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Abstract

Software test generation for GUIs is a hard problem. The goal of this thesis is to investigate

different methods for dynamically generating tests for GUIs. We introduce the concept of an

event-pair graph, which is used to represent and measure test suites, and show how it can be

used to generate tests and measure GUI coverage. Before we can begin generating tests, we

first want to determine which is better: a small test suite with a few long tests or a large test

suite with many short tests. Therefore, we designed and conducted a study to determine which

is more effective. We found that moderate to long tests perform better than short tests. We

then move on to discuss seven test generation algorithms. Two are based on random selection,

two are based on greedy selection, one is based on Q-Learning, and the last two are based on

ant colony optimization. We conducted a study in order to compare the performance of each

algorithm. We measured code coverage, GUI coverage, time to run, and faults found. The

results show that the greedy algorithms performed the best. Finally, we conducted a study in

order to determine if any of the GUI coverage metrics can be used to predict code coverage,

and we conducted a study to determine if any of the coverage metrics can be used to predict

the faults found. The results show that event pairs are good at predicting code coverage, and

that predicting faults is difficult.

Keywords: dynamic GUI testing, event-pair graphs, test length effectiveness
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Chapter 1

Introduction

Software testing is an integral part of the software development life-cycle. It encompasses

many different methodologies and is applicable at multiple points in the life-cycle. Testing

can even be used as a development methodology, which is known as test-driven development

[11]. Software testing can be broken down into its many types, such as unit testing, integration

testing, system testing, and regression testing. Each type of testing contains its own methods

and best practices as each type of testing has different goals. For example, unit testing’s goal

is to ensure that a unit of code works as intended, can handle proper and improper inputs, and

meets the specified requirements, whereas system testing looks at how the system works as a

whole, with all units working together.

Though each type of testing differs in terms of their scope, the overall goal is the same:

to find errors in the system and ensure proper functionality. Myers defines testing as follows:

“Testing is the process of executing a program with the intent of finding errors” [51]. He goes

on to state: “An unsuccessful test case is one that causes a program to produce the correct

results without finding any errors.”

The importance of proper testing cannot be overstated. A 2002 report determined that the

cost of inadequate software testing infastructure cost developers and users $59.5 billion [30].

In extreme and rare circumstances, the failure of proper testing procedures can lead to loss of

1
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life [40]. Though such examples are uncommon, they support the notion that testing is a vital

process.

As testing has expanded, the idea of automated test generation arose. Tools such as Java

PathFinder [63], Pex [61], and DART [31] were created to automatically test applications.

Furthermore, as graphical user interfaces (GUI) have become commonplace, the need for au-

tomated GUI test generation became apparent. Typical GUI testing involves manually writing

test cases using libraries such as Selenium [57], which allow the test to interact with an inter-

face. Another method of testing is a capture/replay system [37], where a tester records their

interactions with a GUI and plays the recording back at a later time. Both manually written tests

and capture/replay systems are still in use today. However, both methods of testing are slow,

expensive, and brittle to changes in the interface. This lead to automated GUI test generation

using systems such as GUITAR [52] that allow for automatic GUI test generation.

In this thesis we investigate dynamic GUI test generation algorithms. Dynamic GUI test-

ing systems allow for real-time testing of applications through their user interface. We are

interested in creating efficient algorithms that are able to thoroughly test a system in terms of

achieving high levels of code coverage, as well as finding possible bugs.

1.1 Testing

Algorithm 1 Add two values and return the result
function Add(a, b)

result ← a + b
return result

end function

Here we describe a typical testing method, called unit testing, in order to better understand

the concept. Algorithm 1 shows an addition method that returns the sum of two values provided

as input parameters. We can test this method by providing two input values and asserting the

return value: assertEquals(add(1,2), 3). We can add additional tests to test for differ-
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Figure 1.1: Address Book Application

ent classes of values, such as negative numbers, positive and negative numbers combined, or

extreme values, such as the maximum integer value for 32 bit machines. Any failed assertion

is either an indication of a bug in the application under test (AUT), or within the test. The

developer or test engineer would have to investigate the cause of the failure.

1.2 GUI Testing

GUI testing differs from traditional testing in that we do not invoke methods directly; instead

we interact with the application through its interface. Figure 1.1 shows a simple address book

application. In order to test the application, we would execute a series of events. For example,

a test case may be as follows: {New Contact, First Name, Last Name}. The test case would

result in the New Contact button being clicked, and then the First Name and Last Name text

fields would be filled with data. An important part of the test case is the oracle, which is how
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we determine if the test passes or fails. In the case of GUI testing, there are generally two types

of oracles. The first type of oracle involves checking the correctness of the GUI state [43], and

the second type of oracle involves checking for crashes, hangs, and thrown exceptions. The

issue with the former oracle is that it requires a golden state in which to compare to. Creating

the golden state is a time-consuming process as it has to be verified manually. The latter oracle

is simpler, and any failures can indicate a fault in the code; however, it tells us nothing about

whether or not the state is correct.

1.3 GUI Testing Architectures

There are two distinct types of GUI testing architectures: static and dynamic. A static testing

system attempts to discover the structure of the GUI before generating tests offline, whereas a

dynamic testing system will make decisions in real time as the GUI is being explored. Both

architectures have their merits, and we discuss them in this section.

1.3.1 Static Model Architecture

Figure 1.2 shows a basic architecture for a static GUI testing system. Depending on the system,

the specific architecture would differ, but many systems have a similar structure. The architec-

ture contains three main components, the GUI Ripper, Test Generator, and Test Runner. The

AUT is passed to the GUI Ripper, which parses the GUI hierarchy and extracts its structure.

The structure of the GUI is stored in a file in a specific format, typically XML. The GUI model

is then fed to the Test Generator, which generates sequences of events based on the GUI model

and stores them in files. Each test case is stored in its own file. The Test Generator uses a

custom algorithm when selecting which events to place in each test case. For example, it could

attempt to cover all GUI events or all paths of length two. The last phase of testing is when the

tests are run against the AUT. The test cases are passed to the Test Runner, which attempts to

locate the event specified in the test file and execute it on the AUT.
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Figure 1.2: Static Architecture.

1.3.2 Dynamic Model Architecture

A typical dynamic model architecture is shown in Figure 1.3. Like the static model architecture,

the dynamic architecture contains three main components: GUI Ripper, Event Selector, and

Event Executor. The GUI Ripper, though it shares the same name as the static version, works

differently. In the static model, the GUI Ripper parses the entire hierarchy, whereas in the

dynamic model, the Ripper only parses the available widgets. We define an available widget

as one that is accessible to the user in the AUT’s current state. The dynamic system executes

events in real time, so only those events which can be immediately executed are of interest.

The GUI Ripper extracts the available events and passes them to the Event Selector. The Event

Selector is the core of the system as it contains a specific event selection algorithm, such as

random selection or greedy selection. Once an event has been selected for execution, it is

passed to the Event Executor. The Event Executor determines the type of event being run, such

as a button click or text input, and runs the event on the AUT. The AUT accepts the event,

reacts, and the new GUI state is ripped by the GUI Ripper. This continues until some criterion

is met, such as test length.
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Figure 1.3: Dynamic Architecture.

1.3.3 Static vs. Dynamic

Both static and dynamic architectures have their merits. Static systems allow for the GUI to be

ripped and explored offline. It is possible that static analysis can be performed on the structure,

or it can even be modified by hand to ensure correctness. Furthermore, test generation can

aim to cover specific targets, such as full event coverage or n-way testing, where n is some

path length. The main fault with the static architecture is the existence of infeasible test cases

[68]. That is, a test case can contain a sequence of events that is not possible to run on the

AUT, as some widget to be interacted with is not accessible. For example, we can imagine

an application with a save mechanism such that the user must click File then Save; however,

the application only allows the Save button to be clicked when a change has been made. The

GUI model would show a connection, File → S ave, and since the requirement that a change

must be made cannot be represented as the model encompasses all possible interactions, it is

possible that a generated test will contain the transition from File to Save without meeting

the condition. This will cause the test to fail prematurely. In Memon’s dissertation in which he

describes GUITAR [44], he reports that 19.3% of generated tests are infeasible. Huang et al.

[35] created a method of repairing broken tests using a genetic algorithm; however, the process

can take days to run. Another issue with static testing is that the GUI ripper may not fully

discover all widgets, such as those windows that require a password.
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The benefit of dynamic testing is that all tests are feasible, as only those widgets which

are available are selected for execution. Furthermore, as the GUI model is being discovered,

its representation is updated and stored as it would be in the static architecture. Of course,

the model may not be complete as there is no guarantee that the test algorithm will find all

available windows and tabs. Since dynamic testing is shown to be powerful at testing GUIs,

and since it does not suffer from infeasible test cases, we chose to research and implement a

dynamic testing system.

1.4 Contributions of Thesis

The goal of this thesis is to investigate dynamic GUI testing algorithms and their effectiveness.

In this section we discuss the specific contributions made.

1.4.1 Event-pair Graphs

We introduce and describe event-pair graphs (EPG), which are influenced by event-flow graphs

(EFGs) [45]. EFGs represent an AUT’s GUI event model and are generated by GUITAR. They

are an example of the GUI Model of Figure 1.2. EPGs are used to represent event relationships

for events that have been executed within the same test case. They can be used as both an input

to a test generator and a method of evaluation. A test generator may use an EPG to determine

which pairs of events have not been executed together and then test those events. Once the

testing is complete, the EPG can be used to determine how many pairs of events were actually

tested. We investigate whether the use of EPGs is an effective form of test generation and

whether or not it is a good measure of test suite quality. Our research questions are as follows.

• Are EPGs an effective form of test generation when compared to random selection and

other forms of testing?

• Are event pairs an effective measure of test suite quality compared to traditional measures
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such as code coverage?

1.4.2 GUI Test Length Effectiveness

Before we can begin running our algorithms to generate GUI test cases, we first need to know

how long to make our test cases, as the length of a test may impact its effectiveness. We

investigate the effect test length has on GUI test suite performance and show that moderate to

long test cases perform better than short test cases in both their ability to cover code and find

faults. Since GUI testing is an expensive process, determining a good test length is vital to the

process as it can save hundreds of hours of work. Furthermore, a specific test length may have

the ability to find more faults. Our research question is as follows.

• Is it better for a test suite to consist of many short tests or a few long tests?

1.4.3 GUI Test Generation Algorithms and Analysis

The heart of this thesis is the investigation of various types of GUI test generation algorithms.

We design and analyze multiple algorithms including random selection, greedy selection, Q-

Learning, and ant colony optimization. These algorithms were chosen as they represent a wide

array of algorithm types. Random and greedy selection are easy to implement and are effective

at testing GUIs; Q-Learning is a behavorial reinforcement learning techinque that has been

shown to be effective when applied to GUIs; and ant colony optimization is a search-based

technique that we applied to the GUI domain as it has been shown to be good at finding paths

through a graph.

We first discuss each algorithm in detail and then we compare their effectiveness. We look

at how much code coverage is achieved, the number of faults found, and the number of covered

events. Though multiple GUI test generation systems have been created, few have been tested

against one another. It is often the case that a dynamic GUI test generator is compared to a

static test generator or is compared to a non-GUI test generator. We want to know if one type
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of algorithm is superior to the others. Our research questions are as follows.

• Are we able to generate tests that perform better than random selection?

• Are any of the techniques described better than the rest?

1.4.4 GUI Test Suite Adequacy Criteria

We investigate what makes a GUI test suite good. In non-GUI testing, a tester may want to

exercise all conditions, exercise all definition/use pairs, or simply cover all statements. With

GUI testing, we want to know which coverage goals lead to a high number of faults found.

For instance, we may want to execute each GUI event at least once, or we may want to cover

all event pairs. We study the effects that each type of coverage metric has in relation to faults

found and code covered. Our research questions are as follows.

• Is there at least one factor that can be used to predict the quality of a test suite in terms

of the number of faults found, such as event coverage or statement coverage?

• Is there a relationship between GUI coverage and statement and branch coverage?

1.5 Thesis Organization

Chapter 2 looks at the background and related work in regards to both testing and GUI test-

ing. Chapter 3 looks at the structure of GUIs, and event-flow graphs and event-pair graphs. In

Chapter 4 we present our study on effectiveness of test length on GUI test suite performance.

Chapter 5 describes and analyses multiple GUI test generators. We look at generators in the

form of random selection, greedy selection, Q-Learning, and ant colony optimization. In Chap-

ter 6 we compare and contrast the results of the different test generators in order to determine

if one is superior to the rest. In Chapter 7 we investigate test adequacy criteria. Finally, we

conclude in Chapter 8.



Chapter 2

Background and Related Work

In this chapter we will look at a variety of test generation techniques for both GUI and non-

GUI systems. We will also look at Q-Learning, which is a behavioral reinforcement learning

technique, as well as ant colony optimization. Finally, we look at what makes a test suite

adequate.

2.1 Testing Techniques

In this section we look at two main testing techniques that have inspired research in GUI

testing: random testing and search-based testing. There exist a variety of testing techniques,

such as symbolic execution [38] [67] [20] and concolic testing [58] [2]; however, we focus on

the methods studied in this thesis.

2.1.1 Random Testing

A variety of testing systems that employ random testing have been created. Claessen and

Hughes [19] created QuickCheck to test properties of Haskell programs using random inputs.

Godefroid et al. [31] created DART, which combines random testing and dynamic analysis to

explore program paths. Ciupa et al. [18] designed and created ARTOO, which uses adaptive

10
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random testing, and applied it to object oriented software.

Hamlet [33] argues for the importance of random testing when specific requirements are

met. He states that random testing is often dismissed and that random testing of an application

describes testing that is done in haste, which is the opposite of systematic testing. Systematic

methods often attempt to meet some minimum standard, such as 80% path coverage, which he

argues does not have a scientific basis, but rather it is based on the intuition that 80% cover-

age of something is better than nothing. He believes that if random testing was the standard

in which systematic approaches were tested against, it could help practitioners write better

standards or improve the systematic methods. He ends by stating that the application of ran-

dom testing requires three criteria: the test is at the system level, there exists an operational

profile (a quantative representation of how a system will be used) and the ability to generate

representative pseudorandom values, and there exists an effective oracle, which is a method of

determining whether a test passes or fails.

Hamlet’s three requirements can be applied to random testing for GUIs. GUI testing is a

form of system testing so it meets the first requirement. The second requirement states that an

operational profile is required. For GUI testing, an operational profile would be the measure

of how often each event is executed, and the distribution of any input values. This information

could be obtained by creating usage profiles for multiple users. The third requirement can also

apply to GUI testing. A common oracle is to check for hangs, crashes and thrown exceptions.

Of course the main issue with this type of oracle is that it ignores the semantics of the system.

However, an oracle dealing with expected outputs could be manually written or described if

necessary. Automatically generating such an oracle is not yet possible.

Duran and Ntafos [27] evaluated random testing in order to determine the method’s effec-

tiveness. For their first set of experiments, they ran random tests on various programs such as

SIN, SORT and BINARY SEARCH, and found that random testing performed well in finding

bugs. They ran more experiments on five applications, comparing the results to branch testing

and required pairs testing, and measured the code coverage. They found that in the cases of
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the triangle classification programs (determining, based on the three length values, whether the

values form a triangle), random testing performed worse. This is due to the fact that the random

algorithm failed to generate triangles with two or three equal sides. In the four other programs,

random testing performed better than branch testing and better than the required pairs testing

for one program. The authors concluded by stating that random testing has been shown to be a

cost effective method of testing and that it is able to both find errors and achieve good levels of

code coverage. However, they state that random testing should be paired with tests for special

cases.

Pacheco et al. [53] developed Randoop, which is a feedback-directed random test generator.

Randoop is often used as a baseline for comparison by other researchers. It works by incre-

mentally building test cases based on previously generated tests. When a test is generated,

it is executed and compared against a set of filters and contracts. These determine if the test

is illegal, redundant, contract-violating, or useful for future tests. The system uses contracts

to determine if a test passes. The contracts used detect whatever exceptions are thrown, and

compare an object to itself using the equals method, the hashcode method, and the toS tring

method. The authors compared Randoop to systematic and undirected random testing on four

non-trivial applications and found that Randoop outperformed both techniques in terms of cov-

erage and error detection.

Arcuri et al. [6] examined the current state of random testing research, and proved theorems

in regards to such things as the number of random tests needed to be run in order to achieve

the desired target results. The theorems put forth by the authors, and supported by empirical

evaluations, determine the minimum number of tests required to meet target goals, determine

how random testing can scale better than some types of partition testing, and finally, determine

predictability of random testing in relation to the distribution of the testing targets. The authors

state that in the case of black-box testing, when an automated oracle is available, random

testing is a viable option. They conclude by stating that the results in the current literature are

inconsistent and that the “jury is still out” on whether random testing is a good option.
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The evidence suggets that random testing is effective in terms of finding bugs and achieving

high levels of code coverage. This gives us confidence that, when applied to GUI testing,

random testing may be an effective form of testing.

