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energy density starts from zero at early times and it goes to some finite value, giving some

non-zero finite work in the process, as depicted in fig. 4.15.
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(a) The energy density using the counterterm subtraction

(b) The energy density using the fixed mass subtraction

Figure 4.15: (Colour online) Schematic plots of the evolution of the energy density in three

spacetime dimensions when δt → 0. From the counterterm subtraction point of view, the work

done is zero but from the fixed mass subtraction perspective, there is finite work done.

Finally, we wish to consider one last method of obtaining a finite energy density. In section

4.6, we considered the difference between two physical energies, i.e., Equench − Eground. Note

that Eground, the ground-state energy density, should be something that we can easily define at

very late and very early times. In particular, this looks like Equench − E f ixed at these early and

late times. However, Eground is a real physical energy density of a particular state and it can be

defined in any renormalization scheme. So in this case, we do not need to make any reference

to our choice of scheme because all of the divergences cancel in the difference of two physical

energies. Of course, the drawback is that this can only be computed at very early or late times.

Even dimensions

Most of the explicit calculations presented in this paper refer to odd spacetime dimensions.

However, most of the conclusions also hold for even dimensions. As pointed out in [12, 13],

the only differences between even and odd dimensions are that there are additional logarithmic

UV divergences which must be regulated in even dimensions, and as a result, the renormalized
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expectation values have an extra logarithmic enhancement in the δt scaling. For example, in

even dimensions, the expectation value for φ2 in the fast smooth quench scales as

〈φ2〉ren ∼ δt4−d log µδt, (4.96)

where µ is a new renormalization scale introduced by the logarithmic counterterms.

The appearance of logarithmic counterterms adds an additional technical difficulty to the

calculations presented in this paper but we do not expect that they would change the main

results. In particular, the renormalized expectation values of φ2 have a smooth limit at late

times as δt → 0 in higher even or odd dimensions, while the analogous quantity diverges after

an instantaneous quench. With regards to the energy density, we presented results for lower

even dimensions in section 4.6, where we showed that the excess energy has a smooth limit in

d = 2 as δt → 0, which matches the instantaneous answer. In higher dimensions, the excess

energy diverges as expected from the scaling of 〈φ2〉ren and the Ward identity (4.16).

Lessons for interacting theories

We end this discussion with a comment on the lessons of our work for general interacting

theories. In [12, 13] we showed that the scaling form of renormalized quantities holds for

general quantum field theories for fast quenches as defined in eq. (4.1). It is natural to expect

that the scaling for correlation functions found for the free theory in section 4 would have

an analogue in interacting theories as well. When the length scale in the correlator is small

compared to the quench time, this correlator can be viewed as a point-split version of the

operator which is used for the quench and in the fast quench limit, the arguments of [12, 13]

then show that this quantity would scale in the expected fashion.

In this paper, we found that the relationship between the fast limit of a smooth quench

and an instantaneous quench is non trivial for free field theories in high dimensions. This

again should generalize to interacting theories. What really led to the non trivial relation is the

fact that in higher spacetime dimensions, the conformal dimension of the quenched operator

becomes large. Indeed, the scaling of the renormalized quenched operator O for general in-

teracting theory together with the Ward identity shows that the renormalized energy density at



4.9. Appendix: Review of constant mass correlators 171

late times behaves as δtd−2∆ and therefore diverges as δt → 0 for any d whenever ∆ > d/2. This

can be consistent with the results of an instantaneous quench only if the latter is UV divergent

in this case. This fact should have non trivial consequences for the ability to express the state

after a quench in terms of a boundary state as in [5] even in low spacetime dimensions when

the conformal dimension of the quenched operator is large enough.

4.9 Appendix: Review of constant mass correlators

In this appendix, we review the computation and behaviour of the (spatial) correlator for a

massive free scalar field with a constant mass. For simplicity, we will focus on odd spacetime

dimensions. Hence we are interested in computing the following spatial correlator,

C(~r) ≡ 〈φ(~r)φ(~0)〉 =
1

2(2π)d−1

∫
dd−1k
√

k2 + m2
ei~k·~r, (4.97)

where m is simply a fixed constant (for all time). First, we can choose, without loss of gen-

erality, to place ~r along one particular axis using the rotational symmetry of the problem.

Integrating out the transverse angular directions, then yields

C(~r) =
Ωd−3

2(2π)d−1

∫
kd−2dk
√

k2 + m2

∫ π

0
dθ sind−3 θeikr cos θ, (4.98)

where k = |~k| and r = |~r|. The integral over θ can be done analytically and for odd d, we find

C(~r) =
1

σc r
d−3

2

∫
k

d−1
2 dk

√
k2 + m2

J d−3
2

(kr) , (4.99)

where σc = 2
d+1

2 π
d−1

2 and J d−3
2

is the Bessel function of order d−3
2 .

Now, to get the full answer for C(~r) we need to integrate over all k, so we note that for

large k, the Bessel function behaves as 1/
√

kr times some linear combination of trigonometric

functions (of kr). Hence the naı̈ve counting of the powers of k would yield an overall factor of

k
d−4

2 in the integrand above and hence one might conclude that the integral would diverge for

any d (≥ 2). However, this factor provides a envelope for a rapidly oscillating function which

tends to produce an added cancellation in the integral. Integrals of this form can be defined
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with the following regulator: Insert an additional factor of the form exp(−ak) to the desired

integrand. The resulting (finite) answer now remains finite in the limit of a → 0. In fact, one

can show that this method works correctly for integrands that are a product of some power of

k times an oscillatory function around zero. For example, one can show that,

∫ ∞

0
dk kα sin(xk + δ) ≡ lim

a→0

∫ ∞

0
dk kα sin(xk + δ) exp(−ak)

= sin
(
π

2
(α + 1) + δ

)
Γ(α + 1) x−(α+1) , (4.100)

for any non-negative values of α and x. Applying this apprach to eq. (4.99) yields the following

analytic answer

C(~r) =
1

(2π)d/2

(m
r

) d−2
2

K1− d
2
(mr) , (4.101)

where now Kα is the Bessel K function. Of course, one can readily verify that this correlator

satisfies the Klein-Gordon equation as desired.9

Given this expression (4.101), it is straightforward to examine various asymptotics of the

correlator. In particular, considering the limit mr → 0, we obtain

σcC(~r) =
Γ
(

d
2 − 1

)
2

d−3
2

√
πrd−2

(
1 −

m2r2

2(d − 4)
+

m4r4

8(d − 4)(d − 6)
+ O

(
m6r6

))
+

+
Γ
(
1 − d

2

)
√
π2

d−1
2

md−2 + O(mdr2) . (4.102)

Hence the correlator diverges as expected as r → 0, i.e., the leading divergence goes as 1/rd−2.

The above expansion reveals that the subleading terms are all proportional to the mass in this

limit. To have some concrete examples, we show:

d = 3, σc C(~r) =
1
r
− m + O(m2r) ,

d = 5, σc C(~r) =
1
r3 −

m2

2r
+

m3

3
+ O(m4r) , (4.103)

d = 7, σc C(~r) =
3
r5 −

m2

2r3 +
m4

8r
−

m5

15
+ O(m6r) .

9The correlator (4.101) applies for general spacelike separations if we replace the distance r by
√

r2 − t2.
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We also note that the leading term in eq. (4.102) is, in fact, the exact answer for the massless

correlator, i.e.,

C(~r) =
Γ
(

d−2
2

)
4π

d
2

1
rd−2 for m = 0 . (4.104)

The other interesting limit to consider is mr → ∞. In this case, the Bessel function decays

exponentially and we find

C(~r) =
e−mr

σc

m
d−3

2

r
d−1

2

(1 + O(1/(mr))) . (4.105)

We might note that the power of r in the leading term in eqs. (4.102) and (4.105) happens to

coincide for d = 3 but otherwise they differ.

To conclude this appendix, we emphasize the two main results: The first one is that naı̈vely

the integrals above seem to be divergent, especially for high d. However, because the inte-

grand is mainly oscillating around zero, they can be regulated as in eq. (4.100) to get a finite

result. The second lesson is that in the static case this correlator diverges as 1/rd−2, as shown

in eqs. (4.102) and (4.103). We will take these facts into account when we analyse spatial

correlators in the instantaneous and smooth quenches in section 4.3.



Bibliography

[1] For example, see the following reviews:

S. Mondal, D. Sen and K. Sengupta, “Non-equilibrium dynamics of quantum sys-

tems: order parameter evolution, defect generation, and qubit transfer,” Quantum

Quenching, Anealing and Computation, Lecture notes in Physics, 802, 21 (2010)

[arXiv:0908.2922[cond-mat.stat-mech]];

J. Dziarmaga, “Dynamics of a quantum phase transition and relaxation to a steady state,”

Adv. Phys. 59, 1063 (2010) [arXiv:0912.4034 [cond-mat.quant-gas]];

A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, “Nonequilibrium dy-

namics of closed interacting quantum systems,” Rev. Mod. Phys. 83, 863 (2011)

[arXiv:1007.5331 [cond-mat.stat-mech]];

A. Lamacraft and J.E. Moore, “Potential insights into non-equilibrium behavior from

atomic physics,” in Ultracold Bosonic and Fermionic Gases, Contemporary Concepts

in Condensed Matter Science, Elsevier (Editors: A. Fletcher, K. Levin and D. Stamper-

Kurn) [arXiv:1106.3567[cond-mat.quant-gas]].

[2] T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” J. Phys. A 9, 1387 (1976).

[3] W. H. Zurek, “Cosmological Experiments in Superfluid Helium?,” Nature 317, 505

(1985).

[4] A. Chandran, A. Erez, S. S. Gubser and S. L. Sondhi, “Kibble-Zurek problem: Uni-

versality and the scaling limit,” Phys. Rev. B 86, 064304 (2012) [arXiv:1202.5277

[cond-mat.stat-mech]];

174



BIBLIOGRAPHY 175

[5] P. Calabrese and J. L. Cardy, “Time-dependence of correlation functions following a

quantum quench,” Phys. Rev. Lett. 96, 136801 (2006) [cond-mat/0601225];

P. Calabrese and J. Cardy, “Quantum Quenches in Extended Systems,” [arXiv:0704.1880

[cond-mat.stat-mech]];

[6] S. Sotiriadis and J. Cardy, “Quantum quench in interacting field theory: A Self-consistent

approximation,” Phys. Rev. B 81, 134305 (2010) [arXiv:1002.0167 [quant-ph]].

