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Figure 3.12 Specific leaf area of a) D. antarctica and b) C. quitensis. Bars depict mean ± 

SE, N = 12, except for 16/AC and 16/EC (N = 6). White bars represent growth 

temperature of 12 ºC, grey bars represent growth temperature of 16 ºC, and dark grey 

bars represent growth temperature of 20 ºC. Empty bars represent ambient growth CO2 

(400 ppm CO2, AC) and hashed bars represent elevated growth CO2 (750 ppm CO2, EC). 

For each graph, the effect of growth temperature (T), growth CO2 (CO2) and the 

interaction of temperature and CO2 (T x CO2) is shown: ns indicates no significant 

difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 

Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.13 a) Aboveground biomass, b) belowground biomass, c) total biomass, and d) 

root to shoot ratio of D. antarctica on a pot basis. Bars depict means ± SE, N = 10, except 

for 20/AC (N = 8) and 20/EC (N = 9). White bars represent growth temperature of 12 ºC, 
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grey bars represent growth temperature of 16 ºC, and dark grey bars represent growth 

temperature of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, AC) and 

hashed bars represent elevated growth CO2 (750 ppm CO2, EC). For each graph, the 

effect of growth temperature (T), growth CO2 (CO2) and the interaction of temperature 

and CO2 (T x CO2) is shown: ns indicates no significant difference, * indicates p < 0.05, 

** indicates p < 0.01, and *** indicates p < 0.001. Means with different letters are 

significantly different (Tukey’s HSD, p < 0.05).
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Figure 3.14 a) Aboveground biomass, b) belowground biomass, c) total biomass, and d) 

root to shoot ratio of C. quitensis on a pot basis. Bars depict means ± SE, N = 10. White 
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bars represent growth temperature of 12 ºC, grey bars represent growth temperature of 16 

ºC, and dark grey bars represent growth temperature of 20 ºC. Empty bars represent 

ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent elevated growth CO2 

(750 ppm CO2, EC). For each graph, the effect of growth temperature (T), growth CO2 

(CO2) and the interaction of temperature and CO2 (T x CO2) is shown: ns indicates no 

significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 

0.001. Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Table 3.2 Mean ± SE of leaf carbon, nitrogen, and carbon to nitrogen ratio of D. 

antarctica and C. quitensis (N = 5). The last 3 rows denote treatment effects from growth 

temperature (T), CO2 concentration (CO2), and their interaction (T x CO2): ns indicates 

no significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p 

< 0.001. Different letters in brackets suggest significant differences between treatments 

within a species (Tukey’s HSD, p < 0.05). 

 D. antarctica C. quitensis 

Treat-

ment 

%C %N C:N %C %N C:N 

12/AC 40.93 ± 0.24 

(a) 

2.74 ± 0.15 

(a) 

15.14 ± 0.88 

(b) 

   

16/AC 41.44 ± 0.25 
(a) 

2.42 ± 0.17 
(ab) 

17.44 ± 1.14 
(b) 

36.98 ± 0.40 
(ab) 

2.56 ± 0.18 
(a) 

14.77 ± 1.14 
(a) 

20/AC 41.36 ± 0.25 

(a) 

2.63 ± 0.21 

(a) 

16.12 ± 1.32 

(b) 

35.60 ± 0.19 

(b) 

2.81 ± 0.12 

(a) 

12.77 ± 0.62 

(a) 

12/EC 40.84 ± 0.30 
(a) 

1.75 ± 0.10 
(b) 

23.53 ± 1.05 
(a) 

38.93 ± 0.16 
(a) 

2.49 ± 0.16 
(a) 

15.87 ± 0.92 
(a) 

16/EC 41.47 ± 0.47 

(a) 

2.15 ± 0.21 

(ab) 

19.87 ± 1.43 

(ab) 

37.46 ± 1.08 

(ab) 

2.33 ± 0.24 

(a) 

16.89 ± 2.07 

(a) 

20/EC 40.59 ± 0.25 

(a) 

2.34 ± 0.16 

(ab) 

17.65 ± 1.20 

(b) 

36.59 ± 0.46 

(ab) 

2.30 ± 0.14 

(a) 

16.15 ± 1.05 

(a) 

T ns ns ns * ns ns 

CO2 ns ** *** ns * * 

T x CO2 ns ns * ns ns ns 
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3.3 Leaf anatomy 

Analysis of leaf anatomy provides an additional method to assess acclimation to the new 

growth environments. While modifications in the mesophyll cells, the main 

photosynthetic tissue, could help explain thermal or CO2 acclimation of photosynthesis, 

other structures revealed by the cross-sectional analysis, such as stomata, vascular 

bundles, and epidermis, can also inform of the plant water status and allocation of 

resources that contribute to photosynthetic performance. 

All 30 samples of leaf cross-sections across treatments of D. antarctica showed a leaf 

blade folded towards the adaxial epidermis (Fig. 3.15a). Leaves from all treatments had a 

thick-walled abaxial epidermis and a thinner-walled adaxial side (Fig. 3.15a). Vascular 

bundles were well-differentiated, and wrapped inside a layer of mestome with thick 

internal walls. The number of vascular bundles ranged from 3 to 5, resulting in 3 to 5 

stomatal grooves, where most stomata occurred. Bulliform cells, which are usually 

located at the bottom of each stomatal groove to facilitate leaf folding or unfolding, were 

missing in all treatments. Mesophyll cells were undifferentiated, and did not follow any 

particular arrangements. 