2.1.2 Search-based Testing

Search-based software testing is a subset of search-based software engineering. The idea is

to use a search algorithm, such as a genetic algorithm [48] or hill climbing [56], in order to

solve an engineering problem. Harman and Jones [34] argued for the effectiveness of these

techniques and discussed the ingredients for reformulation and evaluation criteria for search-

based software engineering. Reformulating software engineering as search-based software

engineering requires three things: a representation of the problem which is open to symbolic

manipulation, a fitness function, and a set of manipulation operators. The authors discussed

how best to evaluate search-based methods. They suggested creating a base line comparison

by using random search and they state, “to achieve a measure of base line acceptability, a

metaheuristic technique must out-perform a purely random search.” Furthermore, they state

that any algorithm worthy of consideration needs to outperform random search.

An example of such a system is EvoSuite [28], which is a test generation technique that

takes an evolutionary approach to generating whole test suites. The system generates whole

test suites as candidate solutions. The test suites are evolved through crossover and mutation

operators. Crossover occurs by exchanging test cases between test suites. Mutation can occur

at the test suite level or at the test case level. Mutation at the test suite level involves adding new

tests, whereas mutation at the test case level involves adding, deleting, or changing statements.

The fitness function used to evaluate a test suite is the overall branch distance. The authors

used mutation testing to evaluate their generated test suites. A mutant that goes undiscovered

indicates a deficiency with the solution.

Arcuri and Yao [7] studied the application of search-based techniques on object-oriented

containers. They developed testing techniques that use random search, hill climbing, simulated
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annealing [39], a genetic algorithm, and a memetic algorithm [50]. The fitness function of their

algorithms is defined as branch distance. They compared their algorithms on seven container

classes, such as Stack and Vector. They found that the memetic algorithm performed best in all

situations except for the vector class.

Search-based software testing has shown to be a viable method for testing; however, it still

requires a lot more research. In terms of GUI testing, we can apply search-based methods as

the GUI, represented as a graph, can be explored using various search techniques.

2.2 Q-Learning

Q-Learning [64] [1] is a form of reinforcement learning for model-free systems. Agents within

a Q-Learning environment are able to find optimal paths in a Markov decision process [55] (a

framework for modeling decision making with partly stochastic outcomes) by determining the

reward for actions taken in a system, which does not require a model of the system beforehand.

The process works by having agents execute each action in each state and evaluate those actions

based on the resulting reward or penalty. By attempting each action in each state, the agent

learns which actions are best. The result of taking an action a in state s is calculated as follows:

Q(s, a) = Q(s, a) + α[reward(s, a) + γmax
a′

Q(δ(s, a), a′) − Q(s, a)] (2.1)

where α is the learning rate, γ is the discount factor, reward(s, a) is the reward of taking action

a in state s, δ(s, a) is the state reached by executing the action a from state s, and Q(δ(s, a), a′)

indicates the Q-value associated with the action a′ when executed from the state δ(s, a). The

learning rate determines how much influence the newly acquired information will have on

the Q-value. The rate is set in the range [0,1]. A value of one will only consider the new

information, whereas a value closer to zero will favour the current information. The discount

factor determines the importance of the current reward versus the new reward. A value close to

one will favour new rewards, whereas as a value close to zero favours the current reward. The
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reward value is the fitness of taking an action a is state s. The reward values are determined by

the engineer beforehand.

Q-Learning is used by Mariani et al. [41] in their system, AutoBlackTest. The reward

function is the amount of change that occurs in the GUI state. The more change that occurs,

the higher the reward. Q-Learning is applicable to dynamic GUI testing, as the model of the

GUI is unknown until it is explored. Furthermore, the actions are generally deterministic and

can be represented as a Markovian decision process. We implement our own version of this

system as one of our dynamic testing algorithms.

2.3 Ant Colony Optimization

Ant colony optimization (ACO) [26] is a technique for finding good paths in a graph. Most

notably, it has been applied to the travelling salesman problem [25]. Since GUIs are represented

as graphs, and since we want to find good paths through the GUI in order to test it, it follows

that ACO might be a good technique for GUI testing.

ACO is based on the observation of real ants [21]. Ants, searching for a food source, explore

randomly while leaving a trail of pheromones behind. Over time, as more ants discover and

follow the same path, more pheromone is deposited on the path causing the colony to converge

towards a single path to the food source. Furthermore, the pheromones evaporate over time

and so the less travelled paths become less desirable. This idea was adapted to solving existing

search problems, such as the travelling salesman problem, as it was recognized that the ants

will often choose the more efficient paths.

The basic algorithm works by releasing ants at different nodes in the graph. Each ant

traverses the graph, visiting each node once, and returning to its initial node. Once the ants

have completed their tours, the edges of the graph are updated based on the quality of each

ant’s tour. We look at and implement two ant systems in our dynamic testing environment, the

original Ant System and Ant-Q.
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2.3.1 Ant System

The Ant System discussed here is the original proposed system and all equations are taken

from [22]. Ant systems work by releasing a generation of ants to explore the graph. After each

ant in a generation has completed its tour, the pheromone value of each edge is updated. The

value τi j represents the pheromone on the edge going from vertex i to vertex j, and is updated

as follows:

τi j = (1 − ρ) · τi j +

m∑
k=1

∆τk
i j (2.2)

where ρ is the evaporation rate, m is the number of ants, and ∆τk
i j is the quantity of pheromone

laid on edge (i,j) by ant k:

∆τk
i j =


Q/Lk if any ant k used edge (i,j) in its tour

0 otherwise
(2.3)

where Q is a constant, and Lk is the length of the tour constructed by ant k.

As ants are exploring the graph, they decide the next vertex to visit through a stochastic

mechanism. When an ant k is in vertex i, the probability of going to vertex j is calculated as

follows:

pk
i j =


ταi j·η

β
i j∑

cil∈N(sp) τ
α
il ·η

β
il

if ci j ∈ N(sp)

0 otherwise
(2.4)

where sp is the ant’s current solution (initially empty and then extended every time a new

component is selected), N(sp) is the set of feasible components; that is, the nodes reachable

from i and still unvisited (not in sp). The parameters α and β control the relative importance of

the pheromone values versus the heuristic information ηi j, which is given by:
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ηi j =
1

di j
(2.5)

where di j is the distance betwen vertex i and j. The heuristic value is used to give an advantage

to shorter edges.

Further improvements were made to ACO, such as with the MAX-MIN ant system [60],

which restricts the pheromone values of an edge to a predefined range. Furthermore, future ant

systems introduced the concept of only reducing the edges that were traversed by an ant, rather

than reducing all edges.

2.3.2 Ant-Q

One variant of ACO is called Ant-Q [23] [24], which combines ACO with Q-Learning. As each

ant traverses the graph it updates each edge it touches using Q-Learning reinforcement. After

each ant in a generation has completed its tour, the edges traversed by the ants are updated

using ACO. The edges are updated using the following equation:

AQ(r, s) = (1 − α) · AQ(r, s) + α ·

(
∆AQ(r, s) + γ · Max

z∈N(sp)
AQ(s, z)

)
(2.6)

where AQ(r, s) is the Ant-Q-value. The α and γ are the learning step and the discount factor,

respectively. The ∆AQ value, which represents the amount of pheromone to deposit, is zero

except after each ant has completed its tour. ∆AQ is calculated as follows:

∆AQ(r, s) =


W

Lkib
if (r, s) ∈ tour done by agent kib

0 otherwise
(2.7)

where W is a constant, kib is the ant with the best tour for this iteration, and Lkib is the length of

the tour. This equation uses the best ant in the iteration; however, it is also possible to use the

global best ant, which is the best ant from any iteration. The authors found that the iteration

best was slightly better than the global best.
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When an ant is in state r, it selects the next state s using the pseudo-random proportional

selection rule:

s =


max

u∈N(sp)
{AQ(r, u)α · HE(r, u)β} if q ≤ q0

P otherwise
(2.8)

where α and β provide weights to both the AQ values and the heuristic value (HE), q is a

random value in the range [0,1], q0 (0 ≤ q0 ≤ 1) is a parameter that determines the probability

of making a random choice, and P is the probability selection rule stated in equation 2.4.

The major difference between the Ant System and Ant-Q in regards to their update policy is

that the Ant System takes into account the tour of all m ants when updating the edges, whereas

Ant-Q only takes into account the iteration or global best ant. Furthermore, the Ant System

updates all edges, whereas Ant-Q only updates edges that were traversed by an ant.

We implement both ant systems in our GUI test generators. However, we modify them to

fit our needs. For example, we are not looking for a single best path through the graph, but

rather many good paths; therefore when updating the edge values in our Ant-Q system, we use

the result of all the ants and not only the iteration best. The specifics of each system will be

discussed in Chapter 5.

2.4 GUI Test Case Generation

As mentioned in the introduction, there are two main methods of generating GUI test cases.

The first method involves ripping a model of the GUI and generating tests. The second method

involves dynamically ripping the GUI state and executing events. We look at both types of

systems in this section.
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2.4.1 Static Testing

Static testing has received a great deal of attention from the research community. The tool

most commonly used in the reseach is GUITAR [52], which works similarily to the static

model described in Chapter 1. GUITAR rips a GUI into a directed graph, called an event-

flow graph (EFG), and generates tests by exploring different paths through the EFG. An EFG

represents the flow of events through a GUI. The vertices of the graph represent GUI events,

and the edges represent dependencies. For example, if there exists an edge <e1, e2>, then event

e2 can be executed after event e1. GUITAR runs the generated test cases on the AUT.

Various techniques for generating tests have been investigated. Brooks and Memon [12]

created usage profiles of users’ interactions with a system and then developed a probabilistic

model based on the profiles. The test generator uses the model to create test cases that repre-

sent interactions that a user is most likely to execute. The results showed that the generated

tests were at most 22% of the size of of tests that were generated from the original profiles.

Furthermore, the tests were able to find more faults per test than the tests based on the profiles

alone.

Memon et al. [46] used a goal-driven approach to generate test cases for GUIs. The authors

used planning, which is a method borrowed from artificial intelligence. The idea is to give the

planner a set of operators, an initial state, and a goal state. The planner can then produce a

sequence of operators that will transform the initial state to the goal state. The system requires

manual intervention by the tester. The tester has to set the preconditions and effects of the

hierarchical operators. Furthermore, the tester has to create the initial states and goal states.

With this information the planner can generate sequences of actions to change the initial states

into the goal states. The authors showed the systems viability by generating tests on Microsoft’s

WordPad.

Yuan et al. [68] explored the idea of incorporating event context into GUI test generation.

By context they mean the combination of events, the sequence length, and the position of events

within the sequence. As well, they developed new coverage criteria based on combinatorial
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testing. The authors created a new event graph, called an event-interaction graph (EIG), which

is based on EFGs. An EIG is similar to an EFG, except that EIGs exclude system events,

such as those events that open menus. Instead, they combine the system event with the target

event, thus reducing the size of the graph and gaining the ability to generate more meaningful

tests. Tests are generated by taking a combinatorial approach using covering arrays to generate

combinations of events. The authors also defined new coverage criteria, such as t-cover, which

states that a test suite is t-cover-adequate if it covers all possible event-t-tuples. They tested

their system on eight applications and were able to find new bugs.

Yuan and Memon [70] used GUITAR to generate test cases using GUI run-time state feed-

back. The system generates a seed test suite, which is generated based on a ripped EIG. When

the test suite is run, they capture the event-semantic interaction (ESI) relationships, which is

the effect a GUI event has on all other events. A semantic relationship occurs when the exe-

cution of an event changes the properties of some other widget. Based on these relationships,

the authors proposed a new graph called the event-semantic interaction graph. Tests can then

be generated by walking the graph and outputting the event sequences. They conducted two

studies on eight applications and found that the test suites based on ESI relationships found

more faults than their code-, event-, and event-interaction-graph counterparts.

Memon and Soffa [47] addressed the problem of regression testing for GUI testing. When

a system changes its interface, many of the GUI tests will break. The authors researched the

number of broken tests that occur, as well as how to repair said tests. They represent the

GUI using a GUI control-flow graph (G-CFG). A G-CFG is created for both the original and

updated application. The two graphs are compared in order to determine which test cases

are broken. The G-CFG is then used to repair the broken test cases by replacing infeasible

events with feasible ones. The authors evaluated their system by manually creating tests using

a capture/replay system for both Adobe Reader and MicroSoft WordPad. The results showed

that they are able to repair a high number of broken tests.

Arlt et al. [8] used static analysis to analyze an application’s bytecode and generate an event
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dependancy graph (EDG). The authors extracted the event handlers for each event. They used

a static analyzer on the extracted bytecode and determined a write/read relationship between

the events. For example, event e1 may write to a variable called text and event e2 may read and

use that variable. The EDG is used to represent such relationships. Furthermore, the EDG is

used in conjunction with the EFG to construct test cases. The edges in the EDG only represent

a write/read relationship, and so the EFG is used to connect the events within a single test.

The authors generated sequences of tests for four applications and were able to find previously

unknown bugs.

We can see from the literature that static GUI testing has had a lot of focus. A variety of

test generation techniques have been devised, as well as test coverage criteria. Much of this

work influences the research conducted in dynamic testing, such as how to best represent the

GUI in a graph.

2.4.2 Dynamic Testing

A variety of dynamic testing techniques have been researched that make use of metaheuristic

search techniques such as ant colony optimization, genetic algorithms, and Q-Learning.

Bauersfeld et al. [10] developed an ant colony system for testing GUIs that uses Method

Call Trees (MCT) as a fitness function. A MCT is a tree structure that represents the flow of

method calls during an application’s runtime. The idea is that calling a method from different

points in the application can lead to better code coverage and result in more bugs being found.

For instance, if a method m1() is called by both methods m2() and m3(), it is preferable to have

method m1() called from both methods, as the context in which a method is called affects its

behaviour. The authors build MCTs by instrumenting the AUT and logging the entry and exit

points of each method. This data allows them to automatically create a MCT. Furthermore,

the authors were able to combine multiple MCTs from different runs into a single MCT. The

system tests an application by use of ants. Each ant represents a test case and a set number

of ants represents a generation. After each generation of ants has completed its run, the paths
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explored by the ants are updated depending on the size of the MCT generated by each ant.

Paths that generated larger MCTs would receive more pheromones and therefore would be

favoured in future test cases. The ant system was compared to random selection. The results

showed that the method is able to generate tests that result in large MCTs compared to random

selection. However, the authors do not report on the code coverage or faults found.

Gross et al. [32] developed EXSYST as a method to automatically test GUIs. The authors

conducted a study to show how non-GUI test generators find false faults. False faults are

created by non-GUI test generators by placing the system in an invalid state, which would

normally be disallowed by the interface. They generated tests using Randoop [53] and showed

that all the faults found are false. This is due to the fact that Randoop bypasses the implicit

constraints of the system imposed by the GUI. EXSYST uses a genetic algorithm based on

EvoSuite [28] that attempts to generate test cases that achieve high levels of code coverage. The

system uses branch distance as a fitness function. Branch distance evaluates how far a predicate

is from obtaining its opposite value [4]. The system generates a set number of test suites by

randomly walking through the GUI. It then uses a genetic algorithm to perform crossover and

mutation at both the test suite level and the test level. Crossover happens by splitting each test

suite at a random point and exchanging the test cases. Care is taken to ensure that the test suite

sizes remain constant so that no test suite is larger than another. Mutation occurs by either

adding test cases or mutating an existing test case. The test cases can be mutated by a delete,

change, or insert operation. For each action in a test case, there is a chance it is removed. As

well, there is a chance that the parameters of an operation are randomly changed. Finally, there

is a random probability that a random action is inserted at any point in the test case. Mutating a

test case can cause the test to break, as the sequence of actions is not guaranteed to be correct.

The system creates a model of the GUI in memory and updates it as the tests are executed. The

model can also be used to repair broken test cases; however, it is not guaranteed to work in all

cases. If a test is executed and it is determined that the test is infeasible, the test is halted and

the model is updated. The system was compared to EvoSuite, GUITAR, and Randoop. In four
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out of five cases EXSYST was able to achieve higher levels of code coverage.

Mariani et al. [41] developed AutoBlackTest on top of IBM Functional Tester to test GUIs.

