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Abstract 

Glioblastoma Multiforme (GBM) is the most aggressive and malignant form of primary 

brain tumor. In many tumors, increased intracellular pH (pHi) is a hallmark of 

aggressiveness. This increased pHi has been shown to be related to cell proliferation and 

evasion of apoptosis as well as resistance to chemotherapy. As such, monitoring pHi and 

the tumor pHi response to pharmacologic challenge, may aid in treatment planning and 

patient management for this deadly cancer. A magnetic resonance imaging (MRI) method 

called Chemical Exchange Saturation Transfer (CEST) has been used to detect changes in 

pHi. Our group has recently developed a CEST technique called amine and amide 

concentration independent detection (AACID), which was shown to be sensitive to pHi 

changes induced by the anticancer drug, lonidamine (LND). However, LND is not 

currently approved for use in humans. Our objective was to demonstrate that topiramate 

(TPM), an antiepileptic drug that is well tolerated in humans, could also induce tumor 

acidification. The goal this thesis was to quantify the changes in pHi induced by a single 

dose of TPM in a mouse model of brain tumor. CEST spectra were acquired using a 9.4T 

MRI scanner, before and 75 minutes after administration of TPM (dose: 120 mg/kg). A 

significant increase in the AACID CEST effect was observed within brain tumors with no 

change observed in contralateral tissue. The increase in AACID CEST corresponds to 

tumor acidification as expected. Therefore TPM induced a rapid measurable metabolic 

change in tumors that could provide valuable insight into cancer aggressiveness and aid 

in tumor detection. 

Keywords: MRI- Magnetic Resonance Imaging, CEST- Chemical Exchange Saturation 

Transfer, pHi-Intracellular pH, APT- Amide Proton Transfer, TPM- Topiramate, AACID- 

Amine and Amide Concentration Independent Detection, GBM- Glioblastoma 

Multiforme 

 



 

 

iii 

 

Co-Authorship  

The thesis presented here consists of one study and contains material from posters that 

have been previously presented.  My graduate work was supervised by Dr. Robert Bartha 

who designed the study, guided the interpretation of results, provided project motivation, 

and edited the manuscript. Data were acquired by Dr. Alex Li. The original MATLAB 

code used for data analysis was provided by Dr. Nevin McVicar. Dr. Susan Meakin 

provided the U87 tumor cells and Miranda Bellyou (Animal Technologist) implanted the 

tumor cells to produce the mouse model. Dr. Mojmir Suchy helped with the preparation 

of injectable Topiramate. As the primary author of this thesis, I was responsible for 

assisting in experimental design, all data analyses, interpretation of the data, and writing 

the first draft of the manuscript as well as incorporating ongoing suggestions. 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

 

 

 

 

 

For my Parents 

Mr. Jayram Jadhav and Mrs. Pushpa Jadhav 

  



 

 

v 

 

Acknowledgments 

First, I would like to thank my supervisor Dr. Robert Bartha. I wouldn’t have completed 

my graduate studies without his support and guidance. I will always remember his words 

of encouragement when I felt that I won’t be able to pursue my studies further. He has 

been an important mentor that I have met during the years of my educational journey. His 

welcoming and enthusiastic nature always  made me feel comfortable to go knock on his 

office  door anytime and discuss the issues or results regarding  my work. Thank you for 

being patient, accessible, and for providing valuable guidance.  

I would also like to thank my committee members, Dr. Paula Foster and Dr. Timothy 

Scholl for their suggestions and advice. 

I deeply express my gratitude towards Nevin McVicar and Alex Li for their discussions 

on basic science of this thesis and guidance in data analysis. Nevin always pointed me 

towards new directions of thinking which led me to achieve the answers to my questions. 

Alex always guided me through the jungle of Matlab programming needed for this study. 

These two fellows have played an important role in my journey at Robarts.  

I would also like to thank –Mojmir Suchy, Dr. Susan Meakin and Miranda Bellyou for 

their contribution in completion of this project. 

I would like to thank, my cube mate Jonathan Snir for his words of encouragement, 

Sandy Goncalves for her great suggestions on the presentations during my graduate study 

and all the other great members in Dr. Bartha’s group. 

Thank you to my husband, Yogesh who always stood by me throughout my degree 

without losing his patience. He was the one who always helped me to pass through my 

anxiety before any presentation and helped me to stick to my goals. 

My mom and my in-laws deserve special thanks for their confidence in me and constant 

support as they came to stay with me and helped me in taking care of my kids when I 

needed them the most. 



 

 

vi 

 

Finally, but not the least I would like to thank my family friends for showing interest in 

my work, for asking me how far I am in my project and most importantly for asking,  ‘so, 

when are you going to defend!’, almost every time we met. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

Table of Contents 

Abstract ...................................................................................................................... ii 

Co-Authorship Statement........................................................................................... iii 

Dedication .................................................................................................................. iv 

Acknowledgement ..................................................................................................... v 

Table of Contents ....................................................................................................... vii 

List of Figures ............................................................................................................ x 

List of Appendices ..................................................................................................... xi 

List of Acronyms and Symbols.................................................................................. xii 

Chapter 1 Brain Tumors 

1.1 Introduction.................................................................................................. 1 

1.2 Impact .......................................................................................................... 1 

1.3 Disease pathology and symptoms ............................................................... 2 

1.4 Tumor heterogeneity ................................................................................... 4 

1.5 pH regulation in tumors .............................................................................. 4 

1.6 Tumor detection .......................................................................................... 10 

1.7 Treatments and relevance to pH .................................................................. 13 

1.8 Modification of Tumor pH using Carbonic Anhydrase inhibitors .............. 15 

1.8.1 Topiramate ......................................................................................... 15 

1.8.2 Mechanism of pH modification ......................................................... 15 

1.9 Tumor pH measurements ............................................................................ 16 

1.9.1 Techniques of pH measurements ....................................................... 16 

1.9.2 Chemical Exchange Saturation Transfer (CEST) .............................. 19 

1.9.2.1 Origin of Nuclear Magnetic Resonance ( NMR) signal ......... 19 

1.9.2.2 Two pool proton exchange system ......................................... 19 

1.9.2.3 Saturation and Chemical Exchange ........................................ 20 

1.9.2.4 Chemical Exchange and pH ................................................... 22 

1.9.2.5 Chemical Exchange Saturation Transfer (CEST)  

 Measurements ......................................................................... 22 



 

 

viii 

 

1.9.2.6 Water Saturation Shift Referencing (WASSR) for CEST 

experiments............................................................................. 24 

1.9.2.7 CEST-pH calibration .............................................................. 25 

1.10 Objective ..................................................................................................... 27 

1.11 References ................................................................................................... 28 

Chapter 2 Topiramate Induces Intracellular Acidification in Glioblastoma 

Multiforme Brain Tumors 

2.1   Introduction .................................................................................................. 38 

2.2 Methods ....................................................................................................... 40 

2.2.1 Subjects .............................................................................................. 40 

2.2.2 Chemicals ........................................................................................... 40 

2.2.3 Mouse tumor preparation ................................................................... 40 

2.2.4 Mouse preparation for in-vivo imaging.............................................. 41 

2.2.5 In-vivo Magnetic Resonance Imaging ............................................... 42 

2.2.6 Acid- pH calibration .......................................................................... 43 

2.2.7 Statistical analysis .............................................................................. 43 

2.3 Results.......................................................................................................... 44 

2.3.1 Acid- pH calibration .......................................................................... 44 

2.3.2 CEST imaging in normal mouse brain tissue following  

TPM treatment ................................................................................... 45 

2.3.3 CEST imaging of U87MG brain tissue following 

 TPM treatment .................................................................................. 46 

2.4 Discussion .................................................................................................... 51 

2.5 Acknowledgements...................................................................................... 53 

2.6 References .................................................................................................... 54 

Chapter 3 Conclusions and Future Directions 

3.1   Limitations ................................................................................................... 58 

3.2   Conclusion ................................................................................................... 59 

3.3   Future directions .......................................................................................... 59 

3.4   References .................................................................................................... 61 



 

 

ix 

 

Appendices ................................................................................................................ 63 

Curriculum Vitae ..................................................................................................... 64  



 

 

x 

 

List of Figures  

Chapter 1 

1.1 Glioblastoma tumor ........................................................................................ 3 

1.2 Schematic representation of metabolic pathways in normal cells and tumor 

cells ................................................................................................................ 5 

1.3 pH control mechanisms of cancer cells .......................................................... 7 

1.4 Roll of CA and AQP1 in pH regulation ......................................................... 10 

1.5  Effect of pHe/ pHi on distribution of the drugs ............................................. 14 

1.6 Schematic presentation of two- pool system involved in proton exchange ... 20 

1.7 The process of saturation and chemical exchange after interrogation of the 

system with saturation pulse .......................................................................... 21 

1.8 CEST spectra of three- pool proton exchanging system at different pHs ...... 24 

Chapter 2 

1 Acid- pH calibration ....................................................................................... 44 

2 Representative AACID and corresponding pH maps from a healthy NU/NU 

mouse brain  ................................................................................................... 45 

3 Summary of CEST parameters from healthy NU/NU mice........................... 46 

4 Standard anatomical T2 weighted image of mouse brain with U87 human 

Glioblastoma Multiforme tumor at day 17 .................................................... 48 

5 CEST spectra acquired in representative animal at baseline and 75 minutes 

after administration of TPM ........................................................................... 48 

6 Representative AACID and corresponding pH maps from NU/NU mouse 

brain with tumor ............................................................................................. 49 

7 Summary of CEST parameters from NU/NU mice with U87 Glioblastoma 

brain tumor (N=8) .......................................................................................... 50 

 

 

 



 

 

xi 

 

List of Appendices 

Appendix -1 University ethic approval for animal research…………………63 

 



 

 

xii 

 

List of Acronyms and Symbols  

MRI   Magnetic Resonance Imaging 

CEST   Chemical Exchange Saturation Transfer 

AACID   Amine Amide Concentration independent Detection 

WHO   World Health Organisation 

CNS   Central Nervous system 

GBM                Glioblastoma Multiforme 

PTEN               Phosphate and Tensin homolog  

EGFR               Epidermal Growth Factor Receptor 

VPF                 Vascular Permeability Factor 

VEGF              Vascular Endothelium Growth Factor 

pHi   Intracellular pH 

pHe   Extracellular pH 

ATP               Adenosine Triphosphate  

CA                  Carbonic Anhydrase, Contrast Agent  

AQP               Aquaporin 

CAI                Carbonic anhydrase Inhibitor 

DCE- MRI     Dynamic Contrast Enhanced magnetic Resonance Imaging 

T1                  Longitudinal Relaxation Time 

T2                  Transverse Relaxation Time 

PARACEST      Paramagnetic CEST 

PET                   Positron emission Tomography  

FDG                   Fluorodeoxyglucose 

CT                     Computed Tomography 

MRS                  Magnetic Resonance Spectroscopy  

CR                     Creatine 

TCHO                Total Choline 

LAC                    Lactate 

NAA                   N- acetyl aspartate 

TCR                    Total Creatine 



 

 

xiii 

 

L                         Lipid 

DWI                    Diffusion Weighted Imaging 

ADC                    Apparent- Diffusion Coefficient   

MT                       Magnetization Transfer 

MTR                    Magnetization Transfer Ratio     

APT                     Amide Proton Transfer 

µs                        microsecond 

ms   millisecond  

K     Exchange rate  

Kws   Water-solute exchange rate   

Ksw   Solute-water exchange rate 

M                      Moles 

µM                    micromoles 

mM   millimoles 

ω   Resonance frequency 

∆ω                      Frequency difference 

R1                      Longitudinal relaxation rate 

RF                     Radio Frequency 

NMR                 Nuclear Magnetic Resonance 

ppm   parts per million 

9.4 T   9.4 Tesla 

B0   The static magnetic field 

TR   Repetition Time 

TE   Echo Time 

ETL   Echo Train Length 

FOV   Field- of- View 

 

 

 

 

 



1 

 

 

 

 

Chapter 1 

1 Brain Tumors 

1.1 Introduction 

The work presented in this thesis uses high field magnetic resonance imaging (MRI) and 

a novel chemical exchange saturation (CEST) method called amine and amide 

concentration independent detection (AACID) for the quantification of changes in 

intracellular pH (pHi) caused by a single dose of the anticonvulsant drug topiramate. 

