
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-11-2015 12:00 AM 

Investigation of Hybrid Foundation System for Offshore Wind Investigation of Hybrid Foundation System for Offshore Wind 

Turbine Turbine 

Ahmed Mohamed Reda Abdelkader, The University of Western Ontario 

Supervisor: Hesham Elnaggar, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Civil and Environmental Engineering 

© Ahmed Mohamed Reda Abdelkader 2015 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Geotechnical Engineering Commons 

Recommended Citation Recommended Citation 
Abdelkader, Ahmed Mohamed Reda, "Investigation of Hybrid Foundation System for Offshore Wind 
Turbine" (2015). Electronic Thesis and Dissertation Repository. 3458. 
https://ir.lib.uwo.ca/etd/3458 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=ir.lib.uwo.ca%2Fetd%2F3458&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3458?utm_source=ir.lib.uwo.ca%2Fetd%2F3458&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 
 

 
 

INVESTIGATION OF HYBRID FOUNDATION SYSTEM FOR OFFSHORE 
WIND TURBINE  

 
(Thesis format: Integrated Article) 

  
 

 
By 

 
 

Ahmed Reda Abdelkader 
 
 

Graduate Program in 
Engineering Science 

Department of Civil and Environmental Engineering 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

 
 
 

Doctor of Philosophy 
The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 
London, Ontario, Canada 

 
 
 
 

© Ahmed Reda Abdelkader 2015 
 
 
 

 



ii 
 

Abstract 

 

Green energy resources are essential to meet the growing energy demands in the near future while 

reducing the effects of global warming. Offshore wind energy is one of the main efficient 

renewable energy sources which drive the ever increasing expansion of offshore wind farms 

globally. Wind energy technologies are improving making energy production more affordable, 

which helped Denmark, for example, to produce about 25% of its energy. One of the main 

challenges for offshore wind projects is the cost of foundation construction, which represents about 

40% of the total cost. The investigated hybrid foundation system has the potential to reduce the 

foundation cost, while meeting the demands for performance and capacity for large wind turbines. 

The hybrid foundation system comprises a steel pile attached to a concrete plate to increase its 

lateral and rotational stiffness and capacity.  

The main objective of this thesis is to examine the performance of the proposed hybrid system 

subjected to the environmental loads expected to act on the 5 MW National Renewable Energy 

Laboratory (NREL) wind turbine. To achieve this objective, both physical and numerical 

investigations were conducted to address several aspects of the problem. First, wind tunnel tests 

were performed on a scaled model (with 1:150 ratio) of the 5 MW wind turbine at the Boundary 

Layer Wind Tunnel Laboratory in Western University.  Force balance technique was applied to 

determine the different base load components under the ultimate wind loading considering 

different configurations and angles of attack.  

A comprehensive parametric study was conducted employing three-dimensional nonlinear finite 

element models considering different foundations systems installed in sand and subjected to the 

measured wind loads, along with applicable wave loads for 20m deep water. The foundation 



iii 
 

systems included: monopile with diameter of 4 and 6 m and a hybrid system with pile diameter of 

4 m attached to a concrete plate with and without ribs and plate diameter was 12 m or 16 m. For 

all considered foundation systems, the pile embedded depth varied from 8 to 36 m long. Different 

load combinations were examined for ultimate and serviceability static load cases.   

The axial and lateral stiffness and capacity of the different foundation systems were evaluated and 

compared to lineate the advantageous effect of adding the plate to the monopile. The results 

demonstrated the superior performance and the higher capacity of the hybrid system and the 

potential cost savings associated with reducing the required pile diameter to support the 5MW 

NREL wind turbine.  In addition, some guidelines are offered to evaluate the capacity of the hybrid 

system. 

Finally, laboratory tests were conducted on scaled down foundation models under 1 g. The tests 

were conducted to evaluate the long term performance of the hybrid system under monotonic and 

cyclic wind loading conditions. Both the lateral and rotational responses of the foundation systems 

were evaluated under monotonic loading and after 10,000 cycles of loading.  The test were able to 

detect the effect of adding the plate in the hybrid system to study its effect and its increasing in the 

rocking and lateral capacity. The results from the model tests confirmed the superior performance of the 

hybrid foundation system in terms of increased lateral and rotational stiffnesses, which is important for 

performance of supported wind turbines, as well as lateral capacity, which increases the factor of safety 

against excessive lateral displacement. Furthermore, the results obtained from the tests were 

employed to develop equations to predict the stiffness of the proposed hybrid foundation system. 
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Ks Lateral earth pressure coefficient  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

 

The increasing energy demands fuels the search for new green energy sources (Lozano-Minguez 

et al., 2011; Hameed et al., 2011). Wind Energy is one of the widely pursued green and renewable 

energy sources. In particular, offshore wind farms represent the preferred options in so many places 

around the world in order to take advantage of high wind intensity and to overcome community 

problems associated with onshore wind farms. In Europe alone, there are more than 20 major 

offshore wind farms, with Denmark leading the world with the largest wind energy productivity. 

In recent years, China has made significant investment in several offshore wind farms. On the 

other hand, till now there are no major offshore wind farms in North America, especially after the 

cancellation of several wind farms projects that were planned in Ontario, Canada. Nonetheless, the 

great lakes location can be considered suitable for offshore wind farms, which should be taken 

advantage of as it is the case in the Trillium wind power 1 project (Trillium power). 

 

For reliable and efficient design of offshore wind turbines, all environmental loads should be 

properly evaluated and considered in the design. In addition to wind loads, offshore wind turbines 

are subjected to additional loads due to waves and currents. Theses loads must be considered when 

selecting and sizing a suitable foundation system for wind turbines. Usually, sites proposed for 
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offshore wind farms are located in shallow water to reduce the challenges associated with the 

design of the turbines foundation system. As the water depth increases, environmental loads acting 

on the offshore wind turbine increase, and consequently, the cost of the foundation system. The 

cost of offshore foundations for these developments is a significant ratio of the overall installed 

costs, amounting to about 35% to 40% (Byrne and Houlsby, 2003; Andrews, 1998). Thus, 

developing suitable efficient foundation designs is so important to ensure the economic viability 

of offshore wind turbines.  

The engineering expertise in the design and construction of marine structures came mainly from 

platforms serving in the oil industry. However, there is a major difference between the oil 

platforms and wind turbines in terms of vertical to horizontal load ratios. This ratio is high for 

platforms employed in offshore oil production, while it is low in wind turbines foundations, which 

imposes different demands in their design. 

Generally, the preferred foundation type depends on the water depth and the experience of the 

design engineer with offshore foundations. The most common foundation type for shallow water 

is the Gravity Base Foundation, which depends on its high own weight (up to 2000 tons) to 

overcome the lateral loads. These foundations are usually precast concrete constructed onshore 

then moved to be installed in offshore locations in order to minimize the construction cost. A novel 

systems for gravity base was presented in Nysted and Thornton bank offshore wind farm (Thomesn 

et al, 2007) where large hollow gravity bases were casted onshore then moved to offshore to be 

erected and then filled with backfill material from the site.  

 

Monopile (monopole) foundations are widely used to support offshore wind turbines, e.g. were 

used in Horns Rev, Denmark, to support 2.3 MW turbines. The monopiles are typically 4 m or 
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more in diameter and 20 m to 40 m long. The piles are usually hollow steel driven piles connected 

to the tower by transitional part (Bransby and Randolph, 1998). Suction caissons are another 

foundation type, which resembles a large upturned bucket. To install a suction caisson, it is lowered 

to sea bed level, and then the trapped water under it will be sucked by pumps to install the 

foundation to its final position (Houlsby et al., 2001). Ibsen et al. (2004) presented a new bucket 

system for 3 MW turbines, which includes rips.  

 

A new hybrid foundation system was proposed as an efficient, economic system that satisfies the 

requirements of wind turbines under the specified loads (Stone et al., 2007; Newson et al., 2007). 

El-Marassi et al (2008) indicated that the hybrid (caped pile) foundation system enhanced the 

lateral and axial load capacities and increased lateral stiffness, compared to monopole foundation. 

They conducted a parametric study covering a range of pile and plate diameter to pile length ratios 

using 2D and 3D finite element models, and used the results to develop closed form solutions for 

the capacity of the hybrid foundation using limit equilibrium.  

The present study further investigates the performance and capacity of the hybrid foundation 

system constructed by combining a monopole with a concrete plate. Different configurations of 

the hybrid system are proposed and investigated in order to provide optimized design to enable 

reducing the construction and material cost of a new offshore wind turbine foundation. The 

proposed hybrid system is believed to lower construction cost, while ensuring the same 

performance of monopiles with larger diameters. It can also be used in upgrading the capacity of 

existing wind turbines foundations.  
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1.2 Research Objectives 

 

The aim of this study is to evaluate the performance of the innovative hybrid foundation system 

that can support 5MW offshore wind turbines considering both the capacity and serviceability 

requirements. This proposed system combines a steel pile and a concrete plate in order to increase 

its capacity, especially in lateral and rocking modes. In order to achieve this objective, model 5 

MW wind turbine was tested in boundary layer wind tunnel to establish the applicable wind loads. 

These loads were then applied in numerical and small-scale laboratory investigations to evaluate 

the performance of different foundation system of 5 MW wind turbines.  

The measurable objectives associated with the proposed study program are as follows: 

- Provide detailed base loads based on 5 MW NREL wind turbine to be used in the study of offshore 

wind turbine foundations. 

- Undertake a ‘proof of concept’ or feasibility study of a novel foundation system to support 

laterally loaded structures. 

- Evaluate the performance of the proposed 'hybrid' systems under different loading conditions. 

- Develop guidelines for the design of hybrid foundation systems at different variables, while 

taking account of the influence of the relative geometry of the constituent. 
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1.3 Methodology and Novelty of Approach 
 

 

In this thesis, numerical and experimental investigations are conducted to evaluate the performance 

of the hybrid foundation system under various vertical, horizontal and moment loading 

combinations. Wind tunnel tests have been conducted to determine the different base loading 

components of offshore wind turbine base loads in the Boundary Layer Wind Tunnel at Western 

University, Canada, based on 5 MW NREL (National Renewable Energy Laboratory) wind 

turbine. Extensive finite element analyses were performed using the commercial software package 

ABAQUS (Hibbitt et al., 2008) are used to provide interpretation of the behavior of the hybrid 

foundation system and to further elucidate the findings through parametric analysis. Furthermore, 

the numerical results are backed up by the results of experimental testing on scaled physical model 

foundations under 1 g conditions.  

 

 
1.4 Thesis Outline 

 
The remainder of this thesis is divided into five main chapters. 

Chapter 2 comprises a comprehensive literature review on the behavior of conventional onshore 

and offshore shallow and deep foundations under combined vertical, horizontal and moment 

loading.  

 

Chapter 3 discusses the loads that act on the foundation from both the wind and the waves. It 

presents the wind tunnel tests conducted to determine the foundation loads at the base of a 5MW 

NREL (National Renewable Energy Laboratory) by using force balance techniques.   
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Chapter 4 presents a parametric study using three-dimensional nonlinear finite element models 

employing the computer program ABAQUS to investigate the performance of hybrid foundation 

systems as well conventional foundations subjected to static loads representing the operational 

loads level.  It investigates the foundations responses including lateral and vertical displacements 

and rotation considering different load combinations. The foundation systems considered in the 

analysis include monopoles with 4 and 6 m diameter and the hybrid system with monopole of 4 m 

diameter and concrete plate with and without ribs with diameter of 12 and 16 m. The parametric 

study examined the effect of the pile length on the serviceability of both monopoles and hybrid 

foundations.  

Chapter 5 evaluates the ultimate capacity of the considered foundation systems and the maximum 

stresses in their structural components.  The ultimate wind loads established from the wind tunnel 

tests were used to represent the extreme loading conditions acting on the foundation system. 

Diffenet load combinations were considered in the analysis.  

 

Chapter 6 describes the monotonic and cyclic load tests conducted in the laboratory investigation 

to examine the comparative performance of the hybrid systems and monopoles. The test was 

carried out under 1 g with scaling laws to study the effect of stiffness change under long term 

cyclic loads. The results from the study demonstrate the relative advantage of the hybrid system 

over the monopoles in terms of lateral displacement and rotation.  

 

Chapter 7 summarizes the main findings of this research and provides recommendations for future 

studies and research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

The increasing demands on energy combined with the stringent environmental requirements drive 

the pursuit to new green energy technology. Wind energy is one of the proposed green energy 

sources, especially through mega offshore wind farms. With the trend of more powerful wind 

turbines in offshore environment, the foundation are subjected to a complex load combination 

including large horizontal forces and moments including the torque moment due to the 3D twisting 

in the blade of the wind turbine. In addition, they are subject to wave, current and accidental loads. 

Engineering experience with foundations for the offshore structures was derived mainly from the 

oil industry. However, there is a major difference between foundations supporting oil platforms 

and wind turbines due to the difference in horizontal to vertical loads ratio. For wind turbine 

foundations, this ratio is much higher, which requires different foundation systems to support the 

large horizontal forces and associated large moments. On the other hand, for more than two 

decades of offshore wind turbines farms, the available experience and expertise and advent of 

innovative powerful equipment enabled the installation of suitable foundations for the proposed 

area. Considering the wind loads from the turbine and the water level at the installation site, 

different foundations options become more economically viable. Generally, shallow foundations 

are considered first as gravity base with small water depth (Fig. 2-1a). For larger water depth, deep 

foundation systems are used involving large diameter steel piles (Fig. 2-1b). For deep waters, 

suction caissons and tetrapod foundations or even floating foundation systems are used (Fig. 2-

1c). 
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New techniques in offshore wind turbines foundations are required to reduce the high construction 

cost that is up to 40% of the total cost (Houlsby et al., 2001). Wind turbine foundations for onshore 

or offshore structures received comprehensive attention recently in an effort to develop more 

economical and reliable solutions for this complicated engineering problem. Offshore foundation 

systems in particular are subject to additional forces and installation cost due to their marine 

environment.  

Hybrid foundation is an innovative system, which comprises a combination of shallow foundation 

and pile. Initial investigations of hybrid foundations were conducted by Carder and Brooks (1993) 

and Carder et al. (1999). The concept in such system is to strengthen the pile by attaching a plate 

at its head to enhance its lateral and rotational resistance. Thus, the system performs similar to a 

retaining wall with stabilizing base (Carder and Brooks, 1993; Carder et al., 1999). Powrie and 

Daly (2007), Poulos and Randolph (1983) studied the effect of the pile cap under vertical loads 

while Kim et al. (1979), Mokwa (1999) and Maharaj (2003) studied its effect under lateral loads.  

 
Fig. 2.1 Offshore foundations 

 



11 
 

2.1. OFFSHORE FOUNDATIONS 

 

Offshore foundations experience was derived mainly from more than a century of developments 

in offshore oil and gas industry. Most of these projects entail high initial cost invested in the oil 

production tower, including its foundation. This is different than the case in wind farms, where the 

cost of the wind turbine itself is relatively not high. Additionally, the difference in the load 

combinations considered for both types of projects are different, which require different concept, 

i.e., maximizing lateral and rotational stiffness in case of wind turbine foundations as opposed to 

maximizing axial capacity for oil production towers. Even though wind energy sector is growing 

fast in North America, experience with major offshore wind power just started with the 

construction of Block Island Wind Farm in 2015 for five 6 MW turbines.  

Therefore, there is a need to develop innovative and economically viable foundation option to 

sustain the expected growth in offshore wind projects in North America. A recent study by the 

National Renewable Energy Laboratory (NREL, 2010) indicated that the cost per MW of power 

from wind turbines decreases as the size of the turbine rotor increases (Fig. 2-2). This finding 

promotes the development of larger wind turbines, which means growing demands on foundation 

systems to meet the increased wind loads at an acceptable cost level. At the same time, the cost of 

the conventional foundations (gravity base and monopoles) increases substantially as the water 

depth increases (Fig. 2-3). The work presented here is focussed on a foundation system that is safe 

and economic for large wind turbines. The hybrid foundation system was examined by El Marassi 

(2011), which involved the development of limit equilibrium solutions for its capacity. He 

conducted 2D and 3D finite element models for the hybrid system, but considered the concrete 

plate to be rigid.  
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Fig. 2.2 Relation between turbine size and the cost (NREL report September 2010) 

 

Fig. 2.3 Cost of offshore wind turbine substructures with water depth (NREL report September 

2010, Dolan 2004) 
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2.1.1. Gravity Base Foundations 

 

The gravity base foundation is the most common foundation type for shallow water (Malhotra, 

2007) and is widely used in the Baltic and North Sea in Europe. These foundations resist lateral 

and overturning forces by the action of its own weight. They are usually constructed onshore then 

removed to be installed in offshore locations in order to minimize the high cost of offshore 

construction. On the other hand, they require a large barge system for its transportation, which 

increases the construction cost. With the increase of water depth, the use of gravity base 

foundations will not be sufficient due to the need for more weight to resist the lateral forces. An 

example for such large gravity base is the foundations employed at a depth of over 27 meters at 

The Thornton Bank Wind Farm, Belgium, as reported by Houlsby et al. (2001). The typical 

configuration of the Gravity base foundation can be seen in Figure 2.4.  
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Fig. 2.4 Typical Gravity base foundation (Garrad Hassan And Partners LTD). 

 

The main parameters involved in the design of gravity base foundations design are its diameter 

and height. The performance of the foundation may be improved by adding ballast after the 

construction. With increasing water depth, it is not practical to use gravity base due to the high 

construction cost associated with the higher overturning moments it experiences, which require 

special construction preparation such as replacement of the bed soil with coarse material. Zaaijer 

(2003) indicated that the gravity base itself can be under massive heave forces. 
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2.1.2. Monopile Foundations 

 

Monopile foundations are widely used for shallow water. Monopiles were used in both the Horns 

Rev, Denmark, and London Array wind farm, United Kingdom. The piles are typically 4 m in 

diameter or more (up to 6 m) and 20 m to 40 m long. A typical configuration of monopole 

foundation is shown in Figure 2.5. The piles are usually hollow steel piles that will be driven by 

a specialized barge with upending and pile driver tools, which leads to high construction cost. In 

addition, the increase in pile length will cause substantial increase in the installation cost which is 

already high (Houlsby et al., 2001). Figure 2.6 shows the transportation process of the pile 

foundation and the installation method as driven pile. 

 

 

Fig. 2.5 Typical Monopile foundation (Garrad Hassan And Partners LTD). 
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(a) Monopile installation 

(b) Piles transportation. 

