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Abstract 
 

One of the most important product specifications in design of materials for different applications 

is to closely match desired mechanical properties of the target. The soft tissue could be very elastic 

such as blood vessels and skin, whereas others are soft and non-elastic such as fat tissue. Soft 

human tissue has a diverse structural component that give them the different feel, texture, shape, 

and mechanical properties.  

 

Poly (vinyl alcohol) (PVA) as hydrophobic polymer has outstanding features such as very good 

physico-mechanical properties, nontoxicity and biocompatibility, and high swelling properties 

which makes them favorable for biomaterial and biomedical applications. By physically 

crosslinking PVA, one can eliminate residual amount of toxic crosslinking agent compared to 

chemically crosslinking. Moreover, by adding fillers (particle or fibers) to PVA and making PVA 

based blends, desirable mechanical properties can be achieved which, consequently can mimic the 

different human tissue texture and properties.  

 

Different naturally based fillers such as chitosan, micro crystalline cellulose (MCC), and cotton 

fibers were added to improve the mechanical properties. Also, PVA was blended with xanthan 

gum and sorbitol to improve the elasticity of the material.  

 

Keywords 
	
Hydrogel, cryogel, PVA hydrogels, PVA-based composites, PVA based blends, cryogenic 

treatment, freeze-thawing, tissue phantoms. 
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Chapter 1 – Introduction 
	

1.1. Background 
	
Poly (vinyl alcohol) (PVA) is a hydrophilic polymer which is widely used due to: very good 

physico-mechanical properties, nontoxicity, biocompatibility, ease to form, and high swelling 

properties [1], [2]. Covalent, and physical crosslinking are the two different mechanisms for 

gelation of PVA [1], [3]–[8]. Physical crosslinking has the advantage of not leaving residual 

amount of toxic crosslinking agent. Therefore, it is more desired for biomedical applications. 

Physically crosslinked PVA cryogels have higher mechanical strength compared to chemically 

cross-linked PVA cryogels. Mechanical properties of PVA cryogels such as elasticity and strength 

are similar to soft tissue [9]–[12]. These characteristics can be controlled by degree of 

deacetylation, molecular mass of polymer, initial concentration of polymer in the solution, chain 

tacticity, chemical structure of gel-forming polymer material, thawing rate, duration of storing in 

frozen state, and repetition of freeze-thawing [1], [7], [8], [13]–[15].  

  

Currently there are different ways for surgical training, such as: physical models, organs of animals 

and cadaver, and virtual reality [16]. Due to low availability and high cost of cadaver and moral 

values in use of animals as specimen, tissue phantoms can be used in medical training and 

education. The use of tissue phantoms for surgical training has the possibility of repeat or replay 

training with lower cost [17], [18]. Virtual reality provides a realistic simulation; but state of 

technology in software and hardware does not provide a realistic simulation of the tissue and all 

situations which may happen during the surgery [16]. Tissue-mimicking phantoms can be used in 

education, research, training residents, and surgical planning [17], [18]. Simulation training helps 

interns and surgical residents become familiar with standardized settings and learn in a non-risk 

environment and effective way [19]. In addition, realistic tissue phantoms are necessary for 

surgical trainings, which as for now only simple skills on these phantoms can be studied. 

Therefore, improving the mechanical properties of PVA hydrogels, that it is trying to imitate the 

properties and feel of target soft tissue, to make tissue-like phantoms is a better platform to train 

versus training on real humans in the operating room [16].  
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PVA hydrogels can give “feel” and “texture” of human tissue. This soft tissue could be very elastic 

such as blood vessels and skin, whereas others are soft and non-elastic such as fat tissue and other 

extracellular connective tissue around organs. Soft human tissue has a diverse structural 

component such as: elastin, collagen, glycosaminoglycans, proteoglycans, polysaccharides, and 

many others. The amount and structural arrangements of these components give them the different 

feel, texture, shape, and mechanical properties [20].  

 

1.2. Objective 
	
The objective of this research is to create new composites and blends, using PVA hydrogel as the 

main matrix material, and investigating the effect of different types of fillers (particulate or fibrous) 

and blends as to come up with improved feel and mechanical properties that match the most 

human-like soft tissue. Chitosan was chosen to be added to main matrix to increase the stiffness 

of the material. Chitosan is a popular and safe additive. Cotton fibers were added to PVA in order 

to improve the strength of the hydrogel. Cotton fibers are natural source of cellulose. It was 

expected that blending PVA with sorbitol give the elastic behavior to the hydrogel. Sorbitol is a 

food grade material, which is safe to use as additive. 

 

Mechanical testing procedure for uniaxial tensile test, elongation at break, and suture tension pull 

through test was developed for testing PVA-based hydrogels. The goal of this research was to 

increase the elasticity and suture retention of final material. 

 

1.3. Thesis Outline 
	
Chapter 2 is a literature review of all relevant topics of this research. Polymeric gels, physically 

cross-linked cryogels is discussed followed by PVA hydrogels, influential factors of formation of 

PVA hydrogels their mechanism, and their applications. Particulate-reinforced fibrous-reinforced 

and hydrogel blends are discussed. In Chapter 3, materials, experimental procedure and test 

protocols are discussed. In Chapter 4, fitted models for mechanical testing of samples including: 

uniaxial strain-stress, elongation at break, and suture-tension pull through force are discussed. In 
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addition, a brief explanation of the statistical analysis is given in this chapter. Chapter 5 discusses 

the results achieved form all tests for the PVA-based hydrogel composites and PVA-based 

hydrogel blends. In Chapter 5 strain-stress data of all samples were compared with porcine aorta. 

Chapter 6 provides conclusions and recommendations.  
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Chapter 2 – Literature Review 

2.1. Overview 
	
The aim of this study is to investigate mechanical properties of PVA based blends and composites. 

PVA with particulate and fibrous fillers as reinforcing agents was investigated in biomedical 

applications. In addition, other polymer additives are also explored. Therefore, this chapter gives 

some information about polymer gels, more precisely Poly (vinyl alcohol) (PVA), cryogenic 

treatment, application of PVA cryogels, and PVA composites.  

 

2.2. Polymeric Gels 
	
Gels are systems containing polymer and immobilized solvent forming a 3D network by chemical 

and physical bonds connecting macromolecular chains [7], [8]. Polymeric gels form in a cycle 

with moderate freezing, hold in the frozen state and subsequently thawing the solution monomeric 

or polymeric precursors lead to polymeric cryogels [13]. The term cryogel was made by combining 

“cryo” (in Greek kryos means frost or ice) and “gel”, emphasizing the specific formation of the gel 

[1]. The term hydrogel is used if the immobilized solvent is water. Hydrogels are hydrophilic 

polymer networks that exhibit the ability to swell in the presence of water, shrink in the absence 

of water, and absorb a large portion (up to 3000 times by weight) by weight of water in its network 

[7], [8], [14], [15].  

 

Polymeric gel is a flexible network of crosslinked chains. There are two different mechanisms in 

gelation of gels: covalent, and physical crosslinking [3], [4]. Covalent crosslinking gel 

(“permanent” or “chemical” gel) is a good method to control crosslinking density. However, non-

degradable crosslinking formation and toxicity of crosslinking agent should be taken into account 

[5]. “Physical” or “reversible” gels are formed when the network is held together by molecular 

entanglement or secondary forces such as H-bonding or hydrophobic forces, van der Waals forces, 

and ionic interactions [6]. Although, ionic crosslinking is a simple way to form gels, ions could be 

exchanged with other ions in aqueous environment and weaken the original properties of gel [15]. 

Calcium alginate is an example of this type of hydrogel [7], [14]. Gels formed under cryogenic 
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treatment (cryogels) are classified as physical gels. All these interactions in physical gels can be 

disrupted by changes in physical conditions (ionic strength, pH, temperature, and application of 

stress), whereas chemical gels are stable [8]. Chemical and physical gels are not homogenous due 

to clusters of molecular entanglement, and contain regions of low water swelling and high 

crosslink density, respectively [14]. Figure 2.1 provides physically and chemically synthesized 

hydrogels schematically. 

	
Figure 2.1 - Chemically and physically synthesized hydrogels. 

 

 

Several studies on cryotropic gelation phenomena showed that cryogels can be made from 

precursor systems falling into five categories: colloidal dispersion (freezing of colloid sols leading 

to the arrangement of particle-to-particle contact), solutions of monomeric precursors 

(polycondensation in moderately frozen aqueous/organic solvent or chemically or 

radiation0induced crosslinking polymerization), solutions of high molecular weight precursors 

(curing the macromolecule by adding chemical agent or irradiation), solutions of self-gelling 

polymers (forming a non-covalent and physical gels), and solutions of polyelectrolytes containing 

low molecular weight or polymeric crosslinking counter ions (creating stable ionic bridges in 

between the polyelectrolytes) [13], [21]. The solvent must crystallize under freeze-thaw cycles.  If 

the solvent goes through a glass transition state, unfrozen liquid micro phase is not established, 

hence, cryogel is not formed [1].  
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Hydrogels are widely used with potential applications as biomaterials in tissue engineering. Their 

structural similarity to macromolecular-based components in the body, biocompatibility, 

biological performance parameter (e.g. cell adhesion), controlled degradation, and swelling 

characteristic has been found a suitable option for tissue engineering applications [14], [22]–[25]. 

Hydrogels provide chemical balance between hydrogel and tissue, enabling water, ion, and 

metabolites exchange [25]. Moreover, elastic nature and viscoelastic behavior makes hydrogels 

suitable for tissue replacement [5].  

 

Based on their natural or synthetic origin, hydrogels are divided into two categories. Hydrogels 

from natural polymers such as collagen and gelatin, hyaluronate, fibrin, alginate, agarose, and 

chitosan have been utilized in reconstruction of skin and liver, wound healing, skeletal muscle 

cells, dental impression, enable cell proliferation, and to assist bone formation [26]–[31]. Collagen 

is the most popular natural-derived polymer and can be formed as gel either physically or 

chemically. However, these gels are expensive and have low physical strength [32]. Poly (acrylic 

acid) and its derivatives, poly (ethylene oxide) and its copolymers, Poly (vinyl alcohol), 

polyphosphazene, and polypeptide are classified as synthetic hydrogels. PVA has been used in 

cartilage replacement, drug delivery applications, cardiovascular tissue replacement, skeletal 

tissue regeneration, and artificial extracellular matrices in tissue engineering [31]–[33].  

 

2.2.1. Physical (non-covalent) Polymeric Cryogels 
	
In general, non-covalent physical gels include a wide class of polymeric gels either formed in 

aqueous or organic media [34]–[38]. Polymer gel phase can be formed in one of the stages of 

cryogenic treatment:  

• during freezing of initial structure (colloid dispersion of gelatinized starch),  

• storage in the frozen condition (mostly formation of chemically crosslinked cryogels),  

• thawing the frozen system (mainly non-covalent cryotropic gelation, for example, PVA in 

aqueous solution) [13].  

Poly Vinyl alcohol (PVA) solutions (in water or DMSO) [39], [40], amylopectin, starch are some 

examples of non-covalent formation of cryogels. They can be cooled, stored at specific negative 

temperature, and then thawed to obtain the desired cryogel [13], [41], [42]. These cryogels are 



	 7 

thermally reversible: they can be dissolved in high temperatures and repeated freeze-thaw cycles 

form again a cryogel [2], [43].  