This introductory chapter provides a framework for understanding the motivation, 

impact, and research methods presented in the subsequent chapters. Three principal 

subjects are described. The first is a description of cancer metabolism, and the cellular 

and chemical changes required to maintain the permissive microenvironment for disease 

progression. The second is a description of the methods, particularly MRI, used for 

disease diagnosis and treatment. Finally, the third is a description of the pH modulating 

mechanisms affected by the drug used in this thesis. 

1.2 Impact 

Cancer ranks third among the most costly diseases. The most recent estimated cost of 

cancer care in Canada in 2000 was $17.4 billion (www. omainsurance.com) [1]. Brain 

cancer is an abnormal growth of cells in the brain and is commonly called a brain tumor. 

There are two main types of brain tumors: primary and secondary. Primary brain tumors 

develop from the various cells of the brain whereas secondary brain tumors develop from 

a cancer that originates somewhere else in the body and then spreads to the brain. 

Primary brain tumors are rare. For example, primary gliomas of the central nervous 

system (CNS) account for < 2% of cancers. However, brain tumors are devastating to the 

patient. Everyday 27 new patients are diagnosed with a brain tumor in Canada and it is 

estimated that approximately 55,000 Canadians are living with brain tumors today 

(braintumour.ca). In Canada, brain tumors represent the leading cause of death among 

children under the age of 20 and are the major cause of death in young adults. 
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Approximately 20,000 new cases are diagnosed each year in the United States alone 

[2,3]. The World Health Organization (WHO) has described 120 types of brain and 

central nervous system (CNS) tumors (National Brain Tumor Society). Depending on 

their origin and characteristics, the WHO classifies brain tumors from least aggressive to 

most aggressive. Gliomas are the most aggressive (malignant) of CNS tumors arising 

from glial cells or their precursors [4,5]. The WHO further classifies gliomas into grade I-

IV, with I being the least malignant and IV being the most malignant. Glioblastoma 

Multiforme (GBM) is a WHO grade IV glioma [5,6] and is the most common primary 

CNS tumor (abta.org) in European countries [7,8]. As glioblastomas are generally located 

in the cerebral hemispheres, they may adversely affect the control center for speech, 

motion, reading, writing, and executive function, thereby decreasing quality of life. 

1.3 Disease Pathology and symptoms 

Glioblastoma is characterized by the presence of hypoxic regions, high proliferation of 

tumor cells, necrosis, and extensive angiogenesis (formation of new blood vessels from 

existing ones).  Hypoxic regions in the tumor occur due to inadequate development of 

vasculature [9]. Proliferation is governed by genetic mutation and multiple cell signaling 

pathways that control the expression of growth factors. The glioblastomas that occur in 

younger patients have shown gene mutations that are different from the gene mutations in 

glioblastomas that occur in elderly patients [10]. Glioblastomas that occurs in younger 

patients may have altered or deleted p53. The p53 gene is also known as tumor protein 53 

(Tp53), and encodes a protein that regulates the cell cycle [10]. In contrast, glioblastomas 

in elderly patients have shown mutations in the phosphatase and tensin homolog (PTEN) 

gene that is required for the production of the PTEN protein [11]. This protein regulates 

the cell cycle and is responsible for keeping cells from growing and dividing in an 

uncontrolled way. It also triggers cell self-destruction and is involved in the process of 

cell movement (migration) and the formation of new blood vessels (angiogenesis). 

Glioblastomas are also known to contain a high level of microRNA-21 (miR-21); an 

antiapoptopic small RNA molecule [12]. They also contain a low level of microRNA-7 
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(miR-7), an inhibitor of the epidermal growth factor receptor (EGFR) [13,14]. EGFR is a 

cell surface protein that binds to epidermal growth factor to induce cell proliferation and 

is over expressed in many cancers including glioblastoma [15,16]. To support their 

extensive proliferation, glioblastomas develop a complex network of blood vessels by 

expressing high levels of vascular permeability factor (VPF) and vascular endothelium 

growth factor (VEGF) [17]. VEGF is known to increase vascular permeability by 

inducing structural abnormalities, opening gaps in the endothelium (biooncology.com) 

and negatively regulates tumor cell invasion [18]. Expression of VEGF is associated with 

peritumoral edema observed around glioblastomas. Pseudopalisading necrosis –

accidental cell death – is also a hallmark of glioblastoma. Because apoptosis and necrosis 

can lead to cell removal, one may think that necrosis is desirable in controlling tumor 

growth, however necrosis leads to accelerated tumor growth, as the pseudopalisades 

surrounding necrotic regions secrete high levels of proangiogenic factors [19]. A human 

T2-weight image demonstrating a Glioblastoma Multiforme tumor is shown in Figure 1.1 

 

 

 

Figure 1.1 Glioblastoma Tumor-An example T2-weighted MRI of a large glioblastoma 

tumor is shown in the parietal region of the human brain. 

 

 

Glioblastoma 

Tumor 
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1.4 Tumor heterogeneity 

The response to targeted therapy in cancer patients depends on several factors that 

include genotype. Genotype variation exists between patients and within a single tumor 

due to the development of subpopulations of cancer cells [20]. Different regions within 

the same tumor can have different densities of vasculature and different cellular 

composition.  Also, tumors may exhibit differences in metabolism and necrosis [21]. At 

the time of clinical diagnosis, morphological and physiological features of tumor cells, 

such as the expression of cell surface receptors can vary with the type of tumor [22]. 

Cancer cells that proliferate at a higher rate require more nutrients. To meet this demand, 

cancer cells overexpress angiogenic factors such as VEGF and angiogenin [23]. 

However, tumor cells proliferate more quickly than the vasculature can develop. As a 

result the developed vasculature is disorganized and is not able to meet the needs of the 

proliferating cells. Cancer cells in the tumor core often lack proper circulation and are 

more hypoxic than the cancer cells in the tumor periphery [24]. The unusually developed 

vasculature may cause differences in drug delivery to different parts of a tumor.  Tumor 

heterogeneity may explain variations in the uptake and cytotoxicity of chemotherapy 

drugs [25]. 

1.5 pH regulation in Tumors 

The genetic mutations described above and higher rate of glycolysis lead to a 

distinguishing feature of malignant tumors, which is higher (alkaline) intracellular pH 

(pHi) and lower (acidic) extracellular pH (pHe). The pH is defined as the negative log of 

H
+ 

concentration. Under physiological conditions cells maintain their pHi around 7.0 

[26,27] and pHe around 7.4. Regulation of this pH homeostasis is important for proper 

execution of normal cell function. Deviation from this homeostasis may contribute to the 

pathological changes involved in tumor growth. Specifically, in tumors, pHi is alkaline 

~7.3 [28,29] and pHe is relatively acidic (around 6.7-7.1).  A lower pHe triggers tumor cell 

invasion and migration. A higher pHi is permissive of increased cell proliferation and 

evasion of apoptosis [30]. In the presence of oxygen, normal cells convert glucose into 
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carbon dioxide, which then increases the rate of oxidative phosphorylation to maximize 

ATP production by mitochondria while keeping lactate production minimal. Normal cells 

only produce higher amounts of lactate when oxygen supply is inadequate. The process 

by which this happens is called anaerobic glycolysis; an inefficient way to produce 

energy/ATP. In contrast, cancer cells produce large amounts of lactate even in the 

presence of sufficient oxygen and therefore cancer metabolism is referred to as aerobic 

glycolysis. Due to extensive angiogenesis, tumor cells normally have a good supply of 

glucose through the circulating blood and therefore have an increased rate of aerobic 

glycolysis. Otto Warburg was the first to realize this deviation from normal metabolism 

in tumor cells, which is now known as the “Warburg effect”[31]. The pathways used for 

energy production/ ATP production by normal cells and tumor cells under aerobic and 

anaerobic conditions is summarized in Figure 1.2. 
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Figure 1.2 Schematic representations of the metabolic pathways in normal and 

tumor cells. Adapted from Matthew G. et al. [2009, Reference 25]. In the presence of 

oxygen, oxidative phosphorylation is the primary path to generate ATP. Normal cells 

undergo anaerobic glycolysis (conversion of pyruvate to lactate) only in the absence of 

oxygen or when the oxygen source is not sufficient. Warburg observed that tumor cells 

undergo aerobic glycolysis (conversion of most of the pyruvate to lactate) regardless of 

whether oxygen is present or absent.  

 

Under physiological conditions glycolysis creates acid/protons (H
+
). This cell-generated 

acid has to be extruded to maintain a normal intracellular pH. This transport is performed 

by “acid extruders” that move H
+
 out of the cell (efflux) or move HCO3

-
 into the cell 

(influx)  resulting in an increased pHi [32].  In addition, “acid loaders” can move H
+
 into 

the cell or HCO3
-
 out of the cell to decrease pH [32]. The most common acid loading 

transporters are anion exchangers, which exchange extracellular Cl
-
 for intracellular 

HCO3
- 
[33] and  Na

+
 dependent bicarbonate transporters operating in 1:3 stoichiometry 

[32]. Acid extruding transporters include Na
+
 dependent HCO3

-
 exchangers operating in 

1:2 stoichiometry, Na
+
/H

+
 pumps, and Na

+
 dependent Cl

-
/HCO3

- 
exchangers [32-34].  

Tumors have elevated production of H
+
 due to their higher glycolytic rates and therefore 

we would expect to see an acidic intracellular pHi [24]. However, in tumors, the excess 

protons that are produced are extruded by the combined action of acid extruding ion 

transport channels and the CO2/ HCO3
-
buffer, which is activated in tumors and plays a 

major part in maintaining the higher pHi [35]. However, the increased expression or 

activity of plasma membrane channels and ion transport channels that facilitate H
+
 efflux 

and HCO3
-
 influx directly or through the CO2/HCO3

-
 buffer pair overcompensate and 

produce a higher pHi and lower pHe. The buffer resists the change in pH following the 

addition of basic or acidic components. So to maintain a favorable alkaline pH in the face 

of excessive proton production in tumors, CO2 exits the cell and dehydrates to form 

HCO3
-
 and H

+
 in the extracellular space (CO2 + H2O ⇋ HCO3

-
 + H

+
). The HCO3

-
, 

generated in the extracellular space is taken up into the cells where it reacts with 

intracellular H
+
 to form CO2, which will again exit the cell to complete acid removal. 