(c) Pile connections 

Fig. 2.6 Monopile installation method (Donde Energy). 

 

The ductility of monopile systems can affect the serviceability limits of the wind turbines, but at 

the same time dampens the wind loads (Malhotra, 2007). Under cyclic loading, pore water pressure 

can be generated around the pile, which can reduce the effective confining pressure and the shear 

force around the pile causing increasing in the vertical settlement of the system (Malhotra, 2007).  

 

2.1.3. Suction Caissons 

 

Suction caissons are gaining popularity as a foundation system for offshore wind turbines, 

especially in intermediate deep water installations. It is a large upturned bucket, which will be 
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lowered to sea bed level in intermediate depth water, and then the trapped water beneath it will be 

sucked by pumps to install the foundation to its final position. The advantages of this method are 

saving material and simple installation procedure. However, with the increase of water depth it 

loses its advantages. This system was used at the Frederikhavn project, Denmark (Houlsby et al., 

2001). 

 

2.1.4. Overview and Comparison of Foundations 

It is important to study different types of offshore foundations before choosing the suitable one. 

Generally there are some of major factors control this such as the water depth that lead to starting 

with gravity base then the monopile. And method of construction, finally the most important factor 

is the cost. Table 2.1 shows a comparison between different types of offshore foundations. 

Table 2.1: Investigation of Offshore Foundations types (after Bryne and Houlsby, 2006) 

Type of Foundation Size (m) Weight (ton) Typical water 

depth (m) 

Gravity Base 12-15 500-1000 0-15 

Monopile 3-6 175-350 0-30 

Monopile with Guy 

Wires 

3-6 

175-350 20-40 

Tripod 15-20 125-150 20-40 

Braced frame with 

Multiple Piles 

15-20 

200-400 20-50 

Suction Buckets 10-20 150-400 0-30 

Tension leg Platform 10-20 100-400 >50 
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2.2. BEHAVIOR OF SINGLE PILES UNDER LATERAL LOADS 

 

Offshore pile foundations are usually subjected to lateral loads combined with moment. Under 

extreme wind loading conditions, the offshore foundation experience large lateral displacement, 

which can impact the performance of the wind turbine. Both the ultimate capacity and 

serviceability of the pile foundation must be studied to ensure satisfactory performance of the 

wind turbine.  

2.2.1. Nonlinear Response of Piles 

For large displacements, piles behave in a nonlinear fashion.  The finite element method can handle 

nonlinearity but the solution is very costly and can be inaccurate (Trochanis et al., 1988; 

Maheshwari et al., 2004; Bentley and El Naggar, 2000).  A practical model for nonlinear analysis 

is the lumped mass model in which the soil stiffness and damping are discretized and represented 

by isolated springs and dashpots.  Such models are popular in offshore technology where large 

displacements are expected.  El Naggar and Novak (1995b, 1996) developed a nonlinear lumped 

mass analysis and used it to model the piled foundations of offshore towers, and El Naggar and 

Bentley (2000) further developed it by incorporating dynamic p-y curves. Mostafa and El Naggar 

(2002) developed a model for the nonlinear analysis of the lateral response of piles and Mostafa 

and El Naggar (2004) used it to analyze the response of offshore towers wave and current loads. 

El Naggar et al. (2005) extended the approach for the analysis of the seismic response of offshore 

towers. 
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2.2.1.1. Analytical methods of predicting lateral deflection of single pile 

 
For predicting the lateral displacement of the pile (p-y) curves can be used it was presented by API 

(American Petroleum Institute) and DNV as the pile is analyzed as an elastic beam that transfer 

the load by linear and nonlinear springs along the pile. Winkler approach as subgrade reaction 

method for solving the p-y curve where the soil is modeled as springs. Matlock and Reese (1960) 

defined the spring stiffness Es as  

                                                    𝐸𝑠 =
−𝑝

𝑦
                                                                    Eq. 2.1 

For beam on elastic foundation Hetenyi (1946) proposed solution as: 

                           𝐸𝑝𝑖𝑙𝑒𝐼𝑝𝑖𝑙𝑒
𝑑4𝑦

𝑑𝑥4 + 𝑄
𝑑2𝑦

𝑑𝑥2 + 𝐸𝑠𝑦 = 0                                             Eq. 2.2 

Where Epile is the modules of elasticity of the pile, Ipile is the moment of inertia of the pile cross 

section, Q is the axial load on the pile, x is the pile depth, Es is is the modules of elasticity of the 

soil and y is the lateral displacement of the pile. Based on this solution Reddy (1993) presented the 

following equation for piles under lateral loads. 

                                                               
𝑑4𝑦

𝑑𝑥4 +
𝐸𝑠

𝐸𝑝𝑖𝑙𝑒𝐼𝑝𝑖𝑙𝑒
= 0                                      Eq. 2.3 

2.2.2. Ultimate Lateral Load Resistance of Single Piles 

For piles under lateral loads the calculation of ultimate loads were studied by different methods 

such as Broms (1964) where a disruption of soil resistance was used to calculate ultimate lateral 

loads by static equilibrium equations. Poulos and Davis (1980) studied the behavior of piles under 

lateral loads. Hansen (1961), Felming et al. (1992) studied nonlinear behavior of piles installed in 
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cohesionless soil. Zamri et al (2009) investigated numerically the behavior of single pile under pure 

lateral and combined loadings by using 3D finite element analysis. Phanikanth et al (2010) 

examined the failure mechanisms and behavior of lateral loaded pile foundations found that the pile 

behavior depends on its characteristic length.  Zadeh et al (2011) presented two case studies: the 

first involves the behavior of piles under lateral load on sand and clay soils and soil layered system; 

and the second case examines the behavior of piles under vertical and lateral loading.  

 

2.2.3. Ultimate Lateral Load Resistance of Hybrid Foundation 

 

El Marassi et al (2008) proposed a hybrid foundation system composed of gravity base 

with central monopile. Their finite element analysis showed that the interaction between 

the two foundation components results in high lateral load resistance as well as enhanced 

rocking capacity. Based on the results of the finite element analysis, they developed a limit 

equilibrium solution for predicting the capacity of the hybrid foundation.  

 

2.3. EXPERIMENTAL STUDIES ON RESPONSE OF PILES 

Various types of pile tests piles are conducted to validate and calibrate the available methods of 

analysis.  They differ according to the size of the piles and the test medium and technique 

employed.  The main types are described below. 

 

2.3.1. FULL SCALE LOAD TEST 

In these tests, full scale piles are installed in the natural deposit. The main advantages of this 

technique are that natural soil response is examined and unobstructed wave propagation is allowed. 
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However, the cost of carrying this type of tests is substantial.  Experimental studies that fall in this 

category include Tuzuki et al. (1992), Mizuno and Iiba(1992), Hakulinen (1991), Kobayashi et al. 

(1991), Musser (1996), Masuda et al. (1986), Kobori et al. (1991), Crouse and Cheang (1987) and 

El-Marsafawi et al. (1992), Elkasabgy and El Naggar (  ) and Elsharnouby and El Naggar (). In 

addition, the different methods available in the literature to establish the p-y curves for piles 

installed in saturated and unsaturated sand (Bhushan et al., 1981; Bhushan and Askari, 1984) are 

based on full-scale load test results.   

2.3.2. Prototype Field Tests 

Field experiments with small prototype pile are easier and less expensive to conduct while still 

allow for unobstructed wave propagation.  The work by Novak and Grigg (1976), Novak and El-

Sharnouby (1984), El-Marsafawi et al. (1992) and Burr et al. (1997) fall in this category.  Even 

though field testing of large piles is more costly and challenging to conduct, it provides more 

valuable and relevant data.  

 

2.3.3. Centrifugal Modelling 

In this technique, a small scale model of the pile is installed in a small container filled with sand 

or remolded clay, which would be mounted on a centrifuge.  At the operating speed, the model is 

exposed to centrifugal forces far in excess of the gravity force, making it possible to reproduce 

prototype gravity-induced stresses in soil in the small scale model.  Thus, confining stress is 

identical in both the prototype and model soils, and consequently the stress-strain relation is the 

same in both the prototype and the model.  Scott et al. (1977, 1982), Prevost and Scanlan (1983) 

and Ting and Scott (1984) described experimental studies using this technique.   
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2.3.3. Small Scale Laboratory Tests 

These tests are conducted with very small model piles in test bins or tanks.  The small scale 

laboratory tests are popular because they are inexpensive, easy to organize and independent of the 

weather.  There deficiencies are the difficulty in modelling an undisturbed natural deposit, and 

achieving meaningful confining pressure.  Different solutions were proposed and implemented to 

alleviate these difficulties; however, they cannot be eliminated.  Experiments reported by Kana et 

al. (1986) fall in this category.     

Soil liquefaction in offshore wind turbine foundation was studied by Stahlmann et al. (2005). L Le 

Blanc (2010) investigated the long term cyclic loading for monopiles using 1 g test to examine the 

stiffness change with number of loadings.  Hellmigk (2012) modeled monopile behaviour in 

Ottawa sand, in attempt to simulate offshore wind turbine foundation.  Joonyong et al. (2012) 

presented test setup that was used successfully to evaluate the lateral behaviour for offshore wind 

turbine foundations, which involved a steel container with 1.20×1.00×1.00 m internal dimensions. 

Another technique for 1-g modeling was presented by Altee et al. (1994), which involves 

calculating stress and strain within the soil by considering rigid pile behaviour.  
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CHAPTER THREE 

FOUNDATION DESIGN LOADS FOR 5 MW 

NREL OFFSHORE WIND TURBINE  
 

This chapter attempts to overcome the lack of existing a guideline for loads calculation on offshore 

wind turbine for foundation design. Extreme wind loads for the foundation design based on a 5 

MW NREL (National Renewable Energy Laboratory) offshore wind turbine were estimated at 

tower’s base as shear and moments by using wind tunnel test. The results were compared with 

limited NREL results which were achieved by FAST (Fatigue, Aerodynamics, Structures, and 

Turbulence) program. Wave loads for this foundation were taken from NREL/TP-5000-48191 

Technical report for 20 [m] water depth. In addition, the results presented in the current work 

provide useful information for the design of offshore wind turbine foundations. 

 

3.1. INTRODUCTION 

 

Offshore wind power industry is growing fast (Lozano-Minguez, 2011; Hameed et al., 2011; Oh 

et al., 2012). Initial sites proposed for offshore wind farms are usually located in shallow water 

which raises interests about the design of the turbines foundation system. The cost of offshore 

foundations for these developments is a significant ratio of the overall installation cost, it is about 

35% (Byrne et al., 2003), and so the development of suitable designs for the foundations is 

essential. The engineering expertise in the design and construction of marine structures came 

mainly from platforms in the oil industry, but generally there is a major difference between the 

platforms and wind turbines in vertical to horizontal load ratio. As in oil platforms the vertical 
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loads are much bigger. The literature has less guidance for the evaluation of wind-induced loads 

that can be used for the design of the offshore wind turbines foundation system. Basically, there 

are three sources of information: (1) small-scale experimental studies, (2) theoretical/numerical 

studies and (3) field and full-scale measurements. 

 

Small-scale experimental studies: Experimental studies for wind load estimation at the base 

of wind turbines were carried out on a 1:50 scale model for several 5 MW floating offshore 

wind turbines (FOWT) in a wave tank under combined wind and wave loading at the 

Maritime Research Institute Netherlands (MARIN) (De Ridder et al., 2011). Model scale 

experiments at the Ocean Basin Laboratory in Trondheim in order to validate the motion 

characteristics of the HYWIND concept (the world’s first full-scale floating wind turbine, 

Hywind being assembled in the Åmøy Fjord near Stavanger, Norway in 2009, before 

deployment in the North Sea) under coupled wave and wind loads for a floating wind turbine 

was conducted by (Skaare et al.,2007). 

 

Theoretical/numerical studies: A typical turbine loading on the mast as a function of wind 

speed is given by (Dominique et al., 2009). This information is used to understand the force 

and moment the turbine will exert on the top of the foundation column. In a report published 

by NREL/TP-500-38060 (2009) all load data for 5 MW NREL (National Renewable Energy 

Laboratory), as a reference wind turbine, were presented. The report includes rotor thrust 

and torque for different wind speeds. Jonkman and Musial (2010) presented foundation shear 

and moment loads for both rigid and flexible pile foundation systems. NREL/CP-5000-

54221 (2012) presented wind turbine loads as shear and moment for floating 5 MW NREL 

wind turbine to verify the scaling laws.  

http://en.wikipedia.org/wiki/Stavanger
http://en.wikipedia.org/wiki/Norway
http://en.wikipedia.org/wiki/North_Sea
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NREL/CP-500-47536 (2010) provides an estimation of seismic load demand for a wind 

turbine in the time domain. LeBlanc (2008) presented typical loads for 2 MW wind turbine 

where it was applied on a mono pile to study the response of stiff piles in sand to long-term 

cyclic lateral loading. LeBlanc (2010) used wind turbine loads to study the response of stiff 

piles to random two-way lateral loading. Ragan and Manuel (2007) presented statistical 

extrapolation methods for estimating wind turbine extreme loads for a utility-scale 1.5 MW 

turbine sited in Colorado to compare the performance of several alternative techniques for 

statistical extrapolation of rotor and tower loads. Loads of 450 kW wind turbine to study the 

load bearing capacity and the seismic behavior of a prototype steel tower were presented by 

(Bazeos et al., 2002). Henrik Svensson (2010) presented typical wind loads for wind turbines 

situated on the west coast of Sweden. DNV (2011) and IEC(2009) codes present guide lines 

for calculating wind climate parameters, loads, load effects and load factors for offshore 

wind turbines.  

 

Field study: Full-scale data on two blades were collected by NREL/TP-500-29955 (2001) 

to provide information needed to quantify the full-scale three-dimensional (3-D) 

aerodynamic behavior of horizontal-axis wind turbines (HAWT’s). In addition, aerodynamic 

responses in field tests were carried out by Schepers et al. (1997). 

 

In this work, a wind tunnel study was carried out to estimate the wind-induced loads for the 

foundation of a 5 MW offshore wind turbine. An experimental study was carried out by using force 

balance technique at the boundary layer wind tunnel of Western University on a scaled 1:150 

model. The results were compared with limited NREL results which were achieved by FAST 

(Fatigue, Aerodynamics, Structures, and Turbulence) program. 
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3.2. ESTIMATION OF WIND LOADS FOR PARKED POSITION 

Offshore wind turbines in a parked position can experience extremely high wind loads, depending 

on the direction of the incoming wind. Under parked position, the blades and the tower behave 

more like a bluff body rather than streamline objects. The flow is massively separated over the 

entire blade span and can significantly contribute to the design loads. While the drag wind loads 

on isolated parked blades (excluding the tower) are provided by FAST for a particular 

configuration, a wind tunnel study was carried out for the estimation of the base shear and moment 

loads for many blade configuration scenarios with wind coming from all possible directions.  

3.2.1. FAST modeling 

 

FAST is NREL’s primary aero-elastic wind turbine simulator that models HAWTs with two or 

three blades and allows computing the aerodynamic forces on the turbine blades (Buhl Jr and 

Manjock, 2006). Generally, the software is an analysis tool and not a design tool, but one can use 

it to check experimental concepts during the design phase. 

 

IEC load case 6.2 was used with FAST program on the NREL 5 MW wind turbine, which 

involves parking the rotor with all the blades feathered to 90°and sweeping 360° of yaw error for 

sustained winds at a 50-year return wind speed. These simulations were run in turbulent wind, not 

steady wind. The mean hub-height wind speed for each 1-hr simulation was 47.5 m/s.  This is 95% 

of the value of the 10-minute extreme wind speed with a recurrence period of 50 years. 
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In FAST, the rotor thrust (RotThrust) is defined as the axial force along the 

shaft.  However, FAST not only includes the aerodynamic (applied) loads in this value, but also 

the mass/inertia terms. That is, the rotor thrust in FAST includes all of the loads (aero and 

structural) that are transmitted between the rotor and nacelle. The weight of the rotor will lead to 

a mean offset of this load from the true aerodynamic thrust (Jain et al., 2012) 

 

The FAST data presented in the current study do not account for tower loads. The tower 

drag force was calculated by dividing the tower for nine parts each one is 10 m height. Wind speed 

was calculated at the center of each part. An average value for the drag coefficient of 1.2 was used 

based on an average Reynolds number of 1.7e7. The peak tower loads are obtained from the mean 

values using peak factors of 2.5, 3.0 and 3.5.  

 

 

3.2.2. Wind tunnel modeling  

Three dimensional model based on the 5 MW NREL wind turbine was created by SolidWorks 

program (Fig. 3.1) based on data of NREL (TP-500-38060) report and air foil from TU Delft 

University. In these two sources most of data for tower, nacelle, hub and blades were given. A 

model scaled 1:150 was fabricated and tested in a boundary layer wind tunnel at Western 

University, Canada. The model consists of aluminum tubes representing the tower and the rotor. 

The hub and nacelles were fabricated from a rapid prototyping material. Estimated masses for the 

1:150 scaled model are: rotor hub - 12.6g, turbine blade - 64.2g, Nacelle - 184.5g (various 

materials), main aluminum tube (skeleton for post) - 16.4g in addition to cladding for the post (to 

produce the taper by rohacell). 
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Fig. 3.1:  Modeling based on 5 MW NREL wind turbine details and materials. 

 

 

The wind tunnel experiment was carried out in an open water profile which entails to 

simulating the atmospheric flows of open water exposure. The mean wind speed, turbulence 

intensity and integral length scales of the along-wind velocity component are shown in Fig. 3.2:.  

 
Fig. 3.2:  Wind tunnel velocity profiles: (a) mean wind speed profile, (b) turbulence intensity 

profile and (c) integral length scale profile. U is the along-wind velocity component 
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The generated wind spectrum for the along-wind velocity component is plotted in Fig. 3.2: 

in comparison with the von Karaman spectra taken from the literature (Holmes, 2007).  The 

reference mean hourly wind speed measured at the mean hub-height was about 3.6 m/s while the 

full-scale design wind speed is 47.5 m/s. 

A force balance system was used to measure the overall shear and moments at the base of 

the light weight and stiff wind turbine tower model. The base loads and moments are useful for 

the design of the pile system and can be used in the estimation of the generalized forces for further 

dynamic analysis. This method was used to take advantages of its benefits as: (1) it just requires 

the system to be light weight and stiff with suitable scaled geometry, (2) the model can be 

constructed quickly and (3) the measurements of the base moments include correlations with wind 

forces in several geometrically complex parts of the wind turbine structure (w.r.t. the pressure 

integration technique). Several cases of loading were considered in the wind tunnel tests as shown 

in Table 3.1. 

