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Abstract 

Agglomeration is a major operational problem during the combustion of biomass containing a high 

amount of alkali compounds. The agglomerate formation is mainly due to the presence of alkali 

elements in biomass ashes that form low-melting compounds during the combustion. 

In the first part of this project, the critical amount of liquid that would lead to a severe 

agglomeration/de-fluidization was studied and determined in a lab scale bubbling fluidized bed 

(BFB) heated at elevated temperatures. To simulate the biomass ashes, various percentages of KCl 

and KCl-K2SO4 compounds at eutectic composition were mixed with silica sand as the bed 

material. The results indicated that the formation of channeling/bed-material agglomeration was 

severe in the presence of KCl or mixture of KCl-K2SO4 with an amount of 0.4-0.6 wt.% with 

respect to the weight of bed material, being in a good agreement with that was reported by the 

author’s group in a previous study carried out in a cold BFB test rig using glycerol-water mixture 

to simulate melted biomass ash. Kaolin and aluminum sulfates were investigated as additives in 

the BFB and proved to be effective for preventing the bed material agglomeration. 

 

In the second part of this research, we examined the de-fluidization time for BFB combustion of 

corn stalk (with a high K, Mg, Ca-containing ash) with different bed materials operating at 

different superficial air velocities. Corn stalk has a high tendency for the unwanted bed 

agglomeration problems during combustion due to its high contents of K, Ca and Mg in the ash. 

In combustion of corn stalk, there was a lower deposition tendency of K compounds onto the 

olivine bed material than that onto the silica sand material, which might account for the longer 

time to onset of de-fluidization (>12h) for the olivine bed material than that for the silica bed 

material (8h) during corn stalk combustion. With increasing the superficial gas velocity, the 

deposited amount of the alkali/alkaline earth elements (K, Ca, Mg) on the bed material (either 

silica or olivine sand) reduced substantially, which would contribute to reduced tendency of bed 

agglomeration and de-fluidization.    

Keywords: Agglomeration, bubbling fluidized bed, biomass, additives, bed material



ii 

 

Co-Authorship Statement 

 

Study of Bed Material Agglomeration in a Bubbling Fluidized Bed (BFB) using KCl and K2SO4 

at High Temperatures to Simulate Molten Ash (based on Chapter 3) 

Authors: Ghiasi, E., Montes, A., Nanda, M., Tran, H. and Xu, C. 

The experiment work was conducted by Ehsan Ghiasi under the supervision of Prof. Charles 

(Chunbao) Xu and Prof. Honghi Tran, and the guidance of Dr. Malaya Nanda and Alejandro Montes. 

Writing and data analysis of this publication was conducted by Ehsan Ghiasi. It was reviewed and 

revised by Prof. Charles (Chunbao) Xu and Prof. Honghi Tran. The manuscript will be submitted to 

“Powder Technology” for consideration of publication. 

 

Behavior and Mechanism of Bed Material Agglomeration in Fluidized-bed Combustion of Corn 

Stalk Using Silica or Olivine as Bed Material (based on Chapter 4) 

Authors: Ghiasi, E., Tran, H. and Xu, C. 

The experiment work and data analysis were conducted by Ehsan Ghiasi. Prof. Charles (Chunbao) Xu, 

and Prof. Honghi Tran provided general guidance, consultation regarding experimental work and 

interpretation of results. The manuscript draft was written and revised by Ehsan Ghiasi, and reviewed 

by Prof. Charles (Chunbao) Xu and Prof. Honghi Tran. The manuscript will be submitted to “Energy 

& Fuels” for consideration of publication.  

  



iii 

 

Dedication 

 

 

 

 

 

To 

My beloved wife, Fatemeh, 

& 

My wonderful parents, Mohammadreza & Khadijeh, 

For their endless love, encouragement, and support. 

  



iv 

 

Acknowledgments 

I would like to express my sincere gratitude to my supervisors Professor Charles (Chunbao) Xu at 

Western University and Professor Honghi Tran at University of Toronto for their valuable 

guidance, continuous support, encouragement, advice and help throughout my MSc project.  

I would like to acknowledge the industrial support from various pulp and paper companies and the 

Natural Sciences and Engineering Research Council of Canada (NSERC) via the CRD Grant, for 

their financial support for this project and my master studies.  

I would like to thank the faculty and staff of Institute for Chemical and Fuels from Alternative 

Resources (ICFAR) and Chemical and Biochemical Engineering Department at Western 

University for providing support and education during my studies. 

My gratitude is also extended to all the people I had the pleasure of working with at ICFAR and 

Western Research Park in Sarnia in the past two years, especially Malaya Nanda, Fang (Flora) 

Cao, Hojat Seyedy for their contributions and assistance in my research. 

 

My deepest appreciation and sincere gratitude goes to my family; without whom I would have 

never been able to reach this point. Words cannot express how grateful I am to my parents for their 

love and support. At last, I would like to gratefully thank my beloved wife, Fatemeh Ferdosian, 

for her patience, care, unconditional love, encouragement and great support during all these years. 

 

Ehsan Ghiasi 

Western University  

May 2016   



v 

 

Table of Contents 

 

Abstract ............................................................................................................................................ i 

Co-Authorship Statement................................................................................................................ ii 

Dedication ...................................................................................................................................... iii 

Acknowledgments.......................................................................................................................... iv 

Table of Contents ............................................................................................................................ v 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................. x 

List of Appendices ....................................................................................................................... xiii 

List of Abbreviations and Symbols.............................................................................................. xiv 

1. Chapter 1 ................................................................................................................................. 1 

General Introduction ....................................................................................................................... 1 

1.1 Introduction ...................................................................................................................... 2 

1.2 Fluidized Bed Combustion ............................................................................................... 3 

1.3 Bed Agglomeration .......................................................................................................... 4 

1.4 Knowledge Gaps and Needs of Research ........................................................................ 5 

1.5 Thesis Objective ............................................................................................................... 6 

1.6 Thesis Structure ................................................................................................................ 6 

1.7 References ........................................................................................................................ 8 

2. Chapter  2 .............................................................................................................................. 10 

Literature Review.......................................................................................................................... 10 

2.1 Biomass .......................................................................................................................... 11 

2.2 Conversion of Biomass to Energy .................................................................................. 13 

 Gasification ............................................................................................................. 14 



vi 

 

 Pyrolysis .................................................................................................................. 15 

 Combustion ............................................................................................................. 15 

2.3 Fluidization and Fluidized Bed ...................................................................................... 16 

 Minimum Fluidization Velocity ............................................................................. 17 

 Experimental approach ........................................................................................... 19 

 Fluidized Bed Combustor ....................................................................................... 20 

 Scope of Fluidized Bed Combustor ........................................................................ 20 

2.4 Bed Material Agglomeration and De-fluidization ......................................................... 21 

 Effects of Type of Biomass..................................................................................... 23 

 Effects of Bed Materials ......................................................................................... 26 

 Effects of Air Velocity ............................................................................................ 29 

 Effects of Operation Temperature .......................................................................... 30 

 Effects of Additives ................................................................................................ 31 

2.5 Summary ........................................................................................................................ 33 

2.6 References ...................................................................................................................... 35 

3. Chapter 3 ............................................................................................................................... 41 

Study of Bed Material Agglomeration in a Bubbling Fluidized Bed (BFB) using KCl and K2SO4 

at High Temperatures to Simulate Molten Ash ............................................................................ 41 

Abstract ......................................................................................................................................... 42 

3.1 Introduction .................................................................................................................... 43 

3.2 Experimental .................................................................................................................. 45 

 Experimental Set-up................................................................................................ 45 

 Materials ................................................................................................................. 47 

 Procedure ................................................................................................................ 47 

3.3 Results & Discussion ..................................................................................................... 48 



vii 

 

 Effects of KCl on formation of agglomerates ......................................................... 49 

 Effects of eutectic mixture of KCl-K2SO4 on formation of agglomerates .............. 54 

 Effects of Additives ................................................................................................ 57 

3.4 Conclusions .................................................................................................................... 59 

3.5 References ...................................................................................................................... 60 

4. Chapter 4 ............................................................................................................................... 62 

Behavior and Mechanism of Bed Material Agglomeration in Fluidized-bed Combustion of Corn 

Stalk Using Silica or Olivine as Bed Material .............................................................................. 62 

Abstract ......................................................................................................................................... 63 

4.1 Introduction .................................................................................................................... 64 

4.2 Experimental .................................................................................................................. 66 

 Fluidized Bed Combustor (FBC) ............................................................................ 66 

 Fuel Preparation ...................................................................................................... 68 

 Methods................................................................................................................... 68 

4.3 Results & Discussions .................................................................................................... 69 

 Temperature Profiles ............................................................................................... 69 

 Composition of Coated Ash-layer on Bed Material ............................................... 72 

 De-Fluidization Time and Surface Composition of Agglomerates ........................ 75 

 Composition of Bottom and Fly Ash ...................................................................... 79 

4.4 Conclusions .................................................................................................................... 82 

4.5 References ...................................................................................................................... 84 

5. Chapter 5 ............................................................................................................................... 90 

Conclusions and Recommendations ............................................................................................. 90 

5.1 Conclusions .................................................................................................................... 91 

5.2 Recommendations .......................................................................................................... 92 



viii 

 

Appendix ....................................................................................................................................... 94 

Curriculum Vitae ........................................................................................................................ 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

List of Tables 

Table 2-1 Major advantages and disadvantages of biomass energy. ............................................ 12 

Table 2-2 Different modes of pyrolysis of wood [18,19]. ............................................................ 15 

Table 2-3 Different values for C1 and C2. ..................................................................................... 19 

Table 2-4 Ash analysis (wt%) of three biomass fuels [46]. .......................................................... 25 

Table 2-5 Physical properties of alumina and silica sands [25].................................................... 26 

Table 2-6 Initial de-fluidization temperature of various biomass fuels [30]. ............................... 27 

Table 3-1 SEM-EDX and XPS analytical results for the agglomerates collected after the tests with 

various amounts of KCl addition. ................................................................................................. 52 

Table 3-2 ICP results of washing liquids from pure silica sand and from agglomerates of silica 

sand with 0.6wt% KCl. ................................................................................................................. 53 

Table 3-3 SEM-EDX and XPS analysis results for the agglomerates collected after the tests with 

various amounts of KCl-K2SO4 addition. ..................................................................................... 56 

Table 3-4 AAS, IC analysis results of the eutectic mixture of KCl-K2SO4 after heating at 800˚C 

for various lengths of time. ........................................................................................................... 57 

Table 3-5 SEM-EDX analysis results for the bed materials collected after the experiments with co-

presence of alkali compounds and an additive (Kaolin or Al2(SO4)3). ......................................... 59 

Table 4-1 Chemical composition and properties of bed materials. .............................................. 67 

Table 4-2 Mineral composition of corn stalk. ............................................................................... 68 

Table 4-3 Operation conditions and de-fluidization time for the combustion of corn stalk in a BFB 

combustor using silica sand and olivine sand as bed material at 2.5Umf. ..................................... 76 

  



 

x 

 

List of Figures 

Figure 1-1 Biomass resource conversion processes [5]. ................................................................. 2 

Figure 1-2 Circulating fluidized bed (a) and Bubbling fluidized bed (b) [9,10]. ........................... 3 

Figure 1-3 Chain stoker grate [12]. ................................................................................................. 4 

Figure 1-4 schematic of two possible mechanisms of agglomerate formation. .............................. 5 

Figure 2-1 Consumption of energy in the United States in 2008 [1]. ........................................... 11 

Figure 2-2 Main conversion options for biomass to secondary energy carriers, reprinted with 

permission from ref. [11]. Copyright (2006) Springer. ................................................................ 14 

Figure 2-3 Fluidization regimes [27]. ........................................................................................... 17 

Figure 2-4 variation in bed pressure drop (ΔP) with superficial velocity (Vg) [29]. .................... 20 

Figure 2-5 Schematic mechanism of formation of agglomerates (1) Coating-induced mechanism 

and (2) melt induced mechanism [34]. ......................................................................................... 21 

Figure 2-6 SEM micrographs at different magnifications of a typical agglomerate sample (A), 

details of the external surface (B), cross-section of an agglomerate (C), and details of the 

agglomerates cross-section (D). Pine seed shells T= 850ºC, dp=212-400 µm, reprinted with 

permission from ref. [36]. Copyright (2008) Elsevier. ................................................................. 22 

Figure 2-7 Degree of ash sintering for different biomass fuels at various temperatures [47]. ..... 25 

Figure 2-8 Effects of bed material size on the de-fluidization time at various temperatures, 

reprinted with permission from ref. [2]. Copyright (2003) Elsevier............................................. 28 

Figure 2-9 Influence of bed material size on de-fluidization time, reprinted with permission from 

ref. [48]. Copyright (2011) Elsevier. ............................................................................................ 28 

Figure 2-10 De-fluidization time as a function of gas velocity [53]. ............................................ 29 



 

xi 

 

Figure 2-11 Influence of temperature on time of agglomeration, reprinted with permission from 

ref. [48]. Copyright (2011) Elsevier. ............................................................................................ 30 

Figure 2-12 Retention of KCl within zeolite 24A and kaolin at various temperatures [61]. ........ 32 

Figure 3-1 Schematic diagram (A) and photo of lab scale (B) BFB combustor. .......................... 46 

Figure 3-2 Variation of differential pressure (P) and temperature signals with experimental time 

in BFB of silica sand particles with 0.0wt% KCl (a); 0.2wt% KCl (b); 0.4wt% KCl (c); 0.6wt% 

KCl (d). ......................................................................................................................................... 50 

Figure 3-3 Formed agglomerates and the bottom view of the BFB reactor. ................................ 51 

Figure 3-4  SEM mapping images of the agglomerates from the test with 0.6% KCl. ................ 52 

Figure 3-5 Photos of the bed material after the experiment with (A) and without (B) 0.6wt% KCl 

....................................................................................................................................................... 54 

Figure 3-6 Variation of differential pressure (P) and temperature signals with experimental time 

in BFB of silica sand particles with 0.0wt% KCl-K2SO4 (a); 0.2wt% KCl-K2SO4 (b); 0.4wt% KCl-

K2SO4 (c); 0.6wt% KCl-K2SO4 (d). .............................................................................................. 55 

Figure 3-7 SEM image (a) and EDX spectra (b) of the formed agglomerates after the BFB test with 

0.6wt% KCl-K2SO4....................................................................................................................... 55 

Figure 3-8 SEM mapping images of agglomerates from the test with 0.6% KCl-K2SO4. ........... 56 

Figure 3-9 Variation of P and temperature signals with experimental time in in BFB of silica sand 

particles with 0.6wt% KCl and 0.6wt% kaolin (a); 0.6wt% KCl and 0.6wt% aluminum sulfate (b); 

0.6wt% KCl-K2SO4 and 0.6wt% kaolin(c); 0.6wt% KCl-K2SO4 and 0.6wt% aluminum sulfate (d).

