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Figure 4.2 Histological analysis and effects of CB1 agonist and antagonist in the 

AVTA 

(A) Sample micrograph of an intra-AVTA injector placement. (B) Intra-VTA cannula 

placement schematic summary:      = intra-AVTA placements for WIN 55 (500ng/0.5µl) 

vs. saline;       = intra-AVTA placements for AM 251 (500ng/0.5µl) vs. saline. (C) The 

group of animals receiving intra-AVTA CB1 agonist (500ng/0.5µl, n=8) showed no 

cannabinoid related CPP. Similarly, rats receiving intra-AVTA CB1 antagonist 

(500ng/0.5µl, n=7) also showed no preference or aversion to either the saline or drug 

paired environment. 
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4.3.6 Cannabinoid related reward learning depends upon dopaminergic 

transmission within the PVTA-BLA pathway 

Previous research has indicated that the VTA sends major Dopaminergic (DAergic) 

projections to both the basolateral amygdala (BLA) and the Nucleus accumbens (NAc) 

(Ford, Mark, & Williams, 2006) . To determine if the cannabinoid related reward CPP  

(WIN55) and the cannabinoid related aversion (AM 251) observed earlier as summarized 

in Fig. 4.2 B and C, are dependent on the PVTABLA DAergic pathway, we performed 

quadruple cannulations (see material and methods). Our first group of animals received 

bilateral microinfusions of the DA antagonist α-flu (1μg/0.5μl) intra-BLA, followed by a 

bilateral intra-PVTA microinfusion of either saline or WIN55 (500ng/0.5μl). Two way 

ANOVA comparing our α-flu/WIN55 group to our earlier group of WIN55 alone (Fig. 

4.1C), showed a significant interaction between group and treatment on the time spent in 

the saline or drug paired environment (F(1,27) = 80.22; p < .0001). Post hoc analysis 

indicated that the group of animals that received intra-BLA α-flu (1μg/0.5μl) prior to 

intra-PVTA WIN55 (500ng/0.5μl) microinfusions displayed no significant cannabinoid 

related reward CPP (n=7, p> .05; Fig. 4.3C), while the group of animals receiving only 

intra-PVTA WIN55 (500ng/0.5μl), showed a significant preference for the WIN55 paired 

environment (n=7, p< .01; Fig. 4.1C). Thus blocking the DAergic projection to the BLA, 

successfully blocked the cannabinoid reward CPP.  

Next, to examine the possible effects of α-flu on cannabinoid related aversion, we 

microinfused α-flu (1μg/0.5μl) directly into the BLA, followed by intra-PVTA 

microinfusions of either AM 251 (500ng/0.5μl) or saline. Statistical analysis indicated 

that animals in this group still displayed the cannabinoid related aversion observed earlier 

(Fig. 4.1D), with rats showing a significant preference for the saline paired environment 

(n=8, t7=7.89, p< .0001; Fig. 4.3C, far right). Hence, blocking DAergic projections in the 

BLA had no effect on cannabinoid related aversion. 



113 

 

 

 

 



114 

 

Figure 4.3 Blockade of DA projections to the BLA and histological analysis of the 

BLA 

(A) Micrograph representing a typical intra-BLA injector placement. (B) Schematic 

summary illustrating intra-BLA cannula placement:    = BLA placements for α-flu 

(1µg/0.5µl) vs. intra-PVTA CB1 agonist (500ng/0.5µl);    = BLA placements for 

1µg/0.5µl α-flu vs. 500ng/0.5µl AM 251. (C) Blocking the DA projection from the 

PVTA to the BLA, successfully blocked the WIN 55 related reward CPP observed 

with intra-PVTA microinfusion of CB1 agonist (500ng/0.5µl, n=7). However, 

blocking DA intra-BLA, had no effects on intra-PVTA microinfusion of AM 251 

(500ng/0.5µl, n=8), as animals were still displaying a significant preference for the 

saline paired environment. 
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4.3.7 Cannabinoid related aversion is mediated through the PVTA-