Along with Na
+
/H

+
 exchangers, which are over-activated in tumors, the CO2/HCO3

-
buffer 
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plays a major part in maintaining the higher pHi. The role of ‘acid extruders’ and ‘acid 

loaders’ is shown in Figure 1.3. 

The roll of the CO2/HCO3
-
 buffer is to shuttle H

+
 within cells. Titration of intracellular 

acid with extracellular HCO3
-
 taken up into the cell by acid extruders produces CO2. CO2 

is freely membrane permeant and exits the cell to complete acid extrusion [21,36,37].  

For effective regulation of pHi by this system, efflux of CO2 has to be in equilibrium with 

influx of HCO3
-
 (1:1 stoichiometry). To keep this system in equilibrium the tumor over-

expresses the carbonic anhydrase (CA) isozyme and the Aquaporin (AQP) water channel 

[38]. So far, about 16 humans CAs have been identified, some of which are extracellular 

and some of which are intracellular [39-41].  
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Figure 1.3 pH control mechanisms of cancer cells. In tumors, the rate of aerobic 

glycolysis is elevated due to increased cell proliferation. The aerobic glycolysis produces 

increased lactate and protons. To extrude these, tumor cells increase the expression of 

acid extruding ion transport channels such as the Na
+
/H

+
 exchangers, sodium driven Cl

-

/HCO3
-
 transporters and Na

+
/HCO3

-
cotransporters. To further aid in acid extrusion cancer 

cells also increase the expression of CAII, CAIX, CAXII and the AQP1 water channels. 

CAII catalyzes the reaction of H
+
 with HCO3

-
 in the intracellular space to produce H2O 

and CO2 (H2O+CO2 H
+
 + HCO3

-
). Then AQP1 facilitates the transport of this H2O and 

CO2 into the extracellular space where CAIX and CAXII catalyze the hydration of CO2 to 

form H
+
 and HCO3

- 
(H2O + CO2 HCO3

-
 + H

+
). The HCO3

-
 generated in the 

extracellular space is then taken up into the intracellular space where it again reacts with 

intracellular H
+
 with the aid of CAII and forms H2O and CO2. Now this H2O and CO2 

again get extruded in the extracellular space to complete acid removal. In cancer cells, 
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this process involving CAs and ion transport channels overcompensates for the increased 

production of acid (H
+
) and produces a slightly alkaline intracellular pH, which is 

necessary for their survival and proliferation. Adapted from Boron 2004 [26] and 

Yasuhiko Hayashi et al. 2007 [42]. 

 

CAs are a group of enzymes that catalyze the interconversion of CO2 and H2O to HCO3
-
 

and H
+
 (CO2 + H2O⇋ HCO3 + H

+
) to keep CO2/HCO3

-
 in equilibrium [41,42]. The 

direction of the reaction depends on the form of protons, CO2 or HCO3
-
 that predominates 

[43]. So far thirteen human AQP have been discovered [44]. AQP are the water selective 

transmembrane transport channels that facilitate CO2 transport across the membrane 

[45,46]. CO2 plays a crucial role in the acidification of the tumor microenvironment 

[47,48]. So it is reasonable to speculate that AQP expression could contribute to the 

maintenance of pH balance in solid tumors by facilitating CO2 movement and by 

providing the substrate for catalytic activity of extracellular CAs. Malignant 

glioblastomas express the carbonic anhydrases CAII, CAIX and CAXII, as well as the 

AQP1 channel [47]. CAII is expressed in the intracellular space whereas CAIX and 

CAXII are expressed in the extracellular space. CAIX is the most active isoform of 

carbonic anhydrase for the carbon dioxide hydration reaction [49]. Located in the 

extracellular space at the cell membrane, CAIX activity contributes to extracellular 

acidification of the tumor micro environment [50,51] and also plays an important role in 

maintaining amore alkaline pHi. Previous work has shown that CAIX facilitates CO2 

extrusion and CO2 hydration in the extracellular space, which acidifies the extracellular 

environment and provides a substrate for intracellular alkalinization [43,51]. 

Overexpression of these isoforms in many tumors including glioblastoma is associated 

poor survival [52,53], cancer progression, and poor response to therapy.  CAXII is 

another extracellular tumor CA isozyme [54,55]. CAXII activity may compliment CAIX 

activity to facilitate CO2 extrusion in the extracellular space and regulate acidic 

extracellular and alkaline intracellular pH [43,56]. CAII catalyzes the diffusion of 

intracellular H
+
 with HCO3

-
, which is taken up in the intracellular space (cytoplasm) by 

the sodium-driven Cl
-
/HCO3

- 
exchanger or sodium bicarbonate cotransporters (Na

+
-
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HCO3
-
cotransporters), producing H2O and CO2 [43,44]. Several pH regulation 

mechanisms in tumor cells are summarized in Figure 1.4. The red box highlights the role 

of intracellular CA, extracellular CA and the AQP1 water channel in tumor pH 

regulation. 

 

Figure 1.4 The roll of CA and AQP1 in tumor pH regulation. In tumor cells aerobic 

glycolysis is elevated causing increased production of lactate and H
+
. This 

overproduction would normally lead to acidic an intracellular pH. However, cancers cells 

adaptively increase the expression of membrane ion transport channels to extrude the 

intracellular H
+
 into the extracellular space. Also, to balance the acid load, the activity of 

CAII, CAIX, CAXII, and AQP1 increase in cancer cells (red box). 
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1.6 Tumor Detection 

Exogenous Contrast: Tumors develop extensive microvasculature which is leaky. Many 

tumor diagnostic methods exploit these micro vascular changes to identify and monitor 

tumor growth. These methods often involve intravenous injection of an exogenous 

contrast agent. Depending on the molecular size and its charge, a contrast agent either 

remains in the vasculature or enters the cells. 

Dynamic contrast enhanced MRI (DCE-MRI) involves serial acquisition of MR images 

before and after intravenous injection of a contrast agent, and is one of the most 

acceptable exogenous contrast agent methods used clinically. DCE-MRI typically uses 

the gadolinium based contrast agent, Gd –DTPA [23,57]. Through the bio-distribution of 

the agent, properties of the underlying tissues can be determined. In normal brain tissues 

the blood brain barrier is intact and the agent remains in the vasculature.  However in 

tumors, where the vasculature is leaky the contrast agent can accumulate [58]. The 

gadolinium based contrast agents reduce the longitudinal relaxation time, T1, of local 

water molecules resulting in an increase in the MRI signal on T1-weighted images. This 

increase in signal is related to the concentration of agent. By fitting dynamic DCE-MRI 

data to an appropriate pharmacokinetic model, physiological parameters related to tumor 

vasculature such as vessel permeability and tissue perfusion can be determined [59]. For 

example, a quantitative DCE-MRI study in patients with breast cancer receiving 

longitudinal neoadjuvant chemotherapy showed decreased perfusion within these tumors 

after therapy [60].   

Other contrast agents modify the magnetic susceptibility of the tissue, which reduces the 

local measured transverse relaxation time (T2*). These agents stay within the vasculature 

- therefore they are mostly used to characterize blood vessel size and volume. Receptor 

targeted contrast agents are also widely used for molecular imaging of tumors as cell 

surface receptors are upregulated on tumor cells and endothelial cells within the tumor 

vasculature [61]. Also, there is a growing interest in developing chemical exchange 

saturation transfer (CEST) contrast agents for MRI. These agents have exchangeable 



12 

 

 

 

 

protons, which can transfer magnetization to bulk water after irradiation at their specific 

absorption frequency. This decreases the observed water signal intensity creating contrast 

between tissues of interest. Recently a PARACEST agent was used to detect glioma in a 

mouse model [62,63].  

Similar to DCE-MRI, positron emission tomography (PET) provides functional and 

metabolic assessment of normal and diseased tissue.  PET most often uses fluorine 18-

fluorodeoxyglucose (FDG) for tumor detection.  This tracer of glucose consumption is 

effective in tumors due to increased glucose metabolism and has been proposed as an 

early metabolic marker of cancer treatment. However FDG uptake also increases in 

conditions such as infection and hyperplasia, which can result in false positives. 

All these methods for tumor detection require the injection of an exogenous contrast 

agent or tracer and a lengthy trial process to determine if the agent is safe to use in 

humans. Also, there are potential issues regarding the use of approved agents, such as the 

requirement for high concentrations of a contrast agent to achieve adequate detection 

sensitivity, the bio-distribution of contrast agents in tissues other than the intended one, 

and the inability of contrast agents to enter into poorly perfused tumor regions, or 

necrotic tissue. These shortcomings have led researchers to develop endogenous contrast 

mechanism for different modalities. 

Endogenous Contrast: Endogenous contrast mechanisms are completely non-invasive 

and avoid the undesirable issues associated with the use of exogenous contrast agents.  

Currently, anatomical imaging is widely used by radiologists in clinics to detect tumors 

and monitor tumor response to treatment by observing the size and shrinkage of tumor 

tissue using CT [64]. However, these measurements vary between different observers due 

to difficulties in determining tumor boundaries. Also, tumor size is not a reliable marker 

of therapy response as it is influenced by the rate of regrowth. The evaluation of 

antiangiogenic treatment in a murine model of melanoma by Power Doppler Ultrasound 

using perfusion and vascularity matrices has shown a decreased rate of blood flow in 
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angiogenic blood vessels, 1-3 weeks after the use of antiangiogenic treatment [65]. But 

this method can’t be used when the tumor is blocked by dense structures such as bone, 

which inhibits the penetration of the ultrasound beam.  

Magnetic Resonance Imaging (MRI) of endogenous molecules has been shown to be a 

highly sensitive method to detect cancer, with a wide variety of contrast mechanisms 

available to exploit. MRI offers detailed information about anatomical changes, changes 

in diffusion, and tissue volume due to apoptosis [66].  Magnetic Resonance spectroscopy 

(MRS) can detect metabolic characteristics of cancer arising from different metabolites 

[67] including creatine, total choline, lactate, and N-acetyl aspartate. Although highly 

informative, the resolution of MRS is severely limited by the concentration of 

endogenous molecules present in the tissue. MR thermometry can be used to monitor 

hyperthermia and ablative therapy [68]. Diffusion weighted imaging (DWI) has been 

used to measure the apparent diffusion of water in different tissue compartments. An 

increase in the apparent diffusion coefficient after chemotherapy has been shown to 

indicate a positive response to the treatment [69]. Magnetization transfer (MT) is another 

contrast mechanism in MRI, which can modulate the observable net magnetization of 

bulk water protons through the interaction of these water protons with macromolecules in 

the tissues. The exchange of magnetization can occur by dipolar coupling or by chemical 

exchange [70]. MT has been shown to be sensitive to the characteristics and composition 

of brain tumors. The MT effect is measured by the magnetization transfer ratio (MTR) 

which is calculated by subtracting positive frequencies from the negative frequencies of 

the MT spectrum [71]. A study investigating the histological constitution of brain tumors 

showed significantly lower MTR for tumors than for normal tissues [72]. The amide 

proton transfer (APT) technique developed by Zhou et. al. [73], detects a decrease in the 

MRI water signal by selectively exciting off resonance amide protons on intracellular 

proteins and peptides. Zhou demonstrated that the efficacy of magnetization transfer was 

affected by pH, suggesting that chemical exchange saturation transfer (CEST) [73] was 

pH dependent.   