....................................................................................................................................................... 58 

Figure 4-1 Temperature profiles along the height of the reactor in combustion of corn stalk in the 

presence of silica and olivine sand (at Ug= 2.5 Umf). .................................................................... 70 



 

xii 

 

Figure 4-2 Effects of superficial air velocity on the temperature profiles along the reactor height 

in combustion of corn stalk with silica sand (a) or olivine sand (b) bed material. ....................... 72 

Figure 4-3 EDX results of the surface composition of bed material (silica or olivine sand) after 2, 

4, and 6 hours combustion of corn stalk at two air velocities Ug = 2.5Umf (a) and 4Umf (b). ....... 74 

Figure 4-4 T-P signals at the dense phase bed during combustion of corn stalk in BFB of silica 

(2nd day) (a) and olivine sand (3rd day) (b) at Ug = 2.5Umf. .......................................................... 75 

Figure 4-5 EDX elemental analysis of the agglomerated silica in two points (A and B as shown in 

Figure 4-7 (I)) and non-agglomerated olivine particles after 12h combustion tests. .................... 77 

Figure 4-6 Ternary phase diagram of CaO-K2O-SiO2 [5]............................................................. 78 

Figure 4-7 SEM micrograph of typical silica agglomerates (I), optical photograph of a small silica 

sand agglomerate (II). ................................................................................................................... 79 

Figure 4-8 Bottom ash particles collected from the olivine bed (a) and silica bed (b) after 8h BFB 

combustion of corn stalk. .............................................................................................................. 80 

Figure 4-9 Results of ICP analysis of bottom ash particles collected from the silica or olivine bed 

after 8h BFB combustion of corn stalk. ........................................................................................ 81 

Figure 4-10 Results of ICP analysis of fly ashes collected after 8h BFB combustion of corn stalk 

in silica sand or olivine sand in comparison with composition of the original corn stalk ash...... 82 

  



 

xiii 

 

List of Appendices 

Appendix 1: Permission to Reuse Copyrighted Materials 

  



 

xiv 

 

List of Abbreviations and Symbols 

 

Abbreviation Meaning 

BFB Bubbling Fluidized Bed 

CFBC Circulating Fluidized Bed Combustor 

BFBC Bubbling Fluidized Bed Combustor 

FCC Fluid Catalytic Cracking 

HHV Higher Heating Value 

LHV Lower Heating Value 

MSW Municipal Solid Waste 

FBC Fluidized Bed Combustion 

DDGS Distiller’s Dried Grain with Solubles 

IDT Initial De-fluidization Temperature 

SEM Scanning Electron Microscopy  

EDX Energy Dispersive X-ray 

ICP Inductively Coupled Plasma 

AAS Atomic Absorption Spectroscopy 

IC Ion Chromatography 

XPS X-ray Photoelectron Spectroscopy 

 

  



 

xv 

 

 

Symbol Meaning 

ρg Gas density (kg/m3) 

µg Gas viscosity (Pa.s) 

ρp Particle density (Kg/m3) 

dp Particle diameter (µm) 

G Gravity (m/s2) 

Umf Minimum fluidization velocity (m/s) 

 Bed voidage  

εmf 
Bed voidage at minimum fluidization 

condition 

Փs Sphericity of solid particles 

Vg Superficial gas velocity (m/s) 

Wbed particles Net bed weight of the particles (kg) 

A Bed cross sectional area (m2) 

Lbed Bed height (m) 

ΔPbed Bed pressure drop (psi) 

Ar Archimides number 

Remf 
Reynold number at minimum fluidization 

number 

ρb Bulk density of the bed (kg/m3) 

 

 



 

1 

 

1. Chapter 1  

 

 

 

 

General Introduction 

  



 

2 

 

1.1 Introduction 

Currently, fossil fuels provide almost 80% of the total energy [1]. Relying on single source, 

depleting the fossil fuel sources, increasing the global energy demand and environmental damages 

such as global warming and acid rain have forced modern society to seek for reliable and renewable 

alternative energy sources [2]. There are several types of renewable energy sources such as solar, 

wind, hydroelectric and biomass. Of these, biomass has received a great attention as it is the only 

renewable source that can convert into solid, liquid and gaseous fuels, and more importantly 

chemicals [3]. Biomass has ranked the fourth largest source of energy, providing around 14% of 

world primary energy [4]. The energy in biomass from plant matter originally comes from solar 

energy through the process known as photosynthesis [3]. Biomass can be converted into energy or 

chemicals through various pathways, e.g., physico-chemical, bio-chemical and thermo-chemical 

(Figure 1-1).  

 

Figure 1-1 Biomass resource conversion processes [5]. 

Among all these three processes, thermochemical conversion is the fastest and most efficient one. 

Typical thermochemical conversion processes  include combustion, gasification, pyrolysis and 

liquefaction, etc. [6]. 

Direct combustion of biomass is the most common method to generate heat and energy from 

biomass, for cooking, industries, homes or generation of electricity [7]. Among different biomass 

combustion technologies, fluidized bed combustion is one the most promising techniques as it can 

provide three T’s rule for complete combustion: sufficiently high Temperature, strong Turbulence 

of the air-gas mixture and a long residence Time. 
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1.2  Fluidized Bed Combustion 

Fluidized beds are widely used in various industrial processes, including fluid catalytic cracking 

(FCC), drying, coating on solid item, and solid fuel (such as biomass) conversion for generation 

of steam, electricity and hydrogen. 

 Many fluidized bed combustors have been constructed in US, Europe, and southeast of Asia using 

a wide range of biomass as fuel. Fluidized bed combustion has some advantages such as fuel 

flexibility (different shapes, sizes, and moisture contents), high efficiency, and low emission level. 

Fluidized bed boilers are used in pulp and paper mills and sawmills to produce high pressure steam 

and electric power, particularly in Europe and North America. Fluidized bed combustors can be 

classified into two main types, circulating fluidized bed combustor (CFBC) and bubbling fluidized 

bed combustor (BFBC) (Figure1-2). CFBC is preferred in large units especially for sulfur 

capturing in coal firing while BFBC uses simpler technologies in smaller units to burn biomass 

[8]. 

 

Figure 1-2 Circulating fluidized bed (a) and Bubbling fluidized bed (b) [9,10]. 

Bubbling fluidized bed (BFB) and chain stoker grate (Figure 1-3) are two main types of biomass 

boilers that are currently used in pulp and paper mills. Older industries mostly use stoker grate 

boilers while newer mills use bubbling fluidized boilers as they are larger and most efficient [11]. 

(b) 
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Figure 1-3 Chain stoker grate [12]. 

Despite all the advantages of fluidized bed combustion, there are some shortcoming such as 

sintering, deposition of ash particles and bed material agglomeration [13]. Bed material 

agglomeration is a major operational problem, as discussed in details in the following section. 

1.3 Bed Agglomeration 

Bed agglomeration is the one of the major problems during the combustion of biomass which could 

cause partial or complete bed de-fluidization and as a result unscheduled plant shut down.  Figure 

1-2 shows the schematic mechanism of bed material agglomeration. When two or more particles 

stick together, they will lose their original weight and cannot be fluidized by the initial gas velocity 

that was chosen based on the original particle size.  

Many researchers investigated the causes and mechanism of the bed material agglomeration [14–

17]. Most of these researches reached a common agreement that the main cause of the bed material 

agglomeration is the presence of a low melting alkali compounds acting as a binder to form 

agglomerates. Biomass ash contains inorganic alkali compounds which can react with bed material 

commonly silica sand to form a low melting alkali silicate that would contribute to the formation 

of bed material agglomeration. Bed materials will be covered by low melting alkali silicate, during 

the fluidization coated bed materials collide with each other and stich together to form 

agglomerates. The formation of agglomerates can lead to either partial or complete de-fluidization. 
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Figure 1-4 shows the schematic of two possible mechanisms of agglomerate formation. The 

mechanism of agglomeration and factors affecting it will be discussed with more details in chapter 

2 “literature review”. 

 

Figure 1-4 schematic of two possible mechanisms of agglomerate formation. 

1.4 Knowledge Gaps and Needs of Research 

 It is not known what is the minimum or critical amount of liquid (molten alkali compounds) 

required to agglomerate the bed material and cause de-fluidization of the bed, except for some 

research results obtained by our group based on cold/mild-temperature tests using model 

compounds. Therefore, the main objective of the present thesis work is to determine 

experimentally the critical amount of liquid required to agglomerate silica sand particles in a 

bubbling fluidized bed (BFB) leading to de-fluidization at higher temperatures. To simulate the 

real biomass combustion in BFB, various model systems have been employed, including hot BFB 

with KCl, and KCl-K2SO4 eutectic compounds to simulate molten biomass ash in real biomass 

combustion. The results on bed material agglomeration behavior in fluidization of silica sand 

particles with KCl or KCl-K2SO4 at elevated temperatures and effects of kaolin or aluminum 

sulfate additive are presented and discussed in this thesis. The second objective of this project is 

to examine the de-fluidization time for BFB combustion of corn stalk (with a high K, Mg, Ca-

containing ash) with different bed materials operating at different superficial air velocities.  
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1.5 Thesis Objective 

This research project is a part of a large NSERC CRD project titled “FUNDAMENTAL STUDIES 

OF DRYING, COMBUSTION AND ASH PROPERTIES OF BIOMASS, AND IMPACTS ON 

BOILER AND PULP AND PAPER MILL OPERATIONS”, led by The University of Toronto. 

The main objective of this CRD project is to obtain fundamental data on drying, combustion and 

ash properties of biomass mixtures and to use this information to develop viable control strategies 

and new technologies to improve biomass boiler and mill operations. 

This research project carried out by Western University includes 2 parts of studies. Part 1 includes 

Stage I and Stage II, Part 2 Stage III and Stage IV, as defined below: 

 Stage I involving experiments in a cold BFB test rig using glycerol-water as the model system 

to simulate molten ash (the results were reported previously in a published paper by Monte, 

et al. [18]);  

 Stage II using a hot BFB (heated to ~400C) and a low melting point salt (KOH) to simulate 

molten ash (the results are reported in another recent publication by Montes et al. [19];  

 Stage III involving a hot BFB (heated up to 800C electrically) with addition of different 

amounts of  KCl, K2SO4 and their eutectic mixture to simulate molten ash, and  

 Stages IV involving a hot BFB (heated to ~800C) with addition of different amount of 

agricultural residues (corn stalk) with high K contents. 

Part 1 of this project (Stage 1 and Stage 2) has been already completed, and drawn the following 

key conclusions: in the fluidization systems studied the critical liquid amount is 0.2-0.5 wt% (in 

relation to the weight of bed material loaded) to cause bed material agglomeration and approx. 

1wt% to cause severe channeling and very poor fluidization [18,19].  

The research results for stages III and IV are presented in Chapters 3 and 4, respectively in this 

thesis.  

1.6 Thesis Structure 

This thesis consists of five chapters organized in the following manner: 
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Chapter 1 briefly describes the importance of renewable energies especially biomass, and 

introduces the available technologies for conversion of biomass to energy, in particular combustion 

of biomass and their problems. Finally, the research objectives and thesis structure are outlined. 

Chapter 2 presents a summary of available literature studies on biomass energy conversion, with 

main focus on fluidized bed combustion. Agglomeration as the main operating problem in 

fluidized bed combustion, and factors affecting the formation of agglomerates and measures to 

prevent agglomeration are described. 

Chapter 3 provides results and discussion from an investigation on critical amount of liquid for 

bed material agglomeration at high temperature (800ºC) in a bubbling fluidized bed using KCl and 

K2SO4 to simulate the molten ash. The effect of two additives, i.e., kaolin and aluminum sulfate 

on prevention of agglomeration were investigated. 

Chapter 4 aims to examine the de-fluidization time for BFB combustion of corn stalk (with a high 

K, Mg, Ca-containing ash) with different bed materials operating at different superficial air 

velocities.  

Chapter 5 presents the main conclusions drawn from the present research and suggests directions 

of future studies. 
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This chapter introduces some general aspects of biomass, biomass conversion to energy and 

fluidization technology. Following a brief overview of mechanism of agglomeration, key factors 

that are believed to play a role in the formation of agglomerates are discussed. 

2.1 Biomass 

Biomass is an ancient source of energy that was utilized by mankind because of its availability and 

accessibility [1]. It  is a renewable, carbon-neutral, and abundant source of energy, and is being 

considered  as an alternative to fossil fuels for energy and chemical production [2].  The current 

production of biomass in the world is estimated to be around 146 billion metric tons a year [3], 

approx. 8 times the total energy consumption. Biomass is currently the fourth source of energy in 

the world, after petroleum, coal and natural gas. According to Oregon Department of Energy, 

biomass accounts for approximately 3% of the total primary energy in the United States (in 2008) 

(Figure 2-1). The annual biomass energy use reaches ~69 MTOE (million tons of oil equivalent) 

of energy in Europe in 2003 [4] . 

 

Figure 2-1 Consumption of energy in the United States in 2008 [1]. 

Usage of biomass as a source of energy has several advantages and disadvantages. The major 

advantages and disadvantages are summarized in Table 2-1. 
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Table 2-1 Major advantages and disadvantages of biomass energy. 

Advantages Disadvantages 

 Renewable and inexhaustible fuel source 

 Commonly low content of ash, C, S, N 

 It reduces environmental hazards  

 Capturing of some hazardous components by ash 

during combustion  

 Relatively cheap resource 

 It may generate additional coproducts that are 

valuable  

 Commonly high contents of moisture, Cl, K, Na, Mn,  

 Low energy density 

 Odor, potential emission and leaching of hazardous 

components during disposal and heat treatment 

 Potential competition with food and feed production 

 Great harvesting, collection, transportation and 

storage cost 

 Many forms of biomass are available only seasonally 

  Perishable 

 

The most important sources of biomass are wood, wood wastes, agricultural crops and residues, 

municipal solid waste (MSW) and food processing wastes, etc. [5]. Biomasses are characterized 

based on the following parameters:  

1. Structural analysis  

2. Proximate analysis  

3. Ultimate analysis 

4. Ash analysis 

5. Heating value  

Structural analysis is to determine the constituents of biomass such as cellulose, hemicellulose and 

lignin. Structural analysis is particularly important in the development of methods for production 

of bio-fuels as well as for combustion [6,7]. Proximate analysis gives the percentages of volatile 

matter, moisture content, fixed carbon and ash contents. This analysis is essential in study of 

biomass combustion [8]. While ultimate analysis gives the major composition of biomass in weight 

percentage of carbon, hydrogen, oxygen, nitrogen and sulfur. Ash analysis provides the amount of 

inorganic material in biomass, either structural or extractable. Structural ash is inorganic material 

that is bound in the physical structure of the biomass, while extractable ash is inorganic material 

that can be removed/extracted physically such as by washing [9]. Biomass ash contents play an 

important role in the process of combustion due to some serious problems including fouling and 

slagging that are associated with the interaction of the molten ash and bed materials. Ash content 

and composition of biomass varies and depends on several factors such as weather conditions, soil 

quality, fertilizer, nutrients and varies depending on the time of harvesting. Heating value of 
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biomass is the amount of heat produced from the combustion of the fuel and it is measured as a 

unit of energy per unit mass or volume of fuel. Heating value divided in two types, lower heating 

value (LHV) and higher heating value (HHV), where LHV is determined by combustion of the 

fuel completely to form CO2 and H2O vapor, and HHV is determined by combustion of the fuel 

completely to form CO2 and condensed H2O liquid. 

2.2 Conversion of Biomass to Energy 

The stored energy in biomass can be released and converted to useful energy via several processes. 

The moisture content and ash content of the biomass are among the most important parameters 

that shall be considered in the selection of an appropriate conversion process [1,10]. Usually, 

thermochemical conversion, biochemical conversion and mechanical extraction are the three major 

methods used for the conversion of biomass to useful energy, and chemicals in different forms 

(solid, liquid and gas) (Figure 2-2). Biomass with high water content is preferred for biochemical 

conversion through fermentation and digestion to gaseous and liquid fuels. Mechanical extraction 

is defined as mechanical pressing to remove the majority of oil from seeds and plants parts. As the 

mechanical extraction does not remove all the oil, so chemical extraction is also applied to remove 

the remaining oil.  Thermochemical conversion processes include torrefaction, combustion, 

gasification, pyrolysis (and liquefaction) of biomass to generate fuels and chemicals. Biomass with 

low moisture content and high energy density is normally preferable for the thermochemical 

conversion processes. 
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Figure 2-2 Main conversion options for biomass to secondary energy carriers, reprinted with 

permission from ref. [11]. Copyright (2006) Springer. 

 Gasification 

Gasification was used for the first time in the early 1800s to convert coal to gas and attracted major  

attention during the energy crisis of the 1970s to produce syngas as a source of clean energy for 

small industries [12]. There are two types of gasification depending on the types of gasifying 

agents, i.e., air-blown gasification and steam-gasification. Air-blown gasification is an energy self-

sufficient partial oxidation process which converts biomass to gaseous fuel rich in CO and CO2, 

while the stream-gasification is an endothermic process to produce H2 and CO rich gaseous 

products. In gasification, biomass converts to carbon monoxide, hydrogen, methane, carbon 

dioxide and water at high temperature (>700 ºC) in  presence of oxygen or/and steam [13,14]. The 

formed gases known as syngas and can be used as fuel for internal combustion engines, as a 

substitute of furnace oil, or can be a feedstock for the production of liquid transportation fuel and 

chemicals through F-T synthesis. Gasification technologies can be further classified based on type 

of reactor and pressure, in addition to the gasifying agents as discussed above [12,15]. 
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 Pyrolysis 

Pyrolysis is a thermal decomposition of organic matter at elevated temperatures in the absence of 

oxygen [16]. In practice, it is not possible to achieve a completely oxygen-free atmosphere as 

oxygen is present in any biomass, so some oxidation reactions may also occur during the process. 