NASh DAergic pathway 

The VTA has been implicated to regulate DA release in the NAc and the shell region of 

the NAc (NASh) has been shown to be involved in aversive motivation. To investigate 

the potential role of the DAergic projections to the NASh, we administered α-flu 

(1μg/0.5μl) bilaterally directly into the NAsh, followed by intra-PVTA microinfusions of 

either AM 251(500ng/0.5μl) or saline. Two-way ANOVA indicates a significant 

interaction between group and treatment (F(1,31) = 36.01; p < .0001) on times spent in 

saline and drug paired environment during the recall phase. Post hoc analysis revealed 

that animals receiving the α-flu prior to the CB1 antagonist showed no preference for 

either of the two environments (n=8, p> .05; Fig. 4.4D), while rats that only received the 

CB1 antagonist showed a significant preference for the saline paired environment over 

the AM 251 paired environment, displaying a cannabinoid related aversion (n=8, p< .01; 

Fig. 4.4D, far left). Therefore, α-flu successfully blocked the aversion observed earlier 

(Fig. 4.1D) with AM251.  

 Subsequently, to examine the effects of blocking DA in the NASh in conjunction with 

CB1 agonist administration; we microinfused α-flu (1μg/0.5μl) intra-NASh, followed by 

intra-PVTA microinfusions of WIN55 (500ng/0.5μl). Statistical analysis showed that rats 

in this group showed a significant preference for the WIN55 paired environment (n=8, 

t7=9.54, p< .0001; Fig. 4.4D, far right), much like the group that did not receive DA 

antagonist (Fig. 4.1C). Hence, α-flu in the NASh, had no effect on cannabinoid reward 

CPP. 
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the cannabinoid related CPA induced by intra-PVTA AM 251 microinfusions (Fig. 

4.4C), while having no effect on cannabinoid related reward CPP. These results suggest 

that aversive stimuli are processed through the PVTANASh pathway. Previous 

pharmacological research indicates that CB1 activation promotes an increase in the 

CREB cycle in the NASh, promoting reward related behaviour such as CPP (Barrot et al., 

2011). However, deactivation of CB1R, would lead to a decrease in the CREB cycle, 

modulating DA neurons, suppressing reward, and resulting in an aversion response. This 

parallels our findings of the CB1 antagonist AM 251 intra-PVTA microinfusion resulting 

in a cannabinoid related aversion. 

4.5 CONCLUSION 

In summary, we report that intra-PVTA microinfusions of WIN 55,212-2 dose-

dependently produced a cannabinoid reward CPP, while intra-PVTA microinfusions of 

the CB1 antagonist AM 251 produced a cannabinoid related CPA. Neither of these 

effects was observed when repeated in the AVTA, supporting the notion that reward 

related learning is primarily conducted through the PVTA region. The intra-PVTA 

cannabinoid reward CPP and CPA were blocked using the broad band DA antagonist α-

flu within the PVTABLA and the PVTANASh pathway respectively. The present 

study provides dose dependent evidence for CB1R activation and blockade within the 

PVTA, and it’s dependence on DA neurons to execute its modulatory effects. Our 

findings present a functional relationship between CB1R and DA within the mesolimbic 

system. Furthermore, our results indicate that dose dependent pharmacological 

manipulations can result in both rewarding and aversive signals, depending on the area of 

projection. 
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5.1 SUMMARY OF FINDINGS 

5.1.1 Cannabinoid Transmission in the mPFC Controls Opiate Signaling  

Chapter 2 explores the role of CB1 transmission within the mPFC in relation to opiate 

reward using an unbiased classical conditioning paradigm. Cannabinoid, dopamine (DA), 

and opiate receptor pathways play an integrative role in emotional learning, associative 

memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission 

within the mPFC regulates the emotional valence of both rewarding and aversive 

experiences. Furthermore, CB1 receptor substrates functionally interact with opiate- 

related motivational processing circuits, particularly in the context of reward-related 

learning and memory. Considerable evidence demonstrates functional interactions 

between CB1 and DA signaling pathways during the processing of motivationally salient 

information. However, the role of mPFC CB1 receptor transmission in the modulation of 

behavioral opiate-reward processing is not currently known. Given the functional 

interaction between cannabinoids and opiates in establishing place preference 

conditioning and attenuating morphine self administration (Chaperon, Soubrié, Puech, & 