14 

 

 

 

 

1.7 Treatments and relevance to pH 

Because the higher intracellular pH in cancer cells is thought to resist the initiation of 

apoptosis, selective intracellular acidification has been proposed as a potential cancer 

treatment [74,75]. Some studies have also shown that the thermosensitivity of tumor cells 

increases at lower intracellular pH [76,77]. In addition, researchers have postulated that 

internucleosomal DNA fragmentation, the process of inducing cell death, requires 

intracellular acidification [78,79]. At the same time higher intracellular pH has been 

shown to reduce the effectiveness of the drug cisplatin, which is commonly used in 

chemotherapy [80]. Also, the uptake of a therapeutic agent into the cell is affected by the 

pHe/pHi gradient. Most chemotherapy drugs are either weak acids or weak or bases. 

Passive diffusion of these drugs into the cells occurs mostly in their uncharged form. 

These drugs accumulate by diffusion into the oppositely charged compartment.  Due to 

the effect of the pHe/ pHi gradient in cancer cells, basic drugs accumulate in the acidic 

extracellular space putting them at a therapeutic disadvantage [81]. The effect of the 

pHi/pHe gradient on drug distribution is summarized in Figure 1.5. 

 

Figure 1.5 Effect of pHe/pHi on distribution of drugs. The font size indicates the 

relative concentration in that compartment. The cell membrane functions as a semi 

permeable structure that is permeable to uncharged drugs and tends to remain 

impermeable to charged drugs. As the extracellular space of tumors is acidic, the weak 

acid drugs remain uncharged and therefore are more easily taken into the intracellular 
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space. Whereas, in the acidic extracellular space weakly basic drugs becomes charged 

and therefore do not pass through the cell membrane [81].  

 

The complex interaction between intracellular pH and the therapy options for the tumor 

motivates the use of imaging techniques like CEST which have been used in the past to 

generate maps of pH distribution. In addition, the selective intracellular acidification of 

cells is emerging as a potential enabler of cancer therapy to increase the therapeutic 

potential of existing drugs [82]. It is the primary goal of the work presented in this thesis 

to determine the pHi lowering potential of the antiepileptic drug Topiramate in a cancer 

model using CEST MRI.  

1.8 Modification of Tumor pH using Carbonic Anhydrase Inhibitors 

1.8.1 Topiramate 

Topiramate is a well-known carbonic anhydrase inhibitor (CAI) and is an anticonvulsant 

(antiepileptic) drug. It is approved in humans as a monotherapy or adjunctive therapy in 

the treatment of epileptic seizures as well as in the treatment of migraines [83]. 

Monotherapy doses of topiramate as high as 400 mg/day are used in humans whereas in 

adjunctive therapy in placebo controlled clinical trials, doses of 1000 mg/day have been 

used [84,85]. Epilepsy is common in patients with brain tumors and can complicate the 

management of these patients due to the possible interaction between antiepileptic drugs 

and anticancer drugs. It has been shown that Topiramate is well tolerated in patients with 

brain tumors associated with seizures [86]. Considering this fact, it is interesting to 

explore the potential metabolic effect of topiramate on brain tumors as the drug may 

impair the activity of tumor associated CAs which are one of the mechanisms use by 

tumors to maintain an elevated pHi [87]. 

1.8.2 Mechanism of pH Modification  

Many reports have demonstrated the over expression of intracellular CAII and 

extracellular CA IX and CAXII in tumors [88,89] and described their role in maintaining 
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higher pHi. Topiramate has been shown to inhibit all of these CAs to some extent, 

however topiramate more effectively inhibits CAXII and CAII than CAIX [41].  

 

A brief introduction to the regulation of elevated pHi by the above mentioned CAs is 

given in this paragraph. In the extracellular space CAIX and CAXII catalyze the 

hydration of CO2with H2O to produce HCO3
-
 and H

+
. The extracellular HCO3

-
 is rapidly 

transported into the cell by Na
+ 

dependent Cl
-
/HCO3

-
 or Na

+
 dependent bicarbonate co-

transporters (1:2 stoichiometry). The intracellular HCO3
-
 then reacts with intracellular H

+
, 

lowering proton concentration (thus increasing pHi), and producing CO2 and H2O by the 

catalytic action of intracellular CAII. This intracellular CO2 again gets shuttled out of the 

cells rapidly and the cycle continues, keeping pHi elevated [37]. The Zn
2+

 ion present in 

all CAs is responsible for their catalytic action. CAIs including Topiramate bind to the 

Zn
2+

 ion of the CAs to form a tetrahedral adduct which limits their catalytic activity [41]. 

A study by Leniger et.al., observed a decrease in pHi of hippocampal neurons caused by 

topiramate. Leniger concluded that topiramate inhibits the activity of intracellular CA and 

speculated that topiramate may also impair the activity of Na
+
 dependent Cl

-
/HCO3

- 

exchange, the acid extruder, and increase the activity of Na
+
 independent Cl

-
/HCO3

-
 

exchange, the acid loader (Figure 1.3) [90]. 

1.9 Tumor pH measurements 

 

1.9.1 Techniques of pH measurements 

Change in pH homeostasis underlies many pathological conditions including cancer and 

in conditions of ischemia. Hence, many researchers are developing new techniques for 

pH measurement. In the past, pH electrodes were the first choice for pH measurements. 

However they are prone to inaccurate pHi measurements caused by physical damage to 

the cells [91]. 

PET has also been used to measure extracellular pH of tumors in patients using the pH 

probe 
11

C-labeled dimethadione (DMO) [92]. The probe is injected and the pH is 
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calculated from the distribution of charged and uncharged species of the probe. To 

measure pH using dimethadione also requires knowledge of DMO concentration in tissue 

water, the concentration of DMO in the extracellular space, and the volume of the intra- 

and extracellular spaces. The measurements of these parameters are complicated and 

introduce errors into the pH measurements [93,94]. 

 Optical methods can also be used to measure pH in tumors and surrounding tissues using 

the fluorescent properties of optical probes [95]. There are two main optical approaches 

used to measure pH. The first is fluorescence ratiometric imaging microscopy, a method 

in which the emission spectra of the probe undergoes a pH dependent wavelength shift 

and pH is determined by measuring the fluorescence intensities of these spectra. However 

the association of the emission properties of these probes with intracellular protein and 

cytosolic content can introduce bias in the measurement. The second is fluorescence 

lifetime imaging, which measures the fluorescence decay of the pH probe, and can be 

used to measure pH using the pH dependent shift in fluorescence lifetime of the pH probe 

[95]. Several magnetic resonance (MR) methods have also been developed to measure 

pH of tissues. 
31

P-Magnetic resonance spectroscopy (MRS)can be used to measure pHi 

[96]. pHi is measured from the pH dependent chemical shift of inorganic phosphate (Pi) 

with reference to that of phosphocreatine (PCr) [67]. However in tumors where necrotic 

volumes may develop, the concentration of extracellular Pi may elevate abnormally and 

may also contribute to the measurement making the measured pH weighted to both 

environments [28,97]. Extrinsic and intrinsic pH probes have also been developed for 
 

1
H- MRS to measure extracellular and intracellular pH respectively. Van Sluis et. al. [98-

100] have measured extracellular pH using the extrinsic pH probe 2- imidazole- 1- yl- 3- 

ethoxycarbonyl propionic acid (IEPA) in a mouse model of breast cancer. The CH2 group 

resonance of IEPA is pH sensitive and therefore can be used to measure pH.  The 

intracellular pH measurement by 
1
H –MRS uses the pH dependent chemical shift of the 

two protons on the C-2 and C-4 (Im_C2 and Im_C4) resonances of the imidazole ring, of 

intracellular histidine but also requires administration of exogenous histidine as the 

endogenous concentration of this compound is too low to detect [98-100]. 
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Hyperpolarized 
13

C bicarbonate is another method to measure pH and involves 

administration of hyperpolarized H
13

CO3
- 

[29,101]. This method was recently used to 

measure pH of lymphoma xenografts in a mouse model. The measurement showed the 

pHe of lymphoma is significantly lower than that of the surrounding normal tissue. The 

tumor pH was measured from the voxel wise ratio of [H
13

CO3
-
] to [CO2]. A similar 

approach has been used to map intracellular pH in the ischemic rat heart by injecting 

hyperpolarized [1-
13

C] pyruvate which is decarboxylated in mitochondria to form CO2 

and H
13

CO3
- 
[29,101,102]. However the measurement of pH using this method requires 

fast imaging as the signal from hyperpolarized 
13

C decreases rapidly.  The method also 

suffers from limited spatial resolution. 

MR relaxometry measures tissue pH by perturbing the relaxivity of bulk water protons 

via pH-sensitive relaxation agents such as gadolinium complexes. The pH sensitive agent 

GdDOTA-4AmP
5
 developed by Sherry and colleagues and Aime and colleagues has been 

shown to have pH sensitive relaxivity [103,104]. Measurement of pH by this method 

requires precise measurement of agent concentration within each voxel as the relaxation 

also depends on the concentration. To solve this problem Raghunand et. al. have used 

serial injection of two different gadolinium agents, GdDOTA-4Amp
5
 whose relaxivity is 

pH dependent and GdDOTP
5 

whose relaxivity is pH independent.  They have mapped 

pHe in mouse kidneys [105] and in rat glioma [106]. With this method the pH insensitive 

agent is injected first. After washout of the first agent the pH sensitive agent is injected. 

The concentration of pH sensitive agent is determined by the distribution of pH 

insensitive agent and then used to measure pHe. However this method is invasive and 

requires injection of exogenous contrast agents. In MRI, Chemical Exchange Saturation 

Transfer (CEST) is an emerging technique for measuring pHi and has received 

considerable attention. The underlying principles of the CEST technique used to measure 

pHi will be described in the following sections. 
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1.9.2 Chemical Exchange Saturation Transfer (CEST) 

 

1.9.2.1 Origin of Nuclear Magnetic Resonance (NMR) signal  

In MRI the measured signal is typically derived from the net magnetization of H
+
 in bulk 

water. When a nucleus with spin angular momentum is placed in a magnetic field, the 

magnetic moments tend to align either in the direction of the magnetic field (low energy 

state) or in the opposite direction of the magnetic field (high energy state). At 

equilibrium, the number of spins in the low energy state slightly exceeds those in the high 

energy state and this produces a net magnetization of the system which can be thought of 

as a spin vector aligned with the magnetic field. Interaction between this net 

magnetization with an applied radio frequency pulse produces the observable signal in 

MRI.  

1.9.2.2  Two pool proton exchange system  

The concept of CEST involves the chemical exchange of protons that are present in a 

different chemical environment and resonate at different frequencies (ω) than bulk water 

protons. For the explanation of CEST, consider a two-pool system of exchanging protons.  

