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Abstract 

The incidence of cognitive impairments, including normal age-associated spatial learning 

impairment (ASLI), has risen dramatically in past decades due to increasing human 

longevity.  As such trends are expected to continue it has become imperative to better 

understand the underlying molecular biology and genetics of ASLI. In this study, data from a 

number of past gene expression microarray studies in rats are integrated and used to 

perform a meta- and network analysis aimed at identifying key ASLI genes and gene 

networks. 

To ensure the generation of biologically relevant results, I first examine the importance of 

data selection and data preprocessing. This analysis shows that for effective downstream 

analysis to take place, both batch effects and outlier samples must be properly removed. 

Next, using a set of selected datasets, I perform a meta-analysis and identify a number of 

significant differentially expressed genes across both age and ASLI in rats. Knowledge based 

gene network analysis shows that these genes affect many key functions and pathways in 

aged compared to young rats. These expression dependent functional changes might 

manifest as various neurodegenerative diseases/ disorders or to syndromic memory 

impairments at old age. Other aging related molecular changes might result in altered 

synaptic plasticity, thereby leading to normal, non-syndromic learning or spatial learning 

impairments such as ASLI. 

Lastly, to overcome the limitations of traditional microarray data analysis, I employ a 

reverse-engineering mathematical modeling approach (called weighted gene co-expression 

network analysis or WGCNA) to identify key genes and their networks in ASLI. Using this 

approach I identify several reproducible network modules each highly significant with genes 

functioning in specific biological functional categories. It identifies a “learning and memory” 

specific module containing many potential key ASLI hub genes, some of which are also 

identified (but not prioritized) in the meta-analysis. Many of these candidate hub genes not 
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only show differential co-expression between young and aged networks, but are also 

reproducible in independent datasets. Functions of these ASLI hub genes link a different set 

of mechanisms to learning and memory formation, which meta-analysis was unable to 

detect. 

Modern meta- and network approaches as implemented in this study can be applied to any 

large-scale dataset to identify potential key molecules and networks and thus generate new 

hypotheses. Future follow up research can help understand and pinpoint possible molecular 

mechanisms underlying complex behavioral traits such as cognitive impairments including 

ASLI. 

 

Keywords 

Aging, spatial learning, cognitive impairments, gene expression microarray, data integration, 

meta-analysis, inter-array correlation, outlier removal, batch effect, effect size, pathway 

analysis, co-expression networks, WGCNA, RDAVIDWebService, network module, hub gene.  
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Chapter 1 Introduction 

1 Age-associated spatial learning impairment: genes and 
gene networks discovery from high-throughput large 
scale gene expression data 

1.1 Aging and cognition 

Aging has debilitating effects on many human physiological functions (e.g. vision, hearing, 

hormonal balance, motivation, physical activity, speed of movement, coordination, and 

cognition) (Glorioso and Sibille, 2011; Young, 1997). However, one of the most significant 

effects of aging is the decrease in normal brain function, particularly, cognition and 

memory, which is critical to carry out daily life activities (Sharma et al., 2010). Symptoms 

related to cognitive decline range from benign senescent forgetfulness (as seen in normal 

aging) to the memory loss that characterizes various age-related neurodegenerative 

disorders such as Alzheimer’s (Landfield et al., 1992; Mattson and Magnus, 2006; Tanzi and 

Bertram, 2001), Parkinson’s (Everse and Coates, 2009; Poletti et al., 2011), and Huntington’s 

diseases (Dumas et al., 2013). Deficits in memory function may also arise from other 

psychiatric and neurological disorders such as mental retardation, autism, attention deficit 

disorder, learning disability, schizophrenia, and depression (Khan et al., 2014). These 

symptoms and disorders in the aging brain are often characterized by various physical 

changes including losses of white matter integrity, cortical thickness, grey matter volumes, 

metabolic activity, and neurotransmitter functions (Li and Rieckmann, 2014). However, 

normal aging by itself is associated with variable rates of cognitive performance and motor 

decline, which is generally gradual and progressive and can be severely impairing for the 

most seriously affected individuals.   

Normal aging of the brain is generally described as the aging of the central nervous system 

in the absence of clinically-diagnosed neurodegenerative or psychiatric diseases, or of a 

related pathology (Glorioso and Sibille, 2011; Sharma et al., 2010). This normal age related 

memory decline, termed as “age-associated memory impairments”, is generally observed 
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over age 50 and its prevalence is estimated to be 35 – 98% (Larrabee and Crook, 1994). 

While molecular changes occurring during normal brain aging substantially overlap with 

those observed in the context of many age-gated neurodegenerative and psychiatric 

diseases, it is necessary to investigate this aspect separately from those affected by aging-

related disease processes in order to understand the contribution of normal aging to 

memory deficits. As the general life expectancy of human populations is increasing, 

understanding brain aging and aging-related cognitive declines has become a key challenge 

for neuroscience and psychology in the 21st century (Gallagher et al., 2003; Li and 

Rieckmann, 2014; Sharma et al., 2010). 

1.2 Cognitive processes and their impairments through 
normal aging  

Cognition is a broad term that applies to processes such as memory, association, language, 

attention, concept formation, and problem solving (Sharma et al., 2010). Cognitive 

processes are mental processes by which knowledge is acquired through perception, 

intuition, reasoning, judgment, and learning. Decline in these processes is therefore 

characterized by increasing difficulty with speech, coordination, learning, and the 

processing of new information quickly. These manifestations are highly heterogeneous and 

can be individual, family, or population specific. They continue to increase with the current 

trend in longevity in most populations (Burger et al., 2007; Glorioso et al., 2011; Peleg et al., 

2010). As such they are emerging as a major societal challenge.  

Normal age-associated declines in neurological functioning have been extensively studied.  

These works have demonstrated a ~40 to 60% decline in cognitive speed at age 80 

compared to age 20 in non-demented adults (Glorioso and Sibille, 2011; Lindenberger, 

2014). Interestingly, aging is known to differentially affect aspects of neurological 

functioning. For example, the so-called ‘‘crystallized abilities’’ related to knowledge or 

expertise, such as vocabulary, world knowledge, general knowledge, implicit memory,  and 

occupational expertise do not decline or may even show improvement over the life span. In 

contrast, the ‘‘fluid abilities’’ or those reliant on processing speed, problem solving, 
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inhibitory function, working memory, long-term memory, and spatial ability decline with 

age. Studies have clearly shown that like humans other non-human primates also exhibit 

age-related declines in cognitive abilities such as reasoning, mental speed, memory, and 

spatial learning (Burgess et al., 2002). These findings are further supported by studies 

involving aging canines and rodents (Burger et al., 2007; Glorioso et al., 2011; Keller, 2006; 

Peleg et al., 2010).  

1.3 Learning and memory 

Learning is the process by which we acquire knowledge about the world and memory is the 

process by which that knowledge is encoded, stored, and later retrieved (Sharma et al., 

2010). Learning is the process that modifies subsequent behavior while memory is the 

ability to remember past experiences. Memory is one of the earliest cognitive functions to 

show decline during aging (Sharma et al., 2010). 

From mollusks to mammals, memory can be generally categorized into short-term and long-

term memory (Khan et al., 2014; Paul et al., 2009; Sharma et al., 2010). Short-term memory 

has a limited capacity and lasts for a short period of time. Long-term memory is often 

divided into two main types: declarative (or explicit) memory and procedural (or implicit) 

memory. Declarative memory answers the question “what”, and includes knowledge of 

facts and events (that can be conventionally transmitted or expressed) such as places, 

people, and things, and the meaning of these facts. Declarative memory refers to those 

memories that can be consciously recalled (or "declared"). It can be further sub-divided into 

episodic memory and semantic memory. Episodic memory deals with personally 

experienced events specific to a particular context such as time and place, and conscious 

recollection of those events. However, semantic memory involves knowledge of these facts, 

meanings, and concepts taken independent of the context in which they were learned. 

Procedural memory, acquired through repetition and practice, answers the question “how”. 

It is the unconscious memory of skills, habits, and how to do things, particularly the use of 

objects or movements of the body, such as tying a shoelace, playing a guitar, or riding a 
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bike. Procedural or implicit memory deals with information about motor or perceptual skills 

that may not be orally transmitted. 

Episodic memory, which depends on the ability to remember in a determined temporal and 

spatial context, is especially vulnerable to normal aging and shows a decline with age. While 

semantic memory does not show any age-related decline (rather, it improves with age), 

procedural memory remains relatively unaffected by age (Khan et al., 2014; Sharma et al., 

2010).  

1.4 Spatial memory 

Spatial memory is typically conceptualized as a subtype of episodic memory because it 

stores information within the spatio-temporal frame (Rolls, 2013; Sharma et al., 2010). 

Spatial memory answers the question “where”. It can be defined as that brain function 

responsible for recognizing, codifying, storing, and recovering spatial information about the 

arrangement of objects or specific routes (Paul et al., 2009). Spatial memory is represented 

in the brain by at least two different dimensions or reference frames: egocentric 

(personal/body reference frame) and allocentric (external/environmental reference frame) 

(Galati et al., 2010; Hartley et al., 2014; Paul et al., 2009). Spatial frameworks tied to a 

particular body part, object or action, are represented by egocentric referencing (e.g. 

catching a ball or picking a fruit from a tree). Throughout the brain, individual neurons are 

often found to have spatially restricted firing fields, which carry egocentric spatial 

information about the source of sensory information or destination of planned actions 

(Hartley et al., 2014). For example, a neuron in the primary visual cortex might respond to a 

stimulus in a particular part of the visual field, while a neuron in the primary somatosensory 

cortex might respond to a tactile stimulation of a particular body part, and the firing of a 

motor neuron might help to direct limb movements in a specific direction. In each case, 

neural activity reflects the spatial relationship between a stimulus or response and a part of 

the body.  
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Spatial frameworks that are fixed with respect to the outside world, independent of 

particular actions, body parts, and objects are represented by allocentric referencing (e.g. 

navigating long distances over natural terrain or through a new city). Considerable evidence 

supports that aged humans have trouble navigating or finding their way in a large 

environment and remembering spatial relationships among landmarks (Sharma et al., 

2010). In some studies, humans show a 30-80% drop in performance of spatial memory 

tasks with advancing age. Similar findings related to ASLI are supported by numerous 

studies in rats (Blalock et al., 2003; Burger et al., 2007; Rowe et al., 2007),  mice (Pawlowski 

et al., 2009; Peleg et al., 2010; Schimanski and Nguyen, 2004; Verbitsky et al., 2004), and 

Monkey (Gallagher et al., 2003).  

1.5 Spatial memory and hippocampus 

Neuroimaging studies in the medial temporal lobes and prefrontal cortex have shown an 

age-related decrease in functional activity that is subsequently linked to poorer memory 

performance (Khan et al., 2014). The different types of long-term memory are stored in 

different regions of the brain and undergo quite different processes. Declarative memories 

are processed by the hippocampus, entorhinal cortex and perirhinal cortex (all within the 

medial temporal lobe of the brain), but are consolidated and stored in the temporal cortex 

and elsewhere. Procedural memories, on the other hand, do not appear to involve the 

hippocampus at all, and are encoded and stored by the cerebellum, putamen, caudate 

nucleus and the motor cortex, all of which are involved in motor control.  

During the past decades strong evidence has emerged showing that the hippocampus is 

critical to learning and memory, particularly age-associated allocentric spatial memory 

(Hartley et al., 2014; Paul et al., 2009; Rolls, 2013; Sharma et al., 2010). This allocentric 

spatial long-term learning and memory framework is dependent on a specialized system 

centered on the hippocampus, especially the right hippocampus, a phylogenetically ancient 

and well-preserved structure, which in humans is found deep in the medial temporal lobes 

(Burgess et al., 2002; Hartley et al., 2014; Paul et al., 2009). The parts of the hippocampus 

that are of most interest to spatial memory are the dentate gyrus and the CA1, and CA3 
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regions of the Cornu Ammonis (CA). The encoding process of allocentric spatial memory in 

the hippocampal neuron is characterized by a localized activity called “place fields” 

(Gallagher et al., 2003). Notable differences are observed in the dynamic properties (e.g. 

being less stable) of place fields in older animals compared to aged. Studies of human 

subjects with hippocampal damage provide evidence that this brain region plays a critical 

role in spatial or topographical memory (Burgess et al., 2002). Spatial function is also 

dependent on those medial temporal and parietal regions through which the hippocampus 

receives its input (Hartley et al., 2014).  

The hippocampus contains certain spatial cells that provide an exquisitely detailed 

representation of an animal’s current location and heading (Hartley et al., 2014). The major 

categories of spatial cells include place cells, head direction cells, grid cells, and boundary 

cells, each of which has a characteristic firing pattern. These cells seem to be able to create 

a mental/cognitive map of space or spatial information in the hippocampus (Burgess et al., 

2002; Paul et al., 2009; Sharma et al., 2010).  

In summary, the hippocampus is integral to memory function (including spatial memory) 

and is greatly affected by aging (Burgess, 2002; Gallagher et al., 2003; Morris et al., 1982). 

Furthermore, it is among the first regions to be affected during dementia (Mesulam, 1999; 

Pawlowski et al., 2009; Small et al., 2002; Verbitsky et al., 2004). However, the mechanisms 

underlying age dependent cognitive impairments, including spatial learning impairments 

such as ASLI are not as well understood.  

1.6 Functional and structural changes in the brain are 
connected to cellular morphology 

Numerous studies including longitudinal and cross-sectional fMRI studies have 

demonstrated consistent grey and white matter volume loss or changes in specific areas in 

the brain with age (Glorioso and Sibille, 2011; Khan et al., 2014). Decrease in grey matter 

volume is observed in specific areas of the frontal cortex and is consistent among studies. In 

contrast, the hippocampus and amygdala display variable effects or unchanged white 
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matter volumes between studies. The area-specificity of these changes is consistent with 

age-related cognitive changes. Thus, substantial evidence indicates that structural and 

functional changes correlate with cognitive changes. However, studies have also shown that 

there is little or no neuronal death during normal aging. Instead, grey matter volume losses 

appear to result from age-related reduction in dendritic spine density and synaptic losses. 

These findings are also supported by age-associated changes in the glial processes (Glorioso 

and Sibille, 2011; Khan et al., 2014).   

In addition to structural, functional, and cellular morphological changes, aging neurons 

show vulnerability to metabolic changes, cellular insult, and other environmental factors 

(Glorioso and Sibille, 2011). Progressive morphological and molecular changes within life-

long existing neurons and glia likely underlie age-related cognitive, motor, and mood 

changes and disease susceptibility. As the neurons age they display evidence for increasing 

DNA damage, accumulation of reactive oxygen species, calcium dysregulation, 

mitochondrial dysfunction, and inflammatory processes (Foster and Kumar, 2002; Kelly et 

al., 2006). Improving cellular metabolic environment through diet and caloric restriction 

seem to improve memory performance in various studies (Zeier et al., 2011).  

1.7 Molecular mechanisms of memory 

Human subjects as young as 14 years of age display molecular changes in the brain on a 

continuum with age-associated changes that extend throughout old age (Erraji-

Benchekroun et al., 2005). It is thus likely that molecular aging partially extends from 

developmental processes (Glorioso and Sibille, 2011). The changes in dendritic spine 

density, and synaptic losses during normal brain aging contributing to learning and memory 

impairments, have been attributed to the underlying molecular mechanism known as 

synaptic plasticity. Synaptic plasticity is the process by which connections between co-active 

neurons are strengthened or weakened (Kelly et al., 2006; Neves et al., 2008). Functional 

and structural changes in dendritic spines and synapses are considered to be the basis of 

learning and memory in the brain. This subject has been well studied in the brain for general 

cognition, as well as in the hippocampus in relation to spatial learning (Khan et al., 2014; 
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Neves et al., 2008; Schimanski and Nguyen, 2004). The much studied model of synaptic 

plasticity known as long-term potentiation (LTP) was first identified in the hippocampus. 

Memory processing in the hippocampus was found associated with synaptic stability and 

the conversion of simple synapses into complex synaptic structures such as perforated 

synapses and multi-synaptic boutons. Indeed, an increase in the number of perforated 

synapses has been associated with the induction and maintenance of LTP (Khan et al., 

2014). Evidence also suggests that LTP can critically influence the expression of spatial 

learning and memory (Schimanski and Nguyen, 2004). Other forms of activity-dependent 

synaptic plasticity have been documented, including long-term depression (LTD), EPSP-spike 

(E-S) potentiation, depotentiation, and de-depression (Neves et al., 2008). 

Synaptic plasticity and related molecular mechanisms contributing to learning and memory 

formation in the brain are thought to be driven by many unique genetic modulators. These 

modulators include neurotrophins (e.g. BDNF), neurotransmitters such as serotonin, 

dopamine, glutamate, as well as many other neurological disease-related genes (Glorioso 

and Sibille, 2011; Khan et al., 2014). BDNF is one of the best characterized modulator of 

normal brain aging (Tapia-Arancibia et al., 2008). It is an activity dependent secreted growth 

factor that declines steadily with age in the brain. Serotonin has been hypothesized to play 

a role in normal brain aging, as its levels and selected receptor functions are age-regulated. 

Moreover, serotonin shares signaling pathways with other known age-regulatory molecules, 

such as BDNF and IGF-1 (Mattson et al., 2004a; Mattson et al., 2004b). Glutamate, the brain 

predominant excitatory neurotransmitter, is also a probable candidate for modulating brain 

aging, as it facilitates the release of BDNF and is essential for LTP, synaptic plasticity, and 

neurogenesis (Mattson, 2008). There is also strong correlative and causative evidence that 

dopamine plays a role in the modulation of brain aging (Backman et al., 2006). For example, 

it is implicated in several age-gated diseases, including Parkinson’s disease, Huntington’s 

disease, schizophrenia, and bipolar disorder. Components of the dopamine system also 

decline with age, including the dopamine transporter as well as the dopamine 1 (D1) and 

dopamine 2 (D2) receptors. In addition to declining dopamine signaling having cross-talk 

with caloric restriction pathways and directly mediating age related cognitive decline, 
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dopamine pathways also have cross-talk with ROS and other age-related molecular 

pathways (Glorioso and Sibille, 2011). However, beyond these genetic modulators, there 

seems to be other mechanisms or factors involved in the synaptic plasticity process. 

1.8 Transcriptional regulation of memory formation and 
consolidation 

Aging and age-associated cognitive impairments are complex and multifactorial and involve 

both genetic as well as environmental determinants (Buckner, 2004; Finch and Tanzi, 1997). 

Over the past few decades, a significant amount of evidence demonstrates that alterations 

in gene expression (transcription and translation) and protein degradation in neurons across 

several brain regions are required for proper memory storage and retrieval (Jarome and 

Lubin, 2014). Among the mechanisms required for synaptic plasticity, coordinated changes 

in gene expression are essential for the consolidation and maintenance of most lasting 

forms of memory (Kandel, 2001; Penney and Tsai, 2014). Indeed, these transcriptional and 

translational changes result in structural and functional changes to synapses, leading to 

alterations in synaptic plasticity (Kandel, 2001; Penney and Tsai, 2014). 

An additional level of transcriptional regulation occurs in the form of chromatin remodeling, 

also known as epigenetic modification, whereby the accessibility of specific regions of the 

genome to the transcription machinery can be modulated by local posttranslational 

modification of histone proteins (Penney and Tsai, 2014). Epigenetic modifications have 

emerged as an attractive molecular genetic mechanism involved in transient and persistent 

gene transcriptional regulation during long-term memory formation and storage (Franklin 

and Mansuy, 2010; Graff and Mansuy, 2008; Jarome and Lubin, 2014; Levenson and Sweatt, 

2005; Liu et al., 2009; Sweatt, 2010). There is strong evidence that epigenetic mechanisms 

are critical regulators of learning-dependent synaptic plasticity. The most important or 

relevant molecular mechanisms include DNA methylation and the modification of histone 

proteins by acetylation, phosphorylation, and methylation, among others. Interestingly, 

short-term memory, which usually lasts from minutes to few hours, does not require new 

RNA and protein synthesis. Posttranscriptional modification of existing molecules is 
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sufficient for short-term memory formation and storage. However, the formation of long-

term memory requires several hours and involves new RNA and protein synthesis that 

sequentially occurs at precise times during the process (e.g. training) (Abel and Lattal, 

2001). Chromatin remodeling in the hippocampus is necessary for stabilizing long-term 

memory, including spatial memory (Peleg et al., 2010; Penney and Tsai, 2014; Sweatt, 

2010). Thus gene expression has been identified as the key mechanism by which changes 

can occur in the cellular state of key molecules such as neurotrophins and 

neurotransmitters, as well as many epigenetic factors (Barco et al., 2006; Kandel, 2001; 

Levenson et al., 2006; Peleg et al., 2010). Although, studies have identified some genes 

involved in the regulation of synaptic plasticity processes and provided some insight into 

the mechanisms of learning and memory formation, the molecular mechanisms of age-

associated learning impairments remains to be fully understood. 

1.9 Assessment of hippocampus dependent spatial 
memory in animals 

In order to understand the molecular mechanisms at work in ASLI, animal models have been 

used extensively in the past. Evaluation of hippocampal-based spatial learning and memory 

has been assessed by numerous behavioral paradigms in rodents (Paul et al., 2009; Sharma 

et al., 2010). These paradigms include various forms of mazes such as the T-maze, the 

radial-arm maze, the Barnes circular maze, the Morris water maze and other experimental 

devices (Morris et al., 1982; Morris et al., 1986). The Morris water maze is one of the most 

widely used methods for the evaluation of allocentric spatial learning and memory including 

ASLI. Learning is faster in this device than in other mazes (radial maze, circular maze) and 

often considered as the gold standard. The Morris water maze consists of a round pool filled 

with water made opaque using milk or white paint. Animals learn to locate the platform 

hidden (2-3 cm) below the water from four different starting points. Since water immersion 

represents an aversive stimulus, training starts with a period of habituation during which 

the animals are immersed in the water and allowed to swim for a few minutes without a 

platform. Later on, a platform is placed in a fixed position in one of the sectors (quadrants) 

and the animals go through a period of acquisition. During this period they are given a 
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variable number of daily trials and animals learn the location of the hidden platform based 

on distal cues. With time the latency to locate the platform decreases. The strength of 

learning is evaluated afterwards by a probe trial in which the hidden platform is removed 

and the amount of time spent in the former region of platform is measured. The Morris 

water maze is most suitable for rats whereas the T-maze, Barnes maze or radial mazes are 

often used for mice. 

1.10 High throughput microarray studies involving ASLI 

As explained above memory formation involves transcriptional, translational, and 

epigenetic changes triggered by the postsynaptic activation of neurotransmitter receptors 

(Barco et al., 2006; Kandel, 2001; Levenson and Sweatt, 2006; Peleg et al., 2010). Attempts 

in the last decade to gain insight into aging and age-associated learning impairments have 

been aided by advances in genome-wide methods and technologies, particularly gene 

expression studies involving microarrays. Microarray technology, which interrogates 

thousands of genes in a single experiment, has seen tremendous growth in the last decade 

and has become increasingly accessible and affordable. As a result, there has been an influx 

of large amounts of data, much of which has been deposited in various public data 

repositories. These repositories also contain data from studies involving animal models and 

microarrays, more specifically, from studies that attempted to understand the gene 

expression changes related to aging and age-associated memory impairments in the 

hippocampus in humans (Lu et al., 2004) using post-mortem tissues (Glorioso and Sibille, 

2011) and in animal models such as monkeys (unpublished) and in rodents after behavioral 

training using the Morris water maze (Blalock et al., 2003; Burger et al., 2007; Burger et al., 

2008; Haberman et al., 2013; Kadish et al., 2009; Pawlowski et al., 2009; Rowe et al., 2007; 

Verbitsky et al., 2004) or other learning paradigm (Peleg et al., 2010). Data from these 

microarray gene expression studies were generally used in differential expression analysis 

and functional and pathway analysis. Results show that learning induces a complex 

reprogramming of gene expression involving the coordinated regulation of many genes, 

which is also affected by aging processes.  
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However, the results of the individual studies are heterogeneous and often difficult to 

interpret. They often highlight different gene sets and pathways, have limited conclusions, 

and do not consider their broader implications that may go beyond individual experiments. 

It is therefore desirable to integrate results from these studies towards a consensus view of 

the genes affected and the molecular mechanisms underlying brain aging and age-

associated learning impairments. This is now possible because of the availability of 

considerable amount of original microarray data in the public microarray data repositories, 

as well as the availability of improved statistical analytical methods. Meta-analysis is one 

such method that can integrate results from multiple independent studies. Meta-analysis 

also offers powerful ways that have been used in the past to identify genes that are 

significantly differentially expressed between two treatment groups (Ch'ng et al., 2015; 

Huan et al., 2015; Uddin and Singh, 2013). 

1.11 Inferring gene (regulatory and co-expression) networks 
from microarray gene expression profiles 

Gene regulation is one of the most important biological processes in organisms. Genes 

interact in networks, where the expression level of one gene is governed by the combined 

action of multiple other genes to execute various cellular functions in response to both 

endogenous (e.g. developmental) and exogenous (e.g. light) stimuli (Aluru et al., 2013) 

(Ahmad et al., 2012). The elucidation of these complex inter-gene interactions is 

fundamental to biological discoveries.  

The biological effect of one gene can dynamically affect the expression and subsequent 

action of other genes through a complex network of interactions often referred to as a gene 

network. A gene network is loosely defined as a set of genes that interact with one another 

through transcription factors, DNA segments, and other gene and protein products thereby 

governing the rate at which genes in the network are transcribed into mRNAs (Rau et al., 

2010). The regulatory mechanisms/architecture controlling gene expression also controls 

subsequent cellular behavior such as development, differentiation, homeostasis and 

response to stimuli. There are experimental methods based on, for example, chromatin 
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immunoprecepitation, DNaseI hypersensitivity, or protein-binding assays that are capable of 

determining the nature of gene regulation in a given system, but they are time-consuming, 

expensive and require antibodies for each transcription factor (Maetschke et al., 2014). As a 

result, the ability to model complex regulatory interactions such as those in gene networks, 

understanding the topology and elements of a gene network, and how they behave under 

different experimental paradigms has been of increasing interest as a key to metazoan 

systems biology (Bonneau, 2008; Cooke et al., 2009; Long et al., 2008).  

Gene network modeling can infer networks where interactions between two genes can 

refer to an indirect regulation via proteins, metabolites, and ncRNA that have not been 

measured directly. The networks can also include physical interactions, if the two 

interacting partners are a transcription factor and its target, or two proteins in the same 

complex (Bansal et al., 2007). Gene networks provide a systematic understanding of 

molecular mechanisms underlying biological processes (Allen et al., 2012). A gene network 

analysis is able to identify regulatory or co-expression relationships from thousands of gene 

expression profiles generated from microarray experiment and is also able to depict a 

graphical network representation of the underlying regulatory and signaling processes. 

Large body of microarray data contains information which may allow reconstruction of 

regulatory networks (Needham et al., 2009). Significant gene lists from a single- or meta-

analysis of microarray studies are traditionally used for functional or pathway analysis in 

order to understand their biological significance. However, molecular pathway analysis of 

differentially expressed genes obtained from expression profiles is constrained by the 

current state of molecular knowledge and does not provide a prioritization of molecules 

within the affected pathways (Gaiteri et al., 2014).  

Although, the traditional expression analysis methods have significant potential to infer 

candidate genes that may contribute to a certain signaling pathway, it is not often possible 

to determine which transcription and regulatory factors mediate this regulation (Needham 

et al., 2009). Moreover, traditional functional and pathway analysis can help us identify only 

known interactions that are present in currently available knowledge bases. For example, 
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for many significant genes, information in the knowledge base is not available about the 

genes’ function and pathways, or how the genes co-express or interact with one another in 

a gene regulatory network. Often, in a gene interaction network that is based on a 

knowledge base, association is made between two or more genes solely based on their co-

citation in the literature databases, when in reality no biological interaction exists between 

them. Moreover, traditional pathways or regulatory networks constructed from a set of 

gene lists do not reveal the importance of genes that are key modulators in the pathways. 

This can be overcome by constructing gene networks using mathematical modeling 

approaches. In complex multi-factorial traits such as learning and memory formation many 

genes are involved in a complex regulatory or co-expression relationship. Inference of gene 

network models can help identify key genes and their networks based on gene expression 

data alone. 

1.12 Methods available for constructing gene networks from 
microarray data  

In recent years, microarray gene expression data have been used extensively for inferring 

gene networks from a wide variety of sources, for example, from Yeast (Dawy et al., 2011; 

Friedman et al., 2000; Friedman, 2004; Nachman et al., 2004; Nariai et al., 2004; Wang et 

al., 2009; Zoppoli et al., 2010), Bacteria (Hodges et al., 2010; Wang et al., 2010), virus 

(Recchia et al., 2008), Arabidopsis (Locke et al., 2005; Needham et al., 2009; Zeilinger et al., 

2006), honey bee (Ko et al., 2009), mouse (Ghazalpour et al., 2006; Ko et al., 2009), human 

B cells (Basso et al., 2005), breast cancer (Niida et al., 2008; Schafer and Strimmer, 2005), 

brain transcriptome (Levine et al., 2013; Miller et al., 2010; Voineagu et al., 2011), and 

transcriptional changes in Alzheimer's disease and normal aging (Miller et al., 2008). 

However, no such published research is available to date in the context of ASLI.  

A large number of gene network inference methods have been developed for steady-state 

data over the past two to three decades (Allen et al., 2012; Bansal et al., 2007; De Smet and 

Marchal, 2010; Emmert-Streib et al., 2012; Hache et al., 2009; Maetschke et al., 2014; 

Margolin et al., 2006; Markowetz and Spang, 2007; Olsen et al., 2009; Penfold and Wild, 
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2011; Villaverde and Banga, 2014; Werhli and Husmeier, 2007). Gene network models have 

been constructed from microarray datasets using a variety of reverse engineering machine 

learning and statistical methods. The earliest proposed models for gene networks from 

microarray data include co-expression networks (Eisen et al., 1998), weight matrices 

(Weaver et al., 1999), and discrete Boolean models (Akutsu et al., 1999; D'Haeseleer et al., 

2000). These methods suffered from disadvantages and information loss. Subsequent 

commonly used unsupervised statistical methods that have been proposed for this purpose 

can be classified into four categories (Allen et al., 2012; Aluru et al., 2013; Emmert-Streib et 

al., 2012): 

1. Probabilistic network – based approaches 
2. Correlation-based method 
3. Partial-correlation-based methods 
4. Information-theory based methods  

1.12.1 Probabilistic network – based approaches  

These are mainly based on Bayesian probability theory (Neapolitan, 2009) and are referred 

to as Bayesian networks. A Bayesian network is a probabilistic graphical network model that 

represents a set of relationship or interactions depicted by edges or arrows between 

variables (e.g. genes as nodes). In mathematical terms a Bayesian network, defined as (G, 

P), consists of a Directed Acyclic Graph such as (G) and a joint probability distribution (P) of 

the variables that together satisfy the Markov condition (Djebbari and Quackenbush, 2008; 

Neapolitan, 2009; Needham et al., 2007).  

Bayesian networks have become popular methods for modeling gene regulatory networks 

from microarray data, since they are able to represent complex stochastic processes and 

allow combinatorial and non-linear relationships among variables of complex biological 

systems (Friedman et al., 2000; Hartemink et al., 2002). The resulting networks provide a 

high level description of the gene expression system by predicting how genes interact with 

each other through regulatory actions (Dawy et al., 2011). Networks constructed using 

Bayesian network theory also accommodate missing data by modeling the effect of hidden 

variables such as genes, transcription factors and proteins not included on a particular 
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microarray (Needham et al., 2007). They offer a simple way to visualize the structure of the 

model and express causal relationships or dependencies between variables (Neapolitan, 

2009; Needham et al., 2007). Bayesian networks can also incorporate prior knowledge of 

gene relationships (Hecker et al., 2009; Ko et al., 2009; Needham et al., 2007).  

Bayesian networks have also been used to infer gene networks from microarray gene 

expression data and from a wide variety of sources in many areas of the biological sciences , 

for example, to infer cellular networks (Friedman, 2004), transcriptional regulation (Brun et 

al., 2007; Cooke et al., 2009), genetic networks (Djebbari and Quackenbush, 2008), 

phylogenetic networks (Strimmer and Moulton, 2000), protein signaling pathways (Sachs et 

al., 2005), protein-protein interactions (Burger and van Nimwegen, 2008; Woolf et al., 

2005), and biological pathways (Hodges et al., 2010; Ko et al., 2009). Bayesian network 

inference has also been used in systems biology (Troyanskaya et al., 2003) and transcription 

regulatory module discovery (Huttenhower et al., 2009).  

For time-series data, two commonly used methods are dynamic Bayesian networks 

(Husmeier, 2003; Perrin et al., 2003; Zou and Conzen, 2005) and ordinary differential 

equations (Cao and Zhao, 2008; Chen et al., 1999). Dynamic Bayesian networks are an 

extension of Bayesian network, which allows a dynamic process to be modeled. Bayesian 

network methods seem to show the greatest promise in the analysis of steady state 

expression data to find causal relationship among the variables (Friedman et al., 2000; 

Needham et al., 2007).  

1.12.2 Correlation-based method 

Correlation-based methods (Langfelder and Horvath, 2008; Li et al., 2009; Zhang and 

Horvath, 2005) are one of the most popular gene network modeling approach. In WGCNA 

(Zhang and Horvath, 2005), a relatively new statistical approach, an undirected correlation 

or co-expression network is created by calculating connection strength between each pair 

of genes. The resulting data provide a network adjacency or connection strength matrix. 

The connection strength between each pair of genes is the absolute Pearson correlation of 
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their expression profiles from microarray data raised to a power of beta.  Beta is the weight, 

a soft threshold, and is determined in such a way so that the resulting network follows 

approximate scale free topology.  However, a hard (Carter et al., 2004) threshold is also 

applied to determine the biological meaningfulness of the connections. These correlation-

based methods have been used in several studies and have shown that they are not only 

useful in interpreting biological results but also in identifying important hub genes and gene 

modules (Li et al., 2009; Mao et al., 2009; Maschietto et al., 2015; Mason et al., 2009; Ruan 

et al., 2010; Stuart et al., 2003; Torkamani et al., 2010; Voineagu et al., 2011; Ye and Liu, 

2015).  

The WGCNA method has been successfully applied in recent studies to identify several 

novel disease-related genes (Carlson et al., 2006; Ghazalpour et al., 2006; Horvath et al., 

2006; Oldham et al., 2006). The WGCNA R package (Langfelder and Horvath, 2008) 

implements both weighted and unweighted correlation networks and identifies modules or 

subnetworks using hierarchical clustering approaches. Aside from the many functions 

available for network construction and module/sub-network identification, the R package 

also provides functions for calculating topological properties and network visualization. Co-

expression networks serve mainly to explore the functionality of genes on a systems level 

(Zhang and Horvath, 2005) and do not aim to be causal representations of regulatory 

networks. However, they can include both indirect and direct relationships between pair of 

genes. 

1.12.3 Partial-correlation-based methods 

Partial-correlation-based methods are based on graphical Gaussian model theory (Cox and 

Wermuth, 1996; Dempster, 1972; Koller and Friedman, 2009). Ggraphical Gaussian model is 

a graphical model which assumes that all variables are distributed according to a 

multivariate normal distribution with a specific structure of the inverse of the covariance 

matrix (Emmert-Streib et al., 2012). Partial-correlation-based methods infer the conditional 

dependency by the non-zero entries in the concentration matrix, 𝐶 = �𝑐𝑖,𝑗� =  𝑆−1 also 

called the precision matrix, which is the inverse of the covariance matrix. The zero entries 
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𝑐𝑖,𝑗 =  0 in the concentration matrix imply conditional independency between the 

expression levels of gene i and j given the expression of all other genes; in other words, two 

genes do not interact directly with each other (Allen et al., 2012).  

1.12.4 Information-theory based methods 

The most popular information-theory-based methods are the relevance networks (Butte 

and Kohane, 2000) and mutual information networks such as ARACNE (Algorithm for the 

Reconstruction of Accurate Cellular Networks) (Basso et al., 2005; Margolin et al., 2006). 

The principle idea of relevance networks is to compute all mutual information values for all 

pairs of genes, for a given dataset, and declare mutual information values as relevant if their 

corresponding correlation coefficient value is larger than a given threshold. The resulting 

network is constructed based on this threshold by including an edge between two genes in 

the respective adjacency matrix of the network; otherwise no edge is included between 

them. ARACNE is similar to relevance networks and uses mutual information to determine 

the dependency among the genes. However, ARACNE adds a second step in which it then 

removes indirect interactions using a process known as data processing inequality (DPI). 

ARACNE has been successfully applied to construct gene regulatory networks in the context 

of specific cellular types, and demonstrated good performance (Basso et al., 2005; Margolin 

et al., 2006).  

A number of other mutual information based methods have also been described in the 

literature, for example, CLR (context likelihood of relatedness) (Faith et al., 2007), C3NET 

(conservative causal core) (Altay and Emmert-Streib, 2010), SA-CLR (synergy augmented 

CLR) (Anastassiou, 2007; Watkinson et al., 2009); MRNET (maximum relevance, minimum 

redundance) (Meyer et al., 2007), and others (reviewed in (Emmert-Streib et al., 2012). 

1.13 Exploring genes and gene networks in ASLI 

In light of the discussion above it is clear that the molecular mechanisms of learning and 

memory formation are highly complex and have yet to be fully understood. It is therefore 

critical to identify important genes and explore how they communicate in molecular 
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networks in order to understand the molecular mechanisms contributing to learning and 

memory formation. This is timely, given that the use and availability of microarrays in 

animal models (e.g. rats, mice) of ASLI have generated a large body of genome-wide gene 

expression results. In addition, several statistical and mathematical modeling approaches 

have been developed – such as meta-analysis and gene co-expression network analysis – 

that utilize microarray gene expression data. However, no such published research is 

available to date in the area of ASLI that uses meta-analysis or gene co-expression network 

analysis. Therefore, I propose the following hypothesis and major objectives. 

1.14 Hypothesis and objectives 

I hypothesize that it is possible to identify novel genes and their co-expression networks 

critical during aging and learning impairments using meta-analysis and mathematical 

modeling on microarray gene expression data. I have the following three objectives to test 

my hypothesis.  

Objective 1 (chapter 2): Perform selection, collection, quality control, and preprocessing of 

ASLI gene expression data, and examine their importance for downstream meta- and 

network analysis. 

 Objective 2 (chapter 3): Integrate a set of microarray gene expression data using meta-

analysis methods, identify and characterize genes that may be involved in ASLI, and identify 

and characterize gene networks based on existing knowledge. 

Objective 3 (chapter 4): Identify key genes and their networks in ASLI by gene co-expression 

network modeling using WGCNA. 

This research would allow one to identify key genes that may be affected by age, learning 

impairments, or learning impairments associated with aging for rats. Moreover, it will offer 

valuable insight into the possible regulatory mechanisms of the genes involved and the 

specific role they may play in cognitive impairments, specifically ASLI, which can provide 

valuable information for generating new hypotheses for future experimental research. This 
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research will have significant implications for studying complex disorders from a broader 

system’s perspective.  
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Chapter 2 Data Collection and Preprocessing 

2 Proper data collection and preprocessing of 
microarray gene expression data are critical for 
effective downstream analysis 

2.1 Introduction 

Microarray technology allows simultaneous measurement of the expression level of 

tens of thousands of genes in a single experiment (Lockhart et al., 1996; Schena et al., 

1995). Gene expression analysis using microarrays allowed new insights into the cells 

and revolutionized research in many areas of biological science. Further, public 

microarray data repositories have allowed submission of data by independent scientists 

for thousands of gene expression studies. These data are available to the general public. 

This has created unique opportunities to undertake appropriate meta-analysis studies 

(Rung and Brazma, 2013; Tseng et al., 2012). Gene expression data from multiple 

relevant studies can be combined to obtain a more precise estimate of gene expression 

differentials and pathway signatures in the context of a well-designed biological 

problem. Meta-analysis of microarray gene expression data increases the statistical 

power to accurately and reliably characterize gene expression patterns (Ramasamy et 

al., 2008; Rodriguez-Zas et al., 2008). It has also proved to be highly useful in the field of 

gene network analysis. For example, Oldham et.al. (2006) investigated the functional 

organization of the transcriptome in distinct regions of the human brain. They 

assembled four independent microarray datasets generated from 160 human brain 

control samples. In a comparative meta-analysis, in order to better understand the 

neurodegenerative disease pathways, Miller et.al. (2010) merged data from over 1000 

microarray samples from 18 human and 20 mouse datasets, representing various 

diseases, brain regions, study designs, and Affymetrix platforms. 

