microbiome Project [138]

Qiime Community profiling v35 OTU tables (http://hmpdacc.org/HMQCP/).

Rarefaction was conducted through Qiime version 1.8.0-20140103 to 659 reads (the lowest

number of reads for a sample), and generation of the ellipse figures was done in R version 3.2.3

(2015-12-10) ”Wooden Christmas-Tree” x86 64-apple-darwin13.4.0 (64 bit).

A principal coordinate analysis is drawn from each distance matrix per metric, and for the

first principal coordinate of each metric, the resultant value (Vres) is computed per each first

principal coordinate as defined by the formula:

Vres =
|V1 − Vi|

range(V1,Vi)

where Vres = Set of computed PC1s,

V1 = Reference PC1 (the first),

Vi = Each subsequent PC1,

Tongue dorsum and buccal mucosa data set

The tongue dorsum and buccal mucosa data set is a collection of 30 microbiome samples taken

from the tongues of healthy participants, plus 30 microbiome samples taken from the buccal

mucosa (cheek) of a different set of healthy participants. There were 0.4 million reads across

12701 OTUs, and a minimum and maximum of 5028 and 9861 reads per sample. Note that if

the OTUs that are less than 1% abundant in all samples are filtered out, only 179 OTUs remain.

To create this data set, thirty random samples were selected from the tongue site of the

Human Microbiome Project [138] and thirty random samples from the buccal mucosa site.

Samples were filtered so that only samples with 5000 to 10,000 reads were included.

Read counts from the HMP data set were rarefied to the smallest total read count per

sample using the vegan R package [98] before the unweighted UniFrac distance was calculated.

http://hmpdacc.org/HMQCP/
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Weighted, information, and ratio UniFrac were calculated on the data set without rarefaction.

The resulting distances were plotted for principal coordinate analysis.

Breast milk data set

The breast milk data set is a collection of 58 microbiome samples taken from lactating Caucasian

Canadian women. The breast milk data set used here has also been published in a recent study

[139]. There were a total of 5.3 million reads across 115 OTUs, and a minimum and maximum

of 3072 and 2.8 million reads per sample. Note that the 2.8 million reads came from a sample

that was taken from a patient with an infection, and the next largest number of reads per sample

was 282485 (ten times less).

The count table was analyzed using our custom UniFrac script, which can be accessed at

https://github.com/ruthgrace/ruth_unifrac_workshop [142]. Data was rarefied to

the sample with the smallest number of read counts (3072) before the unweighted UniFrac

distance matrix was calculated. Non-rarefied data was used for weighted, information, and ratio

UniFrac. Data was plotted using a principal coordinates or component plot as appropriate.

Monoculture data set

The monoculture data set is simulated based on the infected sample from the breast milk data

set. Each simulated sample has exactly the same counts per taxa as the infected sample, except

that the taxa are shuffled. After taxa shuffling, the data was manipulated into two groups. In

one set of 20 samples the taxa with the highest count was swapped with Pasteurella, in another

set of 20 the taxa with the highest count was swapped with Staphylococcus, and in the last set

of 20 the taxa with the highest count was swapped with Pseudomonas. These three taxa were

picked because they were the most highly abundant in the original breast milk data set. This

process produced three sets of monocultures, dominated by the three different taxa.

https://github.com/ruthgrace/ruth_unifrac_workshop
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Results

2.0.7 Unweighted Unifrac is highly sensitive to rarefaction instance

A commentary by Lozupone et al. 2011 [76] addressed the sensitivity of Unweighted UniFrac to

sampling. Lozupone’s group used mean UniFrac values to compute a confidence ellipse between

the first and third quartile. However, Jia R. Wu, a member of the Gloor lab research group,

observed that this approach under-represented the true variability of unweighted UniFrac as a

distance metric by highlighting how individual samples vary. In the absence of true differences

and in the presence of uneven sampling, unweighted UniFrac can be sensitive to rarefaction

instances. Jia showed this by analyzing two rarefactions of the same body site with the rationale

that if there is no true difference in the data, separation of these samples should not be observed.

Sixty tongue dorsum subsamples were drawn from the Human Microbiome Project data

without replacement. Rare OTUs with less than 100 total counts across all the samples were

removed. The minimum sample count for the subset of 60 analyzed was 659, therefore the data

was rarified (subsampled) to the minimum of 659 to normalize the samples, prior to performing

a principal coordinates analysis (PCoA). For Fig. 2.2, two independent rarefactions of the

data were conducted in order to observe the effect of rarefaction instance on the metric. The

unweighted UniFrac distance was computed for each rarefaction, and Procrustes adjustment

was applied in order to overlay the PCoA-derived second rarefaction onto the first. A PCoA

of rarefaction 1 was plotted, and any samples that changed between rarefactions one and two

were visualized with red and blue on the plot. If the sample moved from one side of the first

coordinate axis to the other between the rarefaction instances, it was indicated with either a blue

or a red arrow.

In both rarefactions on Fig. 2.2, samples separated distinctly into two clusters on principal

coordinate 1. Principal coordinate 1 explains the most variation in the data, and is thus useful to

visualize if any associated metadata is behind the sample separation. However, the separation

was not explainable by any metadata associated with the HMP experiment, and is thus an
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Figure 2.2: Sample migration in different rarefactions, plotted on principal coordinates,
measured with unweighted UniFrac. The left plot is of the tongue data set while the right
plot is the tongue dorsum vs. buccal mucosa data set. On the left panel red samples have moved
from the left cluster to the right cluster between rarefactions. Blue samples have moved from
the right cluster to the left. Samples are taken from the tongue dorsum body site from the
Human Microbiome Project database. If the experiment were run once, one might mistakenly
assume that there are two clusters of data, however, the inconsistent sample membership of the
two groups between rarefactions proves the clustering irreproducible. The tongue dorsum and
buccal mucosa data set is included for comparison, with the tongue samples colored black and
the buccal mucosa samples colored red. Note that the variance explained in the tongue data
set by the first and second coordinate is merely 16.1% and 9.8% respectively, indicating that
the data is rather spherical, even though the points on the plot appear to show two separated
clusters (compare with 32.6% and 16.2% in the tongue dorsum vs. buccal mucosa data set). The
variance explained in the first and second coordinate in the 2011 UniFrac commentary [76] was
even smaller, at 8.6% and 5.6%.

undesirable result. When plotting the rarefactions against each other, several samples are

observed to be unstable, exhibiting large differences in location. This example demonstrates

that samples with little difference can appear to be different through the unweighted UniFrac

distance metric and that rarefaction can lead to misleading and non-reproducible results.

For the ellipse plot in Fig. 2.3, 60 tongue dorsum subsamples were randomly drawn without

replacement. Rare OTUs with less than 100 total counts across all samples were removed. A

hundred separate rarefactions were conducted on the data to a minimum sampling depth of

659. For each individual rarefied OTU table, a distance matrix was computed using one of

unweighted Unifrac, weighted UniFrac, Bray-Curtis Dissimilarity, information UniFrac, or
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Figure 2.3: Maxiumum relative deviation of rarefactions versus median deviation for tra-
ditional and non-traditional microbiome dissimilarity metrics. Sixty samples from the
tongue dorsum were taken from the Human Microbiome Project [138], and rarefied 100 times.
The maximum relative deviation was plotted against the median relative deviation of the rarefied
data, and ellipses were drawn at the 95% confidence interval, around the cloud of points for
each metric. A higher maximum and median devation indicates lower reproducibility of results
between rarefaction instances. Both the maximum relative deviation of rarefied data and the
median relative deviation of rarefied data are greater in unweighted UniFrac than in weighted
UniFrac, Bray Curtis dissimilarity, ratio UniFrac, and information UniFrac.

ratio UniFrac as the weighting method. By generating 100 separate datasets for each metric,

it is possible to assess the effect of rarefaction instance on each metric by analyzing what is

essentially the same data. In other words, what does the effect of random sampling (rarefaction)

have on the output of each metric? Each distance matrix generated per metric was adjusted with

a Procrustes adjustment to overlay the subsequent rarefactions onto the first.

The maximum value of Vres for each rarefaction is plotted against the median value per

rarefaction in Fig. 2.3. This plotting serves to highlight the maximum potential change for an

analysis given that there is no difference in the data. Unweighted UniFrac shows by far the

highest maximum potential change between rarefactions, compared to weighted, information,

and ratio UniFrac, as well as Bray-Curtis.
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Given the wide use of unweighted UniFrac in the literature with small principal coordinate 1

and 2 effects, I suggest caution in their interpretation. For example, see the use of unweighted

UniFrac in these papers about the human microbiome published in Cell[53], where the first and

second principal coordinates axis explain 14% and 9.5% of the variation in Figure 2A, as well

as in Nature [129], where the first principal coordinate explains 14% of the variation in Figure

1. In both of these examples, less variance is explained by the first principal coordinate than in

our uniform tongue data set.

2.0.8 The cause of rarefaction variation by Unweighted Unifrac

One point to note is that rarefaction carries the assumption that microbiota within samples

are homogeneous and randomly distributed. However, this assumption is only valid if proper

sampling protocols are observed [44]. A combination of unevenly sampled OTUs and distantly

related OTUs will contribute to the variability in unweighted UniFrac when OTUs are ultimately

rarefied. Distance matrices between samples will be affected when rare OTUs are left out during

the rarefaction processes. It becomes intuitive to see how similar samples may grow dissimilar

from each other through unweighted UniFrac on rarefied samples as the number of unshared

branches increases as OTUs are removed.

With rare OTUs and long branch lengths in the phylogenetic tree (Fig. 2.4), the Unweighted

UniFrac distance metric on rarefied data is highly variable, declaring the samples A and B

identical (distance of 0) with 1 rarefaction, and different with another (distance of 0.4175), as

demonstrated in Table 2.1 and the calculations above.

Weighted UniFrac is an improvement on unweighted UniFrac, however weighted UniFrac

can place too much emphasis on differences between large proportional abundances and too

little emphasis on differences between small proportional abundances. For example, if one

bacterial taxa increased in proportion from 5/1000 to 10/1000 and another taxa increased in

proportion from 95/1000 to 100/1000, they would have the same weight in weighted UniFrac.
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Figure 2.4: Phylogenetic tree with long isolated branches. Variation in different rarefactions
of data in unweighted UniFrac analysis is exacerbated by the presence of long isolated branches
in the phylogenetic tree, such as the circled OTU in this example.

Table 2.1: Original abundance of taxa and rarefied abundance of taxa. This data was
simulated to demonstrate how rarefaction can change the distances reported by the unweighted
UniFrac metric. Originally, sample A contained 1075 counts and sample B contained 221 counts
in total. Both samples were rarefied to 221 counts, twice. The OTU in bold has been rarified
to a zero count in sample A for one instance and a non zero count in the other instance. In
Rarefaction 1, the unweighted UniFrac distance (unshared over total branches) is 0.4175, while
in Rarefaction 2 the distance is 1.12.

OTU.ID A B
A

R1
B

R1
A

R2
B

R2
OTU.16340 52 1 8 1 12 1
OTU.17317 17 4 3 4 5 4
OTU.20 70 18 14 18 20 18
OTU.37867 59 10 9 10 11 10
OTU.37990 7 59 0 59 1 59
OTU.38187 646 115 132 115 122 115
OTU.38446 6 8 0 8 1 8
OTU.45429 218 6 55 6 49 6

However, the first taxa has doubled in proportion between samples, and this is much more

biologically significant than the change in proportional abundance in the second taxa. If this
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were a time series experiment, members of the first taxa would be dividing faster. Additionally,

it does not account for how the counts add up to a constrained sum determined by the sequencing

machine model. Because the sum is constrained, as with the bacterial vaginosis sample earlier,

an increase in growth of one taxa can make the data look like there is a decrease in abundance

in other taxa, even if in reality the population of the other taxa stayed the same. Here I explore

some alternatives to unweighted and weighted UniFrac, and discuss their merits and shortfalls.

2.0.9 Information UniFrac

The difference in information content between taxa with low proportional abundances (which

make up the bulk of microbiome data) is generally higher than the difference between the

proportional abundances themselves, potentially allowing scientists to differentiate samples

with subtle differences.

For example, Fig. 2.5 shows the weighting of a taxon in unweighted, weighted, and infor-

mation UniFrac as a function of the taxon proportional abundance. Near the 0, 0 point the

proportional abundances are low and information is 0. However, small increases in abundance

result in large changes in contribution to UniFrac weighting, as shown by the slope of the

curve. Here there is higher differentiation between weights of different pairs of low proportional

abundances for information UniFrac, as shown by the higher slope of the curved graph. The

ratio UniFrac (not depicted) depends on the geometric mean of the taxonomic abundances, and

each sample would have a different slope in the weight graph depending on how evenly the

abundances were distributed.
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Figure 2.5: UniFrac weights. Each UniFrac weighting is plotted with the corresponding pro-
portional abundance. The black line is unweighted UniFrac, the red line is weighted UniFrac,and
the blue line is information UniFrac. From 0 to 0.2 on the x-axis information UniFrac has a
higher slope, and therefore more discovery power for smaller changes in abundance. As the
x-axis approaches 1, changes in abundance add little discovery power to information Unifrac.

