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Figure 2.31: Qualitative validation using the NeoChord tool. (a) bi-plane ultrasound reflection
of the tool. (b) overlay of the tracked tool’s virtual model with bi-plane ultrasound image. (c)
3-D ultrasound volume fused with bi-plane ultrasound image. (d) overlay of the both calibrated
3-D and bi-plane imaging modes with surgical tool in a common coordinate. (e) calibrated 3-D
ultrasound volume and the reflection of the intersecting tool.
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Mean TRE (mm) Std. Dev. (mm) N Repetition

Metallic 1.55 0.21 15 500
3D Print 1.34 0.23 15 500

PVA 1.25 0.22 15 500
Derived 3D 1.01 0.29 15 500

Table 2.7: Summary of calibration accuracy result. N is the number of fiducials for point based
methods/bi-plane acquisition for derived-3D ultrasound calibration.

ing sensor’s coordinate, while the intrinsic transform relates the 3D to the bi-plane ultrasound

coordinate. In this regard, scanning the tracked surgical tool by the bi-plane ultrasound allows

3D calibration during surgery. Since the bi-plane acquisitions are obtained from the same tar-

get medium, where the 3D ultrasound volumes are acquired, the scale correction in bi-plane

calibration can be applied to the scales in 3D ultrasound calibration. This approach, therefore,

compensates for the correct scaling factors of the target medium in 3D ultrasound as well.

The key element in our approach is in fact the intrinsic transform between the 3D and

bi-plane coordinates. The rotation parameters for this transform were achieved through the

highest frequency of occurrence at 90 and 180 degrees in the X and Z directions. Qualitatively,

this rotation is obvious when the stored 3D ultrasound volume was rotated respectively onto

the bi-plane ultrasound. Then after applying the translation parameters, the origin of the sector

3D ultrasound volume corresponds to the origin of the bi-plane ultrasound image. The trans-

lations in the directions of xy- and yz-slice of the 3D ultrasound volume occurs as expected.

However, the challenging translation parameter was in the XZ-slice direction in the 3D ultra-

sound volume. The 59 th slice received the highest score of occurrence among other slices in

this direction, therefore it corresponded to the plane 0 of the bi-plane ultrasound image. Note

that, determining the correct slices of the 3D ultrasound that corresponds to the bi-plane ul-

trasound individual planes is quite important, since it could directly affect the accuracy of the

3D calibration, which is in fact due to the large voxel sizes in the 3D ultrasound volume (e.g.

0.89 mm).

The slice numbers provided in this study corresponded to the stored 3D ultrasound volume
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(from QLab software), and knowing the physical sizes of the voxels enables us to identify the

origin in physical space within the 3D volume. Nevertheless, the streaming 3D ultrasound is

the same as the stored 3D ultrasound with the only difference of the voxel sizes. Therefore, the

location of the origin in streaming 3D ultrasound is obvious based on the origin in stored 3D

ultrasound.

The PR validation experiment demonstrated the overall inaccuracies in the calibration

which includes parameter estimation in both the bi-plane and intrinsic calibrations, segmenta-

tion of the tool in bi-plane ultrasound, target localization in the 3D ultrasound, and the tracking

uncertainties. The PR accuracy of our proposed 3D calibration method achieved 1.01±0.29

mm using 15 bi-plane images and 0.97±0.27 mm by 20 bi-plane images. In the derived-3D

calibration method, the bi-plane images are those used for bi-plane calibration, and therefore

no extra 3D ultrasound acquisitions were required to achieve the 3D calibration at the same

imaging depth.

The accuracy of our derived-3D calibration approach outperformed the pointer/needle-

based method [48]. In particular, our method was significantly superior in comparison to the

different tip conditions: PVA-C tip (p-value < 0.05), 3D-printed tip (p-value < 0.01), and

metallic-tip (p-value < 0.0001). Among different tip conditions, PVA-C-tip outperformed the

other two, because of the characteristics of the PVA-C material that make a full 3D spherical

ultrasound reflection. Thus, localizing the centre of full sphere in 3D ultrasound is more accu-

rate than in the proximal surface, 3D reflection of the 3D-printed-tip, or in the 3D reflection of

the metallic-tip. Therefore, the PVA-C-tip leads to improved FLE in comparison to the other

tip material. Note that using PVA-C material as a tip requires extra caution while performing

the pivot calibration. This is due to the lower stiffness of the PVA-C material compared to the

3D-printed and the metallic-tip. The sharp metallic-tip was the least accurate amongst all of the

tested tips, due to the large artifact of the tip in 3D ultrasound at different angles. Therefore, the

variability of the trueness between the calibration methods is mainly due to the FLE effect. In

addition, the bi-plane images have higher resolution than the 3D ultrasound (Pixel size of 0.24
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mm vs. Voxel size of 0.9 mm). Therefore, in derived-3D calibration, the ultrasound reflection

of an object in bi-plane ultrasound is more accurately interpreted by visual inspection, leading

to more accurate fiducial localization.

Summary

In this chapter, we have demonstrated that the directed-surgical tool approach successfully

achieved bi-plane calibration in a simulated surgical environment. This was obtained in a

condition where the LV phantom was scanned from the trans-gastric view, while a limited

range of motion was available. The system was successful in recovering the ‘true’ scaling

factors, and achieving the sub-millimeter accuracy during the process. This implies that the

calibration approach has the potential to estimate the correct speed-of-sound at the target site

of surgery, and thus to obtain the desirable accuracy.