 
Fig. 3.3: Wind spectra of the along-wind velocity component (U): (a) non-dimensional spectra 

and (b) normalized spectra along with the von-Karman spectra 
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Table 3.3: Load cases considered in the boundary layer wind tunnel tests 

Angle of attack (0°-180°)  

Rotor Configuration-CASE A (0°-120°-240°) Rotor Configuration-CASE B (60°-180°-300°) 

Blade Angle-90° Blade Angle-15° Blade Angle-90° Blade Angle-15° 

 

 

Fig. 3.4 shows the wind tunnel test configurations used in the current study. A force balance 

calibration procedure was first carried out once the test model was mounted and before running 

any wind tunnel tests (see Fig. 3.4b). The calibration procedure consisted of applying a known 

horizontal load at the location of the hub both in the along-wind and cross-wind directions and 

immediately acquiring the base shear and moment loads. That was carried out to ensure accuracy 

and precession of the measuring and acquisition system. Basically two arrangements of testing 

were used: (1) case A in which the rotor was locked and one of the blades was located vertically 

in its extreme upper position (see Fig. 3.4c) and (2) case B in which the rotor was locked and one 

of the blades was located vertically in its extreme bottom position (see Fig. 3.4d).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.4:  Wind Tunnel test configurations: (a) 1:150 5 MW scaled model, (b) force balance 

calibration with the coordinate system, (c) case A with blade angle 90° and (d) case B with rotor 

angle 90° 
 

The following laws of similitude were used to predict the full-scale wind loads on the wind turbine-tower 

structure from the wind tunnel measurements: 

 
Eq. 3.1 

 
Eq. 3.2 

 
Eq. 3.3 

 
Eq. 3.4 

 

Eq. 3.5 

𝐹𝑜𝑟𝑐𝑒𝑓𝑢𝑙𝑙 −𝑠𝑐𝑎𝑙𝑒 =
1

2
𝜌𝑈2𝐴𝑟𝑒𝑎 𝐶𝐷 ,  𝐹𝑜𝑟𝑐𝑒𝑙𝑎𝑏 =

1

2
𝜌𝑢2𝑎𝑟𝑒𝑎 𝐶𝐷                                                   (1) 

𝐹𝑜𝑟𝑐𝑒𝑓𝑢𝑙𝑙 −𝑠𝑐𝑎𝑙𝑒 = 𝐹𝑜𝑟𝑐𝑒𝑙𝑎𝑏
𝑈2

𝑢2 (150)2                                                                                         (2) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑓𝑢𝑙𝑙 −𝑠𝑐𝑎𝑙𝑒 =
1

2
𝜌𝑈2𝐴𝑟𝑒𝑎 ∗ 𝐿 ∗ 𝐶𝑀, 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑎𝑏 =

1

2
𝜌𝑈2𝑎𝑟𝑒𝑎 ∗ 𝑙 ∗ 𝐶𝑀                        (3) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑓𝑢𝑙𝑙 −𝑠𝑐𝑎𝑙𝑒 = 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑎𝑏
𝑈2

𝑢2 (150)3                                                                                (4) 

𝑢

𝑓∗𝑙
=

𝑈

𝐹∗𝐿
                                                                                                                                         (5) 
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Eq. 3.6 

 

Eq. 3.7 

 
Eq. 3.8 

 

Where: Forcefull-scale and Forcelab are tower base forces at full-scale and lab respectively [kN]; 

Momentfull-scale, Momentlab are tower base moments at full-scale and lab respectively [kN.m]; ρ is 

the air density [kg/m3]; U and u are wind speed in nature and lab respectively [m/s]; Area, area 

are wind turbine projection area in nature and lab respectively [m2]; CD and CM are the force and 

moment coefficients; L and l are length in nature and lab respectively [m]; F and f represent 

frequency in nature and lab respectively; T and t are time in nature and lab, respectively [s]. 

 

3.3. RESULTS AND DISCUSSION 

 

The first step carried out on the measured wind tunnel data, after scaling the loads using the laws 

of similitude discussed previously, was to remove the resonance components from the 

measurements. After the resonance peaks where removed (see Figs. 3.5 and 3.6), the load data in 

the time domain (see Figs. 3.7 and 3.8) are used to obtain the total wind load at the base of the 

turbine taking into account the flexibility of the wind turbine and the tower. The first three natural 

frequencies of the full-scale system are 0.322 Hz (fore-aft), 0.314 Hz (side to side) and 0.615 Hz 

(torsion). The overall integrated mass of the tower is 347,460 kg located at 38.234 m (w.r.t. ground 

along tower centerline). The base diameter is 6 m, the base thickness is 0.027 m, the top diameter 

𝑡∗𝑢

𝑙
=

𝑇∗𝑈

𝐿
                                                                                                                                        (6) 

𝑇 =
𝐿

𝑙
∗

𝑢

𝑈
∗ 𝑡                                                                                                                                  (7) 

𝑇 = 150 ∗
𝑢

𝑈
∗ 𝑡                                                                                                                             (8) 
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is 3.87 m and top thickness is 0.019 m. The shear modulus is 80.8 GPa. The structural damping 

ratio for all modes is 1 %. More details about the 5 MW wind turbine used in the current study are 

given in (Jonkman et al., 2009) (Table 3.2). It is worth noting that these dynamic properties will 

depend on the type support structure, the installation site, differences in water depth, soil type, 

wind and wave severity and other factors. The tower properties for the equivalent land-based 

version of the NREL 5-MW baseline wind turbine were used. These properties provide a basis 

with which to design towers for site-specific offshore support structures.   

 

Fig. 3.5:  Power spectra of the overall wind loads at the base of the wind turbine tower (row and 

corrected loads) 
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Fig. 3.6: Time history of the overall wind loads at the base of the wind turbine tower (row and 

corrected loads) 

 
Fig. 3.7:  Power spectra of the overall wind loads at the base of the wind turbine tower (corrected  

and total loads) 
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Fig. 3.8:  Time history of the overall wind loads at the base of wind turbine tower (corrected and 

total loads) 

 

 

Table 3.4: NREL reference wind turbine properties 

Parameter Value 

Rating  5 MW 

Rotor Orientation, Configuration  Upwind, 3 Blades 

Control  Variable Speed, Collective Pitch 

Drivetrain  High Speed, Multiple-Stage Gearbox 

Rotor, Hub Diameter  126 m, 3 m 

Hub Height  90 m 

Cut-In, Rated, Cut-Out Wind Speed  3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed  6.9 rpm, 12.1 rpm 

Rated Tip Speed  80 m/s 

Overhang, Shaft Tilt, Precone  5 m, 5º, 2.5º 

Rotor Mass  110,000 kg 

Nacelle Mass  240,000 kg 

Tower Mass  347,460 kg 
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A plot of the drag loading (along-wind component of load) at the base of tower (taking into account 

tower loads) from FAST for the same load case is shown in Fig. 3.9: and referred to in the legend 

by ‘nrel’. For the three peak factors assumed in the calculations of the tower’s loads, the overall 

peak wind loads at the base of the NREL turbine are obtained by adding the tower peak loads to 

the peak loads obtained from FAST simulations. This force is shown in the direction of the mean 

wind. The peak values include structural oscillations of the rotor-nacelle weight/inertia, but the 

weight/inertia shouldn’t impact the mean values. 

The mean and peak drag loads obtained from the proposed wind tunnel based approach are 

also shown in Fig. 3.9: and referred to in the legend by ‘wt’. The figure shows good agreement 

between the proposed approach and the FAST simulations in terms of mean drag values. However, 

the peak drag values are dependent on the peak factor used to calculate drag on the tower and to 

amend the FAST results. The trend of the peak values is in agreement with the FAST results with 

a peak factor ranging between 2.5 and 3.5. 

 

Fig. 3.9: Comparison between wind tunnel results and average FAST results 
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Design wind loads at the base of the tower are shown in Figs 3.10 to 3.12. The trend shows the 

influence of the wind direction angle on the three components of forces and the three components 

of moments at the base of the tower. While the 90o direction angle is associated with maximum 

shear loads, the maximum torsion occurs at a 75o. This reveals the importance of the wind direction 

angle as a key parameter in the evaluation of the foundation design loads of wind turbine-tower 

structures. It is worth noting that the wind tunnel based approach used allowed generating time 

history of six component load data (three forces and three moments) useful for the foundation 

design for several configurations. 

 

Fig. 3.10: Base shear loads Fx and Fy as function of the wind direction angle α 
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Fig. 3.11:  Base bending moments My and Mx as function of the wind direction angle α 

 

Fig. 3.12: Base normal wind load (Fz) and torque (Mz) as function of the wind direction angle α 

 

Figures 3.13 and 3.14 show that there is no significant correlation between the along wind loads 

and other components of loads. This is due to the fact that cross-wind and torsional loads result 
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mainly from the aerodynamic pressure fluctuations in the separated shear layers and the wake flow 

fields, i.e. there is no direct relation to the oncoming velocity fluctuations. 

 

Fig. 3.13:  Cross wind shear force Fy and normal wind load Fz versus along-wind shear Fx  

 

Fig. 3.2:  Torsion (Mz) versus bending moments My and Mx  
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3.4. CONCLUSIONS 

The work presents a procedure for evaluating foundation design loads for a 5 MW wind turbine based on 

wind tunnel testing. First, the overall base loads were obtained experimentally using the force balance 

technique and a rigid model of the turbine-tower structure. Second, the measured data were processed to 

remove resonance effects. Third, the base loads were obtained considering the structural response. 

Comparison between the along-wind base shear obtained from the proposed procedure and limited FAST 

simulations shows good agreement. The agreements in the comparison between the numerical and the wind 

tunnel test results give creditability for the proposed approach and the data presented to be used in offshore 

wind turbines foundations’ design. 
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CHAPTER FOUR 

PERFORMANCE OF HYBRID 

FOUNDATION SYSTEM FOR OFFSHORE 

WIND TURBINES  
 

In this chapter, a novel offshore hybrid foundation system is proposed for large offshore wind 

turbines. This new system consists of circular precast concrete plate connected on site (i.e. 

offshore) to a steel monopole that is smaller than the usual pile size used. The displacements at 

different locations of the foundation and the rotation at the pile head were analyzed and evaluated 

using a 3D nonlinear finite element model under field-like loading conditions considering different 

foundation configurations. This chapter paves the way for the development of design guidelines 

for this novel foundation system in offshore wind turbine applications. 

 

4.1. INTRODUCTION 

Normally, strong winds have been associated with two types of wind in typhoon prone region. The 

first one is the nature wind and the other one is the typhoon, or say severe tropical cyclone. Many 

investigations about the vibration and buckling (static stability) characteristics of frames of various 

types have been carried out. Cheng (2011) have studied the elastic critical loads for plane frames 

by using the transfer matrix method. A general digital computer method has been described by 

Cheng and Xu (2012).  

The offshore wind turbines industry is growing rapidly (Lozano-Minguez et al., 2011, 

Hameed et al., 2011). Offshore wind turbines foundations have to withstand significant lateral 
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wind loads, in addition to other environmental loads arising from waves and current. Initial sites 

proposed for offshore wind farms are usually located in shallow waters, but with ever growing 

wind turbine sizes sites with larger water depth are being considered. These sites present 

foundation design engineers with major challenges to provide efficient, reliable and constructible 

foundation systems in deep water. The cost of offshore foundations for these developments 

represents a significant percentage, about 35%, of the overall installed costs (Byrne and Houlsby, 

2003), which fuels innovation to introduce cost-effective foundation options.  

 

The engineering expertise in the design and construction of foundations of marine 

structures came mainly from platforms serving in the oil industry. However, there is a major 

difference between the platforms and wind turbines in terms of vertical to horizontal load ratios, 

as in oil industry this ratio is high. On the other hand, this ratio could be quite low in wind turbines 

foundations, which imposes different demands on their design. 

 

The most common foundation type for shallow water is gravity base foundation, which 

depends on its high own weight to overcome the lateral loads from wind, wave and current actions. 

In order to minimize construction costs, these foundations are usually fabricated onshore as precast 

concrete sections that would then be transported for installation at the intended offshore positions. 

A novel system for gravity base was presented in Nysted and Thornton bank offshore wind farm 

(Thomes et al., 2007) where a large hollow gravity base was cast onshore then moved offshore to 

be erected and then filled with backfill material from the sea floor.  
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Monopile foundations are also widely used. For example, they were used in Horns Rev, 

Denmark for 2.3 MW turbines (Gerdes et al., 2008). The piles are typically 4 m or more in diameter 

and 20 m to 40 m long. The piles are usually hollow steel driven piles connected to the tower 

(shaft) by a transitional part. Suction caissons are another foundation type, which is lowered to 

seabed level, and then the trapped water is sucked by pumps to help install the foundation to its 

final position within the foundation soil (Houlsby et al., 2001). Ibsen et al. (2004) presented a new 

bucket system and installation technique for 3 MW turbines, which includes rips to increase the 

system capacity. A hybrid monopile-footing (caped pile) system was proposed by (El-Marassi et 

al., 2008) in order to enhance the lateral and axial load capacities and increased lateral stiffness, 

compared to monopole foundation. This system is further explored here considering precast 

concrete plates for the construction of the footing to reduce installation cost. 

 

4.2. OBJECTIVE AND SCOPE OF WORK 

The main objective of the current study is to examine the performance of a hybrid foundation 

system composed of precast reinforced concrete plates to form the footing, along with a central 

driven steel pile. It is envisioned that this system can reduce the installation cost considerably 

while providing reliable axial, lateral and rocking resistances to meet the requirements of wind 

turbine foundations. The construction sequence involves driving the pile first then lowering the 

precast concrete plates with a central whole with appropriate diameter to allow the monopile at the 

centre. The two parts are then grouted together to form an integral hybrid foundation system. It is 

envisioned that this system can reduce the size of the required monopile from 6 m to 4 m owing to 

the additional capacity of the precast plate. The system performance under wind and wave loads 

is examined using a 3-dimensioanl finite element model. The concept of the new system may also 
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be adapted to upgrade existing turbines to larger wind turbines using the existing monopole and 

adding a precast concrete plate foundation.  

4.3. DESCRIPTION OF THE HYBIRD FOUNDATION SYSTEM  

The new system involves a hollow steel pile connected to a precast concrete cap. This system is 

intended for installations in offshore water with depth of 20 m to 30m. The dimensions proposed 

herein are sized to meet the demands of the environmental loads and the example site conditions. 

However, these dimensions can be optimized for other environmental loads and site conditions. 

The intent of the analyses provided herein is to show the effectiveness of the proposed hybrid 

foundation system in reducing the size of the monopole while providing acceptable design.  

 

The example hybrid system considered herein is composed of three parts: Part 1 is a 4 m 

diameter steel driven pile with a wall thickness of 0.08 m, considering variable length (16, 24 or 

36 m); Part 2 includes a combination of a 6 m-diameter steel pipe with 0.08 wall thickness and 20 

m long (wind turbine shaft), and a concrete precast concrete cap (with diameter of 12 or 16 m). 

Different configurations of the precast concrete cap are considered: a circular plate of a minimum 

thickness of 1 m, a circular precast concrete plate with eight rips of 1 m width, and a circular plate 

with 8 ribs of 2 m depth.  Part 3 is a cylindrical grout infilled offshore to connect part 1 and 2. 

The tower of the wind turbine will be connected to the top of the upper steel pipe. 

 

The upper steel pipe (20 m long) weighs about 2376 kN and the concrete plate weighs 

approximately 2905 kN. The steel pipe will be connected at its base to the precast concrete cap 

during construction onshore. The connection between the precast concrete plate and the 6 m pipe 

will be achieved through steel shear connectors that will transfer the loads between the two parts. 
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The upper part of the foundation system (steel pipe and precast concrete plate) will be connected 

to the driven steel pile using a cylindrical grout (Part 3) infilled offshore reinforced with steel bars. 

Figure 4.1 shows the hybrid system components and its proposed construction phases. 

 

Fig. 4.1: The hybrid system installation process. 

4.4. LOADS 

DNV (2011) and IEC (2009) codes present guidelines for calculating wind climate parameters, 

loads, load effects and load factors for offshore wind turbines. The information in National 

Renewable Energy Laboratory (NREL) reports are used to characterize the force and moment 

exerted by the turbine at the top of the foundation at the mean sea level. Loads combinations can 

be seen in Fig. 4.2 where 6 C represent six components as three translational loads (one vertical 

and two perpendicular horizontal) and three moments, 3C represent three components as two 

translational loads (one vertical and one horizontal) and one bending moment and 2C represent 

two components as one horizontal load and one bending moment. All forces are applied at mean 

sea level (MSL). 
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Fig. 4.2: Foundation systems under different load combinations: 6C, 3C and 2C. 

 

4.4.1. Wind loads  

4.4.1.1. Working Loads 

Steady state loads as a function of wind speed were obtained from NREL studies conducted by 

using the programme FAST, which does not include aerodynamic loads on the tower. The 

aerodynamic loads were deemed negligible relative to rotor thrust while the NREL 5-MW turbine 

is operating at stage 3 (Jonkman, 2013) as shown in Fig. 4.3. 

 
4.4.1.2. Ultimate loads 

In order to establish representative wind loads from large wind turbines, a scaled model based on 

the 5MW National Renewable Energy Laboratory (NREL) wind turbine was constructed 

considering the data of NREL report (Jonkman et al., 2009). The 5MW NREL wind turbine 

properties are summarized in Table 4.1, including the tower, nacelle, hub and blades. The scaled 

model (1:150) was tested in the Boundary Layer Wind Tunnel Laboratory (BLWTL) at Western 

University, London, Canada. The force balance technique was employed to measure the shear and 

moment loads at the base of the light-weight and stiff tower model. The static peak values for the 

moments and horizontal shear forces acting on the tower base are applied on the foundation system 

in the numerical analysis presented herein (Abdelkader et al., 2013). These values are listed in 

Table 4.2. 
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Fig. 4.3: Steady state responses as a function of wind speed (Jonkman et al., 2009) 
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Table 4.1: 5MW NREL reference wind turbine properties (Jonkman et al., 2009) 

 

Parameter Value 

Rating  5 MW 

Rotor Orientation, Configuration  Upwind, 3 Blades 

Control  Variable Speed, Collective Pitch 

Drive train  High Speed, Multiple-Stage Gearbox 

Rotor, Hub Diameter  126 m, 3 m 

Hub Height  90 m 

Cut-In, Rated, Cut-Out Wind Speed  3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed  6.9 rpm, 12.1 rpm 

Rated Tip Speed  80 m/s 

Overhang, Shaft Tilt, Precone  5 m, 5º, 2.5º 

Rotor Mass  110,000 kg 

Nacelle Mass  240,000 kg 

Tower Mass  347,460 kg 

 

Table 4.2: Ultimate loads combinations measured from wind tunnel tests (Abdelkader et al., 

2013). 