  

The majority of studies in physical polymeric cryogels are related to PVA cryogels. This popularity 

of PVA based cryogels is due to outstanding features such as: availability, very good physico-

mechanical properties, nontoxicity and biocompatibility, easily produced compared with other 

physical cryogels, and high swelling properties [1], [2]. PVA cryogels are formed when PVA 

solutions (organic or inorganic) are exposed to repeated freeze-thaw cycles [39], [44]. High 

swelling properties, blood compatibility, similar mechanical properties with natural tissue, 

compatible with human tissue, high dimensional stability, and being stable at room temperature 

make them favored in biomedical and biomaterial application. The main areas that PVA cryogels 

are used as biomaterials are wound dressing, contact lenses, biosensor, drug delivery, biosensors, 

and tissue replacement [5], [10], [14], [45]–[49].  

 

2.3. Poly (vinyl alcohol) (PVA) 
	
PVA has a quite simple chemical network with a pendant hydroxyl group. The monomer cannot 

be found in stable form. Therefore, it cannot be produced directly. PVA is obtained by radical 

polymerization of vinyl acetate to poly (vinyl acetate) (PVAc) followed by hydrolysis of PVAc to 

PVA. Since the hydrolysis reaction does not go to completion, PVA is always a copolymer of PVA 

and PVAc. PVA with high degree of hydrolysis (99%) is commercially available. Figure 2.2 shows 

the chemical reaction for producing PVA [5], [7], [10].  

	
Figure 2.2 - Chemical reaction of producing PVA. 
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Degree of hydrolysis, which is an indicator of the presence of acetate groups in the polymer, affects 

polymer properties. It has been reported that PVA with high degree of hydrolysis (above 95%) has 

lower solubility in water. Due to hydrophobic acetate groups, the temperature must be raised to 70 

°C in order to be dissolved in water. Also PVA grades with high degree of hydrolysis are harder 

to crystalize. Radical polymerization of PVAc and subsequent hydrolysis of PVAc to PVA, 

provides a wide molecular weight distribution. Since the molecular weight distribution affects 

crystalinization, mechanical strength, and diffusivity, the degree of the hydrolysis has great 

importance in different grades of PVA [7], [10].  

 

PVA can be crosslinked either chemically or physically [6], [9], [45], [50], [51]. Formaldehyde, 

glutaraldehyde, acetaldehyde and other monoaldehydes are some crosslinking agents used to 

crosslink PVA [5], [7], [10], [45], [50]. As with any crosslinking agent, residual amounts must be 

removed for biomedical application. If the residue has not been removed, it may cause displeasing 

effects. γ-irradiation has the advantage over using chemical crosslinking agent, as it does not leave 

behind any undesired residue [7], [10]. Physical crosslinking is another method to form PVA gels. 

Due to the formation of crystallites during cryotropic treatment a 3D network is formed [5], [10], 

[52]. Since physically crosslinking PVA through freeze-thawing thermal cycles have higher 

mechanical strength, do not require presence of crosslinking agent (lack of toxic residues), able to 

preserve their original shape, and high water content, it is more desired technique to form a 3D 

network for biomedical applications [10], [51], [53]–[56].  

 

2.3.1. Influential Factors in Formation of PVA Cryogels 
	
There are several factors determining properties and structure of PVA cryogels: degree of 

deacetylation, molecular mass of polymer, initial concentration of polymer in the solution, chain 

tacticity, chemical structure of gel-forming polymer material, thawing rate, duration of storing in 

frozen state, and repetition of freeze-thawing [2], [10], [13], [39], [42], [50], [52], [57]–[59]. 

 

In a study done by Lozinsky et al. [42], PVA solutions with lower degree of deacetylation than 

90% did not form gel in any conditions in range of -10 to -20 temperature (neither by storing the 
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specimen in frozen state up to 10 days nor increasing concentration of PVA from 10% to 20%). In 

the case of 5% O-acetyl group residues very weak gel is formed. O-acetyl groups inhibit the 

formation of several intermolecular hydrogen bonds by interfering with the establishment of 

contacts. Therefore, no gel is formed [2], [6], [13], [42], [50], [52].  

 

PVA cryogels formed with molecular mass lower than 70,000 g/mol yield weak gels without the 

ability to retain their original form [42]. There is a minimum chain length needed in order to 

crystalize PVA. In other words, higher molecular mass is preferred for formation of strong and 

more elastic PVA cryogels [57]. With the increase of chain length of the polymer, the degree of 

overlap of the coil, number of topological entanglement, and number of intermolecular interactions 

increases. Therefore, denser physical network in PVA cryogel is formed which is harder with 

higher melting point. It was reported that as molecular mass increases the size and number of 

crystallites increases [2], [6], [10], [13], [50], [52], [57].  

 

By varying the initial concentration of polymer in solution in cryogenic treatment spongy 

cryostructurates having moderate strength or elastic non-spongy cryogels (PVA cryogels) can be 

obtained [42], [57]. It was shown that thermoreversible PVA gels formed in cryogenic treatment 

with higher initial concentration of PVA in solution were more elastic with higher melting 

temperature [2]. By increasing the concentration of PVA a decrease in size of macropores were 

observed which confirms more elasticity of higher concentrated samples [13]. The degree of 

crystallinity increased by varying the concentration on initial solution from 7 to 15 wt.% [57]. 

However, at high concentration of PVA (20%), when the molecular mass is over 60-70 kDa, a 

very viscous PVA solutions are obtained, which are difficult to process [6], [50].  

 

Tacticity of PVA can also interfere with intermolecular hydrogen interactions. Intermolecular 

hydrogen bond mainly appears by participation of hydroxyl groups in syndiotactic PVA blocks; 

whereas, isotactic fragments participate in intramolecular interactions. Therefore, PVA cryogels 

formed with enriched syndiotactic fragments have higher a degree of crystallinity than PVA 

cryogels yielded based on atactic polymers with approximately the same molecular mass [2], [6], 

[50], [52].  

 



	 10 

The junction knots in 3D polymer networks of cryogels are stabilized by the chemical nature of 

intermolecular bonds (hydrogen bonds or hydrophobic interactions). When PVA solution freezes, 

solvent crystalizes and solute will remain in still liquid region of the solution. Polymer-polymer 

interaction is enhanced in cryoconcentration leading to strong junction knots in 3D cryogel 

network [2], [50], [58]. In cryoconcentration, which is a natural phenomenon happening during 

thawing, the concentrated phase is separated from the initial solution [60]. Hydrogen bonds are the 

main contact between chains in PVA thermally reversible cryogels. Cryogenic treatment causes 

the formation of microcrystalline regions functioning as junction knots in PVA cryogels. In 

addition, the degree of physical crosslinking density is related to the number of thermal cycles 

[58], [59]. More stable networks are formed by increasing the number of freeze-thaw cycles. This 

can be explained by intensification of the interactions between water molecules and hydroxyl 

groups in PVA [57].  

 

The most important parameter influencing PVA cryogels is defrosting rate [50]. It was claimed 

that with slow thawing rates (0.01-0.05 K min-1) very elastic cryogels are formed. While only 

viscous and turbid colloid solution was observed with high thawing rates (10 K min-1) [2]. In 

sufficiently wide range of freezing rate (0.1 to 17.0 °C min-1) the effect of physical characteristics 

is small. However, with fast freezing rates (in liquid nitrogen) cracks are formed in the system 

[52]. In addition, the longer samples were held in frozen state more viscous, turbid, rigid cryogels 

were formed. Number of freeze-thaw cycles also affect characteristics of PVA cryogels [42], [61].  

 

2.3.2. Mechanism of Formation of PVA Cryogels 
	
In a study made by Yokoyama et al. [10], it was concluded that PVA cryogels consist of three 

different phases: aqueous phase with low concentration of PVA, PVA amorphous phase, and PVA 

crystalline phase. As the temperature of the homogenous solution decrease, molecular movements 

of polymer chain will be reduced. As a result, intermolecular interactions of PVA (mostly 

hydrogen bonds) increase which, forms crystalline nuclei. These crystallites function as crosslinks 

in forming a 3D PVA cryogel network. The crystallization process continues if the system is held 

in the frozen state for a longer period of time. It has also been suggested that the porous structure 

of PVA cryogels has been derived from the first stage of freezing due to incomplete crystallization 

of water. When the system thaws, ice crystals melt, leaving pores behind. These pores are 
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stabilized due to formation of PVA crystallites which act as junction knots in forming 3D network. 

In amorphous phase, each PVA polymer chain is associated with water. Crystalline phase hinders 

movements of PVA chains in amorphous phase [1], [40], [43], [62], [63]. Figure 2.3 shows a basic 

diagram of cryotropic gelation. 

	
Figure 2.3 - Cryotropic gelation. 

(a) Initial sample, (b) sample after freezing, (c) cryogel. 

(1) Polymer chain, (2) solvent, (3) low molecular weight compounds or monomers, (4) 

poly crystal of frozen solvent, (5) unfrozen liquid micro-phase (6) macro-pores, (7) 

solvent, (8) polymer network of gel phase of hetero-phase cryogel. 

 

 

2.4. Composite Material 
	
A composite material is made by combining two or more materials with different physical and 

mechanical properties. Usually one of the materials has very different properties. The continuous 

phase is called the matrix, while the discontinuous phase is called reinforcement or filler. 

Composite materials have been widely used in different areas of science. By combining a selection 

of material properties, and filler orientation, aspect ratio, volume fraction, with the matrix material 
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mechanical and physiochemical characteristics of a particular application can be achieved. In 

general, for the performed study, based on materials geometrics, composites are classified in two 

categories: particulate-reinforced composites and fibrous-reinforced composites. Dispersion of 

particles and fibers in the composite plays an important role in determining the mechanical 

properties of composite. Composites with properly dispersed reinforcing agent can improve 

mechanical properties. On the other hand, with poorly dispersed reinforcement agent, composite 

mechanical properties are weakened [7], [64], [65].  

 

There has been attention in nanocomposite materials. In nanocomposite materials, at least one of 

the characteristic lengths is nanoscale. Nanoscale materials typically have a higher surface to 

volume ratio. Therefore, low concentrations of reinforcement agent is typically needed in 

nanocomposites to improve mechanical properties [7], [65].  

 

2.4.1. PVA-Chitosan Particulate Composite Hydrogel  
	
Chitosan is derived from the alkaline deacetylation of chitin [66]. After cellulose, chitin is the most 

abundant polysaccharide in nature which is obtained from animal sources (shellfish, shrimp, and 

crab) [66], [67]. Chitosan is a copolymer of N-acetyl-D-glucosamine and D-glucosamine [66]. 

Proportions of N-acetyl-D-glucosamine and D-glucosamine residues give distinct structural 

changes. Therefore, chitosan is distinguished by molecular weight and degree of deacetylation 

[66]–[68]. Blend systems with PVA-chitosan hydrogel can enhance compatibility and cell 

adhesion. Therefore, they have been widely used in biomedical and tissue replacement applications 

mainly because of non-toxic, non-carcinogenic, and bio-adhesive characteristics of these gels [66], 

[67], [69]. As a result, because of formation of hydrogen bonds chitosan is potentially miscible in 

dilute acidic solutions below pH 6.0 [66].  

 

Blends of PVA and chitosan were explored to make hydrogels by freeze-thawing method. PVA-

chitosan hydrogels were characterized by differential scanning calorimetry (DSC). Results for 

DSC revealed independent nature of PVA melting point showing that structure of PVA crystallites 

does not change because of the presence of chitosan. Moreover, value of glass transition goes up 

because of presence of chitosan compared to pure PVA hydrogel. In dynamic mechanical thermal 
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analysis (DMTA) it was shown that the modulus value was decreased by increasing chitosan 

content. This showed that chitosan perturbs the formation of PVA crystalline network [70].  