One major challenge in combining microarray data across study and platform in meta-

analysis is the issue of heterogeneity. Some of the major sources of  heterogeneity 
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include: a) differences in the technology used in the study; b) differences in 

experimental design (subject or sample, and goal of the study); c) multiple different 

probes for the same gene; d) variability in probes used by different platforms; e) choice 

of preprocessing algorithms by the original study-authors; and f) differences in 

quantification of gene expression (Goldstein et al., 2010; Moreau et al., 2003; 

Ramasamy et al., 2008). These can make any form of processed data or result from such 

studies (e.g. published gene list, p-values, ranks, or processed expression matrix) 

unsuitable for use in a meta-analysis. (Ramasamy et al., 2008). For example, published 

gene lists (PGLs) generally represent only a subset of the genes actually studied, and 

information from many genes will be completely absent. Both the gene expression data 

matrix and PGL depend heavily on the choice of the preprocessing algorithm used. 

Furthermore, PGL is also affected by the choice of analysis method, the significance 

threshold, and the annotation builds used in the original study, all of which usually differ 

between studies. Therefore, it is recommended that feature-level extraction output or 

original raw expression data files (rather than preprocessed files) from different studies 

be used for any meta-analysis (Goldstein et al., 2010; Ramasamy et al., 2008). In case of 

Affymetrix microarrays the original raw expression data files are called CEL files.  

Gene expression changes that are detected in a microarray could reflect selective, 

biologically relevant alterations in transcription level commonly referred to as biological 

variation or they could reflect variations caused by many kinds of experimental artifacts 

known as technical variation (Bolstad et al., 2003; Durinck, 2008; Pevsner, 2009; Talloen 

and Gohlmann, 2009). The sources for experimental (technical) variations include 

within-study variations such as the biological experiment (e.g. RNA isolation, RNA purity 

or quantity, tissue heterogeneity, inter-individual variation), microarray experiment (e.g. 

reverse transcription of mRNA, different labeling efficiency of fluorescently labeled 

nucleotides, print-tip effects, fluorescent scanner settings, signal measurement), 

manufacturing of the microarrays and all necessary reagents (e.g. batch-to-batch 

variation), and same experiment conducted in different labs (between-study variation). 

These variations may result in differences in brightness among slides. The purpose of 
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preprocessing is to deal with such unwanted technical artifacts. Preprocessing is 

performed on raw microarray data to remove the systematic bias in the data as much as 

possible while preserving the variation in gene expression that occurs because of 

biologically relevant changes in transcription (Schuchhardt et al., 2000). Following array 

quality control, three key steps in preprocessing are background correction, 

normalization, and summarization.  

Quality control can be performed at different stages of array preprocessing starting 

from the beginning (Ramasamy et al., 2008; Talloen and Gohlmann, 2009). Quality 

control involves both image quality and data quality assessment. Major experimental 

errors can be and should be detected early in the preprocessing by simply viewing 

microarray images using, for example, MAS 5.0 (Affymetrix, 2001), affyPLM (Bolstad, 

2006), Simpleaffy (Wilson and Miller, 2005) or dChip software (Li and Wong, 2001a). 

However, quality control using affyPLM is the most recommended and adopted 

approach in the meta-analysis and microarray data user community (Goldstein et al., 

2010). 

Background correction is performed to remove background noise from the measured 

signal. Typical examples of non-biological background signal are nonspecific signals such 

as unspecific binding of transcripts, background signal from incomplete washing of the 

array, or background patterns across arrays, which have a drastic influence on the weak 

signal compared to the larger signal in terms of log2 fold changes (Talloen and 

Gohlmann, 2009). Normalization is a process that allows the comparison of gene 

expression levels among multiple microarrays in a single experiment or across multiple 

experiments, platforms, and studies. Summarization refers to the process in which 

information about multiple probes is integrated to yield a single measurement for the 

expression level of one transcript. 

Various methods have been proposed for each of the preprocessing steps and thus offer 

a great number of possible combinations of choices (Lim et al., 2007; Talloen and 
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Gohlmann, 2009).  This presents a difficult challenge to the microarray user community 

with regards to deciding on which method would perform the best. Some of the 

commonly used preprocessing procedures for Affymetrix microarrays are summarized in 

Table 2.1. Common background correction and normalization methods include linear 

scaling (implemented in Affymetrix MAS 5.0 software) (Affymetrix, 2001), quantile 

normalization (Bolstad et al., 2003), GC-RMA (Wu et al., 2004), variance stabilization 

normalization (VSN) (Huber et al., 2002), and rank-invariant normalization (Li and Wong, 

2001a; Schadt et al., 2001; Stuart et al., 2001; Tseng et al., 2001). For Affymetrix arrays, 

there have been several approaches to summarizing probe-level data. Three of the most 

popular methods are Tukey biweight weighted average (implemented in Affymetrix 

MAS 5.0 software) (Affymetrix, 2001), model based expression index (MBEI) (Li and 

Wong, 2001b), and robust multi-array approach (RMA) (Irizarry et al., 2003a). Though 

each method has its own advantages and disadvantages, they have now become 

industry standard and have been implemented in the R BioConductor package 

(http://www.bioconductor.org/packages/release/bioc/html/affy.html). 

Table 2.1 A summary of four commonly used preprocessing procedures, MAS5, MBEI, 

RMA, and GCRMA. 

Procedure Background correction Normalization Summarization Reference 

MAS5 Ideal (full or partial) 
MM subtraction 

Linear scaling Tukey biweight (Hubbell et al., 
2002) 

RMA Signal (exponential) 
and noise (normal) 
close-form 
transformation 

Quantile Median polish (Irizarry et al., 
2003b) 

GCRMA Optical noise, probe 
affinity and MM 
adjustment 

Quantile Median polish (Wu et al., 2004) 

MBEI None Invariant set Multiplicative 
model fitting 

(Li and Wong, 
2001a) 

Note. Table adopted from (Lim et al., 2007). 

http://www.bioconductor.org/packages/release/bioc/html/affy.html
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Several groups compared and evaluated the performance of different preprocessing 

(normalization and summarization) methods, particularly, MAS 5.0, MBEI, and RMA in 

the context of traditional differential expression analysis (Bolstad et al., 2003; Irizarry et 

al., 2003b; Irizarry et al., 2006) or gene network analysis (Harr and Schlotterer, 2006; 

Lim et al., 2007). Irizarry et al. (2003b) show that, the RMA method has a slight edge 

over MAS 5.0 and MBEI in terms of superior sensitivity and specificity (i.e. the true and 

false detection rate). Harr and Schlotterer (2006) concluded that for the detection of 

differentially expressed genes the RMA/GCRMA normalization methods are superior, 

and for network analysis of co-expressed genes within a single array the MBEI summary 

method performs significantly better. However, Lim et al. (2007) benchmarked four 

commonly used normalization procedures (MAS5, RMA, GCRMA and MBEI) (Table 2.1) 

in the context of reverse engineering of protein–protein and protein–DNA interactions 

and suggest that MAS5 provides the most faithful cellular network reconstruction. So, it 

appears that there is no ‘golden standard’ and no method is best under every 

circumstance (Cope et al., 2004; Goldstein and Guerra, 2010; Irizarry et al., 2006). All the 

methods in Table 2.1 generally perform equally well. The choice often depends on 

personal preference and the type of downstream application of the preprocessed data. 

Previous research suggests that correlations among co-regulated genes are sensitive to 

different processes during the normalization procedure (Harr and Schlotterer, 2006). 

Therefore, it is necessary to evaluate these methods before proceeding into any kind of 

meta- or gene network analysis. 

However, often some of the technical/systematic variations described above, for 

example, reagents used from different lots or arrays handled by different technicians at 

different days cannot be corrected by the above normalization processes. The term 

“batch” generally refers to microarrays processed at one site over a short period of time 

using the same platform. The cumulative error introduced by these time and place-

dependent experimental variations is referred to as “batch effects” (Chen et al., 2011; 

Leek et al., 2010). Batch effect is a particularly challenging problem when combining 

microarray data across study and platform. In gene expression studies, the greatest 
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source of differential expression is nearly always across batches rather than across 

biological groups, which can lead to confusing or incorrect biological conclusions owing 

to the influence of technical artefacts (Leek et al., 2010). 

A number of batch effect identification and removal methods have been described in 

the literature for microarray data. These include, distance-weighted discrimination 

(DWD) (Benito et al., 2004), mean-centering (PAMR) (Sims et al., 2008), surrogate 

variable analysis (SVA) (Leek and Storey, 2007), geometric ratio-based method (Ratio_G) 

(Luo et al., 2010), an Empirical Bayes method called ComBat (Johnson et al., 2007), 

singular value decomposition (SVD) (Alter et al., 2000), standardization (Location/Scale 

adjustment model) (Li and Wong, 2001b), and a ratio-based method with arithmetic 

mean (Ratio_A) (Luo et al., 2010). The ComBat method has been found to perform 

equally well or better than most other approaches (Chen et al., 2011; Leek et al., 2010; 

Luo et al., 2010). Some methods (e.g. DWD or SVD) require large numbers of samples 

(e.g. more than 25) and can process only two batches at a time (Johnson et al., 2007). 

However, ComBat does not have those limitations. ComBat also does not affect 

correlation in cross-platform normalization (Sirbu et al., 2010). This method has been 

used to successfully remove batch effects in some recent microarray publications 

(Konstantinopoulos et al., 2011; Larsen et al., 2014; Stein et al., 2015). The ComBat 

method has also been identified as the preferred method for between-study, cross-

study, or cross-platform normalization (Chen et al., 2011; Leek et al., 2010; Luo et al., 

2010). Thus, ComBat becomes a better choice to apply in this study to remove batch 

effects as part of the preprocessing steps.   

Therefore, variation in the way microarray studies are conducted makes it critical to 

carefully consider the sources of heterogeneity when selecting data for large-scale 

meta-analysis.  Selecting datasets with available CEL files would allow all data to be 

subjected to the same rigorous quality control check. Further, the availability of several 

preprocessing methods requires assessing these methods and identifying a method that 

will perform satisfactorily. Using CEL files will help to remove any systematic differences 
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and all good quality arrays can then be preprocessed consistently using the same 

procedure for all studies. Therefore, this chapter examines objective one, specifically, 

the goals are: 1) to perform selection, collection, and quality control of ASLI gene 

expression data; and 2) to assess several preprocessing methods, identify a method, and 

to apply the method on the data.  

2.2 Methods 

2.2.1 Data collection and selection 

I primarily used the GEO (http://www.ncbi.nlm.nih.gov/geo/) and the ArrayExpress 

(http://www.ebi.ac.uk/array express/) microarray data repositories to search for 

microarray gene expression datasets using the keyword “memory and brain”. I also used 

the PubMed literature database to search for relevant studies (Figure 2.1). Careful 

review of the published articles referencing these data revealed that the goals of these 

studies were varied, and included many different learning paradigms, test conditions, 

and different tissue types. This observation necessitated the establishment of some data 

selection criteria for any downstream analysis in order to minimize heterogeneity 

among datasets and to obtain biologically meaningful results. Therefore, in this research 

I followed a conservative data selection process (Table 2.2). I focused on datasets 

generated from carefully designed behavioral studies involving hippocampus dependent 

ASLI in Fischer 344 strain of male rats (Rattus norvegicus) using Affymetrix® expression 

arrays. These selected studies investigated the spatial learning tasks in young, adult, 

and/or old animals using only the Morris water maze as the training and assessment 

protocol. Affymetrix raw data (CEL files) for the selected studies were either directly 

downloaded from the GEO website or obtained through personal communication with 

the original authors.  

2.2.2 Quality control 

All arrays were first assessed for image quality using dChip software (Li and Wong, 

2001a) (http://biosun1.harvard.edu/complab/dchip/). Minor contaminations present in 

http://www.ebi.ac.uk/array%20express/
http://biosun1.harvard.edu/complab/dchip/
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a few of the arrays were corrected using the built in image gradient correction algorithm 

in dChip by adjusting the background brightness of the contaminated area to a level 

similar to the background of the surrounding clean region. 

All subsequent data preparation, preprocessing, and statistical analyses were performed 

in R (http://cran.r-project.org/, a freely available programming language), using 

appropriate software packages. The data quality was assessed using RNA degradation 

ratios, relative log expression (RLE), and normalized unscaled standard errors (NUSE) 

plots using the simpleaffy and affyPLM, packages in Bioconductor 

(http://www.bioconductor.org/) and the RMAExpress software in R following standard 

procedures (Bolstad et al., 2005).  

Table 2.2 Data selection criteria. 

Selection Category Criteria 

Learning paradigm Spatial learning 

Training and Diagnostic 
protocol 

Morris water maze 

Species/strain Rat (Rattus norvegicus) – male Fischer 344 strain 

Age category Young Adult Old 

Age 3 – 6 months 9 – 14 months 24 – 26 months 

Tissue/RNA Hippocampus total RNA 

Microarray platform Affymetrix® 

Microarray experiment 
and data standard 

MIAME (Minimum Information About a Microarray Experiment,  
http://fged.org/projects/miame/ ) 

2.2.3 Data preprocessing for meta-analysis 

I performed an initial evaluation of five different normalization methods, which were 

MAS5, RMA, MBEI PM only, MBEI PM – MM, and a recently developed single channel 

microarray normalization method called SCAN (Piccolo et al., 2012). The question was 

which normalization method would remove batch effects most effectively. For this 

purpose, each dataset was normalized with the above methods and then subjected to 

ComBat batch correction. RMA methods removed batch effects comparatively better 

http://cran.r-project.org/
http://www.bioconductor.org/
http://fged.org/projects/miame/
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than all other methods consistently in all five datasets (result not shown), and was 

therefore chosen to perform all preprocessing in this research.   

The overall data preprocessing steps are shown diagrammatically in Figure 2.1. Within-

study normalization and expression measurement were performed using the RMA 

methods (Bolstad et al., 2003) with default options in the affy package in R (Gautier et 

al., 2004). Within-study batch correction was performed using the ComBat method 

(Johnson et al., 2007). Array hybridization dates were retrieved from CEL files and used 

as processing batches to perform batch correction. Age and spatial learning impairment 

were used as covariates. It was made sure that each group is well represented in each 

study during batch correction, even after removal of bad or outlier arrays. 

 

Figure 2.1 Data preprocessing workflow for meta-analysis. 
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2.2.4 Combining data for meta-analysis: common probe set 
approach 

A gene can have multiple probe sets or often the same probe set can be associated with 

different gene symbols due to changes or updates in the databases. As a result, gene 

names or symbols do not serve as a good ID to combine data across microarray 

platforms. Therefore, in preparation to combine data across two different platforms (i.e. 

RAE230A and RGU34A) I decided to combine data at the probe set level rather than at 

the gene level. 

A common probe set file that contains best matching pairs of probe sets representing 

the same gene in the two chip types (i.e. RGU34A and RAE230A) was downloaded from 

the Affymetrix website (www.affymetrix.com). Applying the common file and the 

genefilter package in R, probe sets from all studies belonging to the two different chip 

types were merged into three categories as follows: i) rgu_exclusive, probe sets 

exclusive to the RGU34A chip type, ii) all5_common, probe sets common among all five 

studies, and iii) rae_exclusive, probe sets exclusive to the RAE230A chip type. Control 

probe sets and probe sets without any annotation were filtered out. 

2.2.5 Data preprocessing for network analysis 

Network analysis and module detection can be severely biased by the presence of 

outlying microarray samples (Miller et al., 2010; Oldham et al., 2008). So, it is important 

to identify and remove such samples in each dataset during the pre-processing steps 

prior to network construction. Moreover, it is often meaningful to reduce the number of 

genes (to most connected genes) for network analysis; otherwise it may become 

computationally very intensive. Therefore, data selected for network analysis 

underwent additional preprocessing steps. All datasets were processed identically for 

consistency and the overall process is described as follows. 

• Removal of outlier array 
• Data normalization and batch correction 
• Filtering of unwanted probe sets 

http://www.affymetrix.com/
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2.2.5.1 Removal of outlier array 

For each dataset, original microarray CEL files were read into R, background corrected 

using the RMA method in the affy package 

(http://www.bioconductor.org/packages/release/bioc/html/affy.html) and initial un-

normalized expression matrices were created. Outlier samples were removed using the 

inter-array correlation (IAC) approach as described previously (Miller et al., 2010; 

Oldham et al., 2008). Briefly, IAC was defined as the Pearson correlation coefficient of 

the expression levels for a given pair of microarrays (using all probe sets). The 

distribution of IACs within a dataset was visualized as a histogram (frequency plot), 

while the relationships between arrays were visualized as a dendrogram using average 

linkage hierarchical clustering with 1-IAC as a distance metric. Samples with low mean 

IACs (i.e. arrays with mean IAC more than two to three standard deviations below 

average) and/or samples that exhibited divergent clustering were excluded. This process 

was repeated until no outlier arrays remained. 

2.2.5.2 Data normalization and batch correction 

Following outlier removal, absence and presence call information for all probe sets were 

extracted directly from CEL files using the mas5calls() function in the affy package in R. 

Probe sets that were called “absent” in more than 90% of the samples were filtered out. 

Next, RMA quantile normalization was performed on each dataset as described before. 

Batch effect was removed from each dataset using the ComBat batch correction method 

as described for meta-analysis.  

2.2.5.3 Filtering of unwanted probe sets  

Unwanted probe sets include control probe sets and those not associated with known 

genes and were removed. Next, the genefilter package 

(http://www.bioconductor.org/packages/release/bioc/html/genefilter.html) was used 

to keep only the probe sets that were associated with some genes (i.e. probe sets for 

which annotation was available). Many genes contain more than one probe set. To 

http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/genefilter.html
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allow comparison across Affymetrix platforms, only a single probe set for each gene was 

kept by using a function (CollapseGenesRai(…) in Appendix 6.2.1) modified from (Miller 

et al., 2010). For this purpose, if a gene contained two or more probe sets, the probe set 

with the highest connectivity across samples was kept. The remaining probe sets were 

used for gene network construction using WGCNA. 

2.3 Results 

2.3.1 Data collection and selection 

A search in the ArrayExpress and the GEO public microarray data repositories reveals 

that there is a large body of microarray data available involving cognitive impairments 

(Figure 2.2). This search identified 38 unique studies with over 800 assays for rats 

involving cognitive impairments in the brain. Review of these data and their associated 

published articles revealed that these studies investigated spatial and associative 

learning impairments in the brain using the Morris water maze or fear conditioning 

assessment protocols, respectively, with or without the effect of aging. They also 

include different tissue types, drug responses, candidate genes, effects of aging alone, 

effects of different spatial learning tests, or the effects of specific neurodegenerative 

diseases (e.g. Alzheimer’s disease). After careful examination of these datasets and 

using my data selection criteria (Table 2.2), I have identified five individual studies that 

investigated only hippocampus dependent ASLI as assessed by the Morris water maze 

test. Data from these five studies consist of a total of 287 arrays (one animal per assay), 

which used two different Affymetrix chip types, RG_U34a and RAE230A (Table 2.3).  

The data represented young and aged rats that were learning unimpaired and aged rats 

that were learning impaired from a set of results published during 2003 to 2009. The 

selected datasets will be referred in this study as BL (Blalock et al., 2003), B7 (Burger et 

al., 2007), R7 (Rowe et al., 2007), B8 (Burger et al., 2008), and K9 (Kadish et al., 2009). 

These data would allow one to assess combined gene expression changes related to 

aging, as well as ASLI in rats across multiple studies. These studies investigated spatial 
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learning tasks in young (3 – 6 months old), adults (9 – 14 months old), and aged (24 – 26 

months old) animals using the Morris water maze as the training and assessment 

protocol. However, the adult animals were not included in this analysis. The BL and K9 

studies were similar in design where only the unimpaired young and impaired aged 

animals were considered for comparison. The B7, R7, and B8 studies were similar in 

design where both young and aged groups had impaired and unimpaired animals as well 

as additional controls (e.g. cage controls, stress controls, and controls for visual 

impairment). A total of 265 arrays were finally selected following a quality assessment. 
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Figure 2.2 Data selection process. Search in the public microarray data repositories 

identified 38 microarray datasets involving cognitive impairments. I excluded 19 

datasets that were either not relevant to this study or were not associated with any 

publication. I excluded 14 more studies as they involved different learning paradigms, 

test conditions, and outcomes in mice. I finally selected five studies that dealt with 

hippocampus dependent age-associated spatial learning in rats.  
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 Table 2.3 Age-associated spatial learning impairment (ASLI) datasets for rats. 

Dataset ID Reference Affymetrix Array 
Type 

Number of Assays 
(one animal/array) 

BL Blalock et al. 2003 (Blalock et 
al., 2003) 

RG_U34 29 

B7 Burger et. al. 2007 (Burger et 
al., 2007) 

RG_U34 79 

R7 Rowe et. al. 2007 (Rowe et al., 
2007) 

RAE230A 50 

B8 Burger et. al. 2008 (Burger et 
al., 2008) 

RAE230A 80 

K9 Kadish et al. 2009 (Kadish et al., 
2009) 

RAE230A 49 

 

2.3.2 Quality control 

Image analysis in dChip software identified several arrays with minor contamination or 

spots as seen in Figure 2.3. If not corrected properly, such contamination can affect any 

downstream normalization and expression level comparison. Any array with 

contaminated spots was corrected using dChip (Li and Wong, 2001b) resulting in the 

creation of a new CEL file that was used in all subsequent analysis. Arrays displaying 

major hybridization problems (e.g. variable background brightness, uneven 

hybridization) were discarded (Figure 2.4). The remaining arrays were checked for their 

data quality based on the β-actin 3’/5’ and glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) 3’/5’ ratios (Figure 2.5 and Figure 2.6) using the simpleaffy package in R 

(http://www.bioconductor.org/packages/release/bioc/html/simpleaffy.html), as well as 

RLE-NUSE T2 plots (Figure 2.7 and Figure 2.8) using the RMAExpress 

(http://rmaexpress.bmbolstad.com/). The 3’/5’ ratios for β-actin and GAPDH for BL, R7, 

and K9 arrays mostly fell within -1 to +2 (Figure 2.5). For B7 and B8, these ratios ranged 

from -2 to over +3 for some arrays (Figure 2.6). Figure 2.7 and Figure 2.8 show RLE-NUSE 

plots for B8 and B7 datasets which had few bad quality arrays. A number of arrays in 

these two datasets did not meet the quality requirement and were removed. For 

http://www.bioconductor.org/packages/release/bioc/html/simpleaffy.html
http://rmaexpress.bmbolstad.com/
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example, B8 arrays 76, 34, and 24 were above 99% cutoff (solid red line) and were 

removed (Figure 2.7). Arrays 56, 93, and 80 were between the 95% (dotted red line) and 

99% cutoff. Arrays 93 and 80 also contained very high probe outliers (data not shown) 

and were removed. However, array 56 was not removed because it had only ~4% probe 

outliers (data not shown). For B7 (Figure 2.8), arrays 8 and 83 were above 99% cutoff 

(solid red line) and arrays 97, 39, and 30 were between the 95% cutoff (dotted red line) 

and 99% cutoff. These five arrays were also removed from further consideration. 

 

Figure 2.3 Image contamination corrections using the image gradient correction 

algorithm in dChip. Three contaminated areas (A, B, and C) from two representative 

arrays are shown in the top panel. The bottom two panels show enlarged views of these 

areas before and after image contamination correction. In this process, each area was 

outlined in dChip (middle panel) and the background brightness of the contaminated 

area was adjusted to a level similar to the background of the surrounding clean region 

(bottom panel). 
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Figure 2.4 Example of bad quality arrays. : A) a base line good quality array, B) an array 

image that is too bright, and C) an array with image defects that is also too bright. 

 

 

Figure 2.5 RNA quality assessments of BL, R7, and K9 datasets. For each array, the 

corresponding triangle represents β-actin 3’/5’ ratio and the circle represents GAPDH 

3’/5’ ratio. For each dataset, the outer (at +3) and inner (at -3) vertical dotted lines 

represent the recommended ratio boundaries.  
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Figure 2.6 RNA quality assessments of B7 and B8 datasets. For each array, the 

corresponding triangle represents β-actin 3’/5’ ratio and the circle represents GAPDH 

3’/5’ ratio. For each dataset, the outer (at +3) and inner (at -3) vertical dotted lines 

represent the recommended ratio boundaries.  
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Figure 2.7 B8 RLE-NUSE plot using RMAExpress. In this figure, arrays 76, 34, and 24 are 

above 99% cutoff (solid red line). Arrays 56, 93, and 80 are just below the 99% cutoff but 

above 95% cutoff (dotted red line).  

 

Figure 2.8 B7 RLE-NUSE plot using RMAExpress. In this figure, arrays 8 and 83 are above 

99% cutoff (solid red line). Arrays 97, 39, and 30 are just below the 99% cutoff but above 

95% cutoff (dotted red line). 

34 
76 

24 

56 93 80 

8 

83 

97 39 30 
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2.3.3 Data preprocessing for meta-analysis 

Within-study normalization was performed on five selected datasets (Table 2.3). Figure 

2.9 to Figure 2.13 show the boxplots of the arrays in each dataset before and after RMA 

normalization. The results show that the RMA method was able to properly normalize 

the datasets with reference to the baseline array. However, hierarchical clustering 

analysis performed on the normalized data shows that batch effects are clearly evident 

in all studies even after normalization, though at variable degrees. Arrays that were 

hybridized on the same date as a batch (represented by the same color) are clustered 

together in the dendrograms (Figure 2.14 to Figure 2.18). I used ComBat to remove 

batch effects. Batch effects were completely removed from the BL, B7, and K9 data and 

significantly removed from the B7 and B8 data, as they clustered together more based 

on their phenotypes such as aged or young (Figure 2.14 to Figure 2.18).  

 

 

Figure 2.9 Boxplots of BL dataset before (A) and after (B) RMA normalization. Each 

color represents a batch of arrays that were hybridized and processed at the same time. 
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Figure 2.10 Boxplots of K9 dataset before (A) and after (B) RMA normalization. Each 

color represents a batch of arrays that were hybridized and processed at the same time. 

 

 

Figure 2.11 Boxplots of R7 dataset before (A) and after (B) RMA normalization. Each 

color represents a batch of arrays that were hybridized and processed at the same time.  
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Figure 2.12 Boxplots of B7 dataset before (A) and after (B) RMA normalization. Each 

color represents a batch of arrays that were hybridized and processed at the same time. 

 

 

Figure 2.13 Boxplots of B8 dataset before (A) and after (B) RMA normalization. Each 

color represents a batch of arrays that were hybridized and processed at the same time. 
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Figure 2.14 Hierarchical clustering of RMA normalized BL data. Each color represents a 

batch of arrays, which were hybridized and processed at the same time. Batch effects 

are evident even after normalization and before batch adjustment (A) as arrays are 

mostly clustered in batches (same color). However, following Empirical Bayes 

adjustment, arrays are clustered based on aged and young phenotypes irrespective of 

batches (B). Leaf labels: A, aged; Y, young; I, impaired; U, unimpaired.  
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Figure 2.15  Hierarchical clustering of RMA normalized K9 data. Each color represents a 

batch of arrays, which were hybridized and processed at the same time. Batch effects 

are evident even after normalization and before batch adjustment (A) as arrays are 

mostly clustered in batches (same color). However, following Empirical Bayes 

adjustment, arrays are clustered based on aged and young phenotypes irrespective of 

batches (B). Leaf labels: A, aged; Y, young; I, impaired; U, unimpaired.  
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Figure 2.16 Hierarchical clustering of RMA normalized R7 data. Each color represents a 

batch of arrays, which were hybridized and processed at the same time. Batch effects 

are evident even after normalization and before batch adjustment (A) as arrays are 

mostly clustered in batches (same color). However, following Empirical Bayes 

adjustment, arrays are clustered based on aged and young phenotypes irrespective of 

batches (B). Leaf labels: A, aged; Y, young; I, impaired; U, unimpaired; c, control.  
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Figure 2.17 Hierarchical clustering of RMA normalized B7 data. Each color represents a 

batch of arrays, which were hybridized and processed at the same time. Batch effects 

are evident even after normalization and before batch adjustment (A) as arrays are 

mostly clustered in batches (same color). However, following Empirical Bayes 

adjustment, batch effects have improved (B). Leaf labels: A, aged; Y, young; I, impaired; 

U, unimpaired; c, control.  
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Figure 2.18 Hierarchical clustering of RMA normalized B8 data. Each color represents a 

batch of arrays, which were hybridized and processed at the same time. Batch effects 

are evident even after normalization and before batch adjustment (A) as arrays are 

mostly clustered in batches (same color). However, following Empirical Bayes 

adjustment, batch effects have improved (B). Leaf labels: A, aged; Y, young; I, impaired; 

U, unimpaired; c, control. 
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2.3.4 Data preprocessing for network analysis 

2.3.4.1 Removal of outlier array 

Outlier samples were removed from the unnormalized expression data based on the IAC 

method. As an example, typical results obtained from this procedure are described 

below for R7 dataset. This dataset contained a total of 50 arrays. The IAC histogram 

(Figure 2.19-A) showed that the mean IAC for these 50 arrays was 0.994, which was very 

good. However, the distribution of arrays was not bell shaped, which indicated the 

presence of outlier samples.  

One way to view the outlier samples is by performing average linkage hierarchical 

clustering using 1 – IAC as a distance metric. Another way to visualize outliers is to 

calculate the mean IAC for each array and examine this distribution in a scatterplot. 

Hierarchical clustering (HC) (Figure 2.20 A) showed that the sample R7_A_HI_38 

indicated by the first branch in the HC was an obvious outlier. In the scatterplot (Figure 

2.20 B), the same outlier was visible seven standard deviations below the mean IAC.  

After removing the sample R7_A_HI_38 a new IAC matrix was calculated with the 

remaining 49 arrays. The resulting histogram of IAC (Figure 2.19 B) showed that the 

mean IAC improved slightly to 0.995. However, the IAC HC dendrogram and mean IAC 

scatterplot revealed the presence of three more outliers, which were R7_A_C_19,  

R7_A_HU_21, and R7_Y_C_10 (Figure 2.21 A). These outliers were 2 to 3.5 standard 

deviations below the mean IAC (Figure 2.21 B). Next, these three outlier samples were 

removed and a new IAC matrix was calculated. The result (Figure 2.22) did not show the 

presence of any new outliers.  

Once outlier arrays were removed from R7 dataset 46 arrays remained. The outlier 

removal process was repeated for other datasets such as B8 (Figure 2.23), K9 (Figure 

2.24), B7 (Figure 2.25), and BL (Figure 2.26). The final number of arrays that remained 

for each dataset is shown in Table 2.4. 
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Figure 2.19 Checking outlier arrays in R7 data. A. Histogram of IAC of the unnormalized 

R7 dataset with no outlier samples removed. The mean IAC is 0.994. The distribution is 

skewed due to the presence of outlier samples. B. Histogram of IAC of the same dataset 

after removing one outlier sample. The mean IAC is 0.995 but the distribution is still 

skewed due to the presence of more outlier samples. 

 

 

Figure 2.20 Removing outlier arrays in R7 data. A) hierarchical clustering of R7 dataset 

using 1-IAC as a distance metric. Sample R7_A_HI_38 indicated by the first branch is an 

obvious outlier. B) Scatter plot of the mean IAC of the same samples.  
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Figure 2.21 Removing outlier arrays in R7 data continued. IAC hierarchical clustering 

(A) and mean IAC scatter plot of the 49 samples of R7 dataset (B) showing the presence 

of three more outlier arrays.  

 

 

Figure 2.22 Final R7 data quality after removing outliers. IAC hierarchical clustering (A) 

and histogram of IAC of the final 46 samples of R7 dataset (B) showing no more obvious 

outliers. The mean IAC has improved to 0.996.  
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Figure 2.23 Final B8 data quality after removing outliers. IAC hierarchical clustering (A), 

histogram of IAC (B), and mean IAC scatter plot of the final 46 samples of B8 dataset (C) 

showing no more obvious outliers. The mean IAC is 0.973. 
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Figure 2.24 Final K9 data quality after removing outliers. IAC hierarchical clustering (A), 

histogram of IAC (B), and mean IAC scatter plot of the final 30 samples of K9 dataset (C) 

showing no more obvious outliers. The mean IAC is 0.995. 
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Figure 2.25 Final B7 data quality after removing outliers. IAC hierarchical clustering (A), 

histogram of IAC (B), and mean IAC scatter plot of the final 38 samples of B7 dataset (C) 

showing no more obvious outliers. The mean IAC is 0.978. 
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Figure 2.26 Final BL data quality after removing outliers. IAC hierarchical clustering (A), 

histogram of IAC (B), and mean IAC scatter plot of the final 16 samples of BL dataset (C) 

showing no more obvious outliers. The mean IAC is 0.992. 

Table 2.4 Number of arrays selected from each datasets after preprocessing. 

Study 
name 

Original 
number of 
arrays 

After quality control but 
before removing outliers 

Final number of arrays   after 
removing outlier 

Total Young Aged Total Young (Y) Aged (A) 

B7 79 74 18 56 38 10 28 

R7 50 50 21 29 46 19 27 

B8 80 75 23 52 46 18 28 

K9 49 49 18 13 30 18 12 

BL 29 29 9 10 15 8 7 
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2.3.4.2 Data normalization and batch correction 

The R7 dataset used the RAE230A chip type which contained a total of 15923 probe 

sets. After AP call filtering (i.e. excluding probe sets that were called “absent” in more 

than 90% of the samples) there were 11591 probe sets left. The quantile normalization 

and batch correction were performed on the AP filtered dataset using the affy() and 

ComBat packages, respectively, in R as described in the meta-analysis section. The box 

plot results before and after normalization and the hierarchical clustering results before 

and after batch correction were similar or slightly better to those described for meta-

analysis (results not shown). The quantile normalization and ComBat batch correction 

was performed on other datasets in a similar manner, however, no AP call filtering was 

performed on B7 and BL because doing so led to a missing gene problem later in the 

meta- or network analysis. 

2.3.4.3 Filtering of unwanted probe sets  

Annotation filtering using the genefilter package in R in the R7 dataset showed that out 

of 11591 probe sets selected after AP call filtering, only 9435 were associated with some 

genes. Many genes contained duplicate or multiple probe sets, in which case probe sets 

with the highest connectivity were kept. After removing duplicate or multiple probe sets 

for a gene, a total of 8053 probe sets/genes in 46 arrays were finally selected for 

network analysis. Repeating this filtering process resulted in 4829 probe sets for both B7 

and BL, and 7157 and 8250 probe sets for B8 and K9 datasets, respectively (Table 2.5).  

2.3.5 Separate Aged and Young 

At this point the aged and young samples were separated and checked for group-wise 

IAC based quality to make sure the distribution of all samples fell within 2 to 3 standard 

deviations below the mean IAC (Appendix 6.1.1 to Appendix 6.1.6). For R7 aged and 

young, the data quality was improved to a mean IAC of 0.998. For B8 datasets the mean 

IAC was 0.952 for young and 0.957 for aged, and all samples were distributed within 2 to 

3 standard deviations below the mean IAC. For K9 young the mean IAC was 0.997 and all 



  

64 

 

samples were distributed within 2 standard deviations below the mean IAC. For B7 aged 

the mean IAC was 0.983 with all samples distributed within 3 standard deviations below 

the mean IAC. 

Table 2.5 Number of probe sets selected from each datasets after preprocessing. 

Dataset Total genes 
in the array 

After AP call 
filtering 

After annotation 
filtering 

After multiple and 
duplicate probe set 

filtering 

B7 8799 Not done** 7246 4829 

R7 15923 11591 9435 8053 

B8 15923 10293 8075 7157 

K9 15923 12279 9698 8250 

BL 8799 Not done** 7246 4829 

Note. **Not done because doing so led to a missing gene problem later in the meta- or 

network analysis. 

2.4 Discussion 

The goals in this chapter were to perform selection, collection, quality control, and 

preprocessing of ASLI gene expression data and examine their importance for effective 

downstream meta- and network analysis. These goals were accomplished by defining a 

data selection process to select studies that are homogeneous, collecting suitable gene 

expression datasets in ASLI, and finally, by assessing and applying suitable quality 

control and preprocessing  measures on the selected datasets. 

Although meta-analysis often includes a large number of unrelated studies, I followed a 

more conservative data selection approach in this study in order to concentrate on 

microarray gene expression datasets that focused on the hippocampus dependent ASLI 

as assessed by the Morris water maze test. The goal was to reduce sources of 

heterogeneity as much as possible. A major difficulty in combining results from 

independent studies is the occurrence of study heterogeneity. Studies that are 

superficially similar may in fact differ in many ways, some of which can be quite subtle 
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(Goldstein and Guerra, 2010). In general, studies carried out by different investigators 

may vary in scientific research goals, population of interest, handling of subjects, study 

design, quality of implementation, treatment dosage and timing, outcome definition or 

measures, and statistical methods of analysis (Goldstein and Guerra, 2010). Indeed, the 

data collection result showed that among the 38 studies only five matched my selection 

criteria in terms of major study goal, selection of animal model, and the assessment of 

learning impairment. Therefore, the choice of my data selection approach was 

appropriate. Moreover, the choice of starting the data preprocessing with original raw 

expression data (CEL files) was the right one, which gave me the opportunity to perform 

consistent quality assessment, preprocessing, and filtering of imperfect arrays and 

outlier values. The image and data quality assessment results (Figure 2.3 to Figure 2.8) 

show that even carefully performed experiments can have imperfect arrays and require 

close inspection. This observation allowed me to exclude these arrays from my analysis, 

which was not done in the original publications. For example, the image quality 

assessment allowed me to correct image contamination in a few of the arrays (Figure 

2.3).  

The signal intensity ratio of the 3' probe set over the 5' probe set of the housekeeping 

genes gives an indication of the integrity of starting RNA and efficiency of first strand 

cDNA synthesis. The signal of each probe set reflects the sequence of the probes and 

their hybridization properties. The 3’/5’ ratios for β-actin and GAPDH in the BL, R7, and 

K9 arrays mostly fell within the generally recommended range of -3 to +3 (Figure 2.5), 

while the ratios of some of the arrays in B7 and B8 were outside of these ranges (Figure 

2.6). However, the RNA quality results for all arrays were considered along with the 

results from their image quality and RLE-NUSE plots following recommendations in the 

literature (http://www.affymetrix.com/support/help/faqs/ge_assays/faq_17.jsp). For 

arrays to be of good quality their RLE-NUSE values should fall below the 95% cutoff line 

(dotted red line in Figure 2.7 and Figure 2.8). In addition, arrays that have interquartile 

range (IQR) such as RLE-IQR > 0.75 and NUSE-IQR > 0.075 should be removed (Aluru et 

al., 2013). In general, all arrays in BL, R7, and K9 were of very good quality compared to 

http://www.affymetrix.com/support/help/faqs/ge_assays/faq_17.jsp
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B7 and B8. However, considering results from all quality assessment steps together, 

arrays that were outside of the good quality range and which also had greater than 15% 

array outlier values were excluded from further consideration. 

The RMA method was chosen to perform the preprocessing of microarrays which 

included background correction, normalization, and summarization. RMA was chosen 

for two reasons: 1) it performed slightly better than MAS in removing batch effect, and 

2) when MAS background corrected data were used to create networks, the 

recommended soft powers for R7, B8, and K9 were far off from each other (this was 

particularly true for B8 and K9), and a lower power close to that of R7 would not 

produce approximate scale free topology for B8 and K9. 

Since batch effects generally lead to increased variability and decreased power to detect 

a real biological signal (Leek and Storey, 2007), batch effects were carefully removed 

from each dataset. During the removal process it was made sure that the samples were 

not confounded. If batch effects are confounded with an outcome of interest it can 

result in misleading biological or clinical conclusions (Leek et al., 2010). An example of 

confounding is when all of the cases are processed on one day and all of the controls are 

processed on another. The ComBat method allowed correction of batch effects and the 

removal of any unexplained technical variations from all datasets. The results (Figure 

2.14 to Figure 2.18) confirmed the findings of recent studies (Johnson et al., 2007; Leek 

et al., 2010) and demonstrated the necessity of removing batch effects from microarray 

data before integrating them in any analysis. 

Data selected for network analysis went through a more rigorous preprocessing with the 

addition of an IAC based outlier removal process. In a network analysis, the expression 

pattern of a gene is compared to that of other genes in the dataset, often using 

probabilistic, mutual information, or correlation based network inference methods. 