The first pool is a small pool of bound water protons (solute protons called pool A) found 

on intracellular proteins and peptides in tissues. The protons are rigidly bound to the 

surface of intracellular proteins and take a long time to change in position compared to 

the bulk water protons. In many cases these protons are amide or amine protons with 

concentration in the mM or µM range.  The second pool is a large pool of free water 

protons (bulk water protons called pool B) with concentration about 55M as shown in 

Figure 1.6 below.   
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Figure 1.6 Schematic presentation of a two-pool system involved in proton exchange. 
The smaller pool A (solute pool) is composed of amine or amide protons associated with 

proteins in the tissue and the larger pool B is composed of the bulk water proton pool. 

The protons from the solute pool are always in chemical exchange with the bulk water 

protons. The process of chemical exchange depends on the concentration of the two pools 

and their proton exchange rates, referred to here as Ksw and Kws.  

 

To observe a CEST effect by MRI, the exchange rate of the proton should be in a slow to 

intermediate exchange regime. This means the proton exchange rates must not exceed the 

frequency difference (∆ω) of the two pools i.e. Kws, Ksw≤ ∆ω.  Also, the longitudinal 

relaxation rate (R1) of the solute proton pool must be slower than its exchange rate with 

bulk water protons.  Excellent reviews describing the CEST MRI contrast mechanism 

have recently been published [107,108]. 

 

1.9.2.3 Saturation and Chemical Exchange 

If the exchanging system of protons satisfies the above mentioned conditions, 

presaturation of the solute protons can modify the population of the spin energy levels of 

this pool. At equilibrium (before interrogation with an RF pulse) fewer proton spins are 

aligned in the high energy state (in the opposite direction of the magnetic field, Figure 

1.7A). When a radio frequency pulse (RF) of suitable energy is applied at the offset 
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frequency of the solute protons, the number of solute proton spins in the high energy state 

increases. As the number of proton spins in low energy states decreases, the bulk 

magnetization of this pool will be reduced. When the number of proton spins in both 

energy states becomes equal the spins are said to be saturated and the net magnetization 

of the pool will be zero. The proton spins in the bulk water pool initially maintain their 

distribution according to the Boltzman Equation (Figure 1.7B). However, once the solute 

pool becomes saturated, the exchange of spins to the bulk water pool perturbs this 

equilibrium condition (Figure 1.7C). The exchange process takes place in two directions. 

The net effect is a reduction in the population difference between the low and high 

energy states in the bulk water pool. This “chemical exchange” effect results in a 

decrease in the net macroscopic magnetization of the bulk water pool along the z-axis. If 

the protons in the solute pool have a fast forward exchange rate and the saturation time is 

sufficiently long (in the range of seconds), the effect of the saturation of the solute pool 

will be to decrease the magnitude of the bulk water magnetization.  This means that when 

a 90
0
 pulse is applied to measure the magnetization, the signal intensity of the bulk water 

pool will be lower than with no saturation applied [107,109,110] (Figure 1.7D).  

 

Figure 1.7 Process of saturation and chemical exchange. A) At equilibrium (before 

application of an RF pulse) the population of spins in the low energy state is higher than 

that of the population of spins in high energy state. B) When an RF saturation pulse is 

applied at the resonance frequency of pool B, the population of spins in the high energy 

state in this pool increases, which results in a decrease in net magnetization of this pool. 

Without exchange, the water maintains its equilibrium distribution of spins. If the RF 

saturation pulse is of sufficient duration then the process of saturation equalizes the 
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number of proton spins in the two energy levels. C) When pool B is in exchange with 

pool A, the magnetization from pool B is transferred to pool A. D) As a result of the 

transfer of energy from pool A to pool B, the signal from the bulk water pool B 

decreases. Adapted from reference [101] 

 

The theory of chemical exchange has also been extended to three or four pools of 

exchanging protons including a pool of free (bulk water) protons and additional pools of 

bound protons [111,112]. 

1.9.2.4  Chemical Exchange and pH 

The cellular environment in humans contains several different proton exchanging systems 

including the amide and amine protons of intracellular proteins and peptides, the 

hydroxyl (-OH) protons present in sugar, cellulose and glycogen, and free water protons. 

The rate of chemical exchange of these protons is pH dependent; exchange increases with 

higher pH.  Recently, Zhou and coworkers used CEST contrast arising from intracellular 

proteins and peptides to acquire pH-weighted images of rat brain with ischemic regions 

and tumors. The CEST contrast was named amide proton transfer (APT) [73]. Our 

laboratory has also recently developed a ratiometric CEST contrast technique called 

Amine and Amide Concentration Independent (AACID) detection. AACID is a ratio of 

CEST effects arising from amide protons resonating at 3.5 ppm (parts per million) and 

amine protons resonating at 2.75 ppm downfield from the bulk water protons. This 

technique was successfully applied to measure pH changes in glioblastoma tumors after 

the selective acidification of the tumor environment with a drug called lonidamine [113]. 

However lonidamine is not currently approved for use in humans.  Therefore the goal of 

this thesis was to apply the AACID technique to measure pH changes induced by a single 

dose of the drug Topiramate, which is a well-established and approved anticonvulsant.    

1.9.2.5 Chemical Exchange Saturation Transfer (CEST) measurements 

CEST contrast measurements are made by acquiring a spectrum called a Z-spectrum; also 

commonly called a CEST-spectrum. A radiofrequency saturation pulse is applied at a 
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predefined set of frequencies offset from the water resonance frequency.  Following each 

application of the saturation pulse, the bulk water signal is measured.  The CEST-

spectrum is created by plotting the acquired bulk water signal intensity (magnetization) as 

a function of the applied saturation frequency. The resonance frequency of the bulk water 

is generally used as the center frequency and is assigned the chemical shift of 0 ppm. 

When the presaturation frequency is far away from the water resonance frequency, there 

is no direct saturation of the bulk water pool. But, if the frequency of the saturation pulse 

is at or close to the water resonance frequency, then the intensity of water signal 

decreases due to its direct saturation.  This produces a negative peak in the CEST-

spectrum. Similarly, if the saturation frequency is at the resonance frequency of an 

exchangeable solute proton pool (amide or amine), the process of saturation and chemical 

exchange will decrease the intensity of the bulk water signal, which will also produce a 

negative peak in the spectrum. In a system involving three pools of exchanging protons 

the CEST spectrum will have three negative peaks representing each pool. The observed 

CEST effect may be pH dependent. A CEST- spectrum of an exchanging system (three 

pool model) is depicted in Figure 1.8 
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Figure 1.8 CEST spectra obtained from a three-pool proton exchanging system at 

different pH. When the RF saturation pulse frequency is applied far from the water 

resonance frequency there is no effect on the water magnetization. However when the 

frequency of the saturation pulse is applied at the amide resonance (3.5 ppm) or amine 

resonance (2.75 ppm), the process of saturation and chemical exchange decreases the 

signal intensity of the measured bulk water resulting in a dip in the CEST spectrum.  M0 

is the bulk water magnetization without saturation and MZ is the measured bulk water 

magnetization following saturation.  Adapted from Ref. [114] 

 

1.9.2.6 Water Saturation Shift Referencing (WASSR) for CEST experiments 

The phenomenon of CEST exploits the transfer of magnetization from solute protons to 

bulk water protons.  At 9.4 T, the amide protons (3.5 ppm) and amine protons (2.75 ppm) 

resonate relatively close to the water frequency (assigned a resonance frequency of 0 

ppm). The measured change in bulk water magnetization commonly referred to as the 

CEST effect from amine and amide protons, is influenced by many factors including the 
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bulk water relaxation rate R1, the exchange rate, the presence of magnetization transfer 

(MT) effects arising from immobile semisolid macromolecules (such as lipid), and B0 

inhomogeneity. Macromolecular protons have a wide absorption range 1-50 kHz and are 

also saturated by the off resonance RF preparation pulse.  The transfer of magnetization 

from these protons to bulk water competes with the CEST effects from the solute proton 

pools of interest. Also, in vivo, CEST effects are extremely sensitive to direct water 

saturation. Due to the steep slope of the direct water saturation curve any inhomogeneity 

in the main magnetic field B0 can shift the frequency of the water resonance in the CEST 

spectrum and can reduce the magnitude of the observed CEST effect.  

To solve this problem Kim et. al. proposed a technique called Water Saturation Shift 

Referencing (WASSR) [115]. In WASSR a set of images is acquired ranging the RF 

preparation pulse frequency in small steps around the bulk water frequency using a low 

saturation power to reduce the MT effects and CEST effects from other exchanging 

systems. Polynomial fitting is then used to find the center of the Z- spectrum in each 

voxel.  

For this study, WASSR spectra were acquired before the acquisition of each CEST 

spectrum by applying a saturation pulse of duration 100 ms and amplitude 0.2 µT. Each 

WASSR spectrum was interpolated to achieve a 1 Hz resolution and was then fitted to a 

polynomial to find the center peak in each voxel. 

1.9.2.7  CEST - pH calibration (AACID- pH calibration) 

Our group has recently developed a radiometric CEST measurement technique called 

Amine and Amide Concentration Independent Detection (AACID). To relate the 

measured AACID value to pHi, a calibration was required. In our study, CEST spectra 

were acquired in normal healthy mice (N= 3) and mice with brain tumors (N=8) using the 

method described above.  In each mouse the average AACID values were calculated 

directly from the B0 corrected CEST spectra using Equation [1] in the normal mouse 

brain and contralateral region for mice with tumors, as well as within the tumor region 

[114].  
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                                               [1] 

Contrast maps were also generated by calculating the contrast to noise ratio (CNR) using 

Equation [2] where CESTTPM represents the average CEST parameter value calculated 

after the TPM administration and CESTBaseline represents the average CEST parameter 

value prior to TPM treatment. 

                  
         

 

   
              

      
             [2] 

To relate AACID values to pH, we used data from three healthy mice and eight tumor 

mice. In healthy mice, the whole brain AACID values were averaged. The calculated 

AACID values in non-tumor and tumor regions were plotted against expected pH values 

from the literature and the points were fitted to a linear model [114,116]. For this 

calibration, contralateral tissue in mice with tumors was considered to be normal. The 

measured AACID values in the contralateral ROIs and AACID values in normal mouse 

brain were assigned a pHi= 7.0 [26,27] whereas, AACID values in tumor ROIs were 

assigned to pHi= 7.3 [28,29]. The resulting linear relation described in Equation [3] was 

used to generate in vivo pH. 

