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Mook et al. [13] compressed single crystal nanodots inside a high resolution scanning 

electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. The 

nanodots were loaded elastically and then yielded in a stochastic manner at loads ranging 

from 16 to 110 µN (Figure 2.10). Yielding was instantly followed by displacement 

bursts. SEM movies and still-images taken during the largest displacement bursts 

indicated that elastic strain energy within the sample was released by the formation of 

new surface area in the form of localized slip bands. The apparent energy release rate at 

yielding was calculated between 10 and 100 Jm−2 for burst sizes between 5 and 50% of 

the structure’s initial height.  

Maharaj and Bhushan [14] performed load – unload compression tests on spherical Au 

nanoparticles and Au nanorods (Figure 2.11a-b), using a flat punch nanoindenter and 

reported findings that were quite in contradiction to the generally held notion that the 

dislocation nucleation, and not the dislocation-obstacle interaction, mechanism controls 

plasticity in nano-sized metal samples. Figure 2.11c-d shows load–displacement curves 

obtained from their tests. The resulting displacement at each new load was either the 

same or lower than the previous loading. The authors claimed that this was due to 

increased resistance to deformation as a result of a greater density of dislocations 

restricting the creation and movement of dislocations (i.e. the operation of dislocation-

obstacle limited dislocation glide). Several pop-in events were observed during repeat 

compression tests at increasing loads indicating multiple slip events to occur during 

loading. 
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Figure 2.11: TEM images of (a) spherical Au nanoparticles 50 nm in diameter, (b) Au 

nanorods 50 nm in diameter and 200 nm in length, (c) and (d) Repeat load–displacement 

curves for Au nanoparticles and nanorods with the corresponding maximum loads for 

each compression event. Vertical arrows point to pop-in events [14]. 

Based on compression experiments and molecular dynamics simulations, Chrobak et al. 

[15] showed that the mechanical properties of bulk silicon and silicon nanoparticles are 

significantly different. They found that bulk silicon exists in a state of relative constraint, 

with its plasticity dominated by phase transformations, whereas silicon nanoparticles are 

less constrained and display dislocation-driven plasticity. In their experimental studies, 

compression tests were performed on silicon nanoparticles of radius ranging from 19 to 

169 nm using an indentation system with a blunt diamond tip located in a transmission 

electron microscope (TEM). Their MD simulations of the deformation of silicon 

nanoparticles (Figure 2.12a), found that the maximum contact pressure attained in the 

nanoparticles (21.3–23.5 GPa) is nearly twice that of bulk silicon (~12 GPa). 

(a)

(c)

(b)

(d)
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electron backscatter diffraction pattern (Figure 2.25a). The center lines of the Kikuchi 

bands correspond to the projection of the diffracting planes on the phosphor screen. The 

Kikuchi bands are indexed in terms of the Miller indices of the diffracting crystal planes 

which formed them.  Each point on the phosphor screen corresponds to the intersection of 

a crystal direction with the screen.  In particular, the intersections of the Kikuchi bands 

correspond to the intersection of zone axes in the crystal. Therefore, these points are used 

to index the crystal direction for the zone axis and the positions of the Kikuchi bands are 

used to calculate the orientation of the diffracting crystal (Figure 2.25b). So, analysis of 

Kikuchi pattern: Each band = diffraction of a family of planes; Intersections of bands = 

intersections of planes = zone axes; Angles between bands = angles between planes; 

Position of bands, directly linked to the crystallographic orientation. 

The orientation of the crystal lattice is measured with respect to some reference frame. A 

graphical representation of the orientation of the crystal coordinate system in terms of the 

specimen coordinate system is referred to as a pole figure. Conversely, a graphical 

representation of the orientation of the specimen coordinate system in terms of the crystal 

coordinate system is referred to as an inverse pole figure.  

 

Figure 2.24: Formation of backscattered Kikuchi pattern by EBSD in a SEM. (a) Origin 

of Kikuchi lines from the tilted specimen [44]. (b) Schematic illustration of how features 

in the diffraction pattern are related to the crystal structure [45]. 

 

(a) (b)
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Figure 2.25: (a) A diffraction pattern from nickel collected at 20 kV accelerating voltage.  

(b) Indexing of the diffraction pattern. Kikuchi bands are labelled in terms of the Miller 

indices of the crystal planes that generated them (black). The planes project onto the 

screen at the center of the bands. Kikuchi band intersections are labelled with crystal 

direction that meets the screen at this point (white). This direction is the zone axis of the 

planes corresponding to the intersecting Kikuchi bands [45].  