 

Mathews et al. [71] explored the effect of cryogenic treatment on PVA-chitosan blends. Uniaxial 

mechanical test showed decrease in elasticity for successful freeze-thaw cycle within a range 

comparable to porcine aorta tissue. Liu et al. [72] also studied the number of freeze-thaw cycles 

followed by coagulation bath immersion and type of additive on structure and mechanical 

properties of PVA blended with chitosan. It was claimed that the modulus increased by 2-5 times 

when the number of thermal cycles increased from 1 to 3. 

 

In a study by Costa Junior et al. [73], PVA and chitosan mixture was crosslinked chemically by 

glutaraldehyde. Mechanical properties of the blend were investigated by stress-strain tensile test. 

It was found that by increasing chitosan content of hydrogel, the swelling index and toughness 

decreased. The tested hydrogel showed good mechanical properties, cell viability, and non-toxicity 

for potential skin engineering application. Arvanitoyannis et al. [74] also examined PVA and 

chitosan blends with the addition of sorbitol (as a plasticizer) to modify mechanical properties. 

Yong et al. [75] examined PVA and chitosan hydrogels prepared with γ-irradiation, followed by 

free-thaw cycles. They reported an increase in mechanical strength and decrease in swelling ratio 

when content of PVA in these hydrogels increased. 

 

PVA and chitosan blends have also been investigated for the food packaging. Chitosan films were 

less stretchable compared to pure PVA films. These films also showed plastic behavior. However, 

the plastic deformation was decreased by increasing content of chitosan in the films. Elongation 

at break and degree of crystallinity for chitosan and PVA blends decreased by increasing ratio of 

Chitosan in the blends; however, the addition of chitosan improved rigidity and resistance fracture 

[66], [76].  

 

In previous works, either PVA and chitosan mixtures was crosslinked chemically or by freeze-

thaw cycling method followed by special treatment such as coagulation with water immersion. In 

this work, the mechanical properties of PVA-chitosan hydrogel composites, which chitosan being 
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used as particulate-reinforcing agent, using freeze-thaw cycles without any treatment was 

investigated. 

 

2.4.2. PVA-Cellulose Fibrous Composite Hydrogel 
	
Cellulose fiber materials are a very favorable alternative in bio-nanocomposite applications 

because of their characteristics: abundantly present in environment, high strength and stiffness, 

high aspect ratio, low weight, and biodegradability [77]. Cellulose is the world’s most abundant 

polysaccharide. Cellulose can be extracted from plant sources such as wood, cotton, hemp, and 

other plant-based materials. Cellulose can be biosynthesized by algae, tunicates, fungi, and some 

types of bacteria [7], [78], [79]. The term “micro-fibril” is used to define cellulose fibers with 2-

10 nm diameter, with length of several tens of microns. A noteworthy feature of nanofiber cellulose 

is hydrophilicity compatible with matrices such as PVA. Table 2.1 shows a three subcategories of 

cellulose nanofibers based on their function, preparation method, and processing condition [80].  

 

Type of Nano-

cellulose 

Sources Formation Average size 

Micro-fibrillated 

cellulose (MFC) 

Wood, sugar beet Delamination of 

wood by mechanical 

action 

Diameter: 5-60 nm 

Length: several 

micrometers 

Nano-crystalline 

cellulose (NCC) 

Wood, cotton, hemp, 

wheat straw 

Acid hydrolysis of 

cellulose 

Diameter: 5-70 nm 

Length: 100-250 nm 

Bacterial Nano-

cellulose (BNC) 

Low molecular 

weight sugars and 

alcohols to support 

bacterial synthesis 

Bacterial synthesis 

and acid hydrolysis 

Diameter: 20-100 nm 

Table 2.1 - The family of nano-cellulose material. 

 

Abitbol et al. [81] studied PVA hydrogels reinforced with cellulose nanocrystals (CNCs) prepared 

from repeated freeze-thaw cycles. It was reported that these hydrogels have improved structural 

stability. Moreover, water sorption of these hydrogels increased with CNC content because of the 
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hydrophilic nature of cellulose and reduction in PVA crystallinity. Elastic moduli and confined 

compression of PVA-CNC increased compared to pure PVA hydrogels. Millon et al. [79] formed 

PVA-bacterial cellulose hydrogel system from cryogenic treatment. The bacterial cellulose fibers 

had an average diameter of 50 nm, which were produced by a fermentation process of bacterium 

Acetobacter xylinum. It was reported that the resulting composites had a wide range of mechanical 

properties which can be used in biomedical and tissue engineering applications.  

 

Mihranyan [82] studied reinforced PVA hydrogels formed by chemical crosslinking of surface 

modified micro-crystalline cellulose (MCC) with PVA. It was reported that viscoelastic behavior 

of resulting hydrogels was improved which is favorable for biomedical orthopedic applications. 

 

Cotton fibers and MCC were added to PVA solution followed by freeze-thaw cycles in order to 

form a 3D network. Cotton is natural source of cellulose and is abundantly available in nature. 

Based on other studies which was done by others, they have not studied the mechanical properties 

of PVA-cotton and PVA-MCC hydrogels using freeze-thaw cycles (crosslinking agent free). 

 

2.5. Polymer Blends 
	
Mixtures of at least two different polymer species are described as polymer blends. Polymer alloy 

is an immiscible polymer blend, with modified interphase and morphology. By blending polymers, 

a desired set of chemical or mechanical properties can be generated. In this thesis, PVA blends 

with xanthan gum and sorbitol are studied [83].  

 

2.5.1. PVA-Xanthan Gum Hydrogel Blend 
	
Xanthan gum is a microbial polysaccharide produced by bacterium Xanthomonas campestris [84], 

[85]. The structure of the main chain is chemically identical to cellulose [84]. By altering 

fermentation conditions in production, xanthan gum with different molecular weights is derived. 

Xanthan gum is used as a stabilizer and thickener in the food industry [85], [86].  
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Giannouli and Morris [87] claimed that stronger and more cohesive network is produced when 

xanthan gum is frozen and then thawed. Microcrystals were formed in gel structure because of 

freeze-thaw cycles [88].  

 

Alupei et al. [89] studied swelling properties of PVA and xanthan gum hydrogels chemically 

crosslinked by epichlorohydrin. It was concluded that crosslinking PVA and xanthan gum in the 

presence of epichlorohydrin resulted in a hydrogel with high swelling rate. Moreover, it was 

claimed that swelling ratio increases with increasing temperature and time of crosslinking reaction 

for a xanthan gum blend. In another study by Ray et al. [90], xanthan gum and PVA were used to 

make pH-sensitive interpenetrating network (IPN) in the presence of glutaraldehyde as a 

crosslinking agent. These hydrogels were investigated to optimize drug encapsulation efficiency 

and release rate. Bhattacharya et al. [91] examined swelling kinetics and water retention ability of 

Poly (acrylic acid)/Poly (vinyl alcohol) – xanthan gum IPN through a chemical crosslinking 

process. The IPN polymer exhibit a more porous surface, water absorbency, and water retention. 

Bhunia et al.  [92] investigated physical and mechanical properties of PVA and xanthan gum 

blends with different molecular weight under a low dose electron beam. At low molecular weight, 

PVA and xanthan gum blend showed similar physical properties under dry and wet condition. But 

for high molecular weight PVA and xanthan gum systems, mechanical properties were superior 

under a wet condition. 

 

In this study PVA was blended with xanthan gum and formed 3D network hydrogel without 

chemically crosslinking using freeze-thaw cycles and the mechanical properties of prepared gels 

were investigated. Based on previous studies made by researchers, they did not form crosslinking 

agent free 3D network in PVA-xanthan gum system. Moreover, tensile properties of physically 

crosslinked PVA-xanthan gum gels were not studied. 

 

2.5.2. PVA-Sorbitol Hydrogel Blend 
	
Sorbitol is a 6-carbon sugar alcohol metabolized slowly in the human body. It can naturally be 

found in apples, pears, peaches, and some dried fruits such as dates and raisin [93], [94]. Sugar 

alcohols are carbohydrates, which are synthesized by substituting an aldehyde group with a 
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hydroxyl group. Sorbitol is used as a bulking agent, stabilizer, and thickener. It can be used in the 

food industry, pharmaceutical and cosmetics products [93].  

 

Loughlin et al. [95] claimed that adding polyol sugars, such as sorbitol, prevent borate physically 

crosslinked PVA hydrogels to separate into two distinct phases. Arvanitoyannis et al. [96] studied 

PVA and chitosan blends plasticized by sorbitol. Melting point and heat transfer decreased with 

increasing plasticizer content. The percentage of elongation, CO2 and water permeability increased 

by addition of sorbitol. In another study by Lazaridou et al. [97], the effect of polyols in β-glucan 

solutions crosslinked with freeze-thaw cycles was investigated. The tensile strength decreased 

while the percentage of elongation increased by increasing the content of sorbitol. Yun et al. [98] 

examined the effect of hydroxyl and carboxyl functional groups in PVA blends. It was claimed 

that by adding sorbitol, with 6 hydroxyl groups, the percentage of elongation increased. Based on 

previous studies by researchers, they have not investigated the mechanical properties of PVA-

sorbitol hydrogels using freeze-thaw cycles. 
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Chapter 3 – Materials and Experimental 

Methodology 

3.1. Overview 
	
This chapter covers experimental method and procedure used in the preparation of different 

composites and blends. For all blends and composites, the effect of concentration of filler and 

number of freeze-thaw cycles on mechanical properties of samples were investigated. Three 

different mechanical tests were performed: uniaxial tensile test, elongation at break test, and 

suture-tension pull through test.  

 

3.2. Material Preparation Procedure 
	
3.2.1. PVA Solution Preparation 
	
Poly vinyl alcohol Mw 146,000-186,000 g/mole with 99+ % hydrolyzed (Sigma-Aldrich). At PVA 

10 wt. % was set as the control. The main reasons for choosing 10 wt.% PVA as control was high 

viscosity, problems with transferring high viscous solutions into molds, and eliminating presence 

of air bubbles in solutions [9], [50]. Therefore 10 wt.% PVA was kept constant in all blends and 

composites and it is set to be the control [9], [52]. The 10 wt. % PVA with distilled water was 

added to a one liter Pyrex resin flask. The batch was supplied with mechanical mixing, temperature 

control, and reflux column (preventing excess vapor pressure build-up and water loss). The PVA 

solution was heated for approximately 3 hours at 90 °C until the PVA was fully dissolved and clear 

jelly like solution was obtained [12].  

 

3.2.2. PVA-Chitosan Solution Preparation 
	
Chitosan with 95% degree of deacetylation, 8 mPa.s viscosity, and 110-150 kDa molecular weight 

Premix Company, Iceland was used. The provided Chitosan was in white powder. PVA with Mw 

146,000-186,000 g/mole, 99+% hydrolyzed (Sigma-Aldrich) was used. The equations for 

calculating mass of filler is addressed in Appendix A. 
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In solutions with higher concentration of filler, the high viscosity of solution and presence of air 

bubbles in the solution were problems. In order to transfer high viscosity solutions into molds; and 

the solutions were moved into appropriate containers and covered. Then, each container was 

heated in a warm water bath until the solution was able to flow easily. Air bubbles are created 

during mechanical mixing, and were allowed to degas by standing overnight [56]. Four (4) systems 

were prepared with 10 wt. % PVA and 1.5, 3, 4.5, and 6 wt. % chitosan, respectively. 