Transverse sections of C. quitensis were typical of dicotyledon plants. Stomata occurred 

on both sides of the leaf, but there were significantly more stomata on the adaxial side, 

and only near the leaf margin on the abaxial side (Fig. 3.15b). Mesophyll cells were 

differentiated into palisade mesophyll on the adaxial side and spongy mesophyll on the 

abaxial side. There was one main vascular bundle at the center of the cross-section where 

the central vein was, in addition to three to four smaller vascular bundles surrounded by a 

sheath of cells without chlorophyll (Fig. 3.15b).  

D. antarctica cross-sectional images showed no significant treatment responses in leaf 

thickness (p > 0.48 for temperature and CO2, Table 3.3) or width (p > 0.43 for 

temperature and CO2, Table 3.3). C. quitensis leaf thickness also did not vary among 

treatments (p > 0.10 for temperature and CO2, Table 3.3). However, leaf width in C. 

quitensis decreased by up to 39% as temperature increased at ambient growth CO2 (p = 

0.001), and this response to temperature was much less pronounced in the elevated CO2 

treatments (p = 0.03, Table 3.3). Analyses of the cross-sectional areas occupied by 
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different types of tissue showed that intercellular air space in D. antarctica was 

significantly reduced at 16 ºC growth temperature (p = 0.042, Table 3.3). There was no 

treatment response in the cross-sectional areas filled by mesophyll cells, vascular 

bundles, or any other non-photosynthetic tissues in D. antarctica (p > 0.13 for all, Table 

3.3). The same analyses on C. quitensis showed no significant treatment effects in any 

tissue types (p > 0.13 for all, Table 3.3). 

Stomatal grooves, a unique anatomical feature in grasses, were characterized in D. 

antarctica in terms of width, depth, area, and perimeter, assuming a half-ellipse shape 

(Fig. 3.16). Groove width was smallest in plants grown at 20/AC, but the groove 

significantly widened at higher growth CO2 (p = 0.37 for temperature, p = 0.005 for CO2, 

p = 0.012 for the interaction, Fig. 3.16a). Grooves also became shallower as growth 

temperature increased (p = 0.030), with no CO2 effect on groove depth (p = 0.40, Fig. 

3.16b). Analysis of groove area to perimeter ratio allowed an estimate of the balance 

between the size of the diffusion surface (perimeter) and the pocket of air with high 

humidity (area). Most notably, the perimeter to area ratio of the stomatal groove was 

lowest in the warmest treatment at ambient CO2 concentration (20/AC), but significantly 

increased in the same growth temperature at elevated CO2 (p = 0.005 for CO2, p = 0.014 

for the interaction, Fig. 3.16c). This suggested that very high evaporative demand at the 

20/AC treatment resulted in a groove structure that minimized diffusion to prevent water 

loss, and that elevated CO2 concentrations alleviated the negative effect of high 

temperature. 
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Figure 3.15 Cross sections of a) D. antarctica and b) C. quitensis stained with Toluidine 

blue O. Tissue types shown include mesophyll cells (Me), vascular bundles (Vb), 

intercellular air space (IAS), stomata (St), abaxial epidermis (Ab), adaxial epidermis 

(Ad), and stomatal groove (Sg). Scale bars indicate 50 µm. 
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Table 3.3 Proportion of cross-sectional images of D. antarctica and C. quitensis filled 

with mesophyll cells, intercellular air space, vascular bundles, and other non-

photosynthetic tissues (abaxial and adaxial epidermis, fiber bundles), as well as leaf 

thickness and width. Data are means ± SE, N = 5. The last 3 rows denote treatment 

effects from growth temperature (T), CO2 concentration (CO2), and their interaction (T x 

CO2): ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 0.01, 

and *** indicates p < 0.001. Different letters in brackets suggest significant differences 

between treatments within a species (Tukey’s HSD, p < 0.05). 

 

 
Treat-

ment 

Mesophyll 

cells 

Inter-

cellular air 

space 

Vascular 

bundles 

Other 

tissues 

Thickness 

(µm) 

Width 

(µm) 

D
. 

a
n

ta
rc

ti
ca

 

12/AC 
0.50 ± 

0.043 (a) 

0.16 ± 

0.013 (a) 

0.049 ± 

0.004 (a) 

0.29 ± 

0.032 (a) 

202.8 ± 

13.8 (a) 

1487.9 ± 

129.0 (a) 

16/AC 
0.58 ± 

0.024 (a) 

0.07 ± 

0.025 (a) 

0.047 ± 

0.010 (a) 

0.29 ± 

0.017 (a) 

213.1 ± 

11.1 (a) 

1542.7 ± 

126.2 (a) 

20/AC 
0.49 ± 

0.040 (a) 
0.14 ± 

0.032 (a) 
0.072 ± 

0.017 (a) 
0.30 ± 

0.026 (a) 
196.0 ± 
7.2 (a) 

1272.2 ± 
92.5 (a) 

12/EC 
0.57 ± 

0.030 (a) 

0.11 ± 

0.028 (a) 

0.061 ± 

0.020 (a) 

0.26 ± 

0.045 (a) 

197.0 ± 

12.3 (a) 