Interconnectedness of genes is assessed and evaluated to understand their role in a 

network. Therefore, the presence of outlier microarray samples can severely bias 
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network analysis. The IAC based outlier identification and removal process undertaken 

in this research ensured that the outliers were removed from all datasets in a consistent 

and unbiased manner (following recommended protocols) (Miller et al., 2010; Oldham 

et al., 2006; Oldham et al., 2008). Questionable samples were removed from each 

dataset while maintaining a fine balance between quality and number of samples 

required for network analysis. For example, the mean IACs for all datasets were 0.996 

(R7, Figure 2.22), 0.973 (B8, Figure 2.23), 0.995 (K9, Figure 2.24), 0.978 (B7, Figure 2.25), 

and 0.992 (BL, Figure 2.26). The values for B8 and B7 were slightly lower compared to 

others. The histogram results show that a few more arrays could have been removed, 

however, that would have resulted in a loss of one or more of the sample types from a 

dataset, and made the data unfit for batch normalization. However, the IAC values 

indicate that the overall consistency of gene expression among samples in each dataset 

used for network construction was very comparable. 

In summary, this chapter dealt with collection, selection, and preparation of ASLI 

microarray gene expression datasets for this study. Even though the initially selected 38 

microarray studies in cognitive impairment apparently looked similar, they actually 

varied in terms of major study goal, selection of animal model, and the assessment of 

learning impairment. This made my choice of a more conservative data selection 

approach logical, which resulted into a selection of five ASLI datasets. A detailed 

inspection of data quality revealed the presence of imperfections in some arrays as well 

as the presence of outlier arrays and batch effects. Working directly from raw 

expression CEL data files and applying proper quality control and preprocessing on the 

data resulted in improved data quality. The ComBat method enabled the correction of 

batch effects and removal of unexplained technical variations from all datasets. Further, 

the IAC based outlier identification and removal process undertaken in this research 

ensured that the outliers were removed from all datasets in a consistent and unbiased 

manner. The data were prepared to combine across individual studies at the probe set 

level, which is expected to produce the best outcome.  The results at each stage of 
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quality control, preprocessing, filtering, and data integration indicate satisfactory 

outcomes and make the data ready for downstream meta- and network analysis.  
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Chapter 3 Meta-Analysis 

3 Hippocampal gene expression meta-analysis identifies 
aging and age-associated spatial learning impairment 
(ASLI) genes and pathways 

3.1 Introduction 

In addition to the more commonly used differential expression analysis of microarray data, 

which identifies a list of genes that are differentially expressed within the dataset of an 

individual experiment, various meta-analysis approaches have also been described in the 

past. Meta-analysis, which combines the results of independent but related experiments in 

a relatively inexpensive way, has the ability to increase the statistical power to obtain a 

more precise estimate of gene expression differences. This approach for uncovering of a 

significant effect from a combined analysis, where individual studies have not yielded any 

positive or reliable findings, has emerged as an essential tool for modern genetics and 

genomic analysis (Goldstein and Guerra, 2010). Meta-analysis, where each study dataset is 

analyzed independently and then the results from all studies are combined, is more 

advantageous than mega-analysis. In mega-analysis information across studies is pooled 

into a single dataset for analysis, often after minor correction. As a result, mega-analysis 

suffers from many drawbacks. Because even after correction and adjustment, study 

observations may well remain too heterogeneous for pooling (Goldstein and Guerra, 2010).  

There are many ways to combine the results across microarray studies and platforms 

(Goldstein et al., 2010; Moreau et al., 2003; Ramasamy et al., 2008; Sirbu et al., 2010). 

These generally fall into four generic approaches such as vote counting, combining ranks, 

combining p-values, and combining effect sizes. As discussed in chapter two, in order to 

eliminate bias due to specific algorithms that were used in the original studies, and to allow 

consistent handling of all datasets, one should use the feature-level extraction output or 

original raw data such as CEL files, and convert those to gene expression data matrix in a 

consistent manner. However, in practice, vote counting, combining p-values, and many 

combining ranks methods are not designed to work with CEL files. Moreover, techniques 
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under these three categories suffer from many limitations. For example, vote counting and 

some combining ranks techniques only consider the genes declared significant based on 

some arbitrary threshold in the original studies, and do not consider information from all 

available genes. Many of these techniques do not treat frequently studied and rarely 

studied genes present in newer microarrays equally, and do not produce highly accurate 

results when the number of studies is small.    

Combining effect sizes using an inverse-variance method (Cochran, 1937; Fleiss, 1993) can 

overcome these limitations. It is considered to be the most comprehensive approach for 

meta-analysis of gene expression microarrays (Ramasamy et al., 2008). In addition, this 

method offers several other decisive advantages. For example, it yields a biologically 

interpretable discrimination measure, which is the pooled effect size of differential 

expression and its standard error. Combining effect sizes is the only technique that weights 

the contribution of each study by its precision, which is related to the study sample size. 

Further, the use of effect size, a unit-less measure not dependent on sample size, facilitates 

the combining of signals from different technology platforms. Thus, combining effect sizes 

method presents itself as a promising technique to follow in this research.  

Combining effect sizes using the inverse-variance techniques has been used frequently by 

many researchers in meta-analysis of microarrays (Goldstein et al., 2010; Stevens and 

Doerge, 2005). In this method (Borenstein et al., 2009), standardized mean difference 

(SMD) can be used as a study-specific effect size when dealing with typical microarray 

studies involving two treatment groups. SMD can be calculated as the Cohen’s d, which is 

the difference in two group means standardized by its pooled standard deviation. By 

pooling the two estimates of the standard deviation, a more accurate estimate of their 

common value is obtained. The SMD thus serves as an index that would be comparable 

across studies. So, the first step is to calculate the SMD effect size and the variance 

associated with the effect size for every gene in every study. SMDs from every study are 

then combined using either the fixed or the random effect model. 
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Under the fixed effect model it is assumed that there is one true effect size μ, which is 

shared by all the studies included. It follows that the combined effect is an estimate of this 

common effect size. Thus, the observed effects will be distributed about μ, with a variance 

𝜎2 that depends primarily on the sample size for each study. So, the observed effect T𝑖 is 

determined by the common effect μ plus the within-study error 𝜀𝑖 as T𝑖 = µ + 𝜀𝑖. By 

contrast, under the random effects model the true effect could vary from study to study. 

Rather than assuming that there is one true effect this allows that there is a distribution of 

true effect sizes. The combined effect therefore cannot represent the one common effect, 

but instead represents the mean of the population of true effects. The observed effect T𝑖 is 

sampled from a distribution with true effect 𝜃𝑖, and (within-study) variance 𝜎2. The true 

effect 𝜃𝑖, in turn, is sampled from a distribution with mean μ and (between-study) variance 

𝜏2. So, the observed effect T𝑖 is determined by the true effect 𝜃𝑖  plus the within-study error 

𝜀𝑖. In turn, 𝜃𝑖  is determined by the mean of all true effects μ and the between-study error 𝜁𝑖  

as T𝑖 =  𝜃𝑖 + 𝜀𝑖  =  µ + 𝜁𝑖 + 𝜀𝑖 (Borenstein et al., 2009). 

The study-specific effect sizes for every gene are then combined across studies into a 

weighted average, with more weight given to studies with larger sample sizes, which again 

is thought to be more precise compared to studies with smaller sample sizes. The study 

weights are inversely proportional to the variance of the study specific estimates. Thus, this 

meta-analysis method using SMD effect size seems to be a statistically sound method to 

combine microarray data across microarray studies and platforms. Therefore, the goal of 

this chapter is to accomplish objective two, which is to integrate the ASLI microarray gene 

expression datasets selected in chapter two (Table 2.3 and Table 2.4) using meta-analysis 

methods, and thereby identify and characterize genes that may be involved in ASLI, as well 

as to identify and characterize gene networks based on existing biological knowledge.  

3.2 Methods 

All statistical analyses were performed in R using appropriate software packages. 
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3.2.1 Data integration 

Microarray data across two different Affymetrix platforms in all five studies were integrated 

at the common probe set level. Towards that goal, probe sets common to both the RGU34A 

and RAE230A chip types or only either of the chip types were identified and grouped into 

three categories: rgu_exclusive, all5_common, and rae_exclusive (see Section 2.2.4 for 

details). Each probe set specific data and their analysis outcome from all studies were 

combined in two ways (Figure 3.1): 1) effect size integration (which combined the estimated 

effect size results), and 2) direct data integration (which combined the preprocessed data 

first before any analysis).  

3.2.1.1 Effect size integration 

I estimated effect sizes on the within-study batch-corrected data using the random effect 

size model as follows. First, for each probe set, study-specific sample sizes, mean expression 

measures, and standard deviations were computed for each comparison. In order to 

understand the effect of age and spatial learning impairment, data were analyzed in two 

ways, e.g. by comparing samples across age (aged vs. young, AY) and across learning 

impairment (aged-impaired vs. aged-unimpaired, IU), respectively. Next, the meta package 

in R (http://cran.r-project.org/ web/packages/meta/meta. pdf) was used to calculate each 

study-specific SMD (Cohen’s d) for each probe set, and later, probe set SMDs for all studies 

in each category (e.g. rgu_exclusive, all5_common, and rae_exclusive) were pooled utilizing 

Hedges’ adjusted g (Borenstein et al., 2009) to obtain the final random effect size for each 

probe set. Effect size values for all probe sets from all three categories were then combined 

together, annotated, and summarized. Duplicate probe sets and multiple probe sets 

annotated to the same gene were summarized by keeping the probe set with the lowest p-

value (of the z-value) for the gene (Rhodes et al., 2002).  Uninformative probe sets were 

filtered out by removing probe sets whose expression values had a coefficient of variation 

of zero across all arrays and probe sets with a p-value (of the effect size z-value) greater 

than 0.1. The p-values of the treatment effect for all probe sets were adjusted with the 

http://cran.r-project.org/%20web/packages/meta/meta.%20pdf
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Benjamini and Hochberg (BH) multiple testing correction (Benjamini and Hochberg, 1995) in 

R.  

3.2.1.2 Direct data integration  

This was done by a cross-study and cross-platform normalization process by first combining 

data separately for each category (e.g. rgu_exclusive, all5_common, and rae_exclusive) and 

then adjusting data across all studies. For each category, data were adjusted similarly as 

within-study batch correction, however, considering individual studies as separate batches. 

Next, differential expression analysis was performed by comparing the data in two ways as 

above e.g. AY and IU using the limma  R software package (Smyth, 2004). Significant 

differentially expressed genes from all three categories were combined together, 

annotated, and summarized as described above. Duplicate and multiple probe sets issues 

and multiple testing corrections were also handled similar to the effect size analysis. 
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Figure 3.1 A summary of the meta-analysis workflow. Five individual studies (BL, B7, R7, 

B8, and K9) were selected for this meta-analysis. The studies involved two different array 

platforms, Affymetrix RG-U34a and RAE-230a. Following preprocessing, data were 

integrated across studies and across array platforms and analyzed in two ways: meta-

analysis using random effect size model and differential expression analysis using the limma 

software. Top significant genes were used to identify enriched functions and pathways and 

to construct knowledge based gene regulatory networks using the Ingenuity Pathway 

Analysis (IPA) software (http://www.ingenuity.com). 

http://www.ingenuity.com/
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3.2.2 Functional and Pathway Analysis 

Functional and pathway analysis was performed mainly using the IPA software. Datasets 

containing identifiers of significant (p-value ≤ 0.05) differentially expressed genes from the 

AY or IU comparisons along with their corresponding effect size estimates (as fold-change 

values) and p-values were used as input. Identifiers that were successfully mapped to their 

corresponding objects in the IPA knowledge base were considered for functional, network, 

and canonical pathway analysis.  

For functional analysis the mapped identifiers that were associated with biological functions 

and/or diseases in the IPA knowledge base were considered. Right‐tailed Fisher’s exact test 

was used to calculate a p‐value determining the probability that each biological function 

and/or disease assigned to the dataset is due to chance alone. The expression levels (up- or 

down-regulation) for all of the input genes in each function annotation category were 

compared with the information stored for those genes in the IPA knowledge base to predict 

whether the expression patterns correspond to the activation state (decreased or 

increased) for that category.  

For network analysis the mapped identifiers were overlaid onto a global molecular network 

developed from information contained in the IPA knowledge base. Networks of network 

eligible molecules were then algorithmically generated based on their connectivity. Next, 

the functional analysis of a network identified the biological functions and/or diseases that 

were most significant to the molecules in the network based on the association of the 

network molecules with the biological functions and/or diseases in the IPA knowledge base. 

Right‐tailed Fisher’s exact test was used to calculate a p‐value determining the probability 

that each biological function and/or disease assigned to that network is due to chance 

alone. 

Canonical pathway analysis identified the pathways from the IPA library of canonical 

pathways that were most significant to the gene lists. All the mapped identifiers from the 

dataset that were associated with a canonical pathway in the IPA knowledge base were 
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considered for the analysis. The significance of the association between the dataset and the 

canonical pathway was measured in two ways: a) using a ratio of the number of molecules 

from the dataset that map to the pathway divided by the total number of molecules that 

map to the canonical pathway, and b) using the Fisher’s exact test by calculating a p‐value 

determining the probability that the association between the genes in the dataset and the 

canonical pathway is explained by chance alone. 

3.3 Results 

3.3.1 Data Integration 

Data were integrated between the RGU34A chip which had a total of 8799 probe sets and 

the RAE230A chip that had a total of 15923 probe sets. After data integration, the 

rgu_exclusive category contained 2356 probe sets exclusive to the RGU34A array only. The 

all5_common category included 6384 RGU34A unique probe sets mapping to 5435 RAE230A 

unique probe sets that are common among all five studies. Finally, the rae_exclusive 

category contained 10,431 probe sets exclusive to the RAE230A array type.  

3.3.2 Gene identification and functional analysis 

3.3.2.1 Aged vs. young (AY) 

In order to assess the effect of aging, a comparison was made between aged vs. young 

animals. After combining probe sets from all three categories and after summarization I had 

effect size estimates for 10,619 unique annotated genes. After filtering, there were 3235 

genes left, of which 2245 genes were found significant with a p-value ≤ 0.05 (Table S1 in 

(Uddin and Singh, 2013)) and 1753 genes were found significant after BH multiple testing 

correction (p-value ≤ 0.05). Among the 1753 genes, 874 genes had an I2 (ratio of true 

heterogeneity to total variation) value of 0% while 1347 genes had an I2 value under 40%. 

Differential expression analysis was also performed on the datasets in parallel to the effect 

size analysis. Using the 3235 genes from the effect size analysis, their AY differential 

expression levels (log fold-changes and corresponding p-values) were calculated and BH 

adjusted similarly to that of the effect size data. This resulted in a total of 1946 genes (p-
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value < 0.05) and 1569 genes after BH adjustment (p-value < 0.05). Table 3.1 shows some of 

the effect size and differential expression analyses results for the top 10 most up- and 

down-regulated genes in the aged animals (compared to the young animals). The forest 

plots of two representative genes C3 (complement component) (up-regulated) and Tubb2b 

(tubulin, beta 2B class IIb) (down-regulated) are presented in Figure 3.2. 

Functional and Pathway analysis were performed using the IPA software. For this analysis, I 

considered the significant genes based on unadjusted p-value (p-value ≤ 0.05) of the 

random effect size, which resulted in a total of 2245 genes. These genes were used as input 

in the IPA of which 2240 were mapped to their corresponding objects in the IPA knowledge 

base. The functional analysis identified the biological functions and/or diseases that were 

most significant to the mapped gene list (activation z-score value-cutoff of 1.980). The IPA 

functional analysis predicts that comparatively more functions are decreased than increased 

in the aged animals. Table 3.2 shows a summary of the most significant functions, increased 

or decreased, as predicted by the IPA algorithm based on the expression levels of the genes 

in the dataset. The results show that the functions that are specifically decreased include 

cell viability of central nervous system cells, formation of cells, quantity and synthesis of 

inositol phosphate, and axonogenesis. Thus they affect the cell death and survival, cellular 

growth and proliferation, carbohydrate metabolism, molecular transport, small molecule 

biochemistry, cell morphology, and nervous system development and function in the aged 

animals. Major functions categories that see an increase are cellular movement, cellular 

development, and connective tissue development and function. The specific functions of 

the genes in this category include the migration of cells and differentiation of chondrocytes. 

I generated biological knowledge based gene interaction networks for the AY significant 

genes. A representative network graph is presented in Figure 3.4, which shows the network 

interactions of some of the aging and learning genes. Additional networks are presented in 

Appendix 6.3.1 to Appendix 6.3.5. A summary of the functions for the top five most 

significant networks is given in Table 3.3. The most critical canonical pathways that are 

affected in the aged animals include Eif2 (eukaryotic translation initiation factor 2) signaling, 

antigen presentation, and Ox40 (tumor necrosis factor) signaling pathways (Table 3.4). 
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Table 3.1 Top ten most up- and down-regulated genes (based on effect size) in the AY 

comparison. 

Up-regulated genes Effect size results Differential expression results 

Probe ID Symbol Effect 
size (ES) 

ES z-
value 

p-value 
of z-
value 

pBH of z-
value 

LogFC of 
DE 

pBH 
of DE 

1398892_at Npc2 3.988 3.16 0.002 0.009 0.474 0 

X52477_at C3* 3.812 3.716 0 0.002 0.730 0 

X13044_g_at Cd74* 3.389 3.148 0.002 0.009 0.916  0 

M15562_g_at HLA-DRA* 3.236 3.284 0.001 0.007 1.011 0 

1368187_at Gpnmb* 3.189 2.827 0.005 0.017 0.610 0 

L03201_at Ctss* 3.110 3.362 0.001 0.006 0.368 0 

1373575_at Fcer1g* 2.846 2.821 0.005 0.018 0.473 0 

1370885_at Ctsz 2.606 3.201 0.001 0.008 0.432 0 

J03752_at Mgst1* 2.544 3.229 0.001 0.024 0.362 0 

1376652_at C1qa* 2.519 3.709 0 0.007 0.488 0 

Down-regulated genes Effect size results Differential expression results 

Probe ID Symbol Effect 
size (ES) 

ES z-
value 

p-value 
of z-
value 

pBH of z-
value 

LogFC of 
DE 

pBH 
of DE 

1376319_at Sema3c* -3.674 -3.867 0 0.001 -0.588 0 

X57281_at Glra2 -2.589 -4.599 0 0 -0.528 0 

1388821_at Trib2 -2.029 -2.578 0.01 0.028 -0.253 0 

1388750_at Tfrc* -1.853 -2.576 0.01 0.028 -0.203 0 

L03294_at Lpl* -1.803 -5.42 0 0 -0.395 0 

1374966_at Dcx* -1.783 -3.42 0 0.005 -0.262 0 

1389533_at Fbln2 -1.756 -2.332 0.02 0.04 -0.192 0 

D45412_s_at Ptpro* -1.721 -2.499 0.013 0.032 -0.319 0 

M58369_at Pnlip* -1.618 -3.26 0.001 0.007 -0.200 0 

X03369_s_at Tubb2b* -1.607 -2.907 0.004 0.015 -0.174 0 

Top genes identified by IPA are indicated by an asterisk (*). Legends: ES, effect size; pBH, p-value with 

Benjamini and Hochberg correction; FC, fold change; DE, differentially expressed. 
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Figure 3.2 Forest plots of two representative significant genes in the aged rats. C3 is up-

regulated (top) and Tubb2b is down-regulated (bottom) in the aged rats. For the selected 

probe set for each gene the individual study specific SMD and their 95% confidence 

intervals (CI) are plotted and shown on each row. The effect size results are shown at the 

bottom of each plot.  
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Table 3.2 Significantly increased or decreased functions and associated genes in the AY 

comparison. 

Functions 
Annotation 

p-
value 

Predicted 
activation 
state 

Activat
ion z-
score 

High-level 
functions 
category 

Genes 

Cell viability of 
central 
nervous 
system cells 

0.00 
to   

0.02 

Decreased -2.757 
to          
-2.000 

Cell death and 
survival 

ApoEA,L,SL, Atf3, BdnfL,SL, 
Cdk5r1L,SL, Cycs, Hspb1, Ide, 
Igf2, Ntf3L, Plagl1, PrkcgL,SL, 
RelaL, Serpini1, Sh3kbp1, 
Slc11a2L, VegfaL, Vip 

Formation of 
cells 

0.01 Decreased -2.376 Cellular growth 
and 
proliferation 

BdnfL,SL, Egr1L, Fgf18, 
Icam1, Igf2, Nppa, Pf4, 
S100bL, Sdc2, Wt1 

Quantity and 
synthesis of 
inositol 
phosphate 

0.02 Decreased -2.186 Carbohydrate 
metabolism, 
molecular 
transport, et. 

Agtr1, Avp L, Cckbr, GalL, 
Gnaq, GrpL, Icam1, Mas1, 
Pthlh, Rgs2, Rgs3, S1pr1, 
Trhr 

Axonogenesis 0.01 Decreased -1.980 Cell 
morphology, 
assembly and 
organization, 
nervous system 
development 
and function  

Actb, Actr3, Agrn, BdnfL,SL, 
Cck, Cntn2L, Igf1r, 
L1camL,SL, Mbp, Picalm, 
Ppp2ca, Snap91, Stk11 

Migration of 
cells 

0.00 
to  
0.01 

Increased 2.158 Cellular 
movement 

Abcc1, Actr3, Agt, Aif1, 
Anxa2, Bcar1, BdnfL,SL, C3, 
Cck,, Ccl3l1/Ccl3l3L,SL, Ccl5, 
Cd44, Cd82, Cdc42, Dnm2, 
Drd5L,SL, Gucy1a3, 
Gucy1b3, Icam1, NfkbiaL, 
Ntf3L, PtenL, Reln, Stat3, 
Scpep1, Tac1L, Tgfa, Tgfa, 
Tgfb1, Tgfb2, Tpm1, 
Tubb2b, VegfaL, and etc.  

Differentia-
tion of 
chondrocytes 

0.01 Increased 2.183 Cellular 
development, 
connective 
tissue 
development 
and function 

Grn, Por, RelaL, Tgfb1, 
ThrbL 

Note. Genes in red were up-regulated and in green were down-regulated in the aged rats. Genes annotated as 

aging, learning, and spatial learning in the IPA knowledge base are indicated by “A”, “L”, and “SL”, respectively. 
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Table 3.3 Major functions associated with the top five networks in the AY comparison. 

Network 
ID 

Top functions associated with the networks IPA 
score 

Total 
focus 
genes 

1 Molecular transport, cell-to-cell signaling and interaction, 
nervous system development and function 

25 35 

2 Endocrine system disorders, gastrointestinal disease, 
metabolic disease 

21 33 

3 Cellular assembly and organization, tissue development, cell 
morphology 

17 30 

4 Cell-to-cell signaling and interaction, cell signaling, molecular 
transport 

14 28 

5 Drug metabolism, protein synthesis, cancer 14 28 

Table 3.4 Top canonical pathways in the AY comparison. 

Name p-value Ratio 

EIF2 signaling pathway 2.36E-07 58/170 (0.341) 

Antigen presentation pathway 6.01E-05 14/27 (0.519) 

OX40 signaling pathway 1.91E-04 19/60 (0.317) 

Chondroitin sulfate degradation pathway 4.96E-03 6/14 (0.429) 

IL-17A signaling in gastric cells pathway 5.17E-03 10/24 (0.417) 

Complement system pathway 1.69E-02 10/32 (0.312) 

 

3.3.2.2 Aged-impaired vs. aged-unimpaired 

In order to assess the effect of ASLI, a comparison was made between the aged-impaired vs. 

aged-unimpaired (IU) rats where I included three sets of controls (e.g. cage controls, visual 

controls, and stress controls (no platform during memory test in the water maze)) in the 

aged-impaired group as was done in the B7 and B8 studies (Burger et al., 2007; Burger et al., 

2008). After combining probe sets from all three categories and after summarization there 

were 10,412 unique annotated genes with effect size estimates. After filtering out 

uninformative genes there were 1310 genes left, of which 787 were found significant with a 

p-value ≤ 0.05 (Table S2 in (Uddin and Singh, 2013)). Among the 787 genes, 59 were 
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significant with BH adjusted p-value ≤ 0.05 and 55 of these genes have an I2 value of 0%. 

Differential expression analysis for the 1310 IU genes identified 460 significant genes (p-

value ≤ 0.05), of which 92 were significant with p-value ≤ 0.05 after correction. However, 

among the 92 genes significant in the differential expression analysis, 44 were also present 

in the effect size meta-analysis (p ≤ 0.05) category. Table 3.5 shows some of these effect 

size and differential expression analyses results for the top 10 most up- and down-regulated 

genes in the aged-impaired (as compared to the aged-unimpaired) animals. Figure 3.3 

shows the forest plots of two representative genes Arc (activity-regulated cytoskeleton-

associated protein) (down-regulated) and Marcks (myristoylated alanine-rich protein kinase 

C substrate) (up-regulated). 

A total of 738 IU genes with significant effect sizes (p-value ≤ 0.05) were used as input for 

the functional analysis in IPA. Though cell viability of hippocampal neurons and CNS (central 

nervous system) cells, cell-to-cell signaling, and molecular transport were the top functions 

in the results, none were statistically significant. However, when I reanalyzed with an IU 

effect size dataset that was generated without any controls, four functions (e.g. molecular 

transport, cellular development, cellular growth and proliferation, and connective tissue 

development and function) were significantly decreased (results not shown). The specific 

functions of these genes in these categories include transport of molecules and 

proliferation of fibroblast cell lines. In addition, growth of neuritis was also decreased 

among others. Similar to AY, I generated biological knowledge based gene interaction 

networks for the IU related genes (Appendix 6.4.1 to Appendix 6.4.4). A summary of the 

functions for the top five most significant networks is given in Table 3.6. The canonical 

pathways that are most affected in the aged-impaired compared to the aged-unimpaired 

animals include Nurr77 (nuclear receptor subfamily) signaling in lymphocytes, nNOS (nitric 

oxide) signaling in neurons, and glutamate receptor signaling (Table 3.7). 
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Table 3.5 Top ten most up- and down-regulated genes (based on effect size) in the IU 

comparison. 

Up-regulated genes Effect size results Differential expression results 

Probe ID Symbol Effect 
size 
(ES) 

ES z-
value 

p-
value 
of z 

pBH of 
z-value 

LogFC 
of DE 

p-
value 
of DE 

pBH 
of DE 

1369775_at Nucks1 1.187 4.105 0 0 0.129 0.008 0.074 

S74393_s_at Pax6 0.881 3.944 0 0.016 0.073 0.014 0.086 

M27905_at Rpl21 0.884 3.965 0 0.016 0.093 0.020 0.1 

1388783_at Hmgb1* 1.124 3.921 0 0.016 0.095 0.055 0.155 

U93692_at Nup88 0.814 3.665 0 0.026 0.083 0.004 0.056 

J01436cds_s_at Cytb 0.827 3.726 0 0.026 0.052 0.119 0.232 

1373952_at Prkag2 1.023 3.610 0 0.033 0.089 0.013 0.084 

U78090_s_at Alg10 0.780 3.522 0 0.033 0.061 0.041 0.135 

AB002111_at Pex12 0.780 3.534 0 0.033 0.100 0.001 0.034 

1389373_at Smad1* 0.949 3.375 0 0.04 0.099 0.045 0.144 

Up-regulated genes Effect size results Differential expression results 

Probe ID Symbol Effect 
size 
(ES) 

ES z-
value 

p-
value 
of z 

pBH of 
z-value 

LogFC 
of DE 

p-
value 
of DE 

pBH 
of DE 

1390518_at Emid1 -1.259 -4.314 0 0 -0.063 0.049 0.148 

rc_AA891838_at Mrto4 -0.951 -4.224 0 0 -0.095 0.000 0.013 

1389264_at Ankrd54 -1.149 -3.983 0 0.016 -0.088 0.004 0.056 

1369203_at Wif1* -0.980 -3.478 0 0.034 -0.056 0.023 0.107 

U19866_at Arc -0.764 -3.46 0 0.034 -0.215 0.000 0.008 

1376569_at Klf2* -0.960 -3.405 0 0.04 -0.182 0.000 0.013 

rc_AA800613_at Zfp36 -0.750 -3.396 0 0.04 -0.089 0.008 0.073 

1398380_at Vwa1 -0.94 -3.350 0 0.04 -0.098 0.002 0.038 

1368451_at Hrh3* -0.940 -3.349 0 0.04 -0.094 0.005 0.063 

S49760_g_at Dgka -0.711 -3.226 0.0013 0.051 -0.081 0.006 0.063 

Top genes identified by IPA are indicated by an asterisk (*). Legends: ES, effect size; pBH, p-value with 

Benjamini and Hochberg correction; FC, fold change; DE, differentially expressed. 
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Figure 3.3 Forest plots of two representative significant genes in the aged-impaired rats. 

Arc is down-regulated (top) and Marcks is up-regulated (bottom) in the aged-impaired rats. 

For the selected probe set for each gene the individual study specific SMD and their 95% 

confidence intervals (CI) are plotted and shown on each row. The effect size results are 

shown at the bottom of each plot. 
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Table 3.6 Major functions associated with the top five networks in the IU comparison. 

Network 
ID 

Top functions associated with the networks IPA 
score 

Total 
focus 
genes 

1 Neurological disease, tissue morphology 29 27 

2 Cellular growth and proliferation, cancer, cell death and 
survival 

16 19 

3 Cell-to-cell signaling and interaction, nervous system 
development and function, carbohydrate metabolism 

14 18 

4 Cell death and survival, cellular development, hematological 
system development and function 

10 15 

5 Cell death and survival, metabolic disease, cellular function 
and maintenance 

8 13 

 

Table 3.7 Top canonical pathways in the IU comparison. 

Name p-value Ratio 

Nur77 signaling in T lymphocytes 6.13E-04 13/51 (0.255) 

nNOS signaling in neurons 5.13E-03 12/46 (0.261) 

Glutamate receptor signaling 5.68E-03 13/60 (0.217) 

Calcium-induced T lymphocyte apoptosis 1.07E-02 12/57 (0.211) 

Glutamate dependent acid resistance 1.48E-02 2/2 (1) 
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3.3.3 Aging and learning related genes 

I searched the IPA knowledge base for genes that are annotated as aging related and genes 

that are annotated as learning related, particularly spatial learning. IPA recorded a total of 

93 genes related to general aging in its database, of which five, Adraid (all-trans retinoic 

acid-induced differentiation factor), Aldoc (aldolase C, fructose-bisphosphate), Clu 

(clusterin), ApoE (apolipoprotein E), and Mapt (microtubule-associated protein tau) (Figure 

3.4) were present in my AY significant gene list (p-value ≤ 0.05). Further, there were 401 

genes annotated as learning genes in the IPA knowledge base, of which 177 were 

categorized under spatial learning. Among these learning genes 86 (30 of which were spatial 

learning related) were present in my AY comparison (Table S3 in (Uddin and Singh, 2013)) 

and 48 (15 of which were spatial learning related) were present in the IU comparison (Table 

S4 in (Uddin and Singh, 2013)) with p-value ≤ 0.05. Among the 86 genes for AY and 48 genes 

for IU, 15 were found common. These genes were considered as the ASLI associated genes. 
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Figure 3.4 Network AY-3 from the AY comparison. Major functions of this network are 

cellular assembly and organization, tissue development, and cell morphology. Each 

biological relationship (an edge) between two genes (nodes) is supported by at least one 

reference from the literature or curated information stored in the IPA knowledge base. The 

intensity of the node color indicates the degree of up- (red) or down- (green) regulation 

represented by the effect size as observed in the AY comparison (see Section 3.3.2.1). The 

effect size and p-value for each gene is shown below the gene symbol. Edges are displayed 

with various labels that describe the nature of relationship between the genes (e.g. P for 

phosphorylation, PP for protein-protein binding, PD for protein-DNA binding, A for 

activation, E for expression, L for proteolysis, LO for localization, RB for regulation of 
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binding). Any specific findings for a gene whether it is associated with aging (A), learning (L), 

and/or spatial learning (SL) is presented inside a rectangle beside that gene. 

3.4 Discussion 

3.4.1 Effective meta-analysis necessitates proper data integration 

Meta-analysis has emerged as an essential tool in modern genetic and genomic analysis 

(Goldstein and Guerra, 2010). It can uncover a significant effect from a combined analysis as 

integration of a broader and/or richer collection of data has the potential to generate 

results that have greater confidence, and place less reliance on a single dataset (Goldstein 

and Guerra, 2010; Ramasamy et al., 2008). I followed a set of standard generalized steps 

critical for effective meta-analysis that had been recommended in the literature (Chang et 

al., 2013; Goldstein and Guerra, 2010; Moreau et al., 2003; Nazri and Lio, 2012; Ramasamy 

et al., 2008; Stevens and Doerge, 2005). I formulated a set of specific objectives and 

explicitly defined the outcome to be extracted from each study (Section 1.14). I identified 

relevant primary studies, established inclusion/exclusion criteria for these studies as well as 

detailed data collection and selection processes, and executed careful data quality control 

and preprocessing on the selected data for meta-analysis (Chapter 2). In this chapter, I 

decided on the meta-analysis methods including ways to handle between-study 

heterogeneity. I performed a random effect size meta-analysis by keeping the individual 

studies separate and then only combining the probe set specific effects. I also performed 

the traditional differential expression analysis in parallel to the effect size analysis after 

merging all probe set data into a single pool through the process of cross-study and cross-

platform data normalization (Figure 3.1). Even though the differential expression analysis 

was able to detect significant differential expression level, the difference was smaller 

compared to the effect size. Overall, the effect size analysis seems to be a better approach 

than differential expression analysis, particularly when combining data from different 

studies and platforms. Nonetheless, the differential expression results helped me verify the 

effect size outcomes and better screen the aging and ASLI associated genes.  
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It is important to point out that during the data integration process I worked at the probe 

set level rather than at the gene level. This is essential when combining data from 

independent microarray results from different platforms. Therefore, I integrated all data 

first before doing any filtering, annotation, and summarization. In the final filtering process 

some genes with higher effect sizes and p-values (of the effect size z-values) > 0.1 were 

removed. This was based on the observation that, a gene may have a higher effect size but 

not necessarily a lower p-value (Table S1 and S2 in (Uddin and Singh, 2013)). This is due to 

either the heterogeneity among studies or the fact that some datasets are lacking the 

expression information for that particular probe set. Also the genes whose treatment effect 

sizes are either zero or close to zero have higher p-values. These genes were therefore 

filtered out. The data integration method adopted has prevented any loss of information 

and generated a number of differentially expressed genes even after multiple testing 

corrections (Table S1 and S2 in (Uddin and Singh, 2013)) particularly for the AY comparison. 

It is also important to mention that effect size estimates of some of these genes e.g. C3 and 

Tubb2b (Figure 3.2) present some degree of heterogeneity. It is not unexpected in a meta-

analysis as the heterogeneity may arise, as in this case, from differences in the details of the 

Morris water maze training, memory test and sample collection procedure, and other 

experimental variables pertaining to the individual studies. However, during the selection of 

the aging and ASLI related genes that had high heterogeneity, I made sure that the 

estimates of the effect size are in the same direction.  

3.4.2 Knowledge based gene networks provide useful insight with 
some limitations 

Functional and pathway analysis was performed using IPA. Beside IPA, a number of 

software other programs are available, which can streamline the data analysis process, 

including pathway analysis (e.g. Partek (www.partek.com), GENIES (Kotera et al., 2012), and 

TM4 (Saeed et al., 2003)). Some also integrate various knowledge bases such as protein-

protein interaction data, GO (gene ontology), and pathway information. These platforms 

provide a relatively quick analysis of microarray gene expression data for general biologists. 

However, in order to use these platforms, raw microarray data must be preprocessed 

http://www.partek.com/


  

93 

 

beforehand following standard pre-processing methods, proper quality control must be 

maintained, and at each step the output results must be verified for accuracy and 

consistency in the biological context being investigated. Although some of them offer 

functions to perform some data preprocessing or meta-analysis from microarray data, but 

they are limited. IPA was the best choice to perform functional and pathway analyses using 

the significant genes generated from my effect size meta-analysis, mainly, to take 

advantage of its rich manually curated biological knowledge base as well as its built in 

network construction methods  

In order to include more genes in IPA, I considered the unadjusted p-value (≤ 0.05) of the 

random effect size for gene selection (and used 2245 genes from the AY comparison). Also, I 

analyzed data in IPA with lower number of genes following more stringent criteria such as 

using p-value ≤ 0.005 (e.g. 888 genes) or BH corrected p-value ≤ 0.05 (e.g. 1753 genes) for 

the AY comparison. It was satisfactory to note that the IPA analysis returned similar results. 

Also the expression levels (up- or down-regulation) identified in this meta-analysis for all or 

most of the genes in each function annotation category in the AY comparison did 

correspond to the predicted activation state (decreased or increased) for that category as 

supported by the literature in the IPA knowledge base. Further, I was able to verify the 

results by literature review using PubMed. The gene networks created in IPA (Figure 3.4 and 

Appendix 6.3.1 to Appendix 6.4.4) show how the significant genes may interact with other 

genes in networks. The results indicate that majority of the learning genes reside in the 

periphery on these networks with only a few (e.g. one or two) interactions. For example, in 

the AY networks, three out of four learning genes (e.g. Camk4 (calcium/calmodulin-

dependent protein kinase IV), Synj1, and L1cam) in network AY-1, all four learning genes in 

(e.g. Nfkb1, Crem, C3, and Slc11a2) in network AY-2, four out of six learning genes (e.g. Pten, 

Homer1, JunB, and S100b) in network AY-3 (Figure 3.4), and four out of five learning genes 

(e.g. Tnc, Drd5, Arc, and Prkar2b) in network AY-5 share only one or two interactions with 

other genes in the network. Similar observation can be made in the other AY or IU 

networks. In addition, the results show that some of the significant genes may function as 

hub genes. A hub gene is usually a gene with many connections or interactions with other 
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genes. For example, the gene Cacna1b (calcium channel, voltage-dependent, N type, alpha 

1B subunit) interacts with a large number of other genes in network AY-1 (Appendix 6.3.1), 

which include the learning genes Camk4, Synj1 and Grm4. It also includes Tubb2b, Mapre2, 

and other potassium and calcium channel genes (e.g. Kcna1 (potassium channel, voltage 

gated shaker related subfamily A, member 1), Kcnma1 (potassium channel, calcium 

activated large conductance subfamily M alpha, member 1), Kcna4 (potassium channel, 

voltage gated shaker related subfamily A, member 4), and Cacnb2 (calcium channel, 

voltage-dependent, beta 2 subunit)).  

The protein encoded by Cacna1b (effect size -0.421 and p-value 0.0039) is a pore-forming 

subunit of an N-type voltage-dependent calcium channel, which controls neurotransmitter 

release from neurons (Currie, 2010). The activity and kinetics of several types of calcium 

channels are regulated by Cacnb2 (effect size -0.443 and p-value 0.0349) and this gene has 

recently been found as a risk locus for five major psychiatric disorders including autism 

spectrum disease (Breitenkamp et al., 2014). Neuronal Ca2+ plays a critical role as an 

intracellular second messenger, linking neuronal excitability with many kinds of cellular 

biological events including synaptic plasticity (Berridge et al., 1998; Bito, 1998; Bliss and 

Collingridge, 1993). Ca2+ ions bind to calmodulin (CaM) and form a complex, which mediates 

a significant part of signaling downstream. An important target for the Ca2+/CaM complex is 

the Ca2+/calmodulin-dependent protein kinases (CaMKs) (Bito and Takemoto-Kimura, 2003; 

Takemoto-Kimura et al., 2003). CaMKs such as Camk4 can then activate a number of other 

targets such as CREB (cAMP responsive element binding protein) and play a significant role 

in learning and memory formation through the activation of CREB signaling (Baudry et al., 

2014; Bito and Takemoto-Kimura, 2003; Miyamoto, 2006; Sweatt, 2001; Thomas and 

Huganir, 2004). 

Voltage-gated potassium (Kv) channels like Kcna1 (Kv1.1) (effect size 0.651 and p-value 

0.0001) and Kcna4 (Kv1.4) (effect size -0.399 and p-value 0.017) represent the most 

complex class of voltage-gated ion channels (Lai and Jan, 2006; McKeown et al., 2008). They 

serve a diverse function in the cell include regulating neurotransmitter release. Specific 
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potassium channels, gated by intracellular calcium elevation, have been associated with 

synaptic plasticity (Kurotani et al., 2013; Voglis and Tavernarakis, 2006). The Kv1 potassium 

channels are generally activated by the binding of the beta subunits (e.g. Kcnab1 or Kcnab2) 

and play important role in learning and memory in the hippocampal pyramidal neurons. For 

example, deletion of Kcnab1 in mice results in increasing neuronal excitability facilitating 

LTP induction and improving learning and memory in aged mice (Murphy et al., 2004). 