AutoBlackTest uses Q-Learning to find good paths through a GUI. The system uses a custom

fitness function that calculates the ratio of change between two GUI states and uses the result

to determine good event sequences. The function works by capturing the GUI state before an

event is executed, executing the event, capturing the resulting state and calculating the differ-

ence between the two states. Events that result in a large state change will be favoured in future

selections. The system uses Q-Learning to assign weights, called Q-values, to edges based

on the fitness function. Q-values are calculated based on two values: the reward of an action

(fitness) and the best Q-value of a successor edge. Every time an event is executed, its edge

is updated using both values. AutoBlackTest uses an ε-greedy selection process, which states

that a random action is selected with probability ε and the action with the highest Q-value is

selected with probability 1-ε. The authors conducted experiments to determine the best ε value

and found that a value of 0.8 resulted in the highest code coverage–that is, random actions

occur 80% of the time. The system was compared to GUITAR and was shown to cover more

code and find more bugs.

One problem with many of the dynamic testing systems discussed in this section is that they

are compared to non-GUI testing systems or to model-based systems. Bauersfeld et al. [10]

compared their ant colony system to dynamic random selection; however, they only reported

on the size of the method call trees and not on the faults found or code covered. Gross et

al. [32] compared EXSYST against GUITAR, Randoop, and EvoSuite. GUITAR is a model-

based system, and both Randoop and EvoSuite are non-GUI testing systems. Mariani et al.

[41] compared AutoBlackTest against GUITAR as well. It would be beneficial to compare

dynamic testing algorithms against one another, as well as compare them against pure random

selection. Testing against random selection is important as random testing represents a base

line for comparison. One goal of this thesis is to compare multiple algorithms against each

other, as well as to compare them to random selection.
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2.5 Test Case Length Effectiveness

Test length can have a significant impact on the effectiveness of a test suite. Research has

been conducted on the effect of test length in regards to code coverage and faults found in both

traditional testing and GUI testing. We conducted our own study on the effect of test length on

GUI test suites, which is discussed in Chapter 4.

2.5.1 Test Length for Non-GUI Testing

Some research has been conducted on the effect of test length on test length performance for

traditional software testing. Fraser and Gargantini [29] ran experiments to study the effects of

length on specification-based test case generation. The authors wanted to know two things:

the influence test length has on fault-finding capabilites and the influence of test length on

computational cost. They ran experiments on two subject applications, the Safety Injection

System and the Cruise Control model. They used the NuSMV [17] model checker to generate

tests. The techniques used to generate tests are mutation testing, transition pair coverage,

modified condition decision coverage, pairwise testing, and random testing. The authors ran

thousands of test suites and report on some of their results. Overall they found that there

are special cases that need to be considered when determining the length, but that in general

having fewer longer test cases is preferable to many short test cases. Increasing the test length

can reduce the overall test suite size and length and increase the fault finding capabilities.

Arcuri [5] conducted experiments on six Java containers using four test generation algo-

rhtms: random search, hill climbing, an evolutionary algorithm, and a genetic algorithm. Each

algorithm attempts to cover all possible branches in a class. His goal was to show that difficult

software testing benchmarks can be made trivial by using longer test sequences and that choice

of length is important for software testing. The author ran 52 000 experiments and found that in

general longer tests perform better and that in some instances some of the branches are infeasi-

ble for the shorter tests. The author goes on to prove two general theorems. The first describes
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conditions in which longer test sequences are generally better and the second gives conditions

in which they are not; however, it does not mean they are any worse.

Andrews et al. [3] addressed the issue of test length for random testing. Their goal was to

show how test length can significantly impact the effectiveness of random testing in terms of the

number of failures discovered as well as the length of the failing trace. The authors performed

an empirical study on five applications, as well as a case study of a JPL flight software system.

They found that test length has a major influence on the effectiveness of random testing for

interactive programs. Furthermore, changing the test length can have an effect on the number

of failures found by an order of magnitude.

These studies indicate that test length is an important variable in software testing and that

long test cases generally perform better than short test cases. This work influenced our own,

which we discuss in Chapter 4.

2.5.2 Test Length for GUI Testing

Little research has been conducted for GUI test length effectiveness. Xie and Memon [65]

studied the effect of increasing both test suite size and test length on fault finding effectiveness.

The authors looked for faults in the GUI state by comparing the test results to a golden state

that was previously created. They conducted experiments using GUITAR and generated test

suites of increasing size where each test suite consisted of test cases of similar size and with

the same event composition. The authors conducted an ANOVA analysis and found that there

was a statistically significant difference in faults found when test suite size is increased. The

authors attributed this difference to the fact that events are executed multiple times with differ-

ent preceding events. The authors also investigated whether increasing the length of individual

test cases has a significant effect on finding faults. They conducted an experiment using test

lengths ranging from 2 to 20, where each test suite contained the same number of tests. The

results show that increasing the test length did not result in a statistically significant difference

in faults found. However, they did find that longer test cases can find faults that shorter test
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cases cannot find.

One issue with this study is that GUITAR employs the concept of “reaching steps” as it

generates test cases. A reaching step is simply an event that is required to be executed so

that the AUT reaches a specific state so that the test can begin. GUITAR generates tests by

selecting any path of a specified length in the EFG and then works backwards, adding the

required events, until it reaches an initial event. Therefore, a test of length n can consist of m

reaching steps, which results in a true length of n + m. So although they are comparing length

2 to length 4, etc., it is likely that the length 2 tests contain many reaching steps and thus have

a longer length.

Bae et al. [9] conducted a study to compare model-based and dynamic event extraction-

based GUI testing techniques. The authors created a system called GUITester that is able to

test systems using both a model-based approach and a dynamic approach. GUITester can rip

and create EFGs similarily to GUITAR, as well as make decisions in real time. The authors

compared the two approaches on five subject applications using a variety of test lengths and test

suite sizes, totaling 104 test suites. Their results showed that the dynamic system outperformed

the model-based system in terms of code coverage on all AUTs. The code coverage increased

when the test length increased; however, the returns were diminishing. Furthermore, the results

showed that the number of nonexecutable test cases for the model-based approach grew rapidly

as the test lengths were increased; in one case 77.2% of all length 100 tests were nonexecutable.

This high failure rate may explain why the previous paper discussed by Xie and Memon found

no improvement with longer test cases.

2.6 Test Adequacy Criteria

In this section we look at what makes a test suite adequate. It is important to test practioners

to know what to optimize. Should test suites aim to cover a lot of code, cover definition/use

(DU) pairs (the definitions of variables and their uses in the application), or cover all paths? We



Chapter 2. Background and RelatedWork 27

will look at the current research conducted in this area of testing in regards to both traditional

testing and GUI testing. This complements our own work as we study test adequacy criteria in

this thesis.

Test adequacy criteria were studied by Hutchins et al. [36]. They conducted an empirical

study on the effectiveness of both the all-edges (all paths in the application’s control flow

graph) and all-DUs coverage criteria. They ran experiments on 130 faulty programs based

on seven moderately sized programs. They generated seven thousand tests for each program

and studied the relationship between coverage and fault detection. They found that test suites

that achieved 90% code coverage achieved significantly better results than other test suites of

the same size. Furthermore, they saw more improvement as coverage increased from 90% to

100%. However, they found that having 100% coverage itself is not always indicative of a test

suite’s effectiveness.

In regards to GUI testing, Strecker and Memon [59] conducted experiments on two subject

applications in order to determine which factors results in high fault coverage. The authors

looked at six variables: the length of a test case, the number of events (size), length two event

coverage, length three event coverage, mutant type, branch points, and statement coverage.

They seeded faults into both applications using a mutant generator and generated test cases

using GUITAR; they limited the length of the tests to 20 events. For the first application, called

FreeMind, it was found that statement-coverage-adequate test suites were the dominant factor

in detecting faults. For the second application, called CrosswordSage, three factors were found

to contribute to the faults found: the mutant type, statement-coverage-adequate test suites, and

length three event coverage, as well as the interaction between the mutation type and statement

coverage. The results validated the use of statement coverage as measure of test adequacy.

This work inspires our own study into test adequacy. Our study differs from these as we

used a dynamic test generator rather than a model-based test generator. We are interested in

studying both white- and black-box criteria. For white-box criteria, we look at statement and

branch coverage, and for black-box criteria, we look at event-pair coverage, event coverage,
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and event-1-pair coverage.

2.7 Summary

In this chapter we looked at the current literature for both GUI and non-GUI testing practices.

We looked at the effectiveness of both random and search-based software testing for non-GUI

testing and discussed how it could be applied to GUI testing. Following that, we looked at the

state of model-based testing, most notably the use of GUITAR, and how it has been used to test

GUIs. We then looked at various dynamic testing systems where each one applies a different

test generation technique ranging from evolutionary algorithms to Q-Learning. We discussed

studies on test length for non-GUI testing and showed how the research indicates that longer

tests are generally more effective than shorter tests. The research conducted on test length for

model-based GUI testing found no notable increase in faults found as the length increased.

The study conducted comparing the model-based system to the dynamic system found that

increasing the length results in more code coverage. We also discussed two techniques for

exploring a graph: Q-Learning and ant colony optimization, which we use as test generators

later in this thesis. Finally, we discussed the current work in test adequacy criteria that showed

the types of coverage criteria that have a significant impact on the number of faults found in an

application.



Chapter 3

Graphical User Interfaces

In this chapter we look at the structure of graphical user interfaces in order to better understand

how they can be tested. First we look at the definition of a GUI and its core components. We

describe how a GUI is constructed in a hierarchy and the type of components a GUI can consist

of. Following that, we look at the concept of a GUI state and the concept of modality. We then

look at two ways GUIs can be represented as graphs. The first method is to represent GUIs in

an event-flow graph and the second method is to represent GUIs in an event-pair graph. We

discuss both graphs in detail and discuss their uses and differences.

3.1 GUI Structure

A GUI is created in a hierarchical structure. The structure consists of containers and widgets.

A container is a bounding structure that surrounds widgets. Table 3.1 shows some of the

important Java Swing containers. A widget is any object with which a user can interact. Table

3.2 displays a list of some of the widgets for Java Swing and their respective actions. We

formally define GUIs as follows.

Definition A graphical user interface (GUI) consists of a set of containers and widgets, ar-

ranged in a hierarchy, which users can interact with by executing events. GUIs generate and

29
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consume events based on a user’s actions.

Definition An event is a combination of a user action, such as a mouse click, and a widget.

Events are generated by users acting on GUI widgets.

GUIs are event-based applications. That is, they respond to actions from a user or from

another system, and generate events. Events tell the system that an action has taken place.

There are different types of actions, such as mouse clicks, keyboard input, and touch input.

Each widget within a GUI responds to specific actions. A button can respond to a mouse

click, as well as keyboard input, such as when it is in focus and the user presses Enter. Some

widgets, such as tables, have more complex inputs. A table can have multiple rows selected

or multiple columns selected; the entire table can be selected; as well, values can be input into

individual cells. Events are consumed by the system by means of an event handler. An event

handler is a special interface built into GUI applications that allows for events to be captured

and consumed. In Java, event handlers are added to a widget and the widget can start listening

for events. The following code snippet is an example of adding an event handler (called Action

Listener) to a Java button.

myButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

doSomethingInteresting();

}

});

When the button is clicked, the actionPerformed() method is called. Each widget in the

GUI has to implement its own event handler. Furthermore, widgets can implement multiple

event handlers, such as how to handle both a key press and key release.

As an example of a GUI hierarchy, Figure 3.1 shows the hierarchy for the Address Book ap-

plication as depicted in Figure 1.1. At the root of all Java Swing applications is the main Frame.
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Table 3.1: Java Swing Containers

Containers
Frame
Window
Panel
Tab Pane
Menubar
Popup Menu

Table 3.2: Java Swing Widgets

Widget Events
Button Click
MenuItem Click
CheckBox Click
RadioButton Click
ComboBox SelectIndex
TextComponent SetText
Slider SetValue
Spinner Click
Label Click
List SelectRow, SelectRows, ExpandRow
Tree SelectRow, SelectRows, ExpandRow
Table SetCellValue, SelectCell
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Root
<<Frame>>

<<Panel>>

<<Panel>>

<<Panel>>

New Contact
<<Button>>

<<Table>>
New 

Category
<<Button>>

<<List>>

Cancel
<<Button>>

Name
<<Text>>

OK
<<Button>>

First Name
<<Text>>

Last Name
<<Text>>

Notes
<<Text>>

<<Panel>>

...

Figure 3.1: Address Book Hierarchy

Panels can be added to the frame, which themselves can contain more panels. Furthermore,

widgets are stored in panels and arranged in some order. When ripping a GUI, either using a

static or dynamic system, the hierarchy is explored in a depth-first or breadth-first fashion until

all branches have been traversed.

In order to test a GUI system, we have to execute events on the application under test

(AUT). We can execute events programmatically or we can use a robot class to emulate mouse

and keyboard inputs. Executing an event programmatically involves calling provided methods,

such as the doClick() method provided by Java Swing to click a button. Using a robot class,

we can tell the machine to move the cursor to specific coordinates and press a mouse button,

or we can focus on a specific text box and send keyboard signals. One drawback to using the

robot class is that the tests can be fragile since they rely on specific coordinates. As well, the

tests are slower as the system has to wait for the cursor to move before executing an action.
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3.2 GUI State

A GUI state S is composed of a set of widgets {w1,w2, . . . ,wn}, where each widget W is com-

posed of a set of properties {p1, p2, . . . , pn}. Each property P is assigned a value V . Therefore,

we define a GUI state as follows.

Definition The state of a GUI is the composition of all widgets W, where each widget has a set

of properties P, and where each property has a fixed value V. A state S 1 is equal to a state S 2 if

they both contain the same number of widgets, and the properties of each widget are equal for

both states.

The concept of a GUI state is important for GUI oracles. When testing GUIs, there are two

types of oracles: implicit oracles and GUI state oracles [43]. Implicit oracles only take into

account hangs, crashes, and thrown exceptions, whereas state oracles look at the state of the

GUI in order to determine if a bug has been found. In order for a state oracle to be implemented,

a perfect (golden) state must be created first. The golden state represents the correct state of the

GUI after a set number of events have been executed and it is to be used for comparison when

testing. Creating the golden state is labour intensive as it has to be verified manually. When

testing the system, the new state is compared to the golden state. Any differences between the

two states is considered a bug and warrants an investigation.

3.2.1 Modal Windows

An important characteristic of GUIs is the concept of modal windows. A modal window is one

that captures the focus of the system and does not allow users to interact with GUI widgets

outside of itself. An example of a modal window is the Save dialog shown in Figure 3.2. A

non-modal window is shown in Figure 3.3, which is a Find/Replace window. The modality of

a window can be determined during the ripping process by checking the window’s properties.

When we generate tests, we have to take into account whether a window is modal. Since we

often execute events programmatically, it is possible to execute events not contained within a
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Figure 3.2: Modal Window Example

current modal window, which would break the implicit constraints enforced by the interface.

Therefore, when a modal window is present, we have to ensure only its events are executed

until the window is closed. Furthermore, if two or more modal windows are shown, we have

to ensure the top-level window is the one being tested. An important part of GUI testing is not

bypassing the implicit constraints of the system. Bypassing the constraints may lead to failures

of the system; however, the failures would be spurious, since no user could execute them.

3.3 Event-flow Graphs

We define an event-flow graph and a path in an event-flow graph as follows.

Definition An Event Flow Graph (EFG) is a graph in which the nodes are events, and there is

an edge from e to f if a user can execute f immediately after executing e.

Definition A path in an EFG is a sequence (e1, e2, . . . , en) of events such that event pair

〈ek, ek+1〉 corresponds to an edge in the EFG. We would say that the path has length n. For
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Figure 3.3: Non-Modal Window Example

consistency, n can be 0 (in the case of the empty path).

EFGs represent the flow of events in a given GUI. They are generated by GUITAR [52] and

can be used to generate test cases. Figure 3.4 shows the EFG for the Address Book application.

The graph does not include all events as the complete graph would be unclear. The New Contact

and New Category events are blue as they represent initial events, which are events that can be

executed immediately after the application has been loaded. A test case would start from one of

the initial events, and then it would follow the available edges until some criterion is met, such

as length. We do not use EFGs directly; instead they inspired us to create event-pair graphs.

Looking at the EFG we can see that there is no way to represent a precondition, for example,

requiring that some event be executed before any future event. To illustrate how this can lead

to infeasible test cases, we will give an example using the Address Book EFG in Figure 3.4.

Using the EFG, we can generate a test that looks as follows: {New Category, OK, First Name}.

That is, the test will click the New Category button which opens a new window. The test then

clicks the OK button and finally it types a value into the First Name field. The issue with this

test case is that it is not feasible. In order for data to be entered into the First Name text box,

the New Contact button must be clicked. Since this precondition cannot be represented in the

graph, there is no way to stop this test from being generated.
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New Contact

New 
Category

OK Cancel

Name

First Name

Last Name

Figure 3.4: Address Book EFG

3.4 Event-pair Graphs

We now present a new representation, called event-pair graphs. We define event pairs, event-

pair graphs, and extended event-pair graphs as follows.