 Fx (kN) Fy (kN) Fz (kN) Mx (kN.m) My (kN.m) Mz (kN.m) 

Load 1750 1500 8000 15 E4 15 E4 15000 

 

4.4.2. Wave loads 

The wave loads considered in this study were established based on the information provided in the 

technical reports NREL/TP-5000-48191 and NREL/CP-500-41930 (Jonkman et al., 2010; Passon 

et al., 2007). Wave kinematics for the deterministic and the stochastic wave conditions have been 

derived using the standard wave generator model from GH Bladed. The wave characteristics 

considered in deriving the loads are as follows: wave height, H = 6 m, wave period, T = 10 s, and 

water depth, WD = 20m. The waves are considered to be applied on a pile (i.e. wind turbine shaft) 
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with a diameter, D = 6 m (the upper part of the new hybrid system). Wave loads were taken as a 

concentrated load of a value of 1500 kN to be added to the Fy from the wind at the tower base.  

4.5. NUMERICAL MODELING 

The numerical analysis was conducted using the finite element method. A 3-dimensional nonlinear finite 

element model of the foundation system and soil was established employing the Abaqus program (2009). 

The soil and components of foundation system were modeled using 3D deformable solid elements with 

different material models. The sand soil was simulated with an elastic-perfectly plastic constitutive model 

and the Mohr-Coulomb failure criterion. The steel pipe and steel pile were simulated using elastic-perfectly 

plastic model and the Mohr-Coulomb failure criterion with the following properties: yield strength, fy = 240 

MPa, Young’s Modulus, Es = 200 GPa and Poisson’s ratio, ν = 0.3. Interaction properties were applied 

between different materials to ensure the actual simulation including: tangential behaviour with friction 

coefficient equal to 0.5 with fraction of characteristic surface dimension equal to 0.005; and normal 

behavior using the constraint enforcement method and pressure-overclosure as hard contact with allowing 

separation after contact. In order to evaluate the performance of the hybrid system relative to the 

conventional monopile system, five different foundation systems were analyzed. The different systems 

considered are (as shown in Fig. 4.4): 

1) Monopile foundation system:  

a. A pile with diameter (Dp) = 4 m and an upper steel pipe (Dt) = 6 m diameter (This system is 

currently used to support 3 MW wind turbines, Gerdes et al., 2008) (Fig. 4.4.a).  

b. Dp = 6 m , Dt = 6 m (This system is used by NREL to support the 5 MW NREL wind turbine) 

(Fig. 4.4.b). 

2) Hybrid foundation system: 

a.  Dp = 4 m, Dt = 6 m and a precast concrete plate (Dpl) = 12 m (without rips) (Fig. 4.4.c). 

b. Dp = 4 m, Dt = 6 m and Dpl = 16 m (without rips) (Fig. 4.4.c). 

c. Dp = 4m, Dt = 6 m and Dpl = 16 m (with rips) (Fig. 4.4.d). 
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(a)   

(b)   

(c)   

(d)   

Fig. 4.4: Foundation systems considered in analysis (pile length L=8, 16, 24, 36 m for all 

systems): (a) pile system Dp=4 m, upper section Dt=6m; (b) pile system Dp=6 m, upper section, 

Dt = 6m; (c) Hybrid System with DPl=12, 16 m), (d) Hybrid system with ripped Plate. 
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4.5.1. Numerical model meshing 

A sensitivity analysis was conducted to determine the suitable dimensions for the model and the 

size of elements. The horizontal boundary at the bottom of the model was placed at a distance at 

least three pile diameters below the pile toe. The vertical boundaries were located at a distance 

equal to 20 times the pile diameter from the centre of the model. The mesh was developed using 

the automatic sweep meshing technique and the medial axis algorithm, which is available in the 

Abaqus software (2009). The approximate global size of the element was in the range of 0.25-1.0 

m depending on the size of soil model. 

4.5.2. Boundary Conditions 

Fixed translations in X, Y and Z directions were applied at the bottom boundary of the soil model. 

Fixed translations in both X, Y directions were applied at the vertical boundaries on the soil 

external surfaces. Interaction surfaces were applied at the interfaces between the elements 

representing the pile and adjacent soil that allow pile slippage and separation, which can properly 

simulate the tangential and normal behaviour. Both monopile sizes (Dp=4 and Dp=6m) and hybrid 

foundation systems (with rips and without) were analyzed considering different load cases. The 

geometrical dimensionless properties of the hybrid stems considered are given in Table 4.3.  

 

Table 4.3: Dimensionless proportions of the hybrid systems considered in the analysis 

 

Dpl/Dp=3,4 L=16 [m] L=24 [m] L=36 [m] 

Dplate /L 0.75 0.5 0.33 

                                      Dpl: diameter of precast concrete plate, Dp:pile diameter, 

                                      L: embedded pile length. 
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4.5.3. Model Verification 

A 36 m long steel pile with diameter, Dp = 6 m and wall thickness of 0.06 m was considered in the 

analysis similar to the monopile foundation system described in the NREL/TP-5000-48191 

(Jonkman et al., 2010), which was analysed using 15 different numerical models employing 

different computer programs. The monopile was installed in sand soil with an average friction 

angle, ϕ = 36° and submerged unit weight of γsub = 10 kN/m3. A 3D numerical model was used to 

analyze the response of the monopile under horizontal force of 3000 kN at MSL (Jonkman et al., 

2010). The steel pipe and steel pile were assigned the following properties: yield strength, fy = 240 

MPa, Young’s Modulus, Es = 200 GPa and Poisson’s ratio, ν = 0.3. Lateral displacements at the 

mud level reported by (Jonkman et al., 2010) was in the range of 15-20 mm. The calculated lateral 

displacement calculated in the current analysis under the same conditions was 16.6 cm, thus 

confirming the ability of the numerical model to properly simulate the behaviour of the foundation 

system. 

4.6. RRESULTS AND ANALYSIS OF DIFFERENT FOUNDATION 

SYSTEMS 
 

An extensive parametric study was performed to: i) evaluate the efficiency of the proposed hybrid 

system relative to the conventional monopile foundations; ii) evaluate the effect of considering 

different load components relative to the conventional approach of considering only the wind 

horizontal load and rocking moment.  All foundation systems were considered to be installed in 

soil with the following properties: submerged unit weight, γsub = 9 kN/m3, Young’s modules, E = 

30 MPa, Poisson’s ratio, ν = 0.3, friction angle, ϕ = 30°, dilation angle, ψ = 1° and maximum yield 

stress of 0.001 kPa. (El-Marassi et al., 2008).  The steel pipe and steel pile were assigned the 
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following properties: yield strength, fy = 240 MPa, Young’s Modulus, Es = 200 GPa and Poisson’s 

ratio, ν = 0.3. 

4.6.1. Response to working loads (Serviceability Steady State Loading 

Serviceability) 

 

All foundation systems including monopole, Dp=4m, monopole, Dp=6m, hybrid system, Dpl = 12, 

16 m and hybrid system with ripped plate are modeled under working loads considering different 

pile lengths and subjected to 5C (two perpendicular horizontal loads, one vertical loads and two 

rocking moments). The values of these forces were obtained from (Jonkman et al., 2009) for the 

5MW NREL wind turbine. 

 

Figure 4.5 shows the variation of UMSL and UML for the five systems as well as their pile 

head rotation for different pile lengths. Figure 4.5 (a) indicates that adding the precast concrete 

plate to the monopile with Dp=4 m decreased UMSL owing to increased lateral resistance, but this 

beneficial improvement diminished as the pile length increased. The results also show that the 

difference in response between the hybrid system with and without rips was small. However, the 

monopile with Dp=6 m exhibited slightly better performance than the hybrid system. Figure 4.5 

(b) shows UML of different systems at the mud level. It is clearly noted from the figure that adding 

the precast concrete plate to the pile with Dp=4m increased its lateral resistance, and hence UML 

decreased. It is also noted that the hybrid system with rips exhibited better performance than the 

monopile with Dp=6m with pile length up to 30 m, after which the monopile with Dp=6 has slightly 

less displacement. Figure 4.5 (c) shows that the pile head rotation displayed the same behaviour 

for the different foundation systems as the case for the lateral displacement. 
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(a) 

 

(b) 

 

 (c) 
 

 

Fig. 4.5: Effect of different foundation systems under working load components 5C on: (a) 

lateral displacement at MSL; (b) lateral displacement at ML; and (c) pile head rotation θML. 

 

4.6.2. Response to ultimate loads 

Five different foundation systems (as shown in Fig. 4.4) installed in water height of 20 m were 

investigated. More than 60 cases of loading were analyzed considering different load 

combinations, foundation systems and pile lengths. The lateral displacement was calculated at the 

mean see level for foundations with different pile lengths.  
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Figure 4.6 shows the lateral displacement of different foundation systems at MSL (UMSL) 

for different ultimate load components combinations: (a) 2C, (b) 3C and (c) 6C. As shown in Fig. 

4.6, the monopile (Dp=4 m), as expected, displays the largest displacements for all pile lengths 

considered due to its smaller diameter, and hence lowest lateral and rocking stiffness. Both hybrid 

systems (with and without rips and Dpl = 12, 16 m) displayed lateral displacement less than the 

monopile (Dp=4 m) system due to their increased lateral resistance attributed to the contributions 

of the plate, which is relatively large for the case of short piles. However, the results show that the 

effect of the pile diameter on the lateral resistance of the system is more significant as the pile 

length increases for the range of pile length considered in this study. This is demonstrated for the 

case of pile length of 36 m (i.e. B/L=0.33), where the monopile with Dp= 6m experienced lateral 

displacement lower than that experienced by the hybrid systems with Dp = 4m. It is also noted that 

the hybrid system with rips displayed lower displacement than the plate without rips due to the 

stiffening effect of the ribs on the upper part (wind turbine shaft) of the hybrid system. 

 

Figure 4.7 shows the effect of different foundation systems on lateral displacement at mud 

level (UML) for different ultimate load components: (a) 2C; (b) 3C and (c) 6C. The results 

demonstrated the same trend as that observed for the lateral displacement at the mean sea level for 

different systems, but with much smaller displacement values. Figure 6 shows that the hybrid 

system had smaller displacement values for pile length of up to approximately 30 m. However, the 

hybrid system with rips exhibited lower UML than the case of monopole with Dp=6 for the most 

realistic (and demanding) loading case, 6C, for pile length, L ≤ 31 m. At L=36 m, the difference 

was about 22% increase in UML for the hybrid system. This is because the response at ML is 
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dominated by lateral stiffness of the embedded pile, which is greatly affected by the pile diameter 

and less so by the footing plate.  

(a) 

 

(b) 

 

 (c) 
 

 

Fig. 4.6: Effect of different foundation systems on lateral displacement at MSL for 

different ultimate load components: (a) 2C, (b) 3C and (c) 6C. 

 

On the other hand, the hybrid system with Dpl =16 m showed lower UML than the monopile 

with Dp=6 m for the cases 3C and 6C, which clearly demonstrated the advantage of the hybrid 

system with optimized Dpl/Dp ratio.  However, for the case of 2C (i.e. neglecting vertical forces), 

the monopile system with Dp=6m displayed better performance. This is attributed to the fact that 
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neglecting the vertical force reduced the confining pressure acting on the soil beneath the plate and 

around the upper portion of the pile, hence reducing the stiffness of the system. It is, therefore, 

important to consider the realistic loading case in the design of wind turbine foundations. 

 
(a) 

 

(b) 

 

 (c) 
 

 

Fig. 4.7: Effect of different foundation systems on lateral displacement at ML for 

different ultimate load components: (a) 2C, (b) 3C and (c) 6C. 

 

Figure 4.8 shows the pile head rotation, θml, of different foundation systems considering 

different ultimate load components: (a) 2C, (b) 3C and (c) 6C. It is clear that the criteria specified 

by DNV-OS-J101 (2011) (i.e. pile head rotation < 0.5°) is satisfied. However, the monopile with 
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Dp=4 m displayed the largest rotation. Both the hybrid system with and without rips displayed 

nearly the same behaviour with increasing the pile length. Moreover, the hybrid system with Dpl 

=16 demonstrated the lowest rotation at ML, thus confirming its superior performance. 

(a) 

 

(b) 

 

 (c) 
 

 

Fig. 4.8: Effect of different foundation systems on pile head rotation θML for different 

ultimate load components: (a) 2C, (b) 3C and (c) 6C. 

 

 

Figure 4.9 shows the pile head settlement, Vml, of different foundation systems considering 

different ultimate load components: (a) 2C, (b) 3C and (c) 6C. The hybrid system with plate 

Dpl=16 m gives the lowest vertical settlement under 2C, 3C and 6C due to the participation of the 
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plate into the resistance of the vertical loads. On the other hand, the monopile Dp= 4m experienced 

the highest vertical settlement due to its small pile diameter. The favourable effect of the plate was 

further illuminated for higher load values. 

 

(a) 

 

(b) 

 

 (c) 
 

 

Fig. 4.9: Effect of different foundation systems on pile head vertical settlement VML for 

different ultimate load components: (a) 2C, (b) 3C and (c) 6C. 
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The standard practice in wind turbine foundation analysis under wind loading conditions is to 

consider only two load components, i.e., horizontal load and rocking moment. However, the actual 

loading condition, as verified by the wind tunnel testing (Abdelkader et al., 2013), involves 6 load 

components. It is important to evaluate the effect of all loading components on the response of the 

wind turbine. The calculated responses considering different load combinations are shown in Figs. 

4.10 to 4.12, including lateral displacements at MSL and ML as well as pile head rotation for 

different Foundation systems. It is clearly noted from the figures that considering 2C components 

only can grossly underestimate the lateral displacement of the wind turbine, both at MSL and ML. 

While we can see that in increasing the system stiffness both 3C and 6C can be close.` 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 4.10: Effect of ultimate load combinations 

2C, 3C and 6C on lateral displacement at MSL 

for different foundation systems: (a) monopile, 

Dp=4m; (b) monopile, Dp=6m; (c) hybrid 

system, Dpl = 12m; (d) hybrid system, Dpl =16 

m; and (e) hybrid system with ripped plate 

Dpl=12m. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 4.11: Effect of different ultimate load 

combinations 2C, 3C and 6C on lateral 

displacement at ML for different foundation 

systems: (a) monopile, Dp=4m; (b) monopile, 

Dp=6m; (c) hybrid system, Dpl = 12m; (d) 

hybrid system, Dpl =16 m; and (e) hybrid 

system with ripped plate Dpl=12m. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 4.12: Effect of different ultimate load 

combinations 2C, 3C and 6C on pile head 

rotation θML for different foundation systems: 

(a) monopole, Dp=4m; (b) monopole, Dp=6m; 

(c) hybrid system, Dpl = 12m; (d) hybrid system, 

Dpl = 16m; and (e) hybrid system with ripped 

plate Dpl=12m. 
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4.7. CONCLUSIONS 

 
The performance of the proposed hybrid system, which consists of a precast concrete plate and a 

central steel monopile, was evaluated considering different loading conditions. The hybrid system 

has the potential to reduce construction cost by employing a smaller pile. It can also be used to 

increase the capacity of an existing monopile foundation system by adding the precast concrete 

plate. A comprehensive numerical investigation was conducted involving 3D nonlinear finite 

element analysis using the computer program Abaqus (Hibbitt, 2009). The response of the hybrid 

system was calculated considering wind and wave loads pertaining to the 5MW wind turbine 

installed in 20 m water depth. The responses of the hybrid system were compared with the response 

of the monopiles with Dp = 4m and 6m and considering different pile lengths and static load 

conditions. The results of the analysis demonstrated that by adding the precast concrete plate, the 

lateral resistance of the monopile with Dp=4m increased sufficiently to provide comparable 

performance of monopole with Dp = 6m. The hybrid system was shown to meet the response 

requirements of the offshore wind turbine foundations according to DNV-OS-J101 (2011). 

Considering that the installation cost of 4m diameter pile could be significantly lower than the cost 

of installation of 6m diameter pile, these results demonstrate the potential of the hybrid system as 

an efficient foundation system for new wind turbines and an effective method for upgrading the 

lateral resistance of existing monopile foundations to facilitate upgrading the wind turbines from 

3MW to 5MW.  The analysis for different load combinations demonstrated that the conventional 

approach, which considers only two components (horizontal load and rocking moment) can grossly 

underestimate the response of the wind turbine system.  

 

 

 



75 
 

4.8. REFERENCES 
 

ABAQUS (2009) documentation. 

Abdelkader, A., Aly , A.M., Bitsuamlak, G., El Naggar, M.H. (2013), “Evaluation of Design Wind 

Loads for Wind Turbine Foundations”, Wind and Structures. 

Byrne, B.W. and Houlsby, G.T. (2003), “Foundations for Offshore Wind Turbines”, Philosophical 

Transactions of the Royal Society of London, A(361), 2909-2930. 

DNV-OS-J101, Offshore Standard, (2011), “Design of Offshore Wind Turbine Structures”, 

Electronic Version available at http://www.dnv.com/ (On Jan. 25, 2013) 

 El-Marassi, M., Newson, T., El Naggar, M.H. and Stone, K. (2008), “Numerical modelling of the 

performance of a hybrid monopiled-footing foundation”. Proceedings of 61st Canadian 

Geotechnical Conference, Edmonton, pp. 97-104. 

Gerdes, G., Tiedemann, A., Zeelenberg, S, (2008). “Case Study: European Offshore Wind Farms 

- A Survey for the Analysis of the Experiences and Lessons Learnt by Developers of Offshore 

Wind Farms”, Pushing Offshore Wind Energy Regions. 

Hameed, Z., Vatn, J. and Heggset, J. (2011), “Challenges in the reliability and maintainability data 

collection for offshore wind turbines“, Renewable Energy, 36(8), 2154-2165. 