Kcnma1 (effect size -0.507 and p-value 0.005) channels can be formed by 2 subunits: the 

pore-forming alpha subunit, which is the product of this gene, and the modulatory beta 

subunit. Intracellular calcium regulates the physical association between the alpha and beta 

subunits. Kcnma1 has been implicated in cognitive impairments (Higgins et al., 2008). 

Other noticeable hub genes include Nfkb complex (effect size 0.619 and p-value 0.0042) and 

PKC(s) in network AY-2 (Appendix 6.3.2), Mapk1 (p38) (effect size -0.55 and p-value 0.14) in 

network AY-4 (Appendix 6.3.3), NMDA receptor in network AY-5 (Appendix 6.3.4), and the 

kinases (e.g. Akt, ERKs, and PI3K) in network AY-6 (Appendix 6.3.5). Some of these are also 

present as hub genes in the IU networks, such as Nfkb complex, Akt (protein kinase B or 

PKB), and ERKs (mitogen-activated protein kinases) in network IU-1, and PI3K 

(phosphatidylinositol 3-kinase) in network IU-4. The broader implications of some of these 

genes in ASLI are discussed in more details in Chapter 5. 

It is important to note that Fischer 344 strain of rats have a median life-span of 23-31 

months in captivity (Coleman et al., 1977; Sass et al., 1975). Their normal age-related 

incidence of neoplasms and degenerative diseases is high, particularly, once the rats pass 24 

months of age (Coleman et al., 1977; Sass et al., 1975). Also, the effect of aging and ASLI on 

brain gene expression is evident in the aged (24-26 months old) in comparison to the young 

(3-6 months old) rats. Indeed, it is expected that studies on animals beyond 26 weeks of age 

may show involvement of additional genes in this phenomenon and the effects observed 

could be more pronounced at later stages of the rat’s life-span. 

In summary, I followed a set of standard generalized steps critical for effective meta-

analysis that had been recommended in the literature. I performed a random effect size 



  

96 

 

meta-analysis by keeping the individual studies separate and then only combining the probe 

set specific effects. The probe set level data integration method adopted here has 

prevented any loss of information and generated a larger number of differentially expressed 

genes even after multiple testing corrections. GO and pathway analysis results relating to 

these genes support the fact that the genes and pathways identified in this analysis follow 

biological expectations. The genes identified (Table 3.2) are known to partake in aging and 

in learning impairments. This conclusion is also supported by follow up analysis including 

regulatory interaction networks based on known functions and interaction. However, the 

pathway analysis reveals three important shortcomings of such traditional analysis using 

microarray gene expression data: 1) the regulatory interaction relationships among genes 

are based on curated information from published literature stored in biological knowledge 

data base only; 2) the genes known as aging or learning based on the current biological 

knowledge are all scattered in different networks; and 3) the hub genes express at a 

comparatively lower level. Therefore, results from the analysis in this chapter are not able 

to provide a complete picture as to how the candidate learning genes co-express in the 

context of aging as well as learning or how their combined action may contribute to the ASLI 

phenotype in rats. Particularly, this type of pathway analysis is limited for genes for which 

no interaction or regulatory information is available in the literature or biological knowledge 

base.  
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Chapter 4 Gene Network Analysis 

4 Gene network construction using the WGCNA 
approach identifies a key ASLI network module and 
several candidate hub genes 

4.1 Introduction 

Mathematical modeling of gene networks from gene-expression data begins with the 

understanding that the information captured by microarray experiments is far richer 

than that which is obtained by a list of differentially expressed genes. The availability of 

large scale genome-wide gene expression microarray data has inspired the development 

of a large number of gene network inference algorithms as reviewed in Chapter 1. 

Literature review in PubMed suggests that mathematical modeling approaches utilizing 

steady-state gene expression data to model consensus gene networks have been in 

frequent use (e.g. probabilistic Bayesian networks (Friedman et al., 2000), partial-

correlation based approaches (GeneNet) (Opgen-Rhein and Strimmer, 2007), 

information-theoretic approaches (ARACNE) (Margolin et al., 2006), and correlation 

based methods (WGCNA) (Langfelder and Horvath, 2008)). However, many of these 

methods suffer from major limitations. Though Bayesian network approaches appear to 

be highly promising, there is rarely any publication where the authors demonstrate wet-

bench/experimental validation of the implementation of their algorithm.  A major 

practical challenge in using Bayesian networks to infer gene network is that the 

structure learning of the network is NP-hard (non-deterministic polynomial-time hard) 

for score-based approaches (Chickering, 1996). Also the network learning process is 

computationally complex, as the number of possible graphs increases super-

exponentially with the number of genes, and an exhaustive search is untraceable. 

Hence, Bayesian networks or dynamic Bayesian networks can be applied only to 

relatively small networks (Ahmad et al., 2012; Emmert-Streib et al., 2012). 



  

100 

 

ARACNE, another very popular mutual information based approach, also shows a fate 

similar to Bayesian networks (i.e. a lack of any experimentally verified publications 

following the original work)(Basso et al., 2005). Several studies have compared a 

number of these popular algorithms to model gene networks, and provided 

comprehensive evaluations and suggestions to help choose proper statistical methods 

for constructing large scale gene networks (Allen et al., 2012; Maetschke et al., 2014; 

Nazri and Lio, 2012; Song et al., 2012; Villaverde and Banga, 2014). They compared and 

evaluated the methods in terms of sensitivity and specificity in identifying the true 

connections and the correct hub genes, the ease of use, and computational speed. For 

example, Allen et al. (2012) compared eight different methods such as GeneNet (Opgen-

Rhein and Strimmer, 2007), SPACE (Sparse PArtial Correlation Estimation) (Peng et al., 

2009), WGCNA, ARACNE, and four Bayesian Networks methods such as BNArray (Chen 

et al., 2006), B-course (Myllymaki et al., 2002), BNT (murphy, 2001), and Werhli's 

implementation of Bayesian network (Werhli et al., 2006). They concluded that each 

method has its own advantages, however, GeneNet, WGCNA, and ARACNE performed 

well in constructing the global network structure with simulated data; GeneNet and 

SPACE performed well in identifying a few connections with high specificity. With real E. 

coli data, their results indicated that WGCNA and ARACNE performed best and were 

relatively more robust. Moreover, WGCNA methods were suitable for detecting network 

modules or sub-networks, identifying hub genes (which are likely to be the disease 

driver genes), and selecting candidate genes as biomarkers. 

Maetschke et al. (2014) recently compared the prediction accuracy of 17 different 

unsupervised methods that included popular methods such as Pearson’s correlation 

(used in WGCNA), ARACNE, MRNET (Meyer et al., 2007), CLR (Faith et al., 2007), 

relevance networks (Butte et al., 2000), and GENIE (Kotera et al., 2012). They also 

compared these methods against successful supervised and semi-supervised methods. 

Their conclusion is that simple correlation methods such as Pearson correlation are as 

accurate as much more complex methods, yet much faster and parameter-less. Song et 

al. (2012) compared correlation and mutual information based approaches, and 
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confirmed close relationships between these methods. Moreover, they suggest that 

robust measure of correlation leads to modules that are superior to mutual information 

based modules in terms of gene ontology enrichment. 

In summary, among the methods that are used to model causal interactions and 

networks, there is a lack of agreement in the scientific community as to which method 

performs best. Many methods, or their variations, have been claimed to be performing 

better than others. However, only mathematical (and seldom experimental) evidence is 

provided to support these claims. For many methods, there are too many variations 

(particularly for Bayesian networks) (Ahmad et al., 2012; Beal et al., 2005). Many, 

understandable only to the mathematician, statistician, or computational biologist, are 

not in an easy-to-use format and require a steep learning curve. For general biologists 

with limited computational knowledge, it poses a challenge to select a suitable gene 

network algorithm to generate biologically meaningful networks. Therefore, correlation-

based methods such as WGCNA are gaining popularity in the biological scientist 

community.  

Correlation networks are widely used to explore, analyze, and visualize high-

dimensional data, for example in finance (Mangegna and Stanley, 2000), gene 

expression analysis (Butte et al., 2000; Mason et al., 2009; Miller et al., 2008; Oldham et 

al., 2006; Oldham et al., 2008; Plaisier et al., 2009; Rickabaugh et al., 2015; Ye and Liu, 

2015), or metabolomics (Steuer, 2006). Their popularity is owed to a large extent to the 

ease with which a correlation network can be constructed, as this requires only two 

simple steps: i) the computation of all pairwise correlations for the investigated 

variables, and ii) a thresholding or filtering procedure to identify significant correlations, 

and hence edges of the network (Opgen-Rhein and Strimmer, 2007). Correlation-based 

methods are the most straightforward way to explore the gene co-expression network.  

When the mRNA expression of two or more genes are correlated across multiple 

samples, these genes are said to be ‘coexpressed’ (Gaiteri et al., 2014). Correlation 

network analysis using WGCNA can infer these co-expression links from microarray 
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expression profiles. WGCNA has been successfully used in recent years in a number of 

biological and cellular contexts (over 30 publications in 2014 alone) (Fontenot and 

Konopka, 2014; Fuller et al., 2007; Levine et al., 2013; Mason et al., 2009; Miller et al., 

2010; Oldham et al., 2008; Plaisier et al., 2009; Rickabaugh et al., 2015; Ye and Liu, 

2015). It enables a more systematic and global interpretation of gene expression data. 

WGCNA takes an unbiased approach for ascertaining the relationships among all genes 

queried across all samples in a dataset (Langfelder and Horvath, 2008; Zhang and 

Horvath, 2005), and identifies biologically meaningful ‘modules’ that are often 

comprised of functionally related genes. Gene relationships within a given module can 

then be assessed using a number of visualization tools such as Visant (Hu et al., 2004) or 

Cytoscape (Shannon et al., 2003). The graphical representation of a module aids in 

rapidly identifying hub genes and other biologically meaningful patterns of co-

expression within a given module. Overall, WGCNA provides an approach for prioritizing 

specific genes from large expression datasets, particularly those with biologically salient 

relationships that might otherwise be missed using differential expression approaches 

(Fontenot and Konopka, 2014). 

As discussed in Chapter 3, differential expression analysis (followed by functional and 

pathway analysis using IPA) to identify ASLI gene networks was limited to the current 

IPA knowledge base. IPA pathway analysis could only model gene networks based on 

information that was available in the literature. Therefore, those analyses were unable 

to fully utilize the gene transcript expression information captured by the microarray 

data. WGCNA may overcome such limitations. Numerous studies have applied gene co-

expression network analysis using WGCNA to associate co-expression modules with 

brain and psychiatric diseases (de Jong et al., 2010; Miller et al., 2008; Torkamani et al., 

2010; Voineagu et al., 2011). Oldham et al. (2006) investigated the conservation and 

evolution of gene co-expression networks in human and chimpanzee brains, and shed 

light on the molecular bases of primate brain organization. Miller et al. (2008) employed 

WGCNA to explore commonalities and differences between normal aging and 

pathological aging in Alzheimer's disease, resulting in the identification of biologically 
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relevant modules conserved between Alzheimer's disease and aging. However, no study 

investigating gene network modeling in ASLI appeared in the literature. It was thus 

necessary to initiate such a study to explore and identify functional modules and gene 

hubs in the context of ASLI. In this chapter, I perform a co-expression network analysis 

(using WGCNA) to fulfill objective three as outlined in Chapter 1. The specific goals of 

this aspect of the study are: 1) to separate aged and young samples and create gene 

network models from the exploratory datasets, 2) to perform a differential network 

analysis between aged and young networks, and 3) to evaluate results (significant 

functional modules and hub genes) by comparing them against the validation datasets.  

4.2 Methods 

All data preparation steps including WGCNA, GO, and other statistical analyses were 

performed in R using appropriate software packages. 

4.2.1 Data selection for network analysis 

The five datasets, R7, B8, K9, B7, and BL (Table 2.3) were assessed and used in WGCNA. 

These datasets were already quality checked and normalized, and had outliers removed 

and batch effect adjusted (Table 2.4). For each dataset, aged and young samples were 

separated and assessed further for the presence of array outliers (Appendix 6.1.1 to 

Appendix 6.1.6). Since the WGCNA network construction method is correlation based, 

before proceeding with network analysis I wanted to make sure that the correlations 

between genes in each dataset were reasonable as suggested in the literature (Miller et 

al., 2010). This was done by calculating Pearson’s correlations between the expression 

levels of each pair of genes in the aged or young preprocessed datasets and by plotting 

the correlation values in histogram plots in R. 

4.2.2 Co-expression network analysis using the WGCNA 
approach 

Co-expression analysis using WGCNA generally begins with calculating pairwise 

correlations between all gene expression profiles in a dataset and creating an adjacency 
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matrix (i.e. a correlation matrix). Often the analysis is restricted to some fraction of the 

original gene set (typically several thousand of the most highly correlated genes). Once 

the correlation matrix is built, it is raised to a power to approximate scale free topology. 

Genes with highly correlated expression profiles are then grouped together in clusters 

called modules, and networks are constructed. Each module may correspond to 

biological pathways or similarly functionally associated groups of genes.  

Using the preprocessed transformed data (genes in columns and samples in rows), gene 

networks were constructed for aged and young using the WGCNA R package (Langfelder 

and Horvath, 2008; Zhang and Horvath, 2005) following the approaches described in 

(Miller et al., 2008; Miller et al., 2010; Oldham et al., 2006; Oldham et al., 2008). The 

overall network analysis process for a single dataset is described below, which involves 

the following main steps.  

1. Determining the weights or soft power beta 

2. Creating an adjacency (connection strength) matrix 

3. Filtering out genes with very low connectivity 

4. Creating and visualizing a whole network 

5. Creating and visualizing network modules 

6. Exploring the functional significance of modules 

7. Validating network modules 

8. Differential network analysis of young vs. aged 

9. Identifying and validating hub genes 

4.2.3 Determining the weights or soft power beta 

Once it was confirmed that the correlations between genes in each dataset were 

reasonable, soft threshold power beta (Appendix 6.15.1) was determined for each 

dataset by using the function pickSoftThreshold(. . .) in the WGCNA R package. 
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4.2.4 Creating an adjacency (connection strength) matrix 

A weighted correlation between two genes represents connection strength between the 

genes in a network. For each dataset, a network adjacency or connection strength 

matrix (network data) (Appendix 6.15.1) was created by taking the signed correlations of 

the gene expression values between each pair of genes raised to a power of beta. Beta 

is the weight, a soft threshold, and was determined in such a way so that the resulting 

network follows approximate scale free topology. The values in the diagonal (self-

correlation) were converted to zero. 

4.2.5 Filtering out genes with very low connectivity 

To save computational time, genes were filtered out from a network adjacency matrix 

based on their connectivity (i.e. only genes with reasonably high connectivity were kept 

for network analysis). The overall connectivity for each gene (denoted by k) is the sum 

of connection strengths (weighted correlation) between that gene and all other genes in 

the network. It is scaled to lie between 0 and 1 and represents how strongly a gene is 

connected to all other genes in the network.  

4.2.6 Creating and visualizing a whole network 

A co-expression network can be created using all the genes in an adjacency matrix. In a 

co-expression network, an edge between two genes (nodes) represents a co-expression 

relationship. For each dataset a network interaction file was created from its adjacency 

matrix (see Appendix 6.8.1 for details), and used in Cytoscape for visualization and 

analysis. 

4.2.7 Creating and visualizing network modules  

Following filtering (Section 4.2.5), an adjacency matrix contained genes with reasonably 

high network connectivity. This adjacency matrix was used to determine a network 

topological overlap, construct a hierarchical clustering dendrogram of 1 – topological 

overlap, determine network modules using a hybrid tree-cutting algorithm, and to 

visualize network modules.  
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Network analysis often results in a large number of modules. It is sometimes useful to 

reduce the number of modules by merging those whose expression profiles are very 

similar. This was accomplished by the WGCNA function mergeCloseModules(…), which 

merged modules whose member genes were highly co-expressed. To calculate the co-

expression similarity of entire modules, their module eigengenes were calculated. The 

module eigengene is defined as the first principal component of a given module. It can 

be considered as a representative of the gene expression profiles in a module (see 

Appendix 6.15.1 for details). The module eigengenes were clustered on their consensus 

correlation, which was the minimum correlation across the two sets. 

4.2.8 Exploring the functional significance of modules 

A list of genes belonging to each network module was exported to tab delimited text 

files along with all necessary information. For each module there were two files, the first 

file contained a list of genes with their gene symbols, mean expression, module names, 

and intramodular connectivity. This file was used for GO analysis using DAVID (The 

Database for Annotation, Visualization and Integrated Discovery) 

(http://david.abcc.ncifcrf.gov/) (Huang da et al., 2009a; Huang da et al., 2009b; Huang 

et al., 2007). The second file contained co-expression interaction information between 

each pair of genes in a module along with the topological overlap and correlation 

information. This interaction file was used for network visualization and analysis.   

Functional Annotation Clustering analysis was performed In DAVID using the gene list 

for each young network module. Since, the network analysis generated a large number 

of modules in young and aged groups in multiple datasets, it was not efficient to 

perform online analysis one module at a time. In this research, DAVID web-services 

were accessed programmatically to perform GO analysis by using an R package called 

RDAVIDWebService (Fresno and Fernandez, 2013). It is a versatile R interface to all 

DAVID web service functionalities. 

http://david.abcc.ncifcrf.gov/
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 In summary, a DAVIDWebService object is created inside R; desired annotation 

categories e.g. GO biological process, molecular function, and cellular component are 

set; and a gene list (belonging to a module) along with the species name and 

background gene list is passed to the DAVID database online. The R object would in turn 

retrieve all requested information from the DAVID database. Since gene symbols can be 

confusing and often fail to produce a perfect match, the corresponding affymetrix IDs 

were used to query the DAVID database. GO functional annotation information was 

obtained for all modules in the young and the aged categories. 

The functional Annotation Clustering analysis function in DAVID uses a novel algorithm 

to measure relationships among the annotation terms based on the degrees of their co-

association genes, and organizes functionally similar gene groups into functional 

annotation clusters (http://david.abcc.ncifcrf.gov/) (Huang da et al., 2009a; Huang da et 

al., 2009b; Huang et al., 2007). The clustering algorithm is based on the hypothesis that 

similar annotations should have similar gene members. The algorithm adopts kappa 

statistics to quantitatively measure the degree of the agreement as to how genes share 

the similar annotation terms. It uses fuzzy heuristic clustering to classify the groups of 

similar annotations according to kappa values. The Kappa Statistic is a chance corrected 

measure of agreement between two sets of categorized data. In this sense, the more 

genes share common annotations, the higher the chance they will be grouped together. 

In DAVID, for each functional cluster an enrichment score is calculated. This enrichment 

score is the geometric mean (in -log scale) of the p-values of all member annotation 

terms and is used to rank their biological significance (Huang da et al., 2009b). Thus, the 

top ranked annotation clusters will most likely have consistently lower p-values for their 

annotation members. 

The significance of a gene-enrichment p-values for each annotation term is first 

calculated based on a modified Fisher exact test method known as the EASE score 

(Hosack et al., 2003), which is more conservative than the Fisher exact p-value (Huang 

da et al., 2009b).  For example, in human genome backgrounds (30,000 gene total), 40 

http://david.abcc.ncifcrf.gov/
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genes are involved in the p53 signaling pathway. A given gene list has found that three 

out of 300 genes belong to the p53 signaling pathway. Then the question is if 3/300 is 

more than by random chance compared to the human background of 40/30000. Usually 

a p-value has to be equal or smaller than 0.05 for it to be considered strongly enriched 

in the annotation categories. The default threshold of the EASE score was set at 0.1. 

4.2.9 Validating network modules 

Network modules for young and aged were compared across studies and platforms for 

their repeatability. This was done in two ways: a) module preservation and b) module 

overlap.  

4.2.9.1 Module preservation 

Module preservation statistics (Langfelder et al., 2011; Miller et al., 2010; Zhang and 

Horvath, 2005) can qualitatively and quantitatively measure network preservation at the 

module level. This statistics is implemented in the WGCNA R package (Langfelder and 

Horvath, 2008). The module preservation analysis in this research was performed 

following the recommendation in Miller et al. (2010). As a qualitative assessment, the 

gene module assignment from one network is mapped on the same genes in the second 

network. The results are then plotted in a dendrogram, which offers a visual mean to 

qualitatively assess preservation. 

Quantitative measure of network preservation at the module level takes advantage of 

the modulePreservation(…) function built into the WGCNA R library. This function 

assesses how well a module in one study is preserved in another study using a number 

of statistics. Module preservation was estimated quantitatively between the young and 

the aged networks in different datasets. In all comparisons, the R7 top most connected 

genes, their transcription profiles, and their module assignments were used as a 

reference.  
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4.2.9.2 Module overlap 

Comparing networks by calculating module overlap allows one to determine whether a 

module that was found in one dataset can also be found in another dataset (Horvath, 

2011; Miller et al., 2010). For example, to validate the existence of a module, it is 

desirable to show that the module is reproducible in a second independent dataset. 

Module overlap is a cross-tabulation-based statistics implemented in the WGCNA 

function overlapTable(. . . ). This function determines whether clusters or modules in an 

exploratory or reference dataset are found in a validation or test dataset. These 

statistics do not assume a network or do not require transcription profiles. Instead, 

module assignments in both the reference and the test data are needed. Fisher’s exact 

test is used to calculate a p-value of significance of pair-wise module overlap.  

In this research, module overlaps were calculated along with their significance of 

overlaps between the young modules and between the aged modules in different 

datasets following the approach described in Oldham et al. (2008). In brief, top most 

connectivity genes common between a network from R7 (exploratory set) aged (or 

young) and another aged (or young) network from a validation set were selected. Next, 

the module labels between the two networks were matched using the matchLabels(…) 

function in WGCNA. The purpose was to see which modules in one network contain a 

significant number of overlapping genes with modules in the second network. This 

function reassigns module labels in the second network such that corresponding 

modules are assigned the same color label. For example, the brown module in network 

N1 has a significant number of genes overlapping with the black module in network N2. 

The matchLabels(…) function will re-label the black module in network N2 as brown. 

After matching labels between the modules in exploratory and validation networks, the 

overlapTable(…) function was used to find percentage overlaps and significance p-

values.  
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4.2.10 Differential network analysis of young vs. aged 

Differential network analysis allows one to compare two different networks side by side, 

for example, between a control and a disease network. Networks for several interesting 

modules identified in this research were visualized side by side between the young and 

aged groups using Cytoscape and compared for their differential co-expression.  

4.2.11 Identifying and validating hub genes 

Top hub genes were identified using the method topGenesKME(…) (Miller et al., 2010). 

This method determines which genes have extremely high module eigengene-based 

connectivity or 𝑘𝑀𝐸  values in both networks. Module eigengene-based connectivity 

𝑘𝑀𝐸 , also known as module membership, is calculated for each gene. It is defined by 

correlating each gene’s expression profile with the module eigengene of a given module 

(Langfelder and Horvath, 2008; Zhang and Horvath, 2005). Hub genes were validated by 

assessing their repeatability in networks constructed from independent datasets and by 

investigating their functions in relevant pathways. 

4.2.11.1 Repeatability 

Repeatability of the candidate hub genes were assessed as follows. For each module, 

hub genes present in the exploratory (R7) networks were checked for their presence as 

hub genes in the validation networks (e.g. B8, K9, or B7) with high 𝑘𝑀𝐸  values as well as 

with t-test p-values ≤ 0.05 (between two networks). In cases where a module from an 

exploratory network matched to multiple modules in a validation network, genes from 

multiple significant modules in the validation network were combined together and 

then compared to the hub genes in the exploratory network module.  

4.2.11.2 Literature search 

Literature searches were performed using PubMed to explore characteristics and 

functions of selected ASLI candidate hub genes and their relationship to learning and 

memory formation. 
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4.3 Results 

In order to model, explore, and identify ASLI genes and their networks, I next describe 

the application of WGCNA to the current analysis. This analysis followed a detailed and 

through investigation that included the identification of GO enriched significant 

functional modules and hub genes, as well as validation of results using independent 

datasets. The results are described below. 

4.3.1 Data selection for network analysis 

Based on the quality of data and number of samples (Section 2.3.4 and Table 2.4), R7 

aged (R7-A) and young (R7-Y) datasets were chosen as the exploratory datasets; B8 

young (B8-Y), K9 young (K9-Y), B7 aged (B7-A), and B8 aged (B8-A) datasets were chosen 

as the validation datasets (Table 4.1). These six datasets were used for the construction 

of WGCNA networks. Since, after preprocessing, the B7 young, K9 aged, and both the BL 

young and aged groups did not have sufficient number of samples for WGCNA, they 

were excluded from this network analysis. The networks were constructed for each of 

the aged and young datasets separately (i.e. B7-A, B8-Y, B8-A, K9-Y, R7-Y, and R7-A). 

However, GO based functional analysis and visualization was done only for the networks 

from R7 young and aged exploratory datasets, and the results were validated 

independently in networks constructed from the validation datasets. 

Table 4.1 Datasets selected for WGCNA network analysis. 

Dataset Number 
of young 
sample  

Exploratory / 
Validation      
(Young) 

Number 
of aged 
sample 

Exploratory / 
Validation  
(Aged) 

B7   28 Validation 

R7 19 Exploratory 27 Exploratory 

B8 18 Validation 28 Validation 

K9 18 Validation   
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4.3.2 Determining the weights or soft power beta 

Since the WGCNA network construction approach is based on measuring pairwise gene-

gene correlations, I wanted to make sure that the overall correlation quality would be 

acceptable before investing in extensive network analysis. The histogram plots of the 

correlations between genes in the aged and young preprocessed datasets show that the 

correlations are reasonable as they are mostly centered at zero (Figure 4.1). 

The next step in network construction is to determine the soft threshold power. To 

choose a power beta for computing the connection strengths, the WGCNA function 

pickSoftThreshold(…) makes use of the scale-free topology criterion (Langfelder and 

Horvath, 2008; Zhang and Horvath, 2005). It focuses on the linear regression model 

fitting index (denoted as R2 or scale.law.R.2) that quantifies how well a network satisfies 

a scale-free topology. The function calculates connectivity k, which for each gene is the 

sum of connection strengths with the other network genes. Connectivity was calculated 

for each gene in a dataset using a set of powers from 1 to 20. For each power the R2 was 

then calculated and returned along with other information on connectivity. The function 

pickSoftThreshold(…) estimated an appropriate soft-thresholding power from the set. 

For each dataset, it also returned a data frame containing the fit indices for scale free 

topology.  

Table 4.2 shows such a data frame from R7-Y as an example of a typical result. The 

columns contain the soft-thresholding power, adjusted R2 for the linear fit, the linear 

coefficient, mean connectivity, median connectivity and maximum connectivity. Given 

this table the power six presents as the best overall fit for R7-Y with R2 = 0.88 and 

mean.k = 39.35 (the target values are R2 > 0.8 and mean.k > 30). 

   



  

113 

 

 

Figure 4.1 Histogram of correlations between genes in each dataset selected for 

WGCNA network analysis. Correlations are centered at zero for R7-Y, B8-Y, B8-A, K9-Y, 

and B7-A, and close to zero for R7-A. 
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Table 4.2 R7 young data power table. The first column lists the soft threshold Power, 

the second column reports the resulting scale free topology fitting index R2 

(scale.law.R.2), the third column reports the slope of the fitting line, the fourth column 

reports the fitting index for the truncated exponential scale free model, the remaining 

columns list the mean, median and maximum connectivity. The slope of the regression 

corresponds to the value gamma for the scale free distribution.  

Power R2 slope Truncated R2 mean.k. median.k. max.k. 

1 0.00 0.22 0.96 1850.26 1832.41 2620.20 

2 0.13 -1.42 0.95 640.17 619.17 1214.80 

3 0.36 -1.87 0.96 271.45 254.39 658.61 

4 0.60 -1.93 0.98 130.99 118.04 394.23 

5 0.78 -2.13 0.98 69.31 59.78 265.08 

6 0.88 -2.27 0.98 39.35 32.37 191.35 

7 0.93 -2.35 0.98 23.63 18.41 146.66 

8 0.96 -2.33 0.98 14.87 10.91 116.58 

9 0.98 -2.29 0.98 9.72 6.70 95.32 

10 0.98 -2.21 0.98 6.58 4.26 79.68 

12 0.98 -2.04 0.98 3.28 1.84 58.45 

14 0.99 -1.88 0.99 1.80 0.87 44.89 

16 0.99 -1.75 0.99 1.06 0.44 35.57 

18 0.99 -1.65 0.99 0.67 0.23 28.82 

20 0.99 -1.58 0.99 0.44 0.13 23.86 
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As examples of further analyses of network topology for various soft-thresholding 

powers, results from R7-Y and R7-A are shown in Figure 4.2 and Figure 4.3. These figures 

present some of the information from a power table (such as Table 4.2) in a graphical 

format. Figure 4.2.A and Figure 4.3.A show the scale-free fit index (y-axis) as a function 

of the soft-thresholding power (x-axis) for the young and aged samples, respectively.  

These plots help to visualize how the scale-free fit depends on the power parameter 

beta. The smallest power of beta is chosen where the R2 curve seems to saturate. The 

horizontal red line corresponds to R2 = 0.80 as a general cutoff. Based on this scale free 

topology model fit analysis the soft-threshold power for both R7-Y and R7-A was 

determined to be 6. This power also results in an approximate straight line relationship 

in the scale-free topology plots in Figure 4.2.B and Figure 4.3.B. According to these plots, 

the black linear regression line leads to a fitting index of R2 = 0.86 for R7-Y and R2 = 0.81 

for R7-A. The red line represents the better fit provided by an exponentially truncated 

power law, which leads to a fitting index of R2 = 0.98 for R7-Y and R2 = 1.0 for R7-A. 

Performing similar analyses, the soft powers for B8-Y and B8-A were determined to be 

10 and 8, respectively. For the B7-A dataset, the soft power was 9 and for K9-Y it was 10. 
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Figure 4.2 Analysis of network topology for various soft-thresholding powers for the 

R7 young dataset. A) Scale-free fit index (y-axis) as a function of the soft-thresholding 

power (x-axis). B) Scale free topology plot shows the log-log plot between frequency of 

connectivity p(k) and connectivity k for determining whether the network exhibits scale-

free topology. 

 

 

A                        Scale-free fit index as a function of beta 

B                                                   Scale free topology plot 
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Figure 4.3 Analysis of network topology for various soft-thresholding powers for the 

R7 aged dataset. A) Scale-free fit index (y-axis) as a function of the soft-thresholding 

power (x-axis). B) Scale free topology plot shows the log-log plot between frequency of 

connectivity p(k) and connectivity k for determining whether the network exhibits scale-

free topology. 

 

A                        Scale-free fit index as a function of beta 

 

B                                                   Scale free topology plot 
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4.3.3 Creating adjacency (connection strength) matrices 

The genes that remained after preprocessing and filtering (Table 2.5 and Table 4.5) were 

used to calculate the signed Pearson correlation coefficients for all pairwise 

comparisons of gene-expression values across all young and aged samples.  The 

correlation matrix for each group was then transformed into a matrix of connection 

strengths (i.e. an "adjacency" matrix) using a soft power beta as determined above. This 

resulted in a network adjacency matrix for each dataset, for example, for R7 it 

generated an 8053x8053 matrix. Figure 4.4 shows a portion (6x8) of such data matrices 

for the R7-Y and R7-A samples. 

 
Figure 4.4 A portion (6x8) of the R7 network adjacency data matrix. 

4.3.4 Filtering out genes with very low connectivity 

First, connectivity value for each gene was calculated from the adjacency matrix. Next 

for each dataset, the average median connectivity kmed was used as a cutoff value to 

filter out genes with very low connectivity. For R7-Y kmed was 0.46 and for R7-A kmed was 

0.54. I selected the average kmed = 0.5 as the minimum connectivity cutoff, which 

removed 2379 genes, leaving 5674 high connectivity genes for the R7 network analysis 

(Table 4.5). For B8 and K9 the median kmed was 0.4 and 0.35, which resulted in 5202 and 

4796 high connectivity genes, respectively. The number of B7 genes was already low 

> adj.y.top [1:6, 1:8] 
        A1cf    A2m   Aaas   Aacs  Aadat   Aamp   Aars Aarsd1 
A1cf  0.0000 0.0114 0.0069 0.0022 0.0094 0.0047 0.0256  0.012 
A2m   0.0114 0.0000 0.0430 0.0229 0.0094 0.0125 0.0762  0.093 
Aaas  0.0069 0.0430 0.0000 0.0040 0.0174 0.3529 0.0596  0.028 
Aacs  0.0022 0.0229 0.0040 0.0000 0.0850 0.0074 0.0616  0.125 
Aadat 0.0094 0.0094 0.0174 0.0850 0.0000 0.0037 0.0058  0.045 
Aamp  0.0047 0.0125 0.3529 0.0074 0.0037 0.0000 0.0409  0.024 
> 
 
> adj.a.top [1:6, 1:8] 
        A1cf    A2m  Aaas   Aacs  Aadat   Aamp   Aars Aarsd1 
A1cf  0.0000 0.0084 0.014 0.0438 0.0054 0.0104 0.0529 0.0334 
A2m   0.0084 0.0000 0.040 0.0241 0.1663 0.0361 0.0323 0.0159 
Aaas  0.0144 0.0403 0.000 0.0177 0.1660 0.0927 0.0542 0.0072 
Aacs  0.0438 0.0241 0.018 0.0000 0.0154 0.0099 0.0585 0.0761 
Aadat 0.0054 0.1663 0.166 0.0154 0.0000 0.0250 0.0083 0.0023 
Aamp  0.0104 0.0361 0.093 0.0099 0.0250 0.0000 0.1603 0.0026 
> 
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and close to the numbers of other filtered datasets. So, in order to prevent information 

loss no filtering was done on these B7 genes. 

4.3.5 Creating and visualizing a whole network 

After connectivity based filtering, all filtered genes were used to determine network 

topological overlaps and gene co-expression interactions. The topological overlap is a 

measure of node similarity and for two separate nodes it reflects their relative 

interconnectedness (i.e. how close the neighbors of gene 1 are to the neighbors of gene 

2). Using the 5674 high connectivity genes in R7 a co-expression network was created 

for visualization (Appendix 6.8.1). Figure 4.5 below shows the co-expression network of 

5000 highly connected genes in R7-Y. 

 

Figure 4.5 A co-expression network using 5000 most highly connected genes from the 

R7 young dataset. Each node represents a gene whose color represents its differential 

expression values (log fold change) between the young and aged samples. Red color 

means the gene shows higher expression in R7-Y compared to R7-A, and green 

represents the opposite in the young.  Node sizes are proportional to the number of co-

expression connections with other genes in the network.  
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4.3.6 Creating and visualizing network modules 

A major goal of gene correlation network analysis is to identify groups of highly 

interconnected genes (Oldham et al., 2006; Zhang and Horvath, 2005) termed as 

modules. The expression profiles of genes in a module are highly correlated across the 

samples. In a co-expression network, modules are identified by searching for genes with 

similar patterns of connection strengths to other genes, or genes with high topological 

overlap. The topological overlap values are calculated using the adjacency and 

connectivity values, which determine which genes will be in which module and form a 

network. The values range between 1 and 0 representing maximum and minimum 

interconnectedness. The module identification method in WGCNA is based on using a 

node dissimilarity measure in conjunction with a clustering method. Since the 

topological overlap matrix is non-negative and symmetric, it is turned into a dissimilarity 

measure by subtracting from one. Genes are hierarchically clustered using the average 

linkage method, taking 1-topological overlap as the distance measure and modules are 

determined by choosing a height cutoff for the resulting dendrogram. In the 

dendrogram, discrete branches of the tree correspond to modules of co-expressed 

genes. Following these steps, gene network modules for the young and aged samples 

were identified separately for each dataset using the filtered weighted correlation 

matrices as prepared above.  

Figure 4.6 and Figure 4.7 show the hierarchical dendrograms of topological overlaps for 

the 5674 genes in R7-Y and R7-A, respectively. There are several height cut-off 

algorithms implemented in the WGCNA R package. In this research the cut-tree hybrid 

method was chosen to pick a height cut-off and to identify modules, which are shown in 

the panel below the dendrograms. The default lowest cut-off resulted in six modules in 

the young network and 15 modules in the aged network. Each module is labeled with a 

unique color (except grey) for easy visualization and understanding. The color grey is 

preserved for genes that do not belong to any module. 
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Figure 4.6 Hierarchical clustering dendrogram of topological overlaps of R7-Y genes. 

The cut-tree hybrid method was used to pick a height cut-off and to identify modules, 

which are shown in the panel below the dendrogram. Each module is labeled with a 

unique color for easy visualization and understanding. 

 

 

Figure 4.7 Hierarchical clustering dendrogram of topological overlaps of R7-A genes. 

The cut-tree hybrid method was used to pick a height cut-off and to identify modules, 

which are shown in the panel below the dendrogram. Each module is labeled with a 

unique color for easy visualization and understanding. 
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The aged network resulted in many modules, most with small numbers of genes, for 

example, 13 of the modules had fewer than 300 genes each and 9 of them had less than 

200 genes each (result not shown). For better comparison, the number of modules in 

the aged network was brought closer to that of the young network. This was 

accomplished by merging the modules using the WGCNA function 

mergeCloseModules(...). Figure 4.8 presents an average linkage hierarchical plot of the 

module eigengenes of the 16 aged modules (including the grey module). It shows that 

some modules (e.g. the black and turquoise, cyan and green, blue and salmon, etc.) are 

clustered very close together. The three red lines represent the tree cut line at different 

heights and the numbers on the right (corresponding to the lines) represent the 

expected number of resulting merged modules that each cut will produce. In order to 

keep the module numbers similar to that of the young network, a cut height of 0.4 was 

chosen that generated seven modules in the aged network (including the grey module) 

(Figure 4.9). 
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Figure 4.8 Hierarchical clustering of the initial 16 aged modules. 

Number of 
module  

  5 
    

  7 
 

 12 
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Figure 4.9 Hierarchical clustering of the final aged modules. 

Figure 4.9 shows that the old modules (Figure 4.8) are merged into new modules, for 

example, the magenta, yellow, black, and turquoise modules are merged into a new 

module named black; cyan and green are merged into cyan; blue and salmon are 

merged into blue; pink and purple are merged into pink; brown and midnightblue are 

merged into brown; and red, greenyellow, and tan modules are merged into red. The 

grey module contained genes that did not belong to any module and remained 

separate. Since module names/labels in a network were randomly generated, the seven 

aged modules were matched to the seven young modules to check for similarity and 

module overlap of gene members (Appendix 6.9.1 and Appendix 6.9.2; see Section 

4.3.8.2 for details). Once a significant match was found, modules in the aged network 

were renamed after the matched young network module names. The Table 4.3 shows 

the final modules in the young and aged networks along with the number of genes 

belonging to each module. In addition, Table 4.3 shows which aged modules are 

matched to which young modules. The black module from the aged network had genes 

matching significantly to both the blue and brown modules in the young network. The 

aged brown, red, and cyan modules matched to the green, red, and yellow young 

modules, respectively, while the blue and pink aged modules matched a single turquoise 
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young module. This module matching process is helpful when comparing similar 

modules between networks, for example, aged vs. young.  

Table 4.3 Modules in the R7 young and aged networks. There were seven modules in 

each group including the grey module. Aged modules were matched to the young 

modules to find modules containing the maximum number of matching genes. Once 

identified, the aged module names were changed to match the respective young 

module names for easy comparison. 

Samples Module names 

Young Blue Brown Green Grey Red Turquoise Yellow 

# of genes 1015 759 380 1319 341 1129 731 

Aged 
(original 
labels**) 

Blue 
(Black) 

Brown 
(Black) 

Green 
(Brown) 

Grey 
(Grey) 

Red 
(Red) 

Turquoise 
(Blue & Pink) 

Yellow 
(Cyan) 

# of genes 1151 1151 554 2600 206 508 & 366 289 

** (original labels/names of the aged modules before matching to the young modules 

are in bracket) 

The co-expression network interaction files for the genes belonging to each of the R7 

young modules were created using the method described in Appendix 6.8.1. For clarity, 

only the top 500 to 600 most connected genes and their co-expression interactions 

were used to create each module network. Co-expression information from all modules 

were combined and imported into the Cytoscape for visualization. Figure 4.10 shows all 

six modules in the R7 young networks where the modules are represented by the color 

of their respective names (e.g. the blue module is represented by the color blue).  
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Figure 4.10 All six modules in the R7 young networks. The modules are represented by the color of their respective names, for 

example, the blue module is represented by the color blue. The most significant GO functional categories represented by the genes 

belonging to each module are also shown. 
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4.3.7 Exploring the functional significance of modules 

Biological significance analysis of the network modules was performed using the 

functional annotation clustering analysis in DAVID that utilizes the GO and other 

biological pathway information databases. DAVID is a web-based high-throughput 

functional annotation bioinformatics resource. It provides a comprehensive set of 

functional annotation tools to understand biological meaning behind large lists of genes. 