Definition An event pair is a pair of events E and F such that there is a path from E to F in

the EFG.

Definition An Event-Pair Graph (EPG) is a directed graph that contains all GUI events. There

is an edge between two events ei and e j in the EPG if 〈ei, e j〉 is an event pair. EPGs are built

dynamically as tests are being generated.

Definition An Extended Event-Pair Graph (XEPG) is an EPG with weighted edges. The

weight values can be used to represent such things as distance, the number of times traversed,

or any other value the algorithm requires.

We created EPGs for two purposes: to be used as inputs to test generators and as a measure

of quality. An EPG can be used as an input to test generator as follows. Intitially the EPG is

empty. As tests are generated, the EPG is expanded with vertices and edges. The test generator
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New Contact First Name Last Name Mobile1 1 1

2

2

3

Figure 3.5: Address Book XEPG

can use this knowledge to select events that would result in more edges being added to the

EPG. Our intuition is that it is better to execute a large number of unique event pairs rather

than repeating the same pairs, and since the EPG represents the already covered pairs, it can

be used to decide which event to select next based on the number of existing edges. Following

this same intuition, we can also use EPGs as a measure of quality for a test suite. A test suite

that covers more event pairs is better than a test suite that covers fewer. This is studied further

in Chapter 7.

An example XEPG is shown in Figure 3.5. The figure shows the resulting XEPG for the

following test case: {New Contact, First Name, Last Name, Mobile}. The XEPG shows the

events executed, the order of the events, and the distance between each event. We store the

distance between events because in future test cases the test generator may want to execute two

events closer together, as doing so may result in a bug. For example, a test of length 30 would

have events with large distance between them. It is possible that events e1, e2, and e3 share

common variables and methods, and that executing {e1, e3} results in a bug. However, if the

events are separated by some distance, and if event e2 is executed between them, it is possible

that the bug goes undiscovered. Therefore, we can attempt to find such bugs by executing

events closer together.

Table 3.3 shows the event pairs covered by our example test case. The maximum number

of event pairs any test case can cover is
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Table 3.3: Test Case Event Pairs

Event Pairs
New Contact, First Name
New Contact, Last Name

New Contact, Mobile
First Name, Last Name

First Name, Mobile
Last Name, Mobile

n(n − 1)
2

(3.1)

where n is the length of the test case. We consider all pairs as event pairs regardless of distance;

however, we can use the distance values as a measure of quality of a test suite. The shorter the

average distance between all nodes, the better.

The main difference between EFGs and EPGs is that EFGs represent the entire GUI and tell

us how we can explore the system, whereas EPGs tell us the parts of the graph we have already

explored. In an EFG, an edge between two events means that one event can be immediately

executed after the other. Whereas an edge in an EPG means that the two events were executed

together within the same test case. Furthermore, EFGs are generated statically before the tests

are generated, whereas EPGs are generated dynamically as the tests are generated.

3.4.1 Constructing XEPGs

An XEPG is a container object that stores the list of events and the list of edges. The list of

events represents the vertices of the graph and the edges represents their relationships. The

class looks as follows.

class XEPG {

List<Event> eventList = new ArrayList<Event>();

List<Row> edgeList = new ArrayList<Row>();
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getEvents() {

return eventList;

}

getEdges() {

return edgeList;

}

addEvent(Event event) {

eventList.add(event);

}

addEdge(Row row) {

edgeList.add(row);

}

}

Each event object contains the specific event’s information, such as its type, position in the

GUI hierarchy, and its owner. The list of rows is an adjacency matrix that represents all edges.

The row object is a list of integers, where each item in the list represents an edge. If a value in

the row list is 0, there is no edge between the two events; otherwise if the value is greater than

0, there is an edge and the specific value is the edge’s distance. The ith row corresponds to the

edges coming from the ith event.

XEPGs are stored in an XML file and read into the system before each test begins, except

for the first test where the XEPG is empty. Data is added to the XEPG using an XEPG wrapper

class that handles the logic of finding the events and adding or updating their edges. Algorithm

2 shows how an XEPG is constructed or updated after a test case is complete.

The contains, getDistance, addEdge, and updateEdge methods are helper methods that

deal with finding the correct event and rows from the XEPG object and adding or updating the

values. When updating the edge values, the current value is only overwritten if the new value

is less than the current value. Since we are trying to reduce the edge values to 1, thus indicating
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Algorithm 2 XEPG Construction with Distance Values
1: function XEPGWrapper(XEPG epg, TestCase tc)
2: eventOne← null
3: eventTwo← null
4: for i← 0; i < tc.length() − 1; i← i + 1 do
5: eventOne← tc.get(i)
6: if !epg.contains(eventOne) then
7: epg.addEvent(eventOne)
8: end if
9: for j← i + 1; j < tc.length(); j← j + 1 do

10: eventTwo← tc.get( j)
11: if !epg.contains(eventTwo) then
12: epg.addEvent(eventTwo)
13: end if
14: oldDistance← epg.getDistance(eventOne, eventTwo)
15: newDistance← j − i
16: if oldDistance == 0 then . Does not exist
17: epg.addEdge(eventOne, eventTwo, newDistance)
18: else if newDistance < oldDistance then
19: epg.updateEdge(eventOne, eventTwo, newDistance)
20: end if
21: end for
22: end for
23: end function
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Figure 3.6: Updated Address Book XEPG

two events were executed one after the other, we discard the larger (worse) values.

Continuing with our example in Figure 3.5, if we added another test case, t2={New Contact,

Mobile, New Category, Cancel}, our XEPG is transformed into the one in Figure 3.6. The edge

distance from New Contact to Mobile has been reduced to one, and two new events and their

respective edges have been added to the graph.

3.5 Summary

In this chapter we defined GUIs and events. In order to better understand how GUIs are parsed

and tested, we broke down the structure of GUIs and showed how they are organized in a hier-

archy. We defined GUI state and discussed how it can be used as part of an oracle. As well, we

looked at the concept of modal windows and discussed their effect on GUI testing. We showed

how GUIs are represented in EFGs and how tests can be generated statically. Furthermore, we

introduced EPGs and XEPGs and gave an example of how they can be used as both an input to

a test generator as well as a method of test suite evaluation. In the future we may refer to both

EPGs and XEPGs as EPGs for simplicity.



Chapter 4

Test Length Effectiveness for GUIs

4.1 Motivation

In this chapter we investigate the effect that test length has on GUI test suite performance. A

GUI test case is a sequence of events; its length is the number of events in the sequence. Before

we can begin testing GUIs, we need to determine whether it is favourable to have a large test

suite with short test cases, or a small test suite with long test cases. It is also possible that a

mix of short and long test cases is optimal, but we limit our study to a strict length for each test

suite.

As mentioned in Chapter 2, Xie and Memon [65] conducted a study using GUITAR to

determine if length has any effect on fault finding and found that there was no significant

difference between long and short tests, but that longer tests can find some faults that shorter

tests cannot. As well, Bae et al. [9] compared model-based testing to dynamic testing and used

various lengths. Their work showed longer tests can perform better than shorter tests; however,

greater increases in length only had a small positive effect on the code coverage. The work by

Bae et al. complements our own work [16].

42
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Table 4.1: Test Suite Size and Length Selection

Suite Size 960 480 240 120 60 30 15
Test Length 5 10 20 40 80 160 320

4.2 Test Case Generation

In order to test each application for this experiment, we used a custom dynamic test generator.

The details of the system are described more in Chapter 5, and so we will briefly summarize the

algorithm. The algorithm generates tests by attempting to maximize event-pair coverage. The

algorithm uses a greedy selection process when choosing the next event to execute. It looks at

all possible events and chooses the one that will add the most new edges to the EPG. If two or

more events cover the same number of new event pairs, one is chosen at random.

4.3 Test Length Selection

Table 4.1 shows the test suite sizes and test lengths used in our experiments. The test suites

ranged from having 960 tests of length 5 to having 15 tests of length 320. We chose a variety

of sizes as we wanted to cover both very short and very long tests. We employed the concept

of an event budget [3]. That is, each test suite contained the same number of events to run.

Time is commonly used as a budget for testing; however, we wanted to investigate how well a

set number of events are used depending on the test length, therefore we chose to restrict the

number of events rather than the amount of time for each test suite. Each test suite contained

4800 events to ensure fairness. Looking at Table 4.1, we can see that each test suite contains

4800 events when the suite size is multiplied by the test length.
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Table 4.2: Application Summary

Application Application Area Classes Lines of Code Events
FreeMind Mind mapping 493 33443 1562
Gantt Project Project management 689 27804 333
TerpSpreadSheet Spreadsheet 137 5449 329
TerpWord Word processor 208 10340 453
TimeSlot Tracker Task organizer 487 10090 404

Total 2047 87924 3081

4.4 Experimentation and Analysis

Our experiment consisted of running tests on five subject applications. We ran each set of

experiments three times and used the average for our results. Table 4.2 lists the five applications

used for these experiments. All five applications appear elsewhere in the literature [14] [42]

[66] [13] [41] [69] [12] and range from small to medium in size. They all represent real-world

applications that are used daily, such as a word processor and a time management system.

Each test is run from the initial application state. Some GUI testing systems, such as GUI-

TAR [52] and AutoBlackTest [41], start their tests from arbitrary states. In the case of GUITAR,

it uses reaching steps to ensure the first event is available, and in the case of AutoBlackTest,

it starts testing from a previously found state. Our results would not be directly applicable to

such situations. The effect of test case length for systems starting from random states would

require its own investigation.

We ran the experiments on a virtual machine running Linux Mint with 2 GB of RAM and

an Intel Core i5, 1.7 GHz processor. All further experiments in this thesis were run using the

same setup.

4.4.1 Code Coverage

The first criterion for evaluation is code coverage, which is a commonly used measure of

quality for testing systems. Figures 4.1 and 4.2 show the statement and branch coverage results,
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Table 4.3: Coverage Analysis

Statement Branch
Lengths Wilcoxon T-test Wilcoxon T-test
5 & 10 0.0001831 0.002505 6.104e-05 0.001176

10 & 20 0.03015 0.03659 0.01508 0.01264
20 & 40 0.05536 0.1044 0.05001 0.1007
40 & 80 0.5995 0.6547 0.804 0.6402

80 & 160 0.7197 0.4046 0.7763 0.4385
160 & 320 0.4776 0.6238 0.5614 0.7366

respectively. The graphs show that there is an increase of coverage as the lengths increase. We

performed a paired t-test and Wilcoxon test (p = 0.05) in order to determine if there was a

statistically significant difference between any pairs of lengths. We compared each pair of

lengths for all applications and found a significant difference between lengths 5 and 10, and

lengths 10 and 20, but not between any other pair of lengths. Therefore we can say there is a

significant increase in both statement and branch coverage up to length 20, but none afterwards.

The results from the analysis can be seen in table 4.3. Each entry is a p value; entries less than

0.05 are in bold.

The coverage results for the applications are typical. The low FreeMind coverage is at-

tributed to a set of classes that are automatically generated. Of the 33443 lines of code in

FreeMind, 17200 are automatically generated. These generated classes deal with the actions

associated with GUI events. Some of these actions are never covered, such as those used to

add plugins to the system. Furthermore, since we do not use mouse movement inputs and since

FreeMind is meant to be used by a mouse to create the mindmap, it is likely many of these

actions are not utilized completely or at all. We believe that with mouse support we would see

an increase in coverage.



Chapter 4. Test Length Effectiveness for GUIs 46

Fm
in

d

G
pr

oj

Ts
pr

ea
d

Tw
or

d

Ts
lo

t

Statement Coverage

C
ov

er
ag

e 
(%

)

0

20

40

60

80

100
L−5
L−10
L−20
L−40
L−80
L−160
L−320

Figure 4.1: Statement Coverage
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Table 4.4: Unique Uncaught Exceptions - Total(Average)

Applications
Length FMind GProj TSpread TWord TSlot

5 1(1) 0 8(5.7) 8(5.7) 2(1.7)
10 6(3.3) 0 6(5.7) 9(7.3) 2(1.3)
20 4(3.3) 0 7(6.3) 11(7.7) 2(1.3)
40 7(4.7) 0 8(6.7) 12(9.7) 7(3)
80 10(5.3) 0 11(7.7) 10(8) 5(2.3)

160 9(6) 0 8(6) 12(9.3) 8(4.7)
320 15(9) 0 7(5) 10(8.7) 10(4.3)

4.4.2 Uncaught Exceptions

The next criterion we looked at is the number of unique uncaught exceptions found. Unique

uncaught exceptions are exceptions thrown by the AUT and caught by our system; they rep-

resent a fault in the AUT. Furthermore, we only count each exception once for a test suite.

An example of such an exception is the NullPointerException, which is thrown when an AUT

attempts to access a null reference variable. Table 4.4 shows the total number of exceptions

found across all three runs, as well as the average number of exceptions found. Figure 4.3

shows this information in a graph to help us better visualize the results. The graph shows that

length 320 found the most errors, but it should be noted that length 320 did not find the most

errors per application. Again, we ran both a paired t-test and Wilcoxon test in order to deter-

mine if there was a statistically significant difference between any length pairs. Our results

show that there was a significant difference between length 20 and length 40 but not between

any other pairs of lengths. The results of the analysis can be seen in Table 4.5.

4.4.3 Running Time

Our final criterion of evaluation is the cost of running each test suite. Table 4.6 and Figure 4.4

show the results. We can see that for all five applications there is large decrease in running time

as the test length increases and the test suite sizes decrease. The decrease flattens out between
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Table 4.5: Unique Uncaught Exceptions

Lengths Wilcoxon T-test
5 & 10 0.3342 0.5596
10 & 20 0.4713 0.5117
20 & 40 0.02296 0.01352
40 & 80 0.9438 0.9063

80 & 160 0.322 0.3008
160 & 320 0.6795 1
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Figure 4.3: Average Errors Found
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Table 4.6: Time to Run (Hours)

Applications
Length FMind GProj TSpread TWord TSlot

5 10 9.5 7 7.1 10.1
10 7.2 6.6 5 5.3 8.1
20 5.8 5.2 4 4.4 6.6
40 5 4.6 3.4 3.9 5.9
80 4.6 4.2 3.2 3.7 5.5

160 4.4 4 3.1 3.7 5.8
320 4.5 4.2 3 3.7 5.7

length 40 and length 80.

Test case cost can be broken down into three parts: startup cost, event cost, and shutdown

cost. Figure 4.5 illustrates the buildup of each of these costs. When running a GUI test, the

AUT needs to be run in order for the events to be executed. Therefore, there is a startup cost

as the system needs to reach its initial state before it can be tested. For larger applications, this

initial waiting time can be expensive. We can represent the total cost using equation 4.1.

cost = n · (S tartCost + (EventCost · Length) + S hutdownCost) (4.1)

where n is the test suite size. The event cost is the time it takes to execute an event and wait for

a reaction, such as window opening. The shutdown cost is the time taken to write the coverage

information and close the program. The programs we tested had an initial wait time between 5

and 15 seconds, events were run every second, and the time to write the coverage information

ranges from 1 to 3 seconds. Since some applications have a large initial waiting period, it

follows that running many tests would incur a greater cost. Therefore, it is better to run a

smaller number of long test cases. Furthermore, in cases where only a few events are executed,

such as with length 5, the startup and shutdown costs will likely overshadow the event cost

making the tests expensive to run.
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4.5 Summary

In this chapter we discussed our experiment of determining which is better: running a large

test suite of short test cases or running a small test suite or long test cases. Our results found

that running tests of at least length 20 would guarantee better code coverage. Furthermore,

tests of length 40 and longer outperform tests of length 20 in terms of finding faults. Overall

we found that length 80 performed the best: it found maximal code coverage and fault-finding

with minimal cost.



Chapter 5

Dynamic GUI Test Generators

In this chapter we will look at the system architecture and the seven dynamic test generator

algorithms we implemented. We break the architecture down into the common components

used by all of the algorithms and describe how they work. We then delve into the workings

of each algorithm and give examples. Two of the algorithms, Q-Learning and ACO, have

parameters that can be tuned that affect performance. For both ACO algorithms, we perform

experiments to determine the best values for the tuning parameters.

5.1 System Architecture

In this section we will look at the system architecture and discuss the common components

shared by all of the test generation algorithms. The system architecture is shown in Figure 5.1.

Application Under Test

The application under test is any application to be tested. In the case of our system, it can be

any Java Swing application. The application is connected to the system by means of a window

listener.

