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Abstract  

Heart transplantation is the only viable option for patients with end-stage heart failure.  

Despite advances in immunosuppressive therapies, the rate of transplanted graft loss remains 

substantial. Graft loss is primarily due to tissue damage mediated by immune responses. Cell 

death and organ rejection can occur as an active molecular process through apoptotic and 

necrotic pathways. We now recognize that cell death may also ensue through a newly 

described form of programmed necrotic cell death, termed necroptosis that involves receptor-

interacting protein kinase (RIPK) 1/3. In this study, I aim to establish the role of RIPK3 in T 

cell-mediated chronic cardiac allograft rejection using the single MHC class II mismatch 

[C57BL/6 (H-2b; B6) or B6.129R1-RIPK3tm1Vmd (H-2b; RIPK3-/-) to B6.C-H-2Bm12 (H2-

Ab1bm12; bm12)] transplantation model. 

My studies show that allo-reactive CD4+ T-cells produce tumor necrosis factor α (TNF-α) 

and express Fas ligand (FasL). My results also show that CD4+ T-cell-mediated heart graft 

rejection is reduced in RIPK3 deficient donor grafts with reduced cellular infiltration and 

vasculopathy. TNF-α-mediated necroptosis was triggered in vitro with caspase 8 inhibition in 

B6 but not in RIPK3-/- endothelial cells. RIPK3-/- endothelial cells were resistant to CD4+ T-

cell induced cell death via mechanisms involving granzyme B and FasL.    

In conclusion, cytotoxic CD4+ T-cell-mediated endothelial cell death is dependent on TNF-α, 

and may be regulated by FasL and granzyme B.  Loss of RIPK3 attenuates allo-immune 

responses, however, injury is not eliminated in a single MHC class II mismatch chronic 

rejection model. 
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Chapter 1  

1 Introduction 

Heart transplantation is the standard treatment for heart failure. Despite recent advances 

in immunosuppression and improvement in survival of acute cardiac allograft rejection, 

development of cardiac allograft vasculopathy and chronic rejection remains one of the 

top causes of death for heart transplant recipients.1 Chronic allograft vasculopathy (CAV) 

affects 8%, 30%, and 50% of patients surviving to 1, 5, and 10 years respectively.1 

Furthermore, organ donation rates in Canada are lower than other countries and more 

than 4000 Canadians are on the wait list for organ donation.2 In addition, the number of 

donated organs are plateauing in recent years.1,3 To compound the issue, CAV is one of 

the most common reasons for retransplantation.1 Therefore, strategies are needed to 

lengthen donor graft survival and improve clinical outcomes.   
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1.1 Cardiac allograft transplantation 

1.1.1 Epidemiology 

Globally, 4,196 adult and pediatric heart transplants were performed in 2012 and reported 

to The Registry of the International Society for Heart and Lung Transplantation (ISHLT).  

As of 2014, the Organ Procurement and Transplantation Network reported that 233 heart 

transplants were conducted in the United States4 and in 2012, the Canadian Institute for 

Health Information reported that 129 heart transplant procedures took place in Canada.5 

The number of reported heart transplants has remained stable for several years since 2004 

and now appears to be slowly increasing, particularly in North America and Europe.1 The 

ISHLT reported that of a total of 104,000 heart transplant patients worldwide, the median 

survival was 10.9 years during 1993–2003.6 The leading causes of death for all transplant 

recipients in early years after their transplants are graft failure, infection, and multiple 

organ failure.1 Infections often develop as a result of aggressive immunotherapeutic 

medicines weakening the immune system. At 3-5 years, malignancy, cardiac allograft 

vasculopathy (CAV), and renal failure are the leading causes of death.1  

1.1.2 Guideline Considerations for Heart Transplantation 

Time on the wait list, geographic proximity to the donor and transplant center, urgency, 

and immune sensitization are important when considering the allocation of a donor heart 

to a specific patient. Typically, women who have had more than one child or individuals 

who have had multiple blood transfusions are allo-sensitized with anti-human leukocyte 

antigen (HLA) antibodies that would lead to a higher chance of a positive cross-match 

with donors. Guidelines produced by the Canadian Cardiovascular Society7 and the Heart 

Failure Society of America8 suggest that patients with severe heart failure, refractory 

angina, or ventricular arrhythmias that cannot be controlled with pharmacological 

methods, mechanical device or alternative surgery, to be evaluated for cardiac 

transplantation. However, patients with systemic disease (i.e. active malignancy,9 

infection,10 or pulmonary hypertension) are absolute contraindications for heart 

transplantation.11 Recently, the Canadian Society of Transplantation and the Canadian 
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National Transplant Research Program increased risk donor working group published 

recommendations on the increased risk of infectious organs for donation.12  

1.1.3 Graft rejection after transplantation 

Primary graft failure accounts for significant mortality in the first 30 days after 

transplantation, is greatly affected by donor-related factors, and is mostly due to under-

immunosuppression.13 Depending on when rejection occurs, transplant recipients suffer 

from three types of rejection: hyperacute, acute, and chronic. Hyperacute rejection 

happens within minutes to hours of the transplantation and is rare because of recent 

advances (i.e. HLA typing) to avoid donor-recipient cross-matching and thus will not be 

further discussed.  

1.1.3.1 Acute cardiac allograft rejection 

Acute rejection can be classified as either cellular (ACR) or humoral (antibody-mediated; 

AMR) rejection and usually occurs early after transplantation.  Within the first three 

years after transplantation, cellular and antibody-mediated acute rejection accounts for 

approximately 10% of deaths.1 In the first year post-transplant, 19% of all heart 

transplant patients reported in the ISHLT registry experienced at least one acute rejection 

episode that required treatment within the first year post-transplantation.14 

ACR is mainly caused by inflammation and myocardial injury induced by T-

cells15,16 while humoral immunity (AMR) involves vascular rejection where antibodies 

activate the complement system which leads to vessel damage and graft failure.17 

Severity of ACR and AMR are based on histopathologic and immunopathologic findings 

from biopsies graded according to ISHLT guidelines.18-20 It is proposed that inflammation 

and endothelial cell damage as a result of acute rejection is a risk factor for CAV and 

appears to increase the risk by almost tenfold.21  

1.1.3.2 Chronic cardiac allograft rejection 

Chronic cardiac allograft rejection manifests as a type of coronary atherosclerosis or 

CAV. It is among the leading cause of death post-transplant and is responsible for 32% of 

all patient deaths five years post-transplantation.1 CAV is characterized by the 
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proliferation of vascular smooth muscle cells in the donor heart, concentric intimal 

thickening, and diffuse coronary artery lumen narrowing.22 The elastic lamina is usually 

intact but may be disrupted in severe cases.21 This is in contrast to the focal, eccentric 

proliferation of coronary vessel intima with disruption of the elastic lamina and presence 

of fatty streaks and calcium deposition that is present in coronary artery disease.23 As 

CAV development is usually a diffuse process, conventional revascularization procedures 

are usually not possible. The arteries and arterioles of the donor heart are mainly affected, 

leading to progressive graft dysfunction and can result in cardiac arrhythmia, ventricular 

dysfunction, ischemia, graft failure, and death. Sudden death may occur possibly due to 

rapidly-developing pump failure.24 Angina is usually not a symptom, as the heart is 

denervated. CAV is routinely detected by coronary angiography and the only treatment is 

retransplantation. 

Although the pathogenesis of CAV is not completely understood, immunological 

responses affected by non-immunological events such as hyperlipidemia and insulin risk 

factors are believed to be involved.25 Some of these immunological responses include 

ischemia–reperfusion injury (IRI),26-29 episodes of acute rejection,30-34 histocompatibility 

mismatch, viral infection, donor brain death, and chronic inflammation. Direct activation 

of recipient CD4+ T-cells by donor allograft major histocompatibility complex [MHC; or 

HLA in humans] class II or CD8+ T cells by MHC class I lead to further production of 

cytokines, which worsen injury.21 	

Vascular disruption is a complex process and may involve innate immunity, B-cells and 

CD4+ T-cells in the grafted tissue.35 Briefly, endothelial cells (EC) bearing foreign MHC 

Class II are targeted by the host immune system and subsequent EC damage further leads 

to elaboration and release of cytokines and chemokines.36,37 These activate innate 

immune cells including macrophages,35 NK cells,38 and neutrophils.39 In addition, 

macrophages secrete interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and 

TNF-α in response to interferon-γ (IFN-γ). IFN-γ is necessary for CAV development but 

not for parenchymal rejection.36 IL-1 and TNF-α further promote surrounding cells to 

secrete IL-1, promoting smooth muscle cell (SMC) migration and proliferation.36,40-42 

Released high-mobility group box-1 (HMGB1)43 and IL-2 signal to CD4+ T-cells to 
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migrate into the lesion that further stimulates B-cell proliferation. T-cells play the integral 

role of increased extracellular matrix (ECM) deposition, which ultimately results in 

severe intimal thickening and graft dysfunction. 

1.1.4 Current immunosuppression therapies 

Immunosuppression is used to treat graft rejection while steps are taken to minimize risks 

of drug toxicities, malignancy, and infections. Immunosuppressive protocols can be 

classified as induction therapy (aggressive immunosuppression early after transplantation 

to prevent hyper-acute and acute rejection), or maintenance therapy (life-long drug 

protocol to prevent chronic rejection).   

1.1.4.1 Induction Therapy 

Approximately 47% of all patients who received a heart transplant in 2012 received 

induction immunosuppression.14 Yet, the advantage of induction therapy is debatable. A 

recent meta-analysis reviewed 22 randomized controlled trials and reported no significant 

differences in outcomes (mortality, CAV, infection, malignancy and renal function) in 

recipients after heart transplantation.44 Hence, more resources are needed to explore the 

potential benefits of induction therapy.  

During the early postoperative period, antibodies targeting T-cells are used to provide 

augmented immunosuppression when risk of graft rejection is highest. It follows that 

powerful immunosuppression soon after transplantation can prevent early rejection 

events. Induction anti-bodies can be polyclonal and monoclonal which mediate T-cell 

depletion in peripheral blood, lymph nodes, and spleen by complement-dependent lysis 

and apoptosis. Induction immunosuppression currently prescribed to patients after heart 

transplant are anti-thymocyte globulins,45 anti-CD52,46 and IL-2 receptor antagonists.47 
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1.1.4.2 Maintenance Therapy 

Most maintenance immunosuppressive protocols consist of a combination of three drugs: 

calcineurin-inhibitor, an antimetabolite agent, and corticosteroids. Calcineurin-inhibitors 

(cyclosporine or tacrolimus) are effective at inhibiting calcineurin and reduce T-cell 

activation and proliferation by acting on transcription factors involved with production of 

IL-2, TNF-α, IFN-γ, IFNβ and granulocyte-macrophage colony stimulating factor. 