1448.7 ± 

150.9 (a) 

16/EC 
0.58 ± 

0.025 (a) 
0.07 ± 

0.025 (a) 
0.040 ± 

0.013 (a) 
0.30 ± 

0.029 (a) 
213.0 ± 
9.3 (a) 

1524.2 ± 
123.8 (a) 

20/EC 
0.53 ± 

0.043 (a) 

0.14 ± 

0.030 (a) 

0.056 ± 

0.010 (a) 

0.26 ± 

0.034 (a) 

219.9 ± 

20.5 (a) 

1447.4 ± 

151.9 (a) 

T ns * ns ns ns ns 

CO2 ns ns ns ns ns ns 

T x CO2 ns ns ns ns ns ns 

C
. 
q

u
it

en
si

s 

12/AC 
0.44 ± 

0.049 (a) 

0.31 ± 

0.052 (a) 

0.017 ± 

0.005 (a) 

0.23 ± 

0.051 (a) 

412.7 ± 

39.7 (a) 

1362.6 ± 

160.5 (a) 

16/AC 
0.47 ± 

0.019 (a) 

0.21 ± 

0.026 (a) 

0.064 ± 

0.020 (a) 

0.25 ± 

0.024 (a) 

345.1 ± 

21.5 (a) 

829.3 ± 

76.8 (b) 

20/AC 
0.49 ± 

0.034 (a) 

0.27 ± 

0.048 (a) 

0.026 ± 

0.012 (a) 

0.22 ± 

0.021 (a) 

352.9 ± 

36.6 (a) 

872.2 ± 

35.5 (b) 

12/EC 
0.45 ± 

0.033 (a) 

0.28 ± 

0.028 (a) 

0.066 ± 

0.021 (a) 

0.21 ± 

0.020 (a) 

355.2 ± 

25.6 (a) 

1123.9 ± 

32.4 (ab) 

16/EC 
0.52 ± 

0.050 (a) 
0.22 ± 

0.027 (a) 
0.059 ± 

0.030 (a) 
0.20 ± 

0.026 (a) 
349.1 ± 
18.6 (a) 

980.7 ± 
66.7 (b) 

20/EC 
0.52 ± 

0.028 (a) 

0.22 ± 

0.031 (a) 

0.023 ± 

0.007 (a) 

0.24 ± 

0.019 (a) 

299.1 ± 

16.0 (a) 

1066.2 ± 

54.5 (ab) 

T ns ns ns ns ns ** 

CO2 ns ns ns ns ns ns 

T x CO2 ns ns ns ns ns * 
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Figure 3.16 a) Average stomatal groove width, b) depth, and c) area to perimeter ratio of 

Deschampsia antarctica. Bars depict means ± SE, N = 5, except for 12/AC (N = 4). 

White bars represent growth temperature of 12 ºC, grey bars represent growth 
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temperature of 16 ºC, and dark grey bars represent growth temperature of 20 ºC. Empty 

bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent 

elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown, with ns indicates no significant difference, * indicates p < 0.05, ** indicates p 

< 0.01, and *** indicates p < 0.001. Means with different letters are significantly 

different (Tukey’s HSD, p < 0.05). 
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The lack of thermal acclimation of photosynthesis in both Antarctic vascular plant 

species was a surprising, but not irregular, finding. The potential of photosynthesis to 

thermally acclimate greatly varies among species (Yamori et al. 2014). Cool-adapted 

plants are thought to have much less thermal acclimation potential in photosynthesis 

compared to warmer-adapted species. For example, Atkin et al. (2006) demonstrated that 

the alpine Plantago euryphylla showed little thermal acclimation of photosynthesis and 

respiration compared to two lowland congeners when grown under warm temperatures. 

Similarly, while desert clones of Atriplex lentiformis fully acclimated and had enhanced 

photosynthetic performance at high temperature, their coastal counterparts did not show 

any plasticity to temperature and suffered thermal damage (Pearcy 1977). In this case, 

neither D. antarctica or C. quitensis specimens collected from Antarctica showed thermal 

plasticity of photosynthesis, while there has been evidence that populations living outside 

of Antarctica have a larger acclimation potential (Sierra-Almeida et al. 2007). Hence, one 

could postulate that the long evolutionary history of the Antarctic ecotype in the stable 

and thermally extreme environment of Antarctica largely contributes to the limited 

plasticity in photosynthesis when both species is grown in a new environment. 

4.1.2 Photosynthetic performance at growth temperature was driven by direct responses 

to measurement temperature 

Direct temperature response of photosynthetic parameters has been well established: net 

CO2 assimilation rate (Anet), maximum Rubisco carboxylation rate (Vcmax), and maximum 

electron transport rate (Jmax) all respond positively to rising measurement temperature 

(Berry and Bjorkman 1980, Medlyn et al. 2002, Way and Oren 2010). The thermal 

optimum of Anet tends to be lower than that of Vcmax or Jmax, and correlates with the 

growth temperature of the species (Medlyn et al. 2002, Yamori et al. 2014). The positive 

response of these parameters to measurement temperature is expected, and needs to be 

considered when evaluating photosynthetic performance across treatments. 