Organic materials are transformed in pyrolysis into different products, i.e., gases, liquid, and a 

solid residue (char) containing mainly carbon and ash. Different proportion of pyrolytic products 

can be produced by controlling and adjusting the operating conditions, e.g., temperature, pressure, 

residence time, pyrolysis method and type of biomass. Pyrolysis of biomass could be divided into 

four stages including removal of moisture (dehydration), decomposition of hemicellulose, 

cellulose and lignin. Each of these steps proceeds over different temperature ranges [17]. Pyrolysis 

can be divided into three categories according to the process conditions; i.e.  slow pyrolysis, 

intermediate pyrolysis and fast pyrolysis [18,19]. The conditions of each process are shown in 

Table 2-2. Slow pyrolysis is carried out at a low temperature for a long vapor residence time which 

leads to produce more charcoal. The intermediate pyrolysis is carried out at a moderate temperature 

and residence time. In contrast, fast pyrolysis is conducted at a high temperature, a short residence 

time, and in the absence of oxygen to produce more liquid fuels [20]. Increasing attention is now 

being paid on fast pyrolysis process, as the obtained liquid product, fast pyrolysis oil, could be 

used as fuels and chemicals [18]. Fast pyrolysis process is significantly influenced by factors such 

as mass and heat transfer, as well as chemical reaction kinetics [16,20]. 

Table 2-2 Different modes of pyrolysis of wood [18,19]. 

Types of 

pyrolysis 

Residence 

Time 

Temperature 

(ᵒC) 

Yield (%) 

Liquid Char Gas 

Slow Hours/Days 400 30 35 35 

Intermediate 10-30s 500 50 25 25 

Fast ~1s 500 75 12 13 

 

 Combustion 

Combustion is simple process in which a flammable material burns directly in the presence of air 

or oxygen to produce heat. Direct burning of biomass is an ancient process used for millennia for 

production of heat and energy from biomass. The generated heat has been used for cooking, 

industrial processes, heating homes or converting to the other kinds of energy like electricity. The 
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basic reactions of combustion are oxidation of C and H to form carbon dioxide and water. 

Combustion of biomass, although being ancient, still requires improvement in combustion 

efficiency, emissions and cost reduction to be a reliable substitute for fossil fuels. Besides C, H 

and O, there are some undesired elements such as N, K and Cl in biomass that are sources of NOx 

emission and KCl – causing operating problems (agglomeration and fouling) [23]. 

When compared to fossil fuel-fired boilers, biomass boilers emit a larger amount of NOx. Several 

options have been proposed to reduce the emission of NOx during biomass combustion, such as 

(1) the usage of native wood owing to its low contents of nitrogen and ash, and (2) co-firing of 

biomass and another fuel (such as coal) to reduce the NOx emission by providing lower combustion 

temperature [24]. For large-scale industrial applications, biomass combustion technologies include 

pulverized bed combustion, fixed bed combustion and fluidized bed combustion. Among these 

technologies, fluidized bed combustion is widely adopted for burning biomass even for the low 

quality of biomass with high ash content and low heating value [25]. 

2.3 Fluidization and Fluidized Bed  

Fluidization is a process in which the solid bed materials can behave as a fluid by passing the gas 

or liquid upward through the bed. Usually, fluidization is applied in industries for two types of 

processes that require rapid heat and mass transfer in the process [26]: 

1) Physical processes, such as drying, mixing of particles. 

2) Chemical processes, such as fluid catalytic cracking (FCC), solid fuel conversion and gas-

solid reactions. 

Typically, a fluidized bed reactor involves a cylindrical column, filled with solid particles as heat-

transfer carriers or catalysts, and equipped with an air distributor at the bottom and a cyclone at 

the top to remove/recycle the solid fines from the vented fluidizing gas. The velocity of fluid must 

be sufficient to fluidize the particles in the column. With increasing the velocity of the fluid, 

different fluidization regimes can be obtained, as illustrated in Figure 2-3. 
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Figure 2-3 Fluidization regimes [27]. 

 Minimum Fluidization Velocity 

The minimum fluidization velocity (Umf) (“incipient fluidization velocity”) is the superficial gas 

velocity (Vg) that can suspend/fluidize the solid particles in the bed. At this point the bed material 

behaves as a liquid. The minimum fluidization velocity depends upon a number of factors, such 

as, particle density, particles size, particles shape, viscosity and density of fluid, temperature and 

pressure. Umf can be determined by using some empirical correlations based on the famous Ergun’s 

equation and more accurately by experiments. 

2.3.1.1 Empirical Calculation of Umf  

Leva [28] proposed a correlation in 1959 which is most commonly used in industries. It works 

well when Remf <30 (Remf is the Reynold number at minimum fluidization condition) for relatively 

small particles: 
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where ρg is the gas density, µg is the gas viscosity, ρp is the particle density, dp is the mean diameter 

and g is gravity. 
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2.3.1.2 Theoretical Calculation of Umf  

At minimum fluidization, the bed is at boundary between fixed and fluidized condition. The 

frictional bed pressure drop (ΔPfbed) can be predicted by Ergun’s equation for a fixed bed with 

height H: 
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where Vg is the superficial gas velocity, µg is the viscosity of the gas, ε is the voidage, Փ is the 

sphericity of the particles, dp is the mean diameter and ρg is the gas density.  

On the other hand, the fluidization occurs when the frictional bed pressure drop becomes equal to 

the weight of the bed particles per unit area 
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where Wbed particles is the net weight of particles, A is the bed cross sectional area and εmf is the bed 

voidage at the minimum fluidization condition. 

Umf can then be calculated by combining Equations (2-2) and (2-3) for ΔPbed: 
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Equation (2-4) can be simplified to: 
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where Archimides number (Ar) and Reynolds number (Remf) are:  
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The solution of Equation (2-5) is  

1
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with  
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2 5714.0 mfsC             (2-10) 

 

Table 2-3 Different values for C1 and C2. 

Reference C1 C2 

Wen and Yu (1966) 33.7 0.0408 

Richardson & St Jeronimo (1971) 25.7 0.0365 

Thonglimp et al. (1894) 31.6 0.0425 

 

Thus, the minimum fluidization velocity can be found: 

1) If s and 
mf are known,  

mfRe  and 
mfU can be calculated directly. 

2) If s  and
mf are not known (unfortunately the usual case), correlated values for C1 and C2 must 

be used. 

 Experimental approach 

The pressure drop method can be used to determine the Umf by plotting ΔP vs Vg curve. This 

method involves the use of data on variation in bed pressure drop across a bed of particulate solids 

(particle size not too small) with fluid velocity [26]. 

In a well-settled bed, the bed voidage (ε) is relatively low so, the pressure drop obtained by passing 

the gas through the bed is shown by line A-B in Figure 2-4. The pressure drop usually reaches a 

maximum ΔPmax (point B), which is higher than the static pressure drop of the bed, as the fluid 

velocity is further increased from this point (B) the bed expands and the porosity increases from 
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ε0 to εmf, resulting in a decrease in pressure drop to a value which is independent of fluid velocity 

(static pressure drop of the bed). At point B, the fixed bed starts to change to the fluidized bed until 

point C. The bed pressure drop beyond the point C remains unchanged even by increasing the 

superficial gas velocity (Vg). By decreasing the upward flow of gas and retracing the path, as it 

shown in Figure 2-4 by line DCG. It shows that the pressure drop was less when the gas flow 

decreased in compare with when the upward flow gas increased. Point C is the transition point 

between a fixed bed and fluidized bed. The velocity corresponding to this transition point, 

determined graphically, is the minimum fluidization velocity (Umf) [29]. 

.  

Figure 2-4 variation in bed pressure drop (ΔP) with superficial velocity (Vg) [29]. 

 

 Fluidized Bed Combustor 

Fluidized-bed combustion (FBC) is considered as the most suitable technology for burning 

different types of biomass. Two most popular modes of fluidized bed combustion installations are 

circulating fluidized-bed combustion (CFBC) and bubbling fluidized-bed combustion (BFBC). 

CFBC is mainly used in large scale  burning of  coal and BFBC has a  simpler reactor configuration 

so is commonly used for biomass combustion [30]. 

 Scope of Fluidized Bed Combustor 

Due to the many advantages, fluidized beds are used for a variety of applications. Some important 

advantages of fluidized bed biomass boilers include high combustion efficiency, fuel flexibility, 
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lower pollutant (particularly NOx) emission, and homogenous temperature distribution. In spite of 

the advantages of fluidized bed combustion of biomass, there are some issues in the process such 

as corrosion, fouling, and agglomeration. Sulfur and chlorine in the biomass that release during 

the combustion are the main routes of corrosion. The corrosion mechanism in a biomass combustor 

or boiler can be divided into three types: (1) gas species corrosion (2) solid phase corrosion (3) 

molten phase corrosion. Fouling or the formation of ash deposits on the surface of heat transfer 

equipment leads to falling of the thermal efficiency of biomass boilers.  

2.4 Bed Material Agglomeration and De-fluidization 

Agglomeration is the most important operating problem encountered in fluidized bed biomass 

combustors. It causes partial or complete de-fluidization, leading to unscheduled plant shut downs 

[31]. Figure 2-5 shows a schematic mechanism of the formation of agglomerates. When two or 

more small particles stick together, they form bigger particles, which will no longer be able to 

fluidize with the same gas velocity [32]. The formation of a sticky molten ash layer around the bed 

material is the main cause of agglomerate formation. In addition, the reactions of alkali compounds 

that are present in the ash and bed material at high temperature may lead to formation of low 

melting-point compounds that might contribute to the bed material agglomeration [32,33]. 

 

Figure 2-5 Schematic mechanism of formation of agglomerates (1) Coating-induced mechanism and 

(2) melt induced mechanism [34]. 

The presence of inorganic alkali elements such as K, Na and Ca in the biomass is mainly 

responsible for the formation of agglomeration of the bed particles [35]. Figure 2-6 shows the 
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effects of alkali melt compounds (potassium) in the agglomeration process with silica sand 

particles in a fluidized bed. 

 

Figure 2-6 SEM micrographs at different magnifications of a typical agglomerate sample (A), details 

of the external surface (B), cross-section of an agglomerate (C), and details of the agglomerates cross-

section (D). Pine seed shells T= 850ºC, dp=212-400 µm, reprinted with permission from ref. [36]. 

Copyright (2008) Elsevier.    

A comprehensive study was conducted by Montes et al. [37,38] to determine the critical amount 

of liquid which would cause severe bed agglomeration and de-fluidization in a lab scale cold and 

high temperature bubbling fluidized bed (BFB). In a cold BFB test, various amount of glycerol-

water (30%v/v) solutions were injected to the bed to simulate molten ash in real biomass boiler. It 

was found the critical liquid amount resulting in bed agglomeration and sever channeling/de-

fluidization were 0.2wt% and 0.7wt%, respectively. Furthermore, at elevated temperature (400ºC), 
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KOH was used to simulate the molten ash. The results revealed that 0.5wt% and 0.8wt% were the 

critical amount of liquid that initiate the de-fluidization in BFB at 3.9 Umf and 5.9 Umf, respectively. 

Many factors including type of biomass, nature of bed material, air velocity, operating conditions 

and additives can affect the formation of agglomerates in the bed. 

 Effects of Type of Biomass  

Characteristics of biomass depend on the type of plant and the growth conditions. Biomasses with 

a larger amount of K are most problematic during the combustion due to the higher potential of 

bed material agglomeration. Several studies have been reported on the effect of different fuel types 

on the formation of agglomerates [39–42]. For example, Grimm et al. [31] conducted a study on 

the influence of four different biomass fuels on bed agglomeration in a bench scale bubbling 

fluidized-bed reactor. The used biomass fuels in this study included willow, logging residues, 

wheat straw, and wheat distiller’s dried grain with solubles (wheat DDGS). It was found that the 

content of potassium had a pronounced effect on the de-fluidization temperature. Among these 

fuels, wheat straw consists of the higher amount of K with the lowest initial de-fluidization 

temperature at 750ºC, and in contrast, logging residues exhibited the highest initial de-fluidization 

temperature approximately at 1060ºC for both bed materials (olivine and silica sand). Both DDGS 

(rich in K and Mg) and wheat straw (rich in Si and K) demonstrated similar bed agglomeration 

tendency regardless of the type of bed materials. 

Chaivatamaset et al. [32] studied the effects of biomass ash compositions and the operating 

temperature on the de-fluidization time. Two different types of biomass, i.e. palm shell and 

corncob were examined in a laboratory scale fluidized bed combustor using silica sand as the bed 

material. The de-fluidization time reduced for both biomass fuels when the operating temperature 

increased from 800ºC to 900ºC. Under constant operating conditions, corncob showed a higher 

bed agglomeration tendency compared to palm shell, which was attributed to the higher content of 

K in corncob ash. Fernandez Llorente et al. [43] studied the effect of various biomass fuels such 

as brassica, thistle and almond shell on initial de-fluidization temperature (IDT) in oxidising 

atmosphere using limestone as the bed material. The IDT could be used as a factor to predict the 

temperature of agglomeration and sintering in a fluidized bed combustor. The results indicated that 

the lowest value of IDT at 740ºC was observed in the combustion of almond shell containing the 

highest potassium content (31wt%), whereas thistle showed the highest IDT at above 1400ºC. Brus 
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et al. [44] investigated the mechanism of bed agglomeration during the fluidized bed combustion 

of five different biomass fuels including bark, reed canary grass, peat, olive residues, and straw in 

a bench-scale system. The fuel characteristics showed that bark, olive residues and peat contain 

high percentages of Ca in ash (39, 18 and 24wt%, respectively) while the percentage of K is much 

dominant in olive residue-ash (18wt%) and straw-ash (25wt%). It was observed that an ash-layer 

formed around the bed material during the combustion of all fuels except straw. In the case of olive 

residues and bark, the main compound of the formed layer was potassium calcium silicates. The 

layer formed with olive residues contains mainly potassium and silicon with small amount of 

calcium and magnesium. However, the ash layer from bark mainly consists of potassium, calcium 

and silicon. In another study, the initial agglomeration temperatures of four different agricultural 

residues, i.e., rice husk, bagasse, cane trash and olive flesh, were examined in a fluidized bed for 

combustion or gasification of these feedstocks [45]. The initial de-fluidization temperatures of all 

biomass fuels were lower than the predicted values from the ASTM standard ash fusion test. The 

initial agglomeration temperature of rice husk and bagasse were reported to be more than 1000ºC, 

but cane trash and olive flesh have higher agglomeration tendency leading to a lower de-

fluidization temperature. In addition, when lime was used as a bed material instead of silica sand, 

the de-fluidization happened at a higher temperature. Accordingly, rice husk and bagasse with a 

higher agglomeration temperature are more suitable biomass feedstocks for fluidized-bed biomass 

combustors.  

Fryda et al. [46] characterized the agglomeration tendency of three biomass fuels in an atmospheric 

lab-scale fluidized bed using silica sand bed material. Table 2-4 shows the ash composition of 

giant reed, sweet sorghum and olive bagasse. The potassium content of giant reed (30wt%) and 

sweet sorghum bagasse (31.6wt%) are relatively higher than that of olive bagasse (25.8wt%), 

which accounts for their lower agglomeration temperatures. The de-fluidization occurred at 

approximately 785ºC for giant reed and 810ºC for sweet sorghum bagasse, while combustion of 

olive bagasse caused agglomeration at a higher temperature of 830ºC. The XRD-EDS results 

reported by this literature study confirmed the presence of potassium compounds like K2O.SiO2 

on the surface of bed materials after agglomerate formation. 
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Table 2-4 Ash analysis (wt%) of three biomass fuels [46]. 

Compound Giant Reed Sweet Soghum Bagasse Olive Bagasse 

SiO2 44.2 31.6 26.4 

Al2O3 1.8 1.9 4.8 

Fe2O3 0.9 0.4 7.3 

CaO 1.8 10.9 27.1 

MgO 2.8 6.3 4.7 

TiO2 0.1 - 0.3 

Na2O 0.5 0.2 - 

K2O 30 31.6 25.8 

P2O5 3.2 3.8 2.6 

Cl - 5.1 - 

Others 14.7 8.2 1 

   

A comprehensive study [43] has been reported on the ash sintering of nine different agricultural 

residues. Figure 2-7 presents the ash sintering and melting behaviours of these fuels. As shown in 

the Figure, wheat waste has the lowest sintering temperature at 700ºC which could be due to its 

high contents of K, Cl, P and S in the ash, along with low contents of Ca and Si. In contrast, the 

highest ash sintering temperature was observed with bluegrass seed likely owing to the low 

concentration of K, P, Cl, S and Ca in the ash, and its large Si content (42g/kg dry fuel). 