Thiébot, 1998; Navarro et al., 2001), we hypothesized that activation of CB1 receptors 

within the mPFC would potentiate the rewarding effects of a sub-threshold dose of 

morphine, that under normal circumstances does not produce any effects.  

Our findings however, indicated an opposite effect to our initial expectations. We found 

that activation of CB1 receptors intra-mPFC using a synthetic CB1 agonist made both a 

sub and supra reward threshold dose of morphine highly aversive. In contrast, inhibiting 

CB1 receptors by micro-infusing a synthetic CB1 antagonist intra-mPFC potentiated the 

rewarding effects of a subthreshold dose of morphine, while having no effects on the 

suprathreshold dose of morphine. Blocking DAergic projections from the VTA to the 

mPFC, blocked our observed reward and aversion signals, indicating that they are indeed 

DA dependent. We further explored the μ-opioid receptor, which has been shown to be 

excitatory, and the κ-opioid receptor which has been shown to be inhibitory (Ford, Mark, 

& Williams, 2006). Blockade of μ-opioid receptor intra-VTA, blocked the earlier 

potentiation of the subthreshold dose of morphine observed with intra-mPFC CB1 

antagonist. Conversely, blocking the κ-opioid pathway by micro-infusing a κ-opioid 
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receptor antagonist intra-VTA resulted in the ability of the CB1 agonist to potentiate the 

sub reward threshold dose of morphine, and the earlier observed morphine aversion was 

no longer present.  

Hence we report that CB1 modulated intra-mPFC opiate motivational signaling is 

mediated through a dissociable μ-opiate receptor dependent reward pathway, or a κ-

opiate receptor dependent aversion pathway, directly within the VTA. Our results provide 

evidence for a novel CB1-mediated motivational valence switching mechanism within 

the mPFC, controlling dissociable subcortical reward and aversion pathways (Ahmad, 

Lauzon, de Jaeger, & Laviolette, 2013). 

5.1.2 Bi-directional Cannabinoid Signaling in the BLA Controls 

Rewarding and Aversive Emotional Processing 

Functional connections between the BLA and NAc are involved critically in opiate-

reward processing. In the BLA, inhibitory GABAergic substrates are inhibited by 

cannabinoid CB1R activation and can modulate BLA projections to various limbic 

regions, including the NAc. High frequency activity in BLA efferents can modulate 

neuronal activity in the NAc via activating both DA and NMDA receptors (Floresco, 

Blaha, Yang, & Phillips, 2001). However the potential role of CB1R transmission in the 

regulation of opiate-related memory formation via the BLANAc circuit is not 

understood. Using an unbiased conditioned place preference paradigm (CPP) in rats, we 

examined the effects of intra-BLA CB1R modulation by either direct pharmacological 

activation (using CB1 agonist WIN 55,212-2) or blockade of CB1R transmission (using 

CB1 antagonist AM 251). We report that intra-BLA CB1R activation switches normally 

rewarding effects of morphine into strongly aversive effects. In contrast, CB1R blockade 

strongly potentiates normally sub-reward threshold effects of morphine. Next, using 

targeted microinfusions of an NMDA receptor antagonist to either the core (NACo) or 

shell (NASh) sub-divisions of the NAc, we found that selective blockade of NMDA 

transmission in the NA shell, but not core, prevented both intra-BLA CB1 blockade-

mediated opiate reward potentiation and CB1 activation-mediated aversion effects.  
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Finally, using multi-unit, in vivo electrophysiological recordings in the NASh, we report 

that the ability of intra-BLA CB1R modulation to control opiate reward salience and 

motivational valence is associated with distinct reward or aversion neuronal activity 

patterns and bi-directional regulation of intra-NASh fast-spiking interneurons (FSI) vs. 

medium spiny neurons (MSN). These findings identify a unique mechanism whereby bi-

directional BLA CB1R transmission can regulate opiate-related motivational processing 

and control affective states through functional modulation of mesolimbic neuronal 

activity. 