2.0.10 Tongue and buccal mucosa comparison

I next explore two other datasets, one with a defined difference between groups (tongue dorsum

compared to buccal mucosa), and one with an outlier that is only apparent when analyzed

by certain dissimilarity metrics. Fig. 2.6 shows a principal coordinate analysis plot with four

different metrics: unweighted UniFrac, weighted UniFrac, information UniFrac, and ratio

UniFrac. I observe that the difference in the microbiome between the human tongue and buccal

mucosa are well defined by all metrics (Fig. 2.6), since all of the weightings show separation

between the samples according to body site. I conclude from (Fig. 2.3) that weighted UniFrac,

information UniFrac, and ratio UniFrac do not tend to show spurious separation in uniform data
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sets to the degree that unweighted UniFrac does, while reliably separating samples in data with

a defined difference between groups.



51

Figure 2.6: Analysis of tongue and buccal mucosa data using different UniFrac weightings.
A principal coordinate analysis of a 16S rRNA gene tag experiment done on samples from the
tongue and buccal mucosa, selected from the Human Microbiome Project [138]. All weightings
and the Bray-Curtis dissimilarity show separation between the samples by body site. Note
that the variance explained by the first and second principal coordinate axis is higher than
in the tongue-tongue data set from Figure 2, which had 16.1% and 9.8% variance explained,
respectively.
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2.0.11 Breast milk Data

Fig. 2.7 shows the separation of an aberrant sample with ratio and information UniFrac. The

plot is a principal coordinate analysis of a 16S rRNA gene sequencing experiment done on

microbiome samples from breast milk. Breast milk samples were collected and the V4 region

of the 16S rRNA gene was sequenced [139]. One of the patients who provided a sample had

an active infection, producing a sample that consisted of 97% Pasteurella. I noted that this

sample was not distinct in unweighted and weighted UniFrac because the distance from the

Pasteurella branches of the phylogenetic tree to the root of the tree (rooted by midpoint) were

not particularly short or long, measuring at just over the 3rd quartile of all root-to-leaf distances.

In addition, the Pasteurella leaves shared a clade with many other taxa.

The reason the infected sample in the breast milk study is so distinct from the rest of

the samples in Information UniFrac and Ratio UniFrac is because of the weighting. The

infected sample was 97% Pasteurella, while the other samples generally had 15-20% each of

Staphylococcus and Pseudomonas, and little or no Pasteurella. Unweighted UniFrac does not

differentiate between high and low abundance. Weighted UniFrac does, placing the infected

sample in the bottom right corner of that plot. Information UniFrac weights everything in the

infected sample close to zero, as taxa are present in either very high or very low abundance,

while weighting Staphylococcus and Pseudomonas in the other samples highly (around 0.4) due

to their 15-20% abundance. Ratio UniFrac recognizes that the infected sample has a taxonomic

abundance very far from the geometric mean abundance. For these reasons information and

ratio UniFrac are more adept at picking up outliers with uneven distributions, even if the taxa

are shared by other samples.
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Figure 2.7: Analysis of breast milk data using different UniFrac weightings. A principal
coordinate analysis of a simulated 16S rRNA gene tag experiment based on the breast milk data.
The circled red sample is dominated at 97% by Pasteurella. Both information UniFrac and ratio
UniFrac are able to separate the outlier much more clearly than the other measures. Many of the
other samples contained Pasteurella. Information UniFrac can differentiate between samples
with different abundance profiles, and ratio UniFrac can differentiate samples with abundances
much higher than the calculated baseline abundance.
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2.0.12 Monoculture data

Each sample in the monoculture dataset (Fig. 2.8) is 97% dominated by one of three taxa.

However, within the remaining 3% there is variation in the counts.

Unweighted UniFrac, being a binary test, detects only the variation in the remaining 3% of

counts, without showing the difference in the monocultures. Weighted UniFrac detects only

the difference in the identity of the monoculture, and the separation is driven by phylogenetic

distance - the pairwise distance from Pasteurella to Staphylococcus and Pseudomonas to

Staphylococcus is just over 0.9 on the phylogenetic tree while the distance from Pasteurella to

Pseudomonas is 0.45. This is in correspondence with the PCoA plot where the first coordinate

(which separates the Staphylococcus species from the other two) explains over 90% of the

variance in the data set.

Information UniFrac is known to not perform very well for monocultures, due to taxa with

very high and low proportional abundances having uncertainty information values close to

zero (Fig. 2.5). While the samples separate visually with information UniFrac, the variance

explained by the separation is low, and the distance matrix does not separate the three groups by

hierarchical clustering. Ratio UniFrac and Bray Curtis both separate the samples by monoculture,

and also differentiate the samples by their minor variations, showcasing a more representative

perspective of this data set. If the samples are hierarchically clustered, the three groups separate

perfectly with weighted UniFrac, ratio UniFrac, and Bray Curtis dissimilarity, but not with

unweighted UniFrac or information UniFrac.
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Figure 2.8: Analysis of simulated monocultures using different UniFrac weightings. A
principal coordinate analysis of a simulated 16S rRNA gene tag experiment based on the breast
milk data. Red samples are dominated at 97% by Pasteurella, black samples are dominated by
Pseudomonas, and cyan samples are dominated by Staphylococcus. Note that while information
Unifrac appears to separate the samples reasonably well visually, the amount of variance
explained by the first two coordinates is much lower than even weighted UniFrac.
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Discussion

As shown in the tongue and buccal mucosa data set, unweighted UniFrac is perfectly sufficient

for data sets with a notable difference. However, in data sets with no difference or a very small

difference between groups such the uniform tongue dorsum data set, unweighted UniFrac is

the least reliable and Jia R. Wu found that it may produce wildly different results depending on

rarefaction and sequencing depth. This can result in spurious groups, or inclusion of samples in

the wrong groups.

I found weighted UniFrac, information UniFrac, ratio UniFrac, and Bray-Curtis methods

to be more reliable choices. I suggest that investigators use several methods as they can detect

outliers in different circumstances. When an outlier is detected by any metric, an investigation

is warranted, as with the example in the breast milk data set.

I do not believe that any of these weightings are a perfect model for microbiome data.

Each tool is prone to its own set of weaknesses. If the difference in groups is driven by

presence/absence then UniFrac is a reasonable choice. If the difference is driven by a linear

abundance, then weighted UniFrac is a good choice. Information UniFrac and ratio UniFrac are

useful for examining data sets that contain a similar set of taxa between groups. Information

and ratio UniFrac are especially useful for examining data sets that have more subtle variations,

due to their non linear nature. In any case, inspection should be done to make sure that the tool

used accurately represents the data. In summary, with the addition of information UniFrac and

ratio UniFrac, biologists have more tools at their disposal to prevent spurious interpretations,

detect outliers, and ultimately understand their data better.

Supporting Information
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S1 Fig.

Figure 2.9: Principal Coordinate Analysis derived from GUniFrac distance matrices. GU-
niFrac was run with an alpha of 0 and 0.25. Note that GUniFrac, like QIIME, prunes the tree
with every pairwise comparison. That is, the phylogenetic tree used for the distance calculation
for each pair of samples can be different. The resulting measurements are a dissimilarity, not a
distance. Additionally, QIIME gives slightly different values from GUniFrac, but the source of
this (likely an additional normalization) is not known.
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S2 Fig.

Figure 2.10: Principal Coordinate Analysis derived from GUniFrac distance matrices.
GUniFrac was run with an alpha of 0.5 and 0.75. Note that GUniFrac, like QIIME, prunes
the tree with every pairwise comparison. That is, the phylogenetic tree used for the distance
calculation for each pair of samples can be different. The resulting measurements are a
dissimilarity, not a distance. Additionally, QIIME gives slightly different values from GUniFrac,
but the source of this (likely an additional normalization) is not known.
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S3 Fig.

Figure 2.11: Principal Coordinate Analysis derived from GUniFrac distance matrices.
GUniFrac was run with an alpha of 1 (equivalent to weighted UniFrac), plus unweighted
UniFrac for comparison. Note that GUniFrac, like QIIME, prunes the tree with every pairwise
comparison. That is, the phylogenetic tree used for the distance calculation for each pair
of samples can be different. The resulting measurements are a dissimilarity, not a distance.
Additionally, QIIME gives slightly different values from GUniFrac, but the source of this (likely
an additional normalization) is not known.
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S4 Fig.

Figure 2.12: Principal coordinate analysis derived from tongue dorsum samples using
unweighted UniFrac distance matrices with no tree pruning.
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S5 Fig.

Figure 2.13: Principal coordinate analysis derived from tongue dorsum and buccal mu-
cosa samples using unweighted UniFrac distance matrices with no tree pruning.
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S6 Fig.

Figure 2.14: Weighted UniFrac is a dissimilarity with tree pruning. Here, the weighted
UniFrac measurements without tree pruning are: WAB =

121
252 , WBC =

111
252 , and WAC =

11
12 . With

tree pruning, the measurements are: WAB =
121
252 , WBC =

111
252 , and WAC = 1, which fails the

triangle inequality.
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Chapter 3

The human microbiome and nonalcoholic

fatty liver disease

3.1 Introduction

Non alcoholic fatty liver disease (NAFLD) has been on the rise along with obesity, affecting

approximately 25% of the North American population [107]. Most people with NAFLD remain

asymptomatic, however, in up to a third of patients NAFLD can progress to nonalcoholic

steatohepatitis (NASH), causing inflammation and scarring (fibrosis) in the liver, and decreasing

the 5 year survival rate to 67% [110]. It is thus important to shed some light on the process by

which people progress from NAFLD to NASH to find interventions that prevent NASH.

3.1.1 NASH progression risk

There are several known genetic and chemical factors that increase the risk of progression to

NASH in animal models and humans:

In mice non alcoholic fatty liver disease is often modelled with a methionine/choline-

deficient diet (MCD), which induces steatohepatitis in wild type mice. Mice with a toll-like

64
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receptor 4 knockout had lower lipid and injury accumulation markers when fed a MCD diet,

implying that toll-like receptor 4 has a role in the progression of NAFLD [116].

In rats liver fibrosis can be induced by dosing with dimethylnitrosamine. Yasuda et al. [145]

found that male rats were more prone to this induced liver fibrosis than female rats. Fibrosis

biomarkers were reduced when the male rats were dosed with estradiol, and increased when

the male rats were additionally given an estradiol-neutralizing antibody. Female rats who had

their ovaries removed similarly lost the protective effect [145]. From this, it was concluded that

hormones are also a factor in nonalcoholic fatty liver disease progression.

In humans, the I148M variant of the Patatin-Like Phospholipase Domain Containing 3 gene

(PNPLA3) correlates with a 3.2 fold increased risk of progression to NASH from NAFLD when

homozygous, compared to to patients without the variant [130]. The heterozygous gene was

found to be associated with fatty liver disease in genome wide association studies, but some

additional studies have failed to replicate the relationship with NASH [130].

On the epigenetic level, many genes are differentially methylated in the livers of patients

with advanced NAFLD compared to patients with mild NAFLD. Eleven percent of genes

are differentially hypomethylated in advanced NAFLD (compared to 3% hypermethylated),

leading to increased expression [94]. In advanced NASH specifically, some tissue repair genes

were hypomethylated while some metabolism pathways such as 1-carbon metabolism were

hypermethylated. However, only 7% of the differentially methylated genes were found to be

differentially transcribed [94].

On a metabolite level, Raman et al. found differences in the number of volatile organic

compounds detected in patients with NAFLD compared to obese patients without NAFLD [112].

Reactive oxygen species have also been implicated in NASH due to their involvement in the

mechanism of steatohepatitis-inducing drugs [7].

The microbiome is thought to have an effect on host digestion and absorption of nutrients

[39]. Anaerobic carbohydrate fermentation produces short chain fatty acids, which make up

10% of the calories in a Western diet [90] Some groups claim a link between ethanol-producing
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gut bacteria and NAFLD [147] [57], however the evidence was inconclusive since no multiple

test correction was performed.

Non alcoholic fatty liver disease is related to obesity, and studies in mice reported that the

mouse gut microbiome associated with diet-induced obesity can be transplanted to lean mice

and cause them to gain weight while eating the same amount of food [136]. The gut microbiome

is an important factor in obesity and potentially obesity related ailments, and its relationship to

NAFLD warrants investigation.

3.1.2 Data

Applying next generation DNA sequencing techniques to microbiome research is a relatively

new field that has yet to set data analysis standards. There are some considerations that should

be made when constructing a data analysis strategy.

Data is multivariate

Experiments of this nature typically have low sample sizes due to budget constraints, sample

collection difficulties, patient compliance, and other issues. As a result, the number of taxon

or gene function comparisons made are often a magnitude larger than the sample size. This is

known in statistics as having more variables than observations, or having fat data. The higher

the ratio of variables to observations are, the less likely standard statistical techniques are to be

reliable [99].

At a minimum, researchers should include multiple test corrections to ensure that the results

they are reporting are more likely to be reproducible, at the expense of having p-values less

than 0.05. Unfortunately many studies have been published in high impact journals without

multiple test corrections, including four out of five of the papers in the literature about the gut

microbiome and NAFLD (Fig˙ 3.1).
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Data is compositional

In both gene tag sequencing and metagenomic sequencing experiments, the data is in the form

of a list of counts per feature, with the features composing an aspect of the microbiome for

each sample. This is compositional data. The total number of reads yielded by the sequencing

platform is often platform-dependant and not biologically relevant.

This constrained sum causes the abundance of different taxa to appear to be negatively

correlated with each other when analyzed by conventional statistics [41]. When one taxa

increases in abundance, the counts detected in other taxa decrease in abundance, even if the taxa

are not decreasing in abundance biologically. In addition, correlation and covariance are invalid

when calculated from compositional data. Clustering, and dimension reduction are therefore

unreliable [73].