52
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Window Listener

The window listener is the entry point for the application under test. The Java development

kit provides a WindowListener interface, which we implement in order to listen for window

events. The interface allows us to listen for window open, close, activated, and a variety of

other window events. When a window is opened, we capture the window object and pass it to

the GUI scraper. The system also determines if a modal window is open. If a modal window is

open, then only that window is passed to the GUI scraper, otherwise all windows are passed to

the scraper. This is done to ensure that the constraints imposed by the AUT are not bypassed.

GUI Scraper

The GUI scraper is how the system rips the GUI into its core components. The scraper takes

in as input a GUI container (windows are a type of container) and recursively rips it until the

bottom of the hierarchy is reached. Algorithm 3 shows how this procedure works.

Algorithm 3 GUI Scraper
1: function GUIScraper(Container container, Boolean f ullExtract)
2: components← {}
3: children← container.getChildren()
4: for child ∈ children do
5: if child isa Container then
6: if f ullExtract then
7: components.add(child)
8: end if
9: components.addAll(GUIS craper(child, f ullExtract))

10: else
11: components.add(child)
12: end if
13: end for
14: return components
15: end function

The GUI scraper works in two modes: full extraction mode or widgets only mode. The full

extraction returns every component in the GUI, including containers. These components are

used to calculate the state change ratio for both the ant colony algorithms and the Q-Learning
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Table 5.1: Component Filters

Component Filter Rules
Button enabled, visible
TextComponent editable, enabled, visible
Table rows > 0, columns > 0, editable, enabled, visible
List rows > 0, enabled, visible
Tree rows > 0, enabled, visible
ComboBox itemSize > 0, enabled, visible
CheckBox enabled, visible
RadioButton enabled, visible
Slider enabled, visible
Spinner enabled, visible

algorithm. The widget only mode is used to find only the components that can be executed,

for example buttons and text boxes. When the GUI scraper returns the set of components for

the widget only mode, the system needs to filter out the components that are not valid, such

as buttons that are disabled. Table 5.1 shows the filters used for each type of component.

Some of these components represent superclasses; for example, the button component can also

refer to menu items. The main benefit of dynamic testing is that we are able to filter out the

components based on their properties at run-time. Model-based testing methods tend to fail

prematurely because they try to execute an event that is disabled. Even worse perhaps, is when

a model-based system bypasses the GUI constraints and inputs data into a non-editable field

such as a text field.

Test Generator

The test generator module is a superclass that is extended by each of the seven test generator

algorithms. The module offers helper methods to the seven algorithms in the form of filter

methods and timing methods. Each AUT can have specific filter rules specified and passed into

the system via the command line. These rules can be used to ignore a specific component or

window. For example, we ignore the quit and exit menu items in an application as we do not



Chapter 5. Dynamic GUI Test Generators 56

want to shut down the AUT as we are testing it. Other examples include buttons that open a

browser or pause the application for any reason. Components can be ignored based on their

text or tool tip text. The timing methods are used to wait for the system to reach a stable state

after an event has been executed. The amount of time to wait is set by the test engineer for each

AUT as some systems may work more slowly than others.

Event Selector

The event selector applies different selection techniques depending on the algorithm being run.

For random selection it will choose an event from the provided list at random using the built-

in random number generator. For the random-minimum algorithm, it will choose an event

with the lowest-value outgoing edge. For the Q-Learning algorithm it applies the ε-greedy

selection process (see 2.4.2), which chooses a random event with probability ε and the event

with the highest Q-value with probability 1-ε. Both the ant system and antq algorithms make

use of the pseudo-random proportional selection rule, which selects the highest value event

with probability q0 and selects a random proportional event with probability 1-q0. The selected

event is passed to the event executor to be run on the AUT.

Event Executor

The event executor first determines the type of component being executed, such as a button,

text box, or table. Depending on the component type, it will execute an action, or a random

action if more than one exists. For components such as buttons and text boxes where only

one action exists, it will programatically execute the event. In the case of a button, it will

execute the doClick() method, and for a text box it will first place focus on the component

and then send keyboard signals to type text. The text used is selected at random from a list

of predefined inputs. In the case of components that have multiple event options, such as a

table, it first determines the action to take using random selection. For example, a table can
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have a single cell filled, a column filled to some cell y, a row filled to some cell x, or the entire

table filled with data. Each of these options will have an equal probability of being selected.

Once an action is decided, the cells of the table will be filled with random data chosen from

the predefined list.

Exception Reporter

The exception reporter is a custom module that extends the UncaughtExceptionHandler pro-

vided by the JDK, which allows the system to catch and report on all uncaught exceptions

thrown by a thread. When an exception is caught by the module, it generates a report con-

taining the error message, the stack trace, and the events run up until the point the exception

was thrown. The system is only able to catch uncaught exceptions, so any exceptions thrown,

caught, and logged by the AUT are not reported and are not considered errors.

GUI State Fitness Calculator

The GUI state fitness calculator is used by the ant algorithms and the Q-Learning algorithm in

order to generate the state information used for the fitness function, as well as to compare two

states in order to calculate the ratio of change. Each of the algorithms provides a list of compo-

nents that make up the current state of the AUT. The module then extracts and stores specific

and relevant properties from each widget. For example, a button’s text, class, position in the

hierarchy, and whether or not it is enabled are all properties that are stored. The module returns

an object that stores this state information to the calling algorithm module. The calculator can

also take in two different states and compare them for changes. The module will return a value

in the range [0,1] that represents the ratio of change. The specifics of how this is calculated is

discussed in section 5.4.1.
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5.2 Random Test Generator

We implemented two random test generators, and we describe their algorithms in this section.

We use the random test generators as a baseline of comparison for our other five algorithms.

Besides being used simply as a baseline for comparison, we also want to study the effectivness

of random testing when applied to GUI testing. As mentioned in Chapter 2, few researchers

actually compare against random testing, but rather choose to compare against model-based or

non-GUI testing systems.

5.2.1 Random Selection

The first random algorithm we implemented is a pure random selection system. The algorithm

is shown in Algorithm 4. The system starts the AUT, retrieves the current list of available

components, selects one randomly, and executes it. It continues this process until the set length

of the test case has been reached. Finally, it shuts down the AUT and writes the coverage

information. As well, after each event is executed, it checks to see if an exception has been

thrown. If so, it logs the exception to a file.

Algorithm 4 Random Selection Test Generator
1: function RandomSelection(length)
2: startAUT ()
3: for i ∈ length do
4: components← getAvailableComponents()
5: event ← selectRandomEvent(components)
6: execute(event)
7: waitForGUI()
8: if ExceptionManager.hasException() then
9: ExceptionManager.reportException()

10: end if
11: end for
12: shutdownAUT ()
13: writeCoverage()
14: end function



Chapter 5. Dynamic GUI Test Generators 59

5.2.2 Random Minimum Selection

The random minimum selection test generator works by always executing the event with the

smallest edge value. Although in Chapter 3 we described the edge weights of an XEPG as

being the distance, it is possible to assign any value to the edges; it just so happens we use

distance most often. In the case of the random minimum algorithm, the edge weights represent

the number of times the edge has been traversed. Initially all edge values are set to zero. When

an edge is traversed, the weight is increased by one. When making a selection for the next

event to execute, all of the available edge weights are compared and the one with the smallest

value is selected. If more than one edge meets this criterion, one is selected at random.

Algorithm 5 shows the details. Line 3 of the algorithm references a method call to getPseu-

doInitialEvent(), which introduces the concept of the pseudo initial event. An EPG can be

extended to include this event, which represents the initial state of the system after startup. In

order to keep track of the first real initial events that have already been executed in previous

tests, we need to store their incoming edges in the EPG. We connect these edges to the pseudo

initial event so that we can look up the edge values when deciding which real initial event we

want to execute; otherwise we would have to select an initial event at random.

Figure 5.2 shows an example of how the algorithm selects edges for two test cases. The

first graph in the figure shows the flow of events for the first test and it shows the edge values

after the first test has been generated. The second graph shows the flow of events for the second

test and the resulting edge values.

5.3 Greedy Test Generator

We created two greedy test generators that make use of EPGs. The first test generator attempts

to maximize the number of event pairs covered, whereas the second test generator attempts to

minimize the distance between events over time.
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Algorithm 5 Random Minimum Test Generator
1: function RandomMinimumSelection(length, epg)
2: candidates← {}
3: lastEventRun← getPseudoInitialEvent()
4: startAUT ()
5: for i ∈ length do
6: currentMinEdge← ∞
7: components← getAvailableComponents()
8: for comp ∈ components do
9: newMinEdge← epg.getEdgeValue(lastEventRun, comp)

10: if newMinEdge < currentMinEdge then
11: currentMinEdge← newMinEdge
12: candidates← {}
13: candidates.add(comp)
14: else if newMinEdge == currentMinEdge then
15: candidates.add(comp)
16: end if
17: end for
18: event ← selectRandom(candidates)
19: execute(event)
20: waitForGUI()
21: epg.update(lastEventRun, event, currentMinEdge + 1)
22: lastEventRun← event
23: if ExceptionManager.hasException() then
24: ExceptionManager.reportException()
25: end if
26: candidates← {}
27: end for
28: shutdownAUT ()
29: writeCoverage()
30: end function
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Figure 5.2: Random Minimum Example with Two Tests

5.3.1 Event-pair Greedy Selection

Algorithm 6 and 7 show the algorithm for the event-pair greedy test generator. The general idea

of the algorithm is to select the event that will create the most new connections in the EPG. The

random minimum test generator looks at only the most recent event run when determining the

next event to select. The event-pair greedy algorithm takes into consideration all previously

run events in the test case in order to determine the number of potential event pairs that will be

covered.

We will now illustrate the algorithm with an example. Figure 5.3 shows a graph with no

connected edges. The edges shown represent the potential paths a test can take. Since all of

the edges in the graph are not covered, all edges have the same probability of being selected.

Therefore the first test can follow any edge from the initial state to the last node. For this

example the first test case will be {e1, e2, e5}. The resulting XEPG is shown in Figure 5.4. Recall

that the edges here only represent nodes that have been executed within the same test case and

not the potential flow of execution. When generating the second test case, the algorithm uses
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Algorithm 6 Event-pair Greedy Test Generator
1: function EventPairGreedy(length, epg)
2: candidates← {}
3: eventsRun← {getPseudoInitialEvent()}
4: startAUT ()
5: for i ∈ length do
6: maxPotentialEP← 0
7: components← getAvailableComponents()
8: for comp ∈ components do
9: newPotentialEP← countNewEventPairs(eventsRun, comp, epg)

10: if newPotentialEP > maxPotentialEP then
11: maxPotentialEP← newPotentialEP
12: candidates← {}
13: candidates.add(comp)
14: else if newPotentialEP == maxPotentialEP then
15: candidates.add(comp)
16: end if
17: end for
18: event ← selectRandom(candidates)
19: execute(event)
20: epg.update(eventsRun, event)
21: eventsRun.add(event)
22: if ExceptionManager.hasException() then
23: ExceptionManager.reportException()
24: end if
25: waitForGUI()
26: candidates← {}
27: end for
28: shutdownAUT ()
29: writeCoverage()
30: end function

Algorithm 7 Event-pair Counter
1: function countNewEventPairs(eventsRun, comp, epg)
2: count ← 0
3: for event ∈ eventsRun do
4: if !epg.hasEdge(event, comp) then
5: count ← count + 1
6: end if
7: end for
8: return count
9: end function
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Figure 5.3: Initial State with Uncovered Edges

the EPG to determine the next event to execute. In this example it would compare events e1 and

e3 and determine how many new pairs would be created if each one were to be selected. Since

the event pair <initialEvent, e1> already exists and since the event pair <initialEvent, e3> does

not, it would select event e3 as it would be creating one more event pair. Following that, the

next two events to compare would be e2 and e4. If e2 were to be selected, it would create

one more event pair with e3, however if e4 were to be selected, it would create event pairs

with e3 and initialEvent. Therefore event e4 is selected. Finally e5 is selected as it is the only

remaining event. The result is shown in Figure 5.5. If we were to generate a third test, both e1

and e3 would have equal probability of being selected as neither one will add new event pairs.

Furthermore, if event e3 were to be selected, then event pair <e3, e2> would be guaranteed to

be covered.

5.3.2 Distance Reduction Greedy Selection

The distance reduction algorithm is not very different than the event pair greedy algorithm.

Instead of trying to maximize the event-pair coverage, the algorithm attempts to reduce the

distance between all pairs of events. The event that has the greatest reduction in distance will

be selected for execution. The idea is that by executing events closer together, we will see
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Figure 5.5: Test Two’s Path
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different results and possibly find bugs. Algorithms 8 and 9 show the details of the algorithm.

As with the event pair greedy algorithm, the distance reduction algorithm takes into account

all previously run events within a test when deciding the next event to execute.

Algorithm 8 Distance Reduction Greedy Test Generator
1: function DistanceReductionGreedy(length, epg)
2: candidates← {}
3: eventsRun← {getPseudoInitialEvent()}
4: startAUT ()
5: for i ∈ length do
6: currentMaxReduction← 0
7: components← getAvailableComponents()
8: for comp ∈ components do
9: newMaxReduction← countMaxReduction(eventsRun, comp, epg)

10: if newMaxReduction > currentMaxReduction then
11: currentMaxReduction← newMaxReduction
12: candidates← {}
13: candidates.add(comp)
14: else if newMaxReduction == currentMaxReduction then
15: candidates.add(comp)
16: end if
17: end for
18: event ← selectRandom(candidates)
19: execute(event)
20: waitForGUI()
21: epg.update(eventsRun, event)
22: eventsRun.add(event)
23: if ExceptionManager.hasException() then
24: ExceptionManager.reportException()
25: end if
26: candidates← {}
27: end for
28: shutdownAUT ()
29: writeCoverage()
30: end function

To better understand how the algorithm works, we will look at an example. Figure 5.7

shows an example test case. Events e1 and e2 have already been selected. There are two

possible events to execute following e2, which are events e3 and e4. In order to determine

which of these two events to select, the algorithm calculates the greatest reduction in distance
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Algorithm 9 Distance Reduction Counter
1: function countMaxReduction(eventsRun, comp, epg)
2: count ← 0
3: compPosition← eventsRun.length() + 1
4: eventPosition← 1
5: for event ∈ eventsRun do
6: oldDistance← epg.getDistance(event, comp)
7: newDistance← compPosition − eventPosition
8: if oldDistance > 0 and newDistance < oldDistance then
9: count ← count + (oldDistance − newDistance)

10: else if oldDistance == 0 then . Does not exist
11: count ← count + newDistance
12: end if
13: eventPosition← eventPosition + 1
14: end for
15: return count
16: end function

Table 5.2: Distance Reduction Example

Events Current Distance New Distance Difference
e1 & e3 5 2 3
e2 & e3 1 1 0
e1 & e4 4 2 2
e2 & e4 3 1 2

for both events using the current XEPG; here we assume that the current XEPG is as in Figure

5.6. In this case the XEPG is non-empty for illustrative purposes. The event with the largest

reduction is selected. Table 5.2 shows the difference reduction calculation. Event e3 has a

total reduction of three and event e4 has a total reduction of four, therefore event e4 will be

selected. It should be noted that if the new distance is greater than the old distance, we count

that difference as zero and not as a negative value. Furthermore, if there is no current distance

between two events (they have never been run in the same test case), we simply add the new

distance to the total difference.
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5.4 Q-Learning Test Generator

Here we describe our algorithm for generating tests using Q-Learning. We implemented the

algorithm described by Mariani et al. [41]. As well, we used the same fitness function when

determining the Q-values. The fitness function calculates the ratio of change between two

states after an event is executed. We discuss the details of the fitness function in the next

section. The algorithm for Q-Learning is shown in Algorithm 10. An interesting note about

how the algorithm works is that it can start from any previously found state, including the initial

state. Therefore a test will run a previously created test case in order to put the system into a

specific state. However, if some event in the previous test is unable to be run, then the new test

starts from the current state. The algorithm implements the ε-greedy selection policy, which

states that a random event is selected with probability ε and the event with the highest Q-value

is chosen with probability 1-ε. The q0 value used by the algorithm represents the ε value and is

supplied by the test engineer. We evaluate different values for this parameter in Section 5.4.2.

5.4.1 Calculating State Change

Q-Learning works by associating rewards with actions. In the context of GUI testing, the re-

ward can be based on a number of factors, such as statement and branch coverage. We chose

to base rewards on the amount of change in the GUI state. This reward was used by Auto-

BlackTest [41] and we borrowed it for our own work. We find the reward function interesting

because if it results in good test cases, then we can say there is a link between the states of a

GUI and the amount of code coverage and faults found. We also used the same fitness function

for our ant algorithms. In this thesis we take the terms “reward” and “fitness” to mean the same

thing.