In D. antarctica, net CO2 assimilation rates (Anet) increased linearly with measurement 

temperature, which correlated with a direct temperature stimulation of the maximum 

Rubisco carboxylation rates (Vcmax) and maximum electron transport rates (Jmax). The 

linear rise in Anet with rising leaf temperature suggested that 12, 16, and 20 ºC all fell 
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below the thermal optimum of Anet. While this finding contradicts the findings by Xiong 

et al. (2000), who reported an optimal temperature for photosynthesis of approximately 

10 ºC in D. antarctica, it matches the temperature response curve data from the same 

experimental plants (Sanhueza et al., unpublished data). Overall, the lack of thermal 

acclimation and the strong response to measurement temperature resulted in an enhanced 

photosynthetic performance at elevated growth temperatures. 

In contrast with D. antarctica, C. quitensis photosynthesis showed no response to 

increasing measurement temperature. Neither Vcmax nor Jmax showed any temperature 

sensitivity and, as a result, Anet did not respond to increases in measurement temperature. 

This lack of response is uncommon, and may not reflect a true lack of temperature 

sensitivity in the species. Instead, the missing 12/AC treatment, the low sample size, or 

the narrow range of temperature exposure could make it difficult to detect small but 

significant temperature response. The temperature response curve of Anet from the same 

experiment saw very little change in Anet between 12 and 20 ºC (Sanhueza et al., 

unpublished data), although a positive response to measurement temperatures from 5 to 

35 ºC still existed. Additionally, limitations in CO2 diffusion could offer another 

explanation. In C. quitensis, the Ci/Ca ratio, an indicator of CO2 diffusion from the 

atmosphere to the intercellular air space, showed a decline at high leaf temperatures, 

suggesting that CO2 uptake was limited at high measurement temperature, potentially due 

to stomatal closure. Overall, photosynthesis in C. quitensis did not acclimate to warmer 

growth temperature, and demonstrated little response to increasing measurement 

temperature; consequently, C. quitensis photosynthetic performance remained fairly 

constant across the temperature changes in this experiment. 

 

4.2 Enhanced photosynthesis at elevated CO2 is mostly due to the direct CO2 effect 

4.2.1 Photosynthesis in both species was enhanced by direct exposure to elevated CO2  

Because CO2 is the main substrate for photosynthesis, increasing CO2 concentrations lead 

to higher net CO2 assimilation rates (Anet) by providing more substrate for carboxylation. 

Additionally, a higher internal CO2 concentration also inhibits photorespiration, further 

enhancing the efficiency of Rubisco (Drake et al. 1997). This short-term response has 
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been well-established when plants are exposed to elevated CO2 concentrations, although 

the magnitude of the response might vary (Ainsworth and Roger 2007). In fact, under 

elevated atmospheric CO2 (a higher Ca), both D. antarctica and C. quitensis saw an 

increase in Ci/Ca ratio, which suggests the CO2 supply for carboxylation was enhanced. 

As a result, the increased Anet in both D. antarctica and C. quitensis when exposed to 

their growth CO2 is expected. 

4.2.2 Photosynthesis was down-regulated at elevated CO2 in D. antarctica  

After longer exposure to elevated CO2, the stimulation of photosynthesis results in a 

larger quantity of carbohydrates synthesized through the Calvin cycle. The buildup of 

carbohydrates in the leaf elicits a sink feedback inhibition that down-regulates 

photosynthesis, a common response in plants grown at elevated CO2. The down-

regulation of photosynthesis at elevated growth CO2 is usually manifested as a decrease 

in Anet when measured under a common CO2 concentration. In fact, D. antarctica grown 

under elevated CO2 did show a 25% down-regulation in Anet, but C. quitensis did not. 

The down-regulation of photosynthesis at elevated CO2 is usually attributed to a 

reduction in Rubisco activation state, Rubisco content, or leaf nitrogen allocated to 

Rubisco (Ainsworth and Rogers 2007). These responses are not mutually exclusive, but 

ultimately result in a decrease in maximum Rubisco carboxylation rate (Vcmax). A 

decrease in Vcmax, however, was not observed in D. antarctica. Stitt (1991) discussed the 

possibility of a direct feedback inhibition of photosynthesis from accumulation of 

carbohydrates and inorganic phosphate (Pi) limitation, instead of a regulation through 

Rubisco. Additionally, excess accumulation of starch could also damage the chloroplast 

and decrease CO2 assimilation rates (Stitt 1991). However, evidence for these responses 

in the literature is rare, and data from my study do not allow for such interpretation. 

Meanwhile, in D. antarctica, the acclimation of stomatal conductance to elevated CO2 

was unlikely to cause the decrease in Anet. The Ci/Ca ratio in D. antarctica was higher in 

elevated CO2 plants when measured at a common CO2 concentration, which suggests that 

there was sufficient CO2 in the intercellular air space, and that the decrease in Anet is a 

response of a lower CO2 assimilation rate itself.  
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Additionally, CO2 diffusion from the intercellular air space to the chloroplast could 

potentially account for the lack of Vcmax and Jmax responses. My photosynthetic model 

assumed no resistance along this pathway in the calculation of apparent Vcmax and Jmax. 

However, this assumption might not always hold, as mesophyll conductance has been 

demonstrated to decrease with elevated CO2 as leaves become thicker and denser (Luo et 

al. 1994). Anatomically, there was no change in the density of mesophyll cells or 

intercellular air space in D. antarctica under elevated CO2 that could suggest any 

physical changes to the diffusion pathway. Nevertheless, mesophyll conductance could 

also change via shifts in biochemistry, such as the diffusion of CO2 in the aqueous phase, 

transport through aquaporins, or conversion by carbonic anhydrase (Bernacchi et al. 