Compositional data should be analyzed in a compositional way. In Euclidean space, data

points can increase or decrease freely. Compositional data is under a sum constraint, and exist

in a non-Euclidean space known as the Aitchison simplex [1]. Data transformations such as

the centered log ratio can be performed to put the data into Euclidean space, so that it can

be analyzed with standard statistical methods that depend on Cartesian coordinates and linear

relationships. However, these techniques are not yet mainstream in the field, resulting in a high

number of conclusions made that are not reproducible.

3.1.3 Literature

Several papers have already been published in the literature on the topic of NAFLD and the gut

microbiome:

Jiang et al, 2015 [57] compared 53 NAFLD patients with 32 healthy controls. The NAFLD

patients had a significantly higher BMI (P < 0.01). Each sample had an average of 0.6 million

reads, from sequencing the V3 region of the 16S rRNA gene on the Illumina sequencing

platform. The reads were annotated with the Ribosomal Database Project [20]. Differential

abundance was determined using Projection on Latent Structures - Discriminant Analysis (PLS-
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Figure 3.1: Venn diagram of genera found to be differentially abundant by different stud-
ies between NASH/NAFLD and healthy controls. Only 3 out of the 16 genera claimed to be
differentially abundant were found in two studies: members of the Escherichia genus were found
in the Zhu [147] and Jiang [57] studies, and members of the Lactobacillus and Oscillibacter
genus were found in the Jiang [57] and Raman [112] studies.

DA) methods, which is not statistically valid when performed on compositional data. They

found a relative increase in members of the Lentisphaerae phyla and the Oscillibacter and

Flavonifractor genera in the healthy group, and a relative increase in members of the Clostridium

XI, Anaerobacter-related, Streptococcus, and Lactobacillus genera in the NAFLD group.

Zhu et al, 2013 [147] compared 16 non-obese controls, 25 obese patients, and 22 NASH

patients. All of the patients were pediatric, and the NAFLD group all had a BMI higher than

the 85th percentile while the healthy group had BMIs less than the 85th percentile. A 16S

rRNA gene tag sequencing experiment was performed and reads were sequenced in a 454

pyrosequencer. This group used MG-RAST [92] and QIIME [12] to analyze their data. Note

that in the PCoA plot (Figure 1 in [147]), there is only 11% variance explained by the first

co-ordinate axis, and they had to plot the first co-ordinate axis with the 3rd co-ordinate axis (3%

variance explained) to show the group separation. By comparing the average absolute read count
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for each taxa in each group, this group found that members of the Proteobacteria phylum, the

Enterobacteriaceae family, and the Escherichia genus had significantly higher average counts

in NASH patients compared to obese patients and healthy controls.

Raman et al, 2013 [112] compared 30 NAFLD patients with 30 healthy controls. All the

healthy controls had a BMI less than 25 while all the NAFLD patients had a BMI greater than

30. The 16S rRNA gene was amplified and sequenced with 454 pyrosequencing, yielding 2000

reads per sample. Reads were annotated with the Ribosomal Database Project [20]. UniFrac

analysis was performed with QIIME [12], and differential abundance was tested with Metastats

[103]. They found a relative increase in members of the Lactobacillus, Robinsoniella, Roseburia,

and Dorea genus in NASH patients and a relative increase in members of the Oscillibacter in

healthy patients.

Wong et al, 2013 [144] compared 16 NASH patients with 22 healthy controls. They amplified

the V1-V2 variable region of the 16S rRNA gene with pyrosequencing, yielding 4-11 thousand

reads per sample. Reads were clustered with UCLUST [28] and annotated with the Ribosomal

Database Project [20]. Members of the the genera Parabacteroides and Allisonella were found

to be relatively increased in NASH patients, while members of the genera Faecalibacterium and

Anaerosporobacter were relatively increased in healthy controls.

Boursier et al, 2015 [8] compared 30 patients with normal liver fibrosis (stage F0 or

F1) to 27 patients with stage F2 or greater fibrosis, 35 of which had NASH A gene tag

experiment was performed on the V4 region of the 16S rRNA gene, and sequenced on an

Illumina platform, yielding an average of 0.2 million reads per sample. Reads were annotated

with the Greengenes database [23], and differential abundance was measured by a Mann-

Whitney test. A metagenomic imputation was performed with PiCrust [66], annotated with

KEGG [60], and analysed with LEfSE [120]. A relative increase in members of the Bacteroides

phylum and a relative decrease in members of the Prevotella phylum was found in NASH,

compared to healthy controls. From the metagenomic imputation, the gut microbiome of NASH
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patients was found to be significantly enriched in functional categories related to carbohydrate,

lipid, amino acid, and secondary metabolism.

Many of the studies had healthy controls with a lower BMI, so it is difficult to separate

whether the differences found are related to NAFLD progression or obesity. Fig˙ 3.1 shows a

Venn diagram illustrating the inconsistency of the literature on the gut microbiome and NAFLD.

Of these, only Raman et al. [112] reported using a multiple test correction. Since these five

studies do not form a consistent story about the gut microbiome and NAFLD, I conducted

my own analysis using a compositional data (CoDa) approach with effect size as the primary

measure, such that our results are replicable [49]. Additionally, I generate the first deeply

sequenced metagenomic sample set to examine functional capabilities in this disease.

3.2 Methods

In total, 67 samples were collected: 29 from patients with nonalcoholic steatohepatitis (NASH),

14 from patients with simple steatosis (SS), and 24 from healthy controls. The median BMIs

were 26.70, 27.34, and 32.06, and the median ages were 36, 49, and 46.5 for healthy, SS, and

NASH respectively. Patient selection criteria are listed in Table 3.1. A full description of the

patient intake, metadata collection, and sample harvesting procedures are provided in Appendix

B, written by Hannah Da Silva from Allard research group in Toronto.

DNA extraction was performed with the E.Z.N.A.® Stool DNA Kit, and the protocol was

followed with the addition of lysozyme with an extra 30 minute incubation at 37 degrees Celsius,

between steps 2 and 3.

3.2.1 16S rRNA gene tag experiment

DNA was amplified by PCR using the Earth Microbiome V4 primer set [13], with the addition

of combinatorial in-line barcodes so that all the samples could be sequenced in the same

http://omegabiotek.com/store/product/stool-dna-kit/


3.2. Methods 71

sequencing run [42]. The DNA was sequenced on the Illumina MiSeq platform with paired end

220 nucleotide reads, producing 25 million reads in total.

Reads were overlapped with Pandaseq [84], clustered into Operational Taxonomic Units

(OTUs) using UCLUST [28], and annotated with the SILVA database [111] using mothur [119],

producing a table of counts per OTU per sample. Twelve million (48%) of the reads were

successfully overlapped and annotated into 232 OTUs, which our lab group has found to be a

typical yield for this type of experiment. Differential abundance was analyzed using ALDEx2

[34].

A generalized workflow for processing 16S rRNA gene sequencing reads is available at

https://github.com/ggloor/miseq_bin. The workflow for the 16S rRNA gene tag exper-

iment analysis from the count table stage is on GitHub: https://github.com/ruthgrace/

nafld_metaphlan_pca.

3.2.2 MetaPhlAn

MetaPhlAn (Metagenomic Phylogenetic Analysis) [121] is a piece of software that allows one to

infer the taxa present based on the metagenomic sequencing experiment. I used this to generate

a count table per taxa per sample, and will compare it to our experimental results from the 16S

rRNA gene tag sequencing experiment.

The MetaPhlAn tutorial was followed, using an additional marker_counts option in the

merge_metaphlan_tables.py step to produce a count table instead of a relative abundance

table. The workflow for the MetaPhlAn analysis from the count table stage is on GitHub:

https://github.com/ruthgrace/nafld_metaphlan_pca.

3.2.3 Metagenomic experiment

https://github.com/ggloor/miseq_bin
https://github.com/ruthgrace/nafld_metaphlan_pca
https://github.com/ruthgrace/nafld_metaphlan_pca
https://bitbucket.org/nsegata/metaphlan/wiki/MetaPhlAn_Pipelines_Tutorial
https://github.com/ruthgrace/nafld_metaphlan_pca
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Study inclusion criteria
BMI > 40 kg/m2
or BMI > 35-40 kg/m2 with severe weight loss responsive comorbidities,
i.e. DM2, hypertension, hyperlipidemia, sleep apnea
and/or gastroesophageal reflux disease
or physical problems interfering with lifestyle
and who have been assessed by the multidisciplinary bariatric team
as suitable candidates for laparoscopic RYGB
Male and female
Age 18 years or older
Alcohol consumption < 20g/d
If known to have hyperlipidemia or DM2,
need to be stable drug regimen for at least 3 months prior to study entry
Study exclusion criteria
Liver disease of other etiology
Advanced liver disease
(need for liver transplantation in one year
or complications such as variceal bleeding, ascites or jaundice)
Abnormal coagulation or other reasons contraindicating a liver biopsy
Medications known to precipitate steatohepatitis 6 months prior to entry
Regular intake of non-steroidal anti-inflammatory drugs;
prebiotics, probiotics or antibiotics, ursodeoxycholic acid
or any experimental drug in the 3 months prior to study entry
Type 1 diabetes
Chronic gastrointestinal diseases
Previous gastrointestinal surgery modifying the anatomy (prior to bariatric surgery)
Smoking
Pregnancy or breastfeeding
Patients not tolerating Optifast,
which is a standard weight loss diet given to all patients pre-bariatric surgery

Table 3.1: List of overall study inclusion and exclusion criteria. This table lists the inclusion
and exclusion criteria for the 16S rRNA gene tag experiment.

A metagenomic sequencing experiment was performed using total bacterial DNA from 10

healthy controls and 10 of the patients with NASH. Samples from healthy patients were selected

to exclude confounding factors (Table 3.2). Samples from NASH patients were selected for

the most extreme NASH phenotype, and had higher effect sizes in the 16S rRNA gene tag

experiment than the full NASH group.
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Study inclusion criteria
NASH severity
Study exclusion criteria
Took antibiotics at any point
Started Optifast diet early
Sample not frozen immediately after collection
Blood glucose over 7.8 mmol/l

Table 3.2: List of inclusion and exclusion criteria for metagenomic study. Patients were
selected for the metagenomic study out of the patients selected for the 16S rRNA gene tag
sequencing study with the following criteria. Ten healthy and ten patients with NASH were
selected in total.

The DNA was sequenced on the Illumina HiSeq platform, with single end 100 nucleotide

reads. Samples were barcoded and sequenced on the same sequencing run. After sequencing,

the reads were quality filtered and demultiplexed into reads per individual sample, yielding

nearly 2 billion reads in total.

I used a two pronged strategy to annotate the reads:

First, I created a reference library using the inferred taxa from the 16S rRNA gene tag

experiment. For each genus observed I randomly picked 10 strain genomes from the NCBI

bacterial genome database. For genera with less than 10 fully sequenced representatives, I

selected all available genomes. The library was made with 1134 genomes from 104 bacterial

genera. The open reading frame (ORF) library was then clustered at 99% identity for each

genus using CD-HIT [71] to decrease the number of ORFs in the library from 3.5 million

to 2.25 million. Annotation was performed by querying the SEED database [100] with the

BLAST command line tool [2], and sequenced reads were mapped onto this ORF library. Out

of approximately 2 billion reads total, 58.5 million (30.6%) were mapped by this method,

over 5836 unique SEED hierarchy annotations. This is comparable to the proportion of reads

commonly annotated in transcriptomic analysis, where in one data set, 15.5% of sequenced

reads could be matched to a known transcript [15]. The primary limitation of this method is a

lack of annotated bacterial sequences. The code for the reference library creation and annotation

is on GitHub.

https://github.com/ruthgrace/make_functional_mapping_library
https://github.com/ruthgrace/mapping_library_annotated_counts
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Second, I assembled the reads per sample de novo using Trinity [47], producing 8,847,816

sequences, and removed sequences that matched our reference library with 90% identity as

determined by BLAST [2], leaving just under 6 million sequences. Just over three and a half

million of these assembled sequences were successfully annotated with the SEED database

[100], and sequenced reads were mapped onto this. Approximately 1.32 billion additional reads

were annotated by this method, over 7026 unique SEED hierarchy annotations. The code for

the custom assembly pipeline is on GitHub, and described in Appendix A. The data from both

prongs was amalgamated into a single table of counts per annotation per sample.

Differential abundance was analyzed using ALDEx2 [34]. A full description of the workflow

for this process is included in Appendix A.

3.2.4 Compositional data analysis

The count tables from the 16S rRNA gene sequencing experiment and the metagenomic experi-

ment are compositional data. I use the Centered Log Ratio transform [] to put the compositional

data in Euclidean space so that it can be analyzed with conventional statistics, for example,

principal co-ordinate analysis.

3.3 Results

3.3.1 Data sets

There were originally three groups of patients within these samples: healthy controls, patients

with simple steatosis, and patients who had progressed to non alcoholic steatohepatosis. For the

metagenomic experiment, 10 of the healthy controls and 10 of the NASH group were selected,

based on clinical criteria (Table 3.2).

From this, three comparisons can be made: healthy compared to simple steatosis (SS),

healthy compared to non alcoholic steatohepatosis (NASH), and healthy compared to the

https://github.com/ruthgrace/exploring_nafld_assembly
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extreme NASH patients chosen for the metagenomic study. The samples used in the healthy vs.

extreme NASH comparison had already been chosen for the metagenomic study. The healthy vs.

simple steatosis (SS) comparison uses all the samples from healthy patients and patients with

simple steatosis. The healthy vs. NASH comparison uses all the samples from healthy patients

and patients with NASH. The samples used in the healthy vs. extreme NASH are a subset of

the healthy vs. NASH comparison. The sample overlap causes spurious correlations, so the

effect size plot has been redone in supporting figure 3.15 with non overlapping samples in the

different comparisons.