Furthermore, we have demonstrated that acquiring twice as many fiducials from the bi-

plane images in calibration process entails the requirement of fewer acquisitions and, in turn,

increased accuracy compared to using single-plane images. It is revealing to echocardiographer

that it is highly beneficial to have both planes of the bi-plane ultrasound intersect with the tool

throughout the scanning process.

Our project have shown that automatic segmentation of the tool reflection in ultrasound

causes the calibration to be more stable and accurate compared to manual segmentation. This

is mainly due to the fact that the ultrasound reflection of the tool appears as a partial arc, rather

than a full ellipse, and causes discrepancy in identifying the centroid among different users.

Lastly, we have demonstrated that 3D TEE ultrasound calibration can be derived based

on the bi-plane calibration followed by the intrinsic calibration between the 3D and bi-plane

coordinates. This suggests that during surgery we are only required to obtain the bi-plane

images to compute both the bi-plane and the 3D ultrasound calibrations, thus achieving the

sub-millimeter accuracy.
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Conclusion and Future Direction

This thesis proposes the directed surgical tool technique that has the potential to perform the

ultrasound calibration ‘in-situ’ during minimally-invasive beating-heart surgery. The desired

sub-millimeter accuracy was achieved in a simulated environment, even though the available

space for manipulating the tool and the TEE probe was limited. The main goal was to demon-

strate successful compensation of the error caused by the speed-of-sound in the medium at

the target site of surgery, since this parameter can vary among different patients and different

organs of the body. This method enables calibration of a magnetically-tracked probe to be

achieved in an operating room environment. The accuracy of our approach was determined

through a series of validation techniques: PR, VR, distance measurement. The time required

to perform the calibration was about 60-90 seconds which has minimal impact on the actual

surgical procedure.

The proposed bi-plane ultrasound imaging of the directed tool during calibration process

shows significant improvement on the calibration accuracy, when compared with single-plane

imaging. This approach provides twice as many data samples, in a similar acquisition time as

the single-plane approach, to solve the calibration transform. The use of the additional plane

in the bi-plane technique improved the estimation of the both rotation and scaling parameters.

In terms of segmenting the ultrasound reflection of the directed tool on ultrasound images,

91
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automatic segmentation showed significantly improved results compared to the manual seg-

mentation, achieving relatively higher stability and repeatability.

We also proposed an ‘online’ 3D ultrasound calibration that employs high-quality bi-plane

images, rather than low resolution 3D ultrasound volume, during surgery. The derived-3D

calibration is based on bi-plane calibration followed by the intrinsic transform between the bi-

plane and the 3D coordinate systems. This derived-3D calibration demonstrates significantly

enhanced results compared to the pointer-based 3D calibration method. In addition, amongst

pointer-based 3D calibrations, a pointer with PVA-C-tip had the best calibration accuracy since

its 3D ultrasound reflection appeared as a full sphere compared to the mere proximal surface re-

flection of the 3D-printed-tip. This, ultimately resulted in a more accurate fiducial localization

leading to a more accurate calibration result.

3.1 Future Direction

3.1.1 Animal Study

The main focus of this thesis was to introduce an in-situ ultrasound calibration paradigm that

could be performed during trans-apical mitral valve repair surgery. In this regard, we have

created a simulated surgical scene in a laboratory environment, where the LV phantom, TEE

probe, and surgical tool were placed in a water medium simulating the actual scenario. Per-

forming in such an environment enabled us to assess the feasibility and robustness of our

approach while the tool was being scanned from trans-gastric view with a limited range of

movement.

That said the next logical step is to integrate our calibration technique into an AR guided

surgical workflow and evaluate it in an animal study.
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3.1.2 Online Validation

In terms of validation, we have successfully demonstrated the accuracy of the calibration in

the laboratory setup through PR, VR, scale, and accuracy measurements. However, these eval-

uation methods were performed using the additional devices (table tennis ball, parallel line

phantom, etc.) that are not practically applicable inside the patients body. They are, in face,

used to determine the quality of the calibration technique itself, in a laboratory environment

simulating the clinical situation. The only so-called instant validation approach is the qualita-

tive visualization of the overlay between the virtual model of the device corresponding and its

ultrasound reflection.

The next step would be to design an online assessment criteria to obtain the accuracy of the

calibration during surgery. For instance, any a priori known feature at the target site, such as the

tip or shape of the surgical tool, could be used as a validation element. While localizing the tip

during surgery might be a challenging task, using the bi-plane ultrasound images could help to

simplify this by simultaneous identification along the length. Alternatively, the known distance

between the jaws and the absolute tip of the tool provides distance measurement criteria to

assess the recovered scale parameters. Anatomical features might also be used as targets.

However, this does not prove to be a viable option since the procedure is performed in a beating

heart environment, and therefore tracking those targets could introduce greater error than the

calibration itself.

3.1.3 Automatic Segmentation

At present, our automatic segmentation algorithm requires the user to determine an approx-

imate ROI on the bi-plane ultrasound image. Thus the system automatically segments the

reflection of the tool followed by the centroid identification of the estimated ellipse. Further

improvement can be achieved by applying an adapted Kalman Filter or similar techniques to

automatically determine the ROI in an image. This could significantly reduce the data acquisi-

tion time, as well as user dependency.
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3.1.4 Visualization

In terms of 3D ultrasound, currently we are using a direct volume rendering with 1D transfer

function to perform the visualization in real-time. However, using a 2D transfer function [47]

by incorporating another parameter, such as the depth or gradient, may enhance the 3D ultra-

sound visualization, potentially providing finer details of the surface boundaries for the tool

and the tissue.
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