 

3.2.3. PVA Microcrystalline Cellulose (MCC) Solution Preparation 
	
Microcrystalline cellulose (MCC) with aspect ratio of 3.19 Pharmacel 101 (DFE Pharma 

Company) was used. Scanning electron microscopy (SEM) of MCC fibers is shown in Figure 3.1. 

Average length and diameter of used MCC is 68.91 µm and 21.62 µm, respectively. 

 

	
Figure 3.1 - SEM of MCC. 
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Cellulose nano-fibers were obtained from MCC dispersed fibers and distilled water, sonication 

(Bransonic Ultrasonic Cleaner model 5510MTH). The jars with MCC suspensions were put in a 

water bath with controlled temperature, as described by Frone et al. [99]. The temperature was set 

at 50 °C, and samples were sonicated for 20 minutes with 200 W power.  

 

After sonication, the suspension of cellulose in distilled water was added to the initial 15 wt. % 

PVA solution. The solution was mixed well in order to obtain a homogenous finial solution. The 

solution was allowed to stand overnight to release air bubbles. Final solution was transferred into 

molds for cryogenic treatment. Four (4) systems were prepared with 10 wt. % PVA and 1.5, 3, 4.5, 

and 6 wt. % cellulose, respectively. 

 

3.2.4. PVA-Cotton Solution Preparation 

PVA powder was mixed with cotton flock (Miapoxy). The average length and diameter of fibers 

were measure by confocal microscope. The aspect ratio of cotton fibers was 10.9 with average 

length of 233.3 µm and average diameter of 21.4 µm. Figure 3.2 shows Cotton fibers under focal 

microscope. Four (4) systems were prepared with 10 wt. % PVA and 1.5, 3, 4.5, and 6 wt. % cotton 

flock, respectively. 

	
Figure 3.2 - Cotton fibers under confocal microscope. 
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3.2.5. PVA-Xanthan Gum Solution Preparation 
	
PVA powder was mixed with xanthan gum (Duinkerken Food, Charlottetown) powder. PVA 

powder and xanthan gum powder were mixed and then distilled water was added slowly to mixture 

of powders in a one-liter Pyrex resin flask. The solution was heated for about 4 hours to obtain a 

clear jelly like solution, with the powders fully dissolved. Four (4) blends were prepared with 10 

wt. % PVA and 0.5, 1, and 1.5 wt. % xanthan gum. The highest concentration of xanthan gum was 

1.5 wt. %. Solutions with higher concentration of xanthan gum had very high viscosity, which was 

not easily processed. 

 

3.2.6. PVA-Sorbitol Solution Preparation 
	
D-sorbitol ≥ 98% (Sigma-Aldrich) and PVA with Mw 146,000-186,000 g/mole, 99+% hydrolyzed 

(Sigma-Aldrich) were used. PVA and D-sorbitol powders with distilled water were added to one-

liter Pyrex resin flask. Clear jelly like solution was obtained after three hours. Four (4) blends were 

prepared with 10 wt. % PVA and 2.5, 5, 7.5, and 10 wt. % sorbitol.  

 

3.3. Sample Preparation Procedure for Mechanical Testing 
	
Mechanical testing required flat and tube specimens. Prepared solutions were transferred to flat 

molds with flat steel plates (20cm⋅17cm) and rubber spacers of approximately 2.30mm of 

thickness. The tube-like mold contained one hollow plastic tube with outer diameter of 32mm and 

one solid steel tube with diameter of 22.2mm. The solid steel tube was placed inside the hollow 

plastic tube and fixed with rubber O-ring spacers with 1.5mm thickness.  

 

The molds were placed in an environmental chamber, following the procedure of Millon et al. [7]. 

For comparison purposes, the freeze-thaw rate was kept constant at 0.1 °C/min [9], [50]. 

Consequently, in one cycle the chamber started at 20°C and cooled the molds to -20°C, held the 

molds at -20°C for one hour, heated them back to 20°C, and kept the temperature at 20°C for forty 

minutes before starting another cycle (if needed). Figure 3.3 shows temperature versus time graph 

for one thermal cycle. A mold was taken out of the chamber after cycles 1, 3, 5, and 7, respectively. 
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Cycle 7 was the last cycle that hydrogels were tested. In a work done in our research group by 

Daniel Park, the mechanical properties of hydrogels after cycle 7 did not change. For each cycle 

sample, five material samples were cut.  

	
Figure 3.3 - Temperature versus time in one cycle. 

 

 

3.4. Mechanical Testing 
	
3.4.1. Uniaxial Mechanical Testing 
	
The strain-stress behavior of polymers was investigated with a MARK-10 ESM301L motorized 

test stand, using MARK-10 Series5 force gauge model M5-10 (2,000 lbF capacity) load cell. The 

ESM301L are highly configurable motorized test stands for tension and compression testing 

applications up to 300 lbF (1.5 kN) for laboratory and production environments. For all systems, 

a guideline for testing procedure was established based on experience and procedure reported by 
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Millon [7]. All tests were conducted at room temperature approximately 20 °C. This mechanical 

testing machine was also provided with a custom design Plexiglas water bath if experiments were 

needed to be done in water (shown in Figure 3.4).  

 

 	
Figure 3.4 - MARK-10 ESM301L motorized test stand. 

                                                                  

 

Custom designed grips were employed to hold the samples while testing. Contact surface of the 

grips and sample was roughened in order to reduce probability of sample slippage while testing. 

Figure 3.5 shows a sketch of custom designed grips. Metallic sheets were placed on top of the 

sample’s gripping surface so that the sample stays fixed during the test. A black stabilizing frame 

was used for proper alignment, keeping upper and lower grip in place (spacing the grips) while the 

sample was fastened onto the grips. Figure 3.6 shows a sample while was fastened to lower and 

upper grips. 
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Figure 3.5 - A sketch of custom designed grip. 

 

 

 

	
Figure 3.6 - A polymeric sample fastened to lower and upper grip with stabilizing frame on. 
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Samples were cut in rectangular shape with utility knife from approximately 2 mm sheet and then 

measured. Width, length, and thickness of samples were 10mm, 50mm, and 2mm respectively, 

and measured values were recorded. Each sample was fastened from the top and the bottom with 

custom designed grips.  

 

Based on testing procedures reported by Hui [49], Gordon [9],and Millon [7] an updated testing 

procedure was obtained.  

 

The first step is to zero the position in MARK-10. This was done by placing upper grip and lower 

grip (with metal sheets tightened with screws on them) in load cell. The one-inch black block, with 

width, length, and thickness respectively 16.5mm, 25.4mm, and 10mm, was located in between 

lower grip and upper grip. The load cell was connected to upper grip’s rod and lower grip was 

fitted to bottom of Plexiglas water tank. The upper grip was lowered until it touched the one-inch 

black block and a jump in value of load was monitored by load cell. Value for travel was zeroed. 

For safety reasons and damage prevention of load cell, a red button was designed to stop the 

operation during any time of running the experiment. By zeroing the machine, any time during the 

experiment, it was possible to determine the position when the sample was under compression or 

tension. This process was done once in set of experiments (not after each test). 

 

The original procedure applied by Gordon [9] and Hui [50] was based on determining the 

maximum reading. The maximum reading was determined either by stretching out the sample up 

to a load reading of 500 g, or until the sample reached to threshold of failure (without paying 

attention to the strain). The procedure was similar used by Millon [7]. In this procedure, all samples 

were strained to 80%. The crosshead speed was kept constant at 480 mm/min. All specimens were 

preconditioned with 10 loading and unloading cycles, 0% to 70% of strain. The final strain used 

for data acquisition in stress-strain test was up to 80%. The preconditioning was required to remove 

any residual stress in the specimen [9], [50].  

 

The gauge length was grip-to-grip space after preconditioning, before conducting stress-strain test. 

The value of gauge length was changing by moving the actuator and monitored the load cell 

reading display. The load cell was able to read both compression and extension, from 0 gr to 5000 
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gr. The tensile test was carried out at crosshead speed 480 mm/min up to 80% strain when the 

gauge length was reached and sample was relaxed (load display showed zero).  Gauge length, the 

loading and unloading of sample were automatically recorded as load versus extension data in an 

Excel file. 

 

3.4.2. Elongation at Break 
	
A test fixture as shown in Figure 3.6 was made to test the O-ring specimen. Figure 3.7 was taken 

from ASTM D412 [100]. Bench drill press and cutter were also used for cutting the samples in O-

ring shape. The samples were cut uniformly when the blades were sharp and new.  Mastercraft 

Digital Caliper (model 58-68004) and ring sizing stick were used to measure sample dimension. 

A guideline for testing procedure was obtained from ASTM D412 O-ring specimen type II. All 

tests were done at room temperature (approximately 20 °C). The purpose of this test is to measure 

maximum elongation of composite before rupture.  

 

Using O-ring specimen in the above mentioned test fixture avoided sample to slip while testing 

ultimate elongation. Ring specimens allows elongation to be measured by grip separation. The 

elongation across the radial width of the ring specimens is not uniform. To minimize this effect, 

the width of the ring specimens must be small compared to the diameter. 

 

The test was started when the distance between the centers of the two test fixture rods was 20 mm. 

O-ring samples were suspended vertically and symmetrically from the grips after zeroing the 

machine. 
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Figure 3.7 - Assembly, ring tensile test fixture - from ASTM D412. 

 

 

Samples were cut in O-ring shape by using bench drill press and cutter. Cutter was set on driller 

press. Samples were placed on metal mandrel attached to bench driller press. The cutter was made 

of two parallel razor blades. The distance between holding plate and blade holder was adjustable. 

The width and thickness of O-ring samples was measured with a caliper, and the diameter of O-

ring samples ring sizing stick was used. Width and thickness of samples were constant 5, 1.5 mm 

respectively. The diameter of samples varied from 20 mm to 24 mm. This was due to shrinkage of 

samples after each cycle. Width, thickness, and diameter of samples were recorded. 
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Figure 3.8 - Test fixture with sample hung. 

 

 

Test procedure was drawn from ASTM D412. Tensile testing machine was zeroed when the 

distance between the centers of two test fixture rods was 20 mm. At this point, no sample was 

suspended from the fixtures. After the value for position and load were zeroed, samples were hung 

vertically and symmetrically to distribute tension uniformly over the cross section (Figure 3.8). 

The test machine could be stopped by pressing a red button on motorized test stand anytime of 

experiment because of safety reasons and avoiding load cell damage.  

 

The test machine was started after zeroing the load cell, position, and suspending the samples. 

Samples were suspended vertically from test fixtures (see Figure 3.8). The crosshead speed was 
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constant at 480 mm/min during the test. Force and corresponding distance between grips were 

recorded until rupture. The data was automatically saved in an Excel file. 

 

3.4.3. Suture-Tension Pull through Test 
	
The objective of this test is to evaluate the influence of fibrous fillers and their weight loading on 

the tearing characteristics of hydrogel. Composite/hydrogel’s resistance to initiation and 

propagation of a tear caused by suture under tension was studied in this test. In suture-tension pull 

through test the MARK-10 ESM301L was operated as the mechanical testing machine. Instruction 

was developed based on experience, testing procedure applied by Burkhard [101]. Common suture 

for cardiovascular tissue, 1238 vascular suture Nylon 4-0 suture 3/8 reverse cutting, was used in 

this test.  

 

All tests were performed at room temperature approximately 20 °C. The same grip used in the 

uniaxial mechanical testing was used in order to hold suture and specimen while testing. The load 

cell was zeroed when lower grip and upper grip with suture were attached to the mechanical testing 

machine. 