2002), none of which could be estimated in this experiment. 

While there was no decrease in Vcmax, D. antarctica still had other responses typical of 

plants grown under elevated CO2, including a decrease in leaf nitrogen (N) and specific 

leaf area (SLA), which could have implications for photosynthesis. The decrease in leaf 

N content was likely a result of N dilution through increasing leaf mass. As plants grown 

at elevated CO2 accumulate more carbohydrates, their SLA decreases as leaf mass 

increases; as a result, the same amount of N is now expressed against a larger leaf dry 

mass, leading to lower leaf N content (Luo et al. 1994).  

4.2.3 There was no CO2 acclimation in C. quitensis  

Elevated CO2 directly stimulated Anet in C. quitensis, but no down-regulation was 

observed in Anet, Vcmax, or Jmax. Additionally, the Ci/Ca ratio was higher in elevated CO2 

plants when measured at a common ambient CO2 level, implying no diffusion limitations 

as a result of an acclimatory decline in stomatal conductance. In fact, with a higher Ci/Ca 

ratio at a common measurement CO2, one would expect the observed direct stimulation 

of Anet by elevated CO2. The lack of acclimation to elevated CO2 in C. quitensis is 

therefore less likely an idiosyncratic response, and more likely suggests the presence of 

alternate carbohydrate sinks. 

As previously mentioned, a down-regulation of photosynthesis at elevated CO2 usually 

originates from an imbalance between production and consumption of carbohydrates 

(Drake et al. 1997). While Anet in C. quitensis was enhanced under elevated growth CO2, 
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which suggests a larger capacity to produce carbohydrates, there was no change in SLA 

in plants grown under elevated CO2, implying the excess photosynthates were not stored 

in the leaf. It can be postulated that consumption of carbohydrates could be enhanced 

elsewhere in the plant, removing the source-sink imbalance that would otherwise down-

regulate photosynthesis. One possible explanation is the observed presence of flowers in 

C. quitensis during the measurement period: flower production could be one of the 

additional carbohydrate sinks that increased carbohydrate consumption. In fact, Lewis et 

al. (2002) also found no photosynthetic down-regulation in the period leading up to 

flowering and during fruit production in Xanthium strumarium.  

Overall, D. antarctica exhibited an approximately 25% down-regulation of 

photosynthesis in plants grown at elevated CO2, while no acclimation was observed in C. 

quitensis. Photosynthesis in both species, on the other hand, responded positively to high 

CO2 levels. Together, under elevated growth CO2, the direct CO2 effect overwhelmed any 

down-regulation of photosynthesis, if any, and resulted in a higher capacity to assimilate 

CO2 in both species. Ultimately, the enhancement of photosynthesis at elevated CO2 had 

significant implications for the growth and performance of both D. antarctica and C. 

quitensis.  

 

4.3 Leaf anatomy showed little plasticity, except in D. antarctica stomatal grooves 

4.3.1 There were no major changes in leaf morphology in either species 

While photosynthetic parameters are very sensitive to measurement conditions, leaf 

anatomy directly reflects effects of the growth conditions. In this experiment, there were 

no changes in the proportions of measured tissues in the leaf cross-sections in either D. 

antarctica or C. quitensis under the various treatments, which offers additional evidence 

for the small degree of acclimation of photosynthesis to variations in growth conditions. 

The general lack of acclimation to warming and elevated CO2 in photosynthetic 

parameters was coupled with a lack of change in the quantity of the photosynthetic 

tissues. Furthermore, the aphid attack resulted in the loss of the 12/AC treatment in all 

comparisons of photosynthetic parameters. Here, because leaf structure of C. quitensis in 

12/AC likely remained the same despite the aphid attack, the lack of structural response 
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across all six treatments further reinforced the conclusion that little acclimation occurred 

in C. quitensis under either warming or elevated CO2. 

4.3.2 Modified stomatal groove structure in D. antarctica suggests high moisture stress 

at high temperature 

Anatomical features in D. antarctica leaves mostly reflect their growth environment, 

regardless of the level of genetic diversity (Chwedorzewska et al. 2008). The most 

prominent change in leaf anatomy was the modifications in stomatal groove structure in 

D. antarctica. Grass blades of D. antarctica tended to roll inward towards the adaxial 

side, creating stomatal grooves. This is where a high concentration of stomata occur, 

supposedly creating an air pocket with high humidity and preventing water loss (Ellis 

1976). At warmer growth temperatures, both stomatal groove depth and width decreased 

as a direct response the larger evaporative demand in warmer treatments. This study, like 

most warming experiments, did not control for vapor pressure deficit; therefore, at 

constant relative humidity, VPD increased with temperature, resulting in larger 

evaporative demand (Oishi et al. 2010). Therefore, the shift in the stomatal groove 

towards a more xeromorphic structure in warmer treatments served to recapture water 

lost through transpiration, likely limiting water loss to the atmosphere. This 

morphological acclimation came with a trade-off, however. A more tightly packed 

groove, while preventing water from escaping the leaf, also prevented CO2 from diffusing 

into the intercellular air space, evidenced by a significant decrease in Ci/Ca ratio when 

measured at the growth conditions.  