2.3.3 The Focused Ion Beam Instrument 

A focused ion beam (FIB) instrument is very similar to an SEM. While FIB instruments 

can be stand-alone equipment, the one used in our studies, LEO (Zeiss) 1540XB 

FIB/SEM, was incorporated with an SEM to form a dual-beam system with enhanced 

capabilities. The FIB ion column is mounted at an angle of 54° to the sample stage in a 

horizontal position. This system is fitted with a sample transfer airlock compartment that 

allows for rapid sample change without causing significant disruption to the high vacuum 

of the main chamber. It is also fitted with a six axes sample stage that allows for complex 

sample manipulation. Other major components include liquid metal ion source, an ion 

column, an electron column, detectors gas inlets and a computer system used to control 

and operate the instrument.  

 

(a) (b)
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3.3.2 Time-dependent Plastic Deformation 

Room temperature time-dependent plastic deformation behavior of Au was studied for all 

the four (1, 2, 3 and 5 µm) diameter micropillars and the two (2.5 and 5.0 µm) diameter 

microspheres. For this study, the maximum creep load was selected below the yield load 

of Au micropillars and spheres, and the flat-punch indenter was held at that selected load 

for about 3600 seconds for larger diameter pillars and spheres (5.0 µm), and 1800 

seconds for smaller diameter pillars (1 and 2 µm) and spheres (2.5 µm). Time-depth 

response data were recorded during the holding period. The details of the specimen size 

and creep test of both micropillar and microsphere are tabulated in Table 3.1 and Table 

3.2.  

Figure 3.10 shows plots of micropillar displacement versus time during the constant-load 

creep of representative samples of large- and small-diameter Au micropillars. All the 

samples that we tested displayed deflection-time responses consisting of sudden strain 

jumps superimposed upon uniform time-dependent deformation. Analysis of our creep 

data indicated that the applied force varied by less than 6% over the duration of these 

constant force creep tests and, thus, the observed strain jumps were not directly related to 

significant changes in the applied load to the test sample. The observed strain jumps are 

similar to previously reported findings [11–13]. The frequency of deflection jumps and 

the resulting normal strain  are shown as a function of R in Figure 3.11. The average 

strain jumps per hour is plotted against micropillar diameter shown in Figure 3.12. The 

average frequency of strain jumps linearly decreased with increasing pillar diameter. The 

magnitude of deformation resulting from stochastic strain jumps increases with the 

increasing applied shear stress R. Since the magnitude of R is larger for the small 

diameter micropillars (Figure 3.9) the contribution from stochastic strain jumps to the 

total creep strain is also considerably larger for these micropillars.  
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Figure 3.10: Representative displacement-time curves from constant-load creep tests 

performed on (a) 1 and (b) 5 µm diameter Au micropillars. The applied load, F is 

indicated on each graph. 
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Figure 3.11: Relationship between (a) the frequency of strain jumps and (b) the resulting 

normal strain  versus the applied resolved shear stress R for the Au micropillars tested 

in constant-uniaxial load compression. 
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Figure 3.12: Average frequency of strain jumps for four diameters (1, 2, 3 and 5 µm) Au 

micropillars during constant uniaxial load creep tests. 

A total of twenty-two Au microspheres, 2.5 and 5.0 µm diameter, were tested in this 

study (Table 3.2). Figure 3.13 shows plots of microsphere displacement versus time 

during the constant-load creep of representative samples of large- and small-diameter Au 

microspheres. During constant-load creep of the Au microspheres deformation occurs as 

a result of a complex state of stress within the sample. The frequency of displacement 

jumps was calculated and plotted them as a function of applied force (Figure 3.14). While 

it is clear that the stress state within the deforming microspheres is variable, and highly 

complex, comparison of the dependence of the deformation jump frequency to the 

applied load for creep tests performed on microspheres of the same initial diameter gives 

insight to the operative mechanisms of time-dependent deformation. Figure 3.14b 

indicates that for the large 5.0 µm diameter microspheres, the rate at which deflection 

jumps occur is essentially independent of applied load while for the smaller 2.5 µm 

diameter microspheres, the deflection jump rate increases with increasing applied load 

(Figure 3.13a). 
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4.2.3 Finite Element Simulations 

FE simulations of the microsphere compression were performed using the mesh shown in 

Figure 4.3. The shape and dimension of the microsphere were obtained from 

measurements made from SEM images. In the simulation, the flat-punch indenter and the 

substrate were assumed to be analytical rigid and frictionless. The microsphere was 

meshed with 4-node linear axisymmetric quadrilateral elements. 