For any given gene list, DAVID tools are able to identify enriched biological themes, 

particularly GO terms and discover enriched functionally-related gene groups.  

DAVID functional annotation clustering analysis was used through the 

RDAVIDWebService tool in R. DAVID also allows one to identify the most relevant 

(overrepresented) biological terms associated with a given gene list. The DAVID 

database offers extended annotation coverage with over 40 annotation categories, 

including GO terms, protein-protein interactions, protein functional domains, disease 

associations, bio-pathways, sequence features, homology, and many more (Huang da et 

al., 2009b). However, for reasons of simplicity and to better understand the biological 

significance of the network modules identified above, only the biological processes (BP), 

molecular functions (MF), and cellular components (CC) GO terms and all KEGG Pathway 

terms were included in the functional annotation clustering analysis.  

Affymetrix probe set identifiers of all the genes belonging to a network module (Table 

4.3) were used as the input gene list. The total number of genes from the RAE230A array 

for the R7 dataset (after preprocessing and filtering) was 5674, and was used as a 

background population. Rattus norvegicus was used as species.  

 The function getClusterReportFile(. . .) in RDAVIDWebService was used with default 

parameters to retrieve all relevant information (Appendix 6.6.1). Next 

getClusterReport(…) function was used to extract the functional annotation chart file, 

which was saved as a text file and later analyzed. An enrichment score cutoff of 1.0 was 

used to minimize the number of clusters that were returned. Table 4.4 shows the 
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summary result of GO analysis for the young modules. The most significant GO 

functional categories represented by the genes belonging to each module are also 

shown in Figure 4.10. A module-wise detail report can be found in Appendix 6.7.1 to 

Appendix 6.7.6. 

The results show that, in general, each module is highly enriched with genes functioning 

in broad but distinct GO functional categories or biological pathways with highly 

significant enrichment scores. A brief description of the results for each module is given 

in the following sections.  

Table 4.4 GO functional analysis summary for the R7 young modules. 

Module Major GO Categories p-value 

Blue ribosome, translation elongation  9.85E-08 to 2.02E-09 

Brown cellular process, GTPase activity, myelination, cell 
communication 

 0.02 to 0.006 

Green  developmental process  9.36E-04 

Red oligodendrocyte development, histine deacetylase 
activity 

 0.01 to 0.005 

Turquoise mitochondrion, many diseases, ribosome  1.20E-04 to 3.12E-06 

Yellow synaptic activity, synaptic transmission , learning 
and memory 

2.94E-04 to 4.77E-15 

4.3.7.1 Blue Module 

The blue module contained a total of 1015 genes, of which 999 corresponding 

Affymetrix IDs were found in the DAVID database. Results show that this module is 

highly enriched with genes functioning in two distinct functional categories with very 

high enrichment scores (Appendix 6.7.1). The first cluster of genes is localized in the 

ribosome and contributes to the translational pathway (enrichment score 5.08, p-values 

0.001 to 1.68E-06 after Benjamini multiple testing correction). The second cluster of 

genes is localized in the mitochondria and contributes to cellular metabolic and 

biosynthetic process pathways (enrichment score 2.40, p-value 0.05 to 7.59e-06 after 

multiple testing correction).  
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4.3.7.2 Brown Module 

This module contained 759 genes, of which 744 were found in the database. This 

module is highly enriched with clusters of genes that are part of the intracellular 

organelles or macromolecular complex and may function in a variety of cellular 

processes including binding, transport, hydrolase or GTPase/ATPase activity, 

myelination, and cellular homeostasis (enrichment score 1.1 to 1.6 and p-values ranging 

from 0.05 to 0.001) (Appendix 6.7.2). 

4.3.7.3 Green Module 

In this module, 375 Affymetrix IDs corresponding to 380 genes were identified in the 

DAVID database. Genes in this module are significant with two main GO term clusters 

(enrichment score 0.99 to 1.56 and p-values ranging from 0.05 to 5.91e-04) (Appendix 

6.7.3).  The first cluster is enriched with genes in developmental process pathways and 

the second cluster is enriched with genes contributing to GTPase regulator activity 

functions. Some of these genes are known to reside in the extracellular space. 

4.3.7.4 Red Module  

The red module contained a total of 341 genes, 335 of which were mapped in the DAVID 

database. The red module is enriched with three main clusters (enrichment score 1.0 to 

1.87 and p-values ranging from 0.03 to 0.005) (Appendix 6.7.4). The first cluster of genes 

functions in the histone deacetylase pathway and the second cluster of genes contribute 

to glial cell differentiation or oligodendrocyte differentiation functions. The third cluster 

of genes (a majority of which reside in the cell membrane or integral to membrane) 

respond to the hormone stimulus pathway.  

4.3.7.5 Turquoise Module  

This module contained 1129 genes. Affymetrix IDs for 1118 of these genes were found 

in the database.  There are four highly significant gene clusters that belong to the 

turquoise module (enrichment score 1.63 to 1.93, p-values 0.02 to 0.001 after Benjamini 

multiple testing correction) (Appendix 6.7.5). DAVID analysis shows that a large number 
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of genes in this module are located in or associated with, ribosome or mitochondrion. In 

fact, many of these genes are mitochondrial ribosome genes, for example, about 19 of 

the 45 ”ribosome” genes are also part of the 175 “mitochondrion” genes. A number of 

these genes show repeated appearance in different clusters that are highly enriched 

with Huntington’s disease, Parkinson’s disease, Alzheimer’s disease, and oxidative 

phosphorylation KEGG pathway terms.  

4.3.7.6 Yellow Module  

Affymetrix probe set IDs corresponding to 723 of the 731 yellow module genes were 

mapped in the DAVID database. Functional clustering analysis using the mapped genes 

shows a very large number of significant hits even after Benjamini multiple testing 

corrections, and with very high enrichment scores (Appendix 6.7.6).  

Cluster one has the highest enrichment score of 5.92 with a p-value range of 0.03 to 

1.37e-5 (after Benjamini multiple testing correction). Genes in this cluster are enriched 

in the regulation of cellular localization, secretion, transport, cell communication, and 

synaptic transmission GO biological process terms.  

Cluster two contains a large number of genes that are part of the plasma membrane or 

are integral to the membrane (enrichment score of 5.91 with a p-value range of 0.03 to 

1.55e-10 after Benjamini multiple testing correction). A closer look at the genes from 

cluster one (e.g. 37 genes in regulation of cellular localization or 53 genes of regulation 

of transport) and cluster two genes (e.g. 182 plasma membrane and 156 transport 

genes) show that many of these genes are localized in the plasma membrane or integral 

to membrane and contribute to cellular localization and transport. 

Cluster three contains genes that are enriched with GO molecular functions such as 

transmembrane receptor activity and molecular signal transducer activity (enrichment 

score of 5.07 with a p-value range of 0.05 to 3.40e-05 after Benjamini multiple testing 

correction). 
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Cluster four shows enrichment of genes in two GO categories, cellular components and 

biological processes (enrichment score of 4.85 with a p-value range of 0.02 to 2.10e-12 

after Benjamini multiple testing corrections). The GO cellular components results 

indicate that some genes are part of the synapse, plasma membrane or postsynaptic 

membrane. The GO biological processes enrichment indicates that these genes 

contribute to cell-cell signaling and synaptic transmission.  

Cluster five echoes the result of cluster four GO cellular component enrichment. It 

shows that the genes are significantly enriched with GO cellular component terms, 

which indicates that these genes are part of synapse, axon, neuron projection, or 

postsynaptic density (enrichment score of 4.74 with a p-value range of 0.02 to 2.10e-12 

after Benjamini multiple testing correction). 

Cluster six is very interesting as it shows enrichment of genes mostly in GO molecular 

functions such as gated or voltage-gated ion channel activity and ion binding and 

transport (enrichment score of 3.16 with a p-value range of 0.02 to 4.88e-05 after 

Benjamini multiple testing correction). 

Cluster seven is enriched with genes contributing to various neurological system 

processes such as cognition, behavior, learning, and memory (enrichment score of 3.05 

with a p-value range of 0.03 to 3.97e-05). However, after Benjamini multiple testing 

correction, only the neurological system processes GO biological process term was 

found significant (p-value = 0.011). 

All these clusters have many genes in common in closely related cellular component, 

function or pathway categories (based on my manual comparison). 

4.3.8 Validating network modules 

The gene expression data were compared as follows: R7 young vs. B8 and K9 young; R7 

aged vs. B8 and B7 aged (Figure 4.11).  
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Figure 4.11 Network validation analyses strategies across multiple independent 

datasets. This figure shows how the networks of the young and aged samples were 

compared among independent datasets. The gene expression data were compared as 

follows: R7 young vs. aged; R7 young vs. B8 and K9 young; R7 aged vs. B8 and B7 aged. 

However, in each comparison the R7 young network module definition was used as a 

reference and networks were created from gene expression data accordingly for 

comparison. 

4.3.8.1 Module preservation 

Module preservation was assessed quantitatively where the R7 5674 top most 

connected genes from the young networks were compared to the same genes in other 

datasets to see how well the module assignment of these R7 genes and their module-

wise functions are preserved in other datasets. However, in each comparison the R7-Y 

network module definition was used as a reference. For example, in the comparison 

between R7-Y vs. B8-Y, the same R7 top most connected 5674 genes were selected from 

B8-Y. Next, the same R7-Y gene module definition was mapped to the B8-Y genes. There 

was an exception for the R7-A vs. B7-A comparison where only 2140 genes were used 

because only these genes were common between the two different chip types used in 

the two independent studies. 

Network preservations were estimated using the modulePreservation(…) function built 

into the WGCNA library by keeping the maximum module size at 700 and using 30 

permutations. The results are summarized in the bar plot in Figure 4.12. It presents the 
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preservation of R7 young and aged modules in each comparison as Zsummary statistics 

along the x-axis. All the R7 young modules (e.g. brown, yellow, turquoise, blue, green, 

and red) along with their major significant functional categories are represented in the 

y-axis. Except the green module, all other modules generally show moderate to high 

preservation across independent studies. The brown module shows the highest 

preservation among all the modules while the green module shows the lowest 

preservation. All modules in general in the R7 aged vs B7 aged comparison shows 

comparatively lower preservation than in the other comparisons.  
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Figure 4.12 Preservation of R7 young network modules across studies, age, and 

platform. The x-axis presents the preservation Zsummary statistics and the y-axis 

represents the R7-Y modules such as brown, yellow, turquoise, blue, green, and red 

along with their major significant functional categories. In each comparison R7 module 

assignment was used as a reference. The preservation of modules in R7-Y vs. R7-A is 

shown as a guide. The vertical dotted line at Zsummary score 2.0 indicates the borderline 

between no preservation and very weak preservation. Generally, 5<Z<10 indicates 

moderate preservation and Z>10 indicates high preservation. Legends: gr, green; turq, 

turquoise; yell, yellow; br, brown.  
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4.3.8.2 Module overlap between networks 

Comparing networks by calculating module overlaps between networks provides 

another way to validate network modules using independent datasets. I performed a 

pair-wise comparison for all datasets as explained in Section 4.2.9.2 and in Figure 4.11. 

After merging datasets by matching genes, there were 3626 top most connectivity 

genes common between R7 and B8, 3138 between R7 and K9, and 2140 between R7 

and B7 networks (Table 4.5).  

Table 4.5 Gene selection for network comparison. This table shows the number of 

genes that remained for network analysis and comparison after low-connectivity gene 

filtering and after matching the R7 young module labels to the B8, K9, and B7 data. For 

B7, no low-connectivity filtering was done because of the already low number of 

remaining genes. 

 Number of genes remained for network analysis 

Dataset After 
preprocessing 

Median 
Connectivity 
(kmed) 

After low-
connectivity 
gene filtering 

Module 
overlap 
comparison 

After matching 
R7 young genes 

R7 8053 0.5 5674  -- 

B8 7157 0.4 5202 R7-Y_B8-Y 

R7-A_B8-A 

3626 

K9 8250 0.35 4796 R7-Y_K9-Y 3138 

B7 4829 - - -  4829 R7-A_B7-A 2140 

 

Once two datasets had the same matching genes selected, next, for each comparison 

(e.g. between R7-Y and B8-Y) all modules were compared between the two datasets (i.e. 

the module assignment of the genes in R7 were matched to the same genes in B8). For 

each comparison, the results generated an overlap table and a p-value table showing 

the number of genes that matched between each pair of modules and their associated 

p-value significance, respectively (Appendix 6.9.3 to Appendix 6.9.6). From these results, 

percentage overlap for each module was calculated by dividing the total genes matched 
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to a module (e.g. number of genes from an R7 module matching to the genes from a 

module in the second dataset) with the total matched to all modules (e.g. number of 

genes from an R7 module matching to the genes in all modules (max shared) in the 

second dataset). In cases where an R7 module was matched to multiple modules in the 

second network, overlap with the lowest p-value was considered. For example, the R7-Y 

yellow module genes (731) matched to only 85 genes in the B8-Y red module with the 

lowest p-value (highest match), while they matched to 385 genes in the B8 young 

network shared by all the modules. Therefore, the percentage overlap is 85/385 = 

22.08% with a p-value of 8.50e-09. The final results for all four comparisons (column five 

in Table 4.5) are summarized in the bar plots in Figure 4.13 for young and in Figure 4.14 

for aged networks.  

For the young, all modules in R7-Y were compared for their significant overlap in B8-Y 

and K9-Y (Figure 4.13). The results show that except the blue module in the R7-Y vs. B8-

Y comparison, all modules show a significant repeatability with a p-value < 0.05. The red 

module showed the maximum overlap trailed by brown, turquoise, yellow, green, and 

blue.  

For the aged, all modules in R7-A (using the R7 young module definition) were 

compared for their significant overlap in B8-A and B7-A (Figure 4.14). The results show 

that all modules demonstrate a significant repeatability with a p-value < 0.05 across 

independent datasets. The blue module showed the maximum overlap trailed by 

turquoise, brown, yellow, red, and green.  
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Figure 4.13 Validation of young modules in independent datasets. All modules in R7-Y 

were compared for their significant overlaps in B8-Y and K9-Y. The percentage overlap is 

shown on the x-axis and the modules, along with their broad significant GO categories, 

are shown on the y-axis. Legends: gr, green; turq, turquoise; yell, yellow; br, brown. 
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Figure 4.14 Validation of aged modules in independent datasets. All modules in R7-A 

were compared for their significant overlaps in B8-A and B7-A. The percentage overlap 

is shown on the x-axis and the modules, along with their broad significant GO 

categories, are shown on the y-axis. Legends: gr, green; turq, turquoise; yell, yellow; br, 

brown. 
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4.3.9 Differential network analysis of young vs. aged 

In order to assess the changes in co-expression patterns of the young as they age and 

how the aging would affect learning impairments, I compared several interesting 

network modules between young and aged networks generated from the R7 data. This 

comparative investigation involved visualizing them side by side, comparing expression 

patterns between networks, and searching for key genes. In addition, it involved 

identifying the key genes’ functions and pathways that can help explain the learning 

differences as well as the aging effect that had been observed between the young and 

aged animals. Differential expression levels for the top 5674 genes in the R7 data were 

calculated by using the limma package in Bioconductor. The log fold changes of 

expression differences between young and aged for all genes were saved as a tab 

delimited text file, and later loaded as node attributes in Cytoscape for each module. 

Figure 4.15 presents the differential co-expression networks of the yellow module 

between young and aged rats, which demonstrates a clear difference in expression 

patterns between the young and the aged genes. The majority of the genes in the aged 

yellow network show lower expression compared to the young. In addition, the 

comparative analysis demonstrates differential co-expression for many genes between 

the two networks (i.e. some genes display more co-expression interaction than others 

and this varies between the young and the aged networks). The results allow one to 

identify a number of key genes for further investigation (see Section 4.3.10). 

Differential co-expression networks for the brown (“cellular processes, GTPase 

activity”), green (“developmental process”), and red (“oligodendrocyte development, 

histine deacetylase activity”) modules are presented in Figure 4.16 to Figure 4.18. Like 

the yellow module, the majority of the genes in the aged brown network show lower 

expression compared to the young. However, this type of expression differences is not 

so dramatic, rather mixed, in the green and red modules. Like the yellow, all these 

modules display differential co-expression.  
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Figure 4.15 Differential co-expression network analysis for the yellow “learning” 

module in the young and aged in R7. The color of each node displays differential 

expression level (log fold change value) between young and aged samples. Each node 

size is proportional to the number of co-expression interaction the node has. Legends: 

red is upregulation; green is downregulation. 

  

 Young                                  Aged 

R7 Yellow Module    
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Figure 4.16 Differential co-expression network analysis for the brown module in the 

young and aged in R7. The color of each node displays differential expression level (log 

fold change value) between young and aged. Each node size is proportional to the 

number of co-expression interaction the node has. Legends: red is upregulation; green is 

downregulation. 

  

R7 Brown Module    

 Young                                  Aged 
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Figure 4.17 Differential co-expression network analysis for the green module in the 

young and aged in R7. The color of each node displays differential expression level (log 

fold change value) between young and aged. Each node size is proportional to the 

number of co-expression interaction the node has. Legends: red is upregulation; green is 

downregulation. 

  

R7 Green Module    

 Young                                  Aged 
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Figure 4.18 Differential co-expression network analysis for the red module in the 

young and aged in R7. The color of each node displays differential expression level (log 

fold change value) between young and aged. Each node size is proportional to the 

number of co-expression interaction the node has. Legends: red is upregulation; green is 

downregulation. 

  

R7 Red Module    

 Young                                   Aged 
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Differential co-expression for a subnetwork of a subset of genes from the original 

network can also be investigated. For example, Figure 4.19 shows a yellow module 

subnetwork involving Cdk5r1, a significant learning gene identified in the previous 

chapter through meta-analysis. This figure shows that Cdk5r1 is co-expressing with only 

five other genes in the young subnetwork. While in the aged subnetwork, this gene is 

co-expressing with a much larger number of genes. Thus there is a difference in the 

number of co-expression connections (that Cdk5r1 has with other genes) between the 

young and aged subnetworks. For example, the number of co-expression interactions 

for Prkacb and Cdk5r1 is much higher in the aged network than in the young yellow 

network. Interestingly, Mapre1, Dlg3, Impact, and Gabrg1 is only present in the young 

subnetwork, whereas, Dpp6, Stxbp1, Kcnab2, Mapk1, Mapk9, Ppp2r2c and others are 

only present in the aged subnetwork with large number of co-expression connections. 

 

Figure 4.19 First neighbors of Cdk5r1 in the R7 yellow module. 

  

 Young                                    Aged 
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4.3.10 Identifying and validating ASLI candidate hub genes 

In a co-expression network, genes that are highly connected with many other genes are 

called hub genes. These genes show significant correlation with the module eigengenes 

and have high within-module connectivity. After closely studying the networks in young 

and aged, I have identified a set of key hub genes in each module. Some of the hub 

genes in the yellow module in R7 are shown in Table 4.8, which include Camk1g, Cdk5r1, 

Cntn1, Dlg3, Dlgap1, Dpp6, Eif5, Gabrg1, Impact, Kcnab2, Mapk1, Mapre1, Ndfip2, 

Ppp2r2c, Prkacb, Pten, Rasgrp1, Scn2b, and Stxbp1. These hub genes show differences in 

the number of co-expression interactions they have between the young and aged 

networks, and form a set of candidate hub genes for ASLI. Literature searches show that 

many of these genes function as kinases (e.g. Camk1g, Dlg3, Mapk1, and Prkacb) or 

phosphatases (Ppp2r2c) or are involved in the function of ion channels (Dpp6, Gabrg1, 

Kcnab2) (Table 4.7).  Some of them are already known as learning genes and were 

identified in my meta-analysis. Table 4.6 shows the number of significant AY meta-

analysis genes that are also members of different modules in the R7-Y network. 

Particularly, it shows that there are 165 AY significant meta-analysis genes in the yellow 

module. A list of these genes is presented in Appendix 6.5.1 which also includes few 

candidate hub genes.  

Table 4.6 Significant AY meta-analysis genes common in R7-Y modules. 

R7 
Modules 

Number of 
genes 

Number of AY meta-analysis 
genes matching to each module 

Blue 1015 275 
Brown 759 195 
Green 380 130 
Grey 1319 334 
Red 341 133 

Turquoise 1129 275 
Yellow 731 165 
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Effect size estimates from my meta-analysis results for the above ASLI candidate hub 

genes are summarized in Appendix 6.10.1. In addition, I have created individual forest 

plots for some of these hub genes, which are presented in Appendix 6.10.2 to Appendix 

6.10.16. The combined meta-analysis results for these hub genes show that they were 

expressed at a very low level in the brain with comparatively lower standardized mean 

differences between young and aged, and thus failed to appear towards the top in the 

differentially expressed aging or learning gene list (Tables S1 and S2 in (Uddin and Singh, 

2013)). 
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Table 4.7 Top candidate ASLI hub genes in the yellow module of the R7 dataset. Genes 

with an ‘*’ were also identified as learning genes in my meta-analysis. 

Hub Gene Function Description Reference 

Camk1g Encodes a protein similar to calcium/calmodulin-
dependent protein kinase (CaMK), but its exact function 
is not known. CaMKs activated by the neuronal Ca2+ 
influx phosphorylate cAMP (cyclic adenosine 
monophosphate) responsive element binding protein 
(CREB), which has been implicated in spatial learning and 
memory formation.  

(Thomas and 
Huganir, 2004; 
Voglis and 
Tavernarakis, 2006)  

Cdk5r1* Involved in the pathology of Alzheimer's disease through 
the deregulated activity of Cdk5 (cyclin-dependent kinase 
5), and also involved in synaptic plasticity, and learning 
and memory. 

(Angelo et al., 2006; 
Shukla et al., 2012) 

Cntn1 Contributes to the formation and function of neuronal 
connections, axon-glia communication, and necessary for 
myelin sheath formation by oligodendrocytes.  

(Colakoglu et al., 
2014; Ranscht, 
1988) 

Dlg3* Encodes a member of the membrane-associated 
guanylate kinase protein family; may play a role in 
clustering of N-methyl-D-aspartate (NMDA) receptors at 
excitatory synapses. It is highly enriched in the 
postsynaptic density (PSD), and plays essential roles in 
synaptic organization and plasticity. 

(Elias and Nicoll, 
2007; Elias et al., 
2008; Wei et al., 
2015) 

Dpp6 Encodes an auxiliary subunit of voltage-gated potassium-
4 channels and regulates the A-type K+ current gradient, 
which regulates dendritic excitability. 

(Nadal et al., 2003; 
Wolf et al., 2014) 

Eif5 Make 80S ribosomal initiation complex functional for 
translation. 

(Si et al., 1996) 

Gabrg1 Belongs to the ligand-gated ionic channel family. It is an 
integral membrane protein and plays an important role in 
inhibiting neurotransmission. 

(Pirker et al., 2000; 
Ye and Carew, 2010) 

Kcnab2* Encodes one of the beta subunits of the shaker-related 
Kv channels (Kv1.1 to Kv1.8) and found as a component 
of almost all potassium channel complexes containing 
Kv1 α subunits. It is a learning gene that is known to 
contribute to certain types of learning 

(McKeown et al., 
2008; Voglis and 
Tavernarakis, 2006) 

Mapk1* Encodes a member of the MAP kinase family and is 
known as a learning gene. Hippocampal expression of 
Mapk1 is essential for synaptic plasticity and spatial 
learning. 

(Selcher et al., 2001; 
Sweatt, 2001; 
Thomas and 
Huganir, 2004) 

Mapre1 It is involved in the regulation of microtubule structures (Kim et al., 2013; 



  

149 

 

and chromosome stability. Tirnauer et al., 
2002) 

Ndfip2 Affects receptor tyrosine kinase signaling by 
ubiquitinating several key components of the signaling 
pathways through binding to E3 ubiquitin ligases. 

(Cristillo et al., 2003; 
Mund and Pelham, 
2010) 

Ppp2r2c Ppp2r2c gene encodes one of the four B regulatory 
subunits of the PP2A (protein phosphatase 2A) enzyme 
complex. Inhibition of PP2A by inhibitor I1PP2A results in 
deficits in spatial reference memory and memory 
consolidation in adult rats. 

(Backx et al., 2010; 
Xu et al., 2006) 

Prkacb Encodes the catalytic beta subunit of protein kinase A 
(PKA). PKA activates CREB and contributes to learning 
induced gene expression. Prkacb expression is required 
for LTP in the Hippocampus. 

(Howe et al., 2002; 
Nguyen and Woo, 
2003; Qi et al., 1996) 

Pten* It modulates activation of the phosphatidylinositol 3-
kinase (PI3K)/ protein kinase B (Akt) pathway. PTEN 
independently controls the structural and functional 
properties of hippocampal synapses and plays a direct 
role in activity-dependent hippocampal synaptic plasticity 
such as LTP and LTD. 

(Blair and Harvey, 
2012; Maehama and 
Dixon, 1998; Sperow 
et al., 2012) 

Rasgrp1 It is a guanine nucleotide-exchange factor. When it is 
activated by Ca2+/calmodulin and diacylglycerol (DAG), it 
facilitates exchange of GDP to GTP and activates Ras. 

(Stone, 2006) 

Scn2b Scn2b is a complex glycoprotein comprised of an alpha 
subunit and often one to several beta subunits. It was 
reported to have a role in epilepsy. 

(Baum et al., 2014; 
XiYang et al., 2015) 

Stxbp1 Plays a role in release of neurotransmitters via regulation 
of syntaxin, a transmembrane attachment protein 
receptor. 

(Kurps and de Wit, 
2012) 

Legend: Camk1g, Calcium/calmodulin-dependent protein kinase I gamma; Cdk5r1, 
Cyclin-dependent kinase 5, regul. subunit 1 (p35); Cntn1, Contactin 1; Dlg3, Discs, large 
homolog 3; Dlgap1, Discs, large  homolog-associated protein 1; Dpp6, Dipeptidyl-
peptidase 6; Eif5, Eukaryotic translation initiation factor 5; Gabrg1, Gamma-
aminobutyric acid (GABA) A receptor, gamma 1; Impact, Impact RWD domain protein 
(RWDD5); Kcnab2, Potassium channel, voltage gated shaker related subfamily A 
regulatory beta subunit 2; Mapk1, Mitogen-activated protein kinase 1 (ERK); Mapre1, 
Microtubule-associated protein, RP/EB family, member 1; Ndfip2, Nedd4 family 
interacting protein 2; Ppp2r2c, Protein phosphatase 2, regulatory subunit B, gamma; 
Prkacb, Protein kinase, cAMP-dependent, catalytic, beta; Pten, Phosphatase and tensin 
homolog; Rasgrp1, RAS guanyl releasing protein 1 (calcium and DAG-regulated); Scn2b, 
Sodium channel, voltage-gated, type II, beta; Stxbp1, Syntaxin binding protein 1.  
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The candidate ASLI hub genes were checked for their repeatability in networks 

constructed independently from B8, K9, and B7. The results are summarized in Table 

4.8. Details of the hub gene validation data are available in Appendix 6.11.1 to Appendix 

6.11.6. The results show that a number of hub genes from the yellow module are 

repeated in one or more independent datasets in B8, K9, or B7 with a p-value ≤ 0.05. 

From the R7 yellow module Prkacb, Scn2b, Cntn1, Pten, and Ndfip2 were found present 

as hub genes in the K9 network; Dlgap1 was found in the B7 and B8 networks; and 

Camk1g was found repeated in the B7 network. Notably, many of these hub genes were 

in the list of top 20 mean KME values in other networks, but their p-values were not 

significant, for example, Dlg3, Mapre1, Dpp6, Stxbp1, Impact, and Mapk1. 

For the brown module, a set of candidate hub genes were identified and their 

repeatability as hub genes in networks constructed independently from datasets B8, K9, 

and B7 were checked. The results are summarized in Table 4.9 and the detail validation 

data are available in Appendix 6.13.1 to Appendix 6.13.6. 

 

 

 

 

 

 

 

 

 



  

151 

 

Table 4.8 Significant ASLI candidate hub genes from the yellow “learning” module and 

their repeatability in independent datasets.  

Gene 
symbol 

Number of co-expression in 
R7 network 

Hub gene 
repeated in 
study 

t-test      
p-value 

Known 
learning 

gene Young Aged 

Camk1g 0 4 B7-A 0.0003 No 

Cdk5r1 5 22   Yes 

Cntn1 6 0 K9-Y 0.0186 No 

Dlg3 63 1   Yes 

Dlgap1 0 7 B7-A, B8-A 0.0332 No 

Dpp6 2 68   No 

Eif5 36 1   No 

Gabrg1 23 1   No 

Impact 24 1   No 

Kcnab2 2 10   Yes 

Mapk1 9 19   Yes 

Mapre1 49 1   No 

Ndfip2 4 0 K9-Y 0.0217 No 

Ppp2r2c 6 47   No 

Prkacb 76 103 K9-Y 0.0523 No 

Pten 2 0 K9-Y 0.0308 Yes 

Rasgrp1 15 5   No 

Scn2b 5 1 K9-Y 0.0028 No 

Stxbp1 1 49   No 
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Table 4.9 Significant hub genes in the brown “cell process” module and their 

repeatability in independent datasets. 

Hub genes 
in R7 

Number of co-
expression interaction in 

R7 

Hub gene 
repeated in 
study 

t-test p-
value 

Young Aged 

Acbd5 33 2   

Acyp2 36 0   

Araf 0 89 B8 0.0772* 

Astn1 0 13   

Commd10 2 16   

Eif3m 1 2 B7, B8 0.0038 

Fyttd1 45 2   

Hnrnpk 1 31   

Mettl14 178 2   

Mtmr6 5 0 K9 0.0234 

Rpe 5 1 B8, K9 0.0001 

Slc6a15 0 20 B7, B8 0.0097 

Tspan31 0 30   

Zfp280d 0 57   
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4.4 Discussion 

WGCNA provides a simple methodology with which to construct gene co-expression 

network models from microarray gene expression data. I employed WGCNA for the first 

time in the analysis of ASLI microarray gene expression data. A key step in the network 

construction process was to determine the soft power beta. To choose a cutoff value to 

select the soft power, I made use of the scale-free topology criterion (Zhang and 

Horvath, 2005). The function pickSoftThreshold(…) estimated appropriate soft-

thresholding powers for each dataset. It is recommended that a soft power greater than 

the power corresponding to R2 value > 0.80 and a slope of the regression line between -

1 to -2 produces approximate scale-free topology (Carlson et al., 2006; Horvath et al., 

2006; Oldham et al., 2006). In order to meet the scale-free criterion and to have the 

same soft power for aged and young, I chose a soft power of 6 for R7, which was above 

the 0.80 threshold for a R2 cutoff (Figure 4.2 and Figure 4.3). The power tables (e.g. 

Table 4.2) show that the resulting slope (minus the gamma parameter of the scale-free 

plot) looks reasonable. The slopes corresponding to the soft power 6 were -2.26 for 

young and -2.64 for aged. However, a slope of up to -3.4 was used in some instances 

(Miller et al., 2010). In case of R7, above soft power 6, the scale free topology fit did not 

improve much and showed saturation. There is a natural trade-off between maximizing 

the scale-free topology model fit (R2) and maintaining a high mean (mean k > 30) 

number of connections (Zhang and Horvath, 2005). A signed R2 > 0.80 can lead to a 

network satisfying scale-free topology at least approximately, while an R2 value close to 

1 may lead to networks with very few connections. In addition, the mean connectivity 

should be high enough so that the network contains sufficient information (e.g. for 

module detection). Thus selecting a soft power 6 was reasonable.  

As a pre-processing step towards module detection, I restricted the network 

construction to genes with reasonably high connectivity.  This helped eliminate genes 

that did not change their expression much between young and aged. These genes do 

not contribute to the correlation matrix. Further, this filtering process does not lead to a 
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big loss of information since module genes tend to have high connectivity (Zhang and 

Horvath, 2005; Oldham et al., 2006). Toward this end, average median connectivity in 

the aged and young groups was considered as a cutoff. After filtering out genes with 

very low connectivity, close to 5000 genes were selected from each dataset for network 

analysis, which was reasonable. Often three to four thousand genes are used in such 

analyses (Carlson et al., 2006; Zhang and Horvath, 2005). However, I wanted to include 

more genes because after matching genes among datasets in subsequent steps, the final 

number of genes can decrease significantly. Notably, genes with the most variable 

expression patterns across conditions (variable genes) can also be used, instead of the 

most connected genes, to create networks (Miller et al., 2008). 

Next, the selected most connected genes were used to create co-expression networks. 

A number of free software applications are available to visualize network graphs of all or 

any single network module (e.g. igraph (http://igraph.org/), Gephi 

(http://gephi.github.io/), VisANT (http://visant.bu.edu/), Tulip 

(http://tulip.labri.fr/TulipDrupal/), CGV (http://www.informatik.uni-

rostock.de/~ct/software/CGV/CGV.html), and Cytoscape (http://www.cytoscape.org/)). 

In this research I evaluated some of them and decided to use Cytoscape for all network 

visualization because of its strength and versatility. For R7 data the WGCNA started out 

with 5674 genes. Co-expression analysis of 5000 highly connected genes in R7-Y resulted 

in a dense mass of highly interconnected network (Figure 4.5). As expected, this type of 

network is not very helpful, which necessitates breaking it down to meaningful clusters 

or modules. Modules were identified from each dataset using the topological overlap.  

The topological overlap is considered a highly robust measure of network 

interconnectedness that combines the adjacency of two genes and the connection 

strengths these two genes share with other genes (Mason et al., 2009). To calculate the 

topological overlap for a pair of genes, their connection strengths with all other genes in 

the network were compared. The topological overlap values were used as input for 

average linkage hierarchical clustering. Modules were defined as branches of the 

resulting cluster tree (Langfelder et al., 2008). This module detection procedure has 

http://igraph.org/
http://gephi.github.io/
http://visant.bu.edu/
http://tulip.labri.fr/TulipDrupal/
http://www.informatik.uni-rostock.de/%7Ect/software/CGV/CGV.html
http://www.informatik.uni-rostock.de/%7Ect/software/CGV/CGV.html
http://www.cytoscape.org/
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been used in many applications (Carlson et al., 2006; Fuller et al., 2007; Ghazalpour et 

al., 2006; Horvath et al., 2006; Maschietto et al., 2015; Oldham et al., 2006; Oldham et 

al., 2008; Yang et al., 2014; Ye and Liu, 2015). Subsequent analysis identified six modules 

in the young network and 15 modules in the aged network in R7. Often it is desirable to 

have small number of large modules for comparing networks (Miller et al., 2010). 

Therefore, it was reasonable in this study to reduce the total number of unique 

(excluding the grey) modules in the aged network to six by merging the related modules. 

This allowed comparing networks between young and aged or comparing the aged 

networks between two different datasets.   

Since gene network modules often correspond to biological pathways, focusing the 

analysis on modules (and their highly connected intramodular hub genes) amounts to a 

biologically meaningful data reduction scheme (Levine et al., 2013). One popular 

approach to understand the biological significance of coexpressed modules is to 

perform GO functional annotation enrichment analysis. Grouping genes based on 

functional similarity can systematically enhance the biological interpretation of large 

lists of genes derived from high throughput studies. A number of gene functional 

enrichment analysis tools are available (e.g. DAVID, GenMAPP  

(http://www.genmapp.org/), GOstats 

(https://bioconductor.org/packages/release/bioc/html/GOstats.html), EASE 

(https://david.ncifcrf.gov/content.jsp?file=/ease/ease1.htm&type=1), AmiGO 

(http://amigo.geneontology.org/amigo), and gProfiler (http://biit.cs.ut.ee/gprofiler/)). 

DAVID was used in this analysis because its functional annotation clustering report 

groups/displays similar annotations together which makes the biology clearer. If genes 

share a similar set of those terms, they are most likely involved in similar biological 

mechanisms. Interestingly, this analysis resulted in some very exciting outcomes in R7 

young networks (i.e. genes in each module did correspond to a broad but distinct GO 

functional category) (Figure 4.10). Of particular interest to this research was the 

observation that, among all the modules, the yellow module was highly enriched with 

genes functioning in learning and memory related functions and pathways. This is 

http://www.genmapp.org/
https://bioconductor.org/packages/release/bioc/html/GOstats.html
https://david.ncifcrf.gov/content.jsp?file=/ease/ease1.htm&type=1
http://amigo.geneontology.org/amigo
http://biit.cs.ut.ee/gprofiler/
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attributed to the fact that the datasets used in this research were indeed experimentally 

enriched (through the Morris water maze learning training) to identify genes involved in 

learning and memory impairment. Therefore, based on its GO functional analysis 

results, the yellow module is termed here as the “learning and memory” module. 

The identified modules were validated in networks across independent datasets by 

comparing their preservation and repeatability (Figure 4.11). The rational was that, if a 

co-expression module is enriched with genes altogether serving a distinct function or 

phenotype critical for survival, then the module or its co-expression property should be 

preserved and repeatable. The results show that the preservation of all modules 

between young and aged within the same R7 study was higher compared to their 

preservation across studies (Figure 4.12). In general (except the green module), all other 

modules show moderate to high preservation across independent studies. The brown 

module shows the highest preservation among all the modules while the green module 

shows the lowest preservation. The yellow module shows the highest preservation 

between young and aged in the R7 dataset. However, it was not 100%, which could be 

attributed to the difference in the co-expression observed between R7 young and aged 

(Figure 4.15). This could be related to the decreased learning and memory in the aged 

animals observed in all studies. The modules identified in R7 young networks also 

showed repeatability in independent datasets with significant p-values (Figure 4.13 and 

Figure 4.14). 

Cross-tabulation-based module validation measures that are employed in WGCNA 

provide powerful statistics which can be used to quantitate the extent to which disease 

related modules are present in other datasets (Levine et al., 2013). These  module 

preservation and module overlap methods have been successfully used in the past in 

studying the preservation of clusters in human and chimpanzee brain networks (Oldham 

et al., 2006), in comparing human and mouse brain modules (Miller et al., 2010), and in 

comparing modules in different brain regions in human (Oldham et al., 2008). However, 

variations across studies, quality of data, and missing genes can all affect the outcome 
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of the network comparison and validation across studies. For example, all modules in 

general in the R7-A vs. B7-A comparison showed comparatively lower preservation than 

in the other comparisons. The reason for this poor performance is that the comparison 

was made across two independent studies and across two different chip types. The 

RGU34A chip type used in the B7 study had only 8799 genes. After various filtering B7 

had only 4829 genes left to compare with the 5674 top most connected genes in R7-A. 

Taking the genes common between the two sets resulted in only 2140 genes and 

module preservation was estimated using these genes. Therefore, a lot of genes were 

missing in the comparison, for example, the RGU34A exclusive genes and 10431 

RAE230A exclusive genes were not part of the comparison. This resulted in a lower 

Zsummary score compared to others. However, four of the six modules still show moderate 

module preservation. 

WGCNA is particularly very useful in identifying functional gene network modules and 

hub genes in a network, and also in comparing different networks. However, for 

shedding light on the causal processes underlying the observed data, correlation 

networks have some limitations. This is due to the fact that correlations confound direct 

and indirect associations (and thus between cause and effect) (Opgen-Rhein and 

Strimmer, 2007). However, despite the limitations in distinguishing direct causal 

interaction from indirect, WGCNA has become the most used gene network modeling 

approach due to its advantages in dissecting gene functional relationships in the form of 

hubs and modules. 

Typical analysis of gene co-expression seeks to associate co-expression modules with 

disease or other phenotypic traits recorded in the same dataset. For instance, if the 

average expression of a particular module is higher in patients with more severe 

pathology, then the activity of genes in that module can be potentially linked to that 

pathological trait (Ghazalpour et al., 2006). While it would be desirable to identify causal 

molecular systems behind pathology, the trait-module association may be a 

downstream effect of the pathology (Gaiteri et al., 2014). However, this was not 
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possible in this research because trait related information was not available for any of 

the studies in the public database. 