Qualitatively, leaf cross-sections also showed an absence of bulliform cells in D. 

antarctica. Bulliform cells are very large, thin-walled cells located on the epidermis at 

the bottom of the stomatal grooves to facilitate the folding and unfolding of the leaf blade 

through changes in stomatal groove width (Fig. 4.1). These cells lose water easily under 

dry conditions, and as they do, stomatal grooves shrink in size, the leaf blade folds, and 

water loss is minimized. The loss of this tissue has been previously observed in D. 

antarctica grown at a drier habitat compared to those developing at a coastal site in 

Antarctica (Chwedorzewska et al. 2008), as well as in greenhouse plants grown at 16-

18 ºC, compared to those grown at 2 ºC or 13 ºC (Romero et al. 1999, Gielwanowska et 
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al. 2005). The lack of bulliform cells in D. antarctica plants shown here suggests leaf 

unrolling was not regulated in their growth environment, and that the dry conditions in 

my experiment forced the leaf blades to stay constantly rolled. The absence of bulliform 

cells in the D. antarctica specimen in this experiment further supports a previous 

interpretation of the stomatal groove dimensions: without bulliform cells to facilitate leaf 

rolling or unrolling, stomatal groove dimensions were developmentally set. Hence, 

stomatal groove depth and width reflect the effects of the long-term exposure to the 

experimental growth conditions rather than the transient condition at the time of sample 

collection. 

 

4.4 Leaf-level photosynthetic responses did not always translate to growth 

While neither D. antarctica and C. quitensis displayed thermal acclimation of 

photosynthesis, and both showed some degree of acclimation to elevated CO2, 

photosynthesis in both species was stimulated by a direct effect of high temperature and 

high CO2. These measurements also allow an assessment of D. antarctica and C. 

quitensis photosynthetic performance in their treatment conditions that, when 

extrapolated to the whole-plant level, should correlate with the trends in biomass 

accumulation. A mismatch between leaf-level photosynthesis and whole-plant growth 

response can reveal either patterns in the partitioning of photosynthates towards other 

sinks, or changing variables and processes under the new growth environment.  

4.4.1 Biomass accumulation was enhanced at elevated CO2 in both species 

In both species, photosynthesis was stimulated by elevated CO2 in the growth 

environment, even when the down-regulatory response was accounted for. This trend 

directly translated to larger aboveground and belowground biomass in both D. antarctica 

and C. quitensis. This response is quite common (Ainsworth and Long 2005): while the 

magnitude of the stimulation of growth under elevated CO2 is variable (Curtis and Wang 

1998), D. antarctica biomass increased by 46%, and C. quitensis by 33% under elevated 

CO2, both slightly higher than the average for C3 plants (approximately 20%) as compiled 

by Ainsworth and Long (2005).  
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4.4.2 Warming did not consistently enhance growth  

In contrast, the effect of warming on growth is more complex than that of elevated CO2, 

due to the integrated temperature responses of various processes involved in growth and 

biomass accumulation. Since photosynthesis did not thermally acclimate in either D. 

antarctica or C. quitensis, performance at the growth condition reflects a direct response 

to high measurement temperature. While D. antarctica responded positively, C. quitensis 

was not responsive to increases in measurement temperature. The capacity to assimilate 

CO2 at the growth conditions should translate to a similar trend in biomass accumulation; 

however, this is not always the case.   

In D. antarctica, the accumulation of both aboveground and belowground biomass was 

enhanced under moderate warming (+4 ºC), as suggested by the greater Anet at the growth 

conditions. This result agrees with most moderate warming experiments across 

ecosystems, which observe a stimulation of plant productivity by 19-20% (Rustad et al. 

2001, Lin et al. 2010). However, under a growth temperature of 20 ºC, the stimulation of 

photosynthesis did not translate to higher biomass. Meanwhile, photosynthesis in C. 

quitensis did not acclimate to growth temperature or respond to measurement 

temperature. Under the growth conditions, 20 ºC treatments had a lower Anet 

(approximately 35% the rate of a cooler-grown plant at the same CO2 level); however, 

the poor photosynthetic performance of plants grown in warmer treatments was quite 

evident in biomass. Total biomass in the warmest treatments was 30 to 60% lower than 

that produced by a cooler-grown plants at the same growth CO2, a response that could not 

be accounted for by the poor photosynthetic performance alone.  

There could be a number of explanations for the mismatch in whole-plant biomass 

accumulation and leaf-level photosynthesis in warmer treatments in D. antarctica and C. 

quitensis. First of all, in D. antarctica, the aforementioned modifications in stomatal 

groove structure at high growth temperature could potentially account for the suppression 

of growth in the warmest treatments. As stomatal grooves became smaller to minimize 

water loss, CO2 diffusion becomes more limiting. Gas exchange measurements of 

photosynthetic parameters were performed at a relatively constant vapor pressure deficit, 

which served to assess the capacity of the photosynthetic machinery itself. Under the 
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growth condition, however, this measured capacity was not realized due to the high VPD 

at warmer treatments. As evidenced by the decline in the Ci/Ca ratio in both species and 

changes in stomatal groove structure in D. antarctica, in warmer treatments, the pressure 

to conserve water was high enough that CO2 diffusion was reduced, resulting in lower 

CO2 assimilation and as a result, reduced growth. Likewise, the aforementioned 

decreasing Ci/Ca in C. quitensis at high temperature could also suggest CO2 diffusion 

limitations, which could be amplified under extended exposure to the growth conditions, 

and resulted in lower biomass accumulation under warming. 