However, calcineurin inhibitors have undesirable nephrotoxic side effects. 

Antimetabolites are antiproliferative agents (sirolimus, mycophenolate mofetil or 

azathioprine) that inhibit the production of nucleic acids, also reducing the proliferation 

of T and B-cells. Mammalian target of rapamycin (mTOR) inhibitors (everolimus and 

sirolimus), proliferation signal inhibitors, may also be used to inhibit T and B-cell 

proliferation and differentiation in selected patients to slow progression of renal 

insufficiency and CAV. However, its use is limited due to the high incidence of adverse 

effects such as delayed wound healing.48 Corticosteroids are nonspecific anti-

inflammatory drugs that primarily inhibit two transcription factors [activator protein-1 

and nuclear factor-κB (NFκB)] in lymphocytes49 and are used in tapering doses as they 

are associated with numerous adverse effects.  These side effects include induction of 

diabetes mellitus, hyperlipidemia, hypertension, myopathy, osteoporosis, and 

predisposition towards opportunistic infections.  

1.2 Transplant Immunology 

Both the innate and adaptive immune systems are involved in a dynamic and complex 

interplay that begins with endothelial injury and inflammation, which further perpetuates 

CAV development. Understanding of mechanisms of T-cell stimulation, activation and 

proliferation and their interactions with target cells are crucial to the concepts of graft 

rejection. Furthermore, EC are the “first barrier cells” and play a critical role as targets of 

T-cell-mediated rejection and it has been suggested that alloantigen-dependent 

mechanisms act to intensify initial non-immune damage to EC.50 
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1.2.1 Innate and adaptive immunity 

The innate immune system is composed of cellular and non-cellular elements, which 

respond immediately and nonspecifically to microbes at the site of infection. The cellular 

components of innate immunity consist of neutrophils, macrophages, dendritic cells 

(DC), and natural killer (NK) cells.51 The molecular components include toll-like 

receptors (TLR), complement proteins, chemokines, and cytokines among others.52-54 As 

a result of transplant injury, innate components (complement activation and TLR 

stimulation)55 are triggered, stimulate adaptive immunity and contribute to delayed graft 

functions. In contrast, the adaptive immune system is composed of antigen-specific 

immune response against a recognized foreign antibody and result in memory. The 

adaptive system is further divided into humoral immunity and cell-mediated immunity, 

which consist of antibody secreting B-cells and cytotoxic/helper T-cells respectively. 

When stimulated, these cells will activate and proliferate, to eliminate the foreign 

antigen. The specificity and strength of the adaptive immune response are the most 

dangerous factors to affect the transplanted organ.     

1.2.2 Mechanism of antigen-induced T-cell activation  

T lymphocytes recognize antigens via direct and indirect pathways. The direct pathway 

involves recognition of intact foreign MHC antigens on the surface of donor antigen 

presenting cells (APC), whereas, the indirect pathway involves processed antigens 

presented as peptides bound to MHC class II molecules on the surface of host APC.   

Upon foreign antigen recognition, T-cells activate, proliferate, and differentiate in 

response and become effector cells. The process begins with T-cell recognition of a 

foreign peptide on APCs. APC can be divided into two classes; professional and non-

professional. Professional APC (i.e. dendritic cells, B cells, macrophages) continuously 

presents foreign peptides on MHC Class II that is recognized by CD4+ T-cells. Non-

professional APC (i.e. any nucleated cell) are able to present material on MHC Class I 

that is recognized by CD8+ T cells. Most somatic cells do not express MHC Class II 

under normal physiological conditions. However, during inflammation MHC Class II are 

induced, such is the case of human and porcine microvascular ECs.56 Professional APC 
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endocytose foreign, exogenous material into early endosomes, which, when acidified, 

activates proteases to cleave into small peptides and are loaded onto MHC class II and 

shuttled to the cell surface. CD4+ T-cells with surface heterodimeric T-cell receptor 

(TCR) complex specific to those MHC Class II molecules can bind to the APC and result 

in T-cell activation and proliferation.  

T-cell activation by antigens require two signals: (1) initial binding of the TCR complex 

with the alloantigen-bound MHC molecule on the surface of APC; (2) binding of other 

costimulatory molecules (signaling or adhesion molecules). If costimulatory signals are 

not present, the T-cell either differentiates into regulatory T-cell, is deleted, or becomes 

anergic, where they fail to respond to their specific antigen and are ineffective at 

mounting a response (tolerance).  The activation of a CD4+ T-cell is summarized in 

Figure 1. 

1.2.2.1 Signal 1: Induction 

Upon recognizing the specific antigen, the first signal is transmitted when the TCR-CD3 

complex binds strongly to the peptide-MHC complex on the APC surface. The CD4+ 

molecule on the Th cell (co-receptor of the TCR complex) also binds to the MHC 

molecule. Interaction of LFA-1 on the T cell and ICAM on the APC brings the cells 

closer together, facilitating TCR kinase activity and activation of CD3 via 

phosphorylation.  

1.2.2.2 Signal 2: Costimulation  

The second signal is critical to T-cell activation and gives it effector abilities to respond 

to antigens. The two most important signals are provided by CD28 binding to CD80 and 

CD86 (B7-1, B7-2) and CD154 (CD40-ligand) binding to CD40.57,58 CD154 also 

activates APC, which in turn provides signals (i.e. B7 molecules) that costimulate T-cells. 

Other stimulatory signals include CD11a/CD18 (LFA-1), CD2 (LFA-2), CD49a (VLA-

4), and CD27 of the T-cell that bind to CD54, CD58 (LFA-3), CD106 (VCAM-1), and 

CD70 on the APC56 respectively (Figure 1). CD28 is the only constitutively expressed 

costimulation surface molecule and B7 molecules are the only major costimulatory 

molecule in mice.59 
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CTLA-4 is an inhibitory ligand that can also bind to CD80 and CD86 on APCs to prevent 

costimulation and inflammation.60,61 Recently, immunosuppressive agents that use 

CTLA-4-Ig fusion protein to interrupt CTL-A-CD80, CD86 (and CD28) interactions has 

been promising at reducing immune inflammation in vivo.60  

Successful costimulation of the T cells result in IL-2 production and subsequent T-cell 

proliferation and differentiation into an effector cell. Primed T-cells follow chemokines 

and migrate to sites of inflammation. Recognition of foreign antigen on the MHC 

complex lead to effector cell release of proinflammatory cytokines (IFN-γ,36 IL-17,62 IL-

4,63 IL-18)64 and also produce granzyme B, perforin or FasL and that lead to death of the 

APC, infected, and/or allogeneic cell.65 This results in development of highly specific 

memory that upon subsequent encounters with a given antigen, the T-cell is re-activated 

to prevent reinfection. 
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Figure 1. Activation of CD4+ T-cells require induction and costimulatory molecules 

  

APC 

CD3/TCR MHC II Ag 

CD4 

CD28 

CD154 

CD80/CD86 

IL-2 

CTLA-4 

CD40 

CD58 (LFA-3) CD2 (LFA-2) 

CD54 (I-CAM1) CD11a/CD18 (LFA-1) 

CD106 (V-CAM1) CD49a (VLA-4) 

CD27 CD70 

CD4+ T-Cell 

2. Costimulation  

1. Induction 

3. Activation, 
proliferation, 
differentiation 

Recognition of antigen mounted on the MHC Class II by the TCR-CD3 complex is the first 
induction signal of T-cell stimulation. The CD4+ molecule on the Th cell (co-receptor of the 
TCR complex) also binds to the MHC molecule. Costimulatory molecules on the Th cell 
CD28, CD27, CD154, CD2 (LFA-2), CD11a/CD18 (LFA-1), CD49a (VLA-4) interact with 
CD80/CD86, CD70, CD40, CD58 (LFA-3), CD54 (I-CAM1) and CD106 (V-CAM1) on the 
APC respectively. CTLA-4 is an inhibitory ligand that can also bind to CD80/CD86, 
preventing co-stimulation. 
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1.2.3 Subsets of T-cells involved in chronic allograft rejection 

Pivotal experiments done with the carotid transplantation model in various strains of mice 

showed that CAV development is independent of CD8+ T-cells and NK cells, but rather, 

involves interactions between CD4+ T-cells, B cells, and macrophages66-68. Furthermore, 

a reduction in SMC proliferation and migration observed in mice that lacked CD4+ T-

cells was most probably due to an interruption in the inflammation cytokine signaling 

cascade. Therefore, critical signaling that promotes B-cell proliferation, antibody 

production, macrophage activation,35,69 and secretion of TNF-α or IFN-γ36,70 is hindered, 

resulting in a dampened intimal proliferative response.  

However, others reported that CD8+ T-cell depletion prevents development of intimal 

proliferation in swine and suggested that MHC class I antigens may play an important 

role in the early pathogenesis of CAV.71 Further, class I-disparate, cyclosporine A-treated 

hosts became tolerant to heart grafts from the same donors and survived for a long 

period.72 These findings are inconsistent with models of mouse and rat heart allograft 

transplantation, and may be due to delays in immune response to antibody depletion of 

CD8+ cells or because of the fact that swine and humans constitutively express MHC 

Class II but mice and rats do not. Using murine recipients deficient in CD8+ T-cells, 

Fischbein and colleagues found that CAV was greatly reduced though not abrogated and 

suggested that CD4+ and CD8+ T-cells work in concert; such that CD8+ lymphocyte allo-

activation is dependent on activated CD4+ lymphocytes and their participation in the 

development of intimal lesions is dependent on CD4+ allo-activation.42,73 CD8+ T-cells 

can be activated by exogenous antigens via cross-presentation by dendritic cells74 and 

participate in chronic rejection either directly by cytolytic effects against target cells or 

indirectly by releasing IFN-γ,75 yet on its own do not secrete enough IL-2 and IFN-γ to 

induce chronic rejection. Further, it was proposed that since CD8+ T-cells could be 

stimulated via other costimulatory ligands (ICOS, ICAM-1, 4-1BB), costimulatory 

blockade for CD28 and CD40 ligand might not be a sufficient immunosuppressive 

therapy on their own.73 
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Nevertheless, it is indisputable that both direct and indirect recognition by CD4+ T-cells 

play a main role in eliciting a hostile immunogenic response to foreign antigens.  