 

Figure 2-7 Degree of ash sintering for different biomass fuels at various temperatures [47]. 
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 Effects of Bed Materials  

It is well known that silica sand is the most common bed material for biomass combustion in 

fluidized bed combustors due to its low price among other bed materials. However, silica sand is 

the most problematic type of bed material for the combustion of biomass fuels. Silica sand can 

react with alkali compounds  from the biomass ashes, and form a low melting-point alkali silicate, 

which would accelerate the bed material agglomeration [48]. Many studies have been reported on 

the effects of types and particle size of bed materials on the bed material agglomeration [45,48,49].  

Shimizu et al. [25] investigated effects of bed materials on the de-fluidization time and temperature 

during combustion of cedar pellet. In this study, silica sand and porous alumina were employed as 

bed materials (Table 2-5). The maximum operating temperature for the system with silica sand 

was 800ºC and the system had to be stopped after 1hour operation due to the occurrence of severe 

agglomeration and de-fluidization of bed materials. Whereas, when alumina was used a bed 

material, the bed could be operated up to 950ºC without apparent formation of agglomerates. The 

porous structure of alumina captured the volatile compounds released from the combustion of fuel 

pellets and most of the combustion took place in the reactor bed (dense phase). Therefore, the 

temperature of alumina bed was higher than that of the silica sand bed, with a higher temperature 

gradient between the bed material and the freeboard zone.   

Table 2-5 Physical properties of alumina and silica sands [25]. 

Bed material 
Specific surface area 

(m2/g) 

Average diameter 

(µm) 

Bulk density 

(kg/m3) 

True density 

(kg/m3) 

Alumina sand 214 500 780 3200 

Silica sand 9.2 150 1223 2600 

 

Grimm et al. [31] studied effects of two types of bed materials, i.e. olivine and quartz silica sand. 

The de-fluidization time for various biomass fuels including willow, logging residues, DDGS and 

wheat straw was reported. The initial de-fluidization temperatures of these systems are presented 

in Table 2-6. The results of this work demonstrated that the initial de-fluidization temperatures in 

silica sand bed were lower than those in the olivine bed. The elemental analysis of agglomerates 

showed that the composition of the inner layers is very similar to the bed material composition, 

while the outer layers of the agglomerates are strongly dependent on the fuel ash characteristics. 

For example, the agglomerates’ inner layers formed in the silica sand bed contained mainly Si, K, 
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and Ca, and the inner layers of the agglomerates formed in the olivine bed made of primarily Mg, 

Si, and Ca.   

Table 2-6 Initial de-fluidization temperature of various biomass fuels [30]. 

Fuel Olivine bed (ºC) Silica bed (ºC) 

Willow ˃ 1060 900 

Logging residues ˃ 1060 1030 

DDGS 
Total def. during comb. at ~ 

800 

Total def. during comb. at 

~ 800 

Wheat straw 740 750 

 

The particle size of bed material is another important factor affecting bed agglomeration during 

the combustion of biomass fuels. Lin et al. [2] investigated the formation of agglomerates from 

two different sizes of silica sand particles, i.e. 0.275 and 0.328 mm. The influence of particle size 

on the agglomeration time at different operation temperatures is displayed in Figure 2-8. The 

results show that the de-fluidization time is shorter with the larger bed material size at similar 

operating conditions. This behaviour could be due to the lower specific outer surface area of the 

larger particles, making a thicker ash coating layer around them. Another reason could be that the 

relatively smaller value of Vg/Umf for bigger particles compared with that of the finer particles leads 

to a poor mixing of the bed material, which consequently facilitate the formation of agglomerates. 

Chaivatamaset et al. also reported that the de-fluidization time is shorter with larger bed particles 

during the combustion of palm shell and corncob fuels in fluidized bed with silica sand bed 

materials [32].  
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Figure 2-8 Effects of bed material size on the de-fluidization time at various temperatures, reprinted 

with permission from ref. [2]. Copyright (2003) Elsevier. 

The influence of bed material size on agglomeration was also studied by Chunjiang et al. [48] for 

combustion of high-alkali straw. They adjusted the minimum fluidization velocity in accordance 

to the variation of the bed material particle size in order to evaluate the effects of bed particle size 

on bed de-fluidization. Figure 2-9 shows the de-fluidization time versus the bed material size. 

Again, the smaller particles demonstrated low tendency towards agglomeration due to better heat 

and mass transfer throughout the bed, reducing the extent of hot spot in the bed and hence the 

extent of ash melting, and eventually the tendency of agglomeration and de-fluidization.  

 

Figure 2-9 Influence of bed material size on de-fluidization time, reprinted with permission from 

ref. [48]. Copyright (2011) Elsevier. 
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 Effects of Air Velocity  

The ratio of superficial gas velocity to the minimum fluidization velocity, Vg/Umf, is called the 

fluidization number. When the minimum fluidization velocity remains constant, the fluidization 

number increases with increasing the gas velocity. The effects of air velocity (or fluidization 

number) on the de-fluidization time for fluidized-bed combustion of biomass have been studied 

[50–52]. Rozainee et al. [51] reported that the optimum fluidization number for combustion of rice 

husk in a fluidized bed reactor was about 3.3. Further increasing the fluidization number would 

prevent the rice husk (with a light density) from being well mixed with the bed material. This 

results in pyrolysis of the biomass mainly in the freeboard. However, if the fluidization number is 

below the optimum value, the de-fluidization time becomes shorter due presumably to the poor 

mixing of the feedstock in the bed. Lin et al. [2] showed that increasing the fluidizing gas velocity 

extended the de-fluidization time due to better mixing of bed materials and forming bigger bubbles 

in the bed, which could break the formed agglomerates. In a study by Shiyuan et al. [53], the effects 

of gas velocity on de-fluidization time were investigated at 900ºC. The obtained results are 

presented in Figure 2-10. The de-fluidization occurred at a longer time when the gas velocity 

increased. At a higher gas velocity, the forces of attrition and breaking acting on agglomerates 

increased, resulting in more fly ash particles entrained in the flue gas. Both would lead to retarding 

the de-fluidization time. Similar results were reported in other studies on fluidized bed combustion 

of biomass [32,48,54,55].  

 

Figure 2-10 De-fluidization time as a function of gas velocity [53]. 
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 Effects of Operating Temperature 

Temperature is another pronounced factor which could be adjusted to control the formation of 

agglomerates in fluidized bed biomass boilers. As per Lin et al. [52], de-fluidization process was 

very sensitive to temperature. Their results showed that the formation of agglomerates was 

enhanced with increasing the operating temperature. At low temperatures, the agglomeration 

process was retarded with a longer de-fluidization time. In contrast, at high temperatures, alkali 

compounds in the ash of biomass could react with silica sand bed material and form low melting 

point eutectics quickly, which would cover the surface of bed particles and accelerate the 

agglomeration and de-fluidization. Chunjiang et al. [48] investigated the effects of operating 

temperature on agglomeration time for combustion of rice straw at temperatures ranging from 

650ºC to 900ºC. Figure 2-11 displays the effects of temperature on agglomeration. As expected, 

the fastest de-fluidization happened at 900ºC due to enhanced reactions between the alkali ash with 

bed material forming form low melting point eutectics, which promotes the formation of 

agglomerates.   

 

Figure 2-11 Influence of temperature on time of agglomeration, reprinted with permission from ref. 

[48]. Copyright (2011) Elsevier. 
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Similarly, Li et al. [53] reported the influence of the bed temperature on the de-fluidization time 

in fluidized bed combustion of wheat straw. The de-fluidization was achieved after around 14h 

and 0.2h at two different temperatures of 750ºC and 950ºC, respectively. The above results 

demonstrated negative effects of temperature on bed material agglomeration in fluidized bed 

combustors.    

 Effects of Additives 

Additives refer to a group of minerals or chemicals that can retard formation of bed material 

agglomeration by increasing the melting temperature of ashes and capturing the problematic 

components. Use of additives is one of the most practical options to mitigate the ash related 

problems during biomass combustion. The commonly used additives can be categorized in four 

groups of materials based on their reactive components, including Al-silicate, sulphur, calcium 

and phosphorous based materials. Additives can mitigate the ash related problems through the 

following mechanisms: 

1) Increasing the biomass ash melting temperature by introducing inert elements in ash 

residues,  

2) Physical adsorption and elutriating troublesome ash species from combustion facilities,  

3) Capturing problematic ash species via chemical adsorption and reactions, 

4) Restraining biomass ash sintering via the diluting effects of the additives [56].  

Potential additives for reducing biomass ash related problems have been investigated in many 

studies in the last decades [47,57,58]. 

Ohman et al. [59] investigated the role of kaolin in prevention of bed agglomeration during the 

fluidized bed combustion of wheat straw and bark with silica sand as the bed material. The used 

biomass fuels consisted of high content of potassium which could facilitate de-fluidization of the 

bed material. The addition of 10% w/w of kaolin to the bed material for two troublesome biomass 

fuels helped prevent bed agglomeration. The critical temperature for agglomeration increased from 

740ºC to 990ºC for wheat straw and from 990ºC to 1000ºC for bark mixed with kaolin. It could be 

attributed to the capturing of potassium and formation the high melting point compounds with 

kaolin. The prevention effect of kaolin was much higher in wheat straw compared to that in bark 
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due to the higher content of potassium in wheat straw. In another investigation by Ohman et al. 

[60], effects of addition of kaolin and limestone were studied on the slagging of problematic and 

problem-free wood fuels. The authors demonstrated that, the addition of 5wt% of limestone (with 

respect to the bed material) to fluidized bed of silica sand with the problematic stemwood raw 

material resulted in complete prevention of slagging tendency probably due to the formation of 

high melting-point calcium-silicates and oxides. On the other hand, it was found that the addition 

of kaolin had a minor effect on reduction of agglomeration tendency of the problematic raw 

material, but surprisingly increased the slagging tendency of the problem-free stem wood. The 

possible reason is that with the problem-free biomass, kaolin reacted with the high melting-point 

Ca-Mg oxides to form low melting-point Ca-Al-K compounds, which hence accelerated the 

formation of agglomerates. As well known, the presence of KCl plays a major role in ash sintering 

and bed material agglomeration during combustion of biomass fuels. The addition of additives can 

also be effective for capturing the KCl and preventing the formation of agglomerates. The 

influence of two mineral additives, kaolin and zeolite 24A, on the capturing of KCl was 

investigated [61]. The results indicated that both zeolite and kaolin had high capacity for retention 

of KCl (Figure 2-12). As shown in the Figure, almost 50% and 40% of KCl can be captured by 

zeolite 24A and kaolin, respectively, at 1000ºC. The KCl-capturing capacity of both additives is 

higher at 900ºC than that at 1000ºC.  

 

Figure 2-12 Retention of KCl within zeolite 24A and kaolin at various temperatures [61]. 
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The mechanism of the interaction between vapor phase potassium species and kaolin was studied 

at temperatures ranging from 600ºC to 1000ºC by a surface ionization detector [21]. The possible 

mechanism proposed in the formation of the high melting compounds involves the following 

reactions: 

Al2O3.2SiO2 + 2 KCl+ H2O(g) → 2KAlSiO4 + 2HCl(g)   (2-11) 

Al2O3.2SiO2 + K2SO4→ 2KAlSiO4 + SO3(g)    (2-12) 

Al2O3.2SiO2 + 2 KOH → 2KAlSiO4 + H2O(g)    (2-13) 

These reactions show that different potassium species (KCl, K2SO4 and KOH) can be captured by 

meta-kaolinite to form a Kalsilite which has high melting temperature at around 1500ºC.  

Peat was suggested as an innovative additive for reduction or prevention of the formation of 

agglomerates for fluidized bed combustion of forest biomass fuels [62]. For instance, the addition 

of 5wt% of the Rojnoret peat as a co-combustion biomass into the spruce bark prevented the 

agglomeration of the bed materials, and blending <30wt% of the peat fuels with bark could 

eliminate bed material agglomeration completely. 

2.5  Summary 

Fluidization has found wide applications in various industries such as petro-refinery, drying and 

combustion. Bubbling fluidized bed combustors are the most efficient technique for biomass 

combustion.  Agglomeration is however the main concern in biomass combustion in fluidized bed 

combustors. During the combustion of biomass, alkali species (such as KCl, K2SO4 and KOH, 

etc.) from biomass ash will react with bed material and form low melting-point alkali compounds, 

leading to forming a coated layer around bed materials. The melted coating layer on bed material 

may enhance the stickiness of particles leading to the formation of large agglomerates. Severe 

agglomeration of bed materials would cause de-fluidization and unscheduled shut-down of the 

combustor. The agglomeration formation can be affected by various parameters including 

operation temperature, type of bed material, particle size of bed materials and fluidizing gas 

velocity. With increasing the size of bed materials at a constant air velocity, the fluidized bed will 

face some sever issues such as agglomeration or complete de-fluidization.  
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However, the mechanism of agglomeration and in particular the roles of the liquid phase of molten 

alkali compound in the bed material agglomeration and de-fluidization are not well understood. 

Although there were some studies reported by the author’s group [37,38] on the critical amount 

(about 1 wt%) of liquid phase in the bed material that would cause severe agglomeration and de-

fluidization of the bed, these conclusions were based on the cold mode or mild-temperature 

(<400C) BFB tests using liquid or solid model compounds to simulate molten alkali compounds 

in BFB combustion of biomass. More research is needed to elucidate the critical amount of liquid 

phase in BFB combustion of biomass, normally operating at temperatures 600-900C. Thus, this 

thesis work focused on the behavior and mechanism of bed material agglomeration. Moreover, 

bed material agglomeration behavior and mechanism in BFB combustion of agricultural residues 

(corn stalk) in different bed materials were also investigated.   
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Abstract 

The agglomeration of bed material is one of the most serious problems in combustion of biomass in 

fluidized-bed boilers, due to the presence of some inorganic alkali elements such as K and Na in the 

biomass ash, which form low-melting alkali compounds during the process. In this study, the 

agglomeration behaviors of bed materials (silica sand particles) were investigated in a bench-scale 

bubbling fluidized-bed reactor operating at 800C using simulated biomass ash components: KCl, 

K2SO4, and a mixture of KCl and K2SO4 at eutectic composition (molar ratio K2SO4/(KCl+ K2SO4) 

= 0.26). The signals of temperature and differential pressure across the bed were monitored while 

heating up the fluidized bed of silica sand particles premixed with various amounts of KCl, K2SO4 

and the KCl-K2SO4 mixture in bubbling bed regime. A sharp decrease in temperature and 

differential pressure was observed around 750C and 690C for 04-0.6wt% loading of the low 

melting-point KCl and KCl-K2SO4 mixture, respectively, suggesting the formation of bed material 

agglomeration and even de-fluidization of the bed, caused by the molten KCl and KCl-K2SO4 

mixture forming liquid bridges between silica particles and/or by possible chemical reactions 

between the silica and the KCl at a high temperature, forming low melting alkali silicate compounds 

(e.g., K2OSiO2, with melting points of <1000C). No agglomeration was observed when adding 

K2SO4 to the bed materials heated up to 800C, which could be attributed to the higher melting point 

of K2SO4 (>1024C). SEM-EDX analysis of the agglomerates sampled from the experiments 

demonstrated a substantial decrease in the amount of Cl content in relation to K, implying the loss 

of Cl in the form of HCl or Cl2 gas during the fluidization process at a high temperature. Also, the 

use of kaolin and aluminum sulfate to minimize agglomeration were also investigated. The results 

indicated that these additives could successfully prevent the formation of agglomerates by forming 

compounds with high melting points. 
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3.1 Introduction  

Biomass has great potential to be used as a substitute for fossil fuels for the production of energy 

and chemicals, as it is renewable, carbon-neutral and abundant. Therefore, the use of biomass on a 

large scale can contribute to reduction of greenhouse gases emission. In fact, biomass, being the 

fourth largest source of energy in the world, provides about 14% of the world’s total energy 

consumption [1]. 

Combustion is the most common technology for conversion of biomass to energy for production of 

heat, electricity and steam [2]. There are various technologies for biomass combustion in different 

types of reactors such as fixed beds, moving beds and fluidized beds [3]. Fluidized bed combustion 

(FBC) technology has many advantages, such as high fuel flexibility, high combustion efficiency, 

lower process temperature (contributing to less NOx formation, hence lower environmental impact) 

over other technologies. [4,5]. Therefore, FBC has been considered as the most efficient technology 

for combustion among others [1]. In spite of all these advantages, combustion of biomass in 

fluidized bed reactors still has some areas to improve. Currently, the bed material agglomeration 

seems to be a major operational issue in the fluid bed reactors.  