[7] For a review and further references, see:

V. Gritsev and A. Polkovnikov, “Universal Dynamics Near Quantum Critical Points,”

arXiv:0910.3692 [cond-mat.stat-mech].

[8] P. Basu and S. R. Das, “Quantum Quench across a Holographic Critical Point,” JHEP

1201, 103 (2012) [arXiv:1109.3909 [hep-th]];

P. Basu, D. Das, S. R. Das and T. Nishioka, “Quantum Quench Across a Zero Temperature

Holographic Superfluid Transition,” JHEP 1303, 146 (2013) [arXiv:1211.7076 [hep-th]];

P. Basu, D. Das, S. R. Das and K. Sengupta, “Quantum Quench and Double Trace Cou-

plings,” arXiv:1308.4061 [hep-th]; J. Sonner, A. del Campo and W. H. Zurek, “Univer-

sal far-from-equilibrium Dynamics of a Holographic Superconductor,” arXiv:1406.2329

[hep-th]; P. M. Chesler, A. M. Garcia-Garcia and H. Liu, arXiv:1407.1862 [hep-th].

S. R. Das and T. Morita, JHEP 1501, 084 (2015) [arXiv:1409.7361 [hep-th]].

[9] K. Murata, S. Kinoshita and N. Tanahashi, “Non-equilibrium Condensation Process in a

Holographic Superconductor,” JHEP 1007, 050 (2010) [arXiv:1005.0633 [hep-th]];

M. J. Bhaseen, J. P. Gauntlett, B. D. Simons, J. Sonner and T. Wiseman, “Holographic

Superfluids and the Dynamics of Symmetry Breaking,” Phys. Rev. Lett. 110, 015301

(2013) [arXiv:1207.4194 [hep-th]]; A. M. Garca-Garca, H. B. Zeng and H. Q. Zhang,

JHEP 1407, 096 (2014) [arXiv:1308.5398 [hep-th]].

[10] A. Buchel, L. Lehner and R. C. Myers, “Thermal quenches in N=2* plasmas,” JHEP

1208, 049 (2012) [arXiv:1206.6785 [hep-th]];

A. Buchel, L. Lehner, R. C. Myers and A. van Niekerk, “Quantum quenches of holo-

graphic plasmas,” JHEP 1305, 067 (2013) [arXiv:1302.2924 [hep-th]].



176 BIBLIOGRAPHY

[11] A. Buchel, R. C. Myers and A. van Niekerk, “Universality of Abrupt Holographic

Quenches,” Phys. Rev. Lett. 111, 201602 (2013) [arXiv:1307.4740 [hep-th]].

[12] S. R. Das, D. A. Galante and R. C. Myers, “Universal scaling in fast quantum quenches

in conformal field theories,” Phys. Rev. Lett. 112, 171601 (2014) [arXiv:1401.0560 [hep-

th]];

[13] S. R. Das, D. A. Galante and R. C. Myers, “Universality in fast quantum quenches,” JHEP

1502, 167 (2015) [arXiv:1411.7710 [hep-th]].

[14] D. Berenstein and A. Miller, “Conformal perturbation theory, dimensional regularization,

and AdS/CFT correspondence,” Phys. Rev. D 90, no. 8, 086011 (2014) [arXiv:1406.4142

[hep-th]].

[15] N. D. Birrell, P. C. W. Davies, Quantum Fields In Curved Space, Cambridge, UK: Uni-

versity Press (1982), 340p.

[16] S. R. Das, D. A. Galante and R. C. Myers, in preparation.

[17] M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 9807 (1998)

023 [hep-th/9806087].

[18] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121].

[19] R. Emparan, C. V. Johnson and R. C. Myers, “Surface terms as counterterms in the

AdS/CFT correspondence,” Phys. Rev. D 60 (1999) 104001 [hep-th/9903238].

[20] S. S. Gubser, I. R. Klebanov and A. A. Tseytlin, “Coupling constant dependence in the

thermodynamics of N=4 supersymmetric Yang-Mills theory,” Nucl. Phys. B 534 (1998)

202 [hep-th/9805156].



Chapter 5

Quantum Quench in Free Field Theory:

Universal Scaling at Any Rate

A version of this chapter will be published in S. R. Das, D. A. Galante and R. C. Myers,

“Quantum Quench in Free Field Theory: Universal Scaling at Any Rate.” At the moment of

submitting this Thesis, this is still unpublished work.

5.1 Introduction

Universal scaling behaviour is known to occur in quantum quench processes which involve

critical points. The best known example is Kibble-Zurek scaling [1, 2], which has received

considerable renewed attention over the past several years [3, 4]. Consider, for example, a

system with a time dependent coupling g(t) which is initially in a gapped phase and whose

subsequent time evolution takes it across a critical point gc where the gap vanishes. Further,

if the rate at which the coupling varies is slow compared to the initial gap, then the early time

evolution is essentially adiabatic. So if the system starts off in the ground state of the initial

Hamiltonian, then it continues to remain largely in the instantaneous ground state. However as

g(t) approaches gc, the instantaneous gap is approaching zero and so adiabaticity must break

177
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down and the system is excited. Consider the simple power-law protocol1

g(t) − gc ∼ g0 (t/δt)r . (5.1)

The original arguments of Kibble and Zurek [1, 2] (which were made for thermal transitions)

are readily adapted to argue that immediately after the quench, i.e., after entering the non-

adiabatic regime, the expectation value of an operator O∆ of dimension ∆ will exhibit universal

scaling of the form:

〈O∆〉 ∼
(
g0/δtr) ν∆

rν+1 , (5.2)

where ν is the correlation length exponent.2

Recently a new scaling behaviour has also been found for fast quenches. This was first

discovered in holographic studies [5,6], but later found to be a completely general result in any

quantum field theory [7–9]. Consider a quantum field theory described by the action

S = S CFT +

∫
dt λ(t)

∫
dd−1x O∆(~x, t) , (5.3)

where O∆ is a relevant operator of the UV conformal field theory with conformal dimension ∆.

The coupling λ(t) starts from some constant value λ1, varies as a function of time over some

time scale δt over a range of the order of δλ, and settles down to some other constant λ2. When

δt is small compared to all other physical length scales in the problem, but slow compared to

the scale of the UV cutoff,

Λ−1
UVδt � (λ1)−1/(d−∆), (λ2)−1/(d−∆), (δλ)−1/(d−∆) , (5.4)

various renormalized quantities display scaling. For example, the renormalized expectation

value 〈O∆〉ren behaves as

〈O∆〉ren ∼ (δλ)(δt)d−2∆ . (5.5)

1In addition, in section 5.5, we will also analyze Kibble-Zurek behaviour in protocols that approach the critical
point exponentially (instead of having a power law behaviour), i.e., g(t) − gc ∼ g0 exp(−t/δt).

2That is, the exponent which determines the instantaneous gap — see eq. (3.2). Here and throughout the
following, we will assume that the fixed point theory is relativistic, i.e., the dynamical critical exponent is z = 1.
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As a result of the diffeomorphism Ward identity [7–9], there are similar scaling laws for the

energy density. As discussed below, this scaling for smooth fast quenches can be shown in

great detail in free field theories, and a great insight has been obtained by studying these. In

these cases, there are additional scaling law for higher spin conserved charges.

The aim of this paper is to investigate the transition from scaling in fast quenches to Kibble-

Zurek scaling as one changes the quench rate. In principle, there could be some discontinuity

which separates these two regimes. We will address this question in free bosonic and fermionic

field theories with time dependent masses, closely following our earlier work. We will find that

in these cases the scaling behaviour changes smoothly.

Along the way, we are able to exhibit Kibble-Zurek scaling in free scalar field analytically.

This analysis also shows the nature of corrections to the leading scaling answer — these cor-

rections appear as an expansion in fractional powers of the quench rate. Similar expansions

have been shown to occur in holographic investigations of Kibble-Zurek scaling [10]. Other

interesting numerical studies of Kibble-Zurek behaviour in holographic settings can be found

in [11].

It is also interesting to analyze systems with a finite physical cutoff, like for instance, lattice

models. In that case, we expect the universal fast scaling to be modified as the quench rate

reaches the cutoff scale. In a future communication we will investigate this effect in certain

exactly solvable spin systems [12].

The remaining of the paper is organized as follows: in Section 5.2 we give a short review

of some basic aspects of scaling in fast smooth quenches and slow quenches; in Section 5.3

we derive exact expressions for the response to mass quench in free scalar and fermionic field

theories with protocols which are suitable for looking at both slow and fast quenches; finally, in

Sections 5.4 and 5.5 we discuss the main results of this paper regarding Trans and Cis-Critical

Protocols and End-Critical Protocols, respectively.

5.2 Review of past results

In this section we summarize known results for fast and slow quenches.
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Quench Type Coupling Operator Dimension
Fermions m(t) ψ̄ψ ∆ = d − 1
Scalars m2(t) φ2 ∆ = d − 2

Table 5.1: Description of free field theory quenches.

5.2.1 Fast, smooth quenches

In [7–9], we described the evolution of expectation values of operator under a smooth but fast

quench, as summarized above. Note that for ∆ > d/2 and δt → 0, the expectation value

〈O∆〉ren in eq. (5.5) goes to infinity. This appears paradoxical at first sight, since at least in low

dimensions, there are perfectly reasonable results for a truly instantaneous quench. In [9] this

issue was discussed in detail by looking at UV finite quantities like the correlation functions

at finite spatial separations and excess energy produced. In the following we review the most

salient results that will be used in this note.

Even though the result in eq. (5.5) is quite general, our detailed analysis was done mainly

for free scalars and free Dirac fermion fields with time dependent mass terms.

In our cases, the quenches in free field theory were described by the parameters appearing

in Table 5.2.1.