In summary, the major objective in this chapter was to identify and use a mathematical 

modeling approach that could better utilize the information captured in microarray data 

that traditional analysis was not able to do (Chapter 3). The major goal was to overcome 

some of the limitations observed in the traditional meta- and pathway analysis (Chapter 

3) and identify novel ASLI related genes and their networks that are not limited to 

biological knowledge base alone. Based on the literature analysis WGCNA offered the 

best choice. I set R7-Y and R7-A as the exploratory datasets and used WGCNA to create 

gene network models from them. This analysis has identified as set of network modules 

from R7-Y, each of which is highly enriched with genes functioning in broad but distinct 

GO functional categories or biological pathways. Interestingly, the analysis pointed to a 

single (yellow) module that was highly enriched with genes functioning in learning and 

memory related functions and pathways. Subsequent, differential network analysis 

(Figure 4.15) and literature analysis (Table 4.7) of this yellow “learning and memory” 

module in R7-Y and R7-A allowed me to identify a set of novel ASLI candidate hub genes, 

some of which show significant repeatability in networks from independent validation 

datasets. These hub genes are highly co-expressed with other genes in the yellow 

network, which not only show differential expression but also differential co-expression 

and differential connectivity. The known function of these hub genes (Table 4.7) indicate 

that they play key roles in critical pathways, including kinase and phosphatase signaling, 

in functions related to various ion channels, and in maintaining neuronal integrity 

relating to synaptic plasticity and memory formation. Future study of these hub genes 

may help identify the molecular mechanisms responsible for age associated learning 

impairment, including spatial learning. 
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Chapter 5 Discussion 

5 Discussion 

This research attempted to integrate microarray gene expression data generated from 

multiple independent studies in the context of ASLI in rats. The goal was to investigate 

genes that may be involved in ASLI and also the way that these genes may interact in 

networks contributing to or affecting various signaling pathways, which ultimately 

modulate ASLI phenotype. Chapter 2 examined the hypothesis that proper microarray 

data quality control and preprocessing are essential for any downstream analysis, 

whether it is for large scale data integration through meta-analysis, or for gene network 

analysis. My research reconfirms the notion proposed in the recent literature that when 

integrating data from multiple independent studies, data quality control should be 

considered as one of the most important steps in preprocessing. This was accomplished 

by removing outlier arrays and probe sets, following appropriate normalization 

methods, and removing batch effects. In Chapter 3, I integrated probe set level data 

from five independent studies involving ASLI. I used standardized mean difference effect 

size based meta-analysis followed by GO and pathway analysis. Interestingly, a large 

number of genes were identified that were differentially expressed between young and 

aged rats. I attribute this to the proper preprocessing, data integration, and meta-

analysis methods that were applied to the gene expression data. Pathway analysis 

revealed that as the rats age many major pathways are affected. This finding is 

attributed to the aberrant gene expression patterns observed in old rats. However, our 

understanding of the candidate genes’ functions and pathway interactions is limited to 

the current knowledge base. In addition, there is no prioritization of molecules within 

the knowledge-based network models of affected pathways. Moreover, the traditional 

methods are unable to fully utilize all the information that is contained within the 

microarray data. Therefore, Chapter 4 dealt with the suggestion that recent 

mathematical modeling approaches have the potential to utilize the gene interaction 

information present in microarray data and to help identify useful new candidate genes 
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and their networks. In this respect, I explored the use of co-expression networks using 

WGCNA, which allowed me to identify a set of network modules and ASLI candidate hub 

genes. These modules and candidate hub genes are repeatable across independent 

datasets. The implications of some of my major findings are discussed in detail under 

the following themes: 

1. The effect of differential gene expression on aging and learning 

2. Co-expression to cofunctionality – from the perspective of modules 

3. Gene co-expression to co-functionality – from the perspective of hub genes 

4. Differential expression vs. differential co-expression vs. differential connectivity 

5. New insight into the molecular mechanisms of learning and memory formation 

6. Study strength and limitations 

7. Future directions 

8. Conclusions 

5.1 The effect of differential gene expression on aging 
and learning 

Traditional differential expression analysis and the effect size meta-analysis, using the 

probe sets integrated from five independent studies involving ASLI, generated a larger 

number of differentially expressed genes (Chapter 3) between young vs. aged and aged-

unimpaired vs. aged-impaired. I have performed a comprehensive functional and 

pathway analysis of these genes using the IPA knowledge base. This analysis has 

revealed major functions and pathways that are affected in the aged as well as aged-

impaired animals. The results show that aging is affected by the genes functioning in cell 

viability, axonogenesis, and inositol phosphate metabolism. Further, these genes 

contribute to the imbalance in many major function categories including molecular 

transport, cell to cell signaling and interaction, and nervous system function. 

Considering the effect of the most significant differentially expressed genes on cellular 

biology, these genes could be classified into three distinct but non-exclusive categories: 

general aging (GA) genes that are associated with aging related disorders and not 

associated with any learning impairments; general aging genes associated with 
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syndromic learning impairments (GASI); and general aging genes associated with non-

syndromic learning impairments (GANSI). Given the confounding effect of aging on 

learning impairments one may expect an overlap in the three groups of genes. Below I 

will summarize some key findings about some of the genes from each of the above 

three categories (GA, GASI, and GANSI). These genes presented significant up- or down 

regulation in the AY and IU comparisons (Table 3.1 and Table 3.5), and some of them 

were also identified as contributing to significantly increased or decreased function in 

the aged animals (Table 3.2).  

5.1.1 GA or general aging genes 

A majority of the genes that fall into this category were up-regulated in the aged rats in 

comparison to the young rats, and many have been implicated in disease vulnerability at 

old age in humans and animals. These GA genes affect a number of pathways including 

the Eif2 signaling, antigen presentation, complement system, and Ox40 signaling 

pathways (Table 3.4). The EIF2 signaling is activated (through the phosphorylation of 

eIF2α) in response to a wide array of cellular stresses to protects cells by reducing the 

general rate of protein synthesis while facilitating programs of stress-induced gene 

expression (Donnelly et al., 2013). OX40 is a member of the tumor necrosis factor (TNF) 

receptor family and plays a key role in the survival and homeostasis of effector and 

memory T cells and T-cell-mediated inflammatory diseases (Ishii et al., 2010).  

The GA genes that are of special interest to this discussion are C3, Cd74 (CD74 molecule, 

major histocompatibility complex, class II invariant chain), Ctss (cathepsin S), Ctsz 

(cathepsin Z), Agt (angiotensinogen), Mbp (myelin basic protein), and Cck 

(Cholecystokinin). Specifically, C3, Cd74, and Agt expression level was increased (Table 

3.2, migration of cells function) and they affect the endocrine system disorders, 

gastrointestinal disease, and metabolic disease functions. C3 (Table 3.1 and Figure 3.2) 

plays a central role in the activation of the complement system and is needed to restore 

tissue injury. However, inappropriate or excessive activation of the complement system 

can lead to cell death and tissue destruction, thus contributing to further injury and 
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impaired wound healing (Cazander et al., 2012). These consequences are clinically 

manifested in various disorders (Maier et al., 2008). Cd74 (Table 3.1) participates in 

several key processes of the immune system including antigen presentation, B-cell 

differentiation, and inflammatory signalling. Overexpression of Cd74 has been reported 

in some inflammatory diseases and several forms of cancer (Borghese and Clanchy, 

2011), and is also known as an indicator of disease in some conditions. The longer form 

of CD74 also interacts with CTSS by direct binding (Mihelic et al., 2008), and both Ctss 

and Ctsz are also highly up-regulated in the aged rats (Table 3.1). Further, there is strong 

evidence implicating different  AGT molecular variants as the cause of human essential 

hypertension and organ damage during aging (Arnold et al., 2013).  

Expression of Mbp is known to decrease and Cck is known to affect the axonogenesis 

function in the aged animals (Table 3.2). My analysis has revealed an increased 

expression of Mbp and a decreased expression of Cck in the aged rats. MBP is a major 

constituent of the myelin sheath of oligodendrocytes and has an important role in the 

pathophysiology of multiple sclerosis (Moscarello et al., 2007), which is a chronic 

inflammatory and neurodegenerative disease of the CNS of unknown cause. Cck is 

extensively expressed in the brain and a number of diverse changes to hippocampal Cck 

expression profiles have been documented in various models of epilepsy (Wyeth et al., 

2012). Cck is also known to have a role in modulating the neuronal network of anxiety 

and panic disorders that involve other parts of the brain (e.g. amygdala and 

hypothalamus) (Zwanzger et al., 2012). Such results argue that the GA genes in general 

are associated with reduction in physiological and immunological efficiency leading to 

deterioration (senescence) with advancing age in the aged rats. 

5.1.2 GASI or general aging genes associated with syndromic 
learning impairments 

Deterioration of mental and physical state is very common with advancing age and 

manifests itself in various syndromes. It is apparent that many syndromes associated 

with aging are also involved in memory loss and learning impairments. One such 



  

169 

 

syndrome is Alzheimer's disease, which has been studied extensively. Among the GASI 

genes identified in this analysis that have been implicated in Alzheimer's disease or late-

onset Alzheimer's disease include ApoE (Bu, 2009; Corder et al., 1993), Mapt (Maeda et 

al., 2006), Igf1r (insulin-like growth factor 1 receptor) (O'Neill et al., 2012), Clu (Chen et 

al., 2012; Ferrari et al., 2012), Picalm (phosphatidylinositol binding clathrin assembly 

protein) (Chen et al., 2012; Ferrari et al., 2012), Cdk5r1 (cyclin-dependent kinase 5, 

regulatory subunit 1, p35) (Shukla et al., 2012), and Ide (Insulin degrading enzyme) 

(Miller et al., 2003). ApoE, Mapt, Igf1r, Clu, and Picalm were up-regulated, and Cdk5r1 

and Ide were down-regulated in the aged animals compared to the young. These GASI 

genes may also lead to syndromic learning impairments by affecting various key 

neuronal functions. For example, ApoE, Cdk5r1 and Ide are known to decrease cell 

viability and Picalm and Igf1r are known to affect axonogenesis (Table 3.2).  

Specifically, ApoE and Mapt have been annotated as aging and learning genes in the IPA 

knowledge base (Table S3 in (Uddin and Singh, 2013)). ApoE gene is known as the 

strongest risk factor for age-related cognitive decline during normal ageing (Alzheimer’s, 

2012). APOE isoforms differentially regulate Aβ (amyloid β-peptide) aggregation and 

clearance in the brain, and have distinct functions in regulating brain lipid transport, 

glucose metabolism, neuronal signaling, neuroinflammation, and mitochondrial function 

(Liu et al., 2013). Toxicity of Aβ also depends on Mapt (Figure 3.4). Increase in MAPT 

levels may represent a very early sign of NFT (neurofibrillary tangle) formation and 

Alzheimer's disease in humans (Maeda et al., 2006). Down-regulated Igf1r activity has 

been implicated with prolonged human lifespan (O'Neill et al., 2012). When considering 

age-related neurodegeneration in Alzheimer's disease, signaling through the Igf1r is 

disturbed in the Alzheimer's disease patients’ brain. An increased level of Igf1r  has been 

reported in the degenerating synapses of the cerebral cortex within and surrounding Aβ 

plaques in people with Alzheimer's disease compared to people of the same age without 

the disease (O'Neill et al., 2012). Through the deregulated activity of Cdk5, Cdk5r1 is 

involved in the pathology of Alzheimer's disease (Shukla et al., 2012), synaptic plasticity, 

learning, and memory (Angelo et al., 2006). IDE is involved in the degradation of Aβ and 
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other bioactive peptides (e.g. insulin and IGF-1 and IGF-2 in vitro) (Nalivaeva et al., 

2012). PICALM plays a critical role in iron homeostasis and cell proliferation (Scotland et 

al., 2012). PICALM knockdown can result in reduced APP (amyloid precursor protein) 

internalization and Aβ generation, while overexpression can cause increased APP 

internalization and amyloid plaque load (Xiao et al., 2012). Irregularities in the Aβ 

clearance pathway are thought to initiate Aβ and tau protein accumulation in specific 

brain regions and consequent toxic events that lead to synaptic dysfunction and 

neurodegeneration in Alzheimer's disease. This is associated with the progressive 

destruction of synaptic circuits controlling memory and higher mental function. 

Besides the above genes associated with Alzheimer's disease, there is a number of GASI 

genes associated with other age-related disease syndromes and related memory 

impairment. For example, Cntn2 (Contactin-2), a learning gene, is up-regulated in the 

aged (Table S3 in (Uddin and Singh, 2013)), Hmgb1 (high mobility group box-1) is up-

regulated in the aged-impaired (Table 3.5), and Tubb2b is down-regulated in the aged 

rats (Table 3.1). Cntn2 plays a role in the formation of axon connections (Lin et al., 2012) 

and autoimmune responses to Cntn2 have been implicated in multiple sclerosis (Derfuss 

et al., 2009). Studies show that cellular stress, trauma, and inflammatory condition can 

also result in the up-regulation of Hmgb1 in the hippocampus in aged rats, which results 

in reduced cognitive function in a reversal learning version of the Morris water maze 

test (He et al., 2012; Klune et al., 2008). Further, Tubb2b is a major component of 

microtubules cytoskeletal structures essential for cell motility and function and one of 

the top ten most down-regulated genes in the AY comparison (Table 3.1). A spectrum of 

neurological disorders (e.g. Polymicrogyria) characterized by abnormal neuronal 

migration, differentiation, organization, axon guidance, and maintenance has recently 

been associated with various mutations in Tubb2b (Cushion et al., 2013; Romaniello et 

al., 2012). In summary, a number of genes identified in the aged and aged-impaired 

animals are associated with a number of syndromes and fall in the category of GASI 

genes, which may contribute to the memory loss and learning impairments observed in 

the aged-impaired animals. 
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5.1.3 GANSI or general aging related genes associated with non-
syndromic learning impairments 

It is apparent that a majority of the differentially expressed genes in the aged or aged-

impaired animals are known to facilitate learning and memory formation and are not 

implicated in any syndromes. They have been annotated as learning or spatial learning 

genes in the IPA knowledge base (Table S3 and S4 in (Uddin and Singh, 2013)). The 

canonical pathways that are most relevant to the GANSI genes functioning in the brain 

include nNos signaling pathway and glutamate receptor signaling pathway, which were 

identified most significant in the IU comparison (Table 3.7). nNos (Bartus et al., 2013; 

Shen et al., 2012) and glutamate receptors (Menard and Quirion, 2012) play an 

important role in neurotransmission and are critical to LTP, memory formation and 

synaptic plasticity. 

The genes that deserve particular attention in the GANSI category are the 59 genes 

identified in the IU comparison following BH correction (effect sizes p ≤ 0.05). These 

genes were differentially expressed in the aged rats with spatial learning impairment as 

compared to those without spatial learning impairment. Arc, a learning gene, is one of 

the most interesting of these 59 genes and is among the top ten most down-regulated 

genes in the aged-impaired animals (Table 3.5). The immediate-early gene Arc (aka 

Arg3) (Figure 3.3) expression is found to be vital for spatial memory consolidation and 

long-term synaptic plasticity in a variety of hippocampal-dependent and hippocampal-

independent tasks, including spatial learning in the Morris water maze (Bramham et al., 

2010; Shepherd and Bear, 2011). Arc is known for its tight experience-dependent 

regulation, dendritic mRNA transport, and local protein expression in activated 

synapses. For example, blocking Arc expression either using Arc knockout mice (Plath et 

al., 2006) or intra-hippocampal injections of Arc antisense oligonucleotides (Guzowski et 

al., 2000) is known to impair or prevent LTP without affecting short-term memory 

performance. 
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When I considered the larger list of 787 differentially expressed genes in the IU 

comparison (BH uncorrected, p ≤ 0.05), I also found 48 genes annotated as learning or 

spatial learning genes in the IPA knowledge base (Table S4 in (Uddin and Singh, 2013)). 

Some of the interesting learning genes among theses 48 genes include Camk2a 

(calcium/calmodulin-dependent protein kinase II alpha), Creb1, Crem (cAMP responsive 

element modulator), Egr1 (early growth response 1), Homer 1 (homer homolog 1) 

(Figure 3.4), Junb (jun B proto-oncogene) (Figure 3.4), Psen2 (presenilin 2), Slc11a2 

(solute carrier family 11), and Marcks. Particularly, Marcks (p = 0.004) (Figure 5D) is 

highly up-regulated in the aged-impaired animals. Timofeeva and colleagues (2010) 

recently reported that local infusions of MARCKS long peptide into the rat hippocampus 

resulted in a dramatic impairment of both working and reference memory in a dose-

dependent manner with robust impairment at higher doses (Timofeeva et al., 2010), 

most likely through the inhibition of alpha7 nicotinic acetylcholine receptors (Gay et al., 

2008). Thus, our analysis has identified these two genes, Arc and Marcks, as prime 

candidates for further investigation for their role in ASLI. 

Additional GANSI genes include Bdnf (brain-derived neurotrophic factor), Ntf3 

(neurotrophin 3), Igf2, Serpini1 (neuroserpin), Gucy1a3 (guanylate cyclase 1, soluble, 

alpha 3), Gucy1b3 (guanylate cyclase 1, soluble, beta 3), Avp (arginine vasopressin), 

Gnaq (guanine nucleotide binding protein), Grp (gastrin releasing peptide), Pthlh 

(parathyroid hormone-like hormone), Trhr (thyrotropin-releasing hormone receptor), 

Agrn (agrin), L1cam (Cell adhesion molecule L1), and Ppp2ca (protein phosphatase 2, 

catalytic subunit, alpha isozyme). These differentially expressed genes in the AY 

comparison play a critical role in the increase or decrease of several significant functions 

(Table 3.2) in the aged animals. Since a majority (73%) of the aged animals in the AY 

comparison were also impaired in the spatial learning task, it is not surprising that some 

of the aging genes may also contribute to the ASLI in these animals. Below I highlight 

some major functions of these GANSI genes.  
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For example, the genes Bdnf , Ntf3, Igf2, and Serpini1 were down-regulated in the aged 

animals and are known to decrease cell viability of CNS cells (Table 3.2). The expression 

of neurotrophins such as Bdnf and Ntf3 is strongly associated with synaptic function and 

plasticity. Specifically, Bdnf is known as a strong mediator for LTP (long term 

potentiation) in the hippocampus and play an essential role in memory formation in the 

adult brain (Park and Poo, 2013). Igf2 is a late response gene regulated by the CREB-

C/EBP pathway and plays a critical role in memory consolidation and enhancement 

(Chen et al., 2011). Furthermore, injections of recombinant IGF-II into the hippocampus 

after either training or memory retrieval significantly enhance memory retention and 

prevent forgetting. Neuroserpin e.g. Serpini1 expression is involved in regulating the 

proteolytic balance associated with axonogenesis and synaptogenesis during 

development and synaptic plasticity in the adult (Lee et al., 2008; Osterwalder et al., 

1996).  

Further, Gucy1a3 and Gucy1b3 are involved in the increase of cellular movement 

function (Table 3.2). They are soluble guanylate cyclase (sGC) and are part of the nitric 

oxide (NO)/sGC/cGMP dependent protein kinase (PKG) signaling pathway that plays a 

key role in memory processing (Bartus et al., 2013; Shen et al., 2012). Inhibition of sGC, 

of PKG or of cGMP-degrading phosphodiesterase has been found to impair LTP (Monfort 

et al., 2004). Both GUCY1A3 and GUCY1B3 were found down-regulated in the aged 

animals, which may explain the ASLI in these animals. 

The products of the genes Avp (Poulin and Pittman, 1993), Gnaq (Montmayeur et al., 

2011), Grp (Roesler and Schwartsmann, 2012), Pthlh (Smogorzewski and Islam, 1995), 

and Trhr (Ramsdell and Tashjian, 1986) maintain the quantity and synthesis of IP3 

(inositol 1,4,5-triphosphate) level in the cell (Table 3.2) and were down-regulated in the 

aged rats. These genes facilitate IP3 production in the brain and some through the 

activation of phospolipase C (PLC) (Montmayeur et al., 2011; Poulin and Pittman, 1993; 

Ramsdell and Tashjian, 1986; Roesler and Schwartsmann, 2012; Smogorzewski and 

Islam, 1995). Some of them (e.g. AVP  (Ebstein et al., 2012) and GRPs (Roesler and 
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Schwartsmann, 2012)) are specifically involved in regulating cognition and memory. IP3 

is an important second messenger in the neuron produced from phosphatidylinsitol 

biphosphate (PIP2) and cleaved by PLC. IP3 binds to IP3 receptors, which are gated Ca2+ 

channels that release calcium from the endoplasmic reticulum in to the cytosol (Finch 

and Augustine, 1998). Ca2+ in turn controls many different signaling events within 

neurons, including neurotransmitter release and gene expression in the cell nucleus. At 

least two Ca2+-activated protein kinases (e.g. Ca2+/calmodulin-dependent protein kinase 

(CaMKII) and protein kinase C (PKC)) have been implicated in LTP induction. LTP is the 

underlying cellular molecular mechanism that correlates with learning and memory 

formation (Foster, 2012). Thus, down regulation of the genes Avp, Gnaq, Grp, Pthlh, and 

Trhr can have a negative effect on the Inositol phospholipid-calcium-CamK-protein 

kinase C transduction pathway through decreased quantity and synthesis of IP3 in the 

aged animals and directly or indirectly contribute to age-associated non-syndromic 

learning impairments such as ASLI. 

A number of genes e.g. Agrn, L1cam, Ppp2ca that were down-regulated in the aged 

animals that demonstrated spatial learning impairment. Lower expression of these 

genes is known to decrease axonogenesis (Table 3.2). They play a critical role in neurite 

outgrowth, synaptogenesis, and synaptic plasticity. For example, high level of Agrn 

(Figure 3.4) expression was found in regions of the adult brain that show extensive 

synaptic plasticity. Recent studies demonstrated a substantial loss of excitatory 

synapses in the adult transgenic mice brain that lacked Agrn expression. Furthermore, 

they demonstrated inhibition of synaptogenesis by Agrn antisense oligonucleotides or 

Agrn siRNA in neuronal cell culture (Daniels, 2012). L1cam promotes the outgrowth of 

neurites and thereby contributes to formation of neuronal connections, learning, and 

memory (Kenwrick et al., 2000; Maness and Schachner, 2007) via activation of the 

mitogen-activated protein kinase (MAPK) pathway (Poplawski et al., 2012). Ppp2ca (aka 

Pp2a) is involved in Ca2+-dependent dephosphorylation of SNAP-25 (Iida et al., 2013) 

and SNAP-25 phosphorylation plays an important role in neural plasticity and long-term 

potentiation in the hippocampus (Genoud et al., 1999).  
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In conclusion, aged animals display a significant decrease in cell viability, axonogenesis, 

and inositol phosphate metabolism. They also show a significant increase in the 

migration of cells and differentiation of cells functions due to altered gene expression. 

The regulatory interactions of the differentially expressed genes seems to affect 

molecular transport, cell to cell signaling and interaction, nervous system development 

and function, and cell death and survival. The genes that are known to be involved in 

the above functional changes and/or those that present the most significant expression 

changes in the aged or aged-impaired animals could be broadly classified into three 

major categories such as GA, GASI, and GANSI. The GA genes are mostly involved in 

inflicting various aging related senescence (e.g. stress, disorders, and inflammation 

conditions) and generally are not associated with any learning impairment. The GASI 

genes, on the other hand, are associated with age-related neurological disease 

syndromes e.g. Alzheimer’s disease, which generally affect normal cognitive functioning 

and may result into syndromic memory impairments. The most important group of 

genes perhaps is the GANSI genes, most of which show down-regulation in the aged or 

aged-impaired rats and by themselves usually are not associated with any syndromes. 

These genes affect various signal transduction pathways and functions in the brain 

contributing to the disruption of proper learning and memory formation. I propose that 

the GANSI genes should form the foundation of future studies in understanding age-

associated memory impairments such as ASLI. These GASI and GANSI genes form a set 

of interesting candidates for future investigations as to how they interact with each 

other, how they are regulated, and what target genes they may affect in order to 

elucidate the mechanisms behind aging and age-associated spatial learning impairment. 

5.2 Co-expression to co-functionality – from the 
perspective of modules 

One useful property of a co-expression network is module. In a module the expression 

patterns of the genes are mutually correlated (Langfelder and Horvath, 2008). The focus 

on co-expression modules, each consisting of possibly hundreds of genes with common 

co-expression across samples, allows for a biologically motivated reduction of data while 
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also alleviating the problem of multiple comparisons (Levine et al., 2013). Further, just 

as correlated genes tend to have similar biological functions, on a larger scale, modules 

tend to contain genes with similar biological functions (Lee et al., 2004).The results 

obtained using WGCNA in this research and the follow up network analysis support 

these hypotheses. For example, the use of WGCNA reduced R7 data into a few 

biologically meaningful co-expression modules. The follow up GO analysis and literature 

search results were persuasive enough to indicate that each module gene set likely 

serve a distinct major biological function, thus, pointing to the above widely held notion 

of “co-expression to co-functionality”. It is important to note that the networks and 

modules constructed from R7 microarray data were based on the gene expression 

patterns alone (i.e. there was no prior knowledge of the genes’ function at the time of 

network construction). Once the networks were divided into modules and their module-

wise GO functional analysis was performed, it was indeed observed that each module 

pointed to a broad but distinct category of biological function, and genes in each 

module shared similar subcategories of functions all converging to the broad functional 

category of the module (Table 4.4, Figure 4.10, and Appendix 6.7.1 to Appendix 6.7.6). 

Particularly, the genes in the yellow module showed significant enrichment in GO 

functions and pathways related to learning and memory formation in the brain. 

Although, the other modules are enriched with functions not directly related to learning 

and memory, they are critical for normal neuronal processes such as communication, 

growth, development, and maintenance. For example, genes in the brown module are 

significantly enriched in functions contributing to the various cellular processes and 

communication (Table 4.9), the green module genes in developmental processes 

(Appendix 6.7.3), and the red module genes in oligodendrocyte development (Appendix 

6.7.4).  

Thus, alteration of these modules’ normal module-wise functions at old age through 

altered gene expression, as observed in the datasets, has the potential to affect normal 

functioning of learning and memory formation process. Preservation of these modules 

were not only validated across networks created from independent datasets, but also 
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the gene members of these modules demonstrated significant module membership 

(module overlap) across the independent networks (Figure 4.12 to Figure 4.14).  

Gene co-expression analysis studies in multiples species, tissues, and platforms have 

shown that co-expressed genes tend to be functionally related (Obayashi et al., 2008; 

Oldham et al., 2008; Williams and Bowles, 2004). In order to investigate, whether 

observed clusters or modules of co-expressed genes are of functional significance, Lee 

and Sonnhammer (2003) observed that genes involved in the same biochemical 

pathways tend to be clustered together in a number of eukaryotic genomes. By a 

heuristic generalization known as “guilt by association”, it has been computationally 

established that functionally related genes are organized into co-expression networks, 

in practice assisting functional annotation of uncharacterized genes (Michalak, 2008). 

For example, physically interacting proteins in yeast were found to be encoded by co-

expressed genes (Ge et al., 2001; Wuchty et al., 2006). These observations likely have 

inspired the development of co-expression network analysis methods. Gene network 

modeling using co-expression approaches provide insight into cellular activity as genes 

that are co-expressed often share common functions (Piro et al., 2011). Such networks 

have been widely used to study many diseases and phenotypes because of their ease of 

use and their ability to provide more biologically meaningful results (Chen et al., 2008; 

Gargalovic et al., 2006; Holtman et al., 2015; Maschietto et al., 2015; Min et al., 2012; 

Rickabaugh et al., 2015; Spiers et al., 2015; Ye and Liu, 2015; Zhou et al., 2014).  

Microarray data captures functional relationship among genes that can provide 

biologically relevant information.  In traditional microarray data analysis, however, 

these relationships remain essentially unexplored. Thus, a modular approach to gene 

function through WGCNA co-expression analysis provides a sensible way to extract such 

functional information from large microarray datasets in a biologically meaningful way. 

Particularly, my analyses have shown that specific learning associated functional gene 

modules can be identified through co-expression network modeling where genes in the 
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module show significant enrichment in learning and synaptic plasticity related GO 

functions. 

5.3 Gene co-expression to co-functionality – from the 
perspective of hub genes 

Hub genes play a central role in the structure of co-expression networks as they are 

often relevant to the function of regulatory networks. The ability to efficiently transit 

cellular signals within and between co-expressed clusters is facilitated by “hubs”, which 

are connected to a large number of nodes (Gaiteri et al., 2014). Analysis of the yeast 

protein-protein interaction network revealed that highly connected nodes are more 

likely to be essential for survival (Carter et al., 2004; Han et al., 2004; Jeong et al., 2000). 

Literature analysis indicate that the combined effect of the functions of the hub genes 

that are co-expressing together in individual modules may in fact contribute to the co-

functionality of the whole module as discussed below. 

5.3.1 Hub genes in the brown “cellular processes” module 

A number of hub genes in this module contribute to various cellular communication and 

processes (Figure 4.16). For example, Araf (A-Raf proto-oncogene) is a proto-oncogene 

that belongs to the RAF subfamily of the serine/threonine protein kinase family, and is 

involved in cell growth and development (Mooz et al., 2014). Fyttd1 (forty-two-three 

domain containing 1 aka UIF) was named UIF because it interacts with UAP56 (ATP-

dependent RNA helicase). Fyttd1 is an mRNA export adaptor, recruited to mRNA by 

other factors, binds to mRNA, and efficiently exports nuclear mRNA to the cytoplasm in 

vertebrates and other animals (Hautbergue et al., 2009). Mettl14 (methyltransferase 

like 14) encodes a protein that catalyzes m(6)A RNA methylation. Together with 

METTL3, the only previously known m(6)A methyltransferase, these two proteins form a 

stable heterodimer core complex of METTL3-METTL14 that functions in cellular m(6)A 

deposition on mammalian nuclear RNAs (Liu et al., 2014). Mtmr6 (myotubularin related 

protein 6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1 (Srivastava et 

al., 2005) and plays a role in apoptosis (Zou et al., 2009). Rpe (ribulose-5-phosphate-3-
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epimerase) catalyzes the reversible conversion of D-ribulose 5-phosphate to D-xylulose 

5-phosphate and is an important enzyme for the cellular response against oxidative 

stress. Rpe functions in the pentose phosphate pathway (PPP). PPP confers protection 

against oxidative stress by supplying NADPH necessary for the regeneration of 

glutathione, which detoxifies H2O2 into H2O and O2 (Liang et al., 2011). Slc6a15 (solute 

carrier family 6, member 15) encodes a member of the solute carrier family 6 protein 

family. The encoded protein is a Na+-dependent neutral amino acid transporter, 

thought to play a role in neuronal amino acid transport (Broer et al., 2006), and may be 

associated with major depression (Kohli et al., 2011). The Tspan31 (tetraspanin 31, aka 

SAS) gene encodes a cell-surface protein that is a member of the transmembrane 4 

superfamily, also known as the tetraspanin family (Jankowski et al., 1994). This protein 

mediates signal transduction events that play a role in the regulation of cell 

development, activation, growth and motility (Wright and Tomlinson, 1994). Tspan31 is 

associated with tumorigenesis and osteosarcoma (Ragazzini et al., 1999).  

5.3.2 Candidate ASLI hub genes in the yellow “learning and 
memory” module  

The co-expression networks of the yellow “learning and memory” module (Figure 4.15) 

display a tight interrelationship of a large number of nodes with some hub genes. What 

is most interesting is that the co-expression of these hubs and nodes, as demonstrated 

by the WGCNA analysis, is not a random aggregation of some genes. Literature review 

suggests that the correlated expression pattern of the hub genes in the yellow networks 

may in fact be highly coordinated, and inside the young rats’ hippocampus they may be 

serving a common purpose. This purpose could be to maintain the functional integrity of 

the normal process of learning and memory formation mechanisms, which are disrupted 

in the aging brain. I have short listed 19 genes as candidate ASLI hub genes from both 

the young and aged networks based on their co-expression connection to other genes. 

These genes include Camk1g, Cdk5r1, Cntn1, Dlg3, Dlgap1, Dpp6, Eif5, Gabrg1, Impact, 

Kcnab2, Mapk1, Mapre1, Ndfip2, Ppp2r2c, Prkacb, Pten, Rasgrp1, Scn2b, and Stxbp1. 

Below I will discuss literature findings of some of these candidate ASLI hub genes in 
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combination with the results from the meta-analysis. This will show that some of these 

hub genes are already known as key learning and memory genes and have well 

established roles in memory functions. While for others, information is emerging 

indicating their direct or indirect role in learning and memory. 

5.3.2.1 Camk1g (calcium/calmodulin-dependent protein kinase IG) 

This gene encodes a protein similar to calcium/calmodulin dependent protein kinase. 

Calcium ions binding to calmodulin can regulate protein phosphorylation/ 

dephosphorylation. Neuronal Ca2+ is known to play a critical role as an intracellular 

second messenger, linking neuronal excitability with many kinds of cellular biological 

events including synaptic plasticity, neuronal cell survival, and apoptosis (Berridge et al., 

1998; Bito, 1998; Bliss and Collingridge, 1993). Ca2+ ions bind to calmodulin, a ubiquitous 

and evolutionary well conserved intracellular Ca2+ receptor, and form a complex, which 

mediates a significant part of signaling downstream. Although, a large number of 

molecules have been shown to be targeted and activated by the Ca2+/ calmodulin 

complex, one subgroup of multifunctional kinases, Ca2+/calmodulin-dependent protein 

kinases (CaMKs), has been ascribed a prominent role (Bito and Takemoto-Kimura, 2003; 

Takemoto-Kimura et al., 2003). CaMKs such as CaMKII can then activate a number of 

other targets such as CREB, which is important in synaptic plasticity and learning. CaMKs 

play a significant role in learning and memory formation through the activation of CREB 

signaling (Baudry et al., 2014; Bito and Takemoto-Kimura, 2003; Sweatt, 2001; Thomas 

and Huganir, 2004). It is very likely that Camk1g, which has not been reported before in 

relation to memory impairment, may function in a similar manner. It is likely that down-

regulation of Camk1g in the aged rats (Appendix 6.10.1 and Appendix 6.10.2) may in 

fact contribute to ASLI in those animals. 

5.3.2.2 Cdk5r1 (cyclin-dependent kinase 5, regulatory subunit 1) 

Cdk5r1 (aka p35, p23; p25; CDK5R; NCK5A; CDK5P35; p35nck5a) is one of the genes 

identified as a general aging genes associated with syndromic learning impairments 

(Chapter 3) and is implicated in Alzheimer's disease or late-onset Alzheimer's disease 
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(Shukla et al., 2012). Cdk5r1 was down-regulated in the aged animals (effect size = -0.66, 

p-value = 0.03) (Appendix 6.10.1 and Appendix 6.10.3) compared to the young, and is 

known to decrease cell viability (Table 3.2). Cdk5r1 is involved in the pathology of 

Alzheimer's disease (Shukla et al., 2012), synaptic plasticity, learning, and memory 

through the deregulated activity of Cdk5 (Angelo et al., 2006). The protein CDK5R1 is a 

neuron-specific activator of CDK5; the activation of CDK5 is required for proper 

development of the central nervous system.   

A literature review revealed contrasting roles of Cdk5 in learning and memory 

formation. These findings suggest that Cdk5 not only promotes LTP and LTD, but also 

counteracts changes induced by LTP and LTD to maintain neuronal network stability, 

thereby functioning as a homeostatic regulator of synaptic plasticity (Shah and Lahiri, 

2014). For example, a positive role of Cdk5 in promoting synaptic plasticity was 

identified in Cdk5r1−/− (p35−/−) mice, which display depotentiation (Ohshima et al., 

2005). Likewise, Cdk5 is transiently upregulated in mice that are exposed to stress and 

facilitates context-dependent fear conditioning (Fischer et al., 2002). In contrast, 

Hawasli et al. (2007) demonstrated that the initial loss of Cdk5 in Cdk5 conditional 

knockout mice results in enhanced LTP, NMDA-receptor-mediated synaptic plasticity, 

and improved performance in hippocampal behavioral learning tasks, which highlights a 

negative role of Cdk5 in learning and memory formation. The p25 form of Cdk5r1 is the 

principal activator of Cdk5. It is generated as a calcium-dependent degradation product 

of p35 form of Cdk5r1 (Seo et al., 2014). The p25 form generation is associated with 

normal memory formation in the mouse hippocampus. In addition, p25 overexpression 

enhances synaptogenesis. Therefore, it is possible that p25 generation may act as a 

molecular memory mechanism that is impaired in early Alzheimer's disease (Giese, 

2014; Seo et al., 2014). Interestingly, results from recent studies indicate that Cdk5/p35 

is required for motor learning and involved in long-term synaptic plasticity (He et al., 

2014). However, further studies are required to understand the specific roles Cdk5r1 

play in ASLI, and the mechanisms involved.  
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5.3.2.3 Cntn1 (Contactin 1) 

Cntn1 is a membrane glycoprotein that provides critical signals for axon–glia 

communication in CNS myelin. It is expressed in a variety of neurons and contributes to 

the formation and function of neuronal connections (Ranscht, 1988). Cntn1 has been 

studied as a prime candidate for multiple sclerosis (Colakoglu et al., 2014). Gene 

ablation in mice shows that Cntn1 is necessary for myelin sheath formation by 

oligodendrocytes as well as for the establishment of paranodal axoglial junctions, which 

regulate the domain organization and enable rapid nerve impulse conduction of 

myelinated nerves (Colakoglu et al., 2014). Cntn1deficiency also resulted in mislocalized 

potassium Kv1.2 channels, abnormal myelin terminal loops, and reduced numbers and 

impaired maturation of sodium channel clusters along with significant hypomyelination 

(up to 60% myelin loss). Interestingly, Cntn2 (Table 3.2), identified as a significant gene 

in the meta-analysis, also plays a role in the formation of axon connections (Lin et al., 

2012). Autoimmune responses to Cntn2 have been implicated in multiple sclerosis 

(Derfuss et al., 2009). However, Cntn1 was up regulated in the aged rats (effect size = 

+0.36, pvalue = 0.04) in my combined meta-analysis with the K9 study showing a down 

regulation (Appendix 6.10.1 and Appendix 6.10.4). So, like Cntn2, Cntn1 may simply play 

a role as a GASI gene that affects learning through the process of normal aging.    

5.3.2.4 Dlg3 (Discs, large homolog3)  

Dlg3, also known as synapse-associated protein 102 (SAP102), is a scaffolding protein 

highly enriched in the postsynaptic density (PSD), and plays an essential role in synaptic 

organization and plasticity (Elias and Nicoll, 2007). Dlg3 interacts directly or indirectly 

with major types of glutamate receptors. It binds directly to N-methyl-d-aspartate 

receptors (NMDARs), anchors receptors at synapses, and facilitates transduction of 

NMDAR signals (Wei et al., 2015). Dlg3 null mice that survive into adulthood show 

impairments in synaptic plasticity and spatial learning (Cuthbert et al., 2007). 

Accordingly, recent studies have demonstrated that Dlg3 plays an important role in 

excitatory synapse formation through the PAK (p21-activated kinases) signaling pathway 
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(Murata and Constantine-Paton, 2013). These findings are consistent with other 

electrophysiological studies showing that Dlg3 regulates glutamate receptor trafficking 

during synaptogenesis (Elias et al., 2008). These studies demonstrate that expression of 

Dlg3 is critical in proper cognitive development and functioning including spatial 

learning. In my meta-analysis, Dlg3 showed lower expression (effect size = -0.69, p-value 

0.06) in the aged rats compared to the young in three of the five studies (Appendix 

6.10.1 and Appendix 6.10.5), and did not make it to the significant gene list because of 

its p-value. However, it is known as a learning gene (Section 3.3.3) (IPA). In the WGCNA 

networks this gene showed strong differential co-expression. Taken together, Dlg3 

presents itself as a highly promising candidate ASLI gene.  

5.3.2.5 Dpp6 (Dipeptidyl-peptidase 6) 

Dpp6 has been studied for its association with autism (Marshall et al., 2008), and for its 

relation to multiple (Brambilla et al., 2012) and lateral sclerosis (Blauw et al., 2010). 