Houlsby, G.T. and Byrne, B.W. (2001), " Assessing Novel Foundation Options for Offshore Wind 

Turbines", Department of Engineering Science, Oxford University. No. of pages 

Houlsby, G.T. (2003), “Modelling of Shallow Foundations for Offshore Structures”, Invited 

Theme Lecture, Proceeding. International Conference on Foundations, Dundee, Thomas Telford, 

pp 11-26. 

http://www.sciencedirect.com/science/article/pii/S0960148111000140
http://www.sciencedirect.com/science/article/pii/S0960148111000140


76 
 

International Standard, (2009), “Wind turbines – Part 3: Design requirements for offshore wind 

turbines”, IEC 61400-3, Edition 1.0 2009-02. 

Ibsen, L., Rune B. (2004), “Design of a New Foundation for Offshore Wind Turbines“. Proceedings 

of IMAC-22: A Conference on Structural Dynamics, Dearborn, Michigan, USA. Society for 

Experimental Mechanics, p. 359-366 

Jonkman, J., Butterfield, S., Musial, W., and Scott, G., (2009), “Definition of a 5-MW Reference 

Wind Turbine for Offshore System Development”, National Renewable Energy Laboratory, 

Golden, CO, Technical Report, NREL/TP-500-38060. 

Jonkman, J., Musial, W. (2010), “Offshore Code Comparison Collaboration (OC3) for IEA Task 

23 Offshore Wind Technology and Deployment”, Technical Report, NREL/TP-5000-48191. 

Lozano-Minguez, E., Kolios, A.J., Brennan, F.P. (2011), “Multi-criteria assessment of offshore 

wind turbine support structures“, Renewable Energy, 36(11), 2831-2837 

Passon P., KÜhn, M. (2007), “ OC3 – Benchmark Exercise of Aero-Elastic Offshore Wind Turbine 

Codes“, Conference Paper , NREL/CP-500-41930. 

Thomsen, J., Forsberg, T. (2007), “offshore wind turbine foundations - the cowi experience“, 

proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, 

OMAE2007-29567. 

 

 

 

http://vbn.aau.dk/en/publications/design-of-a-new-foundation-for-offshore-wind-turbines(a3a88680-cd75-11db-9e19-000ea68e967b).html
http://www.sciencedirect.com/science/article/pii/S0960148111001923
http://www.sciencedirect.com/science/article/pii/S0960148111001923


77 
 

CHAPTER FIVE 

STRESSES AND CAPACITY OF HYBRID 

FOUNDATION SYSTEM OF WIND 

TURBINES 

 

In this chapter, three-dimensional nonlinear finite element analyses were conducted to investigate 

the axial and lateral capacities of the hybrid foundation system proposed to support offshore wind 

turbines in comparison with the conventional monopile foundation. Four different foundation 

systems are analyzed, namely: monopiles with 4 and 6 m diameter; hybrid system with 4 m 

diameter pile and a 12 m plate; and hybrid system with 4 m diameter pile and a 12 m plate stiffened 

with ribs. The stresses in the soil around the pile and underneath the concrete plate are evaluated 

to aid in understanding the system behaviour. More than 40 3D nonlinear models were established 

and analyzed using the general purpose finite element program ABAQUS (Hibbitt et al., 2008) to 

simulate the different foundation systems considering displacement controlled loading conditions. 

 

5.1. INTRODUCTION 

 

Wind Industry is growing rapidly worldwide to deal with the rising demands for green energy 

(Lozano-Minguez et al., 2011; Hameed et al., 2011). Offshore wind farms are considered a suitable 

option for wind farms, given the limitations on onshore ones or to take advantage of the high wind 

intensity at offshore locations. The cost of offshore foundations for these developments is a 

significant ratio of the overall installed costs, as it mounts for about 35% (Byrne and Houlsby, 
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2003). This may render the offshore wind turbine installations economically inefficient, which 

fuels innovation to introduce cost-effective foundation options.  

Therefore, this study investigates a hybrid foundation system that has the potential to be 

economically advantageous, while performing similar to or even better than the conventional 

foundation options.  The hybrid foundation system consists of a precast reinforced concrete plate 

attached to a steel pile. The addition of the precast concrete plate is envisioned to increase both the 

lateral and rotational stiffness of the foundation.  Furthermore, the plate will further increase the 

lateral capacity of the hybrid foundation system over that of the monopile.  

Offshore wind turbines foundations have to withstand significant lateral wind loads, in addition to 

other environmental loads arising from waves and current. Initial sites proposed for offshore wind 

farms are usually located in shallow waters, but with ever growing wind turbine sizes sites with 

larger water depth are being considered. These sites present foundation design engineers with 

major challenges to provide efficient, reliable and constructible foundation systems in deep water. 

In addition, the engineering expertise in the design and construction of foundations of marine 

structures came mainly from platforms serving in the oil industry. However, the platforms 

experience relatively high vertical loads compared to the environmental horizontal loading. In 

wind turbines, on the other hand, the foundations experience relatively small vertical loads 

compared to the horizontal environmental loads, which imposes different demands on their design. 
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5.2. OBJECTIVES AND SCOPE OF STUDY 

The main objective of this chapter is to evaluate the stresses in the steel pile, concrete plate and 

adjacent soil to ensure suitability of the proposed hybrid foundation to meet the requirements of 

the ultimate limit state for foundations supporting a 5 MW wind turbine. The stresses in the soil 

below the concrete plate, along the pile shaft and below its toe are evaluated and employed to 

calculate the hybrid system axial and lateral capacities. The analysis is conducted using 3D 

nonlinear finite element model and the extreme wind loads considered in the analysis were 

evaluated from the wind tunnel tests reported in Chapter 3. Different wind and wave loads 

combinations were considered in the analysis to ensure realistic representation of the field 

conditions. The results are used to develop some design guidelines for the implementation of this 

novel foundation system in offshore wind turbine applications. 

 

5.3. DESCRIPTION OF HYBRID FOUNDATION SYSTEM 

As described in Chapter 4, the hybrid system involves a hollow steel pile connected to a precast 

concrete cap. This system is intended for installations in offshore water with depth of 20 m. The 

system is composed of three parts: Part 1 is a 4 m diameter steel driven pile with a wall thickness 

of 0.08 m, and variable lengths (16, 24 and 36 m); Part 2 includes a combination of a 6 m-diameter 

steel pipe 20 m long with 0.08 wall thickness, and a concrete precast concrete cap. Different 

configurations of the precast concrete cap are considered: a circular plate of a minimum thickness 

of 1 m, a circular precast concrete plate with eight rips of 1 m width, and a circular plate with 8 

ribs of 2 m width.  Part 3 is cylindrical grout infilled offshore to connect parts 1 and 2. The tower 

of the wind turbine will be connected to the top of the upper steel pipe. 
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The upper steel pipe (20 m long) weighs about 2376 kN and the concrete plate weighs 

approximately 2905 kN. The steel pipe will be connected at its base to the precast concrete cap 

employing steel shear connectors that will transfer the loads between the two parts. The upper part 

of the foundation system (steel pipe and precast concrete plate) will be connected to the driven 

steel pile using cylindrical grout (Part 3) infilled offshore reinforced with steel bars. The 

components fo the hybrid system are shown schematically in Fig.5.1. 

   

Fig. 5.1 Hybrid foundation with no rips system cross section and isometric view. 

 

5.4. NUMERICAL MODELING 

The numerical modeling was conducted using the finite element method. A 3-dimensional 

nonlinear finite element model of the foundation system and soil was established employing the 

ABAQUS program (Hibbitt et al., 2008). The soil and components of foundation system were 

modeled using 3D deformable solid elements with different material models. The sand soil was 

simulated as linear elastic perfectly plastic material considering the Mohr-Coulomb failure 

criterion, with the following properties: submerged unit weight, γsub = 9 kN/m3, Young’s modulus, 



81 
 

E = 30 MPa, Poisson’s Ratio, ν = 0.3, Friction angle, θ = 30°, dilation angle, ψ = 1°. The steel pipe 

and steel pile were also simulated as linear elastic perfectly plastic material considering the Mohr-

Coulomb failure criterion with the following properties: yield strength, fy = 240 MPa, Young’s 

Modulus, Es = 200 GPa and Poisson’s ratio, ν = 0.3. For the concrete plate the properties was as 

unit weight γ = 25 kN/m3, Young’s Modulus, Es = 22 GPa and Poisson’s ratio, ν = 0.2.   The 

interaction properties were considered between different materials to ensure realistic simulation 

including tangential and normal behavior between pile and soil, concrete plate and steel pipe and 

concrete plate and steel pile.   

 

In order to evaluate the performance of hybrid system, four different foundation systems were 

analyzed. The different systems considered are (shown in Fig 5.2): 

 1) Monopile foundation system 1 (Fig. 5.2a): a pile 4 m in diameter and an upper steel pipe 6 m 

in diameter. This system is currently used to support 3 MW wind turbines (Gerdes et al., 2008).  

2) Monopile foundation system 2 (Fig. 5.2b): a pile 6 m in diameter and an upper steel pipe 6 m 

in diameter. This system is suggested by NREL to be suitable to support the 5 MW NREL wind 

turbine. 

3) Hybrid foundation system 1 (Fig. 5.2c): a precast concrete plate 12 m in diameter attached to a 

pile 4 m in diameter along with an upper steel pipe 6 m in diameter.  

4) Hybrid foundation system 2 (Fig. 5.2d): a precast concrete plate 12 m in diameter stiffened with 

ribs, attached to a pile 4 m in diameter along with an upper steel pipe 6 m in diameter. 
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(a)   

(b)   

(c)   

(d)   

Fig. 5.2 Foundation systems considered in the analysis (pile length L=8, 16, 24, 36 m for all 

systems): (a) Monopile Dp=4 m, upper section Dpl=6m; (b) Monopil Dp=6 m, upper section, Dpl 

= 6m; (c) Hybrid System with plate, (d) Hybrid system with ribbed plate. 
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5.4.1. Numerical model meshing 

A sensitivity analysis was conducted to determine the suitable dimensions for the model and the 

size of elements. The horizontal boundary at the bottom of the model, which prevents the 

movement in three directions, was placed at a distance equal to three pile diameters below the pile 

toe. The vertical boundaries, which allow only vertical movement, were located at a distance equal 

to 20 times the pile diameter from the centre of the model. The finite elements were primarily hex 

shaped and the mesh was developed using the automatic sweep meshing technique and the medial 

axis algorithm which is available in ABAQUS software. The approximate global size of the 

element was in range of 0.25-1.0 m depending on the size of soil model. The finite element mesh 

is presented schematically in Fig. 5.3. 

 

a 
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Fig. 5.3 finite element model: a) soil model; b) hybrid system element meshing; c) monopole 

element meshing. 

5.4.2. Boundary Conditions 

Fixed translations in X, Y and Z directions were applied at the bottom boundary of soil model. 

Fixed translations in both X, Y directions were applied at the vertical boundaries on the soil 

external surfaces. Interaction surfaces were applied at the interfaces between the elements 

representing the pile and adjacent soil that allow pile slippage and separation, which can properly 

simulate the tangential and normal behaviour. Both monopiles (Dp=4, Dp=6m) and hybrid 

foundation systems (with and without ribs) were analyzed considering different load cases. The 

geometrical dimensionless properties of the hybrid systems considered are given in Table 5.1.  

 

Table 5.1 Dimensionless proportions of the hybrid systems considered in the analysis 

Dpl/Dp=3 L=16 [m] L=24 [m] L=36 [m] 

Dpl/L 0.75 0.5 0.33 

 

                                   Where: Dpl is precast concrete plate diameter, Dp pile diameter, L embedded pile length. 

b c 
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5.4.3. Model Verification 

For the purpose of verification, a 36 m long steel pile with diameter of 6 m and wall thickness of 

0.06 m was considered in the analysis, which is similar to the monopole foundation system 

described in the NREL/TP-5000-48191 (Jonkman, 2010).  The monopile was installed in sandy 

soil with an average friction angle, ϕ = 36° and submerged unit weight of γsub = 10 kN/m3, and was 

analysed using 15 different numerical models employing different computer programs. In the 

current study, a 3D numerical model was used to analyze the response of the monopile under 

horizontal force of 3000 kN at mean see level. Jonkman (2010) reported horizontal displacements 

at the mud level in the range of 15-20 mm. The calculated horizontal displacement calculated in 

the current analysis under the same conditions was 16.6 mm, thus confirming the ability of the 

numerical model to properly simulate the behaviour of the foundation system. 

 

5.5. SYSTEM STRESSES AND CAPCITY. 

After verification of the numerical model technique, the analysis was conducted for the different 

foundation systems with the geometrical and material properties and installed in the sand with 

properties as described previously. The different foundation systems were subjected to 

displacement controlled loading. The different systems were subjected to vertical displacement 

centrically at the top of the steel pipe, and increased incrementally to a maximum of 0.5 m In 

addition, lateral loading was applied at the top of the steel pile. 

 

 



86 
 

5.5.1 Axial load capacity. 

Under vertical loads, the pile skin friction mobilizes as soon as the pile/hybrid system is loaded. 

With the increase of the vertical load, a failure zone initiates at the edges of the footing and extends 

downwards and outwards. Similar behaviour occurs at the pile toe.  

For the single pile, the friction force along the pile shaft depends on the soil properties and the 

surface area of the pile, which can be calculated from: 

 

                                               𝑸𝒖𝒍𝒕 = ∫𝑲𝒔  𝐭𝐚𝐧𝜹𝝈𝒗 𝑪𝒅𝒛                                     Eq. 5.1 

 

Where for most design purposes, δ = (2/3 ϕ); Ks is lateral earth pressure coefficient t after pile 

installation, which increases with the volume displaced of the soil. Ks =1-2 for driven displacement 

piles. 

 

For a plate foundation, at failure rupture plane beneath the footing can be divided into three zones: 

triangle elastic zone right beneath it, radial shear zone and finally triangle passive zone.  

Considering the shear resistance contributions from the three zones, the bearing capacity of 

circular plate can be calculated by Terzaghi, (1943): 

 

                                     𝑸𝒖𝒍𝒕 = 𝟏. 𝟑𝒄′𝑵𝒄 + 𝝈′𝑵𝒒 + 𝟎. 𝟑𝜸′𝑫𝒑𝒍𝑵𝜸                              Eq. 5.2 

Where: Nc cohesion factor, Nq surcharge factor, Nγ own weight factor, γʹ soil effective unit weight, 

Dpl plate diameter, cʹ soil cohesion beneath the base and σʹ effective vertical stress.  

For long piles, most of the pile will be outside the elastic zone. Stone et al. (2007) proposed that 

the capacity of the hybrid foundation system should be approximately the sum of the capacity of 
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its two components in case of long piles. However, for hybrid systems with short piles the stress 

zones overlap, which prevents the development of full capacity of the hybrid system components, 

and consequently its capacity is less than the sum of two components capacity.  

The finite element analysis involved 20 different cases for the considered foundation systems, 

including monopoles with different diameter, Dp = 4 and 6 m, and hybrid systems with different 

plate diameter, Dpl = 12 and 16 m. All models were subjected to displacement controlled loading 

until the displacement at the top of the pile reached 500 mm.  in order to study the capacity of the 

systems. This allowed the evaluation of the gain in the vertical capacity of the hybrid system by 

adding the concrete plate, which can be attributed to the capacity of the plate as well as the increase 

in the frictional resistance of the pile shaft due to the increase in the confining pressure within the 

influence zone of the plate.    

 

The vertical displacement is applied as a concentrated load at the pile head. Figures 5.4, 5.5 and 

5.6 display the obtained load-displacement curves for the different foundation systems analyzed. 

As can be noted from Figs. 5.4 to 5.6, the monopoles exhibited signs of failure (i.e. increased 

displacement with a small increase in applied load), while the hybrid foundation systems continued 

to resist much higher loads without exhibiting any sign of failure. This demonstrates that the hybrid 

foundation system does experience brittle failure, as it may be the case for monopoles. Also, 

comparing the results in Figures 5.4 to 5.6, it is noted that the maximum load resisted by the 

monopoles increased almost proportional to the increase in the pile length. However, for the hybrid 

foundations, the load increased as the pile length increased, but not at the same rate as the case for 

the monopoles. This is attributed to overlapping of the stress zones of the plate and the pile. It is 
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also noted that the increase in the plate diameter from 12 m to 16 m, resulted in stiffer response 

and larger vertical capacity. 

The vertical capacity of foundations is typically evaluated from load-displacement curves using 

some specified criteria. For large diameter piles employed to support offshore structures, the pile 

capacity is usually determined using the method of intersection of two tangential lines (DNV), 

which is indicated in Figs. 5.4 to 5.6. It is clear from the figures that the capacity values for the 

hybrid foundation systems are much higher than those for the monopoles, which indicates the 

potential advantage of the hybrid foundation systems for supporting offshore wind turbines as well 

as other offshore structures.  

  

Fig. 5.4: Vertical bearing capacity of different systems with pile length L=16m. 
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Fig. 5.5: Vertical bearing capacity of different systems with pile length L=24m. 

 

F ig. 5.6: Vertical bearing capacity of different systems with pile length L=36m. 
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Table 5.2 shows the increase in vertical capacity of different systems compared to the vertical 

capacity of monopile with Dp = 4 m. it can be noted from Table 5.2 that the hybrid system with no 

ribs (HSNR) with Dpl = 16 m has the greatest increase in vertical capacity due to the larger plate 

diameter followed by the hybrid system with ribs (HSWR) with Dpl = 12 m followed by HSNR 

with Dpl = 12 m. Also, the ratio of capacity increase for the 6 m monopile compared to the 4m 

monopile increased as pile length increased. This is attributed to increased resistance of 

cohesionless soil along the lower portion of the pile, as well as the contribution from the bearing 

resistance at the pile toe. The increase in hybrid systems capacity compared to the monopile is 

higher for short pile length, as in shorter pile the effect of the plate are maximum due to the increase 

of confining pressure along the pile shaft, and consequently the pile frictional resistance along the 

pile shaft. This effect decreases when the pile length increases beyond the plate influence zone. 

Table 5.2: The increase in vertical capacity compared to the monopile Dp=4 m 

 

 

Monopile 

Dp=4m 

Capacity 

(kN) 

Monopile 

Dp=6m 

HSNR 

Dpl=12m 

HSWR 

Dpl=12m 

HSNR 

Dpl=16m 

L=16 m 15000 20% 425% 450% 550% 

L=24 m 25000 20% 320% 400% 480% 

L=36 m 40000 42% 285% 348% 371% 

 

To further explore the effect of the pile length on the response of the different foundation systems, 

Figs. 5.7 to 5.11 compare the load-displacement curves for different systems with varying pile 

length. It can be noted from the figures that the effect of increase in pile length is minimal on the 

stiffness and response of hybrid foundations. This more so for the hybrid system with larger plate, 

i.e. Dpl = 16 m. On the other hand, the effect of the pile length is significant on stiffness and 
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response of monopiles. Only with largest pile length, L = 36 m, there was some noticeable increase 

in resistance of hybrid foundations.  