1.2.3.1 Cytotoxic CD4+ T-cells are developed from chronic antigen 
stimulation 

MHC Class II restricted effector CD4+ T-cells play a central role in immunological 

homeostasis.  This is primarily achieved by providing critical activation or inhibitory 

signals to other immune cells to induce or dampen immunological responses. During 

activation, CD4+ cells are directed by the cytokines in the microenvironment into specific 

T helper (Th) cells. It is well established that naïve CD4+ T-cells can mature into several 

distinctive subtypes including Th1 cells (transcription factor: T-bet) which produce IFN-γ 

and are pivotal in driving cellular reactions; Th2 cells (transcription factor: GATA-3) 

which secrete IL-4 and are responsible for mediating humoral/antibody responses; Th17 

cells (transcription factor: RORγt) which secrete IL-17 and activate neutrophils; Foxp3 

expressing CD4+ T-cells (also known as regulatory cells or Treg) which have the unique 

role of dampening the immune response by restricting clonal expansion of effector CD4+ 

T-cells.  

In addition, developments in viral immunity studies have suggested that there is a small 

subset of CD4+ T-cells that may attain cytolytic abilities and can directly kill MHC Class 

II expressing infected or allogeneic cells.76 These cytotoxic CD4+ T-cells (ThCTL) have 

been identified in humans after chronic viral infections including human 

cytomegalovirus,77-79 hepatitis,80 Epstein-Barr Virus,81 human immunodeficiency 

virus,82,83 influenza,84 and in mice after infection with mouse small pox virus,85 

lymphocytic choriomeningitis virus,86 and gamma herpes virus.87 Furthermore, numbers 

of ThCTL are found to be increased in humans with autoimmune disorders and vascular 

diseases.88,89 It is interesting to note that ThCTL functions are mostly restricted to MHC 

Class II bearing APCs and non-antigen presenting cells in humans77,90 and mice.91 

ThCTL have also been shown to induce endothelial cell death following cytomegalovirus 

infection.90  
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The exact purpose of ThCTL is unknown, however, it has been postulated that they can 

play an immunogenic role in chronic inflammatory conditions such as auto-immune 

diseases, vascular, and inflammatory bowel disease,88,92,93 as numbers of cytotoxic CD4+ 

T cells are elevated. It has also been suggested that it is a compensation for virally-

inhibited MHC Class I expression and their ability to evade CD8+ cells94 as well as age-

dependent decline of CD8+ CTL activity.76  

ThCTL are described to be “Th1-like”, potent secretors of IFN-γ, TNF-α, and IL-2.76 

ThCTL are currently identified by the surface expression of markers of degranulation 

[CD107a (LAMP1) and CD107b (LAMP2)], and co-expression of perforin and granzyme 

B. They lose costimulatory marker CD28, which is consistent with all differentiated T-

cells, however, phenotype of ThCTL is generally varied depending on the organ in which 

they function.76 Mechanisms of ThCTL-mediated cell toxicity are similar to CD8+ CTLs 

and include Fas-FasL-mediated apoptosis, granule (granzyme and perforin)–mediated 

apoptosis, and non-contact forms of cell death such as TNF-mediated apoptosis. It is 

reported that ThCTL mainly use granules as its effector mechanism,95 however, unlike 

CTL CD8+ cells that can express perforin/granzyme with just IL-2 stimulation, ThCTL 

require activation through TCR to induce perforin expression,96,97 and up-regulation of 

granzyme B.98  

It is also well established that CD4+ T-cells can exhibit cytotoxicity in acute rejection99-

103 by direct recognition of MHC Class II-expressing allograft ECs.102,103 Predominantly, 

the TNF family member surface protein FasL is used to induce apoptosis upon binding 

with its corresponding Fas (CD95) on target cells.104,105 Studies show that CD4+ T-cells 

can use perforin as a cytotoxic mechanism following infection in vivo.79,84,92,106-109 and in 

vitro.110 Previous reports suggested that T-cell mediated endothelial death is via 

mechanisms of granzyme B and perforin.111-113 TNF-α and IFN-γ contribute significantly 

to vasculopathy as they can influence expression of molecules involved in antigen 

processing. Examples include costimulatory molecules of the B7 family (ICOS-L,114 PD-

L1)115, costimulatory molecules of the TNF receptor superfamily (CD40)116 and adhesion 

molecules (E-selectin, VCAM-1, and ICAM-1). IFN-γ stimulates and increases surface 

MHC Class I and II, activates macrophages, and regulates proliferation of T 
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lymphocytes.36,117-119 IFN-γ can also act on transplanted arteries to induce CAV by 

potentiating PDGF induced mitogenesis.75 Upregulation of adhesion molecules promotes 

lymphocyte adhesion and entry through the endothelium;120,121 and may also contribute to 

memory T cell activation by costimulation of stabilizing adhesion.122 Therefore, ThCTL 

play a critical role in the context of cardiac allograft rejection. 

1.2.3.2 Endothelial cells present antigens to activate T-cells 

At the blood-tissue interface, EC are in a position that allows their direct contact with T-

cells and involvement in producing and responding to immune responses. In 

transplantation, donor ECs expresses foreign MHC molecules, which can be recognized 

by the host immune system. Endothelial injury is an important initiating event to 

transplant vascular disease,123 and the term endothelialitis was introduced in 1990 to 

describe cytotoxic T-lymphocyte-mediated endothelial injury.124 Choi and colleagues 

described ECs as “sentinels, presenting antigen so as to initiate a secondary immune 

response.”122  

Cardiac allografts may be acutely rejected via direct recognition of foreign MHC class I 

molecules by CD8+ T-cells, which have also been found to indirectly target skin graft 

peptides displayed by host ECs.125 There is considerable debate on the specific cell types 

that initiates antigen presentation to T-cells. Using the H-2M mouse model that cannot 

load antigen on its MHC Class II, Ardehelli and colleagues showed that abrogation of 

indirect recognition did not improve CAV, and concluded that direct recognition is 

sufficient to drive CAV.126 However, as most donor-derived hematopoietic APCs migrate 

out of the organ soon after transplantation as the Passenger Leukocyte Theory described, 

it has been suggested that ECs127 play an active role in antigen presentation resulting in 

chronic stimulation of the recipient immune system in both mice125,128-130 and humans.131 

This response is similar to that of Delayed Type Hypersensitivity (DTH), but while DTH 

usually subsides as the antigen clears, foreign antigen of the graft is constitutively 

presented to T-cells and chronic DTH persists, resulting in cytokine-induced fibrosis.  

However, others have shown that donor hematopoietic cells (and not ECs) are 

responsible for direct allo-recognition by CD4+ T-cells.132 There is also evidence of 
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preferential recruitment of CD8+ T-cells specific for an antigenic peptide in the tissues 

which implicates ECs as providers of the homing signal.133 While human vascular ECs 

constitutively express MHC class I and II, MHC class II is inducible in mice by 

activating cytokines such as IFN-γ.134-141 The proinflammatory cytokine, tumor necrosis 

factor alpha (TNF-α) released by macrophages and T-cells can also augment ECs 

inflammatory profile via NFκB activation and upregulation in VCAM-1, changing the 

vessel’s ability to recruit and activate smooth muscle cells.142 An increase in TNF-

receptor 1 (TNFR1), the major receptor for soluble TNF-α are observed on ECs after 

transplantation and lack of donor TNFR1/2 also leads to attenuated CAV.142 

Much evidence implicates endothelial cell injury as an important initiating event in CAV: 

Anti-endothelial antibodies and anti-HLA antibodies increase the risk of CAV,143,144 and 

the development of anti-endothelial antibodies correlate with increased rate of coronary 

artery disease after cardiac transplantation.145 Increased Fas expression on ECs also 

increase apoptosis and initiates arteriosclerosis,146 and can also act as targets of granzyme 

B147 and perforin.111 Further evidence of EC and T-cell interactions include EC 

expression of costimulatory molecules; CD40 in both human and mouse ECs,148,149 B7-2 

on cultured cardiac ECs,150, B7-1 and B7-2 expression on cultured brain EC.148,151 

Activated EC may also express CD154152-154 and act as costimulators of T-cells as they 

interact with CD40. Whether ECs actively stimulate T-cells in vivo still needs to be 

determined. Nonetheless, both direct126 and indirect antigen presentation lead to chronic 

cardiac rejection, and survival of donor graft EC are crucial to the health of the heart 

graft. 

1.3 Mechanisms of cell death 

1.3.1 Apoptosis and necrosis 

Cell death has historically been understood to occur through two main processes: 

programmed cell death (PCD), or apoptosis, and unregulated cell death, or necrosis. First 

reported by Kerr, Wyllie and Currie in 1972,155 apoptosis was described as a type of 

controlled cellular event important in development and metabolic processes. 

Morphologically, it is characterized by cell shrinkage, chromosomal condensation, 
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nuclear fragmentation, membrane blebbing, and formation of apoptotic bodies. Apoptotic 

bodies emit signals such as soluble lysophosphatidylcholine and phosphatidylserine,156,157 

which allow their uptake by macrophages resulting in resolution of the injury and 

avoidance of inflammatory reactions. For example, Kidney Injury Molecule-1 (KIM-1) is 

a phosphatidyl serine receptor that is expressed on kidney epithelial cells and recognizes 

apoptotic cells and induces phagocytosis to limit further inflammation.158 Apoptotic 

bodies that are not systematically cleared can lose membrane integrity and undergo 

secondary necrosis, releasing cellular damage-associated molecular patterns (cDAMPs), 

which can then initiate an immune response. There are two types of apoptotic pathways 

that have been characterized: the intrinsic mitochondria-mediated pathway159 and the 

extrinsic death-receptor-mediated pathway.160  

In contrast, necrosis has historically been regarded as passive or accidental cell death as a 

result of nonspecific stress factors such as extreme heat, freeze-thawing, or osmotic 

shock. Upon membrane rupture, immunogenic cDAMPs are released. cDAMPs are a 

family of molecules that perform non-inflammatory roles when intracellular and include 

factors such as heat shock proteins HSP70, HSP90, and GP96, histones, high mobility 

group protein B1 (HMGB1), RNA, DNA fragments, monosodiumurate microcrystals, IL-

1a, uric acid, mitochondrial fragments, and ATP.161 Local tissue injury during 

transplantation may lead to the passive release of cDAMPs, which, when released, are 

immunogenic and act to initiative adaptive immune responses.162 cDAMPs are involved 

in acute allograft rejection,162 while skin allografts deficient for HSP70 also show 

prolonged graft survival.163 cDAMPs stimulate pattern-recognition receptors (PRR), 

which are sensors of infection and coordinate inflammatory response. PRRs include Toll-

like receptors (TLR), RIG-I-like receptors (RLR), nucleotide binding domain and 

leucine-rich repeat containing molecules (NLR), and C-type lectin receptors (CLR). 