This basically means that in the limit of fast quenches, the expectation values behave as

〈ψ̄ψ〉ren ∼ m δt2−d , (5.6)

〈φ2〉ren ∼ m2 δt4−d . (5.7)

In [7–9] we proved that this scaling holds both numerically and analytically. In particular,

we found that the leading order response (in odd spacetime dimensions) was given by

〈ψ̄ψ〉ren = (−1)
d−1

2
π

2d−1σ f
∂d−2

t m(t) + O(δt1−d) , (5.8)

〈φ2〉ren = (−1)
d−1

2
π

2d−2σs
∂d−4

t m2(t) + O(δt6−d), (5.9)

where σ f and σs are constants that only depend in the spacetime dimension d and will be

defined again in the following section — see eqs. (5.23) and (5.33).



5.2. Review of past results 181

We should also mention that in even dimensions there is an extra enhancement of the scaling

due to an extra logarithmic divergence in the counterterms. In fact, in general, for even d we

would expect the operators to scale as,

〈O∆〉 ∼ δtd−2∆(O1 + O2 log µδt) , (5.10)

where O1 and O2 are just constants that depend on d and µ is an IR regulator. We found in [8]

that in general O2 seems to be universal while the non-logarithmic contribution is not. For

d > 4, in the scalar case, it turns out that [8]

σsO2 = (−1)d/2δtd−4∂
d−4
t m2(t)

2d−3 . (5.11)

5.2.2 Kibble-Zurek (KZ) physics

We now turn to a quench which is slow compared to physical scales in the problem. Generi-

cally, this would mean that we will be in the adiabatic regime, where the value of the expec-

tation value is just the one that corresponds to a fixed-mass expectation value with the mass

corresponding to the mass at that particular instant of time. However, that is no longer true if

the quench involves a critical point. In that case, and close enough to the critical point, it is

impossible to have an adiabatic evolution.

Therefore if we start from a gapped phase with a quench rate slow compared to the initial

gap, adiabatic perturbation theory will break down whenever the change in the instanteous gap

Egap(t) becomes of the same order as the gap itself, i.e.,

1
Egap(t)2

dEgap(t)
dt

∣∣∣∣∣∣
t=tKZ

= 1 . (5.12)

If the time dependent coupling behaves near the critical point as in eq. (5.1), while the gap

depends on the coupling as

Egap(t) ∼ |g(t) − gc|
zν , (5.13)

it follows from eq. (5.12) that we can define a Kibble-Zurek time, tKZ , when adiabaticity should
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break down, as

tKZ ∼
(
g0/(δt)r)− zν

zrν+1 . (5.14)

Kibble and Zurek assumed that once adiabaticity is broken at t = −tKZ (for symmetric protocols

that cross the critical point at t = 0), the system switches to a diabatic evolution till t = tKZ. If

one further assumes that in this region the only relevant scale in the problem is tKZ, the scaling

for the renormalized operators in the region follows from dimensional analysis, namely,

〈O∆〉ren ∼ (tKZ)−∆/z . (5.15)

Substituting eq. (5.14) in eq. (5.15) then leads to eq. (5.2).

An improved version of KZ scaling involves scaling functions which can over a wider

regime [13, 14]. For example, the one point function behaves as

〈O∆(t)〉ren ∼
(
g0/δtr) ν∆

zrν+1 F(t/tKZ) , (5.16)

with similar scaling form of higher point correlation functions [14].

Instead, if you consider protocols that approach exponentially to the critical point, i.e.,

|g(t) − gc| ∼ g0 exp(−t/δt), we find it more convenient to define a Kibble-Zurek energy EKZ,

instead of a Kibble-Zurek time. This is because the amount of time it takes to reach the critical

point is always infinite. So if we want a measure to decide whether we are close enough to

the critical point, it is more convenient to define a KZ energy, that will give a finite distance

to the critical point. Note that for power-law profiles, both the Kibble-Zurek time and energy

coincide, i.e., tKZ = E−1
KZ, but in the exponential case they do not. We will show in section 5.5

that in fact EKZ gives the correct scaling.

In sections 5.3 and 5.4, we will consider quenches in free field theories where the gap is

linear in time near the critical point , i.e., Egap(t) = m
δt t. Then, this defines the Kibble-Zurek

time as

tKZ =
√
δt/m . (5.17)
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Usually we will work in dimensionless time, so we define τKZ ≡ tKZ/δt = 1/
√

mδt. This would

translate into the expectation value of the quenched operators as

〈ψ̄ψ〉ren ∼

(
δt
m

)− d−1
2

, (5.18)

〈φ2〉ren ∼

(
δt
m

)− d−2
2

. (5.19)

In section 5.5 we will consider an exponential approach to the critical point in scalar field

quenches. In this case, EKZ = δt−1, which subsequently would mean

〈φ2〉ren ∼ (δt)2−d . (5.20)

Note that in this case the scaling does not depend on the initial amplitude of the gap.

5.3 Explicit solutions

Following [14], in this paper we will analyze three different protocols that should exhibit

Kibble-Zurek behaviour when approaching a critical point. We will consider Trans-Critical

Protocols (TCPs) that cross through a critical point at t = 0; Cis-Critical Protocols (CCPs),

that only touch the critical point at t = 0; and End-Critical Protocols (ECPs), that approach the

critical point as t → ∞— see fig. (5.1). At this point, it is worth mentioning that in the case of

ECPs, our analysis will diverge from that in [14], where they consider protocols that approach

the critical point with a power-law behaviour. Instead, we will consider ECPs that approach

the critical point exponentially.

In the case of TCPs and CCPs, we examine protocols that go through a critical point at

some time, e.g., m(t = 0) = 0. Then, we will expect KZ scaling behaviour to appear near t = 0.

As described in the previous section, “near” is determined by the KZ time tKZ =
√
δt/m (for a

linear behaviour near m = 0).

For the TCP, the simplest quench is the fermionic one where we are just quenching the

mass with a tanh profile. In our previous work [7–9], we wrote our solutions in terms of a mass

that interpolates between values (A + B)m to (A − B)m, where A and B were constants that we
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were able to chose freely. In the past, we analyzed quenches to the critical point, where A = B

and reverse quenches where A = −B. Now we want our solutions to go through zero at time

zero, so we will be interested, basically, in the case where A = 0.

Note that this means that the mass will be negative for times greater than zero. This is not

a problem in the fermionic case. However, for the scalar quenches, the coupling is the mass

squared, and then having a negative mass squared would mean having negative frequencies.

To avoid this problem, for the scalar case we will consider a CCP and will be analyzing

pulsed quenches, where basically the mass squared will start at some positive value at t = −∞,

then go down to zero at t = 0 and then return to that same positive value at t = +∞.

Finally, to consider the ECP, we will use the scalar field quench with a tanh profile as

the one used in [7–9], that starts at some m when t = −∞ and approaches the critical point

exponentially as t → ∞.

Sketches of the profiles are in fig. (5.1). Note that the first two protocols need minor

changes from the original solutions that we have been working with in [7–9], so in the next

subsections we will see in detail the form of both quenches to critical points. For completeness,

we will also show the ECP solution, that can already be found in [7–9].
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Figure 5.1: Quench profiles to study KZ behaviour.

5.3.1 Trans-Critical Protocol (TCP) for Fermionic Quenches

We start by describing the exact solution for a free fermionic quench with a TCP protocol. A

more general solution for mass profiles of the form m(t) = A+B tanh(t/δt), in terms of arbitrary

A and B was already discussed in [8]. So we just need to specify convenient values for these

parameters to get the answer of interest in this case.
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In this case, the mass operator is ψ̄ψ and the explicit construction of the solution can be

found in [8]. If we concentrate on protocols that cross the critical point at t = 0, then we just

need to specify the known solution for the case A = 0. By doing so, we get the mass profile

m(t) = −m tanh(t/δt) . (5.21)

Then, solution for the desired expectation value is given by

〈ψ̄ψ〉 = σ−1
f

∫
ψdiv(k)dk = σ−1

f

∫
kd−4dk

(
ω + m

2ω

)
×

((
k2 − m2(t)

)
|φ~k|

2 − |∂tφ~k|
2 + 2m(t)Im

(
φ~k∂tφ

∗

~k

))
, (5.22)

where σ f is a numerical coefficient that depends on the spacetime dimension d,

σ f =

 21−d/2(2π)
d−1

2 /Ωd−2 for even d ,

(2(3−d)/2)(2π)
d−1

2 /Ωd−2 for odd d ,
(5.23)

and ω =
√

k2 + m2. Last but not least, we need to define φ~k, that in this case is given by

φ~k(t) = exp (−iω t) 2F1

(
1 − i m δt, i m δt; 1 − iωδt;

1 + tanh t/δt
2

)
, (5.24)

where 2F1 is the usual hypergeometric function.

Now, as we discussed in [7–9], this bare expectation value is UV-divergent and needs reg-

ularization. In order to get a finite value for the expectation value we defined a renormalized

operator,

〈ψ̄ψ〉ren ≡ σ
−1
f

∫
dk(ψdiv(k) − fct(m(t), k)) . (5.25)

where fct subtracts all the divergences of ψdiv as we take k → ∞. It turns out (see [7–9]) that,

fct(m(t), k) = −m(t)kd−3 +
m(t)3

2
kd−5 −

3m(t)5

8
kd−7 + (5.26)

+
1
4
∂2

t m(t)kd−5 −

(
1
16
∂4

t m(t) +
5m(t)

8

(
∂tm(t)∂tm(t) + m(t)∂2

t m(t)
))

kd−7,

are all the necessary terms needed to regulate theories up to d = 7. As we discussed in [7–9],
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the first line shows the terms needed to regulate the expectation value for a constant mass,

while the second line includes novel terms that include time derivatives. It is significant that

the counterterms written above are universal in the sense that the function m(t) can be any

smooth function of time. In fact these terms are the large-k expansion of the adiabatic answer.