The algorithm measures the state change ratio by capturing the state before an event is run,

executing an event, and capturing the resulting state. The system takes into account two factors

when calculating the state change ratio. First, it compares the properties of each widget that



Chapter 5. Dynamic GUI Test Generators 69

Algorithm 10 Q-Learning Test Generator
1: function QLearning(length, qvalues, q0, previousTests)
2: lastEvent ← getPseudoInitialEvent()
3: startAUT ()
4: testS teps← {}
5: previousTest ← getRandomTest(previousTests)
6: executePrevious(previousTest) . Execute a previous test
7: testS teps.addAll(previousTest.getS teps())
8: for i = 0; i < length; i + + do
9: components← getComponents( f alse) . False: extract executable widgets only

10: currentS tate← getAbstractS tate(getComponents(true))
11: q← Random.nextDouble()
12: if q < q0 then
13: event ← getRandom(components)
14: else
15: event ← getMaxQ(lastEvent, components, qvalues)
16: end if
17: execute(event)
18: waitForGUI()
19: testS teps.add(event)
20: if ExceptionManager.hasException() then
21: ExceptionManager.reportException()
22: end if
23: newS tate← getAbstractS tate(getComponents(true))
24: stateDiff ← getS tateChangeRatio(currentS tate, newS tate)
25: qvalues.update(lastEvent, event, stateDiff )
26: lastEvent ← event
27: end for
28: shutdownAUT ()
29: writeCoverage()
30: writeTest(testS teps)
31: end function
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exists in both states. Second, it looks for any new widgets that exist in the new state and not in

the original state. The algorithm does not take into account any widgets that disappear–that is,

widgets that exist in the original state but not the new state–since we want to encourage actions

that provide access to more widgets.

The state of a GUI can be broken down into the state of the individual widgets currently

within that state. Each widget within the state contains a set of properties that describe it. For

example, a text box’s properties would contain its current text, whether or not it is enabled

and editable, and so on. Furthermore, there are special properties, which we call traits, that

can be used to identify the widget. We need to be able to identify each widget so that we can

accurately compare the properties of each widget. Formally we say a state S contains a set of

widgets <w1,w2, ...,wn>, where each widget w contains a set of properties <p1, p2, ..., pn>. We

say that a property p is a trait if it can be used to identify the widget.

When comparing two widgets, w1 and w2, we say w1 =t w2 iff | w1 |=| w2 | ∧∀ti ∈ w1,∃t j ∈

w2 s.t. ti = t j, where t is a trait in w. That is, two widgets are equivalent if all of their traits

are equal. If one widget has a different number of traits than the other, the two widgets are

considered to be different.

When comparing two states, we only compare a subset of the widgets and their properties.

We call this subset the Abstract State. An abstract state AS contains a set of Abstract Widgets,

where each abstract widget contains a subset of the widget’s properties. We use a subset of

a widget’s properties as only some properties are relevant for state change comparison. The

more properties we use in our calculation, the less impact the change of a single property will

have.

If we have two abstract states, AS = {w1, ...wn} and AS ′ = {w′1, ...w
′
n}, we define the restric-

tion operator AS \tAS ′ = {wi | wi ∈ AS ∧ @wk ∈ AS ′ s.t. wi =t wk}; that is, the set of widgets

in AS that do not appear in AS ′. This restriction operator is used in our calculation of state

change ratios.

Equation (5.1) is used to calculate the ratio of change between two widgets if w1 =t w2.
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The equation determines the ratio of change based on each widget’s properties.

diffw(w1,w2) =
| P1\P2 | +| P2\P1 |

| P1 | + | P2 |
(5.1)

where Pi is the set of properties and Pi\P j is the set of properties in Pi and not in P j.

We use (5.2) to compare two states and determine the ratio of change. The equation looks

at both the widgets that exist in the new state and not the old state, and it looks at the change

in each property for each widget.

diffAS (AS 1, AS 2) =
| AS 2\tAS 1 | +

∑
w1∈AS 1,w2∈AS 2,w1=tw2

diffw(w1,w2)
| AS 2 |

(5.2)

5.4.2 Parameter Tuning

To restate, calculating Q-values is done using the following equation:

Q(s, a) = Q(s, a) + α[reward(s, a) + γmax
a′

Q(δ(s, a), a′) − Q(s, a)] (5.3)

where α is the learning rate, γ is the discount factor, reward(s, a) is the reward of taking action

a in state s, δ(s, a) is the state reached by executing the action a from state s, and Q(δ(s, a), a′)

indicates the Q-value associated with the action a′ when executed from the state δ(s, a).

For our system we use an α value of one since we want to favour the new information over

the current information. Therefore, the equation simplifies to the following:

Q(s, a) = reward(s, a) + γmax
a′

Q(δ(s, a), a′) (5.4)

The equation only looks at the reward of the action taken and the best Q-value of all the new

potential actions.

Before we can begin testing with our Q-Learning system, we need to determine the best

values for the parameters. In this case we have two parameters: the γ value and the ε-greedy
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value (see section 2.4.2). In the case of the γ value, we choose to use 0.9 as that is the value

found to be most effective by the original authors [41].

For the ε value, we decided to run experiments on three applications to see the effect differ-

ent values have on the code coverage results. We ran experiments on three subject applications:

TerpSpreadsheet, TerpWord, and ArgoUML. We selected values of 0.2, 0.4, 0.6, 0.8, and 1.0

for ε. The experiments consisted of test suites containing 100 tests where each test contained

20 events. We repeated each experiment five times and measured the average statement cov-

erage. The results are shown in Table 5.3. Both TerpWord and TerpSpreadsheet achieved the

highest levels of coverage with ε = 1.0, which is pure random selection. ArgoUML achieved

the highest levels of coverage with ε = 0.4.

We performed ANOVA analyses followed by a Tukey tests to determine if there were sig-

nificant differences between the means for each value. The results of the ANOVA analysis for

TerpSpreadsheet showed that there was a significant effect of the value of ε on code coverage

at the 0.05 significance level for the five levels [f(4, 20) = 16.13, p <0.001]. The results of

the Tukey test showed that the mean score for an ε value of 0.2 (M = 3507, SD = 36.79) was

significantly less than 0.4 (M = 3706.6, SD = 144.06), 0.6 (M = 3768.8, SD = 68.42), 0.8 (M

= 3792.2, SD = 57.22), and 1.0 (M = 3896.4, SD = 46.97). Furthermore, an ε value of 1.0 was

significantly better than 0.4.

The results of the ANOVA analysis for TerpWord showed that there was a significant effect

of the random selection variable on code coverage at the 0.05 significance level for the five

levels [F(4, 20) = 4.82, p = 0.007]. The results of the Tukey test showed that the mean score

for an ε value of 0.2 (M = 5831.6, SD = 235.78) was significantly less than 1.0 (M = 6701.72,

SD = 337.43). No other pairs of values were significantly different.

The results of the ANOVA analysis for ArgoUML showed that there was a significant

effect of the random selection variable on code coverage at the 0.05 significance level for the

five levels [f(4, 20) = 4.4, P = 0.01]. The results of the Tukey test showed that the mean score

for an ε value of 0.2 (M = 18572, SD = 894.08) was significantly less than 0.4 (M = 19874.6,
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Table 5.3: Q-Learning Parameter Tuning - Largest mean in bold

Statements
ε TerpSpreadsheet TerpWord ArgoUML

0.2 3507 5832 18572
0.4 3707 6234 19875
0.6 3769 6327 19531
0.8 3792 6274 19301
1.0 3896 6701 19407

SD = 472.23). No other pairs of values had a significant difference.

From the results of the analyses, a random selection value of at least 0.4 for TerpWord is

beneficial. For TerpSpreadsheet, a higher random value also shows to perform better with both

values of 0.2 and 0.4 performing significantly worse than 1.0. Finally with ArgoUML, the

results showed that a value of at least 0.4 is better than 0.2. Q-Learning requires some random

selection as it allows the algorithm to run in an exploratory manner. Always selecting the best

Q-value would result in the same few tests being generated. For the smaller applications we

chose to use a value of 0.9. This value allows for a lot of random exploration. We decided

against using a value of 1 as that would result in only random actions being taken, which

defeats the purpose of Q-Learning. For the larger applications, we chose to use a value of 0.4

as it worked well for ArgoUML.

5.5 Ant Colony Optimization Test Generators

In this section we will describe our two ant algorithms. The work was originally published in

[15]. Since GUIs are best represented by graphs, and since we want to traverse those graphs

to find interesting paths, we decided to apply ant colony optimization algorithms to the GUI

graphs. We implemented two algorithms: the traditional ant system and the antq algorithm.

The traditional system implements the traditional ant colony algorithm [26], whereas the antq

algorithm implements the antq algorithm as described in [24]. The main difference between
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the two algorithms is how they update their paths. The ant system updates all paths in the graph

after the generation of ants has completed its run, even those not traversed by an ant. The antq

algorithm updates the paths in two phases. First, it updates the path immediately after an ant

has traversed it. The edge is updated using the Q-Learning portion of the algorithm. Second,

once each ant in the generation has completed its run, the paths are updated again; however,

only those paths that were traversed by an ant are updated. All other paths remain untouched.

The details of both algorithms can be seen in Algorithms 11 and 12.

5.5.1 Event Selection

Event selection works as follows. We assign a score to each edge (x,y) coming from the source

vertex:

scorexy = ταxy · η
β
xy (5.5)

where ταxy is the amount of pheromone on edge (x,y) and ηβxy is the heuristic value of edge (x,y).

Using the pseudo random proportional selection rule, we select the event with the highest score

as follows. We first capture the events with the highest score:

maxeventsx = {y | scorexy = max
u∈allowedx

(scorexu)} (5.6)

where y is an event and allowedx is the set of events reachable by x. With probability q0, the

next event is chosen randomly from maxeventsx. The probability of every event is

1
| maxeventsx |

(5.7)

Otherwise, with probability 1−q0, the next event is chosen in a weighted random fashion from

allowedx. The probability of every event y is
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scorexy∑
u∈allowedx

(scorexu)
(5.8)

An event is selected with a probability proportional to is pheromone and heuristic values. Since

our algorithms do not use a heuristic, only the pheromone values are used. In order to guarantee

that an event is selected, the events are given a porportional range in [0,1]. If the randomly

generated value falls within the events range, the event is selected.

5.5.2 Pheromone Update

As mentioned previously, the ant algorithms differ in how they update their pheromone values.

The ant system updates its pheromones using the following equation.

AQ(x, y) = (1 − α) · AQ(x, y) + ∆AQ(x, y) (5.9)

where α is the pheromone evaporation rate. After the generation of ants has completed its run,

all edges are updated. If an edge receives no pheromone, then its current pheromone value

will be reduced. The amount of pheromone deposited on each edge (x,y) is calculated using

Equation 5.10.

∆AQ(x, y) =


k∑

i=1
S C(anti)

k if (x,y) cov. by any ant ∈ kbest

0 otherwise

(5.10)

where kbest is the set of the best k ants in the current generation and where the k value is

determined by the test engineer beforehand. That is, in a generation consiting of n ants, k ≤

n. The amount of pheromone to deposit is calculated by the S C() function, which works as

follows.

S C(anti) =
S tateChange(anti)
TourLength(anti)

· UniqueEvents(anti) (5.11)
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where anti is the i-th best ant run in the current generation, S tateChange() is the cumula-

tive state change of the entire ant’s run, TourLength() is the length of the ant’s run, and

UniqueEvents() is the number of unique events executed during the ant’s run, where 0 ≤

UniqueEvents() ≤ TourLength(). When calculating the state change using the S tateChange()

method, the system only counts the amount of change once for each event in an ant’s run, re-

gardless if the event is executed multiple times. This is done to discourage tests repeating the

same high state changing events. Furthermore, we further favour unique events by dividing by

the length of the tour and multiplying by the number of unique events. This will favour tests

with more unique events.

The antq algorithm works differently than the ant system algorithm. The equation for how

antq updates its pheromones is as follows.

AQ(x, y) = (1 − α) · AQ(x, y) + α ·

(
∆AQ(x, y) + γ · Max

u∈allowedy
AQ(y, u)

)
(5.12)

where γ is the discount factor, which is a part of the Q-Learning model. When an ant makes

a transition from one event to another, it immediately updates the edge using Q-Learning rein-

forcement. During this phase of the process the ∆AQ(x, y) value is 0. That is, we only update

the edge using the current pheromone value and the best outgoing pheromone value from the

new event. Once the generation of ants has completed its run, only the edges touched by an ant

are updated using Equation 5.10. During this phase of the process the Max
u∈allowedy

AQ(y, u) value is

0. That is, we only take into account the current pheromone value and the fitness of each ant’s

run.

5.5.3 Parameter Tuning

As with the Q-Learning algorithm, we needed to tune the parameters for both of the ant algo-

rithms. In this section we discuss the experiments conducted for both the ant system and antq

system in order to determine good parameter values.
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Algorithm 11 Ant System Algorithm
1: function AntSystem(length, generations, numAnts, q0, trailsGraph)
2: for i ∈ generations do
3: stateDiffs← {}
4: ants← {}
5: for j ∈ numAnts do
6: cumulativeDiff ← 0
7: antPath← {getPseudoInitialEvent()}
8: startAUT ()
9: for k ∈ length do

10: components← getComponents( f alse)
11: q← Rand.nextDouble()
12: if q < q0 then
13: event ← getMax(antPath, components, trailsGraph)
14: else
15: event ← getProportional(antPath, components, trailsGraph)
16: end if
17: currentS tate← getAbstractS tate(getComponents(true))
18: execute(event)
19: waitForGUI()
20: newS tate← getAbstractS tate(getComponents(true))
21: diff ← getS tateChangeRatio(currentS tate, newS tate)
22: cumulativeDiff ← cumulativeDiff + diff
23: currentS tate← newS tate
24: antPath.add(event)
25: if ExceptionManager.hasException() then
26: ExceptionManager.reportException()
27: end if
28: end for
29: shutdownAUT ()
30: writeCoverage()
31: stateDiffs.add(cumulativeDiff )
32: ants.add(antPath)
33: end for
34: trailsGraph.updateAll(stateDiffs, ants)
35: //Eq. 5.9. Ant Collaboration
36: end for
37: end function
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Algorithm 12 AntQ Algorithm - Lines 25 & 37 show how it differs from ant system
1: function AntQ(length, generations, numAnts, q0, trailsGraph)
2: for i ∈ generations do
3: stateDiffs← {}
4: ants← {}
5: for j ∈ numAnts do
6: cumalativeDiff ← 0
7: antPath← {getPseudoInitialEvent()}
8: startAUT ()
9: for k ∈ length do

10: components← getComponents( f alse)
11: q← Rand.nextDouble()
12: if q < q0 then
13: event ← getMax(antPath, components, trailsGraph)
14: else
15: event ← getProportional(antPath, components, trailsGraph)
16: end if
17: currentS tate← getAbstractS tate(getComponents(true))
18: execute(event)
19: waitForGUI()
20: newS tate← getAbstractS tate(getComponents(true))
21: diff ← getS tateChangeRatio(currentS tate, newS tate)
22: cumalativeDiff ← cumalativeDiff + diff
23: currentS tate← newS tate
24: antPath.add(event)
25: trailsGraph.updateTrail(antPath, getComponents( f alse))
26: //Eq. 5.12. Q-Learning Reinforcement
27: //∆AQ(x, y) is 0
28: if ExceptionManager.hasException() then
29: ExceptionManager.reportException()
30: end if
31: end for
32: shutdownAUT ()
33: writeCoverage()
34: stateDiffs.add(cumalativeDiff )
35: ants.add(antPath)
36: end for
37: trailsGraph.updateTouchedTrails(stateDiffs, ants)
38: //Eq. 5.12. Ant Collaboration
39: //γ · Max

u∈allowedy
AQ(y, u) is 0

40: end for
41: end function
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Ant System Tuning

In order to determine good parameter values, we conducted experiments on TerpSpreadsheet,

TerpWord, and ArgoUML. For both the α and q0 values we chose to experiment with the values

0.3, 0.6, and 0.9. Since we do not know the effects of any parameter values in this context, and

since it is not cost-effective to test all values in [0,1], we chose to test a spread of values. We

are not necessarily looking for the optimal parameter values, but rather we are looking for

guidance. As well, we want to determine if the parameter values have any significant effect

whatsoever. As with the Q-Learning experiments, these experiments consisted of test suites

of size 100 where each test was of length 20. We used 10 ants per generation and used the

best seven ants to update the edges. We ran each experiment five times and measured the code

coverage. The results can be seen in Table 5.4.