These same PRRs recognize pathogen-associated molecular patterns (PAMP), which 

suggest similarities between inflammatory responses for endogenous vs. exogenous 

material clearance.  

Thus, in most cases, apoptosis is mostly regarded as a tolerogenic and anti-inflammatory 

type of cell death while necrosis is a trigger of inflammation and damage.   
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1.3.2 Regulated necrosis: necroptosis 

Evidence in the last decade has challenged the paradigm of apoptosis as the only form of 

PCD.164 Findings suggest that necrosis can also be considered as a type of PCD, as cells 

with a necrotic appearance can contribute to embryonic development and tissue 

homeostasis.165,166 Furthermore, programmed necrosis can be induced by specific ligands 

binding to membrane receptors, and can also be regulated by genetic, epigenetic, and 

pharmacological factors.165-168 This form of programmed necrosis is termed necroptosis.  

Originally, the term necroptosis was used to indicate a specific case of regulated necrosis 

[i.e. tumor necrosis factor receptor-1 (TNFR1)-stimulated that can be inhibited by 

necrostatin-1]. However, the 2012 Nomenclature Committee on Cell Death169 

recommends that the definition of necroptosis to describe RIPK1 and/or RIPK3-

dependent regulated necrosis. More recent recommendations include findings on RIPK3-

downstream mixed lineage kinase domain-like (MLKL).170-173  

First characterized in L929 mouse fibrosarcoma cells, caspases were found to play a 

major role in the switch between apoptosis to necrosis, 174 and Hitomi and colleagues 

compared apoptosis and necroptosis in murine cells.175 They described the signaling 

network behind necroptosis initiated by death receptor ligation or pan-caspase inhibition 

with Z-VAD-fmk and a genome-wide search of the genetic and epigenetic mechanisms 

involved with its regulation.175 Necroptosis was originally found to be a novel 

mechanism for cells to undergo death when apoptotic proteins are inhibited, such as in 

the presence of virally encoded caspase inhibitors176-179 and viral FLICE inhibitors.180 

Since then, necroptosis has been found to be the fate of many cell types and pathological 

conditions, including kidney tubular epithelial cells181-183 and retinal ganglion cells184,185 

of the ischemia reperfusion injury model,183,186,187 traumatic brain and spinal cord 

injury,188,189 myocardial infarction,190 pathogenic infections,176,179,191 inflammation,192-195 

and atherosclerosis.196  

1.3.3 Molecular Pathway after Death Receptor Signaling  

Regulated necrosis can be triggered by various factors such as viral infections,197 ligation 

of death receptors [TNFR1,198,199 Fas (CD95),175,200 TRAILR1 and TRAILR2200] with 
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caspase inhibition.201 The most extensively characterized inducer of necroptosis is TNF-α 

ligation to TNFR1.202,203 TNF-α has the ability to induce apoptosis or necroptosis 

depending on the inhibition status of caspase 8.175 This mechanism has been reviewed 

extensively,166,204-209 but will be briefly summarized in the following paragraphs and in 

Figure 2. 

Upon stimulation at TNFR1, TNFR1-associated death domain (TRADD) is recruited to 

the plasma membrane, attracting protein receptor interacting protein kinase-1 (RIPK1), 

cellular inhibitors of apoptosis protein (cIAP)1, cIAP2, TNF receptor-associated factor 

(TRAF)2 and TRAF5 to form receptor-bound complex I. RIPK1 is subsequently 

polyubiquitylated at Lys63, allowing the docking of transforming growth factor-β-

activated kinase 1 (TAK1), TAK1 binding protein (TAB)2 or TAB3, and inhibitor of NF-

κB kinase (IKK) complex. This results in activation of the canonical NF-κB activation.  

This also results in the upregulation of A20, which acts as negative feedback and reduces 

NF-κB activity by removing Lys63-linked polyubiquitin chains from RIPK1. 

Dissociation of RIPK1 from TNFR1 allows it to interact with FAS-associated death 

domain (FADD), RIPK3, cellular FLICE (FADD-like IL-1β-converting enzyme)-

inhibitory protein (FLIP) and pro-caspase 8, forming the TRADD-dependent death-

inducing signaling complex (DISC) (Complex IIa). Pro-caspase 8 and the long isoform of 

FLIP (FLIPL) form a heterodimeric caspase that cleaves and inactivates RIPK1 and 

RIPK3 interactions to prevent necroptosis. Pro-caspase 8 can also form homodimers, 

undergo autoproteolysis and activation, causing its dissociation from TRADD-dependent 

complex IIa and subsequent activation of executioner caspase 3 and caspase 7, resulting 

in apoptosis.  

When caspase 8 is inhibited (with chemical inhibitors or virally encoded proteins),210 

RIPK1 and RIPK3 are allowed to interact at their RIP homotypic interaction motif 

(RHIM) domains and will dimerize, auto- and transphosphorylate, and form the 

necrosome. Cylindromatosis (CYLD) also deubiquitylates RIPK1 in this complex to 

further promote kinase activation. Phosphorylation of RIPK3 recruits MLKL, which 

oligermizes and is subsequently phosphorylated, translocates to the plasma membrane, 

where it mediates cell membrane damage and calcium influx and ultimately loss of cell 
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integrity. When second mitochondria-derived activator of caspase (SMAC or DIABLO) 

mimetic are used to inhibit cIAPs, thus, leaving RIPK1 deubiquitylated, canonical NF-κB 

signaling is reduced.211 A TRADD-independent, RIPK1-dependent complex called the 

ripoptosome (complex IIb) is formed, which includes RIPK1, RIPK3, FADD and FLIPL 

that stimulates non-canonical NF-κB signaling. RIPK1and RIPK3 are inactivated through 

cleavage mediated by caspase 8—FLIPL heterodimers, which can result in apoptosis. 

RIPK1/3 can mediate necroptosis depending on the presence of caspase-8. 

Morphologically similar to necrosis, the consequential loss of membrane integrity of 

necroptotic cells leads to the release of cDAMPs, further exacerbating injury and 

inflammation.  

Signaling through another member of the TNF family, Fas (Apo-1 or CD95), a well-

defined mechanism of prototypic extrinsic apoptosis induction, is also associated with 

necroptosis induction.212 The binding of FasL stabilizes aggregated Fas trimers at the 

membrane and induces a conformational change that, independent of TRADD, recruits 

FADD and pro-caspase 8 to the death domain of the cytosolic tail of the receptor. The 

formation of the DISC and downstream activation of caspase 8, leads to activation of 

other caspases. The death domain of Fas allows it to associate with RIPK1 which has 

been shown to be important for programmed necrosis induction in caspase 8 deficient 

Jurkat cells.200,212,213 It is possible that in activated primary T lymphocytes, Fas-mediated 

death is the dominant mode of death,200 which might explain why caspase activity 

inhibition in mouse T lymphocytes in vivo does not induce autoimmune disease that is 

usually manifested in mice with inactivating mutations in Fas or Fas ligand.214  
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Figure 2. Death receptor signaling lead to apoptosis and necroptosis. 

 

  

Upon TNFR1 stimulation, complex I is formed by TRADD binding to RIPK1, TRAF2 
and TRAF5, cIAP1 and cIAP2, leading to NF-κB and MAPK pathway activation. 
Polyubiuitination of RIPK1 by cIAPs lead to its interaction with TAK1 and TAB2/3. 
TAK1 activates the IKK complex, leading to polyubiquitination and proteosomal 
degradation of IκB, resulting in NF-κB translocation to the nucleus and pro-survival 
gene transcription. In a negative feedback loop, this upregulates A20 and CYLD, which 
target RIPK1 for deubiquitination, releasing it to form secondary complexes. The 
formation of TRADD-dependent complex IIa, involves FADD-mediated recruitment and 
activation of capase-8 and its active cleavage of RIPK1 and RIPK3 dimers result in 
apoptosis. In the presence of smac mimetic, which facilitate cIAP proteasomal 
degradation, formation of the TRADD-independent complex IIb can similarly activate 
caspase-8 and result in apoptosis in a RIPK1-dependent mechanism. In the absence of 
caspase-8 activity, RIPK1 and RIPK3 interacts in a complex called the necrosome, 
associating with FADD, caspase-8, and TRADD, where phosphorylation of RIPK1 and 
RIPK3 in the necrosome will lead to downstream MLKL activation and necroptosis. The 
dimerization of cFLIP and pro-caspase 8 in the DISC inhibits its activation and 
downstream apoptosis.  
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1.3.4 Granule-mediated cell death  

The granule pathway is a primary mechanism used by T-cells and NK cells to directly 

lyse allogeneic cells. Upon recognition of foreign antigen, T-cells release granules that 

contain serine proteases called granzymes and the cytolytic protein, perforin, into the 

immune synapse.  Perforin plays a key role in this cytolytic mechanism, as it forms pores 

on the target membrane surface and facilitates the delivery of granzymes into target cells 

to induce apoptosis.  Secretory lysosomal granules polarize rapidly to the cell surface 

towards the immune synapse upon recognition of a target. Once in the cytoplasm, 

granzyme B can promote cell death through two main pathways: BH3 interacting-domain 

death agonist (BID)-dependent mitochondrial permeabilization; or direct caspase 

activation. In the former mechanism, granzyme B activates pro-apoptotic BID which 

induces oligomerization of BAX and/or BAK in outer mitochondrial membrane,215-217 

leading to cytochrome c release into the cytosol, assembly of apoptosome, and resultant 

caspase-9 activation. In the latter pathway, effector caspases 3 and 7 can be directly 

activated by granzyme B cleavage, resulting in cleavage of caspase 2, 6, 9218 and 

ultimately cell death. Granzyme B can also cleave the inhibitor of caspase-activated 

DNase, (ICAD) which mediates DNA degradation.219  

Although it is well known that CD8+ T-cells are the main source of granzyme B, CD4+ T-

cells can also use granzyme B to kill target cells. Activated CD4+ and CD8+ T-cells 

secrete similar amounts of granzyme B,220 however, the levels are maintained by CD4+ 