Finally note that for a constant-mass fermion, the expectation value of the mass operator is

given, for odd d, by

〈ψ̄ψ〉ren, f ixed = σ−1
f

Γ
(
1 − d

2

)
Γ
(

d−1
2

)
2
√
π

md−1sgn(m(t)) . (5.27)

5.3.2 Cis-Critical Protocol (CCP) for Scalar Quenches

For a scalar field with a pulsed profile that just touches the critical point, we need to slightly

modify the solution for a CFT-to-CFT quench studied in [8]. In fact, we will be considering a

slightly more general profile

m2(t) = m2
0 −

m2

cosh2(t/δt)
. (5.28)

For this profile the equation of motion reads,

d2u~k
dt2 +

(
k2 + m2

0 −
m2

cosh2 t/δt

)
u~k = 0 . (5.29)

By making the necessary substitutions in the solutions of the CFT-to-CFT quench in [8], we

obtain the following “in” solution to (5.29),

u~k =
1

√
4π(k2 + m2

0)1/4

2i
√

k2+m2
0yα

E′1/2E3/2 − E1/2E′3/2
×

×

(
E3/2 2F1(a, b;

1
2

; 1 − y) + E1/2 sinh(t/δt)2F1(a +
1
2
, b +

1
2

;
3
2

; 1 − y)
)
,

(5.30)
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where

Ec =
Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

, E′c = Ec(a↔ b) ,

a = α +
i δt

√
k2 + m2

0

2
, b = α −

i δt
√

k2 + m2
0

2
, (5.31)

α =
1 −
√

1 − 4m2δt2

4
, y = cosh2(t/δt) .

To recover the solution for the CFT-to-CFT quench we simply need to set m2 = −m2 and

m0 = m in the above expression.

In this case, we are interested in the expectation value of operator φ2. Again, this is usually

UV-divergent, so we introduce a regulated expectation value,

〈φ2〉ren = σ−1
s

∫
dk

(
kd−2|u~k|

2 − fct(k,m(t))
)
, (5.32)

where,

σs ≡
2(2π)d−1

Ωd−2
, (5.33)

and fct as a function of the mass profile can be obtained using an adiabatic expansion as in [7,8].

For completeness we write the result to regulate the theory up to d = 9,

fct(k,m(t)) = kd−3 −
kd−5

2
m2(t) +

kd−7

8

(
3m4(t) + ∂2

t m2(t)
)

(5.34)

−
kd−9

32

(
10m6(t) + ∂4

t m2(t) + 10m2(t) ∂2
t m2(t) + 5∂tm2(t) ∂tm2(t)

)
+ · · · .

As in the case of the fermionic quench, we end this subsection by reporting the known

result for a fixed-mass scalar field in odd spacetime dimensions, that will be useful in the next

section,

〈φ2〉ren, f ixed = σ−1
s

Γ
(
1 − d

2

)
Γ
(

d−1
2

)
2
√
π

md−2 . (5.35)
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5.3.3 End-Critical Protocol (ECP) for Scalar Quenches

In [7–9] we focussed our attention in the scaling properties for the expectation value of the

quenched operator near t = 0, when mδt was small. In those quenches we started from a

fixed mass amplitude m and quenched the system to zero mass with a tanh profile. This means

that the mass of the system will asympotically go to zero as time goes to infinity and hence,

we should be able to extract some KZ behaviour by examining this same quench but at late

times and large δt. For completeness, we exhibit here the exact solutions for these quenches,

as shown in [7–9]. The mass profile is given by m2(t) =
m(1−tanh(t/δt))

2 . Exact solutions to the

Klein-Gordon equation with this mass profile is given by the following “in” modes:

u~k =
1
√

2ωin
exp(i~k · ~x − iω+t − iω−δt log(2 cosh t/δt)) × (5.36)

2F1

(
1 + iω−δt, iω−δt; 1 − iωinδt;

1 + tanh(t/δt)
2

)
, (5.37)

where ωin =
√
~k2 + m2, ωout = |~k| and ω± = (ωout±ωin)/2. As in the previous case, we compute

the expectation value for the quenched operator φ2 and define a renormalized expectation value,

〈φ2〉ren = σ−1
s

∫
dk

(
kd−2|u~k|

2 − fct(k,m(t))
)
, (5.38)

where σs and the counterterms fct are exactly the same as in the previous case and are given by

eqs. (5.33-5.34).

5.4 Results for TCPs and CCPs

In this section we will use the exact solutions describe in the previous section to provide both

analytic and numerical evidence that a slow quench that goes through a critical point experience

a special behaviour near the critical point, leading to KZ scaling. We will also be able to show,

at a finite time, the transition from the fast quench to the adiabatic, passing through the Kibble-

Zurek quench, providing a complete example of the universal properties of quantum quenches

at any rate. In particular, in this section, we will address the problem of TCPs and CCPs, while



5.4. Results for TCPs and CCPs 189

we leave the analysis of ECPs to the next section.

5.4.1 Adiabaticity Breakdown

We start by showing that in fact there is some loss of the adiabatic behaviour that is manifest in

our solutions near the critical point. To do this we fix a large value for mδt and we follow the

evolution of the expectation values as a function of time. What we see is that, in general, the

expectation value for the operator follows its adiabatic evolution, i.e., eq.(5.27) for fermions

and eq. (5.35) for scalars with the mass given by the value of the mass at that particular time

t/δt. However, when the coupling approaches the critical point we start seeing a deviation

from the adiabatic answer. In particular, when the time approaches the Kibble-Zurek time, i.e.,

τKZ = tKZ/δt = 1/
√

m δt, then the expectation value of the operator starts differing from the

adiabatic answer and does not get to zero as the adiabatic answer would when m = 0.

This general behaviour is shown for both TCP and CCP quenches under consideration in

figs. (5.2) and (5.3). In both cases we show results for δt = 10, m = 1 and d = 5. For the

fermionic case, this means that the adiabatic solution is σ f 〈ψ̄ψ〉ren = 2
3m(t)4sgn(m(t)) and for

the scalar quench, σs〈φ
2〉ren = 2

3m3(t).
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Figure 5.2: Evidence for KZ physics near a critical point in fermionic quenches. The green
solid line represents the adiabatic solution at each instant of time. The blue dots correspond to
the expectation value of the mass operator for a slow quench with δt = 10, in units of m. In fig.
(a) we see that for early and late times the expectation value follows the adiabatic expectation
for slow quenches. In fig. (b) we focus on the region near the critical point (t = 0), and in
fact, we see that the expectation value differs from the adiabatic one. As a guide we plotted
in dashed red lines plus and minus the Kibble-Zurek time, ±τKZ = ±1/

√
m δt, were we should

expect the two curves to start differing from each other, according to the original Kibble-Zurek
argument. As we see in fig. (b), this is in fact what is happening.
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Figure 5.3: Evidence for KZ physics near a critical point in pulsed scalar quenches. The green
solid line represents the adiabatic solution at each instant of time. The blue dots correspond to
the expectation value of the mass operator for a slow quench with δt = 10, in units of m. In fig.
(a) we see that for early and late times the expectation value follows the adiabatic expectation
for slow quenches. In fig. (b) we focus on the region near the critical point (t = 0), and in
fact, we see that the expectation value differs from the adiabatic one. As a guide we plotted
in dashed red lines plus and minus the Kibble-Zurek time, ±τKZ = ±1/

√
m δt, were we should

expect the two curves to start differing from each other, according to the original Kibble-Zurek
argument. As we see in fig. (b), this is in fact what is happening.

As suggested by eq. (5.15) in the previous section, a useful way to observe the KZ scaling is

by computing the renormalized expectation value of the quenched operator but as a function of

t/tKZ. For symmetric protocols, then, we should expect the expectation value between t/tKZ =

±1 to be proportional to the KZ scaling times some function of t/tKZ . In fig. (5.4) we plotted

the expectation value for the fermionic operator for different δt’s as a function of t/tKZ for

d = 5. Note that we are extracting out the Kibble-Zurek scaling, so as we increase δt we

observe that (between t/tKZ = ±1) all the curves converge into a single one, that is what we

called F(t/tKZ) in eq. (5.15). Moreover, we plotted in a dashed curve the adiabatic expectation

to show that as you go away from the KZ zone, the curves tend to approximate to the adiabatic

one as δt → ∞. However, in the KZ region, the curves are clearly different from the adiabatic

expectation. We computed analogous results for the scalar case. In that case, we also were

able to obtain analytic results for F(t/tKZ), so we reserve the comparison for section 5.4.3. The

impatient reader, though, can find the analogous plots in fig. (5.9).
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Figure 5.4: Renormalizad expectation value of fermionic mass operator as a function
of t/tKZ for d = 5. The different curves correspond to δt = 10i, with i =

0.5(blue), 1(yellow), 1.5(green), 2(orange), in units of m. Note that we are multiplying the
expectation value by δt

5−1
2 , that is the expected KZ scaling. In dashed red, we plotted the ex-

pectation value in the adiabatic case. In fig. (a) we plotted for large periods of time, while in
fig. (b) we zoomed in the area where we expect KZ scaling to appear (−1 < t/tKZ < 1).

5.4.2 Expectation values at t = 0 and KZ scaling

In order to characterize this special behaviour, we first concentrate on t = 0. In this special

case the formulas get simplified. For instance, all the counterterms that are proportional to the

mass are zero so we do not need to consider them. As we will see below, at this particular time

we will be able to extract KZ scaling analytically in the case of the pulsed quench. This will

also allow us to calculate the corrections to leading scaling.

5.4.2.1 Numerical

We start by evaluating the expectation values for both the fermionic and the scalar quench

at t = 0. This is, in principle, a challenging task because as we increase δt we expect the

expectation value to actually go to zero, so in general we will be integrating numerically large

quantities that will be cancelled to give a very small (and decreasing with δt) number.

Another important aspect to note is that in fact the formulas presented in section 5.3 are

valid for any quench rate. In particular, for very small δt we expect to recover our past universal

results for fast quenches (see section 5.2), while for larger δt we expect KZ behaviour.

At this point, and focussing at t = 0, the only variable in the problem is m δt and so for

m δt � 1 we expect the fast quench to appear and for mδt � 1 the expectation is to find the
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KZ scaling. Our solutions also allow us to see the transition between the two regimes. Also

note that at t = 0 it is impossible to achieve adiabatic behaviour since the adiabaticity condition

requires
1

m(t)2

dm(t)
dt
� 1 . (5.39)

This becomes, both for fermionic quenches with mass given by eq. (5.21) and the pulsed scalar

quench with mass given by eq. (5.28),

mδt �
1

sinh2(t/δt)
, (5.40)

which can never be satisfied at t = 0.