                                                                                                              [3] 
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1.10 Thesis Objective 

In summary, one of the features that all aggressive cancers share is higher pH i and lower 

pHe.  Higher pHi in tumors is associated with tumor growth and evasion of apoptosis 

[30,117] whereas lower pHe is associated with invasive growth and cell migration 

[30,118]. Higher pHi also suppresses the cytotoxic effects of alkaline anticancer drugs 

[119]. We hypothesize that it is possible to exploit the differences between tumor pH, 

healthy tissue pH, and pH regulation, for cancer detection and treatment.  Specifically, in 

this thesis we will explore pharmacological manipulation of intracellular pH and direct 

monitoring of acute pH changes by MRI. For this work we have selected the antiepileptic 

drug Topiramate, which is approved for use in humans and has been shown to be well 

tolerated and effective in controlling seizures in patients with glioblastoma [86]. The 

objective of this thesis was to determine whether the antiepileptic drug Topiramate can 

modulate tumor pH and if these changes are detectable by AACID-CEST. 
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Chapter 2 

Topiramate Induced Acute Intracellular Acidification in Glioblastoma 

Multiforme Brain Tumors 
 

Kamini Marathe, Nevin McVicar, Alex Li, Miranda Bellyou, Susan Meakin,  

And Robert Bartha
 

Abstract: Reversal of the intracellular/extracellular pH gradient is a hallmark of 

malignant tumors and is an important consideration in evaluating tumor growth potential 

and the effectiveness of anticancer therapies. Brain tumors including Glioblastoma 

Multiforme (GBM) have increased expression of the carbonic anhydrase (CA) isozyme 

CAII, CAIX and CAXII that contribute to the regulation of intracellular pH (pHi). The 

anti-epileptic drug topiramate (TPM) inhibits these tumor associated CAs and may 

acidify the tumor intracellular compartment. In-vivo detection of acute tumor 

acidification could aid in cancer diagnosis and treatment optimization. Chemical 

exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has been used to 

measure tissue pH. Using a recently developed CEST-MRI method called amide/amine 

concentration independent detection (AACID) we have previously shown intracellular 

acidification caused by a single dose of lonidamine. However lonidamine is not currently 

approved for use in humans. Therefore the aim of the current study was to evaluate the 

intracellular acidification induced by single dose of the approved drug Topiramate. Brain 

tumors were induced in NU/NU mice by injecting 1×10
5
 U87 human glioblastoma 

Multiforme cells into the right frontal lobe.  Using a 9.4T MRI scanner AACID CEST 

spectra were acquired, before and after administration of TPM (dose: 120mg/kg 

intraperitoneal) 15 ± 2 days after tumor cell implantation. A significant average 0.12 

decrease in pHi was observed in implanted tumors one hour after TPM administration. In 

contrast, contralateral tissue showed no change in pHi. These results suggest that 

topiramate can rapidly induce a tumor specific physiological change detectable by 

AACID CEST.  This pH challenge paradigm could be exploited to aid in tumor detection 

and treatment planning.  
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Abbreviations used: CEST-Chemical Exchange Saturation Transfer; CA-Carbonic 

Anhydrase; CAI- Carbonic Anhydrase Inhibitor; GBM- Glioblastoma Multiforme; 

AACID- Amine and Amide Concentration-Independent Detection; pHi- Intracellular pH; 

TPM- Topiramate, TR-Repetition Time, TE- Echo time, ETL- Echo Train Length, FOV-

field of View 

2.1 Introduction 

Glioblastoma Multiforme (GBM) is the most aggressive and common form of primary 

brain cancer accounting for < 2% of all cancers but remains one of the most lethal human 

malignancies [1-3]. In patients receiving standard treatment, involving surgical resection 

followed by aggressive adjuvant radiation therapy and chemotherapy with temozolomide, 

the median survival is approximately 12-18 months after diagnosis [4,5]. Despite 

advances in anticancer therapies, management of patients with GBM represents a severe 

challenge as 90% of tumors recur due to the infiltrative nature of GBM cells [6]. The 

therapy options for recurrent glioma are limited, reducing the survival rate to 3-6 months 

in these patients [7]. Identifying progression is difficult by magnetic resonance imaging 

[8] as morphological changes induced by anticancer therapies, such as radiation necrosis, 

mimic that of recurrent brain tumor [9].  Identifying a positive tumor response to 

treatment can also take several weeks when using conventional methods of measuring 

tumor size [6]. Therefore, there is a need to develop sensitive imaging techniques that can 

identify malignant cells and accurately characterize tumor response to treatment within a 

short time interval.  

One of the distinguishing features of cancer cells is the reversed intracellular/ 

extracellular pH gradient. Tumors cells maintain a slightly alkaline intracellular pH (pH i) 

compared to normal cells, whereas the extracellular pH is more acidic. Higher pHi is 

permissive of increased proliferation, cell migration, and evasion of apoptosis and is also 
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associated with resistance to chemotherapy drugs in cancer management [10,11]. Cancer 

cells regulate this reversed cellular pH gradient favorable to their survival through 

changes in the expression of ion transport channels and the CO2/HCO3
-
buffering system 

[10,12,13].  The CO2/HCO3
-
 buffering system helps to maintain acid / base balance to 

regulate pHi and minimize the effect of pHi variation in response to intracellular H
+
 

production or H
+
 consumption. For the CO2/HCO3

-
 buffer to effectively regulate pHi, the 

influx of HCO3
-
 must match the efflux of CO2 [13]. To maintain buffer system 

equilibrium and pH homeostasis, cancer cells over express the hypoxia inducible 

carbonic anhydrase (CA) isozyme-CAII, CAIX and CAXII, as well as Aquaporin water 

channels (AQP1) [14-17].The carbonic anhydrases are zinc enzymes and play a crucial 

role in pHi regulation by catalyzing the reversible hydration of CO2 (CO2 + H2O ⇋ 

HCO3
-
 + H

+
) and by enhancing the efflux of CO2 into the extracellular space [14,15,18], 

which is a disguised form of acid extrusion. The direction of the reaction depends on the 

concentration of protons, CO2, and bicarbonate that predominates [15]. AQP1 facilitates 

transport of intracellularly generated CO2into the extracellular space and thus plays an 

important role in pH regulation [19]. Inhibition of the carbonic anhydrases CAs, 

particularly by carbonic anhydrase inhibitors (CAI) has been shown to modulate pHi in-

vitro in tumors [20,21]. Perturbing the pHi balance by pharmacologically manipulating 

these regulating mechanisms could provide a tool to rapidly assess tumor physiology and 

potentially predict response to specific treatments [22]. 

We have recently developed and applied a novel chemical exchange saturation transfer 

(CEST) technique called amine and amide concentration independent detection (AACID) 

to monitor changes in tissue pHi. Within the physiologically relevant range, AACID 

values have a linear dependence on pHi [23]. We have demonstrated tumor selective 

acidification using the AACID technique in a mouse model of GBM approximately 50 

minutes after administration of a single dose of the anticancer drug-lonidamine (LND) 

[24]. However LND is not currently approved in humans. In contrast, the drug 

Topiramate (TPM) is widely used in humans for the treatment of epileptic seizure [25]. 

This drug is a sulfonamide derivative that binds to the zinc ion site necessary for catalytic 
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activity of CAs and acts on most CA isoforms disturbing their ability to regulate pHi [14]. 

More specifically, it is been proposed that inhibition of CAs disturbs the CO2/HCO3
-
 

equilibrium causing intracellular acidification [13]. Interestingly, treatment of Lewis lung 

carcinoma with TPM has shown a significant reduction of lung metastases, potentially 

due to the effect of TPM on CAs and AQP1 [26].The purpose of the current study was to 

measure the change in pHi induced in GBM tumors by a single dose of TPM using 

AACID CEST MRI.  We hypothesized that a single dose of TPM would produce tumor 

specific acidification detectable by CEST MRI contrast. Manipulating pH regulation in 

tumor cells using pharmacologic stressors, such as topiramate, may provide a sensitive 

tool for the detection of tumor boundaries as well as an indicator of tumor response to 

treatment, as the physiological response to the pharmacologic stressor varies with cell 

type. 

2.2 Methods 

2.2.1 Subjects:  Eleven NU/NU mice were included in the current study. Eight of these 

mice were implanted with U87MG brain tumors and used to evaluate the acute effect of 

TPM on tumor pHi. The remaining three NU/NU mice were used as controls to study the 

effect of TPM on the pHi of normal brain tissue. 

2.2.2 Chemicals: TPM (C12H21NO8S) was purchased from Sigma-Aldrich (Aldrich, 

Canada) in powder form.  The drug was prepared by dissolving 50 mg of TPM in 10 ml 

of phosphate buffered saline (PBS, pH=7.2). The solution was vortexed for 2 minutes to 

dissolve the drug completely. Following baseline imaging as described below, TPM was 

administered intraperitoneal (i.p.) at a dose of 120 mg/kg over the course of 5 minutes 

using a Harvard apparatus (PHD 2000) syringe pump. 

2.2.3 Mouse Tumor preparation: The human glioblastoma multiforme cell line U87MG 

(malignant glioma cells) was purchased from ATCC (Rockville, MD). Tumors were 

induced in eight NU/NU mice (10-12 weeks old, weighing 20-25 gm) as described 

previously [23]. Briefly, GBM cells were grown in Dulbecco’s modified Eagles medium 



41 

 

 

 

 

supplemented with 10% fetal bovine serum (Wisent Inc.) at 37
0
C in a humidified 

incubator with 5% CO2 and passaged twice a week. Before making the final solution of 

1×10
5
 U87MG cells in 2ml PBS for injection, U87MG cells were washed and dissociated 

with phosphate buffered saline (PBS) plus 0.5 mM EDTA and then washed twice with 

PBS alone. Before injection of the cells, anesthesia was induced in each mouse by 

inhalation of 4% isoflurane in oxygen through a nosecone with the head secured in a 

stereotactic frame (Stoelting instruments, Wood Dale, IL, USA). Anesthetized animals 

were maintained using 1.5-2.5% isoflurane. The scalp was swabbed with a 3-step surgical 

prep and bregma was exposed by making an incision in the scalp. A 1 mm diameter hole 

was drilled in the skull at coordinates 1 mm anterior to bregma and 2 mm lateral from 

midline, to allow injection of cancer cells through a 27-guage Hamilton syringe. The 

U87MG cells, (2 μl), were manually injected over a 5 minute period into the right frontal 

lobe, 3 mm into the tissue (from bregma) with a Hamilton syringe (Reno, NV, USA) 

attached to a 27-gauge needle.  The needle was left in place for an additional 3 minutes 

before withdrawing.  The burr hole was covered with bone wax and the scalp was sutured 

closed. 

2.2.4 Mouse preparation for in-vivo imaging: Mice were prepared for imaging 15 ± 2 

days post tumor cell injection. The mice were anesthetized using 4% isoflurane in oxygen 

and maintained with 1.5-2.5% isoflurane in oxygen. Each mouse was positioned and 

secured on a custom-built MRI-compatible stage. The mouse’s head was secured using a 

bite bar and surgical tape to minimize motion due to respiration. Mouse temperature and 

respiration was monitored throughout imaging. A rectal temperature probe was used to 

monitor temperature and a pressure transducer attached to a respiratory sensor pad was 

placed on the thoracic region to monitor respiration. Throughout imaging, mouse body 

temperature was maintained at 36.9-37.5 
0
C by blowing warm air over the animal using a 

model 1025 small-animal monitoring and gating system (SA Instruments Inc., Stony 

Brook, NY, USA). All animal procedures in this study were performed according to a 

protocol approved by the University of Western Ontario Animal Use Subcommittee. 