Bed material agglomeration  in fluidized bed reactors occurs during the combustion of biomass via 

different mechanisms such as melt-induced agglomeration, direct reaction of alkali compounds with 

bed material and coating-induced agglomeration [6,7]. Thus, the presence of alkali elements in 

biomass ash was commonly believed to be one of the main reasons for agglomeration. At high 

temperatures (>700˚C), alkali compounds in biomass ash such as potassium chloride (KCl) would 

melt or react with silica bed material forming silicate compounds of a low melting point, which 

could result in bed material agglomeration [8]. The bed material agglomeration could eventually 

cause bed de-fluidization and unwanted expensive shutdown [4]. 

Several studies have been conducted on the mechanisms of agglomeration by using various types 

of biomass. In addition, the effects of operation conditions including type of bed materials, bed  

particle size, air velocity,  temperature and the presence of additives have been investigated on the 

formation of agglomerates [1,4,5,8,9]. For instance, Llorente et al. [10] examined the effects of fuel 

characterization on the initial de-fluidization temperature for different types of biomass by using 

limestone as a bed material. The results indicated that the initial de-fluidization temperature for 
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almond shell was the lowest one, while the highest value was observed with thistle attributed to its 

ash composition containing the lowest amount of potassium. Shimizu et al. [1] investigated the de-

fluidization behaviors of two bed materials, i.e. silica sand and porous alumina during the 

combustion of cedar pellet. It was revealed that the operating temperature of the system containing 

silica sand was 800˚C, while alumina bed could operate up to 950˚C without any agglomerates. It 

was proposed that the porous structure of alumina in the bed could capture the volatile compounds 

released from the combustion of fuel pellets, and most of the combustion took place inside the dense 

phase of the alumina bed. The increase in particle size of bed materials has detrimental effects on 

agglomerate formation. It was found that the bigger particles have reduced de-fluidization time 

compared to the smaller particles. This phenomena was attributed to the fact that larger particles 

have lower specific outer surface area in comparison with the smaller particles, resulting in 

formation a thicker coating layer around particles at a given amount of molten ash [11].  

The effects of gas velocity on the de-fluidization time was reported in a study [12] at a constant 

combustion temperature of 900˚C. It was observed that the de-fluidization occurred at a longer time 

when the gas velocity increased. At a higher gas velocity, the attrition forces acting on agglomerates 

and the increased amount of fuel ash entrained in the gas would contribute to delaying de-

fluidization. Yu et al. [13] investigated the effects of operating temperature on agglomeration time 

during the combustion of rice straw at temperatures from 650ºC to 900ºC. It was observed that 

increasing operational temperature had a detrimental effect on de-fluidization time as expected. 

Faster de-fluidization happened at 900ºC, and a longer operation was achieved at 650ºC. The shorter 

de-fluidization time at a higher temperature could be attributed to the formation of a larger amount 

of melting ash, covering the sand particles, leading to severe bed material agglomeration. 

To the best of the author´s knowledge, there is no answer yet for what is the minimum/critical 

amount of liquid phase (molten alkali compounds) required in the bubbling bed fluidization to 

agglomerate the bed material. In a previous work conducted in our group by Montes et al. [14,15],  

we have determined the critical amount of liquid (~ 1wt% with respect to the silica bed material) 

which would cause severe bed agglomeration and de-fluidization in a bubbling fluidized bed (BFB) 

under cold or low-temperature operational conditions using model compounds to simulated molten 

ash in real biomass boilers. For example, in the cold BFB tests, various amount of glycerol-water 

(30%v/v) solutions were injected to the bed to simulate molten ash in real biomass boilers. It was 
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found the critical liquid amount resulting in bed agglomeration and sever channeling/de-fluidization 

were 0.2wt% and 0.7wt% with respect to the mass of bed material, respectively [14]. Furthermore, 

at the elevated temperature (400C) tests, KOH was used to simulate the molten ash. The results 

revealed that 0.5wt% and 0.8wt% were the critical amount of liquid that could result in de-

fluidization in the BFB of silica sand at a superficial gas velocity of 3.9 Umf and 5.9 Umf, respectively 

[15]. In following to our previous studies, the present study aimed to investigate bed material 

agglomeration behavior in fluidization of silica sand particles at higher temperatures (800C) using 

KCl, K2SO4 or KCl-K2SO4 alkali compounds to simulate the molten ash and effects of kaolin or 

aluminum sulfate additives on the bed material agglomeration. 

3.2 Experimental 

 Experimental Set-up 

All the experiments were carried out in a laboratory scale bubble fluidized bed (BFB) combustor. 

The schematic diagram of the experimental set-up along with a real photo is illustrated in Figure 3-

1. The reactor and freeboard were made of stainless steel with diameter of 3̋ and 4 ̋, respectively. 

The total height of the reactor was 2m. Air distributor was located at the bottom of the reactor and 

pre-heated air was used for the reactor. The reactor was equipped with an electrical furnace for 

heating of the bed material to the desired operating temperatures for the model compound studies, 

or for pre-heating the reactor in real biomass combustion tests. The reactor was equipped with a 

screw feeder coupled with a rotary valve to achieve adjustable feeding rates, assisted with a vibrator 

in the feeding line along with a compressed air purging system. An external cyclone at the exit of 

the combustor was used to capture the particulate matter entrained by the effluent gas. Two water 

cooled condensers for tar removal are located after the cyclone. The reactor is also equipped with 

measuring instrument including pressure transducers (PT), K-type thermocouples (T), flow-meter. 

A pressure transducer was located at the bottom of the bed just 5 cm above the air distributor and 

the other at the top of the reactor to measure the differential pressure across the dense phase of the 

BFB reactor. Five K-type thermocouples were mounted on the air line, the bottom of the reactor, 

the top and middle of the reactor and on the gas outlet line. The signals from the thermocouples and 

the pressure transducers are collected using an Omega data acquisition system and a personal 

computer equipped with a custom-designed data logging software. 
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Figure 3-1 Schematic diagram (A) and photo of lab scale (B) BFB combustor. 

A 

B 
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 Materials 

The chemicals used to simulate molten ash were KCl, K2SO4 and the bed material additive used 

were kaolin (hydrated aluminum silicate) and aluminum sulfate, all purchased from Sigma-Aldrich 

Co. KCl and K2SO4 were selected on the basis of our previous study and literature work indicating 

that the most problematic element in biomass combustion is potassium present in the biomass ash 

[16–19]. 

In this experiment silica sand (99.88% SiO2, melting temperature of 1450°C) with a size range 

between 200-300µm was used as the bed material for the BFB tests as it is the most common bed 

material used in fluidized bed boilers. In all the experiments, a fixed amount (approx.  6.2 kg) of the 

bed material was used, with a static bed height of approx. 50 cm. 

 Procedure 

This work aimed to investigate the agglomeration behavior of silica sand particles in a hot BFB with 

various amounts of KCl, K2SO4 or mixture of KCl-K2SO4 at eutectic composition, and the effects 

of kaolin or aluminum sulfate additive on the bed material agglomeration.  

In the experiments, different amounts of KCl, K2SO4 or eutectic mixture of KCl-K2SO4 (2.85:1 

mol/mol) was mixed with silica sand particles (bed material) at various amounts (i.e. 0.0, 0.2, 0.4 

and 0.6wt. % with respect to the weight of bed material). To achieve homogenous mixtures of the 

bed material and the alkali compounds, the compound (s) was first dissolved in a small amount of 

water, and then mixed with the bed material under agitation, followed by oven drying at 105 C for 

at least 24h. The dried bed material sieved to make sure about the homogeneity in size distribution 

of particles. The BFB column was filled with the prepared homogenous mixture of the bed material-

chemical. All experiments were conducted at a superficial air velocity of 3.9 Umf. For the tests with 

KCl, the furnace was ramped up at a rate of 10C/min to 800°C and controlled at that temperature 

for about 60-100 min. The furnace was then cooled down to room temperature. The temperature 

inside the bed and pressure drop across the bed were recorded during the experiment. Finally, the 

bed material was discharged from the rector and sieved with sieves of different mesh sizes to 

determine the agglomerate size distribution. The experiment procedure was similar for the tests with 

eutectic mixture of KCl-K2SO4 (2.85:1 mol/mol), except that the furnace was controlled at a lower 
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temperature (700C), based on its eutectic melting temperature of this eutectic mixture (690°C), 

soaked for about 60 min followed by cooling.  

The effects of additives (kaolin or aluminum sulfate) on the bed material agglomeration was also 

investigated in the same BFB system with 0.6wt% KCl or 0.6wt% KCl-K2SO4, respectively.  

The collected agglomerates were analyzed by SEM/EDX (LEO (Zeiss) 1540XB FIB/SEM equipped 

with an Oxford Instruments x-ray system), and XPS (Kratos Axis Ultra spectrometer using a 

monochromatic Al K(alpha) source) to determine the composition of the agglomerates. ICP (Varian 

Vista-Pro CCD Simultaneous ICP-OES) analysis was also performed to prove the formation of 

alkali silicate compounds on the surface of bed materials. 500 g of agglomerates from an experiment 

containing 0.6wt% KCl were washed with distilled water at 40˚C for 20 min under agitating to 

collect the water-soluble components, then filtered to remove the solid residue. The obtained 

aqueous solution was characterized by ICP to determine the amount of silica compounds and 

compared with the solution obtained from washing pure silica sand. 

Furthermore, as a side-test to evaluate the evaporation of KCl during the experimental process, 7g 

of the eutectic mixture of KCl-K2SO4 was placed in a muffle furnace at 800˚C for various lengths 

of time, i.e. 0.5, 1.5 and 3h. The obtained samples were weighed to determine the weight loss of 

sample before and after experiment. Afterward, the collected samples were washed with distilled 

water and the washed solutions were analyzed for K and Cl contents using Atomic Absorption 

Spectroscopy (AAS) (Dionex ICS-2100) and Ion Chromatography (IC) (Perkin Elmer Analyst 100) 

analysis, respectively. 

3.3 Results & Discussion 

First of all, our preliminary tests demonstrated that no agglomeration was observed in fluidization 

of silica sand with addition of various amounts of K2SO4 heated up to 800C, which could be 

attributed to the high melting point of K2SO4 (>1024C). Thus, our tests were focused on the effects 

of KCl and the eutectic mixture of KCl-K2SO4 on bed material agglomeration, whose results are 

detailed below. 



 

49 

 

 Effects of KCl on formation of agglomerates 

Figure 3-2 displays the temperature-differential pressure (T-ΔP) curves for BFB of the silica sand 

particles with various amounts of KCl (0, 0.2, 0.4, and 0.6wt% w.r.t. the weight of sand particles). 

As shown in the Figure, each test may be generally divided into three zones: heating zone (0-75 

min), soaking zone (75-175 min), and cooling zone (>175 min). As given in Figure 3-2 (a), in the 

blank tests (with pure silica sand), the ΔP remained constant in all zones, suggesting smooth 

fluidization of the bed material. On the other hand, it can be observed from the figure that the values 

of ΔP of the bed material containing KCl in the heating zone are higher than those in the blank tests 

likely due to an increase in the drag force caused by the friction force between the viscous particle 

bed and the BFB column wall during the heating period. In the soaking zone, however, a slight 

decrease in ΔP was observed in the presence of a small amount of KCl (0.2wt%), suggesting 

channeling or slight agglomeration of bed material due to the melting of the KCl at a temperature 

close to 800C. Whereas, a large drop in ΔP was recorded in the soaking zone of the bed material 

containing 0.4 and 0.6wt% of KCl, suggesting severe channeling or bed material agglomeration. 

Compared with other tests, the ΔP signals in the test with 0.4wt% KCl exhibited more fluctuation, 

which might be due to the formation of unstable and weak channels/agglomerates in the bed. With 

0.6wt% KCl, the agglomerates formed could be stable and strong, resulting a large decrease in ΔP 

with less fluctuation. These results are in a good agreement with those reported by Montes et al. 

using KOH as the modeling compound operating at a lower temperature (~ 400C) [15]. 

Interestingly, the temperature signals as presented in the Figure 3-2 provide similar information as 

the ΔP signals discussed above. For instance, similar to ΔP across the bed, the bed temperature 

declined sharply with some fluctuation in the tests with a high content of KCl (0.4 or 0.6wt%). This 

might be caused by the formation of bed material agglomerates with low fluidity which could 

retard/hinder the heat transfer from the column wall to the bed material, hence sharply reduced the 

temperature of the bed.  
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Figure 3-2 Variation of differential pressure (P) and temperature signals with experimental time in 

BFB of silica sand particles with 0.0wt% KCl (a); 0.2wt% KCl (b); 0.4wt% KCl (c); 0.6wt% KCl (d). 

Figure 3-3 displays the agglomerated sand particle and bottom view of the reactor after discharging 

of the agglomerates. As shown, the formed agglomerates covered the thermocouple and by forming 

an isolation layer around it, thus hindering the heat transfer. 
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Figure 3-3 Formed agglomerates and the bottom view of the BFB reactor. 

As shown in the Figure 3-2, upon cooling of the BFB, both the pressure and temperature climbed 

up immediately for a short time period and then decreased as expected during the cooling process. 

The sharp increase in temperature and pressure could be due to the immediate phase transfer of the 

molten alkali silicates into a solid phase (resulting in a sudden increase in the bed temperature). 

Some fragile agglomerates inside the bed bonded with compounds such as alkali silicates could 

break into fine or smaller agglomerates with improved fluidity upon cooling, accounting for the 

increased ΔP signals. 

As mentioned, the formed agglomerates were fragile and easily broken during the discharging 

process, hence, the agglomerate particle size analysis was extremely challenging, hence the results 

of particle size distribution are not meaningful. The agglomerates and bed materials collected from 

the tests were analyzed by SEM-EDX and XPS to investigate the concentration of K and Cl on the 

surface of bed materials. The SEM-EDX and XPS results are presented in Table 3-1. As well 

understood, when only KCl was added into the bed, the initial molar ratio of Cl/K of the bed material 

should be 1 irrespective of the amount of KCl in the bed material. After the tests, interestingly the 

molar ratio of Cl/K decreased significantly to 0.57 and 0.54 in the agglomerates from the tests with 

0.4wt% and 0.6wt% KCl, respectively. The XPS measurement for the agglomerates from the test 

with 0.6wt% KCl also indicated a marked decrease in molar ratio of Cl/K during the test. This drastic 

decrease in Cl/K molar ratio suggests that Cl was lost selectively more than K during the 

experiments via some reactions that convert Cl to gaseous products such as HCl and Cl2. Figure 3-

4 shows the SEM mapping of elemental distribution for the key elements in the sample with 0.6% 

KCl. A lighter area in the back-white printed images indicates a higher concentration of the 

respective element. 
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Table 3-1 SEM-EDX and XPS analytical results for the agglomerates collected after the tests with 

various amounts of KCl addition. 

Sample 

SEM-EDX XPS 

K (wt%) Cl (wt%) 
Cl/K molar ratio (-) 

K (wt%) Cl (wt%) Cl/K (-) 

Before After 

0.4 wt% KCl 4.05 2.1 1 0.57 - - - 

0.6 wt% KCl 6.5 3.2 1 0.54 7.3 2.8 0.42 

 

 
Figure 3-4  SEM mapping images of the agglomerates from the test with 0.6% KCl. 

The formed agglomerates were further analyzed to investigate the formation of potassium silicate 

on the surface of bed materials. Table 3-2 shows the ICP results of aqueous solutions after washing 

the pure silica sand and the formed agglomerates from the tests with 0.6wt% KCl. As observed, the 

content of Si was much higher in washing liquid from the agglomerates with 0.6wt% KCl compared 

to that from the pure silica sand, suggesting the formation of potassium silicates (soluble in water) 

in the agglomerates. This result may thus evidence that the K could react with silica sand to form 

the potassium silicates. This formation of potassium silicates that have low melting points would 

result in formation of sticky layer around the bed material, and hence bed material agglomeration.  
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Table 3-2 ICP results of washing liquids from pure silica sand and from agglomerates of silica sand 

with 0.6wt% KCl.   