3.3.2 16S rRNA gene tag experiment

The four most abundant genera detected by 16S rRNA gene sequencing (excluding unclassified

bacteria) were: Bacteroides, Faecalibacterium, Blautia, and Pseudobutyrivibrio (Fig˙ 3.2).

Figure 3.2 has both a dendrogram and a bar plot. The dendrogram is the result of unsuper-

vised clustering on the centered log ratio transformed values of the 16S rRNA count table. The

samples from the different groups (healthy, simple steatosis, and non alcoholic steatohepatitis)

are scattered and do not cluster together. The bar plot shows the composition of each sample.

Each bar represents one sample, and each color represents one genus. Visually there is no

obvious difference in the sample compositions of the different groups.

Unlike the one dimensional representation of the data in the dendrogram, figure 3.3 shows

the data in two dimensions, in the form of a principal component analysis (PCA) plot. This plot

is variance-based, and shows the samples and OTUs on the same scale. The closer points are

to each other, the tighter their correlation. For example, samples CL 154 and CL 147 are in

close proximity on the plot, so one would expect them to have similar compositions. Genera

Lactobacillus and Desulfovibrio are close, and would be expected to have similar abundances in

the different samples. The data is actually multi-dimensional, and the variance explained by

each axis is shown in the Scree plot. In a well separated data set, most of the variance would
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be accounted for by the first two component axis. In this data set the samples are not well

separated, and the first two component axis explain just over 20% of the total variance.

Figure 3.4 shows a principal co-ordinate analysis (PCoA) on four UniFrac differences. The

first is unweighted UniFrac, which is able to distinguish differences between groups stemming

from the presence or absence of taxonomic groups. The second is weighted UniFrac, which

incorporates phylogenetic information with abundance. The third is information UniFrac, which

can separate groups with different abundance profiles (for example, samples where one taxa is

dominant, compared to samples that have more even abundances). The fourth is ratio UniFrac,

which can separate groups with taxa that are outliers above the baseline abundance. Based on

these methods, there are no obvious outliers in this data set - the data is just not well separated.

No obvious structure or separation is evident from the unsupervised clustering on the

centered log ratio transformed values in Fig. 3.2, the principal co-ordinates analysis in Fig. 3.4

or the principal component analysis in Fig. 3.3. Furthermore the variance explained by each

principal component or co-ordinate axis is not notably high, indicating a rather uniform data set.

To examine individual taxa, ALDEx was used (Fig. 3.5). This plot shows the difference

between groups with the dispersion within groups. Each plot represents one OTU, and OTUs

that are rare have a black dot on top. OTUs with a difference between groups that is much

higher than the dispersion within groups are significantly differentially abundant. In figure 3.5

no taxa in either of the three comparisons (healthy vs. SS, healthy vs. NASH, or healthy vs.

extreme NASH) are significantly differentially abundant.

Table 3.3 show which OTUs were consistently differentially abundant (absolute effect size

greater than 0.4) in non alcoholic fatty liver disease or health. In the ALDEx analysis, the taxa

consistently abundant in non alcoholic fatty liver disease are circled red, while taxa consistently

abundant in the healthy condition are circled black (Figure 3.5). Note that they are not rare in

either of the comparisons (OTUs with low counts are marked with a black dot). These OTUs

may have a contributory effect or a protective effect (Table 3.3) on the progression of non

alcoholic fatty liver disease.
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The Toronto patient population is very diverse, including patients coming from different

cultural backgrounds who consume different diets. With this kind of population and diversity, it

can be difficult to have sufficient power to detect significant differences. The previous figures

3.2, 3.3, 3.4, and 3.5 taken together indicate no large difference between groups. I explored

effect sizes, since these are known to be more robust and predict the p-values [49]. Effect size is

a standardized difference between means. One common effect size measure is a z-score, which

is a difference in means divided by the average standard deviation. In the measure used here, the

difference between groups is the median of the signed difference between pairs of points, where

one point is in one group, and one point is in the other group. The difference within groups is the

median of the absolute difference of pairs of points within a group. The effect size is the ratio

of the difference between groups to the difference within groups. In the ALDEx differential

abundance test, multiple Monte Carlo instances are sampled across a Dirichlet distribution to

estimate technical variance, and the effect size is calculated as the median of the ratio of the

between/within differences, across all replicates.

OTU family OTU genus SILVA H Vs. SS H Vs. NASH H vs. extreme
bootstrap effect sizes effect sizes NASH effect
value sizes

Lactobacillaceae Lactobacillus 97 0.479 0.591 0.898
Lachnospiraceae Blautia 85 −0.413 −0.415 −0.519
Bacteroidaceae Bacteroides 100 −0.657 −0.524 −0.526
Ruminococcaceae Faecalibacterium 100 −0.593 −0.402 −0.549
Lachnospiraceae IncertaeS edis 85 −0.523 −0.404 −0.682
Lachnospiraceae Dorea 100 −0.628 −0.455 −0.731

Table 3.3: Top decile of OTUs consistently relatively increased based on effect size from
healthy vs. extreme NASH comparison. This table lists the OTUs and their effect sizes in
all the comparisons. The OTUs were picked by open reference, by clustering and comparison
with the SILVA database [111]. Positive effect sizes indicate that the feature was found to be
relatively increased in NASH while negative effect sizes indicate that the feature was found to be
relatively increased in healthy. OTUs were annotated with SILVA, and a confidence percentage
is reported based on the provided bootstrapping algorithm. The 106 OTUs with effect sizes in
the top deciles of the healthy vs. extreme NASH comparison were filtered to only include OTUs
that had an absolute effect size greater than 0.4 in all comparisons. The tables with all 53 OTUs
in each of the top deciles are in supporting figures 3.5 and 3.6.
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Figure 3.2: Bar plot of 16S rRNA gene tag sequencing experiment. Each column of this bar
plot represents one sample, and each color represents one bacterial genus. Genus names are
listed in the legend in order of decreasing total abundance across all samples. Samples do not
cluster according to their condition (healthy, simple steatosis, or nonalcoholic steatohepatitis).
Note that OTUs that mapped to unclassified or Incertae Sedis were removed, and these made up
just over a third of the total abundance. This operation is valid in compositional data analysis
since it is the rato between OTUs that is measured, but not in non-compositional approaches
where the apparent abundance is examined.
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Figure 3.3: 16S rRNA gene tag sequencing experiment biplot. Exploratory analysis using
compositional data techniques is done by transforming the counts with the centered log ratio
transform, and then performing a principal component analysis. The variance explained by
each genus is overlaid on the same principal component analysis plot. Note that the variance
explained by the first and the second component is 13.6% and 8.4% respectively, indicating that
there is not a clear unidirectional separation between groups. Samples from healthy controls
selected for the metagenomic study are colored black and prefixed with ‘HLD’ while samples
from patients with extreme NASH are colored dark red and prefixed with ‘CL’. The remaining
healthy controls are colored gray, and the remaining NASH samples are colored bright red.
Samples from patients with simple steatosis (SS) are colored pink.



80 Chapter 3. The human microbiome and nonalcoholic fatty liver disease

Figure 3.4: Principal co-ordinate analysis of 16S rRNA gene tag sequencing data with
different UniFrac methods. Each point represents one sample, and the distances between the
samples have been calculated using different UniFrac metrics, taking into account phylogenetic
as well as abundance information. There is no obvious separation between groups by any of
the UniFrac weightings. Furthermore the variance explained by each principal co-ordinate axis
is not notably high, indicating a rather uniform data set, and no samples were observed to be
outliers.
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Figure 3.5: Effect plot showing difference within vs. difference between groups. Each
point represents one OTU, and the dispersion of that OTU within groups is plotted against the
difference in abundance between groups. None of the OTUs are more different between groups
than within groups. The healthy samples used for these comparisons are the 10 healthy samples
used for the metagenomic study. The extreme NASH samples used for these comparisons are
the subset of the NASH patients selected for the metegenomic study. The dashed lines represent
where the difference in abundance between groups and within group dispersion are equal. Points
with a black dot represent OTUs that are rare. Points with a red circle are the top consistently
abundant OTUs in non alcoholic fatty liver disease from Table 3.3. Points with a black circle
are the top consistently abundant OTUs in the healthy condition from Table 3.3.
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Figure 3.6: Correlation in effect sizes of different group experiments. Each point represents
one OTU, and the effect size of that OTU in one comparison (for example, comparing the gut
microbiome of healthy patients with patients who have simple steatosis) is plotted against the
effect size of that OTU in another comparison. The healthy samples used for these comparisons
are the 10 healthy samples used for the metagenomic study. The extreme NASH samples
used for these comparisons are the subset of the NASH patients selected for the metegenomic
study. The top decile of OTUs relatively increased in NASH for the metagenomic experiment
are colored pink (Table 3.5), and the top decile of OTUs relatively increased healthy for the
metagenomic experiment are colored blue (Table 3.6). The median difference in the effect
sizes of the ‘Healthy vs. NASH’ - ‘Healthy vs. SS’ is 0.062 for the pink points, and -0.0097 for
the blue points. The median difference in the effect sizes of the ‘Healthy vs. extreme NASH’ -
‘Healthy vs. SS’ is 0.33 for the pink points, and -0.30 for the blue points. The median difference
in the effect sizes of the ‘Healthy vs. extreme NASH’ - ‘Healthy vs. NASH’ is 0.28 for the pink
points, and -0.25 for the blue points.
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Figure 3.6 shows the correlation of effect sizes per OTU, between each comparison. The top

deciles of OTUs relatively abundant in the healthy or the extreme NASH condition are colored.

If there were truly no effect, then there would be no correlation between the effect sizes for each

OTU in the different comparisons. However, in Figure 3.6, I show that the effect sizes for each

OTU in each comparison are correlated. The effect sizes are higher in the Healthy vs. extreme

NASH compared to the Healthy vs. SS or Healthy vs. NASH comparison at the extreme deciles.

Even though there are no significantly differentially abundant OTUs, the correlation shows that

the difference from the healthy baseline are moving in the same direction through SS to NASH

to extreme NASH.

When comparing all the healthy samples with all the NASH samples, the genera with the

highest effect sizes were Lactobacillus, which was relatively abundant in the NASH condition,

as well as Alistipes, and Bacteroides, which were relatively abundant in the healthy condition.

However, when only the select 10 healthy samples and the 10 extreme NASH samples used

in the metagenomic study are compared (the healthy vs. extreme NASH comparison), the

genera with the highest effect sizes are Phascolarctobacterium and Paraprevotella, which were

relatively abundant in the extreme NASH condition, and Ruminococcus, which was relatively

abundant in the healthy condition.

This corresponds with the qPCR experiment, where Bacteriodetes, Prevotella, and Ru-

minococcus were tested. Only Ruminococcus was found to be significantly differentially

abundant, in healthy controls (Anastasia Teterina, personal communication, March 16, 2016).

These results suggest that members of the Alistipes, Bacteroides, and Ruminococcus gen-

era may play a protecting role against NASH progression in the gut microbimoe of healthy

patients, and be useful in probiotic therapies. It is possible that members of the Lactobacillus,

Phascolarctobacterium, and Paraprevotella genera may be a contributing factor to NASH

progression.
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3.3.3 Metagenomic experiment

Functional analysis

The sequencing platform yielded 2.8 billion reads. Out of these, 1.3 billion were annotated

across 7026 SEED subsystem functional annotations. The SEED subsystems are functional

categorizations of gene sequences [100]. The most descriptive and specific SEED subsystem is

subsystem 4. Each read is categorized into at most one subsystem 4. Subsystems 1, 2, and 3 are

broader, and a read can be categorized into multiple higher categories. I use ALDEx to test for

differential expression at the subsystem 4 categorization level (Fig. 3.7). Because the reads

do not have unique categorizations at the higher levels, I use stripcharts to examine these in a

descriptive manner (Fig. 3.16).

ALDEx analysis results show that no functional annotations at the subsystem 4 level are

significantly differentially abundant between the healthy and the NASH conditions (Fig. 3.7).

There are over seven thousand annotations analyzed here, so it is very difficult to have enough

power to detect statistical significance. Even with broader functional categories in supporting

figure 3.16, there is no category with a large skew towards the extreme NASH or the healthy

condition.

In the principal components analysis (Figure 3.8), the healthy samples appear to be clustered

in the middle, with sample HLD 23 as an outlier. The extreme NASH samples are more spread

out, and the functional annotations that contribute the most to their spread are written in blue.

Outlier analysis shows that sample CL 166 is an outlier in the extreme NASH group. CL 166

has the lowest steatosis grading out of all the NASH samples. This plot measures variance, and

implies that the samples from the extreme NASH patients have a much higher variance between

samples than the samples from the healthy patients. The Scree plot on the side of Figure 3.8

shows that a lot of variance (over 40%) is explained by the first two component axis, which

means that the samples have a lot of structural spread compared to a random set of points. With

the outliers removed (Figure 3.9), the healthy samples occupy a space four times smaller than

the extreme NASH samples, indicating that they have a much lower variance between samples.
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I was particularly interested in the subset of functional annotations related to carbohydrates

and lipids, as they are relevant to obesity and potentially NASH. When the carbohydrate or lipid

subset is analyzed separately (Figures 3.10 and 3.11), the samples are still arranged in the same

way as the full data set in the principal components analysis. What differentiates the samples

in the full set is not lost in the carbohydrate or the lipid subset, even though the lipid subset is

much smaller and does not include functional annotations with an effect size greater than 0.68.