T-cells for longer periods.221 

There is substantial evidence that perforin and granzyme B are involved in endothelial 

injury in transplantation. T-cells that express perforin are found in the subendothelial 

space in vasculopathy,222 and perforin and granzyme B proteins both localize to human 

vessel intima,223 where granzyme B protein is observed around apoptotic cells.224 Both 

perforin and granzyme B has been shown to play an important role in EC death induction, 

resulting in vasculopathy in cardiac transplantation.147,225 
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Figure 3. Cytotoxic CD4+ T-cell interactions with an endothelial cell. 
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CD4+ T-cells can interact with endothelial cell (EC) via direct recognition of foreign MHC Class 
II or indirect recognition of processed peptides presented on the MHC Class II. CD4+ T-cells use 
cell contact forms of cell death such as FasL (Apo-1) and granzyme B to lyse target cells and the 
inflammatory cytokine TNF-α to induce cell death. Fas (CD95) stimulation can lead to NF-κB 
activation, formation of death-inducing signalling complex (apoptosis), or necrosome 
(necroptosis).   Granzyme B can enter target cells via the pore-forming protein perforin and 
cause cell death via caspase dependent and independent mechanisms. Granzyme B is a pro-
apoptotic protease that activates apoptosis via cleavage of caspase-3, Bid, causing 
oligomerization of Bax and Bak that augment mitochondria membrane potential. Release of 
cytochrome C into the cytosol work with caspase-9 and apoptosis-activating factor 1 (Apaf-1) to 
further process procaspase 3. Lastly, the cleavage of inhibitor of caspase-activated DNase 
(ICAD) can lead to DNA fragmentation and resultant apoptosis.   
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1.4 Rationale and Hypothesis 

1.4.1 Rationale  

Given the lack of interventions for CAV which remains to be one of the leading causes of 

death after cardiac transplantation, and the implication of EC injury in chronic 

rejection,111-113 further studies into the mechanism of EC death in a long-term transplant 

model are pertinent. Previously, it was found that RIPK3 deficiency in donor hearts 

prevented necroptosis and acute rejection with immunosuppression.226 Hence, we wanted 

to define the role of RIPK3 and necroptosis in CAV using a mouse model of CD4+ T-

cell-mediated chronic cardiac transplant injury.  

1.4.2 Hypothesis 

We hypothesize that RIPK3 deficiency protects endothelial cells against cytotoxic CD4+ 

T-cell mediated cell death and chronic rejection in cardiac allograft transplantation. 

1.4.3 Objectives 

1. To determine if donor heart grafts deficient in RIPK3 prolong graft survival in a 

single MHC Class II mismatch transplantation;  

2. To determine mechanisms of CD4+ T-cell mediated death in wild type and 

RIPK3-/- MVEC in vitro. 
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Chapter 2  

2 Materials and Methods 

2.1 Animals  

Male inbred C57BL/6 (H-2b; B6; 4-6 weeks old; Charles River Laboratories) and 

B6.129R1-RIPK3tm1Vmd (H-2b; RIPK3-/-; 4-6 weeks old; H-2b; Genentech, Inc.) and the 

single MHC class II mismatch B6.C-H-2bm12 (H-2Ab1bm12; bm12; 9-10 weeks old; 

Jackson Laboratories) mice were maintained at the animal facility at University of 

Western Ontario. All experimental procedures were approved by The University of 

Western Ontario Animal Care Committee (Appendix A). 

2.2 Microvascular Endothelial Cell Culture 

B6 and RIPK3-/- microvascular endothelial cells (B6 MVEC, RIPK3-/- MVEC) were 

isolated and purified as previously described226,227 and immortalized by SV40 

transfection. Cells were grown in complete Endothelial Growth Media-2 (EGM-2 

medium) supplemented with fetal bovine serum and EGM-2 SingleQuots (Lonza) and 

were used between passages 3-6.  

2.3 T-Cell purification and MLR stimulation 

CD4+ T-Cells were purified from bm12 mouse spleens using anti-CD4 magnetic beads 

(MACs; Miltenyi Biotec) and were only used for assays if purity was at least >85%. 

Purified CD4+ T-cells were co-cultured with 50µg/mL mitomycin C (Cayman 

Chemicals)-treated T-cell depleted B6 splenocytes in RPMI-1640 (Gibco) supplemented 

with 10% FBS, penicillin (100 U/mL), streptomycin (100 lg/mL), glutamine (2 mM), 

sodium pyruvate (1 mM), HEPES (10 mM), and β-mercaptoethanol (0.5 mM). One 

hundred IU IL-2 was added immediately after co-culture and 20-50IU IL-2 was added 

every other day until day 4-7.  
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2.4 Antibodies  

Phenotype of CD4+ T-cells and MVECs were characterized using the following 

antibodies: anti-mouse CD4, CD107a (BD Pharminogen), CD262, H-2kb, IA/IEb, TNF-α, 

IFN-γ, granzyme B, perforin, Fas, FasL, E-Cadherin, I-CAM1, CD31, isotype control 

IgG (eBioscience).  

2.5 Heterotopic heart transplantation and post-operative 
monitoring 

Heterotopic abdominal heart transplantation was conducted as previously 

described.226,228-231 Briefly, B6 (n=25; H-2b) or RIPK3-/- (n=36; H-2b) heart grafts were 

heterotopically transplanted into the abdomen of bm12 (H-2bm12) mice by anastomoses of 

the graft ascending aorta to the donor abdominal aorta, and the graft pulmonary artery to 

the donor inferior vena cava.  The pulmonary veins and vena cava of the graft were 

ligated.  

Animals were treated with subcutaneous injections of ketoprofen after surgery. Palpation 

of the graft was monitored daily and hearts were considered rejected when transplanted 

heart pulse ceased.  

2.6 Histology and Immunohistochemistry 

Donor hearts were collected on day 24 and perfused with a 5µM Ethidium Homodimer-1 

saline solution (Life Technologies) followed by 10mL PBS (Gibco) at 1mL/minute as 

previously described.226 It was cut transversely and either frozen using Tissue-Tek® 

O.C.T. Compound (Sakura® Finetek) or fixed with 5% formalin for paraffin embedding.  

Paraffin sections were used for hematoxylin and eosin as well as elastic trichrome 

staining. 

Formalin-fixed (5µm) or snap-frozen (5µm) sections were fixed in acetone and stained 

with anti-mouse CD4 biotin (clone: GK1.5; affymetrix eBioscience) followed by 

immunohistochemistry stain according to standard protocol.  
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All injury scores were evaluated by a pathologist in a blinded manner. Graft injury was 

evaluated based on change in endothelium as compared with naïve. Endothelial damage 

was scored on a scale of 0–4 (0: no change, 1: 0-24% change, 2: 25-49% change, 3: 50-

74% change, 4: >75% change). Vasculopathy was defined by morphometric analysis 

measured with ImageJ software from a total of 33 vessels (n=5, B6) and 25 vessels (n=3, 

RIPK3-/-) that had a diameter ≥80µm. The neointima index (NI) was calculated according 

to the formula NI = [intima area/(intima area – luminal area)]. The percentage of 

occluded vessels was calculated according to: (number of occluded vessels/total number 

of vessels) x 100% per sample. CD4+ T-cell infiltration was measured as percentage of 

positive area for anti-CD4 over total image area (ImageJ). An average of percentage of 

positivity was obtained from ten HPF of the most cell dense areas per sample.  

2.7 Cell death measurement 

Cell death was induced by cytokine (human TNF-α) or CTL (cytotoxic T lymphocytes). 

Twenty thousand MVECs were plated on 96-well flat-bottomed plates for 24 hours in 

complete EGM-2 media (Lonza). Cell death was assessed as either a measure of 

SYTOX® Green Nucleic Acid Stain (100nM in serum-free EBM-2 media; Lonza) at a 

concentration of 100nM, or by 7-AAD Viability Staining Solution (BioLegend) 

according to manufacturers’ protocols. Cell death was captured using the IncuCyte 

ZOOM® System (Essen Bioscience) and the CytoFLEX flow cytometer (Beckman 

Coulter). Flow cytometry data was analyzed using FlowJo Single Cell Analysis Software 

v.10.08 (FlowJo Enterprise).  

2.7.1 Cytokine-induced MVEC death 

The cytokine cocktail used for cell death assay consisted of: recombinant human TNF-α 

(100ng/mL; PeproTech), GDC-0152 (smac mimetic; 100nM; Selleckchem), Z-VAD-fmk 

(50µM; R&D Systems), with or without Necrostatin-1s (10µM; EMD Millipore) in 

serum-free EBM-2.  
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2.7.2 CD4+ T-cell-induced MVEC death 

MVEC were pre-treated 24 hours prior with mouse-IFN-γ (100ng/mL; PeproTech) and 

labeled with CellTraceTM CFSE (ThermoFisher Scientific). Mixed lymphocyte reaction-

stimulated CD4+ T-cells were added at an effector to target ratio of 5:1 and the 96-well 

U-bottom plate was centrifuged at 31xg (Beckman Coulter) for 2 minutes prior to 

incubation at 37.5°C and 5% CO2 for 7 hours. MVEC death was quantified 7-AAD 

staining of CFSE gated cell population. 

2.8 Immunoblot Analyses 

Supernatants were collected from treated MVEC (seeded in 6-well plates at 3 x 105 cells 

and grown to a confluent monolayer in EGM-2 over 24 hours). Cells were trypsinized, 

centrifuged at 1,500 x g for 5 minutes and 50µL nuclear lysis buffer (20mM HEPES, 

0.4mM NaCl, 1mM EDTA, 1mM EGTA, 1mM DTT, 1mM PMSF) was added to each 

sample followed by a 30 minute incubation at 37.5°C. The nuclear fraction was collected 

by centrifugation at 10,000 x g for 15 minutes at 4°C.  

Protein in supernatants were concentrated by centrifugation for 15 minutes using 

Amicon® Ultra-0.5 Centrifugal Filter Unit with Ultracel-10 membrane (EMD Millipore). 

An equal volume of loading buffer (2-ME, glycerol, bromophenol blue, Tris-HCl) was 

added to the protein and was separated by gel electrophoresis with 4% stacking gel and 

12% running gel. Protein was transferred to a nitrocellulose membrane using the iBlot® 

7-minute blotting system (Invitrogen). 5% skim milk (Carnation) in Tris buffered saline 

and Tween 20 (TBS-T) was used for blocking.  

HMGB1 protein was detected using rabbit polyclonal anti-mouse HMGB1 antibody–

ChIP Grade (Abcam) after overnight incubation in 2.5% milk TBS-T. Protein was 

visualized using secondary anti-rabbit IgG horseradish peroxidase-linked antibody (Cell 

Signaling Technology) and chemiluminescent HRP substrate (EMD Millipore) and 

detected by enhanced chemiluminescence. Protein was semi-quantitated by densitometry 

(Alphaview®) and normalized using β-actin that is detected by anti-β-actin antibody 

(Sigma-Aldrich).  