We start by analyzing the fermionic quench. We fix the time to t = 0 and then compute

the expectation value for the mass operator for different δt’s for d = 4 and d = 5. The results

are shown in figure (5.5). In the fast quench regime we just reproduce the scaling behaviour

found in [7,8] finding perfect agreement with the analytic expressions therein (orange curves).

In the slow quench region, we find that the best fit curve reproduces the expected scaling

for KZ physics, i.e., 〈ψ̄ψ〉ren ∼ δt−
d−1

2 . In between we find a smooth transition between the

two regimes. Also note that in the even dimensions case we find no extra log enhancement.

This is just because we are calculating the expectation value at t = 0, where the logarithmic

contribution vanishes (see equations (3.15) and (3.16) in [8]) . In the next section we will study

finite t, where we do expect logarithmic enhancement in even dimensions.

Now we turn to the case of free scalars with the mass profile given by eq. (5.28). In this

case there is an extra feature: for fast quenches, the expectation value goes as the (d − 4)-

derivative of the mass profile. This means that for odd dimensions, the expectation value for

φ2 is zero at t = 0. This fact will make the fast scaling very difficult to see, so we will focus

our attention (for now) in even dimensions. We basically perform now the same computation

as before with the fermionic quench but for this scalar profile. The results can be seen in fig.

(5.6). For d = 4, we see that for the fast quench there is a pure logarithmic behaviour and when

we turn into the slow quench we find that it scales with δt as δt−
d−2

2 = δt−1, that is the expected

scaling in KZ physics. Note that in the intermediate region the expectation value changes sign

and to continue plotting in the logarithmic scale we decided to plot the absolute value of the
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Figure 5.5: The transition from the fast quench to the slow quench at t = 0 for fermionic
quenches. The fast quench exhibits the usual fast quench universal scaling. The leading ana-
lytical contribution were found in [7, 8] and they are plotted in solid orange. In solid purple
we have the best fit lines for the slow regime, with powers of δt supporting the KZ scaling
〈ψ̄ψ〉ren ∼ δt−

d−1
2 . At t = 0, the two regimes are divided by the scale m δt = 1, which is plotted

in dashed red for orientation purposes only.

expectation value. This generates an apparent singular behaviour in the expectation value but

that is just an artifact of the logarithmic scale as can be seen from the insets in fig. (5.6), where

the profiles are plotted in a regular scale and no discontinuities are present.

Also note that in d = 4, the KZ scaling is not enhanced by logarithmic corrections, as it is

in the fast quench regime. We will discuss this fact in the next section. In fact, this is special for

d = 4, because as it can be appreciated in fig. (5.6b), in the case of d = 6 there is a logarithmic

scaling in both the fast and the slow quench, and the same holds for higher even dimensions.

Taking out that difference, the behaviour and the two characteristic scalings are the same for

d = 6.

5.4.2.2 Analytical

In order to get some analytical understanding of the quench process near the critical point, we

study the pulsed scalar quench at t = 0. A generalization of the ideas in this section is given in

section 5.4.3 to evaluate the expectation value at finite times.

The expression for the quenched operator simplifies at t = 0. Consider eq. (5.30) which we
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Figure 5.6: The transition from the fast quench to the slow quench at t = 0 for the scalar quench.
The fast quench exhibits the usual fast quench universal scaling. The solid orange curve is the
leading order contribution for fast quenches, that as we are in even dimensions, it has an extra
logarithmic contribution. The solid purple curves show the KZ scaling, 〈φ2〉ren ∼ δt−

d−2
2 , that is

enhanced in d = 6 by a logarithmic contribution, that is not present in d = 4. In each figure, the
inset shows the same expectation value but not in logarithmic scale, near the region where the
apparent divergences appear. As it can be easily appreciated, the profiles are smooth and the
apparent divergent behaviour is just an artifact of the logarithmic scale when the expectation
value changes sign.

recall here,

u~k =
1

√
4π(k2 + m2

0)1/4

2i
√

k2+m2
0yα

E′1/2E3/2 − E1/2E′3/2
×

×

(
E3/2 2F1(a, b;

1
2

; 1 − y) + E1/2 sinh(t/δt)2F1(a +
1
2
, b +

1
2

;
3
2

; 1 − y)
)
.

(5.41)

Now, at t = 0, the second term of the second line vanishes because of the overall factor of

sinh(t/δt). Moreover, we remind the reader that y = cosh2(t/δt), so the last argument of both

hypergeometric functions is (1 − y)|t=0 = 0. This means that modes at t = 0 are simplified to

u~k(t = 0) =
2i
√

k2+m2
0

√
4π(k2 + m2

0)1/4

E3/2

E′1/2E3/2 − E1/2E′3/2
. (5.42)

Thus we need to find the behaviour of eq. (5.42) for large values of mδt. Note that an adiabatic

expansion would be a power series in (mδt)−1, which is indeed a good expansion for early

times. However at t = 0 adiabaticity has broken down, so this power series expansion is no
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longer valid.

The bare expectation value is given by

〈φ2〉|t=0 = σ−1
s

∫
dk kd−2|u~k(t = 0)|2 . (5.43)

An efficient way of extracting the large mδt behaviour is to make a change of variables in the

above integral in a way which allows an expansion of the integrand for large mδt. This is along

the lines of the analysis of fast quench which was performed in [7–9] where we were looking

for an expansion for small mδt. In that case, it was useful to perform the change of variables

k → p = kδt. This is no longer useful in our present situation.

For large mδt, Kibble-Zurek physics indicates that once we are in the vicinity of the crit-

ical point, the only scale in the problem is the Kibble-Zurek time, tKZ =
√
δt/m. Then, it is

promising to define dimensionless variables in this case as

q = k

√
δt
m

= k tKZ , (5.44)

κ =
√

mδt = m tKZ . (5.45)

Indeed this is the correct change of variables in the integral which allows us to extract the large

κ behaviour.

The renormalized expectation value becomes

σs〈φ
2〉ren|t=0 =

(m
δt

) d−2
2

∫
dq

 qd−2

4π
√

q2 + κ2

∣∣∣∣∣∣ E3/2

E′1/2E3/2 − E1/2E′3/2

∣∣∣∣∣∣2 − fct(q, κ)

 .
(5.46)

We will now show that the integrand is an expansion in 1/κ, with the leading term being O(1).

Therefore the leading large κ behaviour is given by the pre-factor which is in fact the expected

KZ scaling for this expectation value.

At this point, it will be useful to remind the reader what the different E’s are. In these
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variables, we have

Ec =
Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

, E′c = Ec(a↔ b) ,

a = α +
iκ
2

√
κ2 + q2 , b = α −

iκ
2

√
κ2 + q2, (5.47)

α =
1
4

(
1 −
√

1 − 4κ4
)
.

The usefulness of choosing the dimensionless momenta as in (5.45) is the following. The

crucial point is that in (5.47) the expansion of a is

a =
1
4

(1 + iq2) +
i

16κ2 + · · · , (5.48)

so that the leading term is O(1). This allows us to perform a series expansion of the integrand in

inverse powers of 1/κ. Note that the gamma functions which appear have vanishing arguments

and therefore individually each E can diverge. However the combination present in eq. (5.46)

is well-behaved. In fact, one gets an expansion

∣∣∣∣∣∣ E3/2

E′1/2E3/2 − E1/2E′3/2

∣∣∣∣∣∣2 = κ

e−
1
4 (5πq2)

(
eπq2

+ 1
)2

∣∣∣∣∣Γ (
1−iq2

4

)2
Γ
(

1+iq2

2

)2
∣∣∣∣∣

8π2 + O(κ0) .

(5.49)

As regards the counterterms, at t = 0 all the ones that are proportional to the mass vanish and

for lower dimensions we do not have any time derivatives in the counterterms.

Note that the rescaling of the integration variable is simply a tool to obtain the large κ

behaviour. In fact, we can make any other change of variables, e.g.,

q̃ = k
δtβ

m1−β , (5.50)

κ̃ = (mδt)β , (5.51)

with β being some real number. In the cases analyzed so far, β = 1 for the fast quench and
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β = 1/2 for the slow quench. For general β, one would obtain

a =
1
4

−√1 − 4κ2/β + κ1/β

2i +
iq2

κ2 + O
(
1
κ

)4 . (5.52)

Consider the term proportional to q2. It turns out that if we chose β < 1/2, then that term would

be leading in the κ expansion and a would be just proportional to q2. In the opposite case, with

β > 1/2, then that term would be subleading and a won’t depend on q to leading order. It

turns out that none of these possibilities allow us to get a well-behaved series expansion of the

combinations of E’s that we have. It is only when β = 1/2, that the leading term is at the same

time independent of κ and dependent on q and that is exactly the right combination needed to

get the expansion in (inverse) powers of κ.

The leading term in eq. (5.49) is proportional to κ. Going back to eq. (5.46), the factor
1√

q2+κ2
starts with 1/κ, and one finally gets for d ≤ 5,

σs〈φ
2〉ren|t=0 =

(m
δt

) d−2
2

∫
dq Φ1(q) − qd−3 + · · · , (5.53)

where the qd−3 corresponds to the counterterm and

Φ1(q) = qd−2
e−

1
4 (5πq2)

(
eπq2

+ 1
)2

∣∣∣∣∣Γ (
1−iq2

4

)2
Γ
(

1+iq2

2

)2
∣∣∣∣∣

8π2 . (5.54)

The integral over q will give us just a number, so that the leading order behaviour is given by

the prefactor, which is exactly Kibble-Zurek scaling.

We have not been able to perform the integral in eq. (5.53) analytically. We can, instead,

integrate numerically to the precision we want and for d = 4 and d = 5 we obtain,

σs〈φ
2〉d=4

ren |t=0 =

(m
δt

)
0.091412 + · · · , (5.55)

σs〈φ
2〉d=5

ren |t=0 =

(m
δt

)3/2
0.256921 + · · · . (5.56)

The expression obtained for d = 4 fits perfectly with the purple curve in fig. (5.6a). One can do

an analogous calculation for d = 5 and will find the same agreement, validating this analytic
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expansion.