5.1.3 Cannabinoid Related Reward and Aversion Signals in the Posterior 

VTA is Mediated through DAergic Projections to the BLA and 

NASh 

The ventral tegmental area (VTA) has functional DAergic projections to the basolateral 

amygdala (BLA), and nucleus accumbens (NAc). It is a critical neural region responsible 

for mediating both rewarding and aversive related behavioural processing and 

cannabinoids are known to modulate the activity of the dopamine (DA) neuronal 

populations within the VTA. Previous research has shown that cannabinoid activation via 

THC administration in the posterior region of the VTA (PVTA), produced rewarding 

behavioural effects, while the same activation in the anterior region of VTA (AVTA), 

produced no effects (Zangen, Solinas, Ikemoto, Goldberg, & Wise, 2006). Hence, a 

functional dissociation between posterior and anterior VTA does exist. Using an unbiased 

conditioned place preference (CPP) procedure combined with behavioural pharmacology, 

we administered either a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the 

PVTA or AVTA of Sprague-Dawley rats. CB1R activation in the PVTA with WIN 

55,212-2 (50-500ng) produced a dose-dependent cannabinoid reward CPP, while 

blockade of CB1R with AM 251 (50-500ng) produced a dose-dependent aversion. 

Interestingly, when WIN 55,212-2 and AM 251 were micro-infused in the AVTA, no 

cannabinoid reward or aversion effects were observed. To examine the PVTABLA and 

PVTANAc pathways, we used the broad spectrum DA receptor antagonist α-

flupenthixol to block DA transmission in either the NAc or BLA. Intra-BLA micro-

infusions of α-flu (1μg), blocked the earlier observed cannabinoid reward CPP, but not 

the cannabinoid antagonist-related aversion. Conversely, intra-NASh micro-infusions of 
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α-flu (1μg), blocked the aversion observed with intra-PVTA CB1 antagonist 

administration, but not the rewarding effects of intra-PVTA WIN-55. Thus, our findings 

demonstrate a functional dissociation between PVTA DA outputs to either the NASh or 

BLA. Furthermore, while the rewarding effects of intra-PVTA CB1 activation depend 

upon a PVTABLA pathway, the aversive effects of CB1 receptor blockade depend 

upon PVTA DA outputs to the NASh.  

5.1.4 Limitations 

The current available literature on receptors of interest such as CB1 and DA are often 

investigated in isolation. The brain is a complex structure, with a multitude of activated 

neuronal pathways and release of various neurotransmitters simultaneously. Thus, a 

significant limitation to our study is that we are unable to account for the coexistence and 

release of other neurotransmitters. For example: the mPFC, NAc and VTA are all rich in 

serotonin receptors that may have overlapping signaling pathways with DA. Hence, 

although we have accounted for cannabinoid transmission modulating DA levels, we did 

not account for the possible co-release of other neurotransmitters such as serotonin. In 

vivo electrophysiological studies have shown that activation of serotonin receptors 

increases DA activity levels (Prisco, Pagannone, & Esposito, 1994), and CB1R is co-

expressed in high density with both DA and serotonin receptors (Hermann, Marsicano, & 

Lutz, 2002). It is plausible to consider that CB1, DA, and serotonin receptors may 

concurrently interact with one another in the VTA, NAc, or mPFC, modulating their 

downstream effects through cyclic AMP and other signaling cascades, suggesting an 

alternative explanation to emotional processing mechanisms.  