28 

 

2.9 Statistical Analyses 

Data was compared using the Student’s one tailed t-test for unpaired values. The Mantel-

Cox log-rank test was used to determine graft survival differences. Differences were 

considered significant when p-value ≤ 0.05. 
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Chapter 3  

3 Results 

3.1 RIPK3 deficiency protect donor heart graft from T-cell-
mediated rejection in vivo 

3.1.1 Graft Survival 

To determine if RIPK3 deficient donor hearts resulted in improved graft survival when 

compared to wild type in a single MHC Class II mismatch model, male wild type 

C57BL/6 (B6; n=25; H-2b) mice or B6-RIPK3-/- (RIPK3-/-; n=36; H-2b) heart grafts were 

heterotopically transplanted into abdomens of bm12 (H-2Ab1bm12) mice. We found that 

RIPK3-/- donor hearts survived significantly longer than B6 hearts (Log Rank test; 

p=0.0033, Figure 4a). The median survival time (MST) was 29 days for B6 and 37 days 

for RIPK3-/- grafts. Hence, CD4+ T-cell-mediated heart graft rejection was reduced in 

RIPK3-/- donor graft.  

Next we further characterized the mechanism rejection by examining CD4+ T-cell 

infiltration, endothelium damage, and vasculopathy in heart grafts on day 24.  

3.1.2 Measures of Graft Rejection 

Hematoxylin and eosin staining showed extensive infiltration in both RIPK3-/- and B6 

heart grafts at day 24. (Figure 4b) There was a significantly lower amount of CD4+ T-cell 

infiltration in RIPK3-/- heart grafts than in wild type (4.287±0.6016% vs. 9.397±1.187%; 

n=3-5 per group, p=0.0002, Figure 4c). Lumen stenosis was observed in both groups; 

however, vasculopathy was more pronounced in wild type donor hearts, as a significantly 

smaller neointima index in RIPK3-/- heart grafts was observed (0.6107±0.0361 vs. 

0.8641±0.0771; n=3-5 per group, p=0.0271, Figure 4d). No significant differences were 

found in endothelial damage (n=3-5 per group, p=0.159, Figure 4e) or percentage of 

occluded vessels (n=3-5 per group, p=0.069, Figure 4f). 
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Figure 4. Heart grafts deficient in RIPK3 attenuates graft rejection. 

 

 

  

Male wild type C57BL/6 (lB6; H-2b) or B6-RIPK3-/- (¡RIPK3; H-2b) heart grafts were 
heterotopically transplanted into abdomens of B6-Bm12 (Bm12; H-2Ab1Bm12) mice as 
described in the methods. Hearts were palpated and scored daily. Grafts were considered 
rejected upon cessation of the heartbeat and confirmed by histological examination. (A) 
Kaplan Meier Survival Curve analysis showed that RIPK3-/- (n=36) heart grafts survived 
longer than B6 (n=25). (B) Extensive vasculopathy and CD4+ T-cell infiltration in B6 donor 
grafts was evidenced in histological sections. Images representative of n=5-7/group. (C) 
CD4+ T-cell infiltration was measured as percentage of positive area positive for anti-CD4+ 
over total image area. (D) Neointima index as a measure of vasculopathy was measured from 
all vessels ≥80µm in diameter in samples (n=3-5) and was calculated according to: NI = 
[intima area/(intima area – luminal area)]. (E) Endothelial damage was scored on a scale of 
0–4 (0: no change, 1: 0-24% change, 2: 25-49% change, 3: 50-74% change, 4: >75% change. 
(F) Percentage of occluded vessels was calculated according to: (number of occluded 
vessels/total number of vessels) x 100%. Scale bar, 100 µm. * p≤0.05 **p≤0.01 ***p≤0.001  
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3.2 Allo-reactive CD4+ T cells express TNF-α, IFN-γ, FasL, 
granzyme B, and perforin 

We first characterized the expression of cytotoxic molecules in naïve and Day 6-MLR B6 

alloactivated bm12 CD4+ T-cells. As illustrated in Figure 5, flow cytometric analyses 

showed that activated CD4+ T-cells had increased surface expression of FasL and 

CD107a. An increase in intracellular expression of perforin, granzyme B, and TNF-α was 

also detected.  
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Figure 5. Allo-activated CD4+ T-cells have cytokine producing and cytotoxic 

phenotype. 

        

 

  

Bm12 CD4+ T-cells were purified by MACs system and cultured in MLR for six days with 
mitomycin-C treated B6 splenocytes. Intracellular flow cytometry analysis revealed 
increase in TNF-α, perforin, and granzyme B and surface expression of CD107a and FasL 
in MLR activated cultures when compared with naïve. Histograms are representative of 
three separate experiments. (n=3). 
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3.3 RIPK3 deficiency in endothelial cells is protective 
against in vitro TNF-α-mediated death and release of 
cDAMPs 

As RIPK3-/- donor heart grafts survived longer than wild type donor grafts in our chronic 

rejection model, we aimed to determine the mechanisms of cell injury by exploring the 

effects of inflammatory cytokines as a mediator of cell death. TNF-α, smac-mimetic,  and 

Z-VAD-fmk with or without Necrostatin-1s was added to B6 MVECs and ΔSYTOX® 

fluorescence (cell death) was measured over 12 hours (Figure 6a).  

At hour 12, ΔSYTOX® fluorescence significantly increased in B6 MVEC treated with 

TNF-α, smac-mimetic and Z-VAD-fmk when compared to untreated B6 MVEC 

(4478.0±999.9 vs. 60.81±8.207; purple vs. blue; n=5 per group; p<0.0001). When 

compared to cytokine-treated B6 MVEC, there was a significant reduction in ΔSYTOX® 

fluorescence when Necrostatin-1s, an inhibitor of RIPK1 (4478.0±999.9 vs. 83.02±16.35; 

purple vs. brown; n=5 per group; p<0.0001), was added (Figure 6a). This suggests that 

TNF-α induced necroptosis in B6 MVECs.  

In RIPK3-/- MVECs treated with human TNF-α and smac-mimetic, ΔSYTOX® of 

fluorescence was significantly reduced with the apoptosis inhibitor, Z-VAD-fmk 

(865.0±183.8 vs. 103.9±26.50; green vs. orange; n=5 per group; p<0.0001, Figure 6a). 

Taken together, this data showed that at 12 hours, TNF-α-induced necroptosis in B6 

MVECs can be recovered by pan-caspase inhibition, RIPK1 inhibition, or genetic 

deletion of RIPK3. 

As illustrated in Figure 6b, flow cytometry analysis confirmed these findings. There was 

a significant increase in 7-AAD staining from B6 MVEC treated with TNF-α and smac 

mimetic to B6 MVEC treated with the addition of Z-VAD-fmk (21.80±7.78% vs. 

32.56±3.78%; n=3 per group; p=0.0048; red vs. purple, Figure 6c). Addition of 

Necrostatin-1 significantly decreased 7-AAD positive cells when compared with B6 

MVEC treated TNF-α (10.42±5.32% vs. 32.56±3.78%; n=3 per group; p=0.002; brown 

vs. purple, Figure 6c). Further, addition of Z-VAD-fmk with TNF-α significantly 

decreased 7-AAD staining of TNF-α treated RIPK3-/- MVEC (6.60±2.45% vs. 
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13.46±1.75%; n=3 per group, p=0.008; yellow vs. green, Figure 6c). Finally, a reduction 

in 7-AAD was seen in RIPK3-/- MVEC when compared with B6 after cytokine treatment 

with Z-VAD-fmk (6.60±2.45% vs. 32.56±3.79%; n=3 per group, p=0.0002; yellow vs. 

purple, Figure 6c). This data confirmed earlier findings that TNF-α-mediated necroptosis 

is abrogated by RIPK1 inhibition or RIPK3 deletion. 

cDAMPs such as HSP70 and HMGB1 are released upon cell lysis161 and in acute 

rejection226. HMGB1, a nuclear DNA-binding protein, is a potent modulator of 

inflammation in organ rejection when passively released into the extracellular space, such 

as when cells are damaged or are necrotic.162,232 To confirm necrotic death in our system, 

released HMGB1 were measured in the supernatants of MVEC treated with TNF-α 

with/without Necrostatin-1s for 24 hours (Figure 7a).  

Although no significant increase in HMGB1 was detected in TNF-α and Z-VAD-fmk-

treated B6 MVEC compared with TNF-α treatment alone, released HMGB1 was 

significantly decreased with RIPK1 inhibition by Necrostatin-1s (intensity index: 

1.09±1.49 vs. 17.35±5.48; n=3 per group, p=0.0038). No HMGB1 was detected in the 

supernatant of any RIPK3-/- MVEC  (Figure 7a). 
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Legend:  
T = TNF-α 
S = smac mimetic 
Z = Z-VAD-fmk 
N = Necrostatin-1s 
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Figure 6. RIPK3 deficient MVEC are protected from cytokine-induced cell death. 

 

  

B6 and RIPK3-/- MVEC were plated in equal numbers at a density of 3x105 cells and treated with 
100ng/mL TNFa, 100nM smac mimetic, with or without 50µM Z-VAD-fmk and 10µM 
Necrostatin-1s for 12-24 hours in serum-free media. Cell death was detected by (A) IncuCyte 
ZOOM live imaging system and (B-C) 7-AAD staining by flow cytometry. Graphs are 
representative of three separate experiments. (C) Average of three independent experiments 
(n=3). Data shown as mean±SEM. ****p≤0.0001 ***p≤0.001 **p≤0.01 *p≤0.05.  
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B6 and RIPK3-/- MVEC were plated in equal numbers at a density of 3x105 treated with 
100ng/mL TNF-α, 100nM smac mimetic, with or without 50µM Z-VAD-fmk and 
10µM Necrostatin-1s for 48 hours in serum-free media. (A) Equal amounts of 
supernatants were loaded. Released HMGB1 protein was quantified by Western Blot. 
Remaining B6 and RIPK3-/- MVEC lysates were used as loading controls. (B) Data 
shown as mean±SEM and representative of three independent experiments (n=3). 
**p≤0.01.  
 
 

 

Figure 7. RIPK3 deficient MVEC are resistant to cytokine-induced release of 

cDAMPs. 
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3.5 CD4+ T-cell induce apoptosis and necroptosis in target 
MVEC  

Next, we sought to determine the contribution of RIPK3 in a CD4+ T-cell specific single 

minor MHC mismatch chronic rejection model. Since mouse endothelium does not 

constitutively express MHC Class II but can be induced with mouse IFN-γ,233 MVECs 

were characterized after overnight treatment with mouse IFN-γ. In both B6 and RIPK3-/-

MVECs, there was an increase in surface expression of CD54 (ICAM-1), CD324 (E-

cadherin), MHC Class I, and MHC Class II compared with untreated (Figure 8). 