 

Five samples were cut by utility knife from sheet with approximately 2 mm thickness. Length and 

width of samples were 25mm and 5 mm respectively. All samples were punctured in suture 

puncture point shown in Figure 3.9. Length, width, and thickness of each sample was recorded.  
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Figure 3.9 - Schematic of sample in suture-tension pull through test. 

 

 

	
An update of testing procedure was attained based of testing procedure implemented by Burkhardt 

[101]. The main difference was the upper grip attached to mechanical testing machine.  

 

The suture was turned to a loop and tied to the upper grip and fixed to the mobile arm of the 

mechanical testing machine. The suture has to be attached to the upper grip in a way that keeps 

the thread parallel to each side and with the direction of the pull. To eliminate slippage of the 

thread during pulling, a knot with at least once extra square knot was created. The sample was 

connected to the machine with its lower end to the grip. Upper grip should be set approximately 

70 mm above lower grip in order to give sufficient room to tie the suture to the sample.   

 

The upper grip was raised until there was minimum tension on the sample. The value for position 

was zeroed. The test was started at this point with 10 mm/min crosshead speed. Load 

corresponding to position was collected until the sample was completely torn. The data was saved 

in an Excel file. The maximum force, initiation of tear, and the average sustained force, 

propagation of tear, was recorded. Also for the evaluation type of failure was recorded. Three 

different types of failure event can be observed: (a) sample failure (starting at penetration hole), 

(b) sample failure at attachment grip, and (c) thread failure. 
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Chapter 4 – Data Analysis 

4.1. Overview 
	
This chapter covers the theory and equations used to analyze the data for stress-strain, elongation 

at break, and suture-tension test. The methods of statistical analysis are also covered in this chapter. 

 

4.2. Uniaxial Tensile Testing 
	
Tensile test is popular mainly because it allows us to get intrinsic properties of the material, 

specifically elastic modulus or stiffness as a function of strain and be able to compare between 

other materials and soft tissue targets. In this test, resistance of material to an applied force is 

measured. A specimen is placed in mechanical testing machine and force or load is applied. The 

amount of displacement is measured when specimen is under tension and it stretches. Thus, the 

change of length of specimen corresponding to original length of specimen can be calculated. Load 

(force) as a function of change in length is recorded. Therefore, information regarding to strength, 

Young’s Modulus, and ductility of material can be obtained [102].  

 

4.2.1. Stress and Strain 
	
In the uniaxial tensile test, load versus position is recorded. Engineering strain and engineering 

stress are defined by following equations [9], [50], [102]:  

 

𝜀" =
𝑙 − 𝑙&
𝑙&

=
∆𝑙
𝑙&
=
𝑙
𝑙&
− 1 

Eq.10 

𝜎" =
𝐹
𝐴&
	, 

	𝐴& = 𝑊&×𝑡& 

Eq.11 

  

Where: 

εE   engineering strain, 

l  final extension length, mm, 
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l0    gauge length, mm, 

σE    engineering stress, N/m2, 

F    applied force, N, 

A0    original cross-section area, m2, 

W0    original width of sample, mm, 

t0    original thickness of sample, mm.  

 

To be able to calculate the cross-sectional area corresponding to each value of force, it is assumed 

that the Poisson’s ratio is 0.5 (sample is incompressible), which means that the volume of sample 

remains constant during the test [9], [102], [103]. The true stress and true stain explains the 

dimensional changes in uniaxial tensile test [9], [50], [102]. Based on this assumption, true stress 

and true strain can be calculated by following equations: 

 

𝜎1 =
𝐹
𝐴 

 

𝜎1 =
𝐹
𝐴×

𝐴&
𝐴&

 
 

𝐴&×𝐿& = 𝐴×𝐿  

𝐴&
𝐴 =

𝐿
𝐿&

 
 

𝜎1 =
𝐹
𝐴&
×
𝐿
𝐿&

 
Eq.12 

By substituting Eq. 10 in Eq.12:  

𝜎1 =
𝐹
𝐴&
(1 + 𝜀") 

 

𝜎1 = 𝜎"(1 + 𝜀") Eq.13 

𝜕
78

&
𝜀1 =

𝜕𝐿
𝐿

9

9:
 

 

𝜀1 = 𝑙𝑛𝐿 + 𝐶  

At εT = 0 ; L = L0  

0 = 𝑙𝑛𝐿& + 𝐶	 ⟶ 𝐶 = −𝑙𝑛𝐿&  
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𝜀1 = 𝑙𝑛𝐿 − 𝑙𝑛𝐿& = 𝑙𝑛
𝐿
𝐿&

 
 

𝜀1 = 𝑙𝑛(1 + 𝜀") Eq.14 

 

Where: 

σT    true stress, N/m2, 

F    applied force, N, 

A    instantaneous cross-sectional area, m2, 

A0    original cross-sectional area, m2, 

L0    gauge length, mm, 

εE    engineering strain, %, 

εT   true strain, %. 

 

There are number of possible equations reported in literature that can be used for fitting the data. 

For all PVA-based materials and soft tissues stress-strain curve is non-linear and has tendency 

towards stress axis. As a result, most of the equations used in literature have an exponential term. 

Following are some of the equations used in the literature to fit PVA data [7], [9], [12], [50], [104]:  

 

𝜎 = 𝐴 + 𝐵𝜀 + 𝐶𝜀@ Eq.15 

𝜎 = 𝐴	𝑒𝑥𝑝(𝐵𝜀) Eq.16 

𝜎 = 𝑦& + 𝐴	𝑒𝑥𝑝(𝐵𝜀) Eq.17 

𝜎 = 𝑦& + 𝐴𝜀 + 𝐵	𝑒𝑥𝑝(𝐶𝜀) Eq.18 

𝜎 = 𝑦& + 𝐴	𝑒𝑥𝑝 𝐵𝜀 + 𝐶𝑒𝑥𝑝(𝐷𝜀) Eq.19 

 

Where A, B, C, D, and y0 are curve fitting factors. 

 

Eq. 15 is not accurate; because strain-stress curve for PVA based materials show an exponential 

increase of stress corresponding to increased strain, Eq.15 is not accurate. Eq. 16 is the most 

popular as it is the easiest to use with only two parameters to characterize the stress-strain curve. 

However, it was shown that Eq.18 was a better fit because it has a linear trend at the beginning 

followed by exponential growth term [9], [50]. Millon reported that Eq. 17 has a closer fit to aortic 
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tissue. Eq.17 which is simpler form of Eq.18, was used for fitting the strain-stress data for PVA-

based hydrogels [7].  

 

The least square fitting parameters were found by using SigmaPlot (Systat Software Inc.) software 

program (Version 9.0).  

 

4.2.2. Modulus 
	
The slope of strain-stress curve in the elastic region is called Young’s Modulus (E). The linear-

relationship between strain and stress in elastic region of strain-stress curve is known as Hooke’s 

law [7], [102]:  

𝐸 =
𝑆𝑡𝑟𝑒𝑠𝑠
𝑆𝑡𝑟𝑎𝑖𝑛 

Eq.20 

 

Modulus is connected with binding energy of atoms. Steep slope in strain-stress curve indicates 

high elastic modulus, meaning high forces is needed to separate the atoms resulting the material 

stretch elastically. In composites, stiffness of composite is proportional to Young’s Modulus. For 

example, in materials with higher Young’s Modulus, smaller changes of dimension are observed 

under applied force compared to materials with lower elastic modulus [7], [102].  

 

PVA-based hydrogels have non-linear strain-stress curve. Therefore, Young’s Modulus was 

calculated by taking first derivative with respect to strain form Eq.17: 

𝐸 =
𝑑𝜎
𝑑𝜀 = 𝐴𝐵	exp	(𝐵𝜀) 

Eq.21 

 Where: 

E,   Young’s Modulus or elastic modulus,  

A and B  fitting parameters, 

ε,    strain. 

 

From Eq.21, Young’s Modulus is a function of strain. Consequently, modulus of elasticity can be 

calculated in desired strain. In this study, the modulus of composites and blends were calculated 

up to 55% true strain. 
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4.3. Elongation at Break 
	
For polymers, numerous mechanical properties can characterize their applicability. The ability of 

polymer to resist breaking under tensile stress is one of mechanical properties which is measured 

[105]. Elongation at break is defined as the increase of length until the last component of sample 

is broken. Materials with high elongation have capacity to handle force without failure. The data 

obtained from elongation at break should be reported at specific temperature and cross-head speed 

[106].  

From values (load versus position) gathered by machine and test procedure described in ASTM 

D412 O-ring specimen type II, ultimate elongation, or elongation at break can be calculated from 

following equation: 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = 200×[
𝐿
𝑂𝐶] 

Eq.22 

Where: 

Elongation   ultimate elongation or elongation at break, %, 

L      increase in grip separation at break separation, mm, 

OC     outside circumference of O-ring test specimen, mm. 

 

4.4. Suture-tension Pull through Test 
	
Wound closure is the most important requirement for healing after a surgery. An optimal wound 

closure can avoid infection and further complication in rehabilitation after surgery [101]. However, 

few studies have been made on tearing characteristics hydrogel; more precisely on initiation, and 

propagation of tear cause by suture under tension.  

 

In this test, maximum force which is at initiation of tear, and average sustained force (propagation 

of tear), was recorded in Newton. In addition, type of failure for each sample was recorded.  
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4.5. Statistical Analysis 
	
The standard deviation, true stress, true strain, ultimate elongation, stress at break, and maximum 

stress was calculated in Excel. Error bars in all Figures represent standard deviation for 5 samples. 

There were five replicates of each test. It was assumed that all the data sets were independent 

observations of normally distributed random variable. The test statistics was based on t-distribution 

and therefore, t-test was performed. SigmaPlot software version 3.0 was applied for t-test and 

ANOVA (one-way analysis of variance) where more than two groups were compared. Sigmastat 

makes sure that the assumptions for ANOVA test such as normality and equal variance is not 

violated before running the test. The program shows problem and options if these assumptions did 

not hold. For probability test the default p-value 0.05 was used. A report with relevant statistical 

information was given at the end of each test [7].  
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Chapter 5 – Results and Discussion 

5.1. Overview 
	
This Chapter covers the result and discussion of the experiments mentioned in Material and 

Experimental Methodology chapter. This includes four sections: 10% wt. PVA as the control, 

PVA-based particulate reinforced hydrogel composites, PVA-based fibrous reinforced hydrogel 

composites, and PVA-based hydrogel blends. PVA-MCC and PVA-cotton were considered as 

fibrous-reinforced hydrogel composites. Fibrous-reinforced composites improve the strength of 

the hydrogel. PVA-based blends such as PVA-sorbitol hydrogels give the elastic behavior to the 

hydrogel. For all samples stress-strain properties were investigated. Ultimate elongation and stress 

at break of PVA-sorbitol hydrogel blends was studied. The suture test was performed on an 

existing cotton fiber product. All the results were compared to the control and porcine aorta. 

 

5.2. PVA-based Composites and Blends 
	
The main purpose of this study is to prepare different PVA based composites and blends, 

investigate their mechanical properties, and explore their possible application in tissue phantoms. 

PVA based composite and blends were compared to target tissue porcine aorta. PVA-chitosan 

hydrogels as particulate-reinforced hydrogel composites, increases the stiffness of the final 

product. Fibrous-reinforced composites (PVA-MCC and PVA-cotton) improve the strength of the 

hydrogel. PVA-based blends such as PVA-sorbitol hydrogels give the elastic behavior to the 

hydrogel. 