The Boursier et al. [8] paper imputed the metagenomic analysis, and reported that KEGG

pathways for carbohydrate, lipid, and amino acid metabolism were significantly differential

between groups. I did a principal components analysis on the Amino Acids and Derivatives

subsystem 1 category (Figure 3.12). This produced a spread of samples less similar to the

principal components analysis with all the functional annotations (Fig. 3.8), compared to the

lipid subset (Fig. 3.11), despite the amino acid subset containing more annotations than the

lipid subset (449 compared to 134 annotations).
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Figure 3.7: Difference within vs. difference between healthy and extreme NASH for
metagenomic data. Each point on this plot represents a functional annotation at the SEED
subsystem 4 level. None of the subsystem 4 functional annotations have a significantly greater
abundance between groups than within groups.



3.3. Results 87

Figure 3.8: Principal components analysis of metagenomic data. In this biplot, the healthy
samples are shown in black, while the extreme NASH samples are shown in red. Samples
CL 119, CL 139, CL 160, and CL 165 have a steatosis grading of 3. Samples CL 141, CL 144,
CL 169, CL 173, and Cl 177 have a steatosis grading of 2. Sample CL 166 has a steatosis
grading of 1. The steatosis grading does not appear to separate the samples. The location of the
subsystem 4 labels (in blue) show which direction they pull the samples in, in terms of variance.
The biplot shows only the thirty four subsystem 4 categories with an effect size greater than
1, out of 7026 categories in total. The key for the subsystem 4 labels is Table 3.4. The Scree
plot indicates that about 40% of the variation in the data set was explained by the first two
components, and the data is well spread.
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Function ID Function name
1 DNA topoisomerase III (EC 5.99.1.2)
2 3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)
3 2-hydroxy-3-oxopropionate reductase (EC 1.1.1.60)
4 Imidazolonepropionase (EC 3.5.2.7)
5 Flagellar basal-body rod modification protein FlgD
6 HflC protein
7 Diaminobutyrate-pyruvate aminotransferase (EC 2.6.1.46)
8 Metal-dependent hydrolases of the beta-lactamase

superfamily II
9 pyoverdine-specific efflux macA-like protein
10 Homoserine O-acetyltransferase (EC 2.3.1.31)
11 Threonine kinase in B12 biosynthesis
12 Molybdopterin biosynthesis protein MoeB
13 D-allose kinase (EC 2.7.1.55)
14 Gluconate permease, Bsu4004 homolog
15 2-methylisocitrate dehydratase (EC 4.2.1.99)
16 Uncharacterized protein ImpH/VasB
17 Phosphate starvation-inducible ATPase PhoH

with RNA binding motif
18 Spore germination protein GerLC
19 Phosphohistidine phosphatase SixA
20 Glutathione-regulated potassium-efflux system

ancillary protein KefG
21 Histidyl-tRNA synthetase, archaeal-type paralog (EC 6.1.1.21)
22 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60)
23 FKBP-type peptidyl-prolyl cis-trans isomerase slpA (EC 5.2.1.8)
24 3-oxoacyl-[ACP] synthase
25 IncW plasmid conjugative relaxase protein TrwC (TraI homolog)
26 CO dehydrogenase iron-sulfur protein CooF (EC 1.2.99.2)
27 Transcriptional regulator of AraC family,

enterobactin-dependent, predicted
28 Antitoxin YgiT
29 acyl-acyl carrier protein synthetase (EC 6.2.1.20)
30 Outer membrane protein GumB,

involved in the export of xanthan
31 C3 family ADP-ribosyltransferase (EC 2.4.2.-)
32 Hypothetical SAV0786 homolog in superantigen-encoding

pathogenicity islands SaPI
33 Predicted cellobiose ABC transport system,

sugar-binding protein
34 Lipoprotein Bor

Table 3.4: Subsystem 4 label key for Figure 3.8. This table lists the subsystem 4 labels and
corresponding names.
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Figure 3.9: Principal components analysis of metagenomic data. In this biplot, the healthy
samples are shown in black, while the extreme NASH samples are shown in red. Outliers
HLD 23 and CL 166 have been removed. With the outliers removed, the healthy samples
occupy a space four times smaller than the extreme NASH samples, indicating that they have a
much lower variance between samples.
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Figure 3.10: Principal components analysis of carbohydrate metagenomic data. This biplot
shows the sample separation produced when only the 1164 subsystem 4 categories under the
‘Carbohydrates’ subsystem 1 categorization are used. In this biplot, the healthy samples are
shown in black, while the extreme NASH samples are shown in red. The location of the
subsystem 4 labels (in blue) show which direction they pull the samples in, in terms of variance.
The biplot shows only the thirty four subsystem 4 categories with an effect size greater than 1.
The Scree plot indicates that about 40% of the variation in the data set was explained by the
first two components, and the data is well spread. Below is the key for the subsystem 4 labels.
Function ID Function name
1 Maltodextrin phosphorylase (EC 2.4.1.1)
2 Dihydrolipoamide acyltransferase component of branched-chain

alpha-keto acid dehydrogenase complex (EC 2.3.1.168)
3 Predicted L-arabinose isomerase (EC 5.3.1.4)
4 Predicted galactoside ABC transporter, permease protein 2
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Figure 3.11: Principal components analysis of lipid metagenomic data. This biplot shows
the sample separation produced when only the 134 subsystem 4 categories under the ‘Fatty
Acids, Lipids, and Isoprenoids’ subsystem 1 categorization are used. In this biplot, the healthy
samples are shown in black, while the extreme NASH samples are shown in red. The location
of the subsystem 4 labels (in blue) show which direction they pull the samples in, in terms of
variance. The biplot shows only the thirty four subsystem 4 categories with an effect size greater
than 0.5. The Scree plot indicates that about 40% of the variation in the data set was explained
by the first two components, and the data is well spread. Below is the key for the subsystem 4

labels.

Function ID Function name
1 3-oxoacyl-[acyl-carrier-protein] synthase, KASII (EC 2.3.1.41)
2 3-oxoacyl-[acyl-carrier-protein] synthase, KASIII (EC 2.3.1.41)
3 Acetyl-coenzyme A carboxyl transferase alpha chain (EC 6.4.1.2)
4 3-ketoacyl-CoA thiolase (EC 2.3.1.16)
5 Squalene–hopene cyclase (EC 5.4.99.17)
6 Hydroxyneurosporene methyltransferase (EC 2.1.1.-)
7 FIG143263: Glycosyl transferase
8 Phytoene dehydrogenase and related proteins
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Figure 3.12: Principal components analysis of lipid metagenomic data. This biplot shows
the sample separation produced when only the 449 subsystem 4 categories under the ‘Amino
Acids and Derivatives’ subsystem 1 categorization are used. In this biplot, the healthy samples
are shown in black, while the extreme NASH samples are shown in red. The location of the
subsystem 4 labels (in blue) show which direction they pull the samples in, in terms of variance.
The biplot shows only the thirty four subsystem 4 categories with an effect size greater than 1.
The Scree plot indicates that about 40% of the variation in the data set was explained by the
first two components, and the data is well spread. Below is the key for the subsystem 4 labels.
Function ID Function name
1 Phosphoadenylyl-sulfate reductase [thioredoxin] (EC 1.8.4.8)
2 2,3-diketo-5-methylthiopentyl-1-phosphate enolase
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MetaPhlAn

I ran the sequences from the metagenomic sequencing experiment through MetaPhlAn to

examine if the taxonomic profile derived from the metagenomic sequences was similar to the

taxonomic profile I measured. MetaPhlAn generates taxonomy profiles that can be compared to

the results of 16S rRNA gene tag sequencing.

The operational taxonomic units in the MetaPhlAn and 16S rRNA gene analysis were

derived from different databases, and can not be compared directly. Note that OTUs can reside

in between genera, such that the genus classification is not perfectly concordant between the

two comparisons. The top four relatively abundant genera from the MetaPhlAn analysis were

Ruminococcus, Eubacterium, Coprococcus, and Bacteroides. Ruminococcus Coprococcus

are also on the top four relatively abundant genera from the 16S rRNA gene tag sequencing

experiment.

Figure 3.13 shows the taxonomic composition of each sample, as calculated by MetaPhlAn.

The healthy and the extreme NASH samples are not separated by unsupervised clustering, as

shown in the dendrogram.

In the ALDEx analysis of differential abundance for each taxa (Figure 3.14), Alistipes

shahii was the most differentially abundant (although not significantly so). Other members of

the Alistipes genus were identified as having top decile effect sizes for relative abundance in the

healthy condition in the 16S rRNA gene sequencing experiment, as shown in supporting figure

3.6. The OTUs from the 16S rRNA gene sequencing experiment and the taxa in the MetaPhlAn

analysis cannot be mapped to each other directly, but it is possible that some members of the

16S OTUs may have genes grouped under Alistipes shahii in the MetaPhlAn analysis. Note that

one cannot infer information about a bacterial species from the analysis of a bacterial genus, or

vice versa, due to the ecological paradox: Inferences cannot be made about members of a group

based on the group as a whole.
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Figure 3.13: Taxa barplot dendogram derived from MetaPhlAn. The metagenomic reads
were input into MetaPhlAn to generate a count table. The taxa in the count table were filtered
such that only taxa with at least 1% abundance in any sample was kept. In this barplot, each
bar represents one sample, and each color represents one genus, with the size of the colored
segments corresponding with the relative abundance of the genus.
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Figure 3.14: Difference within groups vs. difference between groups per taxa, derived
from MetaPhlAn. This plot was generated from the count table inferred by MetaPhlAn, with
taxa filtered such that only taxa with at least 1% abundance in any sample was kept. No taxa are
more differential between groups than within groups. A positive difference between indicates
that the taxa was relatively increased in NASH while a negative difference between indicates
that the taxa was relatively increased in healthy. This analysis was done at the inferred species
level (using operational taxonomic units) rather than at the genus level. The circled taxa is
Alistipes shahii, and has an expected Benjamini-Hochberg p-value of 0.078, and an effect size
of -1.25.
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3.4 Discussion

Given the inconsistency in the five papers that have been published about NAFLD and the

gut microbiome, I have performed my analysis in a more statistically rigorous manner in an

effort to find OTUs with effects more likely to be consistent across experiments. I found

that there was no significant difference between groups by sample clustering (Fig˙ 3.2) or

at the level of the individual OTUs (Fig˙ 3.5). The metagenomic data was used to impute

taxonomic profiles through MetaPhlAn. In the MetaPhlAn analysis, one taxa, Alistipes shahii,

was nearly significantly increased in the healthy condition in the MetaPhlAn analysis, which

infers a taxonomic profile from metagenomic sequencing. However, when I sequenced the

true taxonomic profile through 16S rRNA gene sequencing, no taxa were as differential (Fig.

3.5), and the groups were not separated (Fig. 3.3). Members of the Alistipes genus appear

in the top decile of taxa differentially abundant in both NASH (Fig. 3.5) and healthy (Fig.

3.6) conditions. This suggests that members of the Alistipes genus may be a component of the

healthy gut microbiome missing in patients with extreme NASH.

I hypothesize that there is a characterizable taxonomic profile difference in the gut micro-

biome between patients prone to NASH and healthy controls. Further study with an increased

sample size, a more homogenous population, and a greater phenotypic difference between

groups may provide the statistical power required to detect the nature of this difference. Chal-

lenges in obtaining such a data set include cost and recruiting an appropriate population. Model

organisms such as mice do not naturally host the same microbiota in their gut as humans [96],

and it is not known how well a complex human microbiome can colonize a germ free mouse (a

process known as ‘humanization’) [19]. Bacterial communities grown in chemostats also have

differences in the proportional abundance of different taxa compared to the fecal matter from

which the communities are seeded [86]. There may be several taxa that differ between the gut

microbiomes of healthy patients and patients with extreme NASH. These can be used to develop

probiotic or fecal transplant interventions to protect patients at risk against NASH progression.
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The study was likely underpowered and there could be several factors that contribute to

this. First, the gut microbiome is highly diverse between individuals. This is compounded

by the fact that the samples were taken from a diverse Toronto population, including people

who immigrated from other countries who likely have different diets. The literature shows that

differences in the gut microbiome are often driven by diet [21]. Additionally, the nature of

microbiome data is that there are very many more variables (in the form of OTUs or annotated

gene functions) than samples, and the power of the study is inversely proportional to the number

of variables.

From Fig˙ 3.6, the correlation shows that even though there is not enough power to detect a

significant difference, the difference from the healthy baseline are moving in the same direction

through simple steatosis to nonalcoholic steatohepatitis to extreme NASH.

In our metagenomic analysis, I performed a principal component analysis and found that our

healthy samples clustered together into two groups (with the exception of one outlier, HLD 23).

The extreme NASH samples were much more spread out. The samples were not arranged

this way in the principal component analysis of the 16S rRNA gene experiment. This could

be indicative of a core healthy microbiome profile that is more distinguishable by metabolic

potential (gene content profile), and potentially by transcriptomic profile, than the taxonomic

profile. Rather than deviating from the healthy samples in a specific direction, the microbiome

of extreme NASH patients could deviate from the healthy microbiome in a number of directions

and yet produce the same clinical outcomes. One other example of this is bacterial vaginosis,

which may differ taxonomically from the typical lactobacillus-dominated microbiome in many

different ways, but has a common transcriptomic profile that lead to the same clinical symptoms

[77].