Interestingly, there was an increase of surface expression of Fas on RIPK3-/- MVECs but 

a decrease on B6 MVECs. Surprisingly, there was a decrease in surface CD31 in both B6 

and RIPK3-/- MVECs after IFN-γ treatment.  

B6 and RIPK3-/- MVEC treated with 100ng/mL mouse IFN-γ after 24 hours were 

challenged with MLR activated bm12 CD4+ T-cells and cell death was measured after 

seven hours using 7-AAD staining. Interactions between CD4+ T-cell and B6 MVECs 

were captured using the IncuCyte ZOOM real time imaging system (Figure 9). Flow 

cytometry analysis indicated that bm12 CD4+ T-cells induced cell death in both CFSE-

gated B6 and RIPK3-/- MVEC (Figure 10). There was significantly higher 7-AAD 

positive cells in B6 MVECs when compared with RIPK3-/- MVECs (22.89±6.67% vs. 

16.68±4.61%; n=6 per group, p=0.045). A similar result was obtained with GSK’872, a 

RIPK3 inhibitor, as cell death was significantly reduced in RIPK3 inhibited B6 MVEC 

when compared with untreated (15.44±2.04% vs. 22.89±6.67%; n=6 per group, p=0.013). 

When compared with untreated B6 MVECs (22.89±6.67%; n=6), no significant 

differences were observed in Necrostatin-1 treated B6 MVECs (24.56±6.71%; n=6, 

p=0.34), or Z-VAD-fmk and Necrostatin-1 treated B6 MVEC (21.10±4.81%, n=6, 

p=0.30, Figure 10). 
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Figure 8. Characterizing surface proteins of mouse interferon-gamma treated 

MVEC. 

 
B6 and RIPK3-/- MVECs were characterized before and after 24 hours of 100ng/mL 
mouse interferon–gamma (IFN-γ) treatment and the surface proteins CD31, CD54 
(ICAM-1), CD324 (E-cadherin), Fas, MHC Class I, and MHC Class II were detected by 
flow cytometry. Histograms are representative of three separate experiments. 

CD324 
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Figure 9. CD4+ T-cells lyse B6 MVEC in vitro. 

  

Bm12 CD4+ T-cells were stained with Far Red and B6 MVEC with membrane impermeable 
nucleic acid stain SYTOX® Green. Cells appear bright green and round when they lose 
membrane integrity and undergo necrosis. (A-B) At hour 0, red CD4+ T-cells are added to 
adherent, healthy MVECs. (C) T-cells interact with MVEC. (D) At hour 3, red CD4+ T-cells 
(arrows) approach and come in close proximity of MVECs. (E) At hour 4.5, MVECs appear 
rounded and fluoresce bright green, indicative of SYTOX® Green binding with free nucleic 
acids released by MVECs undergoing necrosis. (F) By hour 6, most of MVECs have 
undergone necrosis. 
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Figure 10. B6 MVEC are more sensitive than RIPK3-/- MVEC to alloactivated CD4+ 

T-cell-induced death in vitro.  

 

  

CFSE-stained B6 and RIPK3-/- MVEC were pre-treated with pan-caspase inhibitor Z-VAD-fmk, 
RIPK1 inhibitor Necrostatin-1s (Nec-1s), or RIPK3 inhibitor GSK’872 for 30 minutes and co-
cultured with day 6 MLR activated bm12 CD4+ T-cells. Cell death was measured by flow 
cytometric detection of 7-AAD. Data shown as mean±SEM and are representative of three 
independent experiments (n=3). **p≤0.01 *p≤0.05.  
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3.6 CD4+ T-cell induced death are mediated by both FasL-
Fas and granzyme B/perforin interactions 

To further determine the mechanisms of CD4+ T-cell-induced MVEC death, cells were 

treated with Fas blocker and granzyme B inhibitor. Treatment with the Fas blocker, 

FasFc, in B6 MVEC significantly reduced cell death when compared with untreated 

(11.17±1.29 vs. 26.02±8.85%; n=3, p=0.023, Figure 11a). Though no significant 

difference was detected in 7-AAD staining between Z-VAD-fmk and FasFc treated and 

B6 MVEC treated with FasFc only (14.20±2.24% vs. 11.17±1.29%; n=3, p=0.056, Figure 

11a), an increase in cell death was observed. Furthermore, no significant differences were 

detected between cells treated with Fas blocker, Z-VAD-fmk, and Necrostatin-1s when 

compared with B6 MVECs treated with Fas blocker and Z-VAD-fmk (12.13±2.01% vs. 

14.20±2.24%; n=3, p=0.149), but a significant decrease in cell death was detected when 

compared with untreated B6 MVECs (12.13±2.01% vs. 26.02±8.85%; n=3, p=0.0284).  

No significant difference in 7-AAD positivity was detected between untreated RIPK3-/- 

MVECs and cells treated with FasFc (19.07±2.66% vs. 14.61±2.85%; n=3, p=0.059). 

There was a significant reduction in cell death in Z-VAD-fmk and FasFc treated RIPK3-/- 

MVECs when compared with untreated (13.21±0.13% vs. 19.07±2.66%; n=3, p=0.009). 

This data indicates that CD4+ T-cells use Fas ligand to induce B6 MVEC cell death that 

cannot be further inhibited by caspase inhibition. 

To determine whether cytotoxic CD4+ T-cells use granzyme B as a mechanism to induce 

MVEC death, the granzyme B inhibitor, Z-AAD-cmk was added. There was a significant 

decrease in cell death in Z-AAD-cmk treated B6 MVECs (13.03±1.11% vs. 

26.02±8.85%; n=3, p=0.032, Figure 11b). A significant decrease in 7-AAD was also 

detected in Z-AAD-cmk and Z-VAD-fmk treated B6 MVECs compared with untreated 

(13.11±0.96% vs. 26.02±8.85%; n=3, p=0.032). A significant decrease in cell death was 

detected in B6 MVECs treated with Z-AAD-cmk, Z-VAD-fmk and Necrostatin-1s when 

compared with cells treated with Z-AAD-cmk and Z-VAD-fmk only (11.27±1.00% vs. 

13.11±0.96%; n=3, p=0.041) and when compared with untreated B6 MVECs (11.27±1.00 

vs. 26.02±8.85%; n=3, p=0.0227). 
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Though no significant difference in 7-AAD positivity between untreated and Z-AAD-

cmk treated RIPK3-/- MVECs was detected (19.07±2.67% vs. 15.69±1.43%; n=3, 

p=0.062, Figure 11b), co-treatment with Z-AAD-cmk and Z-VAD-fmk together 

significantly reduced cell death (9.07±0.4% vs. 19.07±2.67%; n=3, p=0.0015) and when 

compared with just Z-AAD-cmk alone (9.07±0.4% vs. 15.69±1.43%; n=3, p≤0.0001). A 

significant reduction in cell death was found in RIPK3-/- MVEC when compared with B6 

MVEC treated with both Z-AAD-cmk and Z-VAD-fmk (9.07±0.40% vs. 13.11±0.96; 

n=3, p=0.0012).  Taken together, this data suggests that CD4+ T-cells use a combination 

of Fas ligand and granzyme B to induce MVEC death.  
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Figure 11. Allo-activated CD4+ T-cells use Fas-FasL and granzyme B as cytolytic 

mechanisms against MVEC. 

 

 

 

CFSE-stained B6 and RIPK3-/- MVEC were pre-treated with (A) Fas blocker, pan-caspase 
inhibitor Z-VAD-fmk, or RIPK1 inhibitor Necrostatin-1s (Nec-1s) or (B) granzyme B 
inhibitor Z-AAD-cmk, Z-VAD-fmk, or Nec-1s for 30 minutes and co-cultured with MLR 
stimulated allo-activated bm12 CD4+ T-cells. Cell death was measured with 7-AAD 
nucleic acid stain. Data shown as mean±SEM and are representative of three independent 
experiments. ***p≤0.001 **p≤0.01 *p≤0.05. 
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3.7 Summary of Results 

In this study, we have shown that genetic deletion of RIPK3 in donor cardiac grafts 

significantly improved graft survival in a single MHC Class II mismatch chronic 

rejection model and that RIPK3 deficiency protected MVECs from TNF-α and allo-

activated CD4+ T-cell-induced necroptosis in vitro. Furthermore, in addition of TNF-α, 

allo-stimulated CD4+ T-cells in vitro use both mechanisms of granzyme B and FasL to 

induce MVEC death.   
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Chapter 4  

4 Discussion 

4.1 Heart Transplantation Model 

Despite advances in immunosuppression and improvement of acute rejection outcomes of 

heart grafts, chronic rejection still remains an obstacle in long-term graft survival. It is 

well established that T-cells, B-cells, macrophages, NK-cells, neutrophils and the 

complement pathway contribute to chronic graft rejection.35,119,126,234-238 In this study, we 

chose a well-defined single MHC Class II mismatched model characteristic of its CAV 

development and chronic heart rejection.  

The B6.C-H-2bm12 (bm12) has a spontaneous mutation of the I-Ab molecule resulting in a 

three amino acid substitution in the MHC class II antigen.239 These mice develop severe 

vasculopathy characteristic of chronic rejection, which allows for investigation into 

immunological rejection mechanisms specific to the involvement of CD4+ T-cells. 

Although genetic deletion of RIPK3 in donor graft attenuated rejection and significantly 

improved graft survival, a large sample number was needed to achieve significance. This 

was unexpected as the bm12 heart transplant model without immunosuppression is well 

reviewed in literature. 

The general consensus of heart graft survival in the B6 to bm12 heart transplant model is 

beyond day 50,62,73,237,240-250 and even day 80,251-254 while severe CAV is observed by 

Day 24.36,73,255 In our study, we unexpectedly found that chronic rejection events 

occurred earlier when compared to other studies using the bm12 model (earliest rejection 

day=17). It has been noted previously that this cardiac allograft transplantation model is 

variable, and one other group also obtained similar results of early rejection events with 

their bm12 recipient.256  

It is possible that the more pronounced rejection events observed in our study could be 

attributed to a lower or altered ratio of Treg to Teff cells as regulatory T-cells play a 

crucial inhibitory role to control the size of Teff cell pool following heart 
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transplants.247,257 Effector T-cell pool is influenced by the ability of responding precursor 

cells to optimally expand during antigen priming, and clonal expansion is influenced by 

the number of APCs, presence of costimulatory molecules and amplifying cytokines. A 

threshold number of effector T cells are required for rejection of allograft. Treg cells that 

develop later on after transplantation cannot limit the expansion of allo-reactive T-cells. 