 

5.3. PVA Reference 
	
5.3.1. Stress-strain 
	
Figure 5.1 shows the stress-strain curve for 10 wt. % PVA as reference. The testing procedure was 

described in section 3.4.1. The data was fitted using Eq. 17. Following equation was utilized to fit 

the data: 
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Figure 5.1 displays a non-linear stress-strain relationship, and stiffness increases as the number of 

freeze-thaw cycles is increased (cycle 1 to cycle 7). In all samples, higher stress value was detected 

at higher strain. Cycle 7 was the last cycle in thermal cycling because after cycle 6 no difference 

in stress-strain curve was observed [9], [12]. The stress-strain data from porcine aorta was used 

for comparison as published by Millon et al. [79].  

	
Figure 5.1 - Stress-strain curve for porcine aorta and 10 wt. % PVA hydrogel for cycles 1, 3, 5, 
and 7.  
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5.3.2. Modulus 
	
Figure 5.2 presents the modulus-strain curve. Modulus is slope of stress-strain curve in elastic 

region [7], [102]. PVA hydrogels exhibit elastic behavior up to 55% true strain. As a result, Figure 

5.2 shows the slope of the curves in Figure 5.1 corresponding to the true strain. Stiffness increases 

with increasing number of thermal cycles. Moreover, 10 wt. % PVA is stiffer in higher strain. 

After cycle 5, number of thermal cycling does not affect the stiffness of hydrogel as in lower 

cycles.  

	
Figure 5.2 - Modulus-strain curve of porcine aorta and 10 wt. % PVA hydrogel for cycles 1, 3, 5, 
and 7. 
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5.3.3. Elongation at Break 
	
5.3.3.1. Ultimate Elongation 
	
Figure 5.3 displays ultimate elongation for 10 wt. % PVA at 1, 3, 5, and 7 thermal cycles. The 

testing procedure was described in section 3.4.2. At first cycle, PVA hydrogels show more elastic 

behavior. By increasing number of thermal cycles, PVA hydrogels become stiffer and less elastic. 

PVA hydrogels at first cycle are very soft. Therefore, cutting them in O-ring shape using bench 

drill press normally does not give clearly cut-samples. High standard deviations at cycle one 

compared to other cycles, were observed.   

	
Figure 5.3 - Mean ultimate elongation for 10 wt. % PVA hydrogel in cycles 1, 3, 5, and 7. 
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5.3.3.2. Stress at Break 
	
Figure 5.4 shows stress corresponding to the ultimate elongation. Stress at break surges from cycle 

1 to cycle 5, although  there is not any significant difference between cycle 5 and cycle 7 (P=0.45, 

P>0.05). This indicates that by increasing number of thermal cycles, PVA hydrogels become stiffer 

and less elastic, which requires higher force to break the hydrogel. 

  
Figure 5.4 - Mean stress at break for 10 wt. % PVA hydrogel in cycles 1, 3, 5, and 7. 

 

 

5.4. Particulate-reinforced PVA Hydrogel Composite 
	
5.4.1. PVA-Chitosan Hydrogel 
	
5.4.1.1. Stress-strain 

In Figures 5.5, 5.6, 5.7, and 5.8 stress-strain curve of PVA-chitosan hydrogel composites compared 

to 10 wt. % PVA in cycles 1, 3, 5, and 7 is shown respectively. The weight loading of chitosan, as 
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well as number of thermal cycles, is varied in following Figures. Thermal cycling increased the 

stiffness of hydrogels. 

	
Figure 5.5 - Stress-strain curve for porcine aorta, PVA-chitosan hydrogel composite and 10 wt. 
% PVA hydrogel on cycle 1.  

	
 

In cycle 1, there is statistically significant difference between the control and PVA-chitosan 

hydrogels. As shown in Figure 5.5, with increasing wt. % chitosan stiffness decreases. When 

ANOVA was applied at 30% strain, the stiffness of 10 wt. % PVA is statistically significantly 

higher than PVA-chitosan hydrogels (P<0.001).  Statistical results at 50% strain show significant 

difference between PVA-chitosan hydrogels in 1.5, 3, and 4.5 weight loading of chitosan with the 

control (P<0.001). However, at 50% strain, the stiffness of 6 wt. % chitosan-PVA hydrogel is not 
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statistically different. Porcine aorta shows higher stiffness than PVA-chitosan hydrogels and 10 

wt. % PVA in cycle 1. 

	
Figure 5.6 - Stress-strain curve for porcine aorta, PVA-chitosan hydrogel composite and 10 wt. 
% PVA hydrogel on cycle 3.  

 

 

In cycle 3, stress-strain curves of PVA-chitosan hydrogels are overlapping. In other words, 

different weight loading of chitosan (from 1.5 to 6) did not affect the stiffness of material. By 

applying ANOVA at 30% and 50 strain, there is significant difference in stiffness of PVA-chitosan 

hydrogel with the control (P<0.001). Moreover, the load curve of PVA-chitosan hydrogels does 

not match with porcine aorta. (Figure 5.6) 

 



	 44 

As shown in Figure 5.7, the stiffness of PVA-chitosan hydrogels with 3 wt. %, 4.5 wt. %, and 6 

wt. % filler loading are lower than the control in cycle 5. When ANOVA was applied at 30% and 

50% strain, there was a statistically significant difference with the control (P<0.05). For PVA-

chitosan hydrogel with 1.5 wt. % chitosan there is no statistically significant difference with 10 

wt. % PVA (P>0.05). There is no statistically significant difference between porcine aorta and 

PVA-chitosan hydrogel with 4.5 wt. % chitosan. 

	
Figure 5.7 - Stress-strain curve for porcine aorta, PVA-chitosan hydrogel composite and 10 wt. 
% PVA hydrogel on cycle 5.  

	
	
At cycle 7, the stiffness of PVA-chitosan hydrogels is lower than the control. When ANOVA was 

applied at 30% and 50% strain, there is statistically significant difference between 10 wt. % PVA. 

This indicates that by increasing the number of thermal cycles and addition of chitosan particles 

as reinforcing agent in hydrogel, no improvement was noticed. (Figure 5.8) 
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Figure 5.8 - Stress-strain curve for porcine aorta, PVA-chitosan hydrogel composite and 10 wt. 
% PVA hydrogel on cycle 7.  

 

 

5.5. Fibrous-reinforced PVA Hydrogel Composite 
	
5.5.1. PVA-MCC Hydrogel Composite 
	
5.5.1.1. Stress-strain 

The effect of adding microcrystalline cellulose (MCC) with different weight loadings to PVA 

hydrogels is investigated. Number of cycles was also varied for this study. Figures 5.9, 5.10, 5.11, 

and 5.12 presents stress-strain curve for PVA-MCC hydrogel composite with different weight 

loadings of MCC compared to 10 wt. % PVA for cycles 1, 3, 5, and 7, respectively.  
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In cycle 1, there is no statistically significant difference between PVA-MCC hydrogels with 3, 4.5, 

and 6 wt. % filler loadings at 30% strain (P>0.05). The stiffness of PVA-MCC with 1.5 wt. % 

MCC was lower than others. When ANOVA was applied at 30% and 50% strain, there is 

statistically significant difference for PVA-MCC hydrogels with 4.5 wt. % and 6 wt. % of MCC 

with the control (P<0.001). At higher weigh loadings of MCC stiffness increases. (Figure 5.9) 

	
Figure 5.9 - Stress-strain curve for porcine aorta, PVA-MCC hydrogel composite and 10 wt. % 
PVA hydrogel on cycle 1.  

	
	
 

Figure 5.10 displays PVA-MCC hydrogel composites for cycle 3. All PVA-MCC hydrogel 

composites almost overlay on each other. At 30 % strain, there is no statistically significant 

difference with the control (P>0.05). At 50 % strain, PVA-MCC with 6 % weight loading shows 

higher stiffness than the control (P=0.03, P<0.05). The load curve of porcine aorta and PVA-MCC 

with 4.5 wt. % are statistically the same. 
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Figure 5.10 - Stress-strain curve for porcine aorta, PVA-MCC hydrogel composite and 10 wt. % 
PVA hydrogel on cycle 3.  

 

 

In cycle 5, same pattern as cycle 3 is observed. At 30% strain, there is no statistically significant 

difference between PVA-MCC hydrogels and 10 wt. % PVA. However, at 50% strain PVA-MCC 

hydrogels show slightly higher stiffness than the control (P≤0.05). Figure 5.11 presents stress-

strain curve for PVA-MCC hydrogel composite for cycle 5. 
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Figure 5.11 - Stress-strain curve for porcine aorta, PVA-MCC hydrogel composite and 10 wt. % 
PVA hydrogel on cycle 5.  

	
 

In cycle 7, stress-strain curve for PVA-MCC hydrogel composites merge. By increasing number 

of freeze-thaw cycles, the weight loading of MCC in composite is not important; and all PVA-

MCC hydrogel composites have the same stress-strain curve (P>0.05). By applying ANOVA, there 

is statistically significant difference between 10 wt. % PVA and PVA-MCC hydrogel composite. 

The stiffness of 10 wt. % PVA is higher than PVA-MCC hydrogels in cycle 7. Figure below shows 

stress-strain curve for PVA-MCC hydrogel composite for cycle 7. (Figure 5.12) 
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Figure 5.12 - Stress-strain curve for porcine aorta, PVA-MCC hydrogel composite and 10 wt. % 
PVA hydrogel on cycle 7.  

  

 

 

5.5.2. PVA-Cotton Hydrogel Composite 
	
5.5.2.1. Stress-strain 

Different weight loadings of cotton (COT) fibers were added to PVA hydrogels to investigate their 

stress-strain curve in cycles 1, 3, 5, and 7. Figures 5.13, 5.14, 5.15, and 5.16 display stress-strain 

curve for cycles 1, 3, 5, and 7, respectively. 
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In cycle 1, as shown in Figure 5.13, PVA-cotton hydrogel composites with 6 wt.% cotton has 

higher stiffness than the control (P = <0.001). When ANOVA was applied at 30% and 50% strain, 

PVA-cotton hydrogels with 1.5%, 3%, and 4.5% weight loading show lower stiffness than the 

control. 

	
Figure 5.13 - Stress-strain curve for porcine aorta, PVA-cotton hydrogel composite and 10 wt. 
% PVA on cycle 1.  

 

 

As shown in Figure 5.14, stiffness of all hydrogels improved from cycle 1. However, addition of 

cotton fibers did not affect stress-strain curve when compared to 10% wt. PVA. There is not 

statistically significant difference between PVA-cotton hydrogels and the control in cycle 3 

(P>0.05). There was not statistically significant difference between porcine aorta and PVA-cotton 

hydrogel with 1.5 wt. % in cycle 3 at 30% and 50% strain. 
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Figure 5.14 - Stress-strain curve for porcine aorta, PVA-cotton hydrogel composite and 10 wt. 
% PVA on cycle 3.  

 

 

Stiffness Improved in cycle 5 and 7 when it was compared to lower cycles. Freeze-thaw cycling 

increase the stiffness of these hydrogels. Figures 5.15 and 5.16 show stress-strain curves for PVA-

cotton hydrogel composites in cycles 5 and 7, respectively. 
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Figure 5.15 - Stress-strain curve for porcine aorta, PVA-cotton hydrogel composite and 10 wt. 
% PVA on cycle 5.  