The gut microbiome of NASH patients are individually difficult to distinguish from the gut

microbiome of healthy patients. The dysbiosis associated with NASH is unpredictable as the

NASH samples are collectively highly variable. This is supported by the principal components

plot showing the variance of the samples in Figure 3.9.
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Boursier et al. [8] imputed a metagenomic analysis with PICRUSt [66], and found signifi-

cantly differentially abundant functional annotations in KEGG pathways for carbohydrate, lipid,

and amino acid metabolism. However, this group did not perform a multiple test correction, and

their results cannot be distinguished from false positives. Furthermore, PICRUSt is known to

correlate with actual metagenomic results with a Spearman correlation coefficient of approxi-

mately 0.7. It is unknown how the extreme differential features identified in PICRUSt behave

specifically, compared to a sequenced metagenome.

I performed the metagenomic experiment with principal component analysis on the full set

of functional annotations, and subsets of annotations categorized under carbohydrate, lipid, and

amino acid. I found that the carbohydrate subset and the lipid subset spread out the samples

in a pattern closer to that of the full set of functional annotations, compared to the amino acid

subset. This makes sense for the carbohydrate subset which contains over one seventh of all

the functional annotations. However, the amino acid subset actually contains several times

more annotations (449) compared to the lipid subset (134). Even so, the analysis of the amino

acid subset (Figure 3.12) showed higher diversity in the samples from patients with extreme

NASH than in the samples from healthy controls, corresponding with the carbohydrate and lipid

subsets, as well as the full analysis.

The next step in exploring the relationship between the gut microbiome and non alcoholic

fatty liver disease progression is to perform studies with a more homogenous population that

have more extreme phenotypic differences, and to include transcriptomic as well as metagenomic

experiments. Additionally, I implore other research groups to employ multiple test corrections.

This process is meant to reduce the probability of identifying differentially abundant features

that are false positives, and omitting this step renders the statistical analysis invalid. A renewed

focus on producing rigorous research in the field is necessary for microbiome results, such as

those published about non alcoholic fatty liver disease, to be consistently replicable.
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Supporting Information

S2 Fig.
OTU family OTU genus SILVA H Vs. SS H Vs. NASH H vs. extreme

bootstrap effect sizes effect sizes NASH effect
value sizes

Acidaminococcaceae Phascolarctobacterium 100 −0.318 0.043 0.953
Lactobacillaceae Lactobacillus 97 0.479 0.591 0.898
Prevotellaceae Paraprevotella 100 0.048 0.328 0.835
Lachnospiraceae IncertaeS edis 98 0.25 0.149 0.642
Lachnospiraceae Marvinbryantia 77 0.02 0.164 0.618
Ruminococcaceae IncertaeS edis 72 0.232 0.31 0.616
Bifidobacteriaceae Bifidobacterium 100 0.064 0.497 0.615
Lachnospiraceae IncertaeS edis 73 0.218 0.078 0.596
Lachnospiraceae unclassified 100 0.159 0.151 0.564
Coriobacteriaceae unclassified 97 0.17 0.187 0.525
Ruminococcaceae Butyricicoccus 71 0.119 0.236 0.511
Lachnospiraceae unclassified 98 0.246 0.229 0.501
Ruminococcaceae Ruminococcus 93 0.229 0.233 0.497
Lachnospiraceae IncertaeS edis 91 −0.494 −0.019 0.493
Prevotellaceae Paraprevotella 100 0.126 0.279 0.488
unclassified unclassified 72 0.022 0.181 0.485
Ruminococcaceae unclassified 100 0.817 0.288 0.462
Ruminococcaceae Subdoligranulum 87 0.395 0.141 0.455
Ruminococcaceae IncertaeS edis 99 0.115 0.025 0.45
Prevotellaceae unclassified 70 0.111 0.156 0.442
Lachnospiraceae unclassified 100 0.202 0.151 0.438
unclassified unclassified 92 0.191 0.287 0.437
Coriobacteriaceae Olsenella 91 0.461 0.236 0.437
Lactobacillaceae Lactobacillus 98 0.103 0.089 0.436
Ruminococcaceae Subdoligranulum 98 0.694 0.274 0.436
Ruminococcaceae IncertaeS edis 98 0.046 0.112 0.425
unclassified unclassified 73 −0.036 0.009 0.413
Prevotellaceae Prevotella 99 0.234 0.296 0.403
FamilyX III IncertaeS edis 100 0.036 0.058 0.398
Lachnospiraceae Anaerostipes 100 0.066 −0.177 0.385
Ruminococcaceae Faecalibacterium 100 0.364 0.283 0.374
Ruminococcaceae Ruminococcus 100 0.071 0.091 0.372
unclassified unclassified 98 0.208 0.131 0.367
Lachnospiraceae unclassified 100 0.007 0.192 0.362
Bacteroidaceae Bacteroides 100 −0.064 0.069 0.356
Lachnospiraceae IncertaeS edis 100 −0.045 0.147 0.355
Coriobacteriaceae Enterorhabdus 72 0.292 0.325 0.345
Alcaligenaceae Sutterella 100 0.057 0.256 0.342
Lachnospiraceae unclassified 100 0.085 0.144 0.339
Desulfovibrionaceae Desulfovibrio 100 0.056 0.269 0.336
Rikenellaceae Alistipes 100 −0.037 0.135 0.332
Ruminococcaceae Subdoligranulum 92 0.469 0.263 0.332
Ruminococcaceae unclassified 100 −0.625 −0.181 0.33
Lachnospiraceae Roseburia 98 −0.353 0.198 0.329
Christensenellaceae unclassified 99 −0.06 0.056 0.328
Lachnospiraceae unclassified 100 0.002 0.145 0.322
Veillonellaceae Dialister 100 0.158 0.355 0.321
Lachnospiraceae Blautia 97 0.13 0.025 0.319
Alcaligenaceae Parasutterella 100 0.089 0.224 0.316
Lachnospiraceae Roseburia 71 −0.016 0.052 0.312
Lachnospiraceae Blautia 96 0.207 −0.056 0.311
Pasteurellaceae unclassified 100 0.094 0.174 0.309
Lachnospiraceae unclassified 100 0.12 −0.004 0.303

Table 3.5: Top decile of OTUs relatively increased in NASH based on effect size from
healthy vs. NASH comparison. This table lists the OTUs and their effect sizes in all the
comparisons. The OTUs were picked by open reference, by clustering and comparison with the
SILVA database [111]. Positive effect sizes indicate that the feature was found to be relatively
increased in NASH while negative effect sizes indicate that the feature was found to be relatively
increased in healthy. OTUs were annotated with SILVA, and a confidence percentage is reported
based on the provided bootstrapping algorithm.
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S3 Fig.
OTU family OTU genus SILVA H Vs. SS H Vs. NASH H vs. extreme

bootstrap effect sizes effect sizes NASH effect
value sizes

Lachnospiraceae unclassified 100 0.324 −0.113 −0.346
Ruminococcaceae IncertaeS edis 100 −0.028 −0.361 −0.351
Porphyromonadaceae Odoribacter 100 0.16 −0.226 −0.353
Ruminococcaceae unclassified 100 −0.185 −0.276 −0.361
Lachnospiraceae unclassified 100 −0.507 −0.266 −0.362
Lachnospiraceae Roseburia 83 0.031 −0.043 −0.364
Christensenellaceae unclassified 100 −0.008 −0.192 −0.365
Lachnospiraceae Blautia 91 0.061 −0.092 −0.365
Verrucomicrobiaceae Akkermansia 100 −0.049 −0.098 −0.367
S24-7 unclassified 100 0.28 0.129 −0.368
Christensenellaceae unclassified 98 −0.371 −0.332 −0.368
Porphyromonadaceae Parabacteroides 100 −0.2 −0.05 −0.37
Lachnospiraceae Blautia 93 −0.285 −0.248 −0.389
Lachnospiraceae unclassified 98 0.114 −0.014 −0.391
Christensenellaceae unclassified 100 −0.146 −0.256 −0.4
Lachnospiraceae Roseburia 91 −0.323 −0.254 −0.4
Lachnospiraceae IncertaeS edis 85 −0.091 −0.246 −0.402
Lachnospiraceae Dorea 100 −0.416 −0.201 −0.403
Ruminococcaceae unclassified 100 −0.384 −0.505 −0.409
Christensenellaceae unclassified 99 −0.278 −0.108 −0.417
Erysipelotrichaceae Turicibacter 100 −0.29 −0.234 −0.43
Prevotellaceae Alloprevotella 100 −0.127 −0.03 −0.437
Lachnospiraceae unclassified 100 −0.553 −0.282 −0.441
Ruminococcaceae IncertaeS edis 84 −0.129 −0.272 −0.443
Porphyromonadaceae Odoribacter 100 −0.382 −0.303 −0.445
FamilyX III Anaerovorax 91 −0.317 −0.322 −0.447
Lachnospiraceae IncertaeS edis 82 −0.078 −0.434 −0.451
Ruminococcaceae Ruminococcus 100 −0.077 −0.17 −0.457
Veillonellaceae Dialister 100 0.171 −0.162 −0.497
Ruminococcaceae unclassified 76 −0.373 −0.324 −0.5
Rikenellaceae Alistipes 100 −0.39 −0.219 −0.503
Ruminococcaceae unclassified 100 −0.347 −0.139 −0.518
Lachnospiraceae Blautia 85 −0.413 −0.415 −0.519
Coriobacteriaceae Adlercreutzia 100 0.064 −0.025 −0.525
Bacteroidaceae Bacteroides 100 −0.657 −0.524 −0.526
Lachnospiraceae Pseudobutyrivibrio 98 −0.228 −0.218 −0.531
Bacteroidaceae Bacteroides 100 −0.525 −0.333 −0.536
Ruminococcaceae Faecalibacterium 100 −0.593 −0.402 −0.549
Bacteroidaceae Bacteroides 100 −0.181 0.022 −0.558
Bacteroidaceae Bacteroides 100 −0.398 −0.351 −0.564
Bacteroidaceae Bacteroides 100 −0.39 −0.348 −0.588
unclassified unclassified 85 −0.001 −0.115 −0.589
Ruminococcaceae IncertaeS edis 100 −0.321 −0.309 −0.636
Ruminococcaceae Subdoligranulum 99 −0.241 −0.386 −0.637
Lachnospiraceae IncertaeS edis 85 −0.523 −0.404 −0.682
Lachnospiraceae Coprococcus 91 −0.248 −0.304 −0.682
Ruminococcaceae IncertaeS edis 97 −0.397 −0.415 −0.689
Ruminococcaceae unclassified 74 0.051 −0.193 −0.691
Ruminococcaceae Subdoligranulum 85 −0.251 −0.331 −0.711
Ruminococcaceae Ruminococcus 100 −0.134 −0.15 −0.72
Lachnospiraceae Dorea 100 −0.628 −0.455 −0.731
Erysipelotrichaceae unclassified 100 −0.343 −0.352 −0.754
FamilyX III IncertaeS edis 91 −0.219 −0.297 −0.93

Table 3.6: Top decile of OTUs relatively increased in healthy based on effect size from
healthy vs. NASH comparison. This table lists the OTUs and their effect sizes in all the
comparisons. The OTUs were picked by open reference, by clustering and comparison with the
SILVA database [111]. Positive effect sizes indicate that the feature was found to be relatively
increased in NASH while negative effect sizes indicate that the feature was found to be relatively
increased in healthy. OTUs were annotated with SILVA, and a confidence percentage is reported
based on the provided bootstrapping algorithm.
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S1 Fig.

Figure 3.15: NAFLD comparison effect sizes, with non overlapping healthy samples. In
these plots, the healthy and extreme NASH comparison is the same as in Figure 3.6. To show
what the correlations look like without the spurious correlation effects of overlapping samples,
the healthy samples not used in the healthy vs. extreme NASH comparison have been partitioned
between the healthy vs. SS and the healthy vs. NASH comparison. Additionally, only the
NASH samples not used in the extreme NASH comparison are used in the NASH comparison.
This way none of the comparisons have overlapping samples.
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S4 Fig.

Figure 3.16: Difference within vs. difference between healthy and extreme NASH for
metagenomic data. Each point on this plot represents a functional annotation at the SEED
subsystem 4 level. The different rows of the plots show the subsystem 4 annotations within
each subsystem 1 group. Points on the positive side were more abundant in the extreme NASH
condition while points on the negative side were more abundant in the healthy condition. None
of the points were significantly differentially abundant between groups. In this plot, a large
skew of points on one side indicates that a functional category may be more abundant in one
condition, but no such large skew exists in this figure.
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Discussion

4.1 Lack of reproducibility

It is clear that more robust analysis methods are necessary in this field. A lot of microbiome

research is irreproducible due to improper use of statistics and high variability in experimental

design. This is problematic as groups are using this research to patent and produce medical

interventions such as probiotics or fecal transplants.

The chapter on expanding the UniFrac toolbox highlighted examples of misuse of un-

weighted UniFrac in papers published in top journals. One claimed to find differences in the

gut microbiome of mice modelling autism spectrum disorder, compared to healthy controls

[53]. The taxa purported to be significantly differentially abundant (Bacteroides fragilis), was

promptly patented. The other claimed to find differences in the gut microbiome of humanized

mice fed a more traditional fibrous diet compared to mice compared to mice fed a diet similar

in composition to the Western diet [129]. These studies had small sample sizes (n = 20 and 10

respectively), used unweighted UniFrac (which we have shown to be unreliable), and had a low

amount of variance explained by the principal components axes (14% on PC1).

The chapter about nonalcoholic fatty liver disease (NAFLD) introduced five studies which

all claimed to have found a difference in the gut microbiome of patients with nonalcoholic fatty

103
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liver disease compared to healthy controls, but with almost non-overlapping results (Fig. 3.1).