The bi-directional effects of CB1 transmission observed in our study are all DA-

dependent, since using a broadband DA antagonist often blocked both the reward and 

aversion signals. Thus, another limitation to the study is that we did not differentiate 

between D1 and D2 receptor subtypes. In opiate naïve animals, activation of D1 receptor 

subtype has shown to potentiate the rewarding effects of opiates. However, when opiate 

dependence was achieved, potentiating the rewarding effects of opiates was switched to a 

D2 receptor subtype (Lintas et al., 2012). Therefore, it is important to differentiate 
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between the D1/D2 subtypes, in order to better understand the underlying mechanisms of 

the DAergic reward pathway. 

5.2 Conclusion 

Cannabinoids are one of the most abundant receptors in humans. Disruptions in CB1 

levels are implicated with many neuropsychiatric disorders, addiction studies, and deficits 

in learning and memory. The goal of this thesis was to characterize CB1 transmission in 

the mesolimbic reward circuitry in relation to the motivational effects of opiates. We 

explored the mPFC, BLA, VTA, and NAc circuitry. Our findings indicate novel bi-

directional CB1 mediated mechanism in the mPFC, and BLA with functional 

interconnections to the VTA and NASh that control opiate signaling. These results will 

contribute to the growing body of research concentrated on the biphasic characteristic of 

cannabinoids and further help elucidate their role in reward related learning. 

5.3 FUTURE DIRECTIONS 

Although our research has been successful in characterizing CB1 transmission in the 

mesolimbic pathway, many critical questions remain. It is important to note that our 

current results are dose dependent, and two doses of 50 and 500ng of CB1 agonist and 

antagonist were used. We should incorporate a mid range dose of 100ng for both CB1 

agonist WIN 55,212-2 and antagonist AM 251 to determine a more comprehensive dose 

curve. 

Furthermore, future studies are required to more precisely characterize the mechanism by 

which intra-BLA CB1R transmission may regulate DA release patterns within the NAc. 

For instance, intra-NAc D1 vs. D2 receptor subtypes have been reported to differentially 

regulate activity states of MSN vs. FSI neuronal subpopulations and drug-reward related 

behaviours (Smith et al., 2013; Calipari et al., 2016). Activation of intra-NAc D1-

containing MSN neurons has been demonstrated to promote reward-related behaviours 

whereas activating D2-containing MSN’s have been shown to oppose these effects and/or 

induce aversive effects. While beyond the scope of the present study, future studies using 

selective blockade of D1 vs. D2 MSN neuronal subpopulations may yield additional 
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insights into how BLA CB1R-dependent signaling may control accumbens processing of 

reward vs. aversion-related motivational signals. 

Next, although our posterior VTA reward findings parallel those of Zangen et. al. (2006), 

further studies are required to determine the neuronal pathways taken by the CB1 

antagonist mediated aversive signals and CB1 agonist mediated reward. Since 

cannabinoid and opiate receptors mediate overlapping pharmacological responses, it 

would be beneficial to examine the μ and κ-opioid receptor pathway in terms of 

cannabinoid reward and aversion signals. It is quite possible that the CB1 and opioid 

receptors can interact directly with one another, modulating each other’s function when 

co-expressed in the same cell. To test this theory, we would activate the CB1R and block 

the μ-opioid receptor pathway by intra-PVTA simultaneous micro-infusions of WIN 

55,212-2 and the μ-opioid receptor antagonist cyprodime. If our cannabinoid related 

reward is via the μ-opioid reward pathway, we would expect a block in the observed 

reward CPP. Conversely to explore the possibility of the CB1 related aversion in relation 

to κ-opioid inhibitory pathway, we would micro-infuse simultaneously intra-PVTA, the 

CB1 antagonist AM 251 and the κ-opioid receptor antagonist nor-binaltorphimine. 

Similarly, if the CB1 related aversion observed is mediated by the κ-opioid pathway, we 

would expect to see no CPP or CPA. 

Lastly, to further explore the role of CB1 transmission in the mPFC in mediating DA 

levels in the VTA, we can employ single cell in vivo electrophysiological recordings in 

the VTA to examine firing levels of DA at various doses of CB1 microinfusions for both 

rewarding and aversive signals. 
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