 

A comparison between the finite element analysis and the capacity of the foundation systems 

predicted using Equations 5.1 and 5.2 is provided in Table 5.3. It can be noted from Table 5.3 

that there is a good agreement in case of the monopile capacity. However, in case of hybrid system 

the empirical equations give higher capacity values. This is because the failure mechanism has 

developed fully for the plates, hence they contribute only partially to the capacity determined using 

the interpreted failure criterion specified by the interaction of the two tangents. At the time, the 

pile shaft resistance increases due to the additional confining pressure because of the stresses 

transferred from the plate to the underlying soil within its influence zone   In order to account for 

these effects in realistic evaluation of the hybrid system capacity, an equation is presented herein 

that can be used for estimating the capacity of the hybrid foundation, i.e. 

QHSv= 2.48 Qmonopile  + 0.4 (Dpl/L) QPlate                         Equation 5.3 

 

Where QHSv is the vertical capacity of the hybrid system, Qmonopile is monopole axial capacity 

determined from Eq. 5.1 and Qplate is plate capacity determined from Eq. 5.2.  

Equation 5.3 can provide reasonable estimate for the capacity of a hybrid system installed in sand.  

For hybrid system with geometrical properties within the range of parameters considered herein, 

the predictions of Eq. 5.3 are expected to be in good agreement with values obtained from finite 

element analysis. For hybrid systems with geometrical properties outside the range considered 

herein, Eq. 5.3 can be used in the preliminary design phase to predict the system capacity.  
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Table 5.3: Comparison of capacity of foundation systems obtained from finite element analysis 

and specified equations.  

 

 

Monopile Dp=4m 

Capacity (kN) Monopile Dp=6m 

Capacity (kN) 

HSNR Dpl=16m 

Capacity (kN) 

HSNR 

Dp=12m 

Capacity (kN) 

 
Equations Finite 

element 
Equations 

Finite 

element 
Equations 

Finite 

element 
Equations 

Finite 

element 

L=16 m 15700 15000 23600 25000 211100 110000 98196 80000 

L=24 m 26600 25000 39900 35000 221950 125000 109000 85000 

L=36 m 
35900 40000 

55900 50000 235300 130000 122350 10500 

 

 

Fig. 5.7: Vertical bearing capacity of monopile with Dp=4m. 
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Fig. 5.8: Vertical bearing capacity of monopile with Dpile=6m. 

 
Fig. 5.9: Vertical bearing capacity of hybrid system with no rips Dpl=12m. 
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Fig. 5.10: Vertical bearing capacity of hybrid system with ribs Dpl = 12 m. 

 
 Fig. 5.11: Vertical bearing capacity of hybrid system with no rips Dplate=16m. 
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In order to further understand the behaviour of the different systems, the distributions of vertical 

soil displacement and stresses below the plates and along the pile shaft are inspected. Figure 5.12 

shows the vertical displacement of monopile system with Dp =4m and L =24 m. It is noted from 

Fig. 5.12 that the soil movement and additional stresses due to applied vertical loading are within 

2Dp from the pile centre or below the pile toe, confirming that the boundaries are far enough to 

eliminate any effect on the results of the analysis.  

 

 It is also noted that the transition part between Dp =4m and the tower (6 m diameter) provides 

some bearing resistance near the ground surface. Finally, it is noted that the displacement of soil 

inside the pile is larger than the pile displacement, indicating soil plugging has occurred due to 

frictional resistance between the soil and the inner wall of the pile. This also led to increased 

bearing pressure (and resistance) at the pile toe.  Figure 5.13 shows the vertical stresses in the soil 

for monopile system with Dp =4m and L =24 m. As can be noted from Fig. 5.13, high compressive 

stresses occur below the pile toe and below the transition zone at the pile head due to the bearing 

pressures. It is also interesting to note the reduction in the soil stresses just outside the pile toe due 

to the failure mechanism of soil near the toe, which causes the soil in this zone to move upward. 

In addition, it is noted that the soil inside the pile at the toe (i.e. forming the soil plug) experiences 

significant stresses, which manifests the contribution of the bearing pressure to the vertical 

capacity of the system. 
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Fig. 5.12: Vertical displacement of monopile system with Dpile =4m and Lpile =24 m. 

 

 

Fig. 5.13: Vertical stresses of monopile system with Dpile =4m and Lpile=24m. 

Similar behaviour is observed for the monopole with Dp = 6 m as shown in Figure 5.14 and Figure 

5.15. In addition, similar behaviour was observed for different pile length for both monopole sizes 

(i.e. Dp = 4 m and 6 m). 
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Fig. 5.14: Vertical stresses of monopile system with Dpile =6m and Lpile=24m. 

 

 

Fig. 5.15: Vertical stresses of monopile system with Dpile =6m and Lpile=24m. 

 

 

 

In order to elucidate the interaction between the components of the hybrid system, Figure 5.16. 

shows settlement of (HSNR) for L=16, 24 and 36 m. Inspecting Fig. 5.16, it is noted that the pile 

shaft is outside the elastic zone of the plate, for all pile lengths considered, which causes the 

capacity of the system to be approximately the sum of capacity of both components (i.e. plate and 
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pile). Similar observation can be made from Figure 5.17, which shows the soil stress distribution 

for the same systems. In addition, Fig. 5.17 demonstrates the stress localization at the pile toe, 

which indicates the soil plug and consequently increased contribution of toe capacity.  
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(a)  

(b)  

(c)  

 Fig. 5.16: Vertical stresses of HSNR with: a) L=16m, b) L=24m, and c) L =36m. 
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(a)  

(b)  

(c)  
  

Fig. 5.17: Vertical stresses of HSNR with: a) L=16m; b) L= 24m, and c) L=36m. 
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Figure 5.18 presents the variation of vertical stresses of the soil adjacent to the pile shaft, both 

outside (out) and inside (in) the pile for monopile with Dp =4 m and L = 24 m. As can be noted 

from Fig. 5.18, the outside soil stresses near the pile head are high due to the bearing pressure on 

the base of the larger steel pipe (with 6 m diameter).  This effect diminishes rapidly and is almost 

absent at a depth of less than 5 m, where the soil stresses are only equal to the frictional resistance 

along the pile shaft.  The outside soil stresses remains constant afterwards at the limiting ultimate 

shaft friction for steel piles in dense sand, set at 120 kPa as per the Canadian Foundation 

Engineering Manual, CFEM (2006). On the other hand, the stresses of the soil inside the pile 

increases almost linearly approaching the pile toe, where it starts to increases more rapidly due to 

the bearing stresses at the soil plug near the pile toe.  

 

The decrease of soil vertical stress at the pile for outer soil is due to the complex stress regime at 

the pile toe, which involves some soil dilation.  Similar behaviour is noted for monopoles with Dp 

= 4 m and different lengths.  Meanwhile, Figure 5.19 displays the soil stresses for the monopole 

with Dp = 6m and L = 24 m. In this case, both outside and inside soil exhibit almost linear increase 

of stresses due to the increase in confining pressure until the limiting ultimate shaft friction along 

the pile shaft is achieved. After this point the vertical stresses in the outside soil remains almost 

constant, while the stresses of the inside soil increases due to the bearing on the soil plug near the 

pile toe. Similar behaviour is noted for monopoles with Dp = 6 m and different lengths. 

 

The soil stresses for the case soil of HSNR is expected to be affected by the interaction between 

its components, i.e. the plate and the monopole.  This is demonstrated in Fig. 5.20, where the effect 
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of the plate can be clearly seen as significant increase in the vertical stress of the outside soil up to 

a depth of approximately 15 m, where it reduces to the limiting ultimate shaft friction. The stresses 

of the outside soil near the pile toe are affected by the complex soil regime due to the movement 

of soil as the failure mechanism develops just below the pile toe. On the other hand, the stresses 

of the soil inside the pile follow the same trend as the monopoles.  

 

 Fig. 5.18: Vertical stresses of monopile system with Dpile =4m and Lpile=24m. 
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  Fig. 5.19: Vertical stresses of monopile system with Dpile =6m and Lpile=24m. 

 
 Fig. 5.20: Vertical stresses of (HSNR) system with Lpile=24m. 
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5.5.2 Lateral load capacity. 

The response of the considered foundations to lateral loading is considered in this section. The 

finite element models of the foundation systems were subjected to displacement controlled applied 

at the top of the steel pipe at the sea level. The objective of this parametric study is to evaluate the 

gain in the lateral load capacity of the hybrid system due to the addition of the concrete plate. Also, 

the performance of the hybrid system under lateral loads is evaluated. 

 

Lateral displacement was applied as a boundary condition at the top of the steel pipe (at sea level) 

and was increased incrementally until the maximum target displacement of 0.5 m was reached.  At 

each displacement increment, the equilibrium of the system was satisfied and the corresponding 

load at both sea and mud level was tracked. The response of the different foundation systems under 

lateral loads is represented as lateral load-displacement curves. Figures 5.21 to 5.23 compare the 

lateral load-displacement curves for the different systems considering various pile length, L=16 

m, 24 m and 36 m, respectively.  

It can be noted from Fig. 5.21 that for short piles (L = 16 m), the HSNR with Dpl = 16 m displayed 

the stiffest response and provided the highest lateral resistance. This is attributed to the stiffening 

effect of the large diameter plate and the fact that the response is dominated primarily by rotation. 

It is also noted that the response of the HSWR with Dpl = 12 m was stiffer than that of HSNR with 

Dpl = 12 m. This attributed to the stiffening effect of the ribs, which reduced the deflection of the 

plate and hence enhanced the rotational resistance of the system. Furthermore, the lateral resistance 

of HSNR with Dpl = 12 m is higher than that of monopole with Dp = 6 m, which demonstrates the 

superior performance of the hybrid system in supporting lateral loads. Figures 5.22 and 5.23 

demonstrate that initially, the HSNR with Dpl = 16 m and HSWR displayed the stiffest response; 
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however, as the lateral displacement increased the pile provides higher contribution to lateral load 

resistance and hence rotation decreases, which in turn reduces the plate contribution to lateral 

resistance. This effect is more pronounced for L = 36 m, as monopole with Dp = 6 provided the 

highest resistance.  

The capacity of each foundation system was evaluated as the load defined by the intersection of 

the two tangent lines of the initial and final loading phases as indicated in Figs. 5.21 to 5.23. The 

capacity of the different foundation systems are compared with that of the monopole with Dp = 

4m in Table 5.4. The results presented in Table 5. 4 demonstrate that the capacity of all systems 

increase with pile length, however, the most increase in capacity occur for the monopile with Dp 

= 6 m and HSNR with Dpl = 16 m.  

It should be noted the capacity of the hybrid system HSNR with Dpl = 16 m fulfill the requirements 

of the DNV-OS-J101 (2011) for supporting 5MW NREL wind turbines. 

Table 5.4: The increase in horizontal pile capacity compared to the monopile Dpile=4 m 

 

 

Monopile 

Dp=4m 

Capacity 

(kN) 

Monopile 

Dp=6m 

HSNR 

Dpl=12m 

HSWR 

Dpl=12m 

HSNR 

Dpl=16m 

L=16 m 6500 138% 123% 130% 153% 

L=24 m 10000 165% 120% 125% 150% 

L=36 m 11000 213% 127% 136% 181% 
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Fig. 5.21: Lateral capacity of different systems with Lpile=16 m. 
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Fig. 5.22: Lateral capacity of different systems with Lpile=24 m. 

 
  Fig. 5.23: Lateral capacity of different systems with Lpile=36 m. 
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Figure 5.24 compares the response of monopole of Dp = 6 m with different pile length. It is clear that its 

lateral resistance (stiffness and capacity) increases as the pile length increases because it behaves as a short 

pile. Figure 5.25 demonstrates that the effect of pile length on the lateral performance of HSNR with Dpl = 

16 m is similar, i.e. the lateral resistance increases as the pile length increases. However, the rate of increase 

in lateral resistance decreases as the pile length increases from 24 m to 36 m. On the other hand, the HSWR 

displayed somewhat different behaviour as demonstrated in Figure 5.26; the lateral resistance increased as 

the pile length increased from L = 16 m to L = 24 m due to the additional resistance from the pile as it 

displayed behaviour short pile (primarily rotational). As the pile length increased further to L = 36 m, the 

lateral resistance increased slightly because the pile started to transition to long pile behaviour, indicating 

that L = 24 m represents the optimum design for lateral resistance. HSNR with Dpl = 12 m displayed similar 

behaviour. The monopole with Dp = 4 m displayed similar behaviour as shown in Fig. 5.27. 

 

Fig. 5.24: Lateral capacity of monopile system with Dpile =6m 
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Fig. 5.25: Lateral capacity of (HSNR) system with Dplate =16m. 

 

 
Fig. 5.26: Lateral capacity of (HSWR) system. 
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. 

Fig. 5.27: Lateral capacity of monopile system with Dpile = 4m. 

 

5.6. CONCLUSIONS 

The responses of different foundation systems proposed to support wind turbines under vertical 

and lateral loads were investigated using 3 dimensional nonlinear finite element analyses. The 

results were used to evaluate the performance and capacity of the proposed hybrid foundation 

system in comparison to the conventional monopole system. The following conclusions may be 

drawn from the results of the analysis. 

1. The vertical capacity of the hybrid system with Dp = 4 m is much higher than the capacity 

of monopile with Dp = 6 m due to the beneficial effect of the plate. However, the relative 

increase in capacity decreases as the pile length increases.  
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2. The axial capacity of the hybrid system can be given by Eq. 5.3, which includes an 

enhanced contribution of the monopole and partial contribution of the plate.  

3. The lateral capacity of the hybrid system with Dpl = 16 m is 180% of the capacity of 

monopile that has the same diameter Dp = 4m, and is only 10% less than the capacity of 

monopole with Dp = 6 m.  On the other hand, monopile with Dp = 6 m.  

4. The vertical and horizontal capacity of the hybrid system with Dp = 4m fulfill the 

requirements of the DNV-OS-J101 (2011), and hence can be used to support 5 MW NREL 

wind turbines instead of the larger monopile with 6m diameter.  
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CHAPTER SIX 

EFFET OF LONG TERM CYCLIC LOADING 

ON STIFFNESS AND CAPACITY OF 

HYBRID FOUNDATION 

In this chapter, the long term performance of a hybrid foundation system intended to support large 

offshore wind turbines, which combines a monopile and concrete plate, is examined. The 

performance of the proposed foundation system, as well as the conventional monopoles, subjected 

to cyclic loading is evaluated. A scaled-down non-dimensional framework of stiff foundation 

models installed in sand was used to conduct a series of static and cyclic loading tests under 1-g. 

Four main model foundations were tested. Test results were then used to develop an equation to 

predict the stiffness of the proposed hybrid foundation system. In addition, three dimensional 

nonlinear analysis was conducted using the ABAQUS software to predict the response of the tested 

models. 

 

6.1. INTRODUCTION 

Green energy resources are essential to meet the growing energy demands in the near future while 

reducing the effects of global warming. Offshore wind energy is one of the main efficient 

renewable energy sources. Therefore, offshore wind farms are continually expanding, especially 

in North Sea and China. One of the main cost items in the construction of offshore wind turbines 

is the foundation. It represents about 30-40% of the total cost of the wind turbine (Byrne and 

Houlsby, 2003). There are several foundation systems that are used to support wind turbines 

depending on the soil conditions and water depth. The gravity base foundation, which depends on 
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its weight to resist the lateral load and overturning moment, is used in case of small water depth. 

It is usually cast onshore then moved to the offshore site to be erected in order to reduce its 

construction cost. 

Monopile foundations can be used to support wind turbines in wide range of soil conditions 

and water depths due to its versatility and suitability of construction in different conditions. Large 

wind offshore wind turbines are typically supported by a steel pile with diameter, D =  4-6 m and 

length, L = 20-40 m (Houlsby, 2003). Suction caissons are also used to support wind turbines in a 

variety of soil conditions and water depth (Houlsby, 2003). Moreover, a combination of the 

shallow footing and monopile can provide efficient foundation system for large offshore wind 

turbines (Leblanc, 2010). The monopile and the combined (i.e. hybrid) offshore wind turbine 

foundations are presented schematically in Fig. 6.1 

 

 
 

 
 

Fig. 6.1: Offshore wind turbine foundations considered: a) offshore wind turbine; b) monopile; 

and c) the hybrid foundation system 
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Most methods for analyzing and designing offshore wind turbines foundations are originated from 

the practices employed in the design of offshore oil and gas production rigs. However, there is a 

significant difference between the two foundation applications. Unlike the oil production rigs, the 

loading combination for wind turbines involves relatively small vertical loads but larger cyclic 

horizontal and moment loads. This relatively large lateral cyclic load can affect both the stiffness 

and the capacity of the foundation system. Additionally, while the monopole static capacity is 

important, the changes in its stiffness and accumulated rotation after long-term cyclic loading must 

be addressed as part of the stringent performance criterion that has to be satisfied (Leblanc et al., 

2010). Long term cyclic loading could change the soil stiffness and consequently the foundation 

stiffness can also be affected. 

Cyclic response of laterally loaded pile is influenced by soil and pile yielding, soil-pile 

gapping and cyclic soil degradation. During cyclic loading, the response of piles installed in sand 

is also affected by soil cave-in and recompression.  In addition, the soil may experience strength 

loss and modulus reduction. Hence, procedures that are used in evaluating pile response should be 

capable of accounting for these factors similar to previous work conducted by (Allotey and El 

Naggar, 2008a,b; and Heidari et al., 2014).  

The p-y curves approach is widely used to evaluate the response of piles subjected to lateral 

loads (Reese and Maltock, 1956; McCelleand and Focht, 1958).  In this approach, the soil reaction, 

(p), is related to the pile deflection (y). The shape of the p-y curve can be estimated based on 

laboratory test results and back calculation of field performance data (e.g. Reese et al., 1974) or 

based on in-situ test results (Robertson et al., 1986) through solving the pile equilibrium equation: 
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Eq. 6.1 

Where Ep is the pile modulus, Ip is pile cross-sectional moment of inertia, and z is depth and L is 

pile length.  