Atkin et al. (2007) suggested that short-term changes in photosynthesis (A) and 

respiration (R) and more importantly, the balance between the two (the R:A ratio), play a 

key role in whole-plant CO2 exchange. While some studies suggest the R:A ratio reaches 

homeostasis regardless of the intrinsic growth rate (Loveys et al. 2003), both acclimation 

and short-term response to temperature might disrupt this homeostasis (Campbell et al. 

2007, Way and Yamori 2014). In species with little thermal plasticity in photosynthesis 

or respiration, such as Plantago euryphylla (Atkin et al. 2007), high growth temperatures 

suppress daily net carbon gain, as night time respiratory losses are a higher proportion of 

the carbon gained during the day. On the other hand, full thermal acclimation of 

respiration to a higher growth temperature and a lower night temperature could enhance 

biomass accumulation even though photosynthesis does not acclimate (Xiong et al. 

2000). In the cases of D. antarctica and C. quitensis, while photosynthesis was stimulated 

under high leaf temperature, respiration rates did not show any thermal acclimation. 

Because growth temperatures were constant between day and night in this experiment, 

respiratory losses at night could be especially high in the warmest treatment.  

4.4.3 D. antarctica and C. quitensis performance in future climates 

Fowbert and Smith (1994) reported significant expansion in the populations of both D. 

antarctica and C. quitensis over the second half of the 20th century, which was attributed 

to the rapid warming in Antarctica over the same period. Enhanced growth has previously 

been observed in both species under warmer growth temperatures in the field (Day et al. 

1999) and greenhouse (Xiong et al. 2000). My work has demonstrated that increasing 

growth temperatures by 4 ºC in fact promoted growth in D. antarctica. Additionally, 
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elevated CO2 promoted growth in both species, without any interaction between warming 

and elevated CO2. Consequently, population growth in D. antarctica from 1960 to 2000 

could have been a result of both warmer growth temperature and the increasing 

atmospheric CO2, considering warmer temperatures over this period were coupled with 

rising CO2. However, both moderate and severe warming suppressed growth in C. 

quitensis. One could postulate that the slower population growth in the second half of the 

20th century in C. quitensis compared to D. antarctica could therefore have been due to 

the poor performance of the species at warm temperatures, without ruling out the 

differences in growth habits between the two species.   

Although D. antarctica benefited from moderate warming, the trend of increasing plant 

productivity might not hold if warming intensifies. This experiment has also shown that 

growth was suppressed in both species at a growth temperature of 20 ºC. This decrease in 

growth is not from a limitation in the photosynthetic machinery itself, but may be linked 

to either higher respiratory losses, CO2 diffusion limitations, or other causes. Therefore, 

changes in other environmental conditions in Antarctica, such as the extent of night 

warming or the plant water status in future climates, could also alter the growth response 

of the two vascular plants. Based on my findings, under very high greenhouse gas 

emission scenarios, severe warming might decrease growth in both vascular plant species 

in Antarctica, which could potentially alter the carbon budget and nutrient dynamics of 

the terrestrial ecosystem of the continent. 

Both D. antarctica and C. quitensis are key inputs of C and N to the intrinsically poor 

Antarctic soils (Beyer et al. 2000). Therefore, changes in the population sizes of these 

two species could affect the future carbon stocks in Antarctica, especially when the two 

species are differentially affected under future climates. The warming trend and altered 

species composition could impact the carbon pool in the soil and indirectly affect the 

growth of nonvascular vegetation (Day et al. 2008). 
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4.5 Future directions 

To better evaluate the temperature and CO2 response of D. antarctica and C. quitensis, 

future studies could use chlorophyll fluorescence to estimate mesophyll conductance 

(Harley et al. 1992). This method characterizes changes to the diffusion pathway of CO2 

from the intercellular air space to the site of carboxylation in the chloroplast, arriving at 

an estimate of mesophyll conductance. In this experiment, mesophyll conductance was 

assumed to be infinite, although studies have shown that it can vary with temperature and 

CO2 (Bernacchi et al. 2002). Additionally, having an estimate of mesophyll conductance 

would allow calculations of the CO2 concentration at the chloroplast (Cc), which is the 

CO2 concentration used in carboxylation, and would offer a better estimate of Vcmax and 

Jmax. 

Thermal acclimation of photosynthesis in this study was evaluated by measuring gas 

exchange parameters under the growth temperature and again at a common temperature 

of 16 ºC. This method, however, did not allow estimates of the optimal temperature of 

Anet, or any actual shifts in the temperature response curve. Future studies, therefore, 

should investigate the short-term temperature response of photosynthesis over a larger 

range of temperature and use the thermal optimum to evaluate thermal acclimation. 

Similarly, the acclimation response to elevated CO2, or the lack thereof, is often linked to 

the pool of carbohydrates. Having an estimate of total non-structural carbohydrates, and 

soluble sugars, would allow a more established link between feedback inhibition and 

down-regulation of photosynthesis.  