Sample  Ca K Mg Na S Si 

Washing liquid from pure silica sand 18.8 12.9 6.1 11.9 14.7 3.6 

Washing liquid from agglomerates of silica 

sand with 0.6wt% KCl 

18 130 6 12.5 15 11.2 

 

It was proposed by Kiamehr [20] that Fe from the steel-wall of the biomass combustor could react 

with KCl(s) and H2O/O2 at elevated temperatures (500C) to produce Fe2O3 (causing corrosion of 

the reactor wall) and vapor of KOH(g) and HCl(g) [10]. However, considering the KCl and KOH 

has a melting temperature at 770C and 406C and a boiling point of 1420C and 1327C, 

respectively, both KCl and KOH are likely in liquid phase at 700-800C. Thus, for the 800C tests 

the mechanism by Kiamehr [20] may be modified into the following reactions, where KCl (l) reacts 

with Fe from the reactor wall with H2O/O2 (water was present in un-dried compressed air) at 

elevated temperatures, forming Fe2O3 and KOH (l) and HCl (g) vapor. The values of G for these 

two reactions at 1073K were calculated to be 112 kJ/mol and  689 kJ/mol, respectively, 

suggesting that these reactions can spontaneously occur at 800C. The formed KOH (l) can further 

react with SiO2 at elevated temperature to form K2SiO3. The formed HCl would be entrained by the 

effluent gas, causing reduced Cl/K ratio as evidenced by the SEM-EDX and XPS analyses (Table 

3-1) and the formation of potassium silicates could be evidenced by the ICP results (Table 3-2) 

However, more analyses are required to validate these hypothetical reactions.  

4Fe + 4KCl(l) + (5/2)O2(g) + 2H2O(g)  2FeCl2 + Fe2O3 + 4KOH, ΔGo(1073 C) =  112 kJ/mol 

            (3-1) 

4FeCl2 + O2(g) + 4H2O(g)  2Fe2O3 + 8HCl(g),  ΔGo(1073 C) =  689 kJ/mol  (3-2) 

2KOH (l) + SiO2  K2SiO3 + H2O(g),  ΔGo(1073 C) =  53 kJ/mol   (3-3) 
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Upon cleaning the reactor after the experiment, we observed an appreciable amount of rust formed 

on the interior surface of the reactor as illustrated in the photo in Figure 3-5. This may be the 

evidence for the formation of Fe2O3 resulted from Reactions (3-1) and (3-2).  

 

Figure 3-5 Photos of the bed material after the experiment with (A) and without (B) 0.6wt% KCl .

 Effects of eutectic mixture of KCl-K2SO4 on formation of agglomerates 

Figure 3-6 shows the T-P curves from the tests with various amounts of a eutectic mixture of KCl-

K2SO4 (0.0 0.2, 0.4, 0.6wt% w.r.t. the weight of silica sand particles in the BFB column). Similarly, 

the experiments can be divided into three zones: heating zone, soaking zone and cooling zone, as 

indicated in the Figure. As expected in the blank tests (with pure silica sand) (Figure 3-6 (a)), the ΔP 

remained stable in all zones. In the experiments with the KCl-K2SO4 mixture (0.2, 0.4, and 0.6wt%), 

a slight increase in the differential pressure was observed in the heating zone, suggesting adhesion 

between bed material and the BFB column wall, which was similarly observed in the tests with KCl 

(Figure 3-2). Similarly as shown previously in Fig. 3-2, in the soaking zone of the experiment however 

with 0.2 or 0.4wt% KCl-K2SO4, there was a slight decrease in P, which was again likely due to the 

melting of the alkali compounds causing formation of channels and agglomerates in the bed. The low 

addition amounts of KCl-K2SO4 (0.2 or 0.4wt%) did not seem to cause severe agglomeration, thus 

less fluctuation in P and temperature was observed. In contrast, a sharp decrease in P was observed 

from the test in the presence of 0.6wt% of KCl-K2SO4 mixture, which might suggest de-fluidization 

due to severe channeling and agglomeration of the bed materials. Similarly Montes et al. [15] reported 

that addition of 0.5wt% of KOH resulted in severe agglomeration in BFB at 400ºC. 
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Figure 3-6 Variation of differential pressure (P) and temperature signals with experimental time in BFB of 

silica sand particles with 0.0wt% KCl-K2SO4 (a); 0.2wt% KCl-K2SO4 (b); 0.4wt% KCl-K2SO4 (c); 0.6wt% KCl-

K2SO4 (d). 

Figure 3-7 illustrates the SEM-EDX spectra of the agglomerated bed material after the fluidization 

test with 0.6wt% KCl-K2SO4. In the Figure, white areas indicate the potassium silicate that formed on 

the surface of bed material. 

     

Figure 3-7 SEM image (a) and EDX spectra (b) of the formed agglomerates after the BFB test with 

0.6wt% KCl-K2SO4. 

(a) (b) 
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Table 3-3 shows the SEM-EDX and XPS results for the agglomerates collected after the experiments 

with KCl-K2SO4 addition. As similarly shown and discussed previously in Table 3-1, the results reveal 

that the molar ratio of Cl/K in the bed material after each experiment dropped from the initial value of 

0.59 (irrespective of the addition amount of the KCl-K2SO4 mixture) to 0.12, 0.19, and 0.18 for the test 

with 0.2, 0.4, and 0.6wt% KCl-K2SO4 respectively. Again, these results suggested more loss of Cl than 

K in the experiments, likely via the Reactions (3-1) and (3-2) given previously, forming volatile HCl (g). 

Table 3-3 SEM-EDX and XPS analysis results for the agglomerates collected after the tests with various 

amounts of KCl-K2SO4 addition. 

Sample 

SEM-EDX XPS 

K 

(wt%) 

Cl 

(wt%) 

Cl/K molar ratio (-) K 

(wt%) 

Cl 

(wt%) 

Cl/K 

(-) Before After 

0.2% KCl-K2SO4 1.1 0.16 0.59 0.12 - - - 

0.4% KCl-K2SO4 2.4 0.41 0.59 0.19 - - - 

0.6% KCl-K2SO4 2.64 0.43 0.59 0.18 6.4 1.2 0.21 

Figure 3-8 shows the EDX elemental mapping images of bed material agglomerates from the test with 

0.6% KCl-K2SO4. The relative concentrations of selected elements including K, Cl, Si, O, C, Ag, S, and 

Fe are illustrated with different colors.  

 

Figure 3-8 SEM mapping images of agglomerates from the test with 0.6% KCl-K2SO4. 
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Two possible reasons may be proposed for the reduction of Cl/K molar ratio during the experiment. One 

mechanism of losing of Cl could be via Reactions (3-1) and (3-2) and the formation of potassium silicate 

via reaction (3-3), as discussed previously. The other possible cause of decreased Cl/K ration in the 

experiments might be through evaporation of KCl during the experiment. To investigate the possibility 

of KCl evaporation, three parallel samples of the eutectic mixture of KCl-K2SO4 (without silica sand) 

were heated in the muffle furnace at 800ᵒC for 30, 90 and 180 minutes. All samples were weighed before 

and after the heating to monitor the weight loss. Then, AAS and IC measurements were carried out to 

determine the amount of K and Cl in the resulted samples after heating, respectively. Table 3-4 shows 

the AAS and IC results for the samples before and after the heating. As shown in the Table, the molar 

ratio of Cl/K for all samples before and after the heating remained almost constant (0.54 ~ 0.59), 

suggesting that KCl evaporation was insignificant at 800˚C heating even after 180 mins. Also, the weight 

loss during the heating was negligible small (0.01 %), another indication of negligible KCl evaporation 

from the eutectic mixture of KCl-K2SO4 during the heating.   

Table 3-4 AAS, IC analysis results of the eutectic mixture of KCl-K2SO4 after heating at 800˚C for 

various lengths of time. 

Sample 
Time 

(min) 

Temperature  

(ᵒC) 

Weight loss 

(%) 
K (ppm)  Cl (ppm) 

Cl/K molar 

ratio (-) 

S1 0 - - - - 0.59 

S2 30  800 0.01 682.93 361.60 0.58 

S3 90 800 0.01 529.68 251.21 0.54 

S4 180  800 0.01 683.64 354.31 0.57 

 

 Effects of Additives 

Figure 3-9 shows the variation of the temperature and P signals versus time during the bubbling 

fluidization of silica sand particles with 0.6wt% KCl or 0.6wt% KCl-K2SO4 in the presence of an additive 

(Kaolin or Aluminum sulfate) at 0.6wt% w.r.t. the weight of bed material. As can be observed from these 

figures, the differential pressure remains approximately constant in all three zones of the experiments in 

the presence of an additive, and the results are comparable with those obtained in the blank test (with 

silica sand particles only). This is very different from what observed and discussed previously for the 

tests in the presence of 0.6% KCl or 0.6% of KCl-K2SO4 without an agglomeration additive (Figures 3-

2 and 3-6), where the P and temperature dropped and fluctuated dramatically in the soaking zone. Thus, 
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the results demonstrate that the addition of kaolin and aluminum sulfate in such a small amount (0.6wt.%) 

could effectively prevent the formation of bed material agglomerates in the fluidization of silica sand.  

To clarify the possible roles of additives in the experiments, SEM-EDX analysis for the bed materials 

collected after the experiments was performed. The average contents of Al, K, and Cl in the bed material 

samples are summarized in Table 3-5. Similarly, as shown previously in Tables 3-1 and 3-3, with the 

KCl or KCl-K2SO4 addition only without an additive, the molar ratio of Cl/K in the bed material from 

the tests in co-presence of KCl or KCl-K2SO4 and an agglomeration prevention additive (kaolin or 

aluminium sulfate) also decreased, suggesting more loss of Cl than K in the experiment, likely due to the 

forming of volatile HCl (g) via the reactions (3-1) and (3-2), as discussed previously. Therefore, the 

beneficial effects of these additive might simply be attributed to the formation of higher melting point 

compounds such as Kalsilite and leucite between the additive and the alkali compounds (KCl, K2SO4 or 

K2SiO3) [11]. Presence of Al and K on the surface of silica sands after the experiments could confirm 

the formation of these two compounds.  

 

Figure 3-9 Variation of P and temperature signals with experimental time in in BFB of silica sand particles 

with 0.6wt% KCl and 0.6wt% kaolin (a); 0.6wt% KCl and 0.6wt% aluminum sulfate (b); 0.6wt% KCl-K2SO4 

and 0.6wt% kaolin(c); 0.6wt% KCl-K2SO4 and 0.6wt% aluminum sulfate (d). 
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Table 3-5 SEM-EDX analysis results for the bed materials collected after the experiments with co-presence 

of alkali compounds and an additive (Kaolin or Al2(SO4)3). 

Sample 

SEM-EDX 

Al 

(wt%) 

K 

(wt%) 

Cl 

(wt%) 

Cl/K molar ratio (-) 

Before After 

0.6 wt% KCl + 0.6 wt% Kaolin1 2.01 3.15 1.48 1 0.52 

0.6 wt% KCl-K2SO4+ 0.6 wt% Kaolin1 2.26 3.19 0.65 0.59 0.22 

0.6 wt% KCl + 0.6 wt% Al2(SO4)3 2.14 3.06 0.88 1 0.32 

0.6 wt% KCl-K2SO4 + 0.6 wt% Al2(SO4)3 2.28 3.11 0.41 0.59 0.14 
1Kaolin: hydrated aluminum silicate 

3.4 Conclusions 

This research aimed to determine the minimum/critical amount of liquid phase to cause bed material 

agglomeration in a bubbling fluidized bed of silica sand particles at elevated temperatures up to 700-

800C using KCl, K2SO4 or eutectic mixture of KCl-K2SO4 to simulate the molten ash in biomass 

combustion. From this study, the following conclusions can be drawn: 

1) Bubbling fluidization of silica sand particles in the presence of KCl or eutectic mixture of KCl-

K2SO4 with an amount of 0.4-0.6wt.% (w.r.t. the weight of bed material) caused severe formation 

of channeling/agglomeration, leading to de-fluidization. On the contrary, no agglomeration was 

observed when adding K2SO4 to the bed material heated up to 800C, which could be attributed 

to the higher melting point of K2SO4 (>1024C) than KCl or eutectic mixture of KCl-K2SO4. 

2) SEM-EDX and XPS analyses of the agglomerates or bed material samples after the experiments 

suggested more loss of Cl than K during the experiments, likely via some reactions converting 

KCl into HCl vapor. 

3) The proposed reactions are: KCl and Fe from the reactor wall react with H2O/O2 (from the undried 

compressed air) at elevated temperatures, forming Fe2O3 (causing corrosion of the reactor wall) 

and KOH (l) and HCl (g) vapor. The reaction between KOH (l) and silica would form potassium 

silicates, which might contribute to the formation of bed material agglomeration. 

4) Kaolin and aluminum sulfate can be effective additives used for preventing bed agglomeration in 

bubbling fluidization of silica sand particles at a high temperature.  
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4. Chapter 4 

 

 

 

Behavior and Mechanism of Bed Material Agglomeration in 

Fluidized-bed Combustion of Corn Stalk Using Silica or Olivine as 

Bed Material  
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Abstract 

In this chapter, the behavior and mechanism of bed material agglomeration for fluidized-bed 

combustion of corn stalk were studied in a lab scale bubbling fluidized bed (BFB) reactor using 

olivine or silica sand as bed material at 800ºC.The pressure drop across the bed and the temperature 

in the bed were monitored to evaluate the fluidization behavior, in particular the onset-point of bed 

material agglomeration or de-fluidization. It was found that the type of bed material could 

significantly affect the de-fluidization time of the bed, and silica sand bed material had greater 

tendency of agglomeration compared to the olivine bed material. Interestingly, the composition of 

the ash-layer on the bed material was strongly dependent on the type of bed material, although the 

same biomass feed was used in all tests. With the silica bed material, the coated ash-layer, bottom 

ash or agglomerates were enriched with K > Ca  Mg, whose contents increased with increasing 

the combustion time, which could eventually lead to bed material agglomeration and de-

fluidization. With the olivine bed material, however, the coated ash-layer was enriched with Ca > 

K, increasing for a longer combustion time too. It should be also noted that the K content in the 

coated ash-layer on olivine bed materials is much lower than that on the silica bed materials. This 

lower deposition tendency of K compounds onto the olivine bed material than that onto the silica 

sand material might account for the longer de-fluidization time (>12h) for the olivine bed material 

than that for the silica bed material (8h) during corn stalk combustion. With increasing the 

superficial gas velocity, the deposited amount of the alkali/alkaline earth elements (K, Ca, Mg) in 

the bed material (either silica or olivine sand) reduced substantially, which would contribute to 

reduced tendency of bed agglomeration and de-fluidization.     
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4.1 Introduction 

Fluidized bed combustors (FBC) have been widely used for energy conversion from coal or 

biomass due to high efficiency, low environmental impact and great versatility of fuel resources 

[1,2]. However, biomass combustion in FBC is still encountering some serious operating 

problems, of which the major one is associated with bed material agglomeration and sintering, 

which, in a severe case, may cause complete de-fluidization of the bed material [3,4]. Therefore, 

preventing of bed material agglomeration is essential to avoid the unwanted plant shutdown for 

biomass-fired FBC. 

The formation of bed agglomeration is mostly associated with the presence of alkali compounds 

such as sodium and potassium compounds in the ash of biomass. Alkali compounds could form 

low melting points species which coat the bed materials. After the collision of the coated particles, 

the liquid bridge force between the particles could lead to formation of larger particles, resulting 

in bed material agglomeration [5]. Several studies have been conducted to reveal the mechanism 

of bed material agglomeration. Several mechanisms, such as viscous flow sintering, reactive liquid 

sintering and chemical reaction sintering, were believed to play a role in the formation of bed 

material agglomerates in fluidized-bed combustion of biomass [6]. The viscous flow is believed 

to be the predominant mechanism with a silicate ash. At temperature above the solidus 

temperature, silicate ash forms a highly viscous layer around the bed materials which may form 

necks between the particles and cause agglomeration. The second mechanism occurs in the 

presence of adequate amount of non-viscous liquid phase of molten salts in the fluidized bed. With 

reducing the operation temperature below solidus temperature, the crystallization and densification 

of bonding agents control the formation of agglomerates. The last mechanism could be attributed 

to the chemical reactions to link the bed materials together, which could be the major reason for 

fuel ashes containing high quantity of calcium compounds such as calcium sulfate and carbonate 

[5]. 