In higher dimensions, d = 6, 7, the necessary counterterms will involve time derivatives of

the mass [7, 8]. This means that even at t = 0 the counterterms can be non-vanishing. In fact,

up to d = 7, the counterterms read

fct(q, κ) = qd−3 +
1
4

qd−7 . (5.57)

The last term will introduce the extra logarithmic divergence in d = 6. In this case, we obtain,

σs〈φ
2〉d=6

ren |t=0 =

(m
δt

)2
(
0.030079 +

1
8

log(µδt)
)

+ · · · , (5.58)

where we introduced a dimensionful constant µ in the logarithm as in [7–9] for even d. Of

course, this prediction perfectly matches the purple curve on fig. (5.6b).

Extracting KZ scaling and corrections became much easier since we worked at t = 0. In

principle one should be able to carry out the analysis for finite τ in the critical region. We show

how to deal with it analytically at the end of the next subsection.

5.4.3 Universality at any rate!

So far we have focussed our attention on t = 0. We find that at that moment of time the ex-

pectation values behave exactly as predicted by Kibble-Zurek physics. But KZ scaling should

hold not only at the critical point but also at its vicinity, see eq. (5.16), so in this section we

study what happens with the quenched operators at any finite time.

This will be interesting because it will give a complete description of the expectation value

of a quenched operator at any finite time for any quench rate.

The idea is first, to fix a finite value of τ = t/δt = τ0, and study the response as a function

of δt. This means that different values of δt correspond to different times t = τ0δt. Recall that

the Kibble-Zurek time is given by tKZ =
√
δt/m. For a fixed τ0 it corresponds to a value of

δt = δtKZ = 1/(mτ2
0).

Then, as a function of δt, three different regimes should appear. First, for mδt � 1 we have

the universal fast quench regime studied in [7–9]. At the other extreme, when δt � δtKZ , which
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means mδt � 1/τ2
0, the system is far from the critical point and the time evolution should be

adiabatic. Finally for 1 � mδt � 1/τ2
0 we should have Kibble- Zurek scaling.

Note that δtKZ is inversely proportional to the square of τ2
0, so in the case of τ = 0 that was

analyzed in the previous section, this division between the two regimes happens at infinity and

we would never be able to see it.

To show how this works, we start by analyzing the fermionic quench in d = 5. We fix τ to

be τ0 = −1/5. This choice is arbitrary but in general τ0 should be small enough (in absolute

value) so that we have a large region between δt = 1 and δt = 1/τ2
0, so that the KZ scaling can

be easily distinguished.

Now we compute the expectation value for the mass operator all the way from very small

δt to very large δt. The results are shown in fig. (5.7), for m = 1. We can clearly recognize

the three different behaviours. First we have the fast quench scaling, whose analytic answer is

plotted in solid orange. As δt → 1 there is a transition and KZ physics starts appearing. The

solid purple line shows that the scaling obeys KZ scaling. Finally, when δt is large enough,

compared to 1/τ2, then the behaviour becomes adiabatic and the solid green line shows exactly

the value of the expectation value for a fixed-mass operator with mass equal to m(t/δt = τ0).

The passage between these behaviours appears to be completely smooth.

And finally, we turn into the pulsed quench for scalars. As we are now away from t = 0

we can also see the fast quench scaling in odd dimensions. In fig. (5.8) we show the results for

d = 5 and τ0 = −1/16. The result is basically analogue to the fermionic one. There are three

distinct phases for the expectation value of the quenched operator as a function of δt. For small

δt, we see the fast quench scaling. For very large δt, the expectation value is just the adiabatic

one, independent of δt. But between both of them, there is a Kibble-Zurek phase, in the region

1 < mδt < 1/(τ2
0), where the expectation value scales as (δt)−

d−2
2 .

Analytic Argument

We can understand that behaviour analytically in the case of the pulsed scalar field quench by

generalizing the arguments in section 5.4.2.2, to a finite fixed time τ. In particular, by doing

an appropriate expansion of the full expectation value we will be getting that it scales as the

Kibble-Zurek scaling times a function of t/tKZ, exactly as claimed in eq. (5.16).
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Figure 5.7: Expectation value of the fermionic mass operator at fixed τ = −1/5, as a function
of δt. We set the mass to m = 1. The solid organge line is the analytic leading contribution
to the expectation value for fast quenches; the solid purple line agrees with the KZ scaling,
〈ψ̄ψ〉ren ∼ δt−

d−1
2 ; and the solid green line shows the adiabatic value for a fixed-mass operator

with the corresponding mass at τ = −1/5. To guide the different regions we also plotted dashed
red lines at δt = 1 and δt = 1/τ2, that should correspond to the transition scales.

Recall that the full solution for the pulsed quench is given by

〈φ2(τ)〉 =

∫
dd−1k

(2π)d−1 |u~k(t/δt = τ)|2 , (5.59)

with

u~k =
1

√
4π(k2 + m2

0)1/4

2i
√

k2+m2
0yα

E′1/2E3/2 − E1/2E′3/2
×

×

(
E3/2 2F1(a, b;

1
2

; 1 − y) + E1/2 sinh(t/δt)2F1(a +
1
2
, b +

1
2

;
3
2

; 1 − y)
)
.

(5.60)

Also recall, that y = cosh2(τ). This last fact was used in section 5.4.2.2 to simplify the ex-

pression as 1 − y|τ=0 = 0 and then both hypergeometric functions in eq. (5.60) had a vanishing

argument and so they simplified to 1.

At this point, we cannot assume they are zero any more, but instead we want to expand

for small τ. Note that according to the arguments presented in section 5.2.2, we expect the
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Figure 5.8: Expectation value of the scalar pulsed mass operator at fixed τ = −1/16, as a
function of δt for d = 5. We set the mass to m = 1. The solid organge line is the analytic
leading contribution to the expectation value for fast quenches; the solid purple line agrees
with the KZ scaling, 〈φ2〉ren ∼ δt−

d−2
2 (the fit by a function y = ax−α gives a = 0.1867 and

α = 1.515) ; and the solid green line shows the adiabatic value for a fixed-mass operator with
the corresponding mass at τ = −1/16. To guide the different regions we also plotted dashed red
lines at δt = 1 and δt = 1/τ2, that should correspond to the transition scales. Note that as there
is a change of sign in the expectation value, noticeable in the plot by an apparent divergence
around δt ∼ 10−1, we decided to plot the absolute value of the renormalized expectation value.
To avoid misinterpretations, we also included an inset without the logarithmic scale to show
that the expectation value is smooth as a function of δt.

expectation value to be proportional to the KZ scaling times a function of t/tKZ, see eq. (5.16).

Then it will be useful to write the fixed time τ as

τ ≡ t/δt =
t/tKZ

κ
, (5.61)

where again tKZ is given by tKZ =
√
δt/m and κ =

√
mδt. Now for times of order t/tKZ . 1,

where we expect to see the KZ scaling, a small τ expansion is equivalent to a large κ expansion.

As in section 5.4.2.2, we define dimensionless momenta given by q = k
√

δt
m . In this variables
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we can write the expectation value as,

σs〈φ
2(t/tKZ)〉 =

(m
δt

) d−2
2

∫
dq

qd−2√
q2 + κ2

∣∣∣∣∣∣ E3/2

E′1/2E3/2 − E1/2E′3/2

∣∣∣∣∣∣2 · (5.62)

·

∣∣∣∣∣∣2F1(a, b;
1
2

; 1 − y) +
E1/2

E3/2
sinh

(
t/tKZ

κ

)
2F1(a +

1
2
, b +

1
2

;
3
2

; 1 − y)

∣∣∣∣∣∣2

The idea is to get the leading order contribution in the κ expansion and that will result in

the corresponding F(t/tKZ).

First note, that if we specify t = 0, the second line is just one and we recover the solution

analyzed in Section 5.4.2.2, so the expansion gives,

qd−2√
q2 + κ2

∣∣∣∣∣∣ E3/2

E′1/2E3/2 − E1/2E′3/2

∣∣∣∣∣∣2 −−−→κ→∞
Φ1(q) ≡ qd−2

e−
1
4 (5πq2)

(
eπq2

+ 1
)2

∣∣∣∣∣Γ (
1−iq2

4

)2
Γ
(

1+iq2

2

)2
∣∣∣∣∣

8π2 .

(5.63)

Next, we need to expand E1/2

E3/2
sinh

(
t/tKZ
κ

)
for large κ. The sinh is just linear in its argument

and expanding the E′s gives a term proportional to κ, so in all we have

E1/2

E3/2
sinh

(
t/tKZ

κ

)
−−−→
κ→∞

t
tKZ

2(−1)3/4 Γ
(

3−iq2

4

)
Γ
(

1−iq2

4

)  + O(κ−1) . (5.64)

The last step we need is to expand the hypergeometric functions to leading order for large

κ. Note that by expanding its arguments we get,

lim
κ→∞

2F1(a, b; c; 1 − y) = lim
κ→∞

2F1

(
a,−iκ2; c;−

t/tKZ

κ2

)
= lim

κ→∞
2F1

(
a, κ2; c; i

t/tKZ

κ2

)
,

(5.65)

where c is either 1/2 or 3/2 depending which of the two hypergeometric functions in eq. (5.60)

we are expanding and a =
1+iq2

4 + O(κ−1). To go from the first term to the second term we just

expanded the arguments for large κ and to go from the second to the third we use the fact that,

in its series representation, each term has the form (a)n(b)n
(c)n

zn

n! , so if b = −iκ2, the leading term in

(b)n would be (−iκ2)n, so the (−i)n can certainly go into the last argument as (−iz)n. Note also



5.4. Results for TCPs and CCPs 203

that the second hypergeometric in eq. (5.60) has b+1/2 as the second term, however, that extra

1/2 will be irrelevant in the large κ limit.