Future studies can design warming experiments that control vapor pressure deficit, which 

affects stomatal regulation. With a constant relative humidity, VPD increased with 

temperature and became a confounding factor in this experiment. As a result, CO2 

diffusion decreases when stomatal conductance is reduced by a high VPD. Although 

allowing VPD to fluctuate better reflects future climates, constant VPD experiments lend 

to better understanding of the underlying mechanism of temperature response of 

photosynthesis. Additionally, it would be interesting to emulate the daily temperature 

fluctuation in Antarctica, and potentially look at its effect on photosynthetic acclimation 

compared to a constant growth temperature. While the experimental period coincided 
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with the austral summer, exposure of D. antarctica and C. quitensis to a photoperiod 

much shorter than their summer could have unanticipated effects. Considering the very 

short growing season and long photoperiod in their native habitat, it would also be 

interesting to investigate the interplay of increasing temperature and constant photoperiod 

on the ability of plants to take advantage of the longer photosynthetic time and shorter 

period of respiratory losses. 

While this study provided some insights into the response of D. antarctica and C. 

quitensis in future climates, extrapolating the result to the performance of the two species 

in Antarctica on a larger scale should be conducted with care. First of all, performance of 

plants grown in the lab could differ from that in the field, especially in terms of leaf 

anatomy (Romero et al. 1999) and photochemical efficiency (Casanova-Katny et al. 

2010). Additionally, this experiment investigated vegetative growth only, leaving out the 

effects of temperature and CO2 on the reproductive output of the two species. Even if 

only vegetative growth was considered, other factors such as the availability of ice-free 

surface, as well as suitable microhabitat including nutrients, light availability, or wind, 

could hinder the spread of both species despite the favorable temperature and CO2 

conditions. Future studies should investigate these topics to arrive at a better prediction of 

the performance of these two species under climate change. 

 

4.6 Conclusions 

This study investigated the photosynthetic and morphological responses of two Antarctic 

vascular plants, Deschampsia antarctica and Colobanthus quitensis, to warming and 

elevated CO2. Overall, neither species showed thermal plasticity of the photosynthetic 

apparatus to increasing growth temperatures. D. antarctica showed some down-

regulation of photosynthesis to elevated CO2, but C. quitensis did not acclimate to 

elevated CO2. In their growth environment, photosynthesis was stimulated by short-term 

increases in leaf temperature and atmospheric CO2 in D. antarctica, and by elevated CO2 

in C. quitensis. However, these trends did not translate directly to growth. Biomass 

accumulation in both species was enhanced at elevated CO2, but was suppressed under 

warming of +8 ºC in D. antarctica and at all warmer temperatures in C. quitensis. Leaf 
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structures of D. antarctica were modified at high growth temperatures to prevent 

moisture stress, but this also presents a challenge for CO2 diffusion that could potentially 

limit biomass accumulation at high growth temperature.  

I have proposed physiological mechanisms that may help explain the documented 

enhanced growth in both Antarctic vascular species. My results also suggest that in future 

climates, both vascular species in Antarctica will benefit from elevated CO2; however, 

severe warming can potentially suppress growth in both species, not due to damage to the 

photosynthetic apparatus, but likely from either enhanced respiratory losses or CO2 

diffusion limitations under warmer conditions. The study also offers useful insights for 

climate models predicting the carbon cycling of Antarctica under climate change. Scaling 

leaf-level gas exchange parameters to whole-plant performance to predict the 

performance of D. antarctica and C. quitensis needs to consider other abiotic factors, 

such as moisture availability. 
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Appendix 

Appendix A. Mean ± SE of CO2 gas exchange, chlorophyll fluorescence, leaf chemical 

and structural parameters, and biomass of C. quitensis grown in the 12/AC treatment. The 

treatment was under an aphid attack, which was likely to confound with the treatment 

effect. Data for this treatment were therefore removed from the thesis. 

 

 

  

Parameters Measured at 16 ºC Measured at growth 

temperature (12 ºC) 

Vcmax (µmol m-2 s-1) 57.57 ± 4.69 28.86 ± 5.82 

Jmax (µmol m-2 s-1) 148.85 ± 7.56 82.04 ± 12.24 

Anet (µmol m-2 s-1) 10.81 ± 1.27 6.79 ± 1.59 

Fv/Fm 0.80 ± 0.004  

ETR (µmol m-2 s-1) 144.01 ± 4.34 92.10 ± 12.30 

Ci/Ca 0.76 ± 0.02 0.82 ± 0.05 

Rdark (µmol m-2 s-1) 4.63 ± 0.28 2.27 ± 0.34 

SLA (mm2/g) 0.022 ± 0.002 

Aboveground biomass (g/pot) 0.63 ± 0.14 

Belowground biomass (g/pot) 0.23 ± 0.03 

Total biomass (g/pot) 0.84 ± 0.14 

%C 36.83 ± 0.48 

%N 3.00 ± 0.10 
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Appendix B. Permission to reuse images from the copyright holders. a) Permission from 

Elsevier to use a figure from Lamers et al. 2008, (Trends in Biotechnology, 26(11):631-

638) as Figure 1.1 in this thesis; b) Permission from Oxford University Press to use a 

figure from Maxwell and Johnson 2000 (Journal of Experimental Botany, 51:659–668) as 

Figure 1.2 in this thesis. 

a) 
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