However, not much is known about the direct role of Dpp6 in learning and memory. The 

DPP6 protein is an auxiliary subunit of voltage-gated potassium-4 channels (Kv4). DPP6 

influences neuronal excitability and communication of excitability to distal dendrites, 

very likely by regulating the A-type K+ current gradient (Nadal et al., 2003). Dendritic 

excitability has been found to be critical for synaptic integration and excitation (Wolf et 

al., 2014). Hippocampal recordings from Dpp6 knock-out mice demonstrate a decrease 

in this gradient and increased dendritic excitability (Sun et al., 2011). Given the role of 

DPP6 in synaptic integration, it is possible that this protein also plays a role in 

dissociation. Dissociation is a state that is defined by poor integration of incoming 

sensory experiences and problems with region-specific cognitive processes that are 

ordinarily organized dynamically across time. Intriguingly, in addition to autism 

spectrum disorder and multiple sclerosis, Dpp6 has also been implicated as a potential 

susceptibility gene in Schizophrenia (Tanaka et al., 2013). Dendritic excitability may turn 

out to be a common function affected by these neurological diseases. Hippocampal 

neurons lacking DPP6 show a sparser dendritic branching pattern along with fewer 



  

184 

 

spines throughout development and into adulthood. Thus, Dpp6 plays an important role 

in cell adhesion and motility, impacting the hippocampal synaptic development and 

function (Lin et al., 2013). Dpp6 is another hub gene that showed lower expression in 

the aged compared to young in the meta-analysis in 4 of the 5 studies (effect size = -

0.42, p-value = 0.38), with only B7 showing higher expression in the aged  (Appendix 

6.10.1 and Appendix 6.10.6). Interestingly, Kcnab2, a voltage-gated potassium channel 

co-expressed with Dpp6 in the aged yellow “learning and memory” module, also 

showed decreased expression in the aged compared to the young. Future studies should 

investigate specific role of Dpp6 in ASLI. 

5.3.2.6 Eif5 (Eukaryotic translation initiation factor-5)  

Eif5 interacts with the 40S initiation complex to promote hydrolysis of bound GTP with 

concomitant joining of the 60S ribosomal subunit to the 40S initiation complex. The 

resulting functional 80S ribosomal initiation complex is then active in peptidyl transfer 

and chain elongations (Si et al., 1996). Eif5 is up-regulated in the aged rats (effect size = 

0.42, p-value 0.04) (Appendix 6.10.1 and Appendix 6.10.7). Not much is known about 

Eif5’s involvement in learning and memory impairment. Interestingly, EIF2 signaling 

pathway was one of the top canonical pathways that was affected by the GA genes in 

the meta-analysis. 

5.3.2.7 Gabrg1 (gamma-aminobutyric acid (GABA) A receptor, 
gamma 1) 

GABA can inhibit action potential firing in mammalian neurons. GABAA receptor 

(GABAAR) channels mediate the majority of inhibitory neurotransmissions in the 

mammalian brain. These receptors are pentamers assembled from a large family of 

subunits, of which 19 members have so far been identified. Receptors targeted to the 

synaptic compartment are composed of two α, two β, and a single γ subunit (Pirker et 

al., 2000). The ionotropic GABA receptors are usually inhibitory because their associated 

channels are permeable to Cl–; the flow of the negatively charged chloride ions inhibits 
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postsynaptic cells since the reversal potential for Cl– is more negative than the threshold 

for neuronal firing.  

Neurofibromin (NF1), a RasGAP, restricts GABA release from inhibitory neurons and is 

important for memory formation (Costa et al., 2002; Cui et al., 2008). Cui et al. (2008) 

demonstrate that the learning deficits in a mouse model of neurofibromatosis type I are 

caused by increased hippocampal GABA release, which dampens hippocampal synaptic 

plasticity and consequently leads to hippocampal-dependent learning deficits.  

Gabrg1 was upregulated in 3 of the 5 studies in the meta-analysis in this research 

(Appendix 6.10.1 and Appendix 6.10.8). Interestingly few other GABA receptors were 

also co-expressed along with Gabrg1, for example, Gabbr1, Gabrb2, Gabrb3, and 

Gabra4, which showed mixed expression in the aged (some up and some down). 

5.3.2.8 Kcnab2 (potassium channel, voltage gated shaker related 
subfamily A regulatory beta subunit 2)  

Kcnab2 (aka AKR6A5; KCNA2B; HKvbeta2; KV-BETA-2; HKvbeta2.1; HKvbeta2.2) is known 

as a learning gene (Section 3.3.3) (IPA). Voltage-gated potassium (Kv) channels 

represent the most complex class of voltage-gated ion channels from both functional 

and structural standpoints (Lai and Jan, 2006; McKeown et al., 2008). Their diverse 

functions include regulating neurotransmitter release, heart rate, insulin secretion, 

neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and 

cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and 

shal - have been identified in Drosophila, and each has been shown to have human 

homolog(s). Kcnab2 gene encodes one of the beta subunits of the shaker-related Kv 

channels (Kv1.1 to Kv1.8) and this subunit is found as a component of almost all 

potassium channel complexes containing Kv1 α subunits (McKeown et al., 2008). This 

association of beta subunits with Kv1 channels not only increases the potential for 

diversity, it also indicates that the functional properties of individual channels are 

governed by the specific combination of alpha and beta subunits present in the channel 
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complex (Rhodes et al., 1996). For example, Kcnab2 can alter functional properties of 

the Kcna4 gene product (Kv1.4). 

Specific potassium channels, gated by intracellular calcium elevation, have been 

associated with synaptic plasticity (Voglis and Tavernarakis, 2006). Specific, non-synaptic 

voltage-gated potassium (Kv) channels are also important for controlling neuron 

membrane electrical excitability and are localized to axons, somata and dendrites. 

Deletion of Kcnab2 in mice leads to deficits in associative learning and memory and loss 

of this gene function likely contributes to the cognitive and neurological impairments in 

humans (Perkowski and Murphy, 2011).  

In my meta-analysis, Kcnab2 showed an effect size of 0.04 with a p-value of 0.77 

(Appendix 6.10.1). This is due to the fact that the SMD was slightly down in the aged in 

R7 and K9, but up in BL, B7 and B8 (Appendix 6.10.9). Given the diverse and delicate 

nature of these ion channels, which are constantly changing in quantity and locations, 

none of the studies was successful in recording the exact expression of this gene. 

Nonetheless, given the involvement of the Kv1 channels in synaptic plasticity, the exact 

function of this hub gene in ASLI requires future study.  

5.3.2.9 Mapk1 (mitogen-activated protein kinase 1) 

Mapk1 (aka ERK; p38; p40; p41; ERK2; ERT1; ERK-2; MAPK2; PRKM1; PRKM2; P42MAPK; 

p41mapk; p42-MAPK) encodes a member of the MAP kinase family. MAP kinases, also 

known as extracellular signal-regulated kinases (ERKs), are serine/threonine kinases, 

which act as an integration point for multiple biochemical signals. They are involved in a 

wide variety of cellular processes such as proliferation, differentiation, transcription 

regulation, and development (Cuadrado and Nebreda, 2010). The activation of ERKs 

requires their phosphorylation by upstream kinases. Upon activation, these kinases 

translocate to the nucleus of the stimulated cells, where they phosphorylate nuclear 

targets. The targets of ERKs include transcription factors, cytoskeletal proteins, 

regulatory enzymes and, importantly, other kinases (Thomas and Huganir, 2004). The 
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role of Mapk1 in learning and memory is well known (Selcher et al., 2001; Sweatt, 

2001). MAP kinases are activated in neurons in response to excitatory glutamatergic 

signaling, which controls many forms of synaptic plasticity that are thought to underlie 

higher brain process such as learning and memory. The forms of long-term memory in 

mammals in which the involvement of ERK have been best- characterized are spatial 

learning and fear conditioning. Specifically, the necessity for hippocampal ERK activation 

for spatial memory formation was clearly demonstrated in mice using the Morris water 

maze (Blum et al., 1999; Selcher et al., 1999), and for fear conditioning using context 

dependent audible cue and subsequent heat-shock (Atkins et al., 1998; Schafe et al., 

2000). In all these studies, the MEK (an early activator of MAPK) inhibitors greatly 

impaired memory retention in spatial learning or far less frequent freeze in fear 

conditioning experiments. Mapk1 is known as a learning gene (Section 3.3.3) (IPA) and 

was down regulated in the aged (effect size = -0.55. p-value = 0.14) (Appendix 6.10.1 

and Appendix 6.10.10), which is consistent with the finding reported in the literature. 

5.3.2.10 Mapre1 (Microtubule-associated protein, RP / EB family, 
member 1; aka EB1) 

Although the end-binding protein Mapre1 is well known for its role in regulating 

microtubule dynamics (Tirnauer et al., 2002), its role in learning and memory is not as 

well understood. In a recent study, Oz and colleagues (Oz et al., 2014) showed that EB1 

(Mapre1) binds to ADNP (activity-dependent neuroprotective protein) at the NAP motif 

(8-amino acid peptide) and regulates dendritic spine growth, ultimately leading to 

prevention of neuronal death and protection against cognitive deficiencies in mice. 

ADNP is essential for brain formation and is shown to contribute to aging. Down-

regulation of EB1 promotes non-small-cell lung cancer cell death by inducing ROS-

mediated, NF-κB-dependent Bax signaling cascades (Kim et al., 2013). Recent studies 

suggest that EB1 is associated with a variety of microtubule-mediated cellular activities 

in various systems, including migration, cell division, and morphogenesis (Kim et al., 

2013). Thus, EB1 plays a crucial role in ADNP function along with other molecules 

including EB3 and PSD-95 (Dlg4) (Oz et al., 2014). Thus EB1 possibly contributes to 
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neurite outgrowth, the growth cone, axonal transport, and synaptic plasticity. Down-

regulation of Mapre1 (EB1) in the aged rats (effect size = -0.41, p-value = 0.02) 

(Appendix 6.10.1 and Appendix 6.10.11) and the associated deficiency in learning of 

these aged rats is in line with the findings in the literature. 

5.3.2.11 Ndfip2 (Nedd4 family interacting protein 2)  

Ndfip1 and Ndfip2 are related endosomal membrane proteins that bind to and activate 

members of the Nedd4 family of E3 ubiquitin ligases (Cristillo et al., 2003). These ligases 

in turn affect receptor tyrosine kinase signaling by ubiquitinating several key 

components of the signaling pathways. They associate with the EGF (epidermal growth 

factor) receptor and PTEN (another learning gene, Section 5.3.1.14), and control the 

ubiquitination and abundance of PTEN, c-Cbl, and Src family kinases. Ndfip2 also binds 

to and is phosphorylated by Src and Lyn, and can act as a scaffold for Src 

phosphorylation of Ndfip1 and potentially other substrates. Depletion of Ndfip1 inhibits 

Akt activation in EGF-stimulated HeLa cells, stimulates activation of Jnk, and enhances 

cell multiplication. Ndfip1 and Ndfip2 are physically and functionally associated with 

multiple components of the EGF signaling cascade, and their levels modulate the 

relative output of different signaling pathways (Mund and Pelham, 2010). It is possible 

that Ndfip2, which was down-regulated in the aged (effect size = -0.38, p-value = 0.22) 

(Appendix 6.10.1) compared to the young, might be working in the same fashion as NGF 

(nerve growth factor) to influence TrkA pathway. In the brain, NGF can phosphorylate 

tyrosine kinase receptor TrkA in the plasma membrane which later activates a number 

of downstream pathways (Purves et al., 2004). In fact, EGF and NGF, use the same 

pathway such as Raf → MEK → ERK to promote distinct outcomes in PC12 cell line, 

which include neuritogenesis, gene induction, and proliferation (Vaudry et al., 2002). 

However, EGF and NGF likely work differently and on different receptor tyrosine kinases 

(Lee et al., 2002). For example, K252a, a well-established inhibitor of Trk tyrosine 

kinases inhibits NGF activation of Trk receptors and the subsequent biological effects of 

neurotrophins, without affecting other receptor tyrosine kinases, such as the EGF and 
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FGF receptors (Berg et al., 1992). In addition, the duration of signaling through ERKs may 

produce different outcomes of EGF and NGF stimulation. EGF induces rapid and 

transient Ras- and Rap1-dependent ERK phosphorylation, whereas NGF stimulation of 

ERK is both rapid and sustained, with sustained activation dependent on signaling to ERK 

through Rap1 (Qui and Green, 1992; York et al., 2000).  

5.3.2.12 Ppp2r2c (Protein phosphatase 2, regulatory subunit B, 
gamma)  

Ppp2r2c gene encodes one of the four B regulatory subunits of the PP2A (protein 

phosphatase 2A) enzyme complex. The enzyme PP2A is a Serine/Threonine phosphatase 

that plays an important role in cell-cycle regulation, control of cell-growth, regulation of 

multiple signal transduction pathways, cytoskeleton dynamics, and mobility (Xu et al., 

2006). Ppp2r2c was down-regulated in the aged rats (effect size -0.43, p-value 0.22) in 

my meta-analysis (Appendix 6.10.1 and Appendix 6.10.12). 

The exact function of Ppp2r2c is not yet known. However, Backx et al. (2010) reported a 

unique expression pattern for Ppp2r2c with a very high expression in the hippocampus 

in in situ experiments in normal adult mice.  In addition, they found PPP2R2C is 

disrupted in autosomal dominant intellectual disability. Combined with its unique 

expression pattern in mouse brain, this suggests a role for Ppp2r2c in synaptic plasticity 

and hence learning and memory (Backx et al., 2010).  

PP2A (Ppp2r2c) deficiency is a cause of the abnormal hyperphosphorylation of tau, 

which composes neurofibrillary tangles (NFTs) in the Alzheimer's disease brain. Studies 

have shown that PP2A activity was 30% lower in the brains of Alzheimer's disease 

patients as compared to controls (Sontag et al., 1996; Vogelsberg-Ragaglia et al., 2001). 

Inhibition of PP2A by inhibitor I of PP2A (I1
PP2A) results in deficits in exploratory activity, 

spatial reference memory, and memory consolidation in adult rats, which leads to 

hyperphosphorylation of tau, neurodegeneration, and cognitive impairment in rats 

(Wang et al., 2015).  
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5.3.2.13 Prkacb (Protein kinase, cAMP-dependent, catalytic, beta, 
also known as cbeta) 

Prkacb (Cbeta) is a catalytic beta subunit of cAMP-dependent PKA. PKA mediates the 

required transcriptional events by phosphorylating transcription factors such as CREB. 

PKA plays a major role in long-term changes in synaptic strength in the brain (Nguyen 

and Woo, 2003) and has been well known for its critical role in learning and memory 

formation (Waltereit and Weller, 2003). In mouse, PKA Cbeta subunit gene Prkacb gives 

rise to several splice variants that are specifically expressed in discrete regions of the 

brain. A mutation in mouse Cbeta specifically targeting the Cbeta1-subunit isoform was 

studied (Qi et al., 1996). Homozygous mutants showed normal viability and no obvious 

pathological defects, despite a complete lack of Cbeta1. However, these mutant mice 

demonstrated impaired synaptic transmission in the Schaffer collateral-CA1 pathway of 

the hippocampus. The authors provided direct genetic evidence that the Cbeta1 isoform 

is required for long-term depression and depotentiation, as well as the late phase of 

long-term potentiation in the Schaffer collateral-CA1 pathway. Others also reported 

similar role for Cbeta in memory formation in mice (Howe et al., 2002). These findings 

are in-line with the results of the current analysis. The Cbeta gene was down-regulated 

in the aged rats compared to the young with an effect size of -0.1214 and p-value of 

0.59 (Appendix 6.10.1 and Appendix 6.10.13).  Findings from this WGCNA analysis 

indicate an involvement of Prkacb gene in age associated spatial learning and memory 

impairment. Prkacb becomes a new spatial learning candidate gene that requires 

further investigations. 

5.3.2.14 Pten (Phosphatase and tensin homolog) 

PTEN modulates activation of the PI3K/Akt pathway. Specifically, PTEN inhibits 

downstream activation of the PI3K pathway (Maehama and Dixon, 1998). Therefore, 

deletion of the Pten gene results in hyperactivation of the PI3K signaling pathway, which 

then leads to increased activation of the downstream effectors such as Akt. Pten gene 
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was down-regulated in the aged rats compared to the young with an effect size of -0.37 

and p-value of 0.01 (Appendix 6.10.1). 

PTEN is highly expressed in neurons and several lines of evidence support a role for 

PTEN in regulating important neuronal functions (Blair and Harvey, 2012). For example, 

familial mutations that result in PTEN inactivation have been linked to neurological 

disorders such as ataxia, mental retardation and seizures (Backman et al., 2001). 

Moreover, loss of PTEN function at early stages of development results in widespread 

deficits in neuronal growth, synaptogenesis, and synaptic plasticity suggesting additional 

roles for PTEN in these processes. A recent study demonstrated that the structural and 

functional properties of hippocampal synapses are independently controlled by PTEN, 

and PTEN plays a direct role in activity-dependent hippocampal synaptic plasticity, 

namely LTP and LTD (Sperow et al., 2012). In this study, deficits in both hippocampal LTP 

and LTD were observed in PTEN knockout (PTEN−/−) mice. Postnatal deletion of PTEN 

also resulted in hippocampal-specific memory deficits in these mice as significant 

impairments in spatial memory tasks performed in the Morris water maze were 

observed. Deletion of PTEN can also result in deficits in contextual learning and trace 

fear conditioning (Lugo et al., 2013). 

5.3.2.15 Rasgrp1 (RAS guanyl releasing protein 1 (calcium and 
DAG-regulated)) 

Rasgrp1 is a member of a family of four GEFs (guanine nucleotide-exchange factors) 

(Ras GEFs). RasGRP1 possesses a catalytic region consisting of a REM (Ras exchange 

motif) and a CDC25 (cell division cycle 25) domain. RasGRP1 also possesses a DAG –

binding C1 domain and a pair of EF hands that bind calcium. Ras proteins cycle between 

GDP-bound ‘off’ and GTP-bound ‘on’ states and serve to link membrane receptor signals 

to internal effector pathways. Rasgrp1 is activated by Ca2+/calmodulin and DAG, and 

promotes the dissociation of GDP from Ras family proteins, which facilitates the 

exchange of GDP for GTP, and thus enhances the activity of Ras family proteins (Stone, 

2006).  
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Rasgrp1 was down-regulated in the aged with an effect size of -0.50 and p-value of 0.23 

in 4 of the 5 studies assessed in this meta-analysis (Appendix 6.10.1 and Appendix 

6.10.14). In a recent expression array analysis, Rasgrp1 had exhibited significant 

expression changes in the CA3 region of the hippocampus. Particularly, this gene was 

up-regulated in the partial learning-activated group compared to controls (Haberman et 

al., 2008). Ras family proteins play important roles in mediating cell proliferation, 

differentiation, and survival during development. Recently, a growing body of evidence 

suggests that they are also critically engaged in memory formation and can modify 

neuronal function and structure, leading to changes in synaptic strength and neuronal 

firing rates (Ye and Carew, 2010). The best-characterized downstream signaling cascade 

of Ras family proteins is the mitogen-activated protein kinase (MAPK) cascade, mainly 

extracellular signal-regulated kinase 1/2 (ERK) of the MAPK family has been implicated 

in the formation of enduring memory, but is not required for short-term memory 

(Adams and Sweatt, 2002; Sharma et al., 2003). Interestingly, Mapk1 (ERK) is also 

another candidate hub gene, which was down-regulated in the aged rats in the meta-

analysis. Indeed, Rasgrp1 may be a novel link between molecules activated in behavioral 

paradigms such as phospholipase C and the well-known Ras–MAPK pathway (Buckley 

and Caldwell, 2004). 

5.3.2.16 Scn2b (Sodium channel, voltage-gated, type II, beta) 

Sodium channels are complex glycoproteins comprised of an alpha subunit and often 

one to several beta subunits (Johnson et al., 2007). Scn2b encodes the beta 2 subunit of 

the type II voltage-gated sodium channel. Though this gene was reported to have a role 

in epilepsy (Baum et al., 2014), its role in brain aging and memory impairment is largely 

unknown. In a recent study XiYang and colleagues (2015) observed that the mRNA and 

protein expressions of Scn2b were up-regulated in the prefrontal cortex in SAMP8 

(senescence-accelerated mice prone 8) mice at 8 months of age. At this stage these 

mice also generally show impaired learning and memory functions in the Morris water 

maze test. These authors also observed that in SCN2B knockdown mice a down-
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regulation of SCN2B level by about 60% resulted in improvement in the hippocampus-

dependent spatial recognition memory and LTP. In addition, SCN2B down-regulation 

was associated with up-regulation of COX5A and BDNF as well as downregulation of 

FGF-2. They suggested that SCN2B could play an important role in the aging-related 

cognitive deterioration. In my meta-analysis, Scn2b was found to be slightly down-

regulated in the aged (effect size = -0.275, p-value = 0.07) in all 5 studies compared to 

the young rats (Appendix 6.10.1 and Appendix 6.10.15), which is somewhat opposite to 

the findings by XiYian group. Interestingly, Lu et al. (2004) reported a down-regulation of 

SCN2B in the aging human prefrontal cortex. The difference in reported functions for 

this gene could most likely be related to species and/or the strain of animal used. 

However, the role of this gene in learning and memory impairment needs further 

investigation, particularly, as it is known to influence several other genes in modulating 

synaptic plasticity. 

5.3.2.17 Stxbp1 (syntaxin binding protein 1)  
Stxbp1, also known as Munc18-1, is down-regulated in the aged rats (effect size = -0.32, 

p-value = 0.07) in my meta-analysis, that demonstrated spatial learning impairment 

compared to the young (Appendix 6.10.1 and Appendix 6.10.16). Stxbp1 plays a role in 

release of neurotransmitters via regulation of syntaxin, a transmembrane attachment 

protein receptor (Kurps and de Wit, 2012).  

The role of Stxbp1 in learning and memory impairment is not known decisively. Cao 

et.al. (2012) reported that increased hippocampal SNAP-25 and Munc18-1 positively 

correlated with spatial learning decline and might be involved in the age-related 

impairment of spatial learning and memory in Kunming mice. However, Dachtler et al. 

(2014) reported that Stxbp1 was significantly decreased in the hippocampus of Nrxn2α 

(neurexin 2 alpha) KO mice, which exhibit deficits in sociability and social memory in 

relation to autism. This decreased expression of Stxbp1 is suggestive of deficiencies in 

presynaptic vesicular release, which may potentially contribute to the altered behavioral 

state of Nrxn2α KO mice. Loss of Nrxn2α has been argued to have a causal role in the 
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genesis of autism-related behaviors in mice. However, they noted normal cognitive 

performance in these mice in hippocampus-dependent step-through passive avoidance 

tests (Dachtler et al., 2014). They also found significantly decreased expression of 

several other synaptic proteins including Dlg4 (PSD-95) in Nrxn2α KO mice. Munc18-1 

has been shown to interact presynaptically with neurexins to facilitate presynaptic 

vesicular release and may be critical for important neurotransmitter release (Rizo and 

Sudhof, 2002). In addition, A 21% decrease in the abundance of Munc18-1 in the brain 

has previously been found in Nlgn1 (neuroligin 1) KO mice that display impaired spatial 

memory and increased repetitive behavior (Blundell et al., 2010).  

5.4 Differential expression vs. differential co-expression 
vs. differential connectivity 

Differential co-expression refers to changes in gene-gene correlations between two sets 

of phenotypically distinct samples (de la Fuente, 2010). Changes in gene-gene 

correlation may occur in the absence of differential expression, meaning that a gene 

may undergo changes in regulatory pattern that would be undetected by traditional 

differential expression analysis (Gaiteri et al., 2014). The fact that the altered regulatory 

patterns observed within tissues across phenotypic states in manners that are reflected 

in altered co-expression networks has been shown in aging mice (Southworth et al., 

2009), across corticolimbic regions in major depression (Gaiteri et al., 2010) and 

between miRNA’s in Alzheimer’s disease (Bhattacharyya and Bandyopadhyay, 2013).  

In light of the discussions in the previous sections, what becomes apparent is that the 

differential expression and differential co-expression analysis resulting from this 

research may be pointing to distinct cellular mechanisms involved in ASLI, which are 

working at different levels in the cell. For example, differential expression meta-analysis 

has identified a large number of genes showing significantly altered expression in the 

aged rats compared to young rats (Tables S1 and S2 in (Uddin and Singh, 2013)). These 

genes include many immediate early (e.g. Arc) or late phase genes (during gene 

expression) as well as other genes contributing to aging and ASLI as GA, GASI, and GANSI 
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genes. Major functions disrupted by these genes include cell viability, axonogenesis, 

quantity and synthesis of IP3, and formation of cells. 

On the other hand differential co-expression analysis has identified a set of modules 

each with distinct functions. In addition, it has identified a set of candidate ASLI hub 

genes in one of those modules. From the known function of these hub genes (Section 

5.3.1) it is evident that many of these genes function as kinases and phosphatases in the 

neuronal information flow process, starting from the synaptic junctions/synapses to the 

nucleus to activate various transcription factors. Though scattered in different networks, 

meta-analysis has also identified few hub genes functioning as kinases or in ion 

channels. Thus the hub genes may be triggering one or more mechanisms that activate 

other key factors in a number of pathways, which set the stage for the expression of 

several immediate early or late phase genes, which again most likely activate the 

expression of majority of the differentially expressed genes. Learning in the young 

animals most likely induces such mechanisms that synchronously regulate transcription 

of multiple genes, and may potentially generate co-expression relationships. 

Another important observation to note is that all the learning related genes identified in 

the differential expression and IPA analyses (and genes they generally interact with) are 

scattered in different networks and pathways (Appendix 6.3.1 to Appendix 6.4.4). In 

contrast, differential co-expression analysis identified many known learning genes (or 

genes that appear to be contributing to learning and memory functioning) that are 

highly concentrated and co-expressed in the yellow “learning and memory” module. 

Interestingly, the candidate ASLI hub genes are expressed at a comparatively lower 

level, with small differences in expression (e.g. effect size) between young and aged 

samples. For example, the Prkacb hub gene was not known to be a learning gene (IPA) 

(Tables S3 and S4 in (Uddin and Singh, 2013)). Like Prkacb, most of the hub genes failed 

to show significant effect size or differential expression values and remained undetected 

in the meta-analysis (Tables S1 and S2 in (Uddin and Singh, 2013)). This fact highlights 

the importance of alternate analysis like WGCNA to identify genes that are not detected 
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using the traditional methods. Similar observations have been demonstrated in past 

studies (Rhinn et al., 2012). For example, the alpha synuclein gene variant “aSynL”, 

containing a long 3′sUTR, was identified as the most differentially coexpressed gene in 

several Parkinson’s disease datasets. However, aSynL was not highly differentially 

expressed and thus would have likely been overlooked by traditional microarray analysis 

(Gaiteri et al., 2014). Thus, through the identification of modules, hubs, and differential 

co-expression analysis, WGCNA can be used to prioritize specific phenotype-related 

important molecules.  

Another very interesting property of co-expression networks is the network 

connectivity. My findings (Appendix 6.14.1) support the newly emerging hypothesis 

(Miller et al., 2008; Oldham et al., 2006) that differential connectivity is different from 

differential expression. During the WGCNA network construction process, I selected 

genes with high connectivity and filtered out all low connectivity genes (Table 4.5). The 

observation is that the resulting network modules represent a set of highly connected 

genes as hubs that were virtually absent in the differentially expressed top gene list and 

vice versa. In fact, it has been reported that gene-gene correlations in disease can occur 

with or without changes in expression (Hudson et al., 2009). In addition, differentially 

expressed genes in some complex psychiatric diseases can have low connectivity, which 

reside on the periphery of co-expression networks for neuropsychiatric disorders such 

as depression, schizophrenia, and bipolar disorder (Gaiteri and Sibille, 2011; Gaiteri et 

al., 2014).  

5.5 New insight into the molecular mechanisms of 
learning and memory formation 

Here I will discuss what is already known from the literature about the molecular 

mechanisms of learning and memory formation and how the candidate ASLI hub genes 

from this research fit into that scenario. 
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Several major signaling pathways seem to modulate synaptic plasticity mechanisms in 

the brain and have been implicated in learning and memory formation processes 

(Baudry et al., 2014; Nguyen and Woo, 2003; Sweatt, 2001; Ye and Carew, 2010). Some 

of the major pathways relevant to this study include the PKA, CaMKs, MAPK, and 

PI3K/Akt pathways that have been implicated in LTP formation. LTP is a synaptic 

plasticity mechanism and a cellular correlates thought to underlie learning and memory. 

Following external stimulation, a set of crucial upstream events are necessary for their 

activation, which include NMDA receptors and the resulting calcium influx.  

Calcium-dependent phosphorylation of CREB is primarily caused by PKA, CaMK and MAP 

kinase, which leads to prolonged CREB phosphorylation. CREB in turn contributes to the 

transcription of a set of immediate early genes implicated in learning and memory 

formation. CREB is thought to mediate long-lasting changes in brain function. For 

example, CREB has been implicated in spatial learning, behavioral sensitization, long-

term memory of odorant-conditioned behavior, and long-term synaptic plasticity 

(Alberini, 2009; Chen et al., 2010; Sweatt, 2010; Thomas and Huganir, 2004). The ASLI 

candidate hub genes that are important in the CREB related pathways include Camk1g, 

Dlg3, Dlgap1, Dpp6, Kcnab2, Mapk1, and Stxbp1. For example, Stxbp1 plays a role in 

releasing of neurotransmitters via regulation of syntaxin (Section 5.3.1.17) and may 

serve to transfer of signal through the synapse. Dlg3 binds directly to NMDA receptors, 

anchors receptors at synapses, and facilitates transduction of NMDAR signals (Section 

5.3.1.4). CaMKs, particularly CaMKII has been shown to be directly activated by calcium 

influx through the NMDA receptor. Camk1g may function in this CaMK pathway (as 

discussed in Section 5.3.1.1) to modulate CREB phosphorylation. Camk1g co-expression 

with other learning genes such as Mapk1 (Section 5.3.1.9), Kcnab2 (Section 5.3.1.8), and 

Dpp6 (Section 5.3.1.5), functioning in the MAPK pathway or in various ion channels 

indicate a potential co-functioning of these genes towards learning and memory 

formation. Some may involve a feed-back loop type activation/mechanism. For example, 

during the early phase of LTP at postsynaptic terminals of CA1 hippocampal neurons, 

calcium entering through AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
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acid) and NMDA receptors activates CaMKII, which phosphorylates Kv channels and 

increases neuronal excitability (Sweatt, 2001). Similarly, Mapk1, stimulated by elevated 

levels of cAMP as a result of calcium entry and subsequent activation of adenylyl 

cyclase-1, phosphorylates the A-type potassium channel (Kv1.4 and Kv4.2) resulting in 

increased depolarization, allowing influx of Ca2+ through the NMDA and voltage-gated 

Ca2+ channels, which results in increased cAMP levels in the hippocampus in mice. The 

increase in Ca2+ and cAMP induces the MAPK pathway. Thus, the induced pathway 

activates additional pools of MAPK1, some of which can further increase 

phosphorylation of Kv1.4 and Kv4.2, whereas others may phosphorylate nuclear targets. 

Voltage-gated potassium (Kv) channels play important roles in regulating the excitability 

of neurons and other excitable cells. Subthreshold activating, rapidly inactivating, A-type 

K+ currents are non-uniformly expressed in the primary apical dendrites of rat 

hippocampal CA1 pyramidal neurons, with density increasing with distance from the 

soma (Hoffman et al., 1997). These changes correlate with impaired spatial memory and 

context discrimination (Morozov et al., 2003). Note that the ASLI candidate genes 

Kcnab2 gene encodes one of the beta subunits of the Kv channels (Kv1.1 to Kv1.8) 

(Section 5.3.1.8). And the role of Mapk1 through MAPK (ERK) signaling is not only 

documented in LTP, but also in spatial learning (Section 5.3.1.9). DPP6 may take part by 

regulating the A-type K+ current gradient, ultimately contributing to synaptic integration 

and dendritic excitability (Section 5.3.1.5). The action potential firing and dendritic 

excitability must be balanced by inhibition in hippocampal neuron. This is likely achieved 

by Gabrg1 and a number of other GABA receptors that demonstrated co-expression in 

the yellow module (Section 5.3.1.7). 

Dendritic integration of synaptic inputs is fundamental to information processing in 

neurons of diverse function, serving as a link between synaptic molecular pathways and 

higher-order network function (Sun et al., 2011). Dendritic ion channels play a critical 

role in regulating such information processing and are targets for modulation during 

synaptic plasticity (Shah et al., 2010). Normal experience-dependent changes in the 

excitability of dendrites (dendritic plasticity), involving the down-regulation of A-type K+ 
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currents by down-regulation of Dpp6 (observed here), may represent a mechanism by 

which neurons store recent experience in individual dendritic branches (Makara et al., 

2009). Down-regulation of Kcnab2 may contribute to the reduction of A-type potassium 

channel currents through reduced availability of Kv1.4. Future studies are required to 

investigate the effect of Dpp6 and Kcnab2 in synaptic development and spatial memory 

formation.  

Prkacb, a new ASLI candidate in the PKA pathway (Section 5.3.1.13), once activated by a 

variety of upstream signals, including calcium, can phosphorylate and regulate a variety 

of downstream signaling cascades linked to regulation of transcription and translation 

(Baudry et al., 2014). It can phosphorylate AMPA and NMDA receptors and regulate 

their functions. 

Another pathway that is making itself relevant in this big picture is the PI3K/Akt 

pathway. A set of genes involved here include the ASLI candidate genes Ndfip2, Pten, 

and Rasgrp1. In the brain, tyrosine kinase receptor TrkA is phosphorylated on the 

plasma membrane by the binding of another growth factor NGF, which later activates 

three major signaling pathways: the PI 3 kinase pathway leading to activation of Akt 

kinase, the ras pathway leading to MAP kinases, and the PLC pathway leading to release 

of intracellular Ca2+ and activation of PKC (Purves et al., 2004). Ndfip2 affect tyrosine 

kinase signaling pathway through Nedd4 ligases, which associate with EGF receptor and 

Pten (Section 5.3.1.11). Based on literature information it can be hypothesized that 

Ndfip2 may modulate the EGF signaling cascade; it is possible that Ndfip2 might be 

working in the same fashion as NGF in the brain to influence not only Akt kinase 

pathway through Akt, but also other pathways such ras, MAPK, and PLC. In fact, EGF and 

NGF share the same Raf → MEK → MAPK pathway to promote distinct outcomes 

(Vaudry et al., 2002). Therefore, the role of Ndfip2 in learning and memory can be 

investigated in a future experiment. 

MAPKs are normally inactive in neurons but become activated when they are 

phosphorylated by other kinases. In fact, MAPKs are part of a kinase cascade in which 
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one protein kinase phosphorylates and activates the next protein kinase in the cascade 

(Purves et al., 2004). The extracellular signals that trigger these kinase cascades are 

often extracellular growth factors that bind to receptor tyrosine kinases that, in turn, 

activate monomeric G-proteins such as Ras. Rasgrp1, once activated by 

Ca2+/calmodulin and DAG, facilitates the exchange of GDP for GTP and may trigger 

downstream Mapk1 signaling (Section 5.3.1.15). Once activated, MAPKs can 

phosphorylate transcription factors, proteins that regulate gene expression.  

Although, Pten is known to play a direct role in regulating hippocampal synaptic 

plasticity (Section 5.3.1.14), the precise mechanisms underlying Pten modulation of 

synaptic plasticity such as LTP and LTD are not fully known. Recent studies suggest its 

involvement in postsynaptic mechanism as PTEN inhibition promotes AMPA receptor 

trafficking to synapses leading to a persistent increase in excitatory synaptic strength in 

adult hippocampal slices (Moult et al., 2010). On the other hand, enhanced PTEN lipid 

phosphatase activity has been reported to depress excitatory synaptic transmission, 

which in turn is required for NMDA receptor-dependent LTD (Jurado et al., 2010). In 

light of this research, Pten is an excellent candidate to study further for it potential 

involvement in ASLI and the mechanisms in play. 

Co-expression of genes like Cntn1, Mapre1, etc., which have known functions in 

neuronal structure, indicates that these genes play an essential role in learning and 

memory along with other genes discussed above. For example, Mapre1 is well known to 

regulate microtubule dynamics (Section 5.3.1.10) and Cntn1 is necessary for myelin 

sheath formation by oligodendrocytes and provides critical signal in axon-glia 

communication. Ppp2r2c, another new ASLI candidate gene forms a part of PP2A, which 

catalyzes a broad range of substrates (Section 5.3.1.12).  

Taken together, this research has identified a set of candidate hub genes that all co-

express together in a single gene network module. These genes are known to 

participate in multiple different cellular signaling pathways such as PKA, MapK, and 

CamK as discussed above. Overall, reversible phosphorylation of proteins by kinase and 
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phosphatase enzymes constitutes some major forms of signaling (Backx et al., 2010). 

These different signaling cascades converge on a common set of mechanisms: 1) post-

translational protein modifications, 2) translational regulation, and 3) regulation of gene 

expression (Baudry et al., 2014; Purves et al., 2004; Sweatt, 2010). Ultimately, these 

mechanisms are linked to a few of the common events responsible for LTP such as 

increased number of postsynaptic receptors, and increased dendritic spines. In fact, 

these mechanisms are not isolated; rather, multiple cross-talk between the signaling 

pathways exist, which suggests that depending on the conditions, various form of LTP or 

LTD can be triggered with different features (Middei et al., 2014)(Baudry etal 2014). 

Thus, the signaling pathways are involved in the mechanism of synaptic plasticity, which 

in turn is the molecular mechanism for learning and memory. (Barco et al., 2006; Chen 

et al., 2010; Sweatt, 2001). Thus, co-expression of the hub genes along with other genes 

in the yellow module seems to be leading to a common function in the hippocampus in 

the brain, which in this case is ASLI. Results from the meta-analysis for these genes 

strengthen this conclusion. Down-regulation of the majority of the hub genes in the 

aged rats (Figure 4.15) may play a critical role in the spatial learning impairment in the 

Morris water maze protocol. Interestingly, many of the hub genes’ individual expression 

patterns follow what is reported in the literature in respect to their potential role in 

aging associated learning and memory impairment, for example Camk1g, Dlg3, Dpp6, 

Mapk1, Mapre1, Ndfip2, Ppp2r2c, Pten, Prkacb, and Rasgrp1. Some other hub genes 

such as Cdk5r1, Cntn1, Impact, Kcnab2, Scn2b, and Stxbp1 may have more indirect role. 

The main function of this second category of genes may involve contributing to the 

regulation of normal neuronal structure and functions, dysregulation of which become 

vulnerable at old age, and thus may indirectly contribute to the overall instability of the 

memory formation mechanism.  

In this research, the findings of a specific “learning and memory” module and the 

associated key hub genes with their known role in learning and memory formation offer 

a promising insight and a plausible logical expansion to our existing knowledge about 
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the molecular correlates of the mechanisms underlying memory formation and synaptic 

plasticity. 

5.6 Study strength and limitations 

The strength of this research lies in the choice of scientifically sound techniques and 

approaches that were widely used by the research community. Since impurities in data 

generally carry over and bias any subsequent analysis, I started with raw data and 

placed high priority in the quality control, preprocessing, and selection of data for meta- 

and network analysis. Additionally, I have performed step-wise outlier removal and 

strict batch correction to make sure no spurious clusters were generated from a single 

dataset, which might lead to spurious modules. It is often common for meta-analysis to 

include large number of studies. Several studies using WGCNA (Oldham et al., 2008) 

integrate data from a variety of tissue type, experiments, and even species, which 

helped find genes implicating in broad categories of phenotypic differences. However, I 

followed a set of conservative data selection criteria as I sought to identify genes and 

networks in a very specific phenotype (e.g. ASLI). I have tried to maintain data sample 

size as large as possible for network analysis. This was challenging, particularly, during 

the batch effect correction for B7 and B8 because of the presence of few poor quality 

arrays in those dataset. The most important fact to consider during batch effect 

correction is to make sure that every phenotypic group (e.g. impaired, unimpaired, 

various control groups) is represented in every batch (Johnson et al., 2007; Leek et al., 

2010). After removing unsuitable/ poor quality arrays, and after preprocessing, B7 

young, K9 aged, and both BL young and aged groups were remained with 12 samples or 

less, these were excluded. In order to achieve the best quality results in gene network / 

WGCNA analysis all young or aged groups contained a minimum of 18 samples. This is in 

line with previous correlation network studies using WGCNA (Miller et al., 2008; Oldham 

et al., 2006) where 18 to 20 samples were successfully used between control and test. 

Moreover, constructing networks from samples from mice of common genetic 

background allows co-expression networks to be constructed with fewer samples 
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(Gaiteri et al., 2014), which was also true in my research as all rats used were from 

Fischer 344 strain. Overall, the methods adopted provided step-wise processes to 

prepare data for downstream analyses. Undertaking of these processes resulted in a 

logical outcome in the form of verifiable results both in meta- and network analysis.  

One major limitation with the data was that extra, array preparation information (e.g. 