There are different methods available in the literature to establish the p-y curves for piles 

installed in saturated and unsaturated sand (Bhushan et al., 1981; Bhushan and Askari, 1984) based 

on full-scale load test results. For long offshore piles installed in sand, DNV-OS-J101 Offshore 

Standard proposed an equation to generate p-y curves, i.e. 

                             

Eq. 6.2 

Where A=0.9 for cyclic loading, B is initial modules of subgrade reaction and depends on the angle 

of friction and pu is the soil ultimate lateral resistance.  

The p-y curves are mainly employed for the analysis of long and flexible piles. However, 

piles supporting offshore wind turbine are usually short and rigid, hence the p-y curves approach 

is not suitable for their response analysis. The cyclic response of laterally loaded piles can also be 

evaluated utilizing the finite element method that treats soil as a continuous medium (e.g. 

Aristonous et al., 1991, Bentley and El Naggar, 2000; Maheshwari et al., 2004). 

In chapters 4 and 5, three-dimensional finite element analyses were conducted to 

investigate the performance of different foundation systems subjected to working and ultimate 

loads representative of the 5 MW wind turbine. The considered foundation systems included 

hollow steel monopiles with diameters 4.0 and 6.0 m, and a hybrid foundation system, which 

combines a monopile and a concrete plate as shown in Fig. 6.2.  The performance of these systems 

under long term cyclic loading will be examined herein. 

𝑝 = 𝐴𝑝𝑢𝑡𝑎𝑛ℎ  
𝐵𝑧

𝐴𝑝𝑢𝑦
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(a)   

(b)   

(c)   

(d)   

 

Fig. 6.2: Foundation systems considered in analysis (pile length L=8, 16, 24, 36 m for all 

systems): (a) pile system Dp=4 m, upper section Dt=6m; (b) pile system Dp=6 m, upper section, 

Dt = 6m; (c) Hybrid System with DPl=12, 16 m), (d) Hybrid system with ribbed Plate. 
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6.2. OBJECTIVES AND SCOPE OF WORK 

The main objectives of this chapter are twofold: first, to evaluate the characteristics of the static 

and cyclic response of monopiles and hybrid foundation systems and compare their performance 

experimentally; second, to develop an equation to evaluate the lateral stiffness of the proposed 

hybrid foundation considering the contribution of the concrete plate. To achieve these objectives, 

1-g small scale models of the monopiles and hybrid foundations were tested under both static and 

cyclic loads to investigate their effects on the stiffness and accumulated rotation. Cyclic loading 

involved up to 10,000 load cycles. In addition, numerical analyses of the experimental setup are 

conducted using the finite element program ABAQUS (Hibbitt et al., 2009). These analyses helped 

to further investigate the lateral behaviour of the tested foundation models. 

 

6.3. METHODOLOGY  

Current design of piles under lateral loads depends on p-y curves, which has been employed in 

design of flexible piles for several decades. However, it may not be applicable to offshore piles as 

it depends on empirical data from long, slender and flexible piles, which is not the case in offshore 

large diameter piles which act as rigid piles. In previous work carried by (Poulos and Hull, 1989), 

a pile flexibility factor (KR) was defined as: 

 

Eq. 6.3 

Where Es is the elastic modulus of the soil, L is embedded pile length, Ep is elastic modulus of pile 

and Ip is pile moment of inertia.  

Poulos and Hull (1989) suggested a range for KR, where a pile can be considered short, 

rigid and can rotate without flexing, is given by:          

𝑲𝑹 =
𝐸𝑠 𝐿

4

𝐸𝑝𝐼𝑝
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Eq. 6.4 

Another limitation of p-y approach is the long term cyclic effects on the system stiffness, 

movements and behaviour. In offshore wind turbine foundations, it is expected to have a long-term 

cyclic loading that can densify or loosen the soil which will change the foundation system while it 

could not be taken into consideration in this equation.  

Considering the geometrical properties of monopiles with 4.0 to 6.0 m diameter and length 

up to 36 m, these piles can be considered rigid according to Eq. 6.4. On the other hand, the plate 

of the hybrid foundation system can be considered rigid if its flexural rigidity falls within the range 

suggested by (IS 2950 - Part1- Clause C2, 1981) i.e.:  

 

Eq. 6.5 

Where Epl is the Elastic modulus of the plate, t is the plate thickness and Dpl is the plate diameter. 

Long and Vanneste (1994) introduced a method to take the effect of cyclic loading into p-y curves 

by reducing the soil static reaction modulus with the number of loading cycles, i.e. 

 

Eq. 6.6 

Where RN, R0 are soil reaction modules on the Nth and the first cycle respectively and α is 

empirically determined degradation parameter depends on the installation method.  

Lin and Liao (1999) studied the effects of cyclic loads on the accumulated displacement 

and proposed the following equation: 

 

Eq. 6.7 

4.8 <
𝐸𝑠 𝐿

4

𝐸𝑝𝐼𝑝
< 388.6 

𝑘𝑟 =
𝐸𝑝𝑙

12𝐸𝑠
 

𝑡

2𝐷𝑝𝑙
 

3

 

𝑅𝑁

𝑅0
= 𝑁−𝛼  

𝑢𝑁 − 𝑢0

𝑢0
= 𝛽 ln 𝑁  
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Where uN and u0 are pile head displacement in the nth and first cycle respectively, β empirical 

degradation parameter depends on the installation method, load characteristic and soil density.  

A non-dimensional framework for scaling stiff piles in sand was developed by Leblanc et al. 

(2010). It was used to interpret the test results of 1-g monopile small models. This methodology 

simulates the monopile lateral and rocking response accounting for the frictional behaviour of the 

sand, which depends on the isotropic stress level and taking into consideration that the stress level 

is low in the test leads to a higher friction angle but lower shear stress than that of the full scale. 

In this method, soil conditions simulation will be carried out by lowing relative density with 

corresponding stress in the lab. The effect of stress level on the shear modules (G) can be 

represented by (Leblanc, 2010): 

 

Eq. 6.8 

Where Pa is atmospheric pressure, C1 is dimensionless constant that varies from 0.435 to 0.765 for 

small strain to very large strain, respectively (Worth et al., 1979), n is pressure exponent of value 

0.5 (Kelly et al., 2006). The effective vertical stress (σ’
v ) can be calculated at depth of C2L,  where 

C2=0.8, by: 

 

Eq. 6.9 

 

Where γʹ is the soil effective unit weight. 

For a case of pile subjected to horizontal load (H) and moment (M), causing pile head to 

have displacement (u) and rotate with an angle (θ) as shown in Fig. 6.3, the stiffness matrix can 

be written as follows: 

𝐺

𝑃𝑎
= 𝑐1  

𝜎𝑣
′

𝑝𝑎
  

𝜎𝑣
′ = 𝐶2𝐿𝛾

′  
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Eq. 6.10 

Where L is the embedded pile length, D is the pile diameter and G is the shear modulus, while k1, 

k2 and k3 are dimensionless constant parameters. Hence, by eliminating u , M  can be given by: 

 Eq. 6.11 

 

 

Fig. 6.3: Horizontal stress distribution in ultimate limit state for laterally loaded stiff pile in sand 

(after Le Blanc 2010). 

 

The scaling rules were developed by incorporating Eqs. 6.8 and 6.9 in Eq. 6.11 to obtain 

the moment - rotation relationship, i.e.  

 
𝑀

𝐿
𝐻

 = 𝐷𝐺  
𝐾1 𝐾2

𝐾2 𝐾3
   

𝐿𝜃
𝑢

  

𝑀 =  
𝐺𝐿2𝐷 𝐾1𝐾3 − 𝐾2

2 

𝐾3 − 𝐾2 𝐻𝐿/𝑀 
 𝜃 
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Eq. 6.12 

From Fig. 6.3, it is assumed that the shear stress is at the critical state represented by 

frictional angle Φcr, hence, from horizontal and moment equilibrium at the pile head, the following 

equations can be derived: 

 

Eq. 6.13 

 

Eq. 6.14 

 

The non-dimensional parameters that are used to scale down the model monopiles are 

presented in Table 6.1. These parameters depend mainly on producing lower relative density to 

simulate the same stress level in the lab. 
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𝐾
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Table 6.1: Non dimensional parameters (Leblanc et al., 2010) 

Non Dimensional Parameters 

Moment Loading 𝑀′ =
𝑀

𝐿3𝐷𝛾′
 

Vertical Force 𝑉′ =
𝑉

𝐿2𝐷𝛾′
 

Horizontal Force 𝐻′ =
𝐻

𝐿2𝐷𝛾′
 

Rotation Degree 𝜃′ = 𝜃√
𝑝𝑎

𝐿𝛾′
 

Load Eccentricity 𝑒′ =
𝑀

𝐻𝐿
 

Aspect Ratio 𝜂 =
𝐿

𝐷
 

 

6.4. EXPERIMENTAL SETUP 

An extensive model testing under 1-g conditions to evaluate the performance of a pile foundation 

system subjected to long term cyclic loading was presented by LeBlanc et al. (2010). In this model, 

an air-compressed (AC) motor was used in the dynamic loading and load wire technique in the 

static loading in a rectangular 0.55× 0.60× 0.60 m container. Another test was conducted by 

Hellmigk (2012) using the same techniques employed by LeBlanc et al. (2010) in a cylindrical 

container and the load was applied through an Instron 8872 loading device. Moreover, Joonyong 

et al. (2012) presented test setup that was used successfully to evaluate the lateral behaviour for 

offshore wind turbine foundations, which involved a steel container with 1.20×1.00×1.00 m 

internal dimensions. Another technique for 1-g modeling was presented by Altee et al. (1994), 

which involves calculating stress and strain within the soil by considering rigid pile behaviour.  
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The experimental test setup employed in the current study was based on the similitude 

relationships and test procedures established by LeBlanc et al. (2010). It comprised a steel cylinder 

container to enclose the test sand bed. It has a diameter of 1.35 m and depth of 1.55 m as shown 

in Fig. 6.4. A steel frame was installed on top of the container in order to guide the installation and 

leveling of the model piles. Moreover, the steel frame was used as a platform to support two linear 

variable displacement transducers (LVDTs), the static and dynamic load cells.  

A pulley system was used to conduct the static lateral loading as shown in Fig. 6.5. Cyclic 

loading was conducted using an air pressure actuator (SMC Cylinder, CDBXWL25-100), as 

shown in Fig. 6.6. The air pressure in the laboratory air pressure line was used to provide the 

required pressure to the actuator to generate the load. A pressure gauge was provided to measure 

the pressure. The cyclic loads were applied at different load eccentricity (e) values (i.e. 0.50, 0.75 

and 1.00 m) to produce horizontal load and rocking moment combinations representative of wind 

turbine loading conditions. 

 

Fig. 6.4: Load test setup for both static and dynamic loading. 
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Fig. 6.5: Test setup: (a) isometric view showing the support system for dynamic load actuator; 

(b) connection between the steel wire and the pile; (c) pulley for static loading. 

 

Fig. 6.6: SMC Cylinder (CDBXWL25-100) actuator 

 

6.5. SOIL MODEL 

The framework for small scale model tests of stiff piles installed in sand developed by Leblanc 

(2010) depends on scaling the soil stiffness. It considers soil angle of internal friction and relative 

density in order to scale down the vertical stress at 0.8 L. For yellow Leighton Buzzard sand, the 

(a) (b) 

(c) 
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scaling relationship between the model and full scale sand properties are shown in Fig. 6.7 

(Leblanc, 2010). Relative density for the full scale pile at the actual effective vertical stress will 

be reduced to a smaller value equivalent to that at the effective vertical stress in the laboratory with 

the same friction angle. 

 
Fig. 6.7: scaling relationship between laboratory and full scale sand properties (Leblanc, 2010) 

 

On the other hand, Ottawa sand F(50) was well characterized by Hellmigk (2012) through 

extensive laboratory testing, which involved sieve analysis and direct shear tests. The results of 

sieve analysis are given in Fig. 6.8. The variation of the sand angle of internal friction (ϕ) with 

confining pressure for different values of relative density (Dr) is presented in Fig. 6.9. The sand 

physical and engineering properties are provided in Table 6.2.  
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Fig. 6.8: Sieve analysis for Ottawa sand F(50). 

 

 

 
 

Fig. 6.9: Variation of friction angle of Ottawa sand F(50) with Dr and vertical effective stress 

(After Hellmigk, 2012) 
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Table 6.2: Characteristics of Ottawa Sand (F50) (After Helimigk., 2012) 

 

Property Value 

Particle sizes, D10, D30, D50, D60 mm 0.17, 0.24, 0.28, 0.32 

Specific Gravity Gs 2.65 

Void Ratio (%) 
Maximum 0.79 

Minimum 0.59 

Unit Weight KN/m3 14.14 

Critical Angle of Friction, ϕcr 32.00 

 

  Several tests were conducted on different dry densities for Ottawa sand F50 with range of 

1378 kg/m3 to 1682 kg/m3.  The range of stress at 0.8 L will be in the range of 9 kPa that require 

relative density less than 0% in the model which is not possible. Hence, (Helimigk, 2012) 

suggested using critical state approach to scale the soil employing the following equation (Altaee, 

1994):  

 

 
Eq. 6.15 

  

Where em model void ratio, ep prototype void ratio, λ is the slope of the critical state line (-1.46) 

and n is the geometric scale ratio as shown in Fig. 6.10. Table 6.3 shows the scaling laws for soil 

void ratio. 

em = ep +λ ln(n) 
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Fig. 6.10: Critical state line for Ottawa F-50 sand (After Hellmigk, 2012). 

 

 

Table 6.3: Void ratio in the model depending on the void ratio in the prototype and the 

geometric scaling (Helimigk et al., 2012) 

 

 n=0.1 n=0.01 n=0.001 

ep em em em 

0.55 0.71 0.87 1.03 

0.60 0.76 0.92 1.08 

0.65 0.81 0.97 1.13 

0.70 0.86 1.02 1.18 

0.75 0.91 1.07 1.23 

0.80 0.96 1.12 1.28 

0.85 1.01 1.17 1.33 

0.90 1.06 1.22 1.38 
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6.6. FOUNDATION MODELS 

Four different foundation models were tested: two monopiles with diameter 0.08 and 0.12 m; and 

two hybrid systems. Each hybrid system comprised a monopile and a surface plate. The model 

foundations were scaled with 1:50 scale taking into consideration that the geometry scaling is not 

related to soil scaling and qualifying Eq. 6.4 requirement to have a rigid system. One hybrid 

foundation had a steel plate 0.32 m in diameter and the other had a very stiff concrete plate with a 

diameter of 0.45 m. Figure 6.11 shows the four tested foundation models, while Table 6.4 presents 

their geometrical details. 

Table 6.4: Properties of steel pile used in the model. 

Property Model scale 

dimensions 

(mm) 

Prototype 

scale 

dimensions 

(m) 

Pile diameter (D) 120, 80 6.0, 4.0 

Plate Diameter (B)  450, 320 22.5, 16.0 

Wall thickness (t) 5 0.25 

Penetration depth (L)  720 36.0 

Load eccentricity (e)  500, 700, 

1000 

25.0, 35.0, 

50. 0 
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(a) 

 

(b) 

 

(c) 

 

 

Fig. 6.11: Different foundation models: (a) monopiles; (b) hybrid system with concrete plate; (c) 

hybrid system with steel plate 

 

The model piles were driven into the sand bed with the aid of a hammer falling from fixed 

dropping distance. It took approximately 350 and 500 hammer blows to reach the final penetration 

depth for piles with diameter of 0.08 m and 0.12 m (prototype diameter 4.0 and 6.0 m) with leveling 

at each stage as shown in Fig. 6.12, respectively.  

(a) 

 

(b) 

 
 

Fig. 6.12: Leveling foundation models: (a) monopile, D = 4 m; (b) hybrid system. 

 

Two hybrid foundation models were tested. One hybrid foundation model comprised of 

very stiff concrete plate and a pile with a 0.08 m diameter to study the effect of varying the plate 

rigidity on the behaviour of the hybrid system. Figure 6.13 shows the added steel stiffeners to 
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ensure adequate connection between the pile and concrete. The composition of the used concrete 

mixture is given in Table 6.5. As per Eq. 6.4, the rigidity of the plate will not affect the system 

behaviour as long as it falls within the range of rigid value. 

(a) 

 

(b) 

 
 

Fig. 6.13: Construction of the very stiff concrete plate to form the hybrid system: (a) attaching 

stiffeners to the pile to ensure full contact; (b) casting the plate. 

 

 

 

Table 6.5: Composition of ultra-strength concrete mixture (Soilman and Nehdi, 2010) 

 

Material (Mass/cement mass) 

Cement 1.00 

Silica fume 0.3 

Quartz sand (0.1-0.5 mm) 0.43 

Quartz sand (0.3-0.8 mm) 1.53 

Water 0.25 

HAWRA 0.03 
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6.7. TESTING AND DISCUSSION  

A series of 12 static load tests for the four systems with three different eccentricities (0.5, 0.75 and 

1m) were conducted as shown in Fig. 6.14. Pulley and C clamps were used with steel bars to set 

the test for each eccentricity.  

Figures 6.15 to 6.17 show the static moment- rotation curves determined from the static load tests 

for the different foundation models subjected to load with different load eccentricity (i.e. e = 0.5, 

0.70 and 1.0 m). In these figures, the failure was defined to be attained when θ’ = 4°=0.0698 rad 

and is represented by dotted lines at θ’ = 0.0698 rad.  Inspecting these figures, it is observed that 

the monopile with 0.08 m diameter (i.e. monopile with prototype diameter of 4.0 m) experienced 

the largest rotational displacement, which is in agreement with the results obtained from the finite 

element analyses reported in Chapters 4 and 5. In addition, the hybrid system with plate of 0.32 m 

in diameter (i.e. prototype diameter of 16 m) exhibited rotational displacement less than that of the 

monopile with 0.12 m diameter (i.e. prototype diameter of 6.0 m). Finally, the results demonstrate 

that the effect of increasing the plate diameter is to further enhance the performance of the hybrid 

system. This is manifested in the superior performance of the hybrid system of 0.45 m plate 

diameter (i.e. prototype diameter of 22.5 m diameter), which exhibited the best performance 

among all tested foundation models. 
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(a) 

 

(b) 

 

(c) 

 

 

Fig. 6.14: Use of pulley and C clamps for different load eccentricities: (a) e=1m; b) e=0.75 m; c) 

e=0.5 m. 