Some of the variation can be explained by differences in sequencing platform (Roche 454 vs.

Illumina MiSeq) [24]. More variation can be explained by the variable region of the 16S rRNA

gene chosen for sequencing - one study used V1-2, one study used V3, one study used V4, and

the other two studies did not report which variable region was used. Three out of five studies

used healthy controls with a lower BMI than the NAFLD group, such that differences due to

level of obesity could not be distinguished from differences due to NAFLD. Lastly, only one of

the studies performed a multiple test correction, so most of the results could not be distinguished

from false positives.

Recently the social sciences, particularly psychology, has come under fire for producing

irreproducible results, to the point where some claim that most findings are actually false [56].

The biomedical sciences suffer similar issues, prompting Nature to publish a collection of papers

on statistics for biologists (http://www.nature.com/collections/qghhqm/). Collectively

these papers argue that statistical standards should be set and met, in order to encourage high

quality scientific work.

4.2 Recommendations

Throughout this thesis I have made a case for compositional data analysis. Currently the

analytical tools with the most widespread use in the field are the unweighted and weighted

UniFrac distance, as well as the Bray Curtis dissimilarity for principal coordinates analysis.

Other software such as metagenomeSeq [104], DESeq2 [72], and Metastats [103] are used for

differential expression analysis. These are commonly accessed through pipelines such as QIIME

and mothur. Many of these have roots in ecology, for example, diversity and species richness.

Certain types of diversity measurements, especially those similar to species richness which

rely on accurately counting rare taxa, do not make sense for complex biological samples where

diversity can be increased by performing deeper sequencing to uncover more bacterial taxa [48].

http://www.nature.com/collections/qghhqm/
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Shannon and Simpson diversity are the most stable in microbiome experiments performed with

next generation sequencing [48].

While compositional data analysis may not be at a stage where it is ready to set as the standard

analytical tool, I believe that this model is much closer to the correct answer than the standard

toolkit used by microbiome researchers [41] [40] [33] [34]. Recommended compositional

data resources include the book Analyzing compositional data with R [140], the 16S rRNA

gene sequencing compositional analysis workshop (hosted online on GitHub) and all the

other resources hosted by the CoDa organization (http://www.compositionaldata.com/).

Recommended software and tools for microbial network correlations include SPARCC [37],

SpiecEasi [65] or the φ metric of proportionality [73]. Recommended software and tools for

differential abundance analysis include the analysis of composition of microbiomes (ANCOM)

[78] and ALDEx2 [34].

There is also a dependance on the p-value for statistical analysis, which may not make sense

in microbiome research where the number of variables being compared is far greater than the

number of samples. Generally in statistical analysis, it has been found that using p-value based

approaches with a 0.05 cut off corresponds to a Bayes factor of 3 to 5, which means that the

odds only favor the hypothesis between 3 to 1 and 5 to 1 [58]. A quarter of such reported results

are expected to be wrong, even without p-hacking [58]. The discrepancy here is that p-values

represent the probability of observing a test statistic as extreme or more extreme than what was

observed in the null hypothesis, while Bayes factors examine the probability of observing the

test statistic by the null hypothesis compared to the experimental hypothesis. I recommend other

approaches such as looking at patterns in effect size as with the NAFLD study, where I found

that the effect size of the OTUs relatively increased in one condition tended to increase with

the severity of the disease. Effect sizes are known to be more robust across experiments than

p-values [49]. A transcriptomics study on bacterial vaginosis used a similar effect size based

approach, and serves as a good example of this kind of analysis [77].

https://github.com/ggloor/compositions/blob/master/background_reading/CJM_supplement/workshop.pdf
http://www.compositionaldata.com/
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Additionally, the use of pipelines make it easy for researchers to attempt to analyze their

data without looking at the data raw. I recommend visualizing the data in bar graphs (as in

Fig. 3.2), principal components (as in Fig. 3.8), as well as looking at the raw counts throughout

the analysis process. This way the research can identify outliers that may not be obvious by

conventional analytical techniques (Fig. 2.7), correct data formatting errors, and ensure that

filters and other data transformations are not removing all of the useful information.

4.3 Summary

In this work I have done some methods development and applied it to a study on the gut micro-

biome of patients with nonalcoholic fatty liver disease (NAFLD). Specifically, I investigated

alternate weightings for the UniFrac distance metric (information and ratio UniFrac), allowing

the visualization of outliers in certain cases (Fig. 2.7), as well as the spread of similar but non-

identical data (Fig. 2.8). In the NAFLD study, ratio UniFrac produces a principal component

analysis with 34.8% of the variance explained in the first component, compared to 24.4% for

weighted UniFrac and 14.4% in unweighted UniFrac.

I have also found that many studies in the field are not performed in a statistically sound way,

publishing results that cannot be reproduced. Resources, software, and tool recommendations

are made in the previous section to prevent this.

The field of microbiome research is in need of standards, such as those set for clinical

genomics. When clinical genomics was a budding field, many genome wide association studies

were published claiming to have found single nucleotide polymorphisms (SNPs) corresponding

to genetic conditions. Discordant results between similar studies prompted the development

of standards to ensure statistical validity in analysis and reproducible results. The quality of

this information was paramount as study results moved from research labs to clinics for patient

genetic counselling. Factors contributing to irreproducibility included batch effects from sample

processing [69], ancestry differences [108], and variations in genotype calling methods [93],
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and recommendations were made to avoid pooling the sequences together [85], and for using

sample sizes in the thousands [9], stratification detection [108], and technical replicates [52],

and experimental validation [85]. Patient genomes must be sequenced at 30 times coverage or

higher to validate the presence of SNPs [113]

Interestingly, the field of microbiome research seems to have standardized too early. Efforts

such as the Human Microbiome Project, set a precedent for the types of analyses performed, as

well as the tools and techniques researchers use. Some of these have foundations in ecology and

are not necessarily applicable to microbiome research, and only a limited number of alternatives

have been discussed in the literature. Pipelines such as QIIME [12] and mothur [119] make

it comparatively difficult for researchers to explore other analysis options, both in terms of

analyzing the data, but also in terms of getting alternative options published, due to bias from

peer reviews for the standard techniques.

The field of microbiome research has shown lots of promise, yeilding findings such as

an obesity-associated increased capacity for energy harvest [135], and leading to clinical

interventions for diseases such as C. diff [106]. With more time and more research, tools and

techniques will be developed to perform robust microbiome research, potentially leading to

methods to modulate the microbiome and increase quality of life through preventative and

restorative medical interventions.
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Appendix A

Workflows

A.1 Non-alcoholic fatty liver disease metagenomic workflow

In this workflow, two annotation strategies were used. The first strategy is to create an annotated

reference library to map sequenced reads to, and the second strategy is to annotate sequences

assembled de novo from the reads, and map sequenced reads to these. The experiment could

have been performed with only the second strategy and yielded a similar number of annotated

reads. However, the second strategy is much more computationally intensive, so depending on

the computational resources available, it may be worth using both strategies in conjunction, as

described below.

A.1.1 Filter OTUs

In this experiment, the sequencing depth is expected to have the power to detect a 2 fold change

up or down in bacteria that are 0.2% abundant in a sample. The OTUs were filtered to remove

any with an abundance lower than 0.2% in all samples, and the OTU seed sequences were

retrieved.
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A.1.2 Reference library annotation strategy

Get reference library genomes

The list of genomes used in the reference library was created using two sources: the Human Mi-

crobiome Project gut reference genomes (http://hmpdacc.org/HMRGD/healthy/), and the NCBI

complete and draft bacterial genomes (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGET YPE =

BlastS earchBLAS TS PEC = MicrobialGenomes).

Human Microbiome Project

The Human Microbiome Project gut reference genomes (http://hmpdacc.org/HMRGD/healthy/)

were all added to the reference library genome list for the metagenomic study.

NCBI complete and draft bacterial genomes

The draft and complete bacterial genomes can be queried here: http://blast.ncbi.nlm.

nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes. Dur-

ing this process, we ran into a bug using the NCBI webtool and had to search once through

the wgs database, and once with Complete Genomes to get both the draft and the complete

genomes.

The BLAST output can be downloaded. In this case we were only interested in the

genomes that matched with 98% identity or greater. For these genomes we extracted the

GI number, and performed web scraping in Python to visit http://www.ncbi.nlm.nih.gov/

nuccore/GInumber\mskip\medmuskip and programatically retrieve the taxon ID. The taxon

ID is found in ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_

summary_genbank.txt and the corresponding FTP link is used to download the genome. For

each species found by this method, the genomes for 10 random strains are downloaded (or all of

the strains if there are less than 10), to increase the coverage of the library.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes
http://www.ncbi.nlm.nih.gov/nuccore/GI number\mskip \medmuskip 
http://www.ncbi.nlm.nih.gov/nuccore/GI number\mskip \medmuskip 
ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_summary_genbank.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_summary_genbank.txt
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Get reference library coding sequences

Some of the genomes have a .gff file which includes the locations of the coding sequences

already. For the rest, we used Glimmer [22] to predict open reading frames (ORFs).

Annotate reference library coding sequences

Annotation was performed by querying the SEED database [100] using command line BLAST

(http://www.ncbi.nlm.nih.gov/books/NBK279690/). This is the most computationally

intensive part of the process and can take a number of days, depending on your computing

platform. The specific SEED database we used was downloaded June 2013, and had the fig.pegs

from the 2010 SEED database which are missing from the 2013 database manually added in.

For each ORF, we retained the top 10 hits in the SEED database with an e-value cutoff of 10−3.

A.1.3 De novo assembly annotation strategy

Assembly

The reads were assembled per sample using Trinity [47].

Subtraction of reference library

To prevent double counting, the assembled sequences were queried to the reference library. Any

assembled sequences that matched a reference sequence with at least 90% identity was removed.

Annotate de novo assembly

Annotation was performed by querying the SEED database [100] using command line BLAST

(http://www.ncbi.nlm.nih.gov/books/NBK279690/). This is the most computationally

intensive part of the process and can take a number of days, depending on your computing

platform. The specific SEED database we used was downloaded June 2013, and had the fig.pegs

from the 2010 SEED database which are missing from the 2013 database manually added in.

Because we did not isolate the coding sequences beforehand, we devised a recursive BLAST

strategy. For each round, we retained the top 10 hits in the SEED database per sequence with an

http://www.ncbi.nlm.nih.gov/books/NBK279690/
http://www.ncbi.nlm.nih.gov/books/NBK279690/
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e-value cutoff of 10−3. The portions of sequence greater than 500 nucleotides long that did not

match the SEED hits were run through BLAST again.

A.1.4 Map sequenced reads to reference library

The reference library and the de novo assembly were amalgamated, and used to create a Bowtie2

index. The sequenced reads were mapped to this using Bowtie2 [67].

Custom scripts were used to convert the mapping output to a table of counts per annotation

per sample, which can then be analyzed with differential expression tools such as ALDEx2 [34].

All of the custom scripts used to perform the above for the metagenomic non-alcoholic

fatty liver disease experiment can be found on GitHub. Specifically, scripts for building the

reference library can be accessed at https://github.com/ruthgrace/make_functional_

mapping_library, scripts for annotating the reference library and mapping the sequenced

reads can be accessed at https://github.com/ruthgrace/mapping_library_annotated_

counts, and scripts for the de novo assembly annotation strategy can be found at https:

//github.com/ruthgrace/exploring_nafld_assembly.

https://github.com/ruthgrace/make_functional_mapping_library
https://github.com/ruthgrace/make_functional_mapping_library
https://github.com/ruthgrace/mapping_library_annotated_counts
https://github.com/ruthgrace/mapping_library_annotated_counts
https://github.com/ruthgrace/exploring_nafld_assembly
https://github.com/ruthgrace/exploring_nafld_assembly


Appendix B

NAFLD study data collection

The entire contents of Appendix B were written by Hannah Da Silva from Allard research

group in Toronto, and provided through personal correspondence.

B.0.1 Study Participants

This cross-sectional study includes 39 NAFLD patients (15 SS, 24 NASH) from the University

Health Network (UHN) outpatient liver clinics and 30 healthy living liver donors as healthy

controls (HC) from the UHN Liver Transplant Clinic. Patient recruitment occurred from July

2010 to May 2014. The University Health Network and University of Toronto Research Ethics

Boards approved this research. All subjects provided their informed written consent.

Patients suspected of having NAFLD due to persistently elevated liver enzymes after ruling

out other causes were recruited at their hepatologist appointment prior to liver biopsy. Following

a detailed explanation of the study and consent form, and answering of any questions, informed

consent was obtained. Eligibility to participate in the study was then considered. For NAFLD

patients the inclusion criteria were: a biopsy proven diagnosis of NAFLD (determined during

the study), age greater than or equal to18 years, alcohol consumption of less than 20g per day.

NAFLD patients were excluded from the study if they had a diagnosis of any other liver disease

or HIV infection, if liver transplant was expected to be required within one year, if they had
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significant liver complications (e.g. variceal bleeding, jaundice, etc.) or any contraindications

for liver biopsy, if they were pregnant or lactating, if they had any gastrointestinal disease, or if

they were taking any medications known to cause steatohepititis, insulin, NSAIDS, antibiotics,

prebiotics, probiotics, or experimental drugs within the last three months. Healthy living

liver donors were approached at their first screening appointment for liver donation. Upon

completion of informed consent healthy donors were screened for research eligibility. Inclusion

and exclusion criteria were the same with the additional inclusion criteria that they must be

eligible for live liver donation.