Now we are able to take the limit of κ → ∞, that gives nothing more than the confluent

hypergeometric function3, limw→∞ 2F1(x,w; y; z/w) = 1F1(x; y; z) =
∑

n
(a)n
(b)n

zn

n! . So,

2F1(a, b; 1/2; 1 − y) = 1F1

(
1 + iq2

4
, 1/2, i(t/tKZ)2

)
+ O(κ−1) , (5.66)

2F1(a + 1/2, b + 1/2; 3/2; 1 − y) = 1F1

(
3 + iq2

4
, 3/2, i(t/tKZ)2

)
+ O(κ−1) , (5.67)

both independent of κ to leading order.

With this we have all the ingredients to compute the bare expectation value. An extra

comment needs to be made about the counterterms needed to regulate the expectation value.

Up to d = 5, the necessary counterterms can be written as

fct(q, κ) = qd−3 − qd−5 κ
2

2

(
1 − cosh−2

(
t/tKZ

κ

))
= qd−3 − qd−5 (t/tKZ)2

2
+ O(κ−2) .

(5.68)

Then the renormalized expectation value, to leading order for large κ is given by

σs〈φ
2(t/tKZ)〉ren =

(m
δt

) d−2
2

(∫
dq Φ1(q)∣∣∣∣∣∣∣∣1F1

(
1 + iq2

4
,

1
2
, i(t/tKZ)2

)
+

t
tKZ

2(−1)3/4 Γ
(

3−iq2

4

)
Γ
(

1−iq2

4

)  1F1

(
3 + iq2

4
,

3
2
, i(t/tKZ)2

)∣∣∣∣∣∣∣∣
2

−

∫
dq

(
qd−3 − qd−5 (t/tKZ)2

2

))
. (5.69)

Note that this is just what we were looking for! The overall factor in the above expression gives

the correct Kibble-Zurek scaling and the rest is an integral over q that only depends on t/tKZ.

If we perform the integral, then we are left with F(t/tKZ) as required in eq. (5.16). In fact, the

integral can be done numerically and so, we can compare with the full expectation value for

different values of δt. Basically, in fig. (5.9), we present the analogue for scalars of fig. (5.4)

3In the last two paragraph we are using the usual notation for the hypergeometric series representation where
(X)n = X(X + 1) · · · (X + n − 1), for natural n, and (X)0 = 1.
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for fermions but with the added green dashed curve that gives the leading order solution in the

κ expansion, computed by numerically integrating eq. (5.69). We observe that as δt increases

in the range t < tKZ , the full solutions approach the leading order one and clearly move away

from the adiabatic one, providing good evidence of the expected Kibble-Zurek scaling.
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(b) Kibble-Zurek interval, −1 < t/tKZ < 1.

Figure 5.9: Renormalizad expectation value of φ2 as a function of t/tKZ for d = 5. The different
curves correspond to δt = 10i, with i = 0.5(blue), 1(yellow), 1.5(green), 2(orange), in units of
m. Note that we are multiplying the expectation value by δt

5−2
2 , that is the expected KZ scaling.

In dashed red, we plotted the expectation value in the adiabatic case. In dashed green, we
present the leading order solution in the large κ expansion. In fig. (a) we plotted for large
periods of time, while in fig. (b) we zoomed in the area where we expect KZ scaling to appear
(−1 < t/tKZ < 1).

Fig. (5.9) also uncovers another interesting fact about F(t/tKZ). At first thought, we can

imagine this function appropriate to describe the Kibble-Zurek region, i.e., t > tKZ. However,

fig. (5.9a) shows that for t > tKZ , F(t/tKZ) overlaps with the adiabatic solution, showing that

it also describes the behaviour of the expectation value in the adiabatic regime. Even though

this might be surprising, it also be related to the fact that to obtain F(t/tKZ) we just performed

a large-κ expansion but we did not assume any special limit for t/tKZ.

It is also worth mentioning that this analytical computation agrees with the numerical fit in

the previous section. For instance, the purple curve with the KZ scaling in fig. (5.8), is given

by equation y = aδt−α, with a = 0.1867 and α = 1.515. The value of α of course supports the

KZ scaling for d = 5. But we also find quite a good agreement in the other coefficient. In fig.

(5.8), τ is fixed to −1/16 and δt is of the order of 10 in the KZ region, so t/tKZ ∼ −0.2. The

numerical integration of eq. (5.69) for d = 5 gives a ∼ 0.194, that is similar to what we found

with the numerical fit.
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Moreover, we can obtain even stronger evidence to support the claim that F(t/tKZ) also

contains the adiabatic evolution by comparing with the full numerical evaluation of fig. (5.8).

In there, we fixed τ = t/δt = −1/16. Then, in order to compare both solutions we need to

compute F(t/tKZ) = F( t
δt

√
mδt) = F(− 1

16

√
δt), in units of m. The results for large δt are

shown in fig. (5.10), where we just included the numerical evaluation of the full solution

and the comparison with F(− 1
16

√
δt). The overlap between the two approaches at large δt,

makes manifest that F(t/tKZ) is a good approximation even during the adiabatic evolution.

As pointed out before, the change between the Kibble-Zurek and the adiabatic scaling occurs

when δt ∼ τ−2 and that, obviously, corresponds to F(t/tKZ = 1). So it would be interesting to

understand the change in the behaviour of F between t < tKZ and t > tKZ .
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Figure 5.10: Expectation value of the scalar pulsed mass operator at fixed τ = −1/16, as a
function of large δt for d = 5. We set the mass to m = 1. The solid green line shows the
leading order solution in the κ expansion, δt−3/2F(−

√
δt/16). To guide the different regions we

also plotted dashed red lines at δt = 1 and δt = 1/τ2, that should correspond to the transition
scales.

5.5 Results for ECPs

The ECP with an exponential approach behaves different as the other two cases. This is mainly

because instead of just passing through or touching the critical point, in this protocols we never

actually get to it. A consequence of this difference is reflected in the different scaling that we

expect in the KZ behaviour, i.e., see the difference between eq. (5.19) and eq. (5.20).
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In this section, we use the exact solution for a tanh quench to the critical point, as shown

in section 5.3.3, to extract the Kibble-Zurek scaling at late times, i.e., when the profile is close

enough to the critical point.

Note that in this case obtaining a plot with the universal scaling at any rate as function of δt

can be very challenging. This is because to actually have evidence for KZ scaling when need

to be at late time τ0. At that time, though, when you go to the fast quench regime, you see

that expectation values are proportional to time derivatives at that time and as the profile has an

exponential decay, the expectation value will soon go to zero, making the universal fast scaling

very hard to see.

We already studied the fast quench regime in this kind of quenches in [7–9], so in this

section we will concentrate on the slow quench and the appearance of a Kibble-Zurek scaling

before reaching the adiabatic behaviour.

Recall that for an exponential profile m(t) = m exp(−t/δt), the condition for adiabaticity

breakdown is — see eq. (5.12) —,

m exp(−tKZ/δt) = δt−1 . (5.70)

Solving for tKZ, we see that actually tKZ will have a logarithmic dependence on δt. Instead,

if we define EKZ ≡ mKZ = m exp(−tKZ/δt), we see that this is just inversely proportional to

δt. Now, both tKZ and mKZ could play the role of the dimensionful relevant scale that will

dominate the expectation value of the quenched operator. This is, in principle, 〈φ2〉ren can scale

as (tKZ)−∆ or (mKZ)∆, giving different scaling with δt. Note that for power-law protocols this is

not a problem since in those cases tKZ = 1/mKZ.

To distinguish which of the two scalings with δt is the correct one, we computed the expec-

tation value of the quenched operator as a function of δt at late times. In fig. (5.12), we show

such an example for τ = 12 in d = 5. We can in fact observe an interesting scaling before going

into the adiabatic one and the fit shows that there is no logarithmic scaling present. In fact, the

fit supports the scaling 〈φ2〉ren ∼ δt2−d which would correspond to mKZ being the relevant scale

in this case. This is coherent since tKZ does not seem to be a plausible scale in this regime

because the time to approach the critical point is always infinite in this case. Instead, mKZ gives
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a finite distance (in units of energy) to the critical point.

A second computation we can perform to verify eq. (5.70) is to compute δtKZ as a function

of τ, i.e., the rate at which the quench is slow enough as to go to adiabatic behaviour instead of

KZ. We can get an estimate of that by computing the intersection between the KZ fit and the

adiabatic value. Doing that for different values of τ, we arrive to fig. (5.12), where we see that

in fact δtKZ grows exponentially with τ as required by eq. (5.70).
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Figure 5.11: Expectation value of the scalar mass operator at fixed τ = 12, as a function of
δt. We set the mass to m = 1 and concentrate on large quench rates. The solid purple line is
the best fit for the points in the Kibble-Zurek regime and obeys the equation y = a δt−α, with
a = 0.0199 and α = 2.993, which supports the conclusion that in these exponential protocols
the relevant scale is mKZ instead of tKZ . The green line corresponds to the adiabatic value at
τ = 12.

5.6 Concluding Remarks

In this paper we have studied universal scaling for expectation value of operators in the “in”

state for a big range of quench rates which ranges from “slow” to “fast” quench. We found

that the fast quench scaling smoothly crosses over to Kibble-Zurek scaling and finally to an

adiabatic behaviour. Our calculations, however, involved renormalized expectation values of

local operators, which is what is physical for quench rates which are always much slower

than the UV cutoff scale of the theory. With these operators, it is not possible to study the

limit of instantaneous quench, δt → 0. However, as shown in detail in [9] some properties
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Figure 5.12: The value of δt at which there is a transition between the KZ scaling and the adia-
batic behaviour as a function of the fixed time τ. The curve corresponds to an exponential fit of
the numerical points (y = a exp(−τ), with a = 0.314). This is in agreement with expectations
given by eq. (5.70), though it is not exact as we are taking δtKZ as the intersection between the
KZ fit —purple line in fig. (5.11)— and the adiabatic value).

of instantaneous quench can be studied by looking at UV finite objects like the correlation

function at finite spatial separations. Then, this separation r provided an extra scale in the

problem and what we found is that for δt < r, the universal scaling stopped appearing and

instead the correlator was constant with respect to δt.

We expect a similar behaviour for local quantities when the UV cutoff is finite. Such models

may describe realistic experimental systems, so it would be interesting to analyze those cases.