 

 

Fig. 6.15: Static moment-rotation curve of different systems with load eccentricity e = 1 m. 
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Fig. 6.16: Static moment-rotation curve of different systems with load eccentricity e = 0.75 m. 

 

 

Fig. 6.17: Static moment-rotation curve of different systems with load eccentricity e = 0.5 m. 
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The static moment – lateral load capacity relationship (i.e. interaction diagram) of the 

different foundation models were evaluated using Eqs. 6.11 and 6.12.  A comparison between the 

measured moment – lateral resistance capacity results at failure (i.e. θ = 4˚) and the theoretical 

values calculated using Eqs. 6.11 and 6.12 is presented in Fig. 6.18.  Good agreement between the 

measured and calculated responses for the two monopile cases can be noted from Figure 6.18. As 

expected, Figure 6.18 shows that the two hybrid foundation cases exhibited increased lateral 

resistance over that of the monpopile cases.  

In order to establish a moment – lateral resistance capacity relationship for the hybrid 

foundation system, the moment – lateral resistance contributions of its components (i.e. monopole 

and circular plate) are considered.  The moment – lateral resistance interaction diagram for the 

monopile is established first. This is followed by plotting the moment – lateral resistance 

interaction diagram for the hybrid foundation system on the same graph. The additional resistance 

over that of the monopile (after discarding any points that fall within the interaction diagram) can 

be attributed to the plate. Curve fitting these data points, new equations can be proposed to describe 

the plate effect on improving the foundation system lateral capacity, i.e.   

 

Eq. 16 

 

Eq. 17 

 

The values of the curve fitting parameters, a and c, are provided in Table 6.6.  Employing 

Eqs. 6.16 and 6.17, it is possible to predict a safe combination of bending moment and lateral 

forces acting on a hybrid foundation system as function of the plate width (B=Dpl). The proposed 

𝑀
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equations (i.e. Eqs. 6.16 and 6.17) with the curve fitting parameters listed in Table 6.6 are valid 

for 16.0 m < (Dpl) < 22.5 m, but can be used approximately for other values of Dpl. 

 

 

Table 6.6: Plate factors 
  

B a c 

Dpl=16 [m] 5 0.0136 

Dpl=22.5 [m] 4 0.00476 

 

 

 

Fig. 6.18: Moment – lateral capacity interaction diagrams for considered foundation systems 
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6.8. CYCLIC LOADING 

The main purpose of cyclic loading is to investigate the performance of the hybrid foundation 

system under the effect of long term cyclic loading.  The cyclic loading system involved employing 

a low cost SMC Cylinder (CDBXWL25-100) actuator (as shown in Fig 6.6) to apply a one way 

cyclic loading on the different foundation systems. Figure 6.19 presents the set up for the cyclic 

loading for different foundation systems with load eccentricity, e = 1m. 

 

(a) 

 

(b) 

 

 (c) 
 

 

 

 
 

Fig. 6.19: Dynamic setting for the different systems;(a)pile with 4 m diameter; (b) pile with 

diameter 6 m ; (c) hybrid system. 

 

A scaled down horizontal load of 21 N and 24 N for pile with Dpile= 0.08 cm and 0.12 m 

respectively, representing the prototype load of 3000 KN that was obtained from the wind tunnel 
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test on the 5 MW wind turbine, was applied to the foundation models. To achieve this load, the air 

pressure applied to the actuator was adjusted considering its cross-sectional area to produce the 

target load. The lateral displacement and rotation of the tested foundation were measured at the 

end of each load cycle. The accumulated rotation and corresponding foundation stiffness at each 

load cycle is calculated as defined in Fig. 6.20.  

 

 

Fig. 6.20: Method for determination of stiffness and accumulated rotation (a) cyclic test; (b) 

static test (after LeBlanc et al., 2010) 

 

Both accumulated rotation and stiffness are a function of the number of cycles. To account 

for the effect of cyclic loading on the accumulated rotation and stiffness of the piles subjected to 

cyclic loading, Leblanc et al. (2010) proposed the following two equations to indicate the change 

in the dimensionless rotation, Δθ/θs, and stiffness,  :  

 

 

Eq. 6.18 
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Eq. 6.19 

 

 

 

Although (Leblanc et al., 2010) demonstrated that the loading range and the soil relative 

density can change both stiffness and rotation, only one value of soil relative density was 

considered in this study with the main focus on evaluating the relative performance of the different 

foundation systems.  

Figures 6.21 and 6.22 display the readings of the upper and lower LVDTs representing the 

displacement at two different points along the top of the monopiles, while Fig. 6.23 shows the 

readings of the upper and lower LVDTs along the top of the hybrid system. Comparing the results 

in Fig. 6.23 with those in Figs. 6.21 and 6.22, it is clear that the lateral displacement of the hybrid 

foundation system is much lower than that of both tested monopoles. In addition, the difference 

between the readings of the two LVDTs, which indicate the rotation of the foundation system, is 

much lower for the hybrid foundation case compared to the monopiles.  
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Fig. 6.21: LVDT readings for pile with Dp = 4 m under cyclic loads. 

 

 

Fig. 6.22: LVDT readings for pile with Dp = 6 m under cyclic loads. 
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Fig. 6.23: LVDT readings for hybrid foundation system under cyclic loads. 

 

The readings of the LVDTs are used to calculate the variation of the cumulative rotation 

and corresponding stiffness (as indicated in Fig. 6.20) with the number of load cycles and the 

results are presented in Figure 6.24 for the different foundation systems. Figure 6.24 shows that 

as the number of cycles increased, the general trend is that calculated stiffness initially either 

remained the same or decreased slightly, followed by an increase at an almost constant slope and 

then remained almost constant afterwards. This is clearly demonstrated by the straight lines fitted 

to the cyclic test data. These observations confirm that there was no degradation in the tangential 

stiffness. Leblanc et al. (2010) observed similar behaviour through cyclic load testing of very stiff 

piles installed in cohesionless material. Their analysis of the test results demonstrated that the slope 

of a straight line fitted to the test data will not change (i.e. no stiffness degradation) with the number 
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of loading cycles or soil state (i.e. loose or dense soil). However, the pile stiffness at the first cycle 

(k0) may change.  

It can also be noted from Fig. 6.24 that the initial increase in stiffness was highest for the 

pile with Dp = 6 m compared to both the monopile with Dp = 4m and the hybrid foundation with 

Dpl = 16 m. However, it was observed that the hybrid foundation system reached a plateau after a 

fewer load cycles, i.e., it offered stable behaviour faster. This is attributed to the soil densification 

below the plate. This may be an important favourable feature for a foundation system supporting 

wind turbines that experience large number of load cycles (n) throughout the wind turbine life. 

 

 

Fig. 6.24: Variation of stiffness with number of cycles n for different foundation systems. 
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From Figure 6.25, it can be noted that the trends of accumulated rotation of the different 

foundation systems were similar to their lateral displacements.  It can also be noted from Figure 

6.25 that as the number of load cycles increased, the accumulated rotation initially either remained 

the same or decreased slightly, followed by an increase at an almost constant slope and then 

remained almost constant afterwards. Furthermore, the slope of the stiffness of the hybrid system 

had increased with smaller value than that of the pile with Dp = 6 m, meaning that its rotational 

response tends to stabilise sooner than the monopile. LeBlanc et al. (2010) showed that although 

the rotation of the very stiff pile varies with the soil relative density and load amplitude but the 

slope of the trend line representing the variation of rotation with number of load cycles remains 

almost the same, i.e. no degradation. This same behaviour is observed in the current study. 

 

 

Fig. 6.25: Variation of accumulated dimensionless rotation with number of cycles (n) for 

different foundation systems.  
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6.9. NUMERICAL MODELING  

To verify the validity of the scaled physical model results, three dimensional finite element models 

of the tested foundation systems were established using the commercial software ABAQUS 

(Hibbitt, 2009). Only the monotonic loading phase was considered in the analysis. The numerical 

model verification was performed for the cases of a monopile with diameter 0.08 m (i.e. which is 

equivalent to a pile with 4.0 m diameter in the actual size) and a hybrid foundation system with 

plate 0.32 m diameter (which is equivalent to 16.0 m in prototype). The overall models of these 

two systems are shown schematically in Fig. 6.26. 

6.9.1. Numerical model meshing 

A sensitivity analysis was conducted to determine the suitable dimensions for the size of elements. 

The vertical boundary was cylindrical representing the steel soil chamber used to enclose the soil 

in the scaled physical model tests. The horizontal boundary at the bottom of the model was placed 

at the bottom of the test cylinder. The mesh was developed using the automatic sweep meshing 

technique and the medial axis algorithm, which is available in the Abaqus software (2009). The 

approximate global size of the element was in the range of 0.1-0.5 m. 

6.9.2. Boundary Conditions 

Fixed translations in X, Y and Z directions were applied at the bottom boundary of the soil model. 

Fixed translations in both X, Y directions were applied at the vertical boundaries on the soil 

external surfaces. Interaction surfaces were applied at the interfaces between the elements 

representing the pile and adjacent soil that allow pile slippage and separation, which can properly 
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simulate the tangential and normal behaviour. Both monopile (Dp=4) and hybrid foundation 

system were analyzed considering the static loading phase of the laboratory tests.  

6.9.3. Model Description 

A 1.72 m long steel pile with diameter, Dp = 0.08 m and wall thickness of 0.005 m was considered 

in the analysis similar to the monopile tested in the laboratory. The hybrid foundation system with 

a 1.72 m long steel pile with diameter, Dp = 0.08 m, wall thickness of 0.005 m and plate diameter 

of 0.32 m. The monopile and hybrid foundation system were installed in sand soil with an average 

friction angle, ϕ = 36° and unit weight of γ = 14.41 kN/m3. The 3D numerical model was used to 

analyze the response of the monopile and hybrid foundation system under horizontal force of 21 

kg at the pile head. The steel pipe, steel pile and steel plate were assigned the following properties: 

yield strength, fy = 240 MPa, Young’s Modulus, Es = 200 GPa and Poisson’s ratio, ν = 0.3. The 

calculated lateral displacement at top of steel pipe will be compared with the measured response 

to verify the validity of the observed responses of the foundation system. 

 

6.9.4. Foundation and Soil Modeling 

A three dimensional (3D) nonlinear finite element model of the foundation system and soil was 

established employing the ABAQUS program (Hibbitt, 2009). The soil and components of 

foundation system were modeled using 3D deformable solid elements with different material 

models. The sand soil was simulated with the Mohr-Coulomb failure criterion. Interaction 

properties was considered between different materials to ensure the actual simulation including 

tangential and normal behavior. The elements were primarily hex shaped and the mesh was 

developed using the automatic sweep meshing technique and the medial axis algorithm which is 

available in ABAQUS. The approximate global size of the element was in range 0.1-0.5 m. The 
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steel pipe, steel pile and steel plate were modeled as elastic-perfectly plastic material with the 

following properties: yield strength, fy = 240 MPa, Young’s Modulus, Es = 200 GPa and Poisson’s 

ratio, ν = 0.3. 

 

 

a) 

 

b) 

Fig. 6.26: ABAQUS models of examined foundations: a) monopole; b) hybrid foundation 

system.  
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6.9.5. Results of Numerical Models 

The analyzed foundation systems including monopole, Dp=0.08m and hybrid system with Dpl = 

0.32 m were modeled considering the same static loads during the experimental study. The 

calculated responses are compared with the measured responses in Fig. 6.27.  Generally, there is 

a good agreement between the calculated and measured responses for both foundation systems as 

shown in Fig. 6.27.  In case of the monopile, the agreement between the calculated and measured 

responses is excellent along the entire static load test data.  In the case of hybrid foundation system, 

the laboratory response curve exhibited stiffer initial response compared to the calculated response, 

which can be attributed to the lateral soil resistance along the plate wall due to the partial 

embedment of the plate thickness in the soil during installation in the tank.  

These results further confirm the validity of the experimental observations. In addition, the results 

confirm the superior performance of the hybrid foundation system in terms of initial stiffness 

(which is important for performance of supported wind turbines) and lateral capacity (which 

increases the factor of safety of the foundation against excessive lateral displacement). 
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Fig. 6.27: Comparison between the lab and ABAQUS results. 

 

6.10. SUMMARY AND CONCLUSIONS 

The long term performance of the hybrid foundation system, which combines a monopile and 

concrete plate, as well as the conventional monopoles, subjected to cyclic loading was evaluated. 

A scaled-down non-dimensional framework of stiff foundation models installed in sand was used 

to conduct a series of static and cyclic loading tests under 1-g. Four main model foundations were 

tested. In addition, three dimensional nonlinear analyses were conducted to further confirm the 

validity of the test observations. The results from the physical and numerical modeling confirmed the 

superior performance of the hybrid foundation system in terms of increased lateral and rotational stiffnesses, 

which is important for performance of supported wind turbines, as well as lateral capacity, which increases 
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the factor of safety against excessive lateral displacement. Furthermore, the results obtained from the 

tests were employed to develop an equation to predict the stiffness of the proposed hybrid 

foundation system. 
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CHAPTER SEVEN 

CONCLUSIONS AND 

RECOMMENDATIONS 

 
 

7.1 Introduction 

 
In this thesis, numerical and experimental investigations have been carried out to evaluate the 

capacity and performance of an innovative foundation system for offshore wind turbines, namely 

the hybrid foundation system. The hybrid system is composed of a steel pile and a concrete plate 

to increase its stiffness and capacity. The proposed system is capable of satisfying the 

serviceability and capacity requirements with economically viable cost.   

Wind tunnel test were conducted on a scaled down model based on a 5 MW NREL (National 

Renewable Engineering Laboratory) at the Boundary Layer Wind Tunnel Laboratory at Western 

University, Canada. A 1:150 model was tested under different blade positions and wind angles of 

attack. Six components of load were measured at the base of the wind turbine model and their 

values were calculated by using force balance technique.  The loading results were compared with 

limited NREL loading results, which were achieved by performing analysis using the FAST 

(Fatigue, Aerodynamics, Structures, and Turbulence) program. 

A series of three-dimensional finite element analysis was carried out employing the finite element 

analysis programme, ABAQUS, considering different foundation systems including: monopile 

with diameter of 4m, monopile with diameter of 6 m, hybrid foundation system with and without 

ribs with different plate diameter. All foundation systems were analyzed considering piles with 
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varying length from 16 to and 36 m. The displacement of the different foundation systems at main 

sea level and at mud level as well as their rotations were calculated under different load 

combinations. The axial and horizontal capacities of each system were also evaluated to investigate 

the increase in each system capacity compared to the monopole and asses its relative advantage. 

Furthermore, monotonic and cyclic load tests were conducted on scaled down foundation models 

under 1g. Both static and up to 12000 load cycles were applied to the foundation models in order 

to investigate the long term effects of the loading on both rotation and stiffness of the system. An 

equation was proposed to account for the plate effect on the hybrid system stiffness.  

The measurable objectives associated with the investigation program were as follows: 

 Prove the system concept and its ability to function as an effective foundation system for 

wind turbines. 

 Provide guidelines for wind loads acting on the foundations of wind turbines. 

 Evaluate the proposed hybrid system performance under different load combinations. 

 Develop design guidelines for the axial capacity of hybrid system and for evaluating its 

lateral stiffness. 

 

7.2 Main findings 
 

This study confirmed that the hybrid foundation system is suitable for supporting offshore wind 

turbines and it can help in reduction the high cost of wind turbine foundations. The following 

represents the main conclusions drawn from the study. 
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7.2.1 Main finding chapter 3: FOUNDATION DESIGN LOADS FOR 5 

MW NREL OFFSHORE WIND TURBINE 

 
 The overall base loads were obtained experimentally using the force balance technique 

and a rigid model of the turbine-tower structure. 

 Reference load based on 5 MW NREL wind tunnel are now available to be used in any 

future analysis. 

 

7.2.2 Main finding chapter 4: PERFORMANCE OF HYBRID 

FOUNDATION SYSTEM FOR OFFSHORE WIND TURBINES  

 
 By adding the precast concrete plate, the lateral resistance of the monopile with Dp=4m 

increased sufficiently to provide comparable performance of monopole with Dp = 6m. 

 The hybrid system was shown to meet the response requirements of the offshore wind 

turbine foundations according to DNV-OS-J101 (2011). 

 The analysis for different load combinations demonstrated that the conventional approach, 

which considers only two components (horizontal load and rocking moment) can grossly 

underestimate the response of the wind turbine system.  

 

7.2.3 Main finding chapter 5: CAPACITY OF HYBRID FOUNDATION 

SYSTEM FOR WIND TURBINES 

 The hybrid system provides a significant increase over that of the 4 m-diameter monopole 

(up to 550 % of its capacity). 

 The lateral capacity of the HSNR  Dplate =16m is 180% of the capacity of monopole with 

Dp = 4 m, and is only 10% less than the capacity of the monopile with Dp = 6 m. As the 
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hybrid system satisfies the requirements of the DNV-OS-J101 (2011), it can be used to 

support the 5 MW NREL wind turbine instead of the larger monopile with 6m diameter, 

which can result in significant savings.  

 

7.2.4 Main findings Chapter 6: EFFET OF LONG TERM CYCLIC 

LOADING ON STIFFNESS AND CAPACITY OF HYBRID 

FOUNDATION 

 An equation was provided to scale down the hybrid system under 1g accounting for the 

effect of the plate. 

 Long term cyclic loading effect on system stiffness and rotation was evaluated and was 

demonstrated that the hybrid foundation system provided superior performance to the 

conventional monopile. 

 

7.3 Recommendations for future research 

 

This study investigates a hybrid system that can meet the requirements for offshore wind turbine 

foundations with lower cost. It can also be used to upgrade the stiffness and capacity of existing 

system.  To further evaluate the system and provide guidance for its application in wind turbine 

foundation design, the following is recommended: 

  In the current study, the wind turbine model used in the wind tunnel test was assumed to 

be fully fixed and the forces were calculated accordingly. This leads to a conservative 

estimate of the foundation loads. Future back analysis should be conducted accounting for 

effect of system flexibility. 
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 The soil considered in the analysis and the experimental program was sand. Future 

investigations should consider performance of hybrid systems installed in clay to provide 

wider understanding of the system behaviour. 

 A wider range of plate dimensions relative to pile length should be considered in future 

research. 

 The loading time history established from the wind tunnel tests should be used in the 

laboratory scaled down testing to evaluate the effect of the load variation in comparison 

with cyclic loading with constant amplitude. 
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