 

 

In cycle 5, PVA-cotton hydrogel with 1.5 wt. % cotton, has higher stiffness than the control at 

30% and 50% strain (P= <0.001). However, in higher filler loadings, 10 wt. % PVA has higher 

stiffness than PVA-cotton hydrogel (P= <0.001). In cycle 7, PVA-cotton hydrogels have lower 

stiffness than the control at 30% and 50% strain (P= <0.001).  
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Figure 5.16 - Stress-strain curve for porcine aorta, PVA-cotton hydrogel composite and 10 wt. 
% PVA on cycle 7.  

 

 

5.5.2.2. Maximum Force in Suture-tension Pull through Test 

Mean maximum force for PVA-cotton hydrogel composites, which is observed at the initiation of 

tearing was measured for cycles 1, 3, and 5. The presence of cotton fibers made tearing less likely, 

meaning more force was needed to tear PVA-cotton hydrogel composites compared to the control. 

In all tests of PVA-cotton hydrogel composite samples and 10 wt. % PVA, sample failure at 

penetration hole was detected. The term sample failure in penetration hole means that the samples 

were torn at penetration hole. 

 

As shown in Figure 5.17, the mean maximum force applied for PVA-cotton hydrogel composites 

in cycle 1 was significantly more than the control (P= <0.001). At the highest concentration of 
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cotton fibers (6 wt. %) the mean maximum force was around three times more than for 10 wt. % 

PVA. For other concentrations of cotton fiber, the mean maximum force increased for 

approximately twice the control. PVA-cotton hydrogel composite with 6 wt. % of cotton has the 

highest mean maximum force among all the hydrogels in cycle 1. 

 

	
Figure 5.17 - Mean maximum force for tearing PVA-cotton hydrogel composites and 10 wt. % 
PVA on cycle 1. 
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Figure 5.18 - Mean maximum force for tearing PVA-cotton hydrogel composites and 10 wt. % 
PVA on cycle 3. 

 

 

By increasing the number of cycles the mean maximum force increased for cycle 3 (Figure 5.18). 

PVA-cotton hydrogel composites demonstrated higher mean maximum force for tearing compared 

to the control (P= <0.001). Generally, at higher fiber loading, mechanical properties of the 

composite improves [107]. By increasing the number of cycles and presence of additives, in cycle 

3, 4.5 wt.% cotton-PVA and 6 wt.% cotton-PVA hydrogel composite had about two times higher 

maximum force than 10 wt.% PVA. There is no statistically significant difference between PVA-

cotton hydrogel with 1.5 wt. % and 3 wt. % cotton (P=0.79, P>0.05). In addition, PVA-cotton 

hydrogel with 4.5 wt. % and 6 wt. % cotton are statistically the same (P=0.16, P>0.05). 
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Figure 5.19 - Mean maximum force for tearing PVA-cotton hydrogel composites and 10 wt. % 
PVA on cycle 5. 

 

 

In cycle 5, same pattern as cycle 3 was observed. When ANOVA was applied, there was no 

statistically significant difference between the control and PVA-cotton with 1.5 wt. % cotton 

(P=0.82, P>0.05). PVA-cotton hydrogels with 3, 4.5, and 6 wt. % had significantly higher mean 

maximum force (P= <0.001). PVA-cotton hydrogel with 4.5 and 6 wt. % cotton are also 

statistically the same (P=0.49, P>0.05). The mean force of tearing for PVA-cotton hydrogel 

composite with 6 wt. % was about two times more than 10 %wt. PVA. (Figure 5.19) 
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5.6. PVA Hydrogel Blends 
	
5.6.1. PVA-Xanthan Gum Hydrogel 
	
5.6.1.1. Stress-strain 

Three different concentrations of xanthan gum (XG) were chosen: 0.5 wt. %, 1 wt. %, and 1.5 wt. 

%. Stress-strain curve of these hydrogels were examined for cycles 1, 3, 5, and 7.  

 

Hydrogels with lower loading of xanthan gum (0.5 wt. % XG) are stiffer than other hydrogels in 

cycle 1. As shown in Figure 5.20, stress-strain curve for PVA-xanthan gum hydrogel with 0.5 wt. 

% xanthan gum is on top of other curves, followed by PVA-xanthan gum with 1 wt. % and 1.5 wt. 

%. The load curve for control is below the hydrogel blends. When ANOVA was applied, 

statistically significant difference between PVA-xanthan gum hydrogels and the control was 

observed (P= <0.001).  



	 58 

	
Figure 5.20 - Stress-strain curve for porcine aorta, PVA-xanthan gum hydrogel blend and 10 wt. 
% PVA hydrogel on cycle 1.  

 

 

In cycle 3 there is statistically remarkable difference between PVA-xanthan gum hydrogel blend 

and the control. At 30% strain, 10 wt. % PVA shows higher stress than PVA-xanthan gum hydrogel 

(P= <0.001). At higher strain (50% strain), PVA-xanthan gum with 0.5 wt.% xanthan gum has 

higher stiffness than the control (P=0.004, P<0.05); while PVA-xanthan gum hydrogel with higher 

weight loading of xanthan gum (1 and 1.5 %) are less stiff than the control (P= <0.001). PVA-

xanthan gum with highest weight loading of xanthan gum (1.5 wt. %) has the lowest stiffness 

among all other curves in cycle 3. Thermal cycling improved stiffness of 10 wt. % PVA more than 

PVA-xanthan gum hydrogel blends. There is no statistically significant difference between porcine 

aorta and PVA-xanthan gum hydrogel with 0.5 wt. % xanthan gum up to 40% strain. (Figure 5.21) 
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Figure 5.21 - Stress-strain curve for porcine aorta, PVA-xanthan gum hydrogel blend and 10 wt. 
% PVA hydrogel on cycle 3.  

 

In 5th cycle, stiffness of PVA improved compared to 3rd cycle. On the other hand, PVA-xanthan 

gum hydrogel blends did not show dramatic growth in stiffness when it was compared to cycle 3. 

At 30% strain, there is a statistically significant difference between the control and PVA-xanthan 

gum hydrogel blends (P= <0.001). At 50% strain, PVA-xanthan gum hydrogel with 1 and 1.5 wt.% 

xanthan gum have lower stiffness (P= <0.001). Figure 5.22 shows PVA-xanthan gum hydrogel 

blends and 10 wt. % PVA stress-strain curve for cycle 5. 
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Figure 5.22 - Stress-strain curve for porcine aorta, PVA-xanthan gum hydrogel blend and 10 wt. 
% PVA hydrogel on cycle 5.  

 

 

As shown in Figure 5.23, in cycle 7, 10 wt.% PVA is on top of other curves (PVA-xanthan gum 

hydrogel blends) followed by PVA-xanthan gum hydrogel with 0.5, 1, and 1.5 wt.%, respectively. 

One can conclude that thermal cycling does not enhance stiffness of PVA-xanthan gum hydrogel 

blends. When ANOVA was applied, there was a statistically significant difference between the 

control and PVA-xanthan gum hydrogels (P= <0.001). PVA-xanthan gum with 1 and 1.5 wt. % 

xanthan gum are statistically the same (P=0.79, P>0.05).  
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Figure 5.23 - Stress-strain curve for porcine aorta, PVA-xanthan gum hydrogel blend and 10 wt. 
% PVA hydrogel on cycle 7.  

 

 

 

5.6.2. PVA-Sorbitol Hydrogel 
	
5.6.2.1. Stress-strain 

Sorbitol with different loadings was added to investigate the effect of addition of sorbitol (SOR) 

in PVA solution. The PVA-sorbitol hydrogel blends had four different concentrations of sorbitol: 

2.5 wt. % SOR, 5 wt. % SOR, 7.5 wt. % SOR, and 10 wt. % SOR. The load curve for final 

hydrogels were studied in cycles 1, 3, 5, and 7.  

 

For 1st cycle, there is statistically significant difference between PVA-sorbitol hydrogel blends and 

the control (P= <0.001). The control is stiffer than PVA-sorbitol composites in cycle 1. There is 
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no statistically significant difference between PVA-sorbitol hydrogels with different filler loadings 

(P>0.05). Figure 5.24 displays stress-strain curve of PVA-sorbitol hydrogel blend compared to the 

control.  

	
Figure 5.24 - Stress-strain curve for porcine aorta and PVA-sorbitol hydrogel blend and 10 wt. 
% PVA hydrogel on cycle 1.  

 

 

Same pattern was observed in the 3rd cycle for PVA-sorbitol hydrogel blend and 10 wt. % PVA. 

As shown in Figure 5.25, 10 wt. % PVA is on top of all curves. There is a statistically significant 

difference between PVA-sorbitol hydrogels and the control in cycle 3 (P= <0.001). PVA-sorbitol 

hydrogel with 2.5 wt. % sorbitol is stiffer than PVA-sorbitol hydrogel with 7.5 and 10 wt. % 

sorbitol (P= <0.001). However, there is no statistically significant difference between PVA-

sorbitol hydrogel with 2.5 and 5 wt. % sorbitol (P>0.05). While PVA-sorbitol with 5 and 7.5 wt. 
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% sorbitol are statistically the same (P>0.05); PVA-sorbitol with 5 wt. % sorbitol is stiffer than 

PVA-sorbitol with 10 wt. % sorbitol (P=0.009, P<0.05).   

	
Figure 5.25 - Stress-strain curve for porcine aorta, PVA-sorbitol hydrogel blend and 10 wt. % 
PVA hydrogel on cycle 3.  

 

 

Although stiffness increased by increasing the number of freeze-thaw cycles; thermal cycling had 

more influence in enhancing stiffness of 10 wt.% PVA compare to PVA-sorbitol hydrogels. The 

control has higher stiffness than PVA-sorbitol hydrogel in cycle 5 (P= <0.001). By applying 

ANOVA, there is no statistically significant difference between PVA-sorbitol in cycle 5 (P>0.05). 

Figures 5.26 and 5.27 present the stress-strain curve for PVA-sorbitol hydrogel blends and the 

control in cycle 5 and 7, respectively.  
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Figure 5.26 - Stress-strain curve for porcine aorta, PVA-sorbitol hydrogel blend and 10 wt. % 
PVA hydrogel on cycle 5.  

 

 

In cycle 7, 10 wt. % PVA is stiffer than PVA-sorbitol hydrogel (P= <0.001). PVA-sorbitol with 

7.5 and 10 wt. % sorbitol are statistically the same (P>0.05). At lower weight loadings of sorbitol 

(2.5 and 5 wt. %) there is statistically significant difference with PVA-sorbitol with 10 wt. % 

sorbitol (P= <0.001). At 50% strain, PVA-sorbitol with 2.5 wt. % sorbitol is statistically stiffer 

than PVA-sorbitol hydrogels with different sorbitol loadings (P<0.003).  
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Figure 5.27 - Stress-strain curve for porcine aorta, PVA-sorbitol hydrogel blend and 10 wt. % 
PVA hydrogel on cycle 7.  

 

 

5.6.2.2. Elongation at Break 
	
5.6.2.2.1. Ultimate Elongation  

Ultimate elongation was studied in PVA-sorbitol hydrogel blends for different number of thermal 

cycles. Figures 5.28, 5.29, 5.30, and 5.31 display ultimate elongation of PVA-sorbitol hydrogel 

blend in cycles 1, 3, 5, and 7, respectively. 

 

In cycle 1, there was no statistically significant difference between 10 wt. % PVA and PVA-

sorbitol blends. The soft and very delicate texture of 10 wt. % PVA and PVA-sorbitol with 2.5 

wt.% sorbitol in cycle 1, made cutting process of samples hard. Most of these samples had defect; 
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and in few cases a fine sample was cut. High error bars for the control and PVA-sorbitol with 2.5 

wt. % sorbitol is a proof of above mentioned statement. (Figure 5.28) 

	
Figure 4.28 - Mean ultimate elongation for PVA-sorbitol hydrogel blend and 10 wt. % PVA 
hydrogel on cycle 1. 