B.0.2 Study Visits

Each participant attended three study visits as outlined in Figure 1. For NAFLD patients, after

informed consent was obtained, they were provided with detailed instructions for the completion

of a 7-day food record, 7-day activity record, and environmental questionnaire (see below for

further details). Patients were also provided with instructions for the collection and transport

of their stool sample, which they were requested to return on the day of their scheduled liver

biopsy. Usual clinic blood work was also collected at this initial visit for general markers of liver

health. On their second visit fasting study-specific blood work was collected and anthropometric

measurements were completed. The third visit was the day of their liver biopsy when patients

also returned their stool sample and food and activity logs. Healthy living liver donors followed

a similar schedule, however, stool samples were typically collected on visit two and the liver

biopsy was taken intraoperatively. For further details on all study measurements and processing

see below.
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B.0.3 Clinical Data, Environmental Questionnaire, and Anthropometric

Measurements

Clinical data was collected on study visit one. Study participant’s smoking and alcohol consump-

tion history and medication and supplement use were reviewed, including medications taken

in the last three months. Study participants were also asked to answer a number of questions

regarding their personal and family history of disease. Age, ethnicity, and menstrual history

were also recorded.

An environmental questionnaire was completed and returned with the stool sample. This

questionnaire collected information that may affect an individual’s IM composition including

country of origin, method of birth (vaginal versus caesarian section), whether they were breastfed

as an infant, what kind of pets they have at home, and others.

Anthropometric measurements including height (ht), weight (wt), waist circumference

(WC), hipcircumference, and weight-to-hip ratio (WHR) were measured by a trained research

professional. Weight was measured using a calibrated hospital-grade chair scale; height was

measured using a standometer. Waist circumference was measured at the umbilicus level and

hip circumference was measured at the widest point over the buttock. All measurements were

taken in triplicate and the average value was used.

B.0.4 Nutrition and Activity Assessment

Each participant was given a food record and activity log to complete in the weekprior to

returning their stool sample. Detailed instructions were provided for the completion of both of

these tools. The food log included all food and beverages consumed each 24 hours for seven

days. In cases where time was insufficient a three-day food record including one weekend

day was completed. Participants used the 2D Food Portion Visual Chart (Nutrition Consulting

Enterprises, Framingham, MA) to estimate portion sizes. This is a validated tool which

has been used in our previous studies [59, 187, 188]. Food records were reviewed by an
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experienced registered dietitian and were analyzed using Food Processor Diet and Nutrition

Analysis Software (Version 7, ESHA Research, Salem, OR).

Physical activity logs were recorded for 7 days concurrent with the food records. Participants

were asked to record any activity, including household chores, the duration of the activity, and the

intensity level. Detailed instructions were provided including examples for each intensity level

(mild, moderate, strenuous, and very strenuous). This information was used to calculate daily

physical activity units: 1 unit = 30 minutes mild, 20 minutes moderate, 10 minutes strenuous,

or 5 minutes very strenuous activity. This is a validated method for measuring physical activity

level [189]. Basal metabolic rate (BMR) was calculated using the Harris-Benedict equation:

BMR for men = 66.5 + [13.75 × wt(kg)] + [5.003 × ht(cm)] – [6.755 × age(y)], BMR for

women = 655.1 [9.563 × wt(kg)] + [1.850 × ht(cm)] – [4.676 × age(y)]. Estimated energy

expenditure (EER) was calculated using Health Canada Guidelines: EER for men = 662 – [9.53

x age(y)] + PA x [15.91 x wt(kg])] + [539.6 x ht(m)], and EER for women = 354 – [6.91 x

age(y)] + PA x [9.36 x wt(kg)] + (726 x ht(m)] where PA is the physical activity coefficients.

B.0.5 Biochemistry

Routine and study specific blood work was drawn after a 12 hour overnight fast on study visittwo.

Liver markers were drawn as a routine clinical measure and included: aspartate transaminase

(AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and bilirubin. Measures of

glucose metabolism included plasma glucose, insulin, hemoglobin A1c (HbA1c), and HOMA-

IR which was calculated as fasting glucose (mmol/L) × fasting insulin (mU/L)/22.5 [191]. A

lipid profile was also conducted, including total cholesterol, low density lipoprotein (LDL),

high density lipoprotein (HDL), and triglycerides (TG). These analyses were conducted by the

UHN Laboratory Medicine Program. Liver enzymes and lipid profile were measured using the

Architect c8000 system (Abbott Laboratories). LDL was calculated from total cholesterol –

HDL. Fasting plasma glucose and plasma insulin were measured by the enzymatic hexokinase

method and radioimmunoassay, respectively.
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B.0.6 Serum Metabolites

Serum metabolites, including choline, ethanol, and TMA, were measured to evaluate potential

implications of bacterial metabolism at a systemic level. For the full list of the 41 metabolites

measured see Table 4. Serum was drawn in a fasting state using a gel serum separation

vacutainer and was immediately placed in an insulated container with cooling elements. Blood

was separated by centrifuge at 4°C at 2800 x g for 20 minutes. Serum was then aliquoted

and stored at -80°C until all study samples were collected. Serum was then shipped to the

Metabolomic Innovation Centre (Edmonton, AB) were metabolites were analyzed using nuclear

magnetic resonance spectrometry (NMR), a method which this centre has perfected [192]. The

following methods were used by the centre and are stated in their own words [192]: All serum

samples were deproteinized using ultrafiltration. Prior to filtration, two 0.5 mL, 3 KDa cut-off

centrifugal filter units (Millipore Microcon YM-3) were rinsed four times each with 0.5 mL

of water, then centrifuged at 11 000 rpm for 1 hour, to remove residual glycerol bound to the

filter membranes. Two 150 L aliquots of each serum sample were then transferred into the

two centrifuge filter devices. The samples were then spun at a rate of 11 000 rpm for 140

minutes, to remove macromolecules (primarily proteins and lipoproteins) from the sample. The

subsequent filtrates were then checked visually for a red tint, which indicates that the membrane

was compromised. For those “membrane compromised” samples, we repeated the filtration

process with a different filter and inspected the filtrate again. We then pooled the filtrates that

passed the inspections and recorded the volume. If the total volume of the sample was under 300

L, we added an appropriate amount from a 50 mM NaH2PO4 buffer (pH 7) to the sample until

the total volume was 300 L. Subsequently, 35 L of D2O and 15 L of a standard buffer solution

[11.667 mM DSS (disodium-2,2-dimethyl-2-silapentane-5-sulphonate), 730 mM imidazole, and

0.47% NaN3 in H2O] was added to the sample. The serum sample (350 L) was then transferred

to a standard Shigemi microcell NMR tube for subsequent spectral analysis.

All 1H-NMR spectra were collected on a 500 MHz Inova (Varian Inc., Palo Alto, CA)

spectrometer equipped with either a 5 mm HCN Z-gradient pulsed-field gradient (PFG) room-
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temperature probe or a Z-gradient PFG Varian cold-probe. 1H-NMR spectra were acquired at

25°C using the first transient of the tnnoesy-presaturation pulse sequence, which was chosen for

its high degree of quantitative accuracy [193]. Spectra were collected with 128 transients and 8

steady-state scans using a 4 second acquisition time and a 1 second recycle delay.

All FIDs were zero-filled to 64k data points and subjected to line broadening of 0.5 Hz. The

singlet produced by a known quantity the DSS methyl groups was used as an internal standard

for chemical shift referencing (set to 0 ppm) and for quantification. All 1H-NMR spectra

were processed and analyzed using the Chenomx NMR Suite Professional software package

version 6.0 (Chenomx Inc., Edmonton, AB), as previously described [194]. Each spectrum

was processed and analyzed by at least two experienced NMR spectroscopists to minimize

compound mis-identification and mis-quantification.

Serum trimethylamine N-oxide (TMAO) was not detectable using NMR therefore TMAO

was measuring using TMAO using a targeted quantitative metabolomics approach by Liquid

Chromatography Mass Spectrometry (LCMS). Isotopically-labeled internal standards were

added to the serum to facilitate metabolite quantification. Sample extraction was performed

on a 96 well plate with a 0.2 µm solvent filter. 10 µL of serum was spiked with the internal

standard (TMAO D9) and then 150 µL of methanol with 10 mM ammonium acetate was added

for extraction. The plate was shaken for 10 min and centrifuged at 500 rpm for 5 minutes at

4 ºC. Each sample was diluted with 150 L of water. Seven calibrant solutions with known

concentrations went through the same extraction steps. LCMS analysis was performed on AB

SCIEX 4000 QTrap mass spectrometer with Agilent 1100 HPLC. 10 µL of the extracted samples

were injected onto the Kinetex C18 (2.6 µm, 3.0x100mm, 100A) Column with guard column.

Isobaric elution was performed with 90% A (10 mM ammonium formate in water, PH3) and

10% B (10 mM ammonium formate in 90:10 Acetonitrile:water, PH3). Total LC method run

time was 3 min with flowrate of 500 µl/min. A seven-point calibration curve was generated to

quantify the concentration of TMAO in samples.
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B.0.7 Liver Histology

Liver biopsies were taken percutaneously (needle biopsy) for NAFLD patients and intraoper-

atively (wedge biopsy) for HC and preserved immediately in formalin. Liver biopsies were

assessed by the same pathologist using standard stains for the diagnosis of NAFLD, morphologic

evaluation, and to rule out any iron overload. The evaluation of NAFLD related measures of

steatosis, inflammation, and fibrosis were conducted using the validated and reproducible Brunt

system. Disease severity was also evaluated using the NAFLD Activity Score (NAS) which

accounts for degree of steatosis, lobular inflammation, and hepatocellular ballooning for a final

score of 0-8.

B.0.8 Stool Sample Collection and Analysis

On study visit one participants received a stool collection kit, including a plastic collection/stor-

age container with a tightly closing lid, an insulated bag, and cooling elements. Within 24 hours

of their next appointment they collected one stool sample, which was frozen immediately after

defecation in the patient’s home freezer (-20°C). Participants brought the frozen sample in the

insulated bag with cooling elements to their appointment at the hospital, where it will stored at

-80C until homogenization.

B.0.9 Stool Homogenization

Stool samples were homogenized prior to DNA extraction for IM sequencing and metabolite-

measurements. The entire sample was first transferred into a sterile masticator bag. The sample

was allowed to thaw until a smooth consistency was reached, typically 2-3 hours depending on

sample size. Once thawed excess air was released from the bag and the sample was homogenized

for two minutes using a masticator blender (IUL, S.A., Barcelona, Spain). This was followed by

one minute of hand mastication of any areas that were missed. The corner of the masticator bag

was then cut and the sample was aliquoted: 1-2 g samples were stored for metabolite analysis
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and 0.1-0.2 g aliquots were stored for DNA extraction. Samples were immediately placed on

dry ice and then transferred to -80°C for storage until analysis. Weight was recorded for each

aliquot and pH was measured for each sample.

B.0.10 DNA Extraction

DNA was extracted using the E.Z.N.A. Stool DNA Kit (Omega Bio-Tek, Norcross, GA) and

amodified manufacturer’s protocol. Briefly, 200 mg of glass beads and 600 µL of SLB buffer

were added to the sample and vortexed at maximum speed for 15 minutes. 20 µL of lysozyme

(20mg/ µL) was added and flicked to mix then incubated at 37°C for 30 minutes. 60 µL DS

Buffer and 20 µL Proteinase K were added and vortexed to mix then incubated at 70°C, 300

rpm, for 13 min, vortexing at T=6.5 minutes and T=13 minutes. The incubation temperature

was then increased to 95°C for an additional 5 minutes. 200 µL SP2 Buffer was added and

mixed by vortex for 30 seconds then put on ice for 5 minutes. The mixture was then centrifuged

at 21 000 rcf for 7 minutes and the supernatant was transferred to a new 1.5 mL centrifuge tube

while the old tube was discarded. 200 µL HTR Reagent was added and vortexed at maximum

speed for 10 seconds, then incubated at room temperature for two minutes and centrifuged for

an additional two minutes. The supernatant was again transferred to a new 1.5 mL centrifuge

tube and the addition of HTR Reagent and following steps were repeated once. After transfer to

the last 1.5 mL tube 250 µL of BL buffer and absolute ethanol were added and vortexed for 10

seconds.

The DNA column was placed into a collection tube and 100 µL of 3M NAOH was added.

This was incubated for four minutes and centrifuged for one minute. 100 µL of distilled water

was added to the DNA column and centrifuged for one minute. 800 µL of sample was transferred

into the DNA column and centrifuged for one minute. The contents of collection tube was

discarded and the remainder of the sample was transferred into the DNA column and again

centrifuged for one minutes. The flow-through and collection tube were discarded. The column

was then placed into a new 2 mL collection tube and 500 µL of VHB Buffer was added to the
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column. This was centrifuged for 30 seconds and the flow-through was discarded. 700 µL of

DNA Wash Buffer was then added to the DNA column and centrifuged for one minute and the

flow-through and tube was discarded. This washing stage was repeated once. The column was

then transferred to a new 2 mL collection tube, centrifuged for one minute and the flow-through

was discarded. The tube was then centrifuged again for two minute, this time with the cap open,

to the dry the column. The column was finally transferred to a new 1.5 mL tube, 100 uL of

distilled water was added, this was incubated for five minutes, centrifuged for two minutes, the

column was removed and then the final DNA sample was analyzed for purity and concentration

using the Nanodrop 1000 Spectrophotometer (ThermoScientific, Rockford, IL). DNA samples

were stored at -80°C.
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