The results of the factorial ANOVA for TerpSpreadsheet showed that there was a significant

effect at the 0.05 level for both the evaporaton rate and the random selection value, but not their

interaction. The main effect for the evaporation rate yielded an F ratio of F(2, 36) = 9.816, p

<0.001. The post-hoc Tukey test showed that both values of 0.3 (M = 3621.07, SD = 110.34)

and 0.6 (M = 3618.53, SD = 87.92) were significantly better than an α value of 0.9 (M =

3505.07, SD = 85.11). The main effect for the random selection value yieled an F ratio of

F(2, 36) = 8.942, p = 0.001. The Tukey test showed that a q0 value of 0.3 (M = 3646.73, SD =

98.43) was significantly better than a value of 0.9 (M = 3520.56, SD = 107.85). The interaction

between the two factors resulted in an F score of F(4, 36) = 0.695, p = 0.6.

The results of the factorial ANOVA for TerpWord showed that there was a significant effect

at the 0.05 level for both the evaporation rate and the random selection value, but not their

interaction. The main effect for the evaporation rate yielded an F ratio of F(2, 36) = 4.705, p =

0.015. The Tukey test showed an α value of 0.3 (M = 5976.33, SD = 365.86) was significantly

better than a value of 0.9 (M = 5596.87, SD = 395.56). The main effect for the random selection

value yielded an F ratio of F(2, 36) = 4.011, p = 0.027. The Tukey test revealed that a q0 value

of 0.3 (M = 6036.2, SD = 374.57) was significantly better than a value of 0.6 (M = 5693.87,
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SD = 353.8). The interaction between the evaporation rate and the random selection value

yielded an F ratio of F(4, 36) = 0.363, p = 0.834.

As with the two previous results, the results of the factorial ANOVA for ArgoUML showed

that there was a significant effect at the 0.05 level for both the evaporation rate and the random

selection value, but not their interaction. The main effect for the evaporation rate resulted in

an F ratio of F(2, 36) = 7.081, p = 0.003. The Tukey test showed that an α value of 0.3

(M = 19555.13, SD = 576.38) and a value of 0.6 (M = 19762.33, SD = 676.39) were both

signicantly better than a value of 0.9 (M = 19080.53, SD = 867.62). The main effect for the

random selection paramater yielded an F ratio of F(2, 36) = 22.364, p <0.001. The Tukey test

revealed that a q0 value of 0.3 (M = 20027.4, SD = 379.07) was significantly better than both

0.6 (M = 19571.93, SD = 557.12) and 0.9 (M = 18798.67, SD = 723.42). Furthermore, 0.6

was significantly better than 0.9. Finally, the interaction between the two factors yielded an F

ratio of F(4, 36) = 0.678, p = 0.612.

In summary, all three applications benefited from low α values and low q0 values. Having

low α values means that the pheromones will reduce at a slower rate. Since the algorithm

reduces all pheromones regardless if the edge has been traversed, having a low α value allows

for the uncovered edges to remain desirable with high pheromone values. Furthermore, low

q0 values will favour random proportional selection rather than selecting the maximum edge

value, which also favours exploration.

AntQ Tuning

As with the ant system, we conducted experiments on TerpSpreadsheet, TerpWord, and Ar-

goUML. We ran test suites of size 100, where each test case was of length 20. We repeated

each experiment five times. Since we were attempting to tune three parameters, the number

of combinations (27) was too large to test in a reasonable amount of time1. Instead we used a

two-way combinatorial system to generate all pairs of values which resulted in nine combina-

1Each combination took approximately 5 hours to complete.
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Table 5.4: Ant System Parameter Tuning - Largest mean in bold

Statements
α q0 TerpSpreadsheet TerpWord ArgoUML

0.3 0.3 3711 6286 20011
0.3 0.6 3627 5750 19578
0.3 0.9 3526 5893 19075
0.6 0.3 3666 6107 20264
0.6 0.6 3598 5767 20041
0.6 0.9 3592 5823 18982
0.9 0.3 3563 5715 19807
0.9 0.6 3508 5564 19096
0.9 0.9 3444 5511 18338

tions. The results of the experiments can be seen in Table 5.5, which shows the average code

coverage for each combination of parameters. Both TerpSpreadsheet and TerpWord benefited

from high α, γ, and q0 values. ArgoUML, on the other hand, had the best results with α = 0.3,

γ = 0.6, and q0 = 0.3.

For each application we performed a factorial ANOVA in order to determine if any sin-

gle parameter or combination of parameters resulted in significantly different means. In all

three cases we found that there were no significant differences between any combination of

parameter values.

Following the ANOVA tests, we also performed a Tukey test on all three applications.

For both TerpSpreadsheet and TerpWord, we found that there was no significant difference

between any levels for each factor. The results for ArgoUML, however, did result in significant

differences. For the α values, the Tukey test showed that a value of 0.3 (M = 19941.27, SD =

502.59) was significantly better than a value of 0.6 (M = 19553.13, SD = 325.25). For the γ

value, the Tukey test showed that a value of 0.9 (M = 20068.6, SD = 460.03) was significantly

better than both 0.3 (M = 19491.53, SD = 291.49) and 0.6 (M = 19643.27, SD = 449.82).

Finally, the q0 results showed that a value of 0.3 (M = 19905.6, SD = 342.99) was significantly

better than a value of 0.9 (M = 19573.13, SD = 468.79).
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Table 5.5: AntQ Parameter Tuning - Largest mean in bold

Statements
α γ q0 TerpSpreadsheet TerpWord ArgoUML

0.3 0.3 0.9 3801 6348 19395
0.3 0.6 0.3 3788 6458 20170
0.3 0.9 0.6 3791 6423 20258
0.6 0.3 0.6 3814 6416 19450
0.6 0.6 0.9 3792 6304 19293
0.6 0.9 0.3 3774 6412 19916
0.9 0.3 0.3 3801 6230 19629
0.9 0.6 0.6 3765 6248 19466
0.9 0.9 0.9 3833 6471 20031

In summary, we found that no individual parameter had any significant effect on the code

coverage across all applications. Furthermore, for both TerpSpreadsheet and TerpWord, no

level of any factor had a signficant effect. For ArgoUML, the Tukey tests did show that some

levels of some factors had significantly better results. Since ArgoUML has a more complex

interface consisting of many widgets, it is likely that the tests are more sensitive to different

parameter values, whereas both TerpSpreadseet and TerpWord have simple interfaces that are

less sensative to changes in the parameter values. As well, it could be that the combinations of

values not chosen may have had a significant effect had we tested all 27 combinations.

5.6 Summary

In this section we looked at the architecture of our system and described each component in

detail. We then discussed our seven algorithms. First we described the two random algo-

rithms. The first algorithm makes selections completely randomly, whereas the second algo-

rithm makes selections based on the minimum edge values. Next we described our two greedy

algorithms. The first algorithm attempts to maximize event-pair coverage, whereas the sec-

ond greedy algorithm attempts to reduce the distance between events. We then discussed our

Q-Learning algorithm, which was borrowed from the literature. We described its selection pro-



Chapter 5. Dynamic GUI Test Generators 83

cess and its fitness function, which uses state change ratios to determine good actions. Finally

we discussed our two ant algorithms. The first is based on the original ACO system, and the

second uses antq. We discussed the differences between the two algorithms and discussed their

selection process in detail. We also ran experiments for the Q-Learning and ant algorithms in

order to determine good values for their tuning paramaters.



Chapter 6

Comparing Test Generators

In this section we compare the seven test generators discussed in Chapter 5. We run exper-

iments and analyze the code coverage, event metrics, error metrics, and cost. Furthermore,

we analyze the effectiveness of the fitness function used by the Q-Learning and ant colony

algorithms.

6.1 Experiment Setup

We ran experiments on six applications: ArgoUML, Buddi, Gantt Project, TerpSpreadsheet,

TerpWord, and TimeSlotTracker. The details of the applications can be seen in Table 6.1. We

stopped using FreeMind as it required a lot of mouse movement input, which our system does

not currently support, and it was difficult to achieve high levels of coverage. We instead added

two new applications, ArgoUML and Buddi, both of which have appeared in the literature [41]

[62]. We ran each algorithm six times on each application. The details of the test suites can be

seen in Table 6.2. We used two ε values for Q-Learning: 0.4 and 0.9. Based on the parameter

tuning (see Section 5.4.2), we determined that the simpler applications benefited from more

random selection.

The goal of the analyses is to determine if any algorithm is superior than the others, in gen-

eral. Therefore, when we analyze the data, we compare the combined data from all applications

84
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Table 6.1: Application Summary

Application Application Area Classes Lines of Code Branches
ArgoUML UML designer 1233 54632 24074
Buddi Budgeting software 1529 101949 43670
Gantt Project Project management 689 27804 8926
TerpSpreadSheet Spreadsheet 137 5449 2135
TerpWord Word processor 208 10340 3625
TimeSlotTracker Task organizer 487 10090 3115

Total 4283 210264 85545

rather than comparing each application separately. However, the applications all have different

values for key metrics, such as number of lines of code and number of uncaught exceptions. In

order to combine the data, we need to normalize the values so that no single application has a

greater effect on the results than any other application, as the results are on different scales. To

scale the data, we use unity-based normalization (also called feature scaling) [49] as shown in

the following equation:

X′ =
X − Xmin

Xmax − Xmin
(6.1)

where X is the measured value and Xmax and Xmin are the maximum and minimum values of the

metric for the application, across all runs of all algorithms.

When analyzing the data, we either performed a Welch test followed by a Games-Howell

post-hoc test, or we performed an ANOVA paired with a Tukey test [54]. The Welch test

and ANOVA are used to analyze the differences within group means. The results generated

from these tests only state whether or not there is a significant difference between the group

means. The Games-Howell and Tukey post-hoc tests are used to determine which factors

have significantly different means among the group. In the cases where the assumption of

homogeneity of variances was violated, we used the Welch and Games-Howell tests. Otherwise

we used the ANOVA and Tukey test.
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Table 6.2: Test Suite Details

Algorithm α γ q0 Ants k-best Length Size
Ant System 0.3 - 0.3 20 15 30 300
AntQ 0.3 0.9 0.3 20 15 30 300
Distance - - - - - 30 300
EPG - - - - - 30 300
Q-Learning - 0.9 0.4/0.9 - - 30 300
Random - - - - - 30 300
Random Min - - - - - 30 300

6.2 Code Coverage

In this section we analyze both the statement and branch coverage results for each application.

We plot the results and run Welch tests and Games-Howell post-hoc tests to determine if any

algorithm results in significantly more coverage.

6.2.1 Statement Coverage

The statement coverage results are shown in Table 6.3. In the case of ArgoUML and Buddi, the

distance reduction algorithm performed the best. In the case of Gantt Project, TerpSpreadsheet,

TerpWord, and TimeSlotTracker, the event pair greedy algorithm performed the best. Figure

6.1 shows a box plot for the scaled coverage results. It should be noted that the results of

Buddi seem low compared to the number of statements reported in Table 6.1. However, the

application includes all of its third-party library code in its single JAR file. Much of the third-

party code is not used and does not contribute to the actual application.

We performed a Welch test and Games-Howell post-hoc test to determine if there were any

significant differences between the seven algorithms. The Welch test showed that there was

a significant difference in statement coverage at the p < 0.05 level. The Games-Howell test

showed that both the distance reduction greedy (M = 0.73, SD = 0.24) and event-pair greedy

(M = 0.79, SD = 0.19) algorithms performed significantly better than all other algorithms: ant
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Figure 6.1: Statement Coverage

colony (M = 0.39, SD = 0.22), antq (M = 0.46, SD = 0.24), Q-Learning (M = 0.39, SD = 0.23),

random (M = 0.44, SD = 0.26), and random minimum (M = 0.55, SD = 0.19). Furthermore,

random minimum performed significantly better than ant colony.

Figures 6.2 to 6.7 show the increase in coverage over time for each algorithm. In all cases

the event pair greedy algorithm dominates all other alogorithms.

6.2.2 Branch Coverage

The branch coverage results are shown in Table 6.4. As with the statement coverage results,

both the distance reduction greedy and event-pair greedy algorithms perfomed the best in all

cases. Figure 6.8 shows a box plot for the scaled coverage results.
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Figure 6.2: ArgoUML Cov. Increase
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Figure 6.3: Buddi Cov. Increase
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Figure 6.4: Gantt Project Cov. Increase
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Figure 6.5: TerpS. Cov. Increase
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Figure 6.6: TerpWord Cov. Increase
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Figure 6.7: TimeSlot Cov. Increase
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Table 6.3: Statement Coverage

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 21208 21278 22205 22063 21289 20950 21108
Buddi 15204 15122 15948 15897 14978 15008 15501
GanttProj 17674 17888 18195 18322 17336 17992 17661
TerpSpread 3933 3934 3936 4019 3941 4010 4011
TerpWord 7046 7222 7451 7498 7293 7076 7213
TimeSlot 6721 6832 6936 6958 6696 6837 6870
Total 71786 72276 74671 74756 71533 71874 72363

Table 6.4: Branch Coverage

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 5332 5349 5721 5656 5399 5211 5277
Buddi 3624 3586 3884 3836 3520 3545 3698
GanttProj 3593 3595 3700 3741 3586 3586 3676
TerpSpread 1242 1239 1255 1292 1257 1282 1276
TerpWord 1942 1987 2034 2056 2015 1934 1966
TimeSlot 1371 1416 1489 1504 1341 1423 1440
Total 17104 17172 18083 18085 17118 16981 17333

The results of the Welch test and Games-Howell post-hoc test follow the same pattern as

with the statement coverage. The Welch test showed that there was a significant difference in

means at the p < 0.05 level. The Games-Howell test showed that both the distance reduction

(M = 0.71, SD = 0.21) and event-pair greedy (M = 0.77, SD = 0.14) algorithms performed

significantly better than all other algorithms: ant colony (M = 0.34, SD = 0.17), antq (M

= 0.38, SD = 0.19), Q-Learning (M = 0.37, SD = 0.24), random (M = 0.36, SD = 0.24), and

random minimum (M = 0.49, SD = 0.2). Random minimum also performed significantly better

than ant colony.
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Figure 6.8: Branch Coverage
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Table 6.5: Event Coverage

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 387 384 718 739 384 412 434
Buddi 227 221 387 386 189 196 228
GanttProj 407 395 817 785 370 417 468
TerpSpread 92 92 97 111 96 153 162
TerpWord 282 284 398 396 289 318 344
TimeSlot 191 186 197 199 156 184 191
Total 1586 1562 2614 2616 1484 1680 1827

6.3 Event Metrics

In this section we look at three event metrics. First we look at the number of events each

algorithm covered. Second, we analyze the number of event pairs covered by each algorithm,

regardless of the pair’s distance. Finally, we look at the number of event pairs covered with

length one (that is, events that were executed one after the other). We call this event-1-pair

coverage.

6.3.1 Event Coverage

We measured the event coverage by counting the number of events that appear in the event-

pair graph. The summary of events for each application can be seen in Table 6.5. The box plot

showing the scaled data is shown in Figure 6.9.

The Welch test showed that there was a significant difference in means at the p < 0.05 level.

The Games-Howell test showed that both the distance reduction greedy (M = 0.69, SD = 0.31)

and event-pair greedy (M = 0.73, SD = 0.27) algorithms performed signficantly better than all

other algorithms: ant colony (M = 0.19, SD = 0.23), antq (M = 0.19, SD = 0.25), Q-Learning

(M = 0.1, SD = 0.09), random (M = 0.36, SD = 0.29), and random minimum (M = 0.47, SD

= 0.31). Random minimum also performed significantly better than both ant algorithms and

Q-Learning. Finally, the random algorithm performed significantly better than Q-Learning.
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Figure 6.9: Event Coverage
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Table 6.6: Event-pair Coverage

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 44650 45196 71011 76001 39001 40139 42576
Buddi 15749 14442 28368 26926 11410 10291 15092
GanttProj 28861 30273 44733 44867 21888 25925 31046
TerpSpread 7379 7266 8586 9592 7834 10876 11911
TerpWord 32165 34230 47863 48040 34787 30019 33295
TimeSlot 13826 15001 20351 20157 9091 12013 14642
Total 142630 146408 220912 225583 124011 129263 148562

6.3.2 Event-pair Coverage

We measured the event-pair coverage by counting the number of edges that exist within the

event-pair graph. The results can be seen in Table 6.6. As well, a box plot showing the scaled

results is shown in Figure 6.10.