Acute rejection of bm12 allografts in this model can be inhibited by CD25+ Treg that 

restrict clonal expansion of allo-reactive T-cells.257 This model seems to be Treg 

dependent, as B7:CD28 costimulatory signaling blockade with CTLA-4-Ig actually 

worsened chronic transplant rejection due to a higher effector T-cell/regulatory T-cell 

ratio as CTLA-4-Ig blocking impairs Treg development.258 Others have reported that 

using a specific antibody that inhibits activation of naïve T-cells does not induce 

significant cytokine release in vivo, hence, selective CD28 blockade can attenuate chronic 

cardiac allograft rejection when combined with CD154 blockade or calcineurin 

inhibition.259 Further assessment of Treg/Teff ratio in in vivo models at the time of heart 

collection could confirm these speculations. 

Another limitation of this model is that the resultant injury perceived in vivo is not 

limited to CD4+ T-cells.  Carotid transplantation between various genetic models of mice 

found that active involvement of macrophages, B-cells and CD4+ T-cells formed the 

immunologic basis of transplant-associated vasculopathy.35 However, another group later 

found that CAV is reduced in a single MHC Class I mismatch miniature swine model 

after anti-CD8 monoclonal antibody therapy. It was suggested that CD8+ T-cells may 

play a more important role early in the initiation of CAV.71 Interestingly, direct 

recognition of mismatched MHC Class II on endothelial cells is not sufficient to initiate 

rejection.260 It follows that CD8+ T-cells could contribute to vasculopathy once activated 

by cross priming (exogenous antigens presenting on MHC class I as indirect 

presentation).126,42,261 While CAV development is contingent on CD4+ T-cells,62 it has 

been suggested that cross-primed CD8+ lymphocytes play a significant and additive role 

in vasculopathy by cytotoxic activity and IFN-γ secretion.  

Fischbein et al. suggested that CD8+ T-cell activation is dependent on CD154-CD40 

interaction by CD4+ T-cells, which then act to augment chronic rejection in this 
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model.42,261 Furthermore, it was demonstrated that vasculopathy is less severe in an allo-

specific CD4+ TCR transgenic mouse that is reactive to the bm12 mutation of the MHC 

Class II when compared with WT recipients, providing further proof that indirect allo-

recognition play a major role in this process.254 Since intimal thickening can occur in a 

model where host cells have a markedly reduced capacity in peptide presentation/indirect 

allo-reactivity,126 other cells that can participate in effector functions are Th17 T-cells,62 

eosinophils,262 or γδ T-cells.241   

Perhaps a more sophisticated mouse model that is tailored to examining the specific 

cytotoxic effects of CD4+ T-cells could be developed to eliminate other effector cells 

(macrophages, CD8, B-cells) by monoclonal antibody depletion in the bm12 recipient 

after wild type or RIPK3-/- heart transplantation.  

In addition, as mice are maintained in a non-sterile environment, infections are likely 

after the surgery that could result in accelerated graft survival.263 Nonetheless, our data 

showed that RIPK3 heart graft survives longer than wild type, and our study suggests that 

RIPK3 would be a good target for long-term graft survival induction.  

4.2 Mechanisms of CD4+ T-cell-mediated EC death 

Our improved understanding of cell death pathways in recent years has led to 

characterization of various forms of necrotic death, such as necroptosis, parthanatos, 

oxytosis, ferroptosis, ETosis, NETosis, pyronecrosis and pyroptosis. It is currently 

unknown whether donor EC undergo these forms of cell death after heart transplantation. 

This study is the first to show that RIPK3 deficiency is protective of CD4+ T-cell induced 

death.  

Although cytotoxic activity has been regarded as a property of CD8+ T-cells, there is 

unambiguous evidence that CD4+ T-cells express IFN-γ and perforin84 and exert MHC 

Class II restricted cytotoxic activity76,83,84,92 in clearing infectious diseases and cancer 

pathogenesis.109 CD4+ T-cells alone are sufficient to mount both acute260 and chronic 

rejection responses. There is considerable debate on whether cytotoxic CD4+ T-cells use 

FasL or perforin as its predominant cytotoxic mechanism.  In an acute cardiac rejection 
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model, FasL113 is the predominant cytotoxic mechanism used by CD4+ T-cells in vitro 

while both FasL and perforin equally contribute to acute cardiac rejection in vivo.264 

Indeed, a combination of granzyme B and perforin induces endothelial cell apoptosis 

which contributes to luminal narrowing of transplant vascular disease111 However, in a 

minor histocompatibility mismatched vasculopathy model, it was perforin that played a 

primary role in early endothelial damage and resultant onset of vascular disease, which 

was abrogated in animals with genetic deletion of perforin.111 In this study, we have 

found that in addition to granzyme B, TNF-α and FasL also contributes to EC death. 

However, it is still unknown why CD4+ T cells induce necroptosis in EC without caspase 

inhibition. It is possible that granzyme B or FasL induce RIPK3 activation without 

inhibition of caspase-8. This is supported by other studies on TLR signaling that IFN-γ 

mediate necroptosis without participation of caspase-8 or RIPK1.265 

Flow cytometry following cell permeabilization showed that there was an increase of 

granzyme B and perforin of activated CD4+ T-cells compared to naïve. It is possible that 

the MLR activated CD4+ T-cells used for characterizing experiments did not robustly 

express granzyme B and perforin since they were stimulated in vitro. Others have 

reported that CD4+ T-cells generated in vivo express a higher amount of granzyme B than 

FasL98 and granzyme B production is heavily dependent on the amount of IL-2 

stimulation.266  

It would be interesting to compare granzyme B and perforin expression of in vitro and in 

vivo generated CD4+ T-cells in recipient blood on the day of graft procurement. Despite 

the low amount of granzyme B and perforin detected, there was a moderate increase in 

surface CD107a, a protein normally located in granules and are a marker of 

degranulation. Furthermore, its functional capacity is evidenced in our in vitro assays. 

While RIPK3 deficiency enhanced survival but did not completely block rejection, it is 

possible that RIPK3 deficiency may only protect MVECs from TNF-α and FasL-

mediated necrotic death. Though it is not known whether RIPK3 plays a role downstream 

of perforin and granzyme B mediated apoptosis (effector caspase 3 and 9).  
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Histological examination showed that there is less CD4+ T-cell infiltration in the RIPK3-/- 

hearts compared to wild type. This supports our hypothesis that RIPK3 deficiency has a 

protective effect on EC as the lack of necroptosis reduces cDAMPs and inflammation, 

which attracts CD4+ T-cells by chemotaxis.  

4.3 Conclusions 

This study explored the mechanisms of alloantigen specific CD4+ T-cell mediated 

cytotoxicity on MVEC. We found that abrogation of RIPK3-mediated necroptosis in a 

single MHC Class II mismatch mouse model attenuated graft survival but did not 

completely eliminate rejection. We report that CD4+ T-cells use FasL and granzyme B in 

vivo as cytotoxic mechanisms to induce endothelial cell apoptotic and necroptotic death. 

This study suggests that RIPK1/3-mediated necroptosis contributes to chronic rejection in 

cardiac allografts and that RIPK1 and RIPK3 are important therapeutic targets in addition to 

apoptotic molecules to induce long-term graft survival. 

4.4 Future Directions 

An interesting follow up experiment would be to transplant RIPK3 deficient hearts into 

bm12 mice deficient in FasL or perforin to further explore mechanisms of cytotoxic 

CD4+ T-cells. The addition of immunosuppression to B6 and RIPK3 mice would 

elucidate all the mechanisms behind CD4+ T-cell mediated EC death. As it has been 

reported that perforin expression is differential between in vivo and in vitro stimulated 

CD4+ T-cells, it would be interesting to compare CD4+ T-cell cytotoxic mechanisms 

depending on its method of stimulation. This could be correlated to in vivo experiments 

using FACs to quantify granzyme B and perforin levels in blood serum of animals on day 

of heart transplant harvest.  

Currently, there are no pharmacological inhibitors of cell death that are clinically 

approved. The possibility that cell death inhibitors can be added to immunosuppression 

regimens is exciting. Currently, Necrostatin-1 has considerable potential in the preclinical 

stage267 and exciting Granzyme B inhibitors are in the process of development for 

treatment of aging and deteriorating skin.268 The testing of granzyme B inhibitors to 
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prolong graft survival in an appropriate model is important, as differences between 

human and mouse granzyme B activity has been reported.269 For instance, murine 

granzyme B is not as effective as human granzyme B at cleaving BID.270  

It is possible that granzyme-mediated killing is used to regulate the T-cell response by 

fratricide.271 CTL can acquire MHC Class I molecules from targets and present on its 

own cell surface with the peptide, rendering them susceptible to lysis by neighbouring 

CTLs. Hence, the consideration of using granzyme B inhibitors as a drug regimen will 

need to take into account of the (accidental expansion of) recipient Teff population. 

There is evidence that in human vascular disease, cytotoxic CD4+ T-cells interact with 

target cells via stress-induced hsp60272 and there is increased extracellular hsp60 in 

COPD patient bronchials which correlate to increased neutrophil counts.273 Exploring 

various cDAMPs that are released by CD4+ T-cell induced necroptotic ECs and their 

effects on neighbouring cells could lead to further insights on inflammatory and graft 

survival consequences of CD4+ T-cell mediated chronic heart rejection.  
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Appendices 

Appendix A: Animal Protocol  (2007-096-10) Approval  

 

 

 

AUP Number: 2007-096-10   
PI Name: Zhang, Zhuxu 
AUP Title: 1. Therapeutic Potential and Mechanism of Double-Negative Regulatory T (DN-
Treg) Cell-Mediated Tolerance in Heart Transplantation 2. Regulation of pre-transplant 
ischemic injury and cardiac allograft vasculopathy 
 
Approval Date: 01/13/2012 

Official Notice of Animal Use Subcommittee (AUS) Approval: Your new Animal Use 
Protocol (AUP) entitled "1. Therapeutic Potential and Mechanism of Double-Negative 
Regulatory T (DN-Treg) Cell-Mediated Tolerance in Heart Transplantation 2. Regulation of 
pre-transplant ischemic injury and cardiac allograft vasculopathy" has been APPROVED by 
the Animal Use Subcommittee of the University Council on Animal Care. This approval, 
although valid for four years, and is subject to annual Protocol Renewal.2007-096-10::5 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through the ACVS 

office. Health certificates will be required. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional 
safety standards and have received all necessary approvals. Please consult directly with 
your institutional safety officers. 

Submitted by: Copeman, Laura  
on behalf of the Animal Use Subcommittee 
University Council on Animal Care  
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