 

Figure 4.3: Schematic representation of the FE mesh used in this study. The dimension 

of the different Au microspheres analyzed is shown in the insets. 

The compression process was simulated by imposing downward displacement of the 

nodes at the flat punch/sphere interface (Region A in Figure 4.3). All simulations were 

performed by defining multiple analysis steps. Isotropic elastic properties of the gold, 

Young’s Modulus, E = 79 GPa [15] and Poisson’s ratio,  = 0.42 [16], were used. The 

force-depth response obtained from the simulation (Figure 4.4) was matched with the 

experimental force-depth response curve for the tested microspheres, by adjusting the 

multi-linear rate-dependent isotropic plastic flow properties of Au in the FE model [17]. 
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In total, 12 models were created for four different diameter microspheres (0.8 to 6.0 µm) 

compressed at three loading-rates.  

 

Figure 4.4: FE simulated F-h curves matched with experiment F-h curves: (a) 0.8 and (b) 

6.0 µm Au spheres. 
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Figure 4.5: Experimentally obtained force, F versus displacement, h response for (a) 0.8, 

(b) 1.0, (c) 3.0 and (d) 6.0 µm Au microspheres loaded at three different rates. The insets 

are the initial part of the F-h curve at the same scale as Fig. 4.5a. 
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Figure 4.6: Compressed microspheres (a) 3.0 and (b) 6.0 µm. In these images, multiple 

slips lines corresponding to {111}<110> slip systems are visible. 

The apparent contact stress corresponding to the start of plastic yielding of the Au 

microspheres was expressed as the initial yielding force divided by the area of the {111} 

facet at the top of the sphere upon which the flat-punch indenter contacted. In this way 

the maximum contact stress of the smallest, 0.8 µm, diameter sphere was estimated to be 

between 670 MPa and 2 GPa while the largest, 6.0 µm, diameter sphere was between 210 

and 350 MPa over the three loading rates tested.  

Bei et al. [18] have shown that surface damage from the FIB milling pillars can affect the 

response of a compressed structure, and will minimize displacements bursts during its 

testing. The microspheres tested in this study show the true response of the materials 

since they are fully annealed monocrystalline samples made without the use of ion 

milling. 

 

 

 

 

(a) 3.0 µm (b) 6.0 µm 
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4.3.2 Stress-Strain Curve from FE Simulation 

The stress-strain distribution in the compressed spheres was analyzed using FE 

simulations. The von Mises stress-strain data were collected for each load-depth 

increment from the nodes along the axis of rotation of the FE model of the microsphere. 

The distribution of the von Mises equivalent stress and strain along the axis of rotation 

during plastic deformation at highest loading rates is plotted in Figure 4.7.  

The average von Mises stress-strain data, collected from the nodes along the axis of 

symmetry of the model, were recorded for each load-depth increment. Figure 4.8 shows 

the average von Mises stress versus von Mises strain curves for the 0.8, 1.0, 3.0 and 6.0 

µm diameter microspheres compressed at the three loading rates. The yield stress 

increases with increasing loading rates for all size microspheres; however, the yield stress 

of the smallest spheres displayed significantly greater loading rate dependence. The von 

Mises stress values, corresponding to 20% von Mises strain, for 0.8 µm spheres increased 

from 275 to 425 MPa with increasing loading rate from 0.01 to 0.10 mN/s whereas for 

largest 6.0 µm diameter spheres they increased from 215 to 225 MPa. These data indicate 

that the strain rate dependence of yield stress is increased with decreasing sphere 

diameter. 
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Figure 4.7: von Mises equivalent plastic, (a) stress and (b) strain distribution at the 

highest loading rates of the Au microspheres during micro-compression. In these plots, 

h/R is the normalized distance along the axis of rotation of the sphere during 

compression, h is the deformed sphere depth and R is the sphere radius (Figure 4.3). 
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Figure 4.8: von Mises stress verses strain responses for the (a) 0.8, (b) 1.0, (c) 3.0 and 

(d) 6.0 µm diameter Au microspheres obtained from FE analyses performed at three 

loading rates. 
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4.4 Discussion 

Besides enhanced strain rate sensitivity with decreasing sphere size it is clear from Figure 

4.8 that, for a particular strain and strain rate, small diameter spheres display a higher 

flow stress than large diameter spheres and this is consistent with previously reported 

length scale-dependence of plasticity [1,4,5,8,9,11]. The strain, strain rate, and 

temperature dependence of the flow stress  of plastically deforming metals is often 

described in terms of the following Arrhenius relationship [19]; 

 𝜎 = 𝐴𝜀𝑛𝜀̇𝑚𝑒𝑥𝑝 [−
𝑄

𝑅𝑇
] (4.1)  

where 𝜀 is strain, 𝜀̇ is strain rate, A is a material constant, n is the strain hardening 

exponent, m is the strain rate sensitivity, Q is the activation energy, T is the absolute 

temperature and R is the universal gas constant.  