Many studies have been also conducted on the effects of operation conditions such as type of bed 

material, operation temperature, air velocity, and addition of additives on the bed material 

agglomeration and de-fluidization [7–10]. Shimizu et al. [11] investigated effects of bed materials 

(silica sand and porous alumina) on de-fluidization during combustion of cedar pellets, where the 

maximum operating temperature for the system containing silica sand was found to be 800ᵒC as 
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the system had to be stopped after one hour operation due to severe agglomeration and de-

fluidization of bed materials. Whereas, using the porous alumina bed material prevented the de-

fluidization and improved the operation up to 950ºC without the formation of agglomerates. It was 

believed that the porous structure of alumina captured the alkali volatile compounds released from 

the combustion of fuel pellets in the pores, which prevented formation of the coated ash-layer 

around the bed material. Lin et al. [9] reported that de-fluidization process was very sensitive to 

temperature and the formation of agglomerates was enhanced when the operation temperature 

increased as expected. At low temperatures, the sintering of agglomerates happened slowly with a 

longer de-fluidization time. In contrast, at high temperatures, alkali compounds in the ash of 

biomass would react with silica sand (bed material) and form low melting point compounds. The 

low melting point compounds would melt into a viscous liquid phase, which would then coat the 

bed material’s surface and accelerate the de-fluidization.  

Effects of gas velocity on de-fluidization time have also been reported. De-fluidization of bed 

material occurred at a longer time at a higher superficial gas velocity [12]. At a higher gas velocity, 

both the attrition forces acting on agglomerates and the entrainment of alkali compounds in the 

flue-gas, increase, which could retard the bed material agglomeration and de-fluidization. Similar 

results on the effects of gas velocity were reported by other researchers [1,5,13,14].  

One of the most practical and effective approaches to mitigate the ash related problems during 

fluidized-bed combustion of biomass is addition of additives such as kaolin [15,16], zeolite 24A 

[17], and peat fuels [18]. Additives could retardant the de-fluidization process via four possible 

mechanisms, (i) increasing the biomass ash melting temperature by increasing the amount of inert 

in ash residues, (ii) physical adsorption and separating troublesome ash particles from combustion 

facilities, (iii) capturing problematic ash species via chemical adsorption and reactions, (iv) 

hindering the biomass ash sintering rate by the diluting effects from the additives [19–22]. The 

mechanism (iii) was observed to play a dominant role in preventing the bed material agglomeration 

in BFB of silica particles at 700-800C in the presence of 0.4-0.6wt% alkali model compounds to 

simulate molten biomass ash, as discussed previously in Chapter 3.   

Interesting research was published recently by our group [23,24], aiming to determine the critical 

amount of liquid which would cause de-fluidization of bed material. In cold BFB tests using a 

glycerol-water solution as a model liquid phase, the results showed that the critical liquid amount 
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resulting in bed agglomeration and de-fluidization was 0.2wt% and 0.7wt%, respectively [23].  In 

the subsequent warm BFB tests at 400ºC using KOH as the model compound, the results revealed 

that 0.5wt% and 0.8wt% were the critical amount of liquid to cause de-fluidization of the BFB at 

an superficial gas velocity of 3.9 Umf and 5.9 Umf, respectively. Determination of the critical 

amount of liquid phase would be extremely important for the operation of biomass fluidized bed 

boilers as it offers a predictive measure to avoid severe bed material agglomeration and de-

fluidization. 

As reported in the previous chapter, we had investigated hot BFB fluidization of silica sand 

particles in the presence of KCl or eutectic mixture of KCl-K2SO4 at 700-800C, and the critical 

amount liquid phase was found to be 0.4-0.6wt.% (w.r.t. the weight of bed material) leading to 

severe agglomeration and de-fluidization. In addition, kaolin and aluminum sulfate demonstrated 

to be effective additives for preventing bed material agglomeration in bubbling fluidization of 

silica sand particles at a high temperature. In this chapter, our efforts to investigate the bed material 

agglomeration continued by conducting real BFB combustion of corn stalk (one of the most 

difficult biomass feedstock for fluidized bed combustion due to its high alkali ask content). Crop 

residues have high tendency for the unwanted bed agglomeration problems during fluidized bed 

combustion due to the presence of high amounts of K, Ca and Mg compounds in the ash.   

Therefore, the main objective of this study is to examine the performance of BFB combustion of 

corn stalk in a lab-scale fluidized bed combustor, and to investigate the effects of bed material 

types, i.e. olivine and silica sand, and superficial gas velocity on agglomerate formation. The 

composition of the coated ash-layers on the different bed materials were examined using SEM-

EDX and XPS, and the possible agglomeration mechanism for different bed materials are 

discussed in this chapter. 

4.2 Experimental 

 Fluidized Bed Combustor (FBC) 

The combustion experiments were performed in a laboratory scale bubbling fluidized bed reactor, 

as described in Chapter 3 (Figure 3-1). Briefly, the reactor and freeboard were made of cylindrical 

stainless steel tube with diameter of 3̋ and 4 ̋, respectively. The total height of the reactor was 2m. 

Air distributor was located at the bottom of the reactor and pre-heated air was used for the reactor. 

The reactor was equipped with an electrical furnace for heating of the bed material to desired 
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operating temperatures for the model compound studies, or for pre-heating the reactor in real 

biomass combustion tests. The reactor was equipped with a screw feeder coupled with a rotary 

valve to achieve adjustable feeding rates, assisted with a vibrator in the feeding line along with a 

compressed air purging system. As the corn stalk is very light and using the vibrator on the feeding 

line is not enough to feed the feed into the reactor. The compressed air was injected from the top 

of silo to facilitate the feeding process by pushing the feed through the feeding line into the reactor. 

Furthermore, the injected air can act as a secondary air and prevent the smoke leakages from rotary 

valve due to the differential pressure of inside and outside of the reactor. An external cyclone at 

the exit of the combustor was used to capture the particulate matter entrained by the effluent gas. 

Two water cooled condensers for tar removal were located after the cyclone. The reactor was also 

equipped with measuring instrument including pressure transducers (PT), K-type thermocouples 

(T), flow-meter. A pressure transducer was located at the bottom of the bed just 5 cm above the 

air distributor and the second one at the top of the reactor to measure the differential pressure 

across the dense phase of the BFB reactor. Five thermocouples were located on the air line, the 

bottom of the reactor (T1), the top (T2) and the freeboard (T3) of the reactor and also on the gas 

outlet line. The signals from the thermocouples and the pressure transducers are collected with an 

Omega data acquisition system and a personal computer equipped with a custom-designed data 

logging software. 

Pressurized air was used as the primary fluidization gas and secondary air. Silica (98% SiO2) and 

olivine sands were selected as bed materials. They had particle size ranges of 200-300µm and 130-

170µm, respectively. The chemical composition of these two bed materials are presented in Table 

4-1. For each experiment, 2.5 kg of sand were used corresponding to a static bed height of approx. 

20 cm. 

Table 4-1 Chemical composition and properties of bed materials. 

Component  Olivine sand (wt%) Silica sand (wt%) 

K2O 0.041 0.06 

Na2O 0.052 0.004 

CaO 0.32 0.12 

MgO 49 0.13 

Al2O3 0.81 0.18 

Fe2O3 8.4 0.12 

SiO2 41 98.9 
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In this study, the corn stalk was provided from Ontario Federation of Agriculture (OFA). The ash 

content and composition of the corn stalk are shown in Table 4-2. The particle size of corn stalk 

varied in the range of 1- 4 mm. Choosing suitable particle size is critical for this experiment: the 

very fine particles could start to burn at the feeding line, while big particles could clog the feeding 

line. 

Table 4-2 Mineral composition of corn stalk. 

 Ala Fea  Caa  Mga  Ka Naa Sa  Sia  Ashb  

Corn 

Stalk 
1.38 1.05 6.6 2.6 14.8 0.5 1.2 32.3 4.9 

a wt% of ash, determined by ICP-OES;  b dry basis wt% determined by ashing in a muffle furnace in air at 

575C for over 8 h. 

 Fuel Preparation 

Feedstock preparation is an important step for obtaining uniform and dried feed particles for 

combustion process. The corn stalk was firstly crushed by using a rotary mill into small particles, 

and sieved into 1-4 mm size range. The feed was dried in a pre-heated oven at 105ºC for 12 hours 

before use in the combustion tests.  

 Methods 

The corn stalk combustion was conducted in the lab-scale BFB combustor, as illustrated in the 

previous Chapter 3 (Figure 3-1), in the presence of two different types of bed material (2.5 kg 

olivine sand or silica sand) at various superficial air velocities. The agglomerates formed or bed 

materials after the combustion process were needed to monitor the agglomerate formation process. 

Limited by the reactor configuration, online sampling was not available during the experiments, 

thus the combustion tests were carried out for different periods of time, i.e. 2, 4 and 6 hr to 

investigate the effect of time on the formation of coated ash-layer around the bed materials.  

In a typical test, 2.5 kg olivine sand or silica sand was charged into the reactor. The primary air 

flow was heated up to 550ºC by an electrical furnace before injecting to the bed. The superficial 

air velocity (Ug) was set to be 2.5 and 4 times of minimum fluidization velocity (Umf) of the bed 

material. Umf was calculated for air at 550ºC which was the temperature of primary air. As the 

viscosity and density of air do not change significantly at higher temperature (750ºC), Umf could 
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be considered unchanged. For silica sand, Ug = 0.082 m/s (2.5 Umf) and 0.132 m/s (4 Umf), and for 

olivine sand, Ug = 0.03 m/s (2.5 Umf) and 0.048 m/s (4 Umf). The reactor and the bed material was 

also pre-heated to 550ºC with the main electric furnace, and then the biomass was fed into the 

reactor at a continuous feeding rate of 500g/hr for the entire combustion time. The screw feeder 

was designed for dense feed not light one such as a corn stalk, so it was first calibrated to feed 

accurate amount of corn stalk to the reactor. Temperature profiles in different locations of the 

reactor including the bottom of the bed (T1), top of the bed (T2) and freeboard (T3) were recorded 

during the combustion process. 

To determine the de-fluidization time, the corn stalk was fed into the reactor until de-fluidization 

of the system was detected based on the pressure and temperature signals. In this work, the onset 

of de-fluidization was characterized by the large decrease in pressure accompanied by a drastic 

temperature drop during combustion. The total time from the beginning of biomass feeding till the 

severe formation of agglomerate in the bed was recorded as the de-fluidization time. After 

detecting the de-fluidization, the fluidization air flow was stopped and the reactor was cooled down 

to room temperature to collect the formed agglomerates for further analysis. The amount of ash 

fed to the combustor was calculated using the feeding rate (kg/h), time of de-fluidization (h), and 

ash content of the biomass feedstock.  

After each combustion test, the bed material including the formed agglomerates and the ash 

remained in the bed (bottom ash) were collected for further analyses by scanning electron 

microscopy coupled with energy dispersive X-ray (SEM/EDX (LEO (Zeiss) 1540XB FIB/SEM 

equipped with an Oxford Instruments x-ray system)). Moreover, ash particles collected from the 

bed (bottom ash) and from cyclone (fly ash) were analyzed by ICP-OES (Varian Vista-Pro CCD 

Simultaneous ICP-OES). 

4.3 Results & Discussions 

 Temperature Profiles 

Generally, biomass combustion is a two-step process [25]: the combustion of volatile matters, 

followed by the combustion of char which produces ash. Combustion of volatile matters is 

considered as the main source of heat generation, e.g., the volatile matters in the corn stalk were 

determining based on ASTM D3172 to be around 76.8%. In a BFB reactor, volatile matters are 

released when biomass fed into the reactor comes in contact with hot bed materials, and most of 
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the volatile matters (gas) passes through the bed together with the fluidization gas and burns on 

the top of the bed. Normally, the char burns mainly in the dense phase of the bed materials. To 

compare the performance of two different types of bed material (silica sand and olivine sand) in 

combustion of corn stalk, the temperature profiles along the height of the combustor at Ug= 2.5 

Umf are shown in Figure 4-1. It was found that the type of bed material could affect the temperature 

profiles along the height of the combustor, but the effects were insignificant considering the 

fluctuating temperature signals as indicated by the error bars in the Figure. The three temperatures 

(T1, T2 and T3) are measured by the three thermocouples whose measuring positions are indicated 

by in the schematic diagram of the BFB reactor as shown previously in Figure 3-1. With either 

bed material, the average dense phase temperature at the bottom of the bed (T1) was at 797-803ºC, 

the average temperature at the top of the bed (T2) was at 708-771ºC, and the average temperature 

at the freeboard was at 346-379 ºC. Although there is not a significant difference between T1 and 

T2 in particular with the silica sand bed material as most of the volatile matters combust on the 

top of the bed. While in olivine sand bed material, T2 is lower than T1, suggesting that the a 

significant of volatile matters can burned in the dense phase of the olivine sand which has rougher 

surface compare to silica sand. Clearly, due to the heat loss, the introduction of secondary air and 

the almost complete combustion of volatile matters and char in the dense phase of the bed or at the 

reactor top, the temperature at the freeboard (T3) is much lower than that T2 and T1. 

 

Figure 4-1 Temperature profiles along the height of the reactor in combustion of corn stalk in the 

presence of silica and olivine sand (at Ug= 2.5 Umf). 
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Effects of superficial air velocity (Ug= 2.5 Umf or 4 Umf) on temperature profiles along the reactor 

height in combustion of corn stalk with different bed materials are shown in Figure 4-2. With 

increasing Ug from 2.5 Umf to 4 Umf, T1 declined while both T2 and T3 increased to some extent 

regardless of the type of bed material. Increasing the air velocity through the bed material reduced 

the residence time. This result is actually expected, as a higher fluidization gas velocity would 

transport more ash (char) and volatile matters to the top of the bed and to the freeboard zone. The 

combustion of the char/volatile matters on the top of the bed would contribute to an increase in T2 

and T3. 

Bed temperature is one of the most important factors affecting de-fluidization time. A higher 

temperature can accelerate the formation of agglomerates [14,26,27]. Therefore, keeping the bed 

temperature at a lower level could prevent or postpone the de-fluidization process in biomass 

combustion. It was also found that the de-fluidization time occurred at longer time at a higher air 

velocity compared to a lower air velocity due to better mixing inside the fluidized bed and 

enhanced attrition acting on agglomerates [14,26]. The other reason why a higher superficial air 

velocity retards bed de-fluidization could be that a higher air velocity decreases the residence time 

of volatile matters and char in the dense phase of the bed, leading to a lower temperature dense 

phase of the bed and hence reduced bed agglomeration. This is evidenced from Figure 4-2, clearly 

showing that that increasing Ug from 2.5 Umf to 4 Umf, T1 (the dense-phase temperature) declines 

regardless of the type of bed material. As a result, the tendency of bed material agglomeration in 

biomass combustion should reduce at a higher superficial air velocity, which will be discussed in 

the subsequent sections of this chapter.   
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Figure 4-2 Effects of superficial air velocity on the temperature profiles along the reactor height in 

combustion of corn stalk with silica sand (a) or olivine sand (b) bed material. 

 Composition of Coated Ash-layer on Bed Material 

Combustion of corn stalk in silica or olivine sand led to formation of ash-layer coated around the 

bed material. The chemical composition of the surface of the bed materials was characterized by 

SEM-EDX elemental analysis before and after the combustion test. Figure 4-3 shows the EDX 

results of the surface composition of bed material (silica or olivine sand) after 2, 4, and 6h 

combustion of corn stalk at two air velocities Ug = 2.5Umf (a) and 4Umf (b). As shown in the Figure, 

silica sand particles before and after corn stalk combustion contain similar content of Si on the 

surface which is apparently originated from the silica sand. However, compared with the virgin 

bed material before corn stalk combustion, the silica particles after the corn stalk combustion test 

are enrich with K > Ca  Mg, whose contents increase with increasing the combustion time, 

suggesting deposition of these elements from the biomass ash onto the bed material surface, which 

could eventually lead to bed material agglomeration and de-fluidization. Similarly, as shown in 

this Figure, surface of olivine sand particles before and after corn stalk combustion is composed 

of mainly Mg and Si, originated from the olivine sand (Table 4-1). When compared with the virgin 

bed material before corn stalk combustion, however, the coated ash-layer was enriched with Ca > 

K, increasing for a longer combustion time too. It should also be noted that the K content in the 

coated ash-layer on olivine bed materials is much lower than that on the silica bed materials. This 

much less deposition amount of alkali K compounds onto the olivine bed material than that onto 
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the silica sand material might contribute to the longer de-fluidization time (>12h) for the olivine 

bed material than that for the silica bed material (8h) during corn stalk combustion.  