Animals were sacrificed immediately after MR imaging. 
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2.2.5 In-vivo Magnetic Resonance Imaging: At day 15 ± 2 after cancer cell injection, 

the mice were imaged on a 9.4T small animal MRI scanner equipped with a 30 mm 

millipede volume coil (Agilent, Santa Clara, CA, USA). Standard anatomical T2-

weighted images were used for tumor visualization. The T2-weighted images were 

acquired using a 2-dimensional fast spin-echo (FSE) pulse sequence with parameters: 

TR/TE = 3000/10 ms, ETL = 4, effective TE = 40ms, FOV = 25.6 x 25.6 mm
2
, matrix 

size = 128 x 128, slice thickness= 1 mm. Upon initial tumor detection, 2-slices from the 

T2-weighted images with maximum tumor coverage (2 mm thickness) were selected for 

CEST imaging. CEST images were acquired using the FSE pulse sequence (TR/TE = 

7000/7 ms, ETL = 32, effective TE = 7ms, FOV = 25.6 x 25.6 mm
2
, matrix size = 64 x 

64, slice thickness = 2 mm) preceded by a continuous RF saturation pulse with amplitude 

1.5-µT and duration 4s. A series of fifty-five CEST images were acquired at different 

saturation frequencies (from 1.6 to 4.5 ppm with step size = 0.1 ppm, from 5.4 to 6.6 ppm 

with step size =0.1 ppm, as well as-1000 and 1000 ppm reference images.  CEST images 

were acquired three times before and three times beginning immediately after drug 

injection and averaged to improve signal-to-noise ratio. For B0 correction, the water 

saturation shift referencing (WASSR) technique was used [27]. Linearly spaced 37-point 

WASSR CEST spectra were acquired with saturation frequencies ranging from -0.6 to 

0.6 ppm using the same pulse sequence except preceded by a short RF pulse (100 ms) 

with low amplitude (0.2 µT). Each WASSR spectrum and CEST spectrum was 

interpolated to a 1-Hz resolution.  The CEST spectrum for each pixel was then frequency 

shifted, using the corresponding WASSR spectrum, to account for regional B0 variation. 

A single pre- and a single post-injection CEST spectrum were created by averaging the 

three CEST spectra acquired before and after drug injection, respectively.  A B1 field map 

was generated using an actual flip-angle imaging (AFI) pulse sequence (TR = 20 ms, TE 

= 3.47 ms, echoes = 2, flip-angle = 70
0
, FOV = 25.6 x 25.6 mm

2
, matrix size= 64 x 64) 

[28]. The B1 variation in the CEST slice was less than 5%, and as a result no B1correction 

was necessary. All CEST analyses were performed using MATLAB (Mathworks, Natick, 

MA, USA). AACID values were calculated directly from the B0 corrected CEST spectra 

using Equation [1] as previously described [23,24]. AACID values were calculated on a 
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voxel by voxel basis directly from the CEST spectra acquired at baseline and after TPM 

injection within manually defined regions of interest (ROIs) within the tumor and on the 

contralateral side. 

      
                                       

                                       
                                        

To assess the magnitude of the change in CEST signal after treatment, a contrast to noise 

ratio (CNR) map was produced using Equation [2] below, where CESTBaseline represents a 

CEST parameters (AACID and pH) measured before TPM treatment, CESTTPM 

represents CEST parameters (AACID and pH) measured after TPM treatment, and the 

background noise ( Noise) represents the standard deviation of a CEST parameter 

measured in the contralateral region before TPM treatment (N= the number of animals) 

                  
         

 

   
              

      
                                                      [2] 

2.2.6 AACID- pH calibration: To improve interpretation of the results, pHi was 

approximated from the AACID values using a linear approximation.  To calibrate pHi, 

average CEST spectra were obtained within tumor and contralateral tissue in vivo (N=8) 

using the method described above. The measured AACID values for each tissue type 

were plotted against the expected pH values in corresponding regions (pH = 7.0 in 

contralateral brain tissue [29-31], pH =7.3 in tumor tissue [32-34]). The pH value 

assigned to tumor ROI reflects the pH value measured in hepatoma and mammary 

sarcomas in rat models using 
31

P-MRS. The best-fit linear relation was used to relate 

AACID values to in vivo pHi. 

2.2.7 Statistical Analysis: AACID and pH values were calculated at baseline and 

following injection of TPM, within contralateral and tumor ROIs defined in each mouse 

brain using MATLAB. The ROIs containing tumor tissue and contralateral tissue were 

drawn manually based on the signal changes observed in the T2-weighted images. A 

paired t-test (Microsoft Excel 2012) was used to calculate differences in mean AACID 
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and pH values measured in the tumor and in contralateral ROIs before and after drug 

injection.  A similar comparison was made in control mice using the AACID and pH 

values from the whole brain.  For control animals a whole brain ROI was drawn manually 

using the standard T2-weighted anatomical images. 

2.3 Results 

2.3.1 AACID- pH calibration 

The AACID-pH calibration results are provided in Figure 1. The best-fit linear relation 

given by the blue line in Figure 1 was used to relate AACID values to in vivo pHi 

(Equation [3]):  

                                                                                                                       

Figure 1 AACID pH calibration. To relate AACID values to pH, AACID values in 
contralateral ROI were assigned to pH = 7.0, and AACID values in tumor ROI were 

assigned to pH = 7.3 and were fitted to linear model. The generated linear Equation was 

then used to generate pH maps in experimental animals. 

 

 



45 

 

 

 

 

2.3.2 CEST imaging in normal mouse brain tissue following TPM treatment  

AACID maps from the brain of a control Nu/Nu mouse showed no change between the 

baseline scan and the scan acquired one hour after TPM injection (Figure 2a and 2b). The 

corresponding pH maps for the same mouse brain employing Equation [3] are also 

provided (Figures 2c and 2d). There were no significant differences between the mean 

(N=3) brain AACID CEST and pH values measured before and one hour after 

administration of TPM (Figure 3). Figure 2e and 2f represents the AACID and pH 

contrast maps employing Equation [2]. 

 

 

 

Figure 2 Representative AACID and corresponding pH maps from a healthy 

NU/NU mouse brain. CEST images acquired immediately before (a) and ~75 min after 

i.p. injection of 120mg/kg TPM (b).The corresponding pH distribution maps are provided 

in (c) and (d). AACID and pH values were calculated from the CEST spectra acquired at 

baseline and after TPM treatment using Equations 1 and 3.The AACID contrast (e) and 

pH contrast (f) distribution maps showed minor variations in contrast values following 

TPM administration. 
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Figure 3 Summary of CEST measurements from healthy NU/NU mice (N=3). a) 

Mean AACID, and b) mean pH values acquired at baseline and ~75 min after 120 mg/kg 

TPM treatment in the whole brain. No significant differences were observed in AACID 

and pH values calculated before and after TPM treatment. As a result the TPM induced 

contrast was equal to background noise. All the error bars represent ± one standard 

deviation.  

 

2.3.3 CEST imaging of U87MG brain tissue following TPM treatment 

A representative anatomical T2-weighted MR image acquired in a NU/NU mouse, 15 ± 2 

days post U87MG cancer cell implantation shows typical manually defined regions of 

interest (Figure 4). Average CEST spectra (B0–corrected) from one animal incorporating 

all pixels within the contralateral tissue ROI (Figure 5a) and tumor tissue ROI (Figure 5b) 

demonstrate clear differences in overall CEST effect as well as the CEST effect at 3.5 

ppm. Pre injection spectra are shown in blue and post injection spectra are in shown in 

red (Figure 5).  At baseline amine protons at 2.75 ppm did not produce any notable CEST 

effect in the contralateral ROI.  However, amide protons resonating at 3.5 ppm generated 

a relatively higher CEST effect in tumor tissue compared to tissue on the contralateral 

side (Figure 5b). This higher amide CEST in the tumor ROI is attributed to several 

factors including an alkaline pHi and increased protein content [35,36]. Topiramate had 

no effect on amide CEST in the contralateral ROI (Figure 5a). Conversely, changes in 

amide CEST effect were more pronounced in the tumor tissue ROI after topiramate 

administration (Figure 5b). Specifically, the amplitude of the amide CEST peak 



47 

 

 

 

 

decreased markedly following TPM administration. These results strongly suggest that 

TPM induced acidification, as the amide proton CEST effect decreases with decreasing 

pH. Quantitative AACID and pH distribution maps in one animal measured at baseline 

(Figure 6a, c) and 1 hour after TPM injection (Figure 6b, d) clearly show evidence of 

tumor selective acidification. Pre-injection (baseline) AACID distribution maps 

consistently showed higher AACID values on the contralateral ROI and lower AACID 

values within tumor ROI (Figure 6a). As expected this is reflected as higher pH values in 

tumor ROIs and lower pH values in contralateral ROIs (Figure 6c). Post injection AACID 

maps showed a marked increase in AACID values in the tumor ROI (Figure 6b) in this 

animal, which corresponds to a decrease in tumor pHi (Figure 6d). The AACID and pH 

contrast maps generated using Equation [2] are shown in Figure 6e and 6f respectively. 

Figure 7 summarizes the mean AACID and pH values measured in all animals with 

tumors before and one hour after TPM treatment. Average AACID values did not change 

in the contralateral ROI (Figure 7a) after TPM injection.  Conversely as expected in the 

tumor ROI, AACID values were significantly higher (0.045) (p<0.05, N=8) after TPM 

injection compared to baseline (Figure 7b).  This corresponded to an average decrease of 

0.12 pH units (p<0.05, N=8) after TPM injection (Figure 7d) in tumor tissue and no 

significant effect on pH values in contralateral ROIs (Figure 7c). The average AACID 

and pH CNR [mean CNR ± standard deviation] within tumor was: 1.86 ± 0.54 (AACID) 

and 1.85 ± 0.55 (pH), while the average AACID and pH CNR [mean CNR ± standard 

deviation] in contralateral tissue was: 0.12 ± 0.72 (AACID) and 0.11 ± 0.72 (pH).  
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Figure 4 Standard anatomical T2-weighted MR image of a mouse brain with a U87 

human Glioblastoma Multiforme tumor at day 17. The hyperintense tumor region of 

interest (ROI) was manually drawn (dashed line) as was the contralateral ROI (solid line). 

 

 

 

Figure 5 CEST spectra acquired in representative animal at baseline and ~75 

minutes after administration of TPM. Average CEST spectra, from the ROI containing 

contralateral tissue (a), and from the ROI containing tumor tissue (b) with error bars 

equal to one standard deviation. Pre- and post- injection 6 ppm points were assigned the 

same values to clearly see the relative changes in amine (2.75 ppm) and amide (3.5 ppm) 

CEST effects.  
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Figure 6 Representative AACID and corresponding pH maps from a NU/NU mouse 

brain with tumor. CEST images acquired immediately before (a) and ~75 minutes after 

i.p. injection of 120 mg/kg TPM (b). The corresponding pH distribution maps are 

provided in (c) and (d).  The AACID contrast map (e) and pH contrast map (f) show 

changes in CEST effects following tumor selective acidification by a single dose of TPM. 