In that case one can consider a quench rate which is at the cutoff scale. For such rates, the

physics should be described by an instantaneous quench. For such quenches, Calabrese and

Cardy have proposed a simple description of the state after a quench from a gapped phase to a

critical theory [15,16] in terms of boundary states of the final CFT. It turns out that the validity

of this proposal depends on what is being measured [17]. An exactly solvable model on a

lattice will be useful to address these issues. Progress in this direction has been made recently

in [18] analyzing the Kibble-Zurek scaling in the transverse Ising model. We have recently

found exactly solvable quench protocols in several spin models and studied the dependence on

the quench rate: the results will appear in a separate communication [12].
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Chapter 6

General discussion and conclusions

In the preceding Chapters (and in [1–4]) we studied the problem of following the real time

evolution of a theory in which one of its couplings is time dependent. We considered quenches

in which the coupling only changes in a time scale given by the quench duration δt. Inspired by

previous results in holography [5, 6] that seemed to challenge condensed matter expectations

[7, 8] — see Chapter 1 — we studied mass quenches in free field theories. In theses cases,

and for certain mass profiles, we were able to obtain exact analytic solutions to the equations

of motion that are valid at any quench rate. This allowed us to study quantum quenches in

different regimes.

The first and most important result concerns the study of smooth fast quenches. Holo-

graphic studies exhibit universal scaling in this regime. Given a CFT perturbed by a relevant

operator of dimension ∆, S = S CFT +
∫

dd x λ(t)O∆, the argument is that if the quench is fast

enough so that δt is the only relevant scale in the problem, then the expectation value for the

quenched operator should scale universally. In a similar fashion, and following from the dif-

feomorphism Ward identity, the expectation value for the energy density should also exhibit

universal scaling. While this was previously done in the context of holography, at infinite cou-

pling, we show that the same scaling holds for infinitely weak, free field theories. To be more

concrete, we found that for quenches in which the quench duration is much shorter than the

quench amplitude, i.e., δt � δλ1/(d−∆), the renormalized expectation value for the quenched
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operator and subsequently, the energy density should scale universally as,

〈O∆〉ren ∼ δλ/δt2∆−d , 〈E〉ren ∼ δλ
2/δt2∆−d . (6.1)

This result is valid in arbitrary spacetime dimensions, with the added feature that in even di-

mensions the scaling is enhanced by an extra logarithmic divergence. For free scalar field

theories, the dimension of the mass operator is d − 2, so as mδt � 1, we found that the ex-

pectation values were diverging for d ≥ 4. While this seems to be a problem only in higher

dimensions, in the fermionic case where the mass operator has dimensions ∆ = d − 1, the

divergences start appearing as low as d = 2. Moreover, in this Thesis we provided arguments

to think that in fact this scaling holds beyond the infinitely weak or strong coupling and that

should hold for any interacting CFT. In these cases, whenever ∆ > d/2, the corresponding

expectation values should be diverging as δt goes to zero.

While in Chapter 2 we presented this important result, in Chapter 3 we gave details and

presented both numerical and analytical arguments to prove it in free field and interacting

theories.

In the case of the free scalar field, we also discussed the scaling of higher spin currents. For

a massless scalar field there is an infinite tower of higher spin currents that are conserved [9,10],

maybe the most known one being the spin 2 current or the stress-energy tensor. In the massive

case (but with a fixed mass), we expect to have analogue conserved currents of higher spin. In

fact we constructed the full spin-4 current in Chapter 3. We showed that by doing a recursive

process similar to the Ward identity, in which the spin-0 expectation value, 〈O∆〉, is related to

the spin-2 expectation value, 〈Tµν〉, higher spin currents under the quench should also scale

universally. Of course, this opens the interesting question of what would be the behaviour of

Vasiliev higher spin theories [9] under quantum quenches. In particular, it is believed that the

O(N) vector model is dual to one of these higher spin theories [11], so maybe the lessons we

learnt analyzing fast quenches can go back into holography and tell us some interesting features

of Vasiliev gravity [9]. We leave this interesting research direction for future investigation.

Another important characteristic of our calculations is that we are dealing with renormal-

ized expectation values, which means that we previously subtracted all the UV-divergent quan-
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tities of the bare expectation value. In free field theory, we showed how to find the divergent be-

haviour by doing an adiabatic expansion of the expectation value in powers of time-derivatives

of the mass profile. This step might be counter-intuitive, since our results hold in the case of

fast quenches where time-derivatives are not suppose to be small, but also reveals an important

point of our analysis. The fact that the adiabatic expansion works to find the UV-behaviour

of the expectations values is a consequence of the fact that our fast quenches are indeed fast

compared to the quench amplitude but they are still slow compared to the cutoff scale of the

theory. So as we take this cutoff to infinity, the UV behaviour can be extracted even if the

quenches are fast compared to δλ.

This opened an interesting line of research, that we partially answered in Chapter 4. This

is, what really happens as we take δt to zero? This is an important question since most studies

in condensed matter use the instantaneous quench approach and the universal scaling for fast

quenches seems to indicate that expectation values are diverging in that limit. One approach we

took in Chapter 4 was to evaluate explicitly the instantaneous quench expectation value at late

times, where naively we expect the instantaneous and the fast smooth quench to give the same

answer. However, it turns out that is not the case, at least not in every dimension. For scalar

quenches, in d = 3 the δt dependence drops out at late times and so the two expectation val-

ues agree. But in higher dimensions they give different answers. In particular, for dimensions

greater or equal to 7, the instantaneous expectation value is UV divergent while the smooth one

is finite, so they are infinitely different from each other. This suggests the instantaneous ap-

proach should be revised in higher dimensions. This is also in agreement with the second study

we did in Chapter 4, that is the computation of spatial correlators. The study of this object adds

an extra degree of freedom and should approach the expectation value as the spatial separation

r goes to zero. Interestingly, we found that at late times and large separations the instantaneous

and the smooth quench coincide in every dimension. As we took smaller separations, then the

correlators start differing from each other, specially at higher spacetime dimensions, to finally

get the same diverging result for the instantaneous quench as r → 0. At early times, we found

the same universal scaling result for smooth fast quenches when r < δt < 1/m. When we took

δt smaller than r then the expectation value saturated into an instantaneous quench answer.

This is probably what we expect to happen if we would work on a theory with a finite physical
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cutoff. As δt reaches that scale, the expectation values will saturate. Of course, it will be very

interesting to see that behaviour in some systems like lattice models where the lattice spacing

works as a natural cutoff. This will also get us nearer to experimental setups. In fact, there

are some simple spin models, such as the transverse field Ising model in 2 dimensions and the

Kitaev honeycomb model in 3 dimensions that can be solved exactly for certain protocols and,

in principle, they can be mapped into fermionic solutions very similar to the ones studied in

this Thesis. We could then evaluate different observables at different quench rates and see what

happens as they approach the lattice spacing size. This constitutes another interesting line of

research for the future and in fact, Kibble-Zurek behaviour in the transverse Ising model has

been recently analyzed in the literature [12]. We should still be interested in expanding those

computation in the slow quench to the fast quench regime until it reaches the cutoff scale.

Finally, in this Thesis we also analyzed the interesting case of the slow quench that goes

through the critical point. According to Kibble-Zurek predictions [13, 14] the adiabatic be-

haviour should break down close enough to the critical point and interesting new scaling should

appear, related to the critical exponents. We show that is the correct picture in free field the-

ories. Moreover, as our solutions were valid for any value of δt we were able to track the

whole evolution of the expectation values from its adiabatic value at very large δt, going to

Kibble-Zurek scaling and finally showing the fast scaling for short quench durations. How-

ever, we should note that Kibble-Zurek scaling is not as universal as the fast quench scaling, in

the sense that it not only depends on δt but also in the way we approach the critical point. This

is somehow expected since as we are doing a slow quench, the details of the protocol should

be more important as we get near the critical point. For linear protocols analyzed in Chapter

5, the time at which adiabaticity breaks down is defined by a Kibble-Zurek time tKZ =
√
δt/m.

We also show that in this regime the natural scale in the problem is the Kibble-Zurek time and

so we should expect corrections to Kibble-Zurek scaling coming in fractional powers of δt, as

opposed to the fast or the adiabatic quench when corrections where given in integer powers.

Even though we showed strong evidence for KZ scaling in free field theories and there are also

similar studies in holographic settings [15, 16], the question on how Kibble-Zurek mechanism

emerges in general interacting theories is still an open (and interesting) question.

All of the results in this Thesis correspond to global quenches, i.e., we are assuming that



216 Chapter 6. General discussion and conclusions

the change in the coupling only depends on time (and not on the spatial coordinates). With

this assumption, it is natural to think in systems that are spatially homogeneous and isotropic.

Recently, progress has been made towards generalizing the global quench into a local one,

where the change in the coupling also depends on the spatial coordinates. Results from both

instantaneous quenches [17] and holography [18] suggest that interesting physics might arise

by considering smooth local quenches.

Last but not least, we should mention another interesting topic to continue doing research in

these smooth quenches setups. This is related to the entanglement dynamics in time-dependent

settings. It will be very interesting to consider the evolution of entanglement entropy as the

coupling varies with time. The problem has been address previously in the context of hologra-

phy [19] and also for instantaneous quenches in two-dimensional CFTs [21,22]. See also [20].

In these studies what is usually observed is that entanglement entropy grows linearly as a

function of time until it saturates to a thermal value. In [19], for instance, bounds have been

conjectured to the linear velocity of growth of entanglement entropy in holography. In the in-

stantaneous quench approach, usually a quasiparticle model is used to simulate entanglement

dynamics. Given that we have concrete and exact solutions for smooth quenches it would be

interesting to compute the evolution for entanglement entropy and see whether it follows previ-

ous expectations. Moreover, the entanglement entropy in QFTs is usually a divergent quantity

but the structure of those divergences is understood. In [23], the authors discovered new diver-

gences coming from massive QFTs, so it is tempting to think that this time-dependent theories

could provide an extra source of divergent terms to the entanglement entropy. Very recently,

entanglement entropy has also been measured in ultra-cold atoms experiments [24]. Comput-

ing it in the present solutions for smooth quenches, though challenging, might be an interesting

direction for future research.
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