 

A possible reason for the much less deposition tendency of alkali K compounds onto the olivine 

bed material than that onto the silica sand material might be related to the following reactions (as 

discussed previously in Chapter 3): 

4Fe + 4KCl(l) + (5/2)O2(g) + 2H2O(g)  2FeCl2 + Fe2O3 + 4KOH, ΔGo(1073 C) =  112 

kJ/mol               (4-1) 

4FeCl2 + O2(g) + 4H2O(g)  2Fe2O3 + 8HCl(g),  ΔGo(1073 C) =  689 kJ/mol  (4-2) 

2KOH (l) + SiO2  K2SiO3 + H2O(g),  ΔGo(1073 C) =  53 kJ/mol              (4-3) 

From the above reactions, reaction (4-3) will play a significant role in capturing more K in the 

coated ash-layer around the silica bed material, compared with that with the olivine bed material 

which contains less SiO2,  

 

As shown in Table 4-2, K (14.8wt%), Ca (6.6wt%) are Mg (2.6wt%) are three major alkali/alkaline 

earth elements in corn stalk ash. These elements may form low-boiling point compounds, hence 

have high tendency for the formation of molten ash-layer on the bed material, which would lead 

to the bed material agglomeration and de-fluidization eventually.  

 

Comparing the results presented in Figures 4-3a and 4-3b, with increasing the superficial gas 

velocity Ug from 2.5Umf to 4Umf, the deposited amount of the alkali/alkaline earth elements (K, 

Ca, Mg) in the bed material (either silica or olivine sand) reduced substantially, which could be 

explained by the fact that at higher air velocity the residence time of volatile matters and char 

shortens in the dense phase of the bed materials and hence the deposition of the alkali/alkaline 

earth elements (K, Ca, Mg) from the biomass ash on the surface of bed materials reduces. This 

again would contribute to reduced tendency of bed agglomeration and de-fluidization.    
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Figure 4-3 EDX results of the surface composition of bed material (silica or olivine sand) after 2, 4, 

and 6 hours combustion of corn stalk at two air velocities Ug = 2.5Umf (a) and 4Umf (b).  
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 De-Fluidization Time and Surface Composition of Agglomerates  

De-fluidization time was determined by operating the corn stalk combustion at Ug = 2.5Umf with 

two different bed materials for a long time until the onset of de-fluidization characterized by the 

rapid increases in pressure accompanied by a drastic temperature drops during the combustion.  

Determining the de-fluidization time was actually a long process > 8-12h by combustion of corn 

stalk in BFB of silica or olivine sand at Ug = 2.5Umf , when the T-P signals  at the dense phase 

bed are monitored, as displayed in Figures 4-4a and 4-4b. Same as the procedure as described in 

the experimental section, biomass feeding was started when the bed temperature reached 550ºC. 

As clearly illustrated in this figure, the de-fluidization appeared to occur after 8h combustion test.  

However, both the pressure drop and the dense-phase temperature signals are rather stable with 

the olivine sand even after 12h operation with de-fluidization.   

 

Figure 4-4 T-P signals at the dense phase bed during combustion of corn stalk in BFB of silica (2nd 

day) (a) and olivine sand (3rd day) (b) at Ug = 2.5Umf. 

(a) 

(b) 
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Table 4-3 presents the operation conditions and de-fluidization time for the combustion of corn 

stalk in a BFB combustor using silica sand and olivine sand as bed material at 2.5Umf. De-

fluidization time defines as a specific time from the feeding the biomass into the reactor until the 

onset of the severe bed material agglomeration or de-fluidization, determined based on the T-P 

signals as discussed previously. The results indicate that the de-fluidization time for the silica sand 

system was 8 hours, whereas no de-fluidization was detected for the olivine sand system even after 

12h operation.  

 

Table 4-3 Operation conditions and de-fluidization time for the combustion of corn stalk in a BFB 

combustor using silica sand and olivine sand as bed material at 2.5Umf. 

Bed material 
Air rate 

(m/s) 

Feed rate 

(g/h) 

Bed 

temperature 
Ash* /Bed dp(µm) 

De-fluidization 

time (h) 

Silica Sand 0.082 500 ~797 0.078 200-250 8 

Olivine Sand 0.03 500 ~803 0.117 130-170 >12 

 *Total amount of ash which was calculated based on feeding rate and the operating time. 

After the de-fluidization, the air flow was shut down and the reactor was cooled down to the room 

temperature. Afterward, the bed material was discharged and sieved very gently to collect the 

agglomerated particles. As the formed agglomerates were quite fragile, the size distribution of 

particles was not determined. The collected agglomerates from silica bed (after 8h combustion) 

and olivine (after 12h combustion) were analysed by SEM-EDX. Figure 4-5 displays the EDX 

elemental analysis of the agglomerated silica in two points (A and B as shown in Figure 4-7 (I)) 

and non-agglomerated olivine particles after the combustion tests. Both point (A) and (B) are 

enriched in K > Ca  Mg although with a large difference in K content in these two points 

(suggesting non-uniform deposition of K on the silica particles). Whereas, the SEM-EDX analysis 

of olivine particles from the 12h combustion test revealed the presence of Ca > K originated from 

the biomass ash. The much less deposition amount of alkali K onto the olivine bed material than 

that onto the silica sand material might partially account for the longer de-fluidization time (>12h) 

for the olivine bed material than that for the silica bed material (8h).  
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Figure 4-5 EDX elemental analysis of the agglomerated silica in two points (A and B as shown in 

Figure 4-7 (I)) and non-agglomerated olivine particles after 12h combustion tests. 

It is worth to mention that the complex alkali compounds have different melting temperatures 

depending on their compositions. For instance, mixture of CaO-MgO-SiO2 has the lowest melting 

point at around 1300ºC [10,28]. On the other hand, for a complex system containing K2O-CaO-

SiO2, the ratio of Ca/K plays an important role in determining the melting point. With increasing 

Ca/K ratio, the melting point of the system will increase, whereas the melting point of the system 

will decrease at a lower Ca/K ratio.  

In case of olivine, based on the EDX elemental analysis (Figure 4-5) of the bed materials after 12h 

combustion test, the ternary phase diagram of K2O-CaO-SiO2 is presented in Figure 4-6. The 

diagram reveals that the coated ash-layer around olivine with a high ratio of Ca/K around 2.84/1.29 

had a higher melting temperature compared to silica agglomerates with low content of Ca/K ratio 

(Ca/K ratio is 1.34/8.1 for spot A and 1.18/1.92 for spot B (Figure 4-7), respectively). This could 

be another reason explaining that no severe agglomerate or de-fluidization was observed even after 

12h operation of the olivine system at ~850ºC. The operating temperature (~850ºC) is much lower 

than the melting temperatures of the complex K2O-CaO-SiO2 alkali compounds. 
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Figure 4-6 Ternary phase diagram of CaO-K2O-SiO2 [5]. 

Figure 4-7 shows the SEM and optical microscopy images of the obtained agglomerates from the 

silica system. It was found that the formed agglomerates have the hollow structure. Formation of 

hollow structure could be explained by initiation of agglomeration through the accumulation of 

bed particles around the burning fuel particles. Based on Figure 4-7(I), two possible mechanisms 

could be proposed for the formation of agglomerates. Firstly, as a result of the burning of char 

particles, the temperature of ash is higher than the operation temperature, which forms molten ash 

media to glue the silica particles. Secondly, some alkali compounds such as K and Ca could react 

with silica sand and form low melting alkali silicates which could cover the silica particles to form 

a coated ash-layer and the coated particles might contact each other and form a bridge connection 

between the particles, forming agglomerates. 



  

79 

 

 

Figure 4-7 SEM micrograph of typical silica agglomerates (I), optical photograph of a small silica 

sand agglomerate (II).  

 Composition of Bottom and Fly Ash  

After 8 hours of combustion of cornstalk, the bed materials were discharged to collect the 

agglomerates. Along with the agglomerates, bottom ash particles were also collected in both silica 

and olivine systems. Meanwhile fly ash samples were also collected from the cyclone. Figures 4-

8a and 4-8b show the bottom ash particles collected from both silica and olivine beds after 8h 

combustion of corn stalk. As observed, the colors of the collected samples are much different, 

depending on the type of the bed material used in the combustion tests.  
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Figure 4-8 Bottom ash particles collected from the olivine bed (a) and silica bed (b) after 8h BFB 

combustion of corn stalk. 

The collected bottom ash particles were analyzed by ICP to determine the elemental composition, 

and the results are presented in Figure 4-9. The bottom ash particles collected from the olivine bed 

are rich in Ca > Mg > K > Na, in a good agreement with the composition of the coated ash-layer 

on the bed material (Figures 4-3 and 4-5), where the Ca/K/Na species are originated from the 

biomass feedstock (Table 4-2) and the Mg is mainly from olivine bed material (Table 4-1).  In 

contrast, the most significant element in the bottom ash particles from the silica bed is K > Ca > 

Mg > Na, all are likely originated from the biomass feedstock (Table 4-2). The high K content in 

the bottom ash from the silica bed is in a good agreement with that of the coated ash-layer on the 

bed material or agglomerates of silica bed material (Figures 4-3 and 4-5). As previously discussed, 

the high content of K species in the bottom ash and their possible reactions with silica material in 

the silica bed would form low-melting point compounds during the biomass combustion, 

eventually leading to severe agglomeration and de-fluidization.   

(a) (b) 
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Figure 4-9 Results of ICP analysis of bottom ash particles collected from the silica or olivine bed 

after 8h BFB combustion of corn stalk.  

Figure 4-10 presents results of ICP analysis of fly ashes collected after 8h BFB combustion of corn 

stalk in silica sand or olivine sand in comparison with composition of the original corn stalk ash. 

Generally, the relative compositions of both fly ash samples are similar to that of the original ash 

of the feedstock, containing mainly K, Ca, Mg and Na. However, the elemental composition of the 

fly ash samples shows a reduction in the composition of all these elements. For instance, the 

content of K in the fly ash is 2-7~2.9wt%, compared with 14.8% in the original ash of corn stalk. 

Such reduction of K, Ca, Mg and Na contents in the fly ash is actually expected due to 

accumulation of these alkali/alkaline earth compounds in the bed by forming coated ash-layers or 

agglomerates) or bottom ash during the combustion.  
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Figure 4-10 Results of ICP analysis of fly ashes collected after 8h BFB combustion of corn stalk in 

silica sand or olivine sand in comparison with composition of the original corn stalk ash.  

4.4 Conclusions 

Bed material agglomeration behaviours during the combustion of corn stalk were studied in a BFB 

reactor using different bed materials (silica and olivine sand) at two different superficial air 

velocities (Ug = 2.5Umf and 4Umf). During the combustion tests, T-P signals were monitored to 

determine the de-fluidization time. In addition, the composition of the ash-lay coated around the 

bed material, the agglomerates formed as well as the bottom/fly ash particles collected in the 

combustion tests were analyzed by SEM-EDX and ICP. Some major conclusions can be drawn 

from this study, as summarized as follows: 

1) Different bed materials exhibited different agglomeration tendencies during BFB 

combustion of corn stalk.  Silica sand system showed a shorter de-fluidization time, 

approximately 8h after combustion of cornstalk, whereas no de-fluidization was observed 

in the olivine system even after 12h combustion, 

2) Compared with the virgin bed material before corn stalk combustion, the silica particles 

or agglomerates after the corn stalk combustion tests are enrich with K > Ca  Mg, whose 

contents increase with increasing the combustion time, suggesting deposition of these 

elements from the biomass ash onto the bed material surface, which could eventually lead 
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to bed material agglomeration and de-fluidization. With olivine sand bed material, 

however, the coated ash-layer was enriched with Ca > K, increasing for a longer 

combustion time too.  

3) The K content in the coated ash-layer on olivine bed materials and in the bottom ash from 

the olivine bed system is much lower than that with the silica bed material, suggesting 

much less deposition tendency of K compounds on the olivine bed material than that on 

the silica sand material. This might contribute to the longer de-fluidization time (>12h) 

for the olivine bed material than that for the silica bed material (8h) during corn stalk 

combustion.  

4) With increasing the superficial gas velocity, the deposited amount of the alkali/alkaline 

earth elements (K, Ca, Mg) in the bed material (either silica or olivine sand) reduced 

substantially, which would contribute to reduced tendency of bed agglomeration and de-

fluidization.     
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5. Chapter 5 

 

 

 

Conclusions and Recommendations 
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5.1 Conclusions 

To the best of our knowledge there is no answer yet to what is the minimum or critical amount of 

liquid (molten alkali compounds) required to agglomerate the bed material and cause de-

fluidization of the bed, except for some research results obtained by our group based on cold/mild-

temperature tests using model compounds. Therefore, the main objective of the present thesis work 

is to determine experimentally the critical amount of liquid required to agglomerate silica sand 

particles in a bubbling fluidized bed (BFB) leading to de-fluidization at higher temperatures, and 

to examine effects of kaolin or aluminum sulfate additive. To simulate the real biomass combustion 

in BFB, various model systems have been employed, including hot BFB with KCl, and KCl-K2SO4 

eutectic compounds to simulate molten biomass ash in real biomass combustion. The main 

conclusions drawn from this part of research are summarized as follows: 

1) Bubbling fluidization of silica sand particles in the presence of KCl or eutectic mixture of 

KCl-K2SO4 with an amount of 0.4-0.6 wt.% (w.r.t. the weight of bed material) caused severe 

formation of channeling/agglomeration, leading to de-fluidization. On the contrary, no 

agglomeration was observed when adding K2SO4 to the bed material heated up to 800 C, 

which could be attributed to the higher melting point of K2SO4 (>1024 C) than KCl or 

eutectic mixture of KCl-K2SO4. 

2) SEM-EDX and XPS analyses of the agglomerates or bed material samples after the 

experiments suggested more loss of Cl than K during the experiments, likely via some 

reactions converting KCl into HCl vapor. 

3) The proposed reactions are: KCl and Fe from the reactor wall react with H2O/O2 (from the 

undried compressed air) at elevated temperatures, forming Fe2O3 (causing corrosion of the 

reactor wall) and KOH (l) and HCl (g) vapor. The reaction between KOH (l) and silica 

would form potassium silicates, which might contribute to the formation of bed material 

agglomeration. 

4) Kaolin and aluminum sulfate demonstrated to be effective additives for preventing bed 

material agglomeration in bubbling fluidization of silica sand particles at a high 

temperature. 

. 
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The second part of the thesis work aimed to examine the de-fluidization time for BFB combustion 

of corn stalk (with a high K, Mg, Ca-containing ash) with different bed materials operating at 

different superficial air velocities. Some major conclusions are summarized as follows 

5) Different bed materials exhibited different agglomeration tendencies during BFB 

combustion of corn stalk.  Silica sand system showed a shorter de-fluidization time, 

approximately 8h after combustion of cornstalk, whereas no de-fluidization was observed 

in the olivine system even after 12h combustion, 

6) Compared with the virgin bed material before corn stalk combustion, the silica particles 

or agglomerates after the corn stalk combustion tests are enriched with K > Ca  Mg, 

whose contents increase with increasing the combustion time, suggesting deposition of 

these elements from the biomass ash onto the bed material surface, which could eventually 

lead to bed material agglomeration and de-fluidization. With olivine sand bed material, 

however, the coated ash-layer was enriched with Ca > K, increasing for a longer 

combustion time too.  

7) The K content in the coated ash-layer on olivine bed materials and in the bottom ash from 

the olivine bed system is much lower than that with the silica bed material, suggesting 

much less deposition tendency of K compounds on the olivine bed material than that on 

the silica sand material. This might contribute to the longer de-fluidization time (>12h) 

for the olivine bed material than that for the silica bed material (8h) during corn stalk 

combustion.  

8) With increasing the superficial gas velocity, the deposited amount of the alkali/alkaline 

earth elements (K, Ca, Mg) in the bed material (either silica or olivine sand) reduced 

substantially, which would contribute to reduced tendency of bed agglomeration and de-

fluidization.    

5.2 Recommendations 

 I suggest to install a separate probe for pressure transducers using snubber connection. With 

the current configuration, a shared probe was used for pressure transducer and thermocouples 

which leading to clogging during the experiment and cleaning after several experiments. 

 If possible, the feeding line may better be replaced with a straight line instead of the elbow 

joint to prevent the clogging during biomass feeding for the combustion tests. 
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 It would be of interest to test the de-fluidization behavior for olivine sand system at a higher 

operation temperature, e.g., > 900ºC. 
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