Figure 4.9a shows the strain dependence of the flow stress at strain rates of 3.9*10-2 sec-1, 

1.4*10-1 sec-1 and 2.6*10-1 sec-1 at 295k for 0.8 µm diameter spheres. The calculated 

values of n are 0.30, 0.27, and 0.26 respectively. These values of n are significantly less 

than those of the larger 6.0 µm diameter spheres (Figure 4.9c)  

For 0.8 µm diameter microspheres, the calculated values of the strain rate sensitivity m, 

corresponding to four constant 𝜀 values of 0.05, 0.10, 0.15, 0.20, were 0.30, 0.28, 0.26, 

and 0.24 (Figure 4.9b). Which was considerably more than the m values for the 6.0 µm 

diameter microspheres (Figure 4.9d). 
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Figure 4.9: (a) and (c) Log () vs. Log () plots showing the effect of strain rate on n and 

(b) and (d) Log () vs. Log (strain rate) plots showing the effect of strain on m for 0.8 

and 6.0 µm Au spheres. 

Figure 4.10 shows n (plotted against 𝜀̇) and m (plotted against 𝜀) for all the microsphere 

diameters tested in this study. The strain-hardening exponent n for the larger, 6.0 and 3.0 

µm diameter spheres ranged between 0.40 – 0.50 and showed clear strain rate 

dependence. These values are consistent with those reported in the literature for bulk soft 

FCC metals [19].  The calculated n values for the smaller (0.8 to 1.0 µm) diameter Au 

microspheres were, however, lower, approximately 0.3, and were significantly less 

dependent upon the strain rate. These noticeable differences between the smaller and 

larger diameter spheres indicate that the smaller spheres deform differently than the 

larger spheres, which undergo plastic deformation similar to bulk metals. 
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Figure 4.10: (a) Strain hardening exponent, n and (b) Strain rate sensitivity, m for all 

diameters Au microspheres tested in this study. 
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The values of m, Figure 4.10b, increased with decreasing sphere diameter indicating that 

the flow stress becomes more strain rate-sensitive in the smaller diameter sphere. For the 

6.0 µm diameter sphere, m decreased from 0.08 to 0.03 as the 𝜀 increased from 0.05 to 

0.20. The m value of 0.03 is typical of bulk FCC metals [20]. This is another indication 

that the large diameter Au microspheres deformed in a manner similar to bulk Au. The 

smaller diameter spheres (0.8 – 1.0 µm) displayed significantly higher m value ranging 

between 0.2 – 0.3. 

The strain rate dependence of the deformation behavior sheds light on the operative 

deformation mechanism. Some recent attempts have been made to characterize the length 

scale dependence of the strain rate sensitivity of the flow stress of nanocrystalline Ni. In 

these studies it was observed that nanocrystalline Ni, displayed higher strain rate 

sensitivity than normal Ni [21]. A notable effect of both strain rate and sample size on the 

compressive strength of single crystalline Cu nanostructures was also reported by 

Jennings et al., they observed that smallest diameter (125 nm) Cu nanostructure 

displayed, a flow stress with a clear strain rate sensitivity arising from the operation of 

thermally-activated surface dislocation sources [22]. 

In pure metals, such as Au samples studied here, mobile dislocations are frequently 

obstructed by various obstacles, such as point defects and other dislocations and these 

barriers are overcome by thermal activation. The strength for impeding dislocation glide 

is characterized by their apparent activation volume, 𝑉∗ [23,24]. 

In the deformation of small volume samples, such as our 0.8 µm diameter Au spheres, 

dislocation nucleation from the sample surface is very likely to contribute significantly to 

the deformation process and thus affect the measured activation volume. Atomistic 

simulations have predicted dislocation nucleation from free surfaces has an apparent 

activation volume of 1~10b3 which would result in a significant thermal contribution to 

the source’s strength [25]. Dislocation cross-slip in conventional crossed grained FCC 

materials has a broad range of activation volumes ~10~100b3 [26]. The operation of 

Fank-Read dislocation sources, whose activation volume is relatively large, 

~100~1000b3, would make an almost negligible thermal contribution to its strength [24]. 