Tumor regions are shown in dotted lines. 

 
d) c) 
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Figure 7 Summary of the CEST parameters from NU/NU mice with U87 

glioblastoma brain tumors (N=8). Mean AACID (a, b) and mean pH (c, d) values 

acquired in contralateral ROI (a, c) and tumor ROI (b, d) with error bars equal to ± one 

standard deviation. The mean contrast values are also shown with error bars equal to ± 

one standard deviation. The mean AACID and pH values are shown at baseline (purple) 

and at ~ 75 min after 120 mg/kg TPM treatment (red), along with the measured contrast 

(green). 
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2.4 Discussion 

The purpose of this study was to investigate whether a single dose of the drug topiramate 

could induce tumor selective acidification and if the decreased pH was detectable by 

AACID CEST MRI. Topiramate is an anticonvulsant drug that is widely used to treat 

epileptic seizures. Topiramate inhibits a wide range of carbonic anhydrases including 

tumor associated (CAII, CAIX, and CAXII). These CAs contribute to the maintenance of 

an alkaline intracellular pH in tumors [15]. The study herein is the first to report a 

significant acute decrease in tumor tissue pH measured by AACID CEST MRI following 

TPM injection. 

Tumor cells have been associated with increased glycolysis and lactate production.  To 

counterbalance the acidic load produced, and maintain a high pHi that favors survival and  

growth [19], there is increased expression of membrane transporters such as the Na
+
/H

+ 

exchanger, Cl
-
/HCO3

-
 exchangers, Na

+
/HCO3

-
cotransporters, H

+
/lactate cotransporters, 

and the carbonic anhydrases CAII, CAIX and CAXII. Expression of carbonic anhydrases 

has been associated with poor prognosis in various human brain tumors [17,37,38]. These 

CAs play a vital role in maintaining an alkaline pHi, which is permissive of cell 

proliferation and evasion of apoptosis. In contrast, it has previously been hypothesized 

that intracellular acidification could enhance apoptosis to control tumor growth [39]. For 

example, acidification of the intracellular compartment of melanoma xenografts has been 

shown to enhance the cytotoxic effect of the weakly acidic chemotherapy drug Melphalan 

[40]. Also, the CA inhibitor acetazolamide has shown to induce apoptosis in human 

cervical and renal carcinoma cell lines, in vitro, by inhibition of CAIX[41].In addition, 

the intracellular acidification of a mammary carcinoma cell line by the Na
+
/H

+
 inhibitor 

amiloride increased the effect of hyperthermia treatment [42,43]. Finally, combined 

silencing of CAIX and CAXII in fibroblasts decreased pHi by 0.2 units, and tumor 

volume by 85% [15].  All of these studies suggest that acidification of the tumor 

environment could have therapeutic applications in cancer management. The 

sulphonamide derivative, TPM, binds to the zinc (Zn
2+

) ion of the carbonic anhydrases, 
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thus inhibiting CO2 hydration and disturbing pH regulation in tumors[12].A previous 

study using topiramate to treat Lewis lung carcinoma showed an inhibitory effect on 

tumor metastasis, potentially due to inhibition of AQP1[26].  

Our group has previously demonstrated tumor selective acidification induced by a single 

dose of the drug Lonidamine (LND) using AACID CEST MRI. A significant increase in 

AACID value (0.15 units) was evident one hour after LND administration. This 

acidification was likely a result of decreased glycolysis and decreased lactate efflux after 

LND injection. In the current study the increase in AACID value (0.045 units) was 

considerably less than the LND induced change. One potential explanation for this 

difference is that LND targets the Na
+
/H

+ 
antiport which may be a more efficient 

regulator of pHi under hypoxic conditions compared to the transport of bicarbonate ions 

formed during the catalytic activity of CA through Cl
-
/HCO3

-
 transporters [44-46].  

It should be noted that the pH values presented in the current study were estimated based 

on a calibration using pH values previously published in the brain.  Some assumptions 

were made including: 1) the contralateral tissue in the tumor bearing animals was normal 

with pHi 7.0 [30,31] and 2) the pHi of tumor tissue was 7.3 [32-34].To develop the pH 

relation to AACID, AACID CEST values in glioma tumors and normal brain tissue 

obtained in the experimental animals were plotted against the published pH values in 

tumor tissue and normal tissue calculated by 
31

P MRS. Further work is needed to 

calibrate the AACID- pH Equation in glioma tumors. The variability observed in the 

AACID and pH values (Figure 7b, d) within the tumor ROI may be due to biological 

variation in the animals, variation in the development of tumor vasculature in different 

animals, and the time of the scan (range from 13 days to17 days post cell implantation). 

The AACID and pH maps could also be improved in the future by increasing the signal to 

noise ratio of the acquired CEST images. Interestingly, we observed an increase in 

contrast in some regions of the contralateral brain (top and bottom left) following TPM 

injection (Figure 6). The phenomenon underlying this change may be related to structural 

and physiological changes within the tissue induced by pressure from the tumor. 
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Most of the studies on Topiramate and other CAIs are focused on epilepsy and other 

physiological conditions while only limited data are available for their use in cancer. 

Acetazolamide is one of the most studied CAI in cancer research and may also decrease 

tumor pHi and delay tumor growth [20,47]. The results of the current study are also 

consistent with Leniger et.al., who has suggested that changes in pHi of hippocampal 

neurons can be caused by inhibition of CAs [48]. 

The study presented here used a small sample size; therefore this preliminary work 

should be repeated with more animals. The dose studied here (120mg/kg) was chosen 

based on the study by Bing et. al.,[26] as the rate of inhibition of tumor metastasis was 

highest at this dose. ATPM dose as high as 400mg/day has been safely used in adults in 

the treatment of epilepsy. The main side effect associated with the TPM treatment is 

acute confusion and metabolic acidosis at this dose [49]. Future work is needed to find 

the optimal TPM dose that produces the highest CEST effects in tumors.  Future 

longitudinal studies are also required to evaluate the effect of long-term TPM treatment 

on tumor progression. Recently, many studies have shown the potential of different CAIs 

to control tumor growth and metastasis [50,51]. Also, the risk of having epileptic seizures 

in tumor patients is high, therefore investigating the use of antiepileptic drugs in cancer 

treatment has high translational potential [52]. Finally, other CA inhibitors should be 

investigated to differentiate, detect, grade and predict the outcome of possible anticancer 

therapies. 
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3   Conclusions and Future Directions 

In this section, limitations of the study and a brief summary of relevant findings of 

Chapter 2 are considered. In addition, some implications and future directions are 

discussed. 

3.1 Limitations  

There are several limitations to the current work that should be considered. 

i) In the treatment of epileptic seizures, topiramate (400 mg/d) is used orally in humans. 

In this thesis we have used intraperitoneal (i.p.) topiramate at a dose of 120 mg/kg, which 

is comparatively higher than the dose used in humans. Also, although topiramate is 

widely used in the treatment of epilepsy there is no injectable product.  However in one 

investigational study, it has been shown that the bioavailability of the intravenous 

formulation and the oral formulation is equivalent and that the intravenous formulation is 

well tolerated in healthy adults and adults with epilepsy, and that a single dose of 

intravenous topiramate can be safely administered [1-3]. However, the study presented in 

this thesis was not designed to optimize the topiramate dose used in humans for cancer 

detection. 

ii) The pH values presented in this study were approximated. The AACID-pH 

relationship used in this study was not developed using an independent pH calibration.  

Rather, it was developed by equating the average AACID values measured in tumors and 

contralateral tissue, to published pH values from these same tissue measured using 
31

P-

MRS and assuming a linear dependence.  

iii) The experiment was not designed to measure the long-term effect of topiramate on 

tumors. Therefore we cannot judge whether topiramate can play a role in tumor 

management or could be a part of the treatment regime. 

iv) There was great variability in the effect of topiramate on pHi in different animals. 

This variability was independent of the size of the tumor and might be related to the 
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expected heterogeneous vasculature in these tumors; although, this effect was not verified 

in this study. 

3.2 Conclusions 

Cancer affects millions of people world-wide [4]and many malignant forms of cancer are 

difficult to treat with the traditional available treatment options. The concept of exploring 

the use of carbonic anhydrase inhibitors in cancer treatment is increasing, in part due to 

their effect on pH regulation in tumors [5]. In light of several excellent reviews, we 

attempted to measure pH changes induced by a single dose of the CAI topiramate using 

the AACID CEST MRI technique [6,7]. In malignant glioblastoma tumors implanted in 

immune–compromised mice, the results presented indicated that topiramate decreased 

pHi by 0.12 units within   75 min after administration. On average we did not observe any 

change in pHi in the contralateral brain regions of mice with tumors or in the brains of 

healthy mice. This finding is very exciting considering that intracellular acidification of 

the tumor intracellular space could improve the efficacy of chemotherapy as well as 

hyperthermia treatment [8,9]. 

3.3 Future Directions 

This thesis examined the effect of the carbonic anhydrase inhibitor, Topiramate, on tumor 

pHi. pH is elevated in tumors and is an important contributor to tumor cell 

proliferation[10]. In contrast, acidification of the tumor intracellular space increases the 

rate of apoptosis as well as induces tumor growth delay. Many other carbonic anhydrase 

inhibitors have shown promise in inhibiting tumor associated carbonic anhydrases. 

Therefore a logical extension of this work would be to evaluate the effect of these CAI on 

tumor pHi and optimize the drug that causes the greatest decrease in pHi with therapeutic 

dosages. Also, it will be interesting to design longitudinal experiments to observe the 

effects of Topiramate on tumor growth and optimize the dose for maximum growth delay 

as well as treating tumors with different combination of CAI to see if they work 

synergistically. A well-established antiepileptic drug Valporate was proposed to have 

antitumor activity and has been shown to decrease tumor growth and metastasis [11]. 
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Therefore we should examine the combined effects of drugs that have different targets to 

control tumor growth.   

Reports on the expression of CA II in glioblastoma are scarce but have indicated that 

many malignant cell lines express CA II at low levels. [12-14]. In contrast, expression of 

CAIX and CAXII is elevated in different tumor lines including glioblastoma [12,15-17]. 

Topiramate is a potent inhibitor of CAII and moderate inhibitor of CAIX. CAIX has a 

catalytic performance rate similar to CAII. Knockdown of CAIX increased the rate of 

apoptotic cell death after radiation and temozolomide treatment [17].  In addition, 

inhibition of the CAIX carbonic anhydrase decreased the rate of metastasis in a mouse 

model of breast tumor [17,18]. Therefore it would be of interest to compare the effects of 

tumor specific CAIX inhibitors and CAII inhibitors on tumor pHi.                                                          

Another extension of this thesis would be to measure pHe along with pHi to monitor the 

effect on extracellular pH, as it is the pH gradient across the plasma membrane that 

impacts the efficacy of chemotherapy drugs. This simultaneous measurement of pHi and 

pHe may aid to design the most effective and personalized treatment regime.  

The results from this study indicate the potential value of carbonic anhydrase inhibitors in 

tumor acidification and hopefully will stimulate future experiments to expand the role of 

such drugs in cancer treatment. 
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Renewal.2015-005: 1 
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2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared 

through the ACVS office. Health certificates will be required. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 

components (biosafety, radiation safety, general laboratory safety) comply with 

institutional safety standards and have received all necessary approvals. Please consult 

directly with your institutional safety officers. 
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