The results of the Welch test showed that there was a significant difference in means at

the p < 0.05 level. The Games-Howell test showed that both the distance reduction greedy

(M = 0.83, SD = 0.24) and event-pair greedy (M = 0.87, SD = 0.19) algorithms performed

significantly better than the other algorithms: ant colony (M = 0.25, SD = 0.15), antq (M =

0.28, SD = 0.16), Q-Learning (M = 0.12, SD = 0.1), random (M = 0.24, SD = 0.26), and

random minimum (M = 0.42, SD = 0.27). Random minimum also performed significantly

better than ant colony and Q-Learning. Finally, both ant algorithms performed significantly

better than Q-Learning.

6.3.3 Event-1-pair Coverage

We measured event-1-pair coverage by counting all edges with a distance of one in the event-

pair graphs. Table 6.7 shows the results for each algorithm on each application. Furthermore,

Figure 6.11 shows the box plot of the scaled results.

The results of the Welch test showed that there was a significant difference in means at the p
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Figure 6.10: Event-pair Coverage
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Table 6.7: Event-1-pair Coverage

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 4572 4592 6092 6104 3009 5045 5913
Buddi 2468 2199 4359 3714 1694 1856 3472
GanttProj 2443 2859 4216 4032 2156 3313 4923
TerpSpread 1792 1784 2839 2549 2194 2334 3132
TerpWord 2753 3396 4883 4585 4029 3942 5326
TimeSlot 1381 1725 2492 2240 1036 1839 2688
Total 15409 16555 24881 23224 14118 18329 25454

< 0.05 level. The Games-Howell test showed that the distance reduction greedy (M = 0.85, SD

= 0.09) and random minimum (M = 0.9, SD = 0.12) algorithms performed significantly better

than all other algorithms: event-pair greedy (M = 0.74, SD = 0.13), ant colony (M = 0.25,

SD = 0.2), antq (M = 0.32, SD = 0.16), Q-Learning (M = 0.19, SD = 0.2, and random (M =

0.45, SD = 0.18). The event-pair reduction algorithm performed significantly better than the

remaining four algorithms. Lastly, the random algorithm performed significantly better than

the two ant algorithms and Q-Learning.

6.4 Error Metrics

We counted the number of unique uncaught exceptions for each run of each algorithm on each

application. Table 6.8 shows the average and total number of exceptions found across all six

runs. Figure 6.12 shows a box plot of the scaled number of exceptions found.

We performed an ANOVA and Tukey post-hoc test on the results. The ANOVA showed

that there was a significant effect at the p < 0.05 level [f(6, 161) = 3.89, p = 0.001]. The

Tukey test showed that the distance reduction greedy (M = 0.53, SD = 0.28) algorithm found

a significantly higher number of exceptions than random (M = 0.31, SD = 0.23) and random

minimum (M = 0.29, SD = 0.18). As well, the event-pair greedy (M = 0.5, SD = 0.2) algorithm

found a significantly higher number of exceptions than random minimum. There were no
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Figure 6.11: Event-1-pair Coverage
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Table 6.8: Unique Uncaught Exceptions - Average (Total)

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 10(19) 10(18) 16(26) 15(25) 10(20) 9(19) 10(18)
Buddi 0 0 0 0 0 0 0
GanttProj 0 0 0 0 0 0 0
TerpSpread 6(8) 6(8) 6(10) 7(8) 7(15) 6(10) 6(7)
TerpWord 11(16) 12(21) 11(15) 10(15) 11(15) 10(13) 9(14)
TimeSlot 4(9) 4(8) 5(9) 5(9) 3(7) 4(7) 4(7)
Total 31(52) 32 (55) 38(60) 37(57) 31(57) 29(49) 29(46)

significant differences between any other pairs of algorithms.

6.5 Cost

We measured the cost of an algorithm as its running time. The average running time for each

algorithm on each application can be seen in Table 6.9. As well, Figure 6.13 shows the scaled

running time in hours for each run across all applications. We can see that the two random

algorithms performed the best, followed by the two greedy algorithms. The two ant algorithms

performed moderately well, whereas Q-Learning performed the worst. Since part of the Q-

Learning algorithms involves running steps from previous tests in order to place the system in

a specific state, it follows that the algorithm would take longer to run.

The Welch test showed that there was a significant difference in means at the p < 0.05 level.

The Games-Howell test showed that random (M = 0.12, SD = 0.08) and random minimum (M

= 0.11, SD = 0.13) both performed significantly faster than the other five algorithms: ant

colony (M = 0.51, SD = 0.2), antq (M = 0.52, SD = 0.2), distance reduction greedy (M = 0.3,

SD = 0.13), event-pair greedy (M = 0.3, SD = 0.14), and Q-Learning (M = 0.83, SD = 0.14).

The two greedy algorithms performed significantly better than the two ant algorithms and Q-

Learning. Finally, the two ant algorithms performed significantly better than Q-Learning.
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Figure 6.12: Unique Uncaught Exceptions

Table 6.9: Cost (Hours)

Algorithm
Application Ant AntQ Distance EPG Q-Learn Rand RandMin
ArgoUML 5.56 5.63 5.91 5.85 6.11 5.52 5.56
Buddi 5.4 5.22 4.26 4.27 5.77 3.96 4.03
GanttProj 4.5 4.7 4.07 4.05 4.75 3.97 3.8
TerpSpread 3.92 3.89 3.7 3.83 4.51 3.48 3.49
TerpWord 4.13 3.7 3.55 3.51 4.15 3.38 3.32
TimeSlot 4.61 4.62 4.16 4.10 4.85 3.94 3.98
Total 28.12 27.77 25.65 25.61 30.15 24.25 24.18
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Table 6.10: Fitness Function Evaluation

Application Pearson Value
ArgoUML 0.414
Buddi -0.026
Gantt Project 0.339
TerpSpreadsheet -0.213
TerpWord 0.228
TimeSlotTracker 0.497

6.6 Fitness Function Evaluation

In this section we aim to determine if there is a relationship between our antq fitness function

and code coverage. We captured the fitness function data and the statement coverage data for

each test case from the antq algorithm. We measured the Pearson correlation; the results are

shown in Table 6.10. Figures 6.14 to 6.19 show the accompanying scatter plots.

ArgoUML, Gantt Project, and TimeSlotTracker had moderate to strong positive correla-

tions. TerpWord had a weak positive correlation. Finally, Buddi and TerpSpreadsheet had

weak negative correlations. The results show that there is a relationship between the state

change ratio of a test and its statement coverage; however, it is application-dependent. Events

that open windows will have the greatest impact on the state change ratio and will be favoured

for selection. Therefore, applications with many useful windows will likely show a strong

positive correlation between fitness and coverage. The applications that had strong positive

correlations had multiple windows that affect the application’s operation. TerpSpreadsheet,

which did the poorest, has few windows. The windows it does have are used for open and save

operations, font selection, and border selection for the cells. Since events that open windows

will be favoured over other events as they have a larger impact on the fitness, applications with

less useful windows will likely have a negative correlation between fitness and coverage.
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Figure 6.14: ArgoUML Scatter
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Figure 6.15: Buddi Scatter
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Figure 6.16: Gantt Project Scatter
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Figure 6.17: TerpSpreadsheet Scatter
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Figure 6.18: TerpWord Scatter
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6.7 Lessons Learned

The following are the lessons learned based on the results in this chapter.

1. We have discovered that the simpler greedy selection algorithms performed the best in

terms of coverage and faults found. It appears that there is a relationship between event-

pair coverage and code coverage, and therefore, since the greedy algorithms attempt to

maximize evet-pair coverage, they performed better.

2. We also found that a large difference in code coverage does not correlate to a large

difference in faults found. For example, though Q-Learning performed poorly in terms

of coverage, it still found as many faults as the other algorithms.

3. Based on the results, it appears that event-1-pair coverage does not work well as a factor

in test generation. The random minimum algorithm achieved high levels of event-1-pair

coverage, but it did not achieve high levels of code coverage nor of faults found.

4. Looking at the results of the two ant algorithms, it appears that they only performed

moderately well. They were not able to achieve high levels of event, event-pair, or event-

1-pair coverage. This may be due to the fitness function used. Basing tests on the amount

of state change may end up favouring the same few events, such as those that open

windows. Though the algorithms did not perform as well as we had hoped, we believe

they can be improved by using different fitness functions.

5. The analysis of the fitness function shows that it has a positive correlation in some in-

stances but not in others. The functions’ effectiveness depends heavily on the application

under test, and therefore it does not make for a good general-purpose fitness.
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6.8 Summary

To summarize, both of the greedy algorithms performed best in terms of statement, branch,

event, and event-pair coverage. The distance reduction greedy algorithm found the most faults.

The two random algorithms cost the least to run, with the random minimum algorithm perform-

ing the best. In the next section we investigate whether or not there is a relationship between

any of the coverage metrics and the number of faults found.



Chapter 7

Test Adequacy Criteria

In this chapter we attempt to find relationships between the coverage measures and the faults

found by the testing techniques we studied. As well, we attempt to find relationships between

the GUI coverage measures and the statement and branch coverage measures. We use multiple

regression analysis in order to determine if any of the independent measures can be used to

predict the dependent values.

7.1 Results Analysis

We used the results from the previous experiments as shown in Chapter 6 in our multiple

regression analysis. For all analyses, we used the normalized data and not the raw data.

7.1.1 Coverage Analysis

Our first set of analyses looks at the relationship between the GUI metrics and the statement and

branch metrics. We want to know if it is possible to predict the statement and branch coverage

values based on the GUI coverage values. We ran analyses for both statement and branch

coverage and report on them separately. Figures 7.1 to 7.6 show scatter plots that compare the

statement and branch coverage results against the events, event pairs, and event-1-pairs results.

104



Chapter 7. Test Adequacy Criteria 105

The straight line in all scatter plots represents the regression line (line of best fit). For both

statement and branch coverage, it appears that the number of events and event-pairs covered

may have a a positive effect. As well, it appears that event-1-pair coverage does not have any

positive effect on the statement and branch coverage values.

Statement Coverage

We ran a multiple linear regression with statement coverage as the dependent variable and

event, event pair, and event-1-pair coverage as the independent variables. We used a stepwise

regression, which works by adding the most significant variable to the model first, followed by

the next most significant, and so on. Variables that are not significant are excluded from the

model and are not used as predictors.

The results of the analysis showed that the variables event coverage and event-pair coverage

are statistically significant in predicting the statement coverage, F(2, 165) = 112.019, p < 0.001,

R2 = 0.5761. Both variables added statistically significantly to the prediction, p < 0.05. Event-

1-pair coverage was not found to be significant and was not included in the model.

The general from of the equation to predict statement coverage is as follows:

S tatementCoverage = 0.369 + 0.338(Event-Pair Coverage) + 0.166(Event Coverage) (7.1)

The R2 values shows that 57.6% of the variation in coverage can be explained by both

event-pair coverage and event coverage, though moreso by the former. Therefore, tests should

aim to cover as many event pairs and events as possible in order to achieve higher levels of

coverage.

1R2 represents the percentage of variation explained by the model.
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Branch Coverage

We performed a similar analysis for branch coverage as we did for statement coverage. The

results showed that only event-pair coverage was statistically significant in predicting branch

coverage, F(1, 166) = 199.566, p < 0.001, R2 = 0.546. The variable added statistically sig-

nificantly to the prediction, p < 0.05. Both event coverage and event-1-pair coverage were

excluded from the model for not adding significantly to the prediction.

The general form of the equation to predict branch coverage is as follows:

BranchCoverage = 0.313 + 0.505(Event-Pair Coverage) (7.2)

The R2 value shows that 54.6% of the variation in coverage can be explained by event-pair

coverage. Therefore, tests should aim to cover as many event pairs as possible in order to

increase branch coverage.

7.1.2 Exception Analysis

Figures 7.7 to 7.11 show the scatter plots comparing the normalized number of uncaught excep-

tions found against each of the five coverage metrics. The plots for statement and branch cov-

erage show that some relationship may exist between the coverage measures and the number of

exceptions found. The plots for the GUI coverage metrics suggest that little to no relationship

exists between the amount of GUI coverage and the number of exceptions found.

We performed a multiple linear regression analysis using the number of exceptions found

as the dependent variable and the five coverage metrics as the independent variables using

stepwise regression. The results showed that only branch coverage was statistically significant

in predicting errors, F(1, 166) = 14.929, p < 0.001, R2 = 0.083. The variable added statistically

significantly to the prediction, p < 0.05. All other variables were excluded from the model as

they did not add significantly to the prediction.

The general form of the equation to predict errors is as follows:
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Statements vs. Event−1−Pairs

Event−1−Pairs

S
ta

te
m

en
ts
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Exceptions = 0.247 + 0.289(Branch Coverage) (7.3)

The R2 states that only 8.3% of the variation can be explained by the branch coverage.

Therefore, much of the variation in the exceptions found is unexplained. This is unsurpirsing

as we saw in the previous chapter that Q-Learning did not achieve high levels of coverage

but it performed well in terms of exceptions found. There may be other factors that affect the

exceptions, such as the inputs used during the test, or the distance between event-pairs. Further

study is required to determine good predictors of exceptions, if any.

7.2 Summary

The results of our analyses show that event-pair coverage is a good predictor of both statement

and branch coverage. The analysis for the exceptions found show that branch coverage is the

best predictor; however, it only explains a small percentage of the variation in the the number

of exceptions found. Therefore, further study is required to determine a good predictor for

exceptions.
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Figure 7.9: Exceptions vs. Events
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Chapter 8

Conclusion

In this thesis we investigated dynamic test generation for GUIs. We first introduced static

testing systems, such as GUITAR, and showed how they generate infeasible test cases. We

then introduced the concept of dynamic testing and discussed how it differs from static testing.

We conducted experiments using our own dynamic testing system in order to determine good

test lengths, which found that moderate to long tests perform better than short tests. Following

that, we discussed seven dynamic testing algorithms and compared their performance on six

applications. We found that the greedy selection algorithms performed the best in terms of

coverage and faults found. Finally, we investigated test adequacy criteria and found that event-

pair coverage is a good predictor of code coverage, and we found that branch coverage is the

only predictor of faults found, albeit a weak one.

8.1 Summary of Contributions

The following are the major contributions of this thesis:

1. We created the concept of event-pair graphs and defined their creation and usage. Event-

pair graphs can be used to represent pairs of events that have been executed in that order

within the same test case. Each event is represented as a vertex and each directed edge
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represents the relationship. The weight of the edge can be used to represent such things

as the distance between the two events, or any other value the user wants. We showed

how event-pair graphs can be used as both an input to a test generator, and as a measure

of the quality of a test suite.

2. We conducted a study to determine if short or long test cases perform better. We used

the event-pair greedy algorithm and generated test suites of different sizes and lengths.

We compared the code coverage and fault finding abilities of each test suite and found

that moderate to long tests perform better than short tests.

3. We created and implemented various algorithms for generating tests that consist of GUI

events. We first implemented two random algorithms. The first algorithm makes choices

completely randomly, whereas the second algorithm always chooses the least used edge.

We then implemented two greedy algorithms. The first algorithm, event-pair greedy,

attempts to cover as many event pairs as possible. The second algorithm, distance re-

duction greedy, attempts to reduce the distance between events. Following that, we im-

plemented the Q-Learning algorithm, which attempts to find paths in the GUI that result

in large amounts of change in the GUI’s state. Finally, we implemented two ant colony

algorithms. The first algorithm implemented the normal ant colony algorithm, whereas

the second algorithm implemented antq, which combines ant colony optimization and

Q-Learning.

4. We conducted a study comparing the seven algorithms on six subject applications. We

measured the code coverage, GUI event coverage, run time, and faults found. In terms of

the code coverage, GUI event coverage, and faults found, both of the greedy algorithms

performed the best. In terms of run time, the two random algorithms performed the best.

5. Using the results from the previous experiments, we performed multiple linear regression

analysis in order to determine which, if any, of the coverage metrics can be used as

predictors of both code coverage and the faults found. We found that event-pair coverage
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was a good predictor for statement and branch coverage. We also found that only branch

coverage was a predictor of faults found, but that it only accounted for a small percentage

of the variation.

8.2 Future Work

In the future we want to investigate the following:

1. We want to investigate the effect that various scalar inputs (e.g. integers and strings)

have on coverage and faults found. Based on our studies, it appears that the event-pair

greedy algorithm is sufficient at testing a GUI. However, it may benefit from a more

sophisticated input generation algorithm. Currently our system only uses scalar inputs

selected from a set of random values from a predefined pool. It may be possible to

determine specific scalar inputs to the system that will cover new code or find more

faults.

2. We want to investigate whether or not the ant algorithms can be improved upon. It may

be possible to improve the algorithms by using different tuning parameters, different

generation sizes and kbest values, a different fitness function, or by adding a heuristic. We

believe the algorithms have a lot of potential and that some of these changes will improve

the results.
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