 

 

As displayed in Figure 5.29, ultimate elongation (%) increased by adding sorbitol to PVA in cycle 

3. There is statistically significant difference between the control and PVA-sorbitol hydrogel with 

5 and 10 wt. % sorbitol (P<0.05). However, there is not statistically significant difference between 

the control and PVA-sorbitol with 2.5 wt. % sorbitol (P = 0.71). The average ultimate elongation 

for the control and 5 wt. % SOR-PVA hydrogel blend has more than 30% improvement. 

Comparing Figures and 5.28 and 5.29, cryogenic treatment did not enhance elastic nature of 

hydrogels. By increasing the number of thermal cycles, these hydrogels become stiffer and less 

elastic. 
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Figure 5.29 - Mean ultimate elongation for PVA-sorbitol hydrogel blend and 10 wt. % PVA 
hydrogel on cycle 3. 

	
	
In cycle 5, same pattern in cycle 3 was observed. PVA-sorbitol blend with 2.5 and 7.5 wt. % 

sorbitol and the control were statistically the same. PVA-sorbitol with 5 and 10 wt. % sorbitol have 

higher ultimate elongation than the control. (Figure 5.30)	
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Figure 5.30 - Mean ultimate elongation of PVA-sorbitol hydrogel blend and 10 wt. % PVA on 
cycle 5. 

 

 

Figure 5.31 shows the ultimate elongation of PVA-SOR hydrogel blends compared to the control 

in cycle 7. Thermal cycling weakens the elastic behavior of the hydrogels. When ANOVA was 

applied, PVA-sorbitol hydrogel with 5 wt. % 7.5 wt. %, 10 wt. % sorbitol were significantly 

different than 10 wt. % PVA hydrogel (P<0.05). 
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Figure 5.31 - Mean ultimate elongation for PVA-sorbitol hydrogel blend and 10 wt. % PVA 
hydrogel on cycle 7. 

 

 

 

5.7. Relationship to Porcine Aorta Properties 
	
5.7.1. Tensile Properties 

The tensile properties of porcine aorta were compared to PVA-based hydrogel composites and 

PVA-based hydrogel blends to check if the stress-strain curves of these hydrogels match with 

porcine aorta for tissue phantom application. The stress-strain curve for porcine aorta was taken 

from Millon [79]. Figure 5.32 shows the load curve for porcine aorta. 



	 70 

	
Figure 5.32 - Stress-strain curve for Pig Aorta from Millon. 

 

Interestingly, the load curve closely matched, within physiological range, PVA-based hydrogels 

with 4.5 wt. % chitosan in cycle 5, 4.5 wt. % MCC, 1.5 wt. % cotton, and 0.5 wt. % xanthan gum 

in cycle 3. These hydrogels present the same tensile behavior up to 55% true strain. When 

ANOVA was applied to stress at every strain (up to 55%), these hydrogels and porcine aorta 

were found to be statistically the same. 
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Chapter 6 – Conclusions and Recommendations 
	

The objective of this study was to develop mechanical testing procedures such as uniaxial tensile 

testing, elongation at break, and suture-tension pull through test for PVA-based hydrogel 

composites and blends. Prepared hydrogels were compared to porcine aorta load curve. 

 

PVA-chitosan hydrogels were investigated to improve the stiffness of the material. However, 

addition of chitosan particles did not improve the stiffness of the final hydrogel. The presence of 

cotton fibers in the hydrogel, improved the strength of hydrogel. The weight loading of cotton 

fibers was proportional with tensile strength of these hydrogels.  

 

Poly vinyl alcohol blended with sorbitol hydrogels have lower stiffness than 10 wt. % PVA in all 

cycles and weight loadings of sorbitol. Furthermore, PVA-sorbitol hydrogels showed more elastic 

behavior than 10 wt. % PVA. It is clear that addition of filler does not improve all properties of 

the material.  

 

In order to successfully use the aforementioned hydrogels in tissue phantom applications, it is 

recommended that the mechanical properties of other tissues (tendon, ligament, skin, and articular 

cartilage) to be tested using the same procedure described in this thesis and then compared. 

Improving the mixing process will result in a better filler distribution in the matrix. Finally, the 

change in mechanical properties and crystallographic structure in PVA based hydrogels after the 

addition of fillers can be investigated further using X-ray diffraction (XRD) and SEM.  
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Appendix A: Dilution Method for PVA-Composite 
	
	
For accurate comparison with control, the PVA concentration in the composite or blends must be 

kept constant at 10 wt. %. As a result, the concentration of PVA in initial solution must be 

sufficiently high so that by adding water and fillers (particles or fibers) it will drop to target value 

(10 wt. % PVA). The target value is Cp,2 which is concentration of PVA in final solution. There 

were two assumptions in calculations. First, the mass of water will be constant for solution “1” 

and solution “2” (no water is lost): Mw,1 = Mw,2. Second, the concentration of polymer (matrix and 

filler) will be higher in final solution due to water loss. Solution “1” and solution “2” refer to just 

PVA solution and PVA and filler solution, respectively. 

𝑀W,X = 𝑀W,X×𝐶Y,X + 𝑀Z,X 

𝑀Z,X = 𝑀W,X − 𝑀W,X×𝐶Y,X 

𝑀Z,X = 𝑀W,X(1 − 𝐶Y,X) 

 

Eq.1 

𝑀W,@ = 𝑀[ +𝑀\ +𝑀Z,@ 

𝑀Z,@ = 𝑀W,@ − 𝑀[ −𝑀\ Eq.2 

 

 

𝑀Z,X = 𝑀Z,@ Eq.3 

 

By substituting Eq.1 and Eq.2 into Eq.3: 

𝑀W,X 1 − 𝐶[,X = 𝑀W,@ − 𝑀[ −𝑀\ And 𝑀[,@ = 𝐶[,@×𝑀W,@ 

𝑀W,X 1 − 𝐶[,X = 𝑀W,@ 1 − 𝐶[,@ − 𝑀\ 

𝑀W,X(1 − 𝐶Y,X)
𝑀W,@(1 − 𝐶Y,@)

= 1 −
𝑀\

𝑀W,@(1 − 𝐶Y,@)
 

𝑀W,X(1 − 𝐶[,X)
𝑀W,@(1 − 𝐶Y,@)

= 1 −
𝑀\

𝑀W,@(1 − 𝐶[,@)
 

𝐶\ =
𝑀\

𝑀W,@
	𝑎𝑛𝑑	

𝑀W,X

𝑀W,@
=
𝐶[,@
𝐶[,X
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𝐶[,@(1 − 𝐶[,X)
𝐶[,X(1 − 𝐶[,@)

= 1 −
𝐶\

(1 − 𝐶[,@)
 

𝐶[,@
𝐶[,X

1 − 𝐶[,X = 1 − 𝐶[,@ − 𝐶\ 

𝐶[,@
𝐶[,X

− 𝐶[,@ = 1 − 𝐶[,@ − 𝐶\ 

𝐶[,X =
𝐶[,@

(1 − 𝐶\)
 

 

Eq.4 

Where: 

 

Ms,1    mass of solution “1”, g, 

Ms,2    mass of solution “2”, g, 

CP,1    concentration of PVA in solution “1”, wt.%, 

CP,2    concentration of PVA in solution “2” (which is 0.1), wt.%, 

Mw,1    mass of water in solution “1”, g, 

Mw,2    mass of water in solution “2”, g  

MP    mass of PVA, g, 

MF    mass of fibers, g. 

 

The initial solution was made with 15 wt. % PVA as described in section 3.2.1. The actual 

concentration of solution was determined by the following procedure. A small piece of aluminum 

foil was cut and weighed, and the PVA solution was poured on aluminum foil and weighed. The 

aluminum foil with PVA was put in the oven at 185 degrees of Celsius for one hour. After one 

hour, the sample was weighed and the value recorded. Consequently, the sample was weighed 

every 10 minutes until the weight was constant for two consecutive measures. At this level, all 

water is evaporated and the actual concentration of PVA was found. The actual concentration of 

PVA was calculated by the following equation:  

(𝐶[,X)]^_`ab =
(𝑀c −𝑀]b)
(𝑀X −𝑀]b)

 

 

Eq.5 

Where: 
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(Cp,1) Actual    actual concentration of PVA, wt. %, 

Mn     final mass of the sample, g, 

M1     initial mass of the sample, g, 

MAl     mass of aluminum foil, g. 

 

After calculating (CP,1) Actual and CP,1 values, initial PVA solution was poured in four different 

containers. The amount of poured PVA solution in each container was weighed and recorded. For 

reaching to target concentration of PVA, distilled water and filler must be added to solution. By 

considering (CP,1) Actual and CP,1 values, the amount of added water can be calculated with following 

equation: 

(𝐶[,X)]^_`ab×𝑀de = 𝐶[,X(𝑀de + 𝑀Z aff) 

(𝐶[,X)]^_`ab×𝑀de = 𝐶[,X×𝑀de + 𝐶[,X×(𝑀Z)aff 

(𝑀Z)aff = 𝑀de(
𝐶[,X ]^_`ab
𝐶[,X

− 1) 

 

Eq.6 

 

Where: 

 

(Mw)add    mass of added water, g, 

MRS     mass of poured PVA solution in each container, g, 

(CP,1) Actual    actual concentration of PVA, wt. %. 

 

By adding water to the solution, mass of solution will increase: 

(𝑀W,X)]g_hi = 𝑀de + (𝑀Z)aff 

 

Eq.7 

𝑀W,X
]g_hi×𝐶[,X = (𝑀W,@)∗×(𝐶[,@)∗ 

(𝑀W,@)∗ =
(𝑀W,X)]g_hi×𝐶Y,X

(𝐶[,@)∗
 

 

Eq.8 
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Where: 

 

(Ms,1) After    mass of solution after water is added, g, 

MRS     mass of poured PVA solution in each container, g, 

(Mw)add    mass of added water, g, 

CP,1     concentration of PVA in just PVA solution, wt.%, 

(CP,2) *     concentration of PVA in final solution (which is 10 wt. %), wt. %, 

(Ms,2) *    mass of final solution, g. 

 

Mass of filler can be calculated by following equation: 

𝑀\ = 𝐶\×(𝑀W,@)∗ 

 

Eq.9 

Where:  

 

MF     mass of filler, g, 

CF     concentration of filler, wt. %, 

(Ms,2) *    mass of final solution.  

 

The calculated value for water and filler was added to initial PVA solution and mixed properly. 

Mixing continues until fully dispersed solution with Chitosan is obtained. 

 

For PVA-MCC solution preparation: 
	
The initial solution with 15 wt. % of PVA was prepared using the same procedure described in 

section 3.2.1; And followed by same methodology for calculating actual concentration of PVA 

(Cp,1) Actual. The prepared solution was transferred into four different containers. The weight of each 

solution in the container was recorded. Each container was labeled by name and weight of PVA 

solution. Mass of added water for four different fiber concentrations (1.5, 3, 4.5, 6 wt. %) was 

calculated by utilizing Eq.6. Distilled water based on calculated values form Eq.6 were poured into 

four different jars. These jars were marked with an identification name, mass of added distilled 
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water, and concentration of filler. Mass of filler was measured by Eq.9. Calculated value for mass 

of filler were dispersed and stirred in each jar.	
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