RNA isolation, reagents, array hybridization, etc.) was not available, so they could not be 

used to further correct additional batch effect that may be have remained for B7 and B8 

data. Similarly, detailed experimental/phenotypic information was also not available. So, 

they could not be used to associate co-expression modules with disease or other 

phenotypic traits. Often, in a co-expression network analysis, module membership can 

be compared between cases and controls, among different tissues, species, or other 

phenotypes or clinical traits (de Jong et al., 2010; Fuller et al., 2007; Ghazalpour et al., 

2006; Plaisier et al., 2009). 

One major challenge when combining data across microarray studies and platforms is to 

handle missing probe sets. The same probe set may not be present in different arrays, 

may get filtered out during the preprocessing steps, or may be excluded in the later part 

of an analysis due to lack of annotation or low connectivity. Therefore, to minimize the 

effect of absence of a probe set in a dataset, I worked at the probe set level, and 

recorded the number of studies each probe set was present. Random effect size meta-

analysis model with inverse variance technique was the perfect choice in this situation 

because this model considers sample sizes, number of studies, within-study and 

between-study variability. Compared to average microarray results, this overall 

approach resulted in a large number of significant differentially expressed genes 

between young and aged samples. In addition, forest plots provide an efficient way to 

view data size, within study variations, data strength, and heterogeneity. 

For gene network modeling, the use of WGCNA produced satisfactory and promising 

results. The strength of WGCN lies in its simplicity and ability to model gene co-

expression in the form of modules and hubs, which showed biologically meaningful 
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functions and reproducibility in independent datasets. This has made the WGCNA 

approach very popular in recent years among general biologists with little computer 

background (e.g. there are now over 50 applied research article using WGCNA); while 

many other methods (such as Bayesian networks and ARACNE) are mostly confined to 

the computational scientist community and are in active development. Unfortunately, 

the major limitation of WGCNA is that it can’t distinguish direct regulatory relationship 

from indirect based on gene expression data alone. However, a literature review 

suggests that in the yellow “learning” module, hub genes Dpp6 and Kcnab2 may have a 

more direct regulatory relationship, while Ndfip2 and Pten may have an indirect 

regulatory relationship. This indicates that additional knowledge bases can aid in 

characterizing close regulatory relationship among gene members in a module. Despite 

this disadvantage, use of WGCNA in this research was successful and identified one 

specific module and a set of hub genes that showed differential co-expression between 

the young vs. aged networks, which may play a key role in learning impairments in the 

aged, compared to the young rats.  

5.7 Future directions 

The candidate ASLI genes (including hub genes) and gene networks identified in this 

research through meta- and network analysis become excellent candidates for further 

investigations. Particularly, the hub genes can provide a different perspective on gene 

regulation as they can serve as excellent targets to examine the biological significance of 

a network module. They could be targeted to see not only a perturbation effect of 

altered regulation on network module structure and function, but for therapeutic use as 

well. Co-expression modules are not in fact completely modular as there are often 

correlations among the members of different modules (Gaiteri et al., 2014). Therefore, 

any perturbation effect will likely extend outside of a module and will need to be 

studied. Since, differential co-expression is likely related to altered gene regulation, 

experiments involving ChIP, or ChIP-seq of potential transcription factors, can be 

designed to capture related gene regulatory mechanisms after any perturbation. 
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Epigenetic mechanism are also intimately involved during the gene expression process 

in learning and memory formation (Franklin and Mansuy, 2010; Graff and Mansuy, 

2008; Levenson and Sweatt, 2005; Levenson and Sweatt, 2006; Sweatt, 2010). So, 

changes in chromatin structure, methylation and acetylation pattern, as well as miRNA 

population changes should also be investigated. 

For the purpose of future investigation, the candidate ASLI hub genes could be grouped 

into three categories: 1) Hub genes whose role in learning (including spatial learning) is 

more transparent than others (i.e. gene with well-established roles in memory, for 

example, Camk1g, Dlg3, Mapk1, Ppp2r2c, and Prkacb), 2) Hub genes (e.g. Cdk5r1, Cntn1, 

Scn2b, Stxbp1, Eif5, and Gabrg1) where there is not enough information in the literature 

to support which direction their expression pattern contributes to the ASLI phenotype, 

and 3) Hub genes where information is emerging indicating their direct or indirect role 

in learning and memory (e.g. Pten, Kcnab2, Mapre1, Ndfip1, Rasgrp1, and Dpp6). 

One way to learn the specific effects of hub genes is through knockout experiments. This 

is because the hub genes are likely to act as drivers of the disease status due to their key 

positions in the gene networks (Allen et al., 2012). It is known that transmission of signal 

through scale-free cellular networks is unlikely to be affected by random node deletion; 

rather it is especially vulnerable to targeted hub attack (Albert et al., 2000). This 

observation is supported by examples from multiple molecular and brain networks in 

which hub targeting leads to crucial functional impairment (Stam et al., 2007). 

Practically, hub genes have been the specific focus for investigations into many disease-

correlated modules (Maschietto et al., 2015; Miller et al., 2008; Ray et al., 2008; 

Torkamani et al., 2010; Voineagu et al., 2011; Ye and Liu, 2015). Analysis of hub genes 

has been shown to be a promising approach in identifying key genes in many other 

phenotypic conditions (Holtman et al., 2015; Kendall et al., 2005; Mani et al., 2008; 

Nibbe et al., 2010; Rickabaugh et al., 2015; Slavov and Dawson, 2009; Spiers et al., 2015; 

Zhou et al., 2014).  Such genes are often of biological interest because of their critical 

involvement in regulatory pathways or sub-networks and these genes often incur a 
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substantial effect on the pathways as a whole. The candidate ASLI hub genes identified 

in this research may very likely present a snapshot of what is going on inside brain cells 

during the memory formation process. 

5.8 Conclusions 

Despite significant research in the past, ASLI genes and networks remain largely unclear 

and were the main focus of this dissertation. The major goal of this research was to 

combine gene expression data from multiple independent but related studies and 

identify genes and gene networks in ASLI in rats. During the data collection and 

selection process, I learned that even though there were many microarray studies 

related to cognitive impairments, they actually varied in terms of major study goal, 

selection of animal model, and the assessment of learning impairment. By following a 

more conservative data selection approach I was able to select five ASLI related 

datasets. A detailed inspection of data quality revealed the presence of imperfections in 

some arrays as well as the presence of outlier arrays and batch effects. By applying 

appropriate methods, I satisfactorily removed unsuitable arrays and corrected batch 

effects, and prepared all five datasets to combine at the probe set level. My research 

supports previous findings and emphasizes that proper data quality control and 

preprocessing are essential when combining data from several studies in a meta- or 

network analysis.  

In order to integrate the selected ASLI datasets, I adopted the random effect size meta-

analysis method in this research. The goal was to identify and characterize genes that 

may be involved in ASLI, as well as to identify and characterize gene networks based on 

existing biological knowledge. I implemented a probe set level data integration method, 

which prevented loss of information from data. The results show that a large number of 

genes are differentially expressed across age and across spatial learning impairment 

between young and aged rats. I attribute this to the proper preprocessing, data 

integration, and meta-analysis methods that were applied to the gene expression data. 

This meta-analysis allowed the identification of pertinent lists of aging and ASLI related 
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genes. GO and pathway analysis results relating to these genes support the fact that the 

genes and pathways identified in this analysis follow biological expectations. Further, 

the follow up analysis offered a novel insight into the underlying molecular pathways 

associated with aging and age-related non-syndromic memory impairments such as 

ASLI. The results indicate that the aged animals display a significant decrease in cell 

viability, axonogenesis, and inositol phosphate metabolism. Based on the known 

function of the significant genes, they logically fall into three major categories such as 

GA, GASI, and GANSI. The GA genes are mostly involved in aging related processes and 

generally are not associated with any learning impairment. The GASI genes, on the other 

hand, are associated with age-related neurological disease syndromes that generally 

affect normal cognitive functioning and hence may result into syndromic memory 

impairments. The most interesting group of genes are the GANSI genes, most of which 

show down-regulation in the aged or aged-impaired rats and by themselves usually are 

not associated with any syndromes. I report that altered expression of the GANSI 

category of genes affects major pathways and functions at old age, and may play a 

significant role in ASLI in rats. These genes affect various signal transduction pathways 

and functions in the brain such as molecular transport, cell to cell signaling and 

interaction, and nervous system development and function ultimately contributing to 

the disruption of proper learning and memory formation processes. I identified a set of 

these GANSI genes, which include some genes that express at a low level and appear as 

potential hub genes in the knowledge based AY or IU gene networks (Appendix 6.3.1 to 

Appendix 6.4.4). I propose that the selected GANSI genes should form the foundation of 

future studies in understanding age-associated memory impairments such as ASLI.  

One of the limitations in the traditional meta- and network analysis is that gene 

networks and regulatory interactions among the genes in these networks are modeled 

based on current biological knowledge only. Another limitation is that they are not able 

to identify a single network that could be solely associated with ASLI (as I found that the 

candidate ASLI genes were all scattered in different networks). There is no prioritization 

of molecules within the knowledge-based network models of affected pathways. 
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Moreover, the traditional methods are unable to better utilize all the information that is 

contained within the microarray data. In order to overcome these limitations in 

traditional meta- and pathway analysis, I explored the option of using a mathematical 

modeling approach that could better utilize the information captured in microarray 

data. I chose to use WGCNA, applied it on a set of R7 exploratory datasets, and 

identified a set of gene network modules. To my satisfaction, WGCNA offered a way of 

prioritizing the molecules solely based on data and without any knowledge of their 

functions (i.e. by grouping genes into co-expressing network modules). This finding was 

confirmed by the follow up GO analysis which showed that each module is highly 

enriched with genes functioning in some broad but distinct GO functional categories or 

biological pathways. Further, these modules show significant repeatability in 

independent young and aged validation datasets. Interestingly, this analysis identified a 

single learning and memory related module and within the module a set of unique hub 

genes related to ASLI. Though some of the significant genes identified through meta-

analysis are replicated in the “learning and memory” module, but majority of the 

candidate ASLI hub genes from this module remained undetected by the meta- and 

differential expression analysis. Some of these hub genes also show significant 

repeatability in networks generated from independent validation datasets. These hub 

genes are highly co-expressed with other genes in the “learning and memory” module. 

In network comparison between young and aged, these genes not only show differential 

expression but also differential co-expression and differential connectivity. The known 

function of these hub genes indicate that they play key roles in critical pathways relating 

to synaptic plasticity and memory formation. Collectively, they provide a deeper 

understanding of the mechanisms that may be involved. These candidate ASLI hub 

genes seem highly promising to investigate further to understand the regulatory 

networks in ASLI.  

Co-expression network analysis as applied in this research shows how to transform 

large-scale gene expression microarray data involving spatial learning impairment in rats 

into several testable hypotheses related to ASLI. This type of analysis can complement 
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traditional analysis of microarray data and can help better understand how genes 

interact with each other, how they are regulated, and what target genes they may affect 

in order to elucidate the mechanisms behind complex phenotype such as aging and age-

associated spatial learning impairment. In closing, it is possible to extract interesting and 

useful information about genes and their networks in a specific biological context from 

large scale data using meta- and mathematical modeling approaches. 
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Appendices 

6 Appendices 

6.1 IAC based quality status of individual young and 
aged sample groups for the final datasets selected 
for network analysis.  

Appendix 6.1.1 IAC based quality check for R7 young dataset. The mean IAC for the 19 

young samples were 0.998 (A) and all arrays were 2.5 standard deviations below the 

mean (B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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Appendix 6.1.2 IAC based quality check for R7 aged dataset. The mean IAC for the 27 

aged samples were 0.998 (A) and all arrays were 2 standard deviations below the mean 

(B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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Appendix 6.1.3 IAC based quality check for B8 young dataset. The mean IAC for the 18 

young samples were 0.952 (A) and all arrays were within 3 standard deviations below 

the mean (B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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Appendix 6.1.4 IAC based quality check for B8 aged dataset. The mean IAC for the 28 

aged samples were 0.957 (A) and all arrays were 2 standard deviations below the mean 

(B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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Appendix 6.1.5 IAC based quality check for K9 young dataset. The mean IAC for the 18 

young samples were 0.997 (A) and all arrays were 2 standard deviations below the mean 

(B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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Appendix 6.1.6 IAC based quality check for B7 aged dataset. The mean IAC for the 28 

young samples were 0.983 (A) and all arrays were 3 standard deviations below the mean 

(B). No outlier is evident in the hierarchical clustering dendrogram (C). 
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6.2 R Function CollapseGenesRai 

Appendix 6.2.1 R function collapseGenesRai(…) 

Many genes contain duplicate or multiple probe sets, in which case this function can 
select a single probe sets with the highest connectivity. 
 

collapseGenesRai <- function(dat, allGenes, allProbes, abs=FALSE) 
{ 
     ## Collapse genes with multiple probe sets together using the following algorthim: 
     # 1) if there is one probe set/gene = keep 
     # 2) if there is two or more take the probe set with max connectivity  
     # dat is an expression matrix with rows=genes and cols=samples 
     # function will return a list object of dat matrix and gene/probe set matrix 
     
     names(allGenes) = allProbes 
     probes = rownames(dat) 
     genes  = allGenes[probes] 
     tGenes = table(genes) 
     datOut=matrix(0,nrow=length(tGenes),ncol=length(colnames(dat))) 
     colnames(datOut) = colnames(dat) 
     rownames(datOut) = sort(names(tGenes)) 
     ones = sort(names(tGenes)[tGenes==1]) 
     more = sort(names(tGenes)[tGenes >= 2]) 
     gp = matrix(0, nrow=length(tGenes), ncol = 2) ## matrix to hold gene , pset 
     rownames(gp) = sort(names(tGenes)) 
     colnames(gp) = c("genes", "probes") 
     
    for (g in ones){ 
         datOut[g,] = as.numeric(dat[probes[genes==g],])## just copy the expr data for 
         #these ones, no need to do anything and fill out the datOut matrix  
         #for the respective genes, genes with two or more pset are not 
         #filled in the matrix datOUt – they remain zeo, see below  
         gp[g, ] = as.character(c(g, probes[genes==g])) 
     } 
     for (g in more){ 
         datTmp = dat[probes[genes==g],] 
         adj = cor(t(datTmp))^2  # choose power = 2 for connectivity 
         datOut[g,] = as.numeric(datTmp[which.max(rowSums(adj)),]) 
         datTmp.pset = as.character(rownames(datTmp)) 
         gp[g, ] = as.character(c(g, datTmp.pset[which.max(rowSums(adj))] )) 
     } 
     return(list(datOut, gp)) 
} 
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6.3 Knowledge based networks from the AY comparison 

In each network, each biological relationship (an edge) between two genes (nodes) is 

supported by at least one reference from the literature or curated information stored in 

the IPA knowledge base. The intensity of the node color indicates the degree of up- 

(red) or down- (green) regulation represented by the effect size as observed in the AY 

comparison (see Section 3.3.2.1). The effect size and p-value for each gene is shown 

below the gene symbol. Edges are displayed with various labels that describe the nature 

of relationship between the genes (e.g. P for phosphorylation, PP for protein-protein 

binding, PD for protein-DNA binding, A for activation, E for expression, L for proteolysis, 

LO for localization, RB for regulation of binding). Any specific findings for a gene 

whether it is associated with aging (A), learning (L), and/or spatial learning (SL) is 

presented inside a rectangle beside that gene. 
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Appendix 6.3.1 Network AY-1: Molecular transport, cell-to-cell signaling and 

interaction, nervous system development and function. 
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Appendix 6.3.2 Network AY-2: Endocrine system disorders, gastrointestinal disease, 

metabolic disease. 
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Appendix 6.3.3 Network AY-4: Cell-to-cell signaling and interaction, cell signaling, 

molecular transport. 
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Appendix 6.3.4 Network AY-5: Drug metabolism, protein synthesis, cancer. 
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Appendix 6.3.5 Network AY-6: Cell death and survival, renal necrosis/cell death, lipid 

metabolism. 

 

 

 

 

 



  

236 

 

6.4 Knowledge based networks from the IU comparison 

Each biological relationship (an edge) between two genes (nodes) is supported by at 

least one reference from the literature or curated information stored in the IPA 

knowledge base. The intensity of the node color indicates the degree of up- (red) or 

down- (green) regulation represented by the effect size as observed in the IU 

comparison (see Section 3.3.2.2). The effect size and p-value for each gene is shown 

below the gene symbol. Edges are displayed with various labels that describe the nature 

of relationship between the genes (e.g. P for phosphorylation, PP for protein-protein 

binding, PD for protein-DNA binding, A for activation, E for expression, L for proteolysis, 

LO for localization, RB for regulation of binding). Any specific findings for a gene 

whether it is associated with aging (A), learning (L), and/or spatial learning (SL) is 

presented inside a rectangle beside that gene. 
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Appendix 6.4.1 Network IU-1: Neurological disease, tissue morphology. 
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Appendix 6.4.2 Network IU-2: Cellular growth and proliferation, cancer, cell death and 

survival. 
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Appendix 6.4.3 Network IU-3: Cell-to-cell signaling and interaction, nervous system 

development and function, carbohydrate metabolism. 
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Appendix 6.4.4 Network IU-4: Cell death and survival, cellular development, 

hematological system development and function. 
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6.5 Significant meta-analysis genes in the yellow module 

Appendix 6.5.1: The image (R screenshot) below shows the 165 significant meta-

analysis genes which are also present in the yellow module. The candidate ASLI hub 

genes are highlighted in yellow. 

 

 

 

 

 

 

 

 

> tmp = meta.in.5674[meta.in.5674$module == "yellow" ,5] 
 
> tmp 
  [1] Abhd13       Acsl1        Actb         Adora1       Aftph        Agap2        
  [7] Amdhd2       Ank1         Ankrd28      Ap3b1        Apc          Arih1        
 [13] Armcx3       Arrb2        Atp1a1       Atp6v0a2     B3gat2       Bcl2l1       
 [19] Camk1g       Cask         Cdk5r1       Chchd4       Cml3         Cntn1        
 [25] Cntn2        Col4a1       Cox18        Crem         Cryab        Cx3cr1       
 [31] Dcaf6        Dctn4        Dlgap2       Dnm1l        Dusp3        Eftud2       
 [37] Eif2ak4      Eif3j        Eif5         Elf1         Epm2aip1     Fam115a      
 [43] Fbxl20       Fgd4         Fgfr2        Ftsj2        G3bp2        Gadd45a      
 [49] Ghr          Git2         Glul         Gne          Gnl3l        Grm1         
 [55] Gstm4        Hapln1       Hsf2         Ide          Impact       Ing1         
 [61] Inha         Ireb2        Jag2         Kcnc2        Kcnv1        Klhl7        
 [67] Kpna1        Laptm5       Lepr         Lfng         LOC100362458 LOC100363863 
 [73] LOC100363987 LOC100909788 LOC100912981 LOC246295    LOC302022    LOC684996    
 [79] Mapk9        Mapre1       Mas1         Mdm2         Mmp24        Mro          
 [85] Mycn         Naa35        Nagk         Nap1l5       Ncaph2       Ncor1        
 [91] Nlgn1        Nlgn3        Nploc4       Nr1h2        Nrcam        Ntrk2        
 [97] Nupl1        Odc1         P2ry12       Papola       Pds5b        Pias2        
[103] Pkia         Plcb4        Plekha6      Ppp4r1       Prdx6        Prr3         
[109] Psme3        Pten         Pygm         Qprt         Ralgapa1     Ranbp2       
[115] Rapgef2      Rbm39        RGD1306820   RGD1311578   Rnf4         Robo1        
[121] S100b        Scn8a        Sh3bgrl2     Sh3gl2       Sidt1        Slc31a1      
[127] Slc35a1      Slc9a3       Slc9a8       Slco2b1      Snrk         Sod2         
[133] Sorcs3       Spock1       Sptbn1       Sqstm1       Srsf10       St6galnac3   
[139] Surf2        Syngr1       Synj2bp      Tank         Tceb3        Tm2d1        
[145] Tpm1         Tpm3         Trio         Trpc3        Trpm1        Txnl1        
[151] Uba5         Ube2a        Ube2d3       Ube2l3       Usp12        Vamp5        
[157] Vegfa        Vmp1         Yipf4        Yme1l1       Zbtb17       Zcchc6       
[163] Zdhhc2       Zfp292       Zfp692       
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6.6 RDAVIDWebService 

Appendix 6.6.1 GetGeneCategoriesReport – Default Parameters 

Arguments Description 
object DAVIDWebService class object  
fileName Character with the name of the file to store the Report 
threshold Numeric with the EASE score (at most equal) that must be present 

in the category to be included in the report. Default value is 0.1. 
count Integer with the number of genes (greater equal) that must be 

present in the category to be included in the report. Default value 
is 2. 

type Character with the type of cluster to obtain Term/Genes. Default 
value "Term". 

overlap Integer with the minimum number of annotation terms 
overlapped between two genes in order to be qualified for kappa 
calculation. This parameter is to maintain necessary statistical 
power to make kappa value more meaningful. The higher value, 
the more meaningful the result is. Default value is 4L. The ‘L’ suffix 
is used to qualify any number with the intent of making it an 
explicit integer. 

initialSeed, 
finalSeed 

Integer with the number of genes in the initial (seeding) and final 
(filtering) cluster criteria. Default value is 4L for both. 

linkage Numeric with the percentage of genes that two clusters share in 
order to become one. 

kappa Integer (kappa * 100), with the minimum kappa value to be 
considered biological significant. The higher setting, the more 
genes will be put into unclustered group, which lead to higher 
quality of functional classification result with a fewer groups and a 
fewer gene members. Kappa value 0.3 starts giving meaningful 
biology based on our genome-wide distribution study. Anything 
below 0.3 have great chance to be noise. 
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Appendix 6.6.2 Terms used in the getFunctionalAnnotationChartFile output columns 

under the getGeneCategoriesReport file.  

Terms Description 
Category Factor with the main categories under used in the present analysis 
Term Character with the name of the term in format id~name (if 

available) 
Count Integer with the number of ids of the gene list that belong to this 

term 
X After converting user input gene IDs to corresponding DAVID gene 

ID, it refers to the percentage of DAVID genes in the list associated 
with a particular annotation term. Since DAVID gene ID is unique 
per gene, it is more accurate to use DAVID ID percentage to 
present the gene-annotation association by removing any 
redundancy in user gene list, i.e. two user IDs represent same 
gene. 

PValue Numeric with the EASE Score of the term (see DAVID Help page) 
Genes Character in comma separated style with the genes present in the 

term 
List.Total, 
Pop.Hits, 
Pop.Total:  

Integers (in addition to Count) to build the 2x2 contingency table 
in order to compute the EASE Score (see DAVID Help page). 

Fold.Enrichment Numeric with the ratio of the two proportions. For example, 
if 40/400 (i.e. 10%) of your input genes involved in "kinase activity" 
and the background information is 300/30000 genes (i.e. 1%) 
associating with "kinase activity", roughly 10% / 1% = 10 fold 
enrichment. 

Bonferroni, 
Benjamini, FDR 

Numerics with p-value adjust different criteria (see p.adjust) 
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6.7 Gene Ontology Analysis 

Appendix 6.7.1 Gene Ontology functional analysis output for the R7 young blue 

module. 

Blue Module 

Annotation Cluster 1 Enrichment Score: 5.076594912569949 
Category Term PValue Benjamini 

GOTERM_MF_ALL GO:0003735~structural constituent of 
ribosome 

2.02E-09 1.68E-06 

KEGG_PATHWAY rno03010:Ribosome 6.02E-08 9.63E-06 

GOTERM_BP_ALL GO:0006412~translation 9.85E-08 2.70E-04 

GOTERM_CC_ALL GO:0005840~ribosome 1.45E-07 3.71E-05 

GOTERM_BP_ALL GO:0006414~translational elongation 1.16E-06 1.59E-03 

Annotation Cluster 2 Enrichment Score: 2.3961195219961517  

Category Term PValue Benjamini 

GOTERM_BP_ALL GO:0044237~cellular metabolic process 2.49E-05 2.26E-02 

GOTERM_BP_ALL GO:0008152~metabolic process 6.78E-05 4.55E-02 

GOTERM_BP_ALL GO:0009058~biosynthetic process 9.27E-05 4.96E-02 

Annotation Cluster 3 Enrichment Score: 1.8912996680281784 

Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0005739~mitochondrion 1.49E-08 7.59E-06 
Benjamini: Benjamini multiple testing corrected p-value 
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Appendix 6.7.2 Gene Ontology functional analysis output for the R7 young brown 

module. 

Brown Module 
Annotation Cluster 1 Enrichment Score: 1.6083199429749104  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0044446~intracellular organelle part 6.02E-03 5.25E-01 
GOTERM_BP_ALL GO:0009987~cellular process 1.68E-02 9.20E-01 
GOTERM_MF_ALL GO:0005488~binding 4.93E-02 9.58E-01 
Annotation Cluster 2 Enrichment Score: 1.4028984566788694  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0007017~microtubule-based process 1.18E-03 9.58E-01 
GOTERM_CC_ALL GO:0005874~microtubule 9.26E-03 3.99E-01 
Annotation Cluster 3 Enrichment Score: 1.261249164925707  
Category Term PValue Benjamini 
GOTERM_CC_ALL GO:0032991~macromolecular complex 1.79E-03 5.87E-01 
Annotation Cluster 4 Enrichment Score: 1.1955856826429254  
Category Term PValue Benjamini 

GOTERM_MF_ALL GO:0016818~hydrolase activity, acting on 
acid anhydrides, in phosphorus-containing 
anhydrides 

1.61E-02 9.64E-01 

GOTERM_MF_ALL GO:0003924~GTPase activity 3.78E-02 9.57E-01 
GOTERM_MF_ALL GO:0042626~ATPase activity, coupled to 

transmembrane movement of substances 
5.01E-02 9.50E-01 

GOTERM_MF_ALL GO:0019001~guanyl nucleotide binding 5.54E-02 9.45E-01 
Annotation Cluster 6 Enrichment Score: 1.1398291604515942  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0051641~cellular localization 2.72E-02 9.54E-01 
GOTERM_BP_ALL GO:0046907~intracellular transport 4.22E-02 9.60E-01 
Annotation Cluster 7 Enrichment Score: 1.1021127923779181  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0006873~cellular ion homeostasis 6.51E-03 9.46E-01 
GOTERM_BP_ALL GO:0042552~myelination 7.42E-03 9.17E-01 
GOTERM_BP_ALL GO:0007272~ensheathment of neurons 9.86E-03 9.10E-01 
GOTERM_BP_ALL GO:0007154~cell communication 2.06E-02 9.38E-01 

Benjamini: Benjamini multiple testing corrected p-value 
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Appendix 6.7.3 Gene Ontology functional analysis output for the R7 young green 

module. 

Green 
Annotation Cluster 1 Enrichment Score: 1.5613644814308199  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0032502~developmental process 9.36E-04 8.39E-01 
GOTERM_BP_ALL GO:0007275~multicellular organismal 

development 
3.54E-03 7.49E-01 

GOTERM_BP_ALL GO:0048731~system development 4.76E-03 7.35E-01 
Annotation Cluster 2 Enrichment Score: 1.2600508748712447  
Category Term PValue Benjamini 

GOTERM_MF_ALL GO:0030695~GTPase regulator activity 5.58E-03 6.47E-01 
GOTERM_MF_ALL GO:0060589~nucleoside-triphosphatase 

regulator activity 
7.93E-03 5.89E-01 

GOTERM_BP_ALL GO:0035023~regulation of Rho protein 
signal transduction 

3.52E-02 9.64E-01 

GOTERM_MF_ALL GO:0008047~enzyme activator activity 4.50E-02 9.23E-01 
Annotation Cluster 3 Enrichment Score: 0.992893123718538  
Category Term PValue Benjamini 

GOTERM_BP_ALL GO:0016265~death 6.48E-02 9.76E-01 
GOTERM_BP_ALL GO:0012501~programmed cell death 8.99E-02 9.78E-01 
GOTERM_BP_ALL GO:0008219~cell death 9.80E-02 9.74E-01 
Annotation Cluster 4 Enrichment Score: 0.9869303313882487  
Category Term PValue Benjamini 
GOTERM_CC_ALL GO:0044421~extracellular region part 5.91E-04 1.79E-01 
GOTERM_CC_ALL GO:0005615~extracellular space 1.80E-03 2.59E-01 

Benjamini: Benjamini multiple testing corrected p-value 
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Appendix 6.7.4 Gene Ontology functional analysis output for the R7 young red 

module. 

Red Module 
Annotation Cluster 1 Enrichment Score: 1.8696327308817076 
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0006476~protein amino acid 

deacetylation 
7.73E-03 9.99E-01 

GOTERM_MF_ALL GO:0004407~histone deacetylase activity 1.15E-02 9.99E-01 
GOTERM_MF_ALL GO:0033558~protein deacetylase activity 1.15E-02 9.99E-01 
Annotation Cluster 2 Enrichment Score: 1.5025568983239734  
Category Term PValue Benjamini 

GOTERM_BP_ALL GO:0048709~oligodendrocyte 
differentiation 

5.64E-03 1.00E+00 

GOTERM_BP_ALL GO:0010001~glial cell differentiation 7.84E-03 9.93E-01 
GOTERM_BP_ALL GO:0042063~gliogenesis 8.49E-03 9.82E-01 
GOTERM_BP_ALL GO:0021782~glial cell development 1.69E-02 9.95E-01 
GOTERM_BP_ALL GO:0014003~oligodendrocyte development 1.69E-02 9.90E-01 
Annotation Cluster 3 Enrichment Score: 1.2016709930074059  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0009725~response to hormone stimulus 2.09E-02 9.82E-01 
GOTERM_BP_ALL GO:0009749~response to glucose stimulus 3.63E-02 9.93E-01 
Annotation Cluster 4 Enrichment Score: 1.0221510133086018  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0016020~membrane 3.24E-02 9.74E-01 
GOTERM_CC_ALL GO:0016021~integral to membrane 3.62E-02 9.54E-01 

Benjamini: Benjamini multiple testing corrected p-value 
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Appendix 6.7.5 Gene Ontology functional analysis output for the R7 young turquoise 

module. 

Turquoise Module 
Annotation Cluster 1 Enrichment Score: 1.9334188254920037  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0005739~mitochondrion 3.12E-06 1.56E-03 
KEGG_PATHWAY rno05016:Huntington's disease 1.20E-04 1.95E-02 
KEGG_PATHWAY rno05012:Parkinson's disease 1.64E-04 1.35E-02 
KEGG_PATHWAY rno00190:Oxidative phosphorylation 2.78E-04 1.52E-02 
KEGG_PATHWAY rno05010:Alzheimer's disease 5.20E-04 2.12E-02 
GOTERM_MF_ALL GO:0050136~NADH dehydrogenase 

(quinone) activity 
1.35E-03 3.43E-01 

GOTERM_MF_ALL GO:0008137~NADH dehydrogenase 
(ubiquinone) activity 

1.35E-03 3.43E-01 

GOTERM_CC_ALL GO:0031090~organelle membrane 1.97E-03 2.18E-01 
GOTERM_CC_ALL GO:0070469~respiratory chain 2.08E-03 1.87E-01 
Annotation Cluster 2 Enrichment Score: 1.7247276117582555  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0005840~ribosome 7.14E-06 1.78E-03 
GOTERM_MF_ALL GO:0003735~structural constituent of 

ribosome 
8.52E-04 5.49E-01 

GOTERM_CC_ALL GO:0030529~ribonucleoprotein complex 6.94E-03 2.35E-01 
GOTERM_BP_ALL GO:0006412~translation 9.84E-03 1.00E+00 
Annotation Cluster 3 Enrichment Score: 1.6999225473101733  
Category Term PValue Benjamini 

KEGG_PATHWAY rno05016:Huntington's disease 1.20E-04 1.95E-02 
KEGG_PATHWAY rno05012:Parkinson's disease 1.64E-04 1.35E-02 
KEGG_PATHWAY rno00190:Oxidative phosphorylation 2.78E-04 1.52E-02 
KEGG_PATHWAY rno05010:Alzheimer's disease 5.20E-04 2.12E-02 
GOTERM_CC_ALL GO:0070469~respiratory chain 2.08E-03 1.87E-01 
Annotation Cluster 4 Enrichment Score: 1.6261616792501006  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0005761~mitochondrial ribosome 7.53E-03 2.22E-01 
GOTERM_CC_ALL GO:0000313~organellar ribosome 7.53E-03 2.22E-01 
Annotation Cluster 5 Enrichment Score: 1.35843773527133  
Category Term PValue Benjamini 
GOTERM_CC_ALL GO:0043227~membrane-bounded organelle 6.16E-03 2.65E-01 

Benjamini: Benjamini multiple testing corrected p-value  
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Appendix 6.7.6 Gene Ontology functional analysis output for the R7 young yellow 

module (truncated). 

Yellow 
Annotation Cluster 1 Enrichment Score: 5.919466002347552  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0060341~regulation of cellular 

localization 
4.47E-09 1.37E-05 

GOTERM_BP_ALL GO:0032879~regulation of localization 6.73E-09 1.03E-05 
GOTERM_BP_ALL GO:0051046~regulation of secretion 1.85E-08 1.89E-05 
GOTERM_BP_ALL GO:0051049~regulation of transport 2.07E-08 1.59E-05 
GOTERM_BP_ALL GO:0010646~regulation of cell 

communication 
1.04E-07 6.38E-05 

GOTERM_BP_ALL GO:0050804~regulation of synaptic 
transmission 

2.94E-04 3.69E-02 

Annotation Cluster 2 Enrichment Score: 5.910461921496712  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0005886~plasma membrane 1.06E-12 1.55E-10 
GOTERM_CC_ALL GO:0016021~integral to membrane 9.47E-08 5.21E-06 
GOTERM_BP_ALL GO:0051179~localization 8.41E-05 1.83E-02 
GOTERM_BP_ALL GO:0006810~transport 1.52E-04 2.56E-02 
GOTERM_MF_ALL GO:0005215~transporter activity 1.34E-03 6.18E-02 
Annotation Cluster 3 Enrichment Score: 5.071792828679952  
Category Term PValue Benjamini 
GOTERM_MF_ALL GO:0004888~transmembrane receptor 

activity 
3.96E-08 3.40E-05 

GOTERM_MF_ALL GO:0004871~signal transducer activity 6.69E-07 1.92E-04 
GOTERM_BP_ALL GO:0007166~cell surface receptor linked 

signal transduction 
2.25E-06 9.85E-04 

KEGG_PATHWAY rno04080:Neuroactive ligand-receptor 
interaction 

2.53E-05 3.67E-03 

GOTERM_BP_ALL GO:0007186~G-protein coupled receptor 
protein signaling pathway 

5.88E-04 5.33E-02 

GOTERM_MF_ALL GO:0004930~G-protein coupled receptor 
activity 

4.42E-03 1.23E-01 

Annotation Cluster 4 Enrichment Score: 4.853521005791371  
Category Term PValue Benjamini 
GOTERM_CC_ALL GO:0045202~synapse 4.77E-15 2.10E-12 
GOTERM_CC_ALL GO:0044456~synapse part 2.05E-14 4.52E-12 
GOTERM_CC_ALL GO:0045211~postsynaptic membrane 3.04E-07 1.34E-05 
GOTERM_BP_ALL GO:0007267~cell-cell signaling 1.04E-06 5.32E-04 
GOTERM_CC_ALL GO:0030054~cell junction 3.12E-06 1.06E-04 
GOTERM_BP_ALL GO:0007268~synaptic transmission 8.45E-06 3.24E-03 
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GOTERM_BP_ALL GO:0007154~cell communication 1.18E-05 4.01E-03 
GOTERM_BP_ALL GO:0050877~neurological system process 3.97E-05 1.10E-02 
GOTERM_BP_ALL GO:0019226~transmission of nerve impulse 4.67E-05 1.19E-02 
GOTERM_BP_ALL GO:0003008~system process 9.75E-05 1.85E-02 
GOTERM_BP_ALL GO:0044057~regulation of system process 1.01E-03 7.30E-02 
GOTERM_BP_ALL GO:0007610~behavior 1.06E-03 7.29E-02 
GOTERM_BP_ALL GO:0042391~regulation of membrane 

potential 
5.31E-02 6.27E-01 

Annotation Cluster 5 Enrichment Score: 4.747184695084769  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0045202~synapse 4.77E-15 2.10E-12 
GOTERM_CC_ALL GO:0030424~axon 1.80E-07 8.80E-06 
GOTERM_CC_ALL GO:0014069~postsynaptic density 8.74E-07 3.49E-05 
GOTERM_CC_ALL GO:0043005~neuron projection 2.57E-06 9.42E-05 
GOTERM_CC_ALL GO:0042995~cell projection 5.38E-06 1.69E-04 
GOTERM_CC_ALL GO:0033267~axon part 1.00E-04 2.75E-03 
GOTERM_CC_ALL GO:0044463~cell projection part 1.59E-04 4.12E-03 
GOTERM_CC_ALL GO:0030425~dendrite 1.10E-03 2.00E-02 
GOTERM_CC_ALL GO:0043679~nerve terminal 4.30E-02 3.62E-01 
GOTERM_CC_ALL GO:0043025~cell soma 5.43E-02 4.01E-01 
GOTERM_CC_ALL GO:0043197~dendritic spine 1.42E-01 6.62E-01 
Annotation Cluster 6 Enrichment Score: 3.1609377923530992  
Category Term PValue Benjamini 

GOTERM_MF_ALL GO:0022836~gated channel activity 1.14E-07 4.88E-05 
GOTERM_MF_ALL GO:0005216~ion channel activity 6.95E-07 1.49E-04 
GOTERM_MF_ALL GO:0015267~channel activity 7.59E-07 1.31E-04 
GOTERM_MF_ALL GO:0022832~voltage-gated channel activity 3.86E-06 4.74E-04 
GOTERM_MF_ALL GO:0005244~voltage-gated ion channel 

activity 
3.86E-06 4.74E-04 

GOTERM_MF_ALL GO:0005261~cation channel activity 7.81E-06 8.39E-04 
GOTERM_BP_ALL GO:0006811~ion transport 8.29E-05 1.94E-02 
GOTERM_MF_ALL GO:0030955~potassium ion binding 2.45E-04 1.61E-02 
GOTERM_MF_ALL GO:0005249~voltage-gated potassium 

channel activity 
7.86E-04 4.14E-02 

GOTERM_CC_ALL GO:0034702~ion channel complex 8.27E-04 1.72E-02 
GOTERM_MF_ALL GO:0005267~potassium channel activity 9.31E-04 4.60E-02 
GOTERM_CC_ALL GO:0005887~integral to plasma membrane 9.96E-04 1.89E-02 
GOTERM_MF_ALL GO:0005215~transporter activity 1.34E-03 6.18E-02 
GOTERM_MF_ALL GO:0015075~ion transmembrane 

transporter activity 
2.06E-03 8.10E-02 

GOTERM_MF_ALL GO:0022857~transmembrane transporter 2.36E-03 8.82E-02 
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activity 
Annotation Cluster 7 Enrichment Score: 3.05116145469033  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0050877~neurological system process 3.97E-05 1.10E-02 
GOTERM_BP_ALL GO:0003008~system process 9.75E-05 1.85E-02 
GOTERM_BP_ALL GO:0007610~behavior 1.06E-03 7.29E-02 
GOTERM_BP_ALL GO:0007613~memory 1.06E-03 7.17E-02 
GOTERM_BP_ALL GO:0007611~learning or memory 1.72E-03 1.02E-01 
GOTERM_BP_ALL GO:0050890~cognition 2.18E-03 1.19E-01 
GOTERM_BP_ALL GO:0007612~learning 2.67E-02 4.58E-01 
Annotation Cluster 8 Enrichment Score: 2.7718503600877216  
Category Term PValue Benjamini 

GOTERM_BP_ALL GO:0051046~regulation of secretion 1.85E-08 1.89E-05 
GOTERM_BP_ALL GO:0050804~regulation of synaptic 

transmission 
2.94E-04 3.69E-02 

GOTERM_BP_ALL GO:0051588~regulation of neurotransmitter 
transport 

5.02E-04 4.70E-02 

GOTERM_BP_ALL GO:0046928~regulation of neurotransmitter 
secretion 

5.02E-04 4.70E-02 

GOTERM_BP_ALL GO:0044057~regulation of system process 1.01E-03 7.30E-02 
GOTERM_BP_ALL GO:0007612~learning 2.67E-02 4.58E-01 
GOTERM_BP_ALL GO:0051966~regulation of synaptic 

transmission, glutamatergic 
6.14E-02 6.53E-01 

GOTERM_BP_ALL GO:0048168~regulation of neuronal 
synaptic plasticity 

1.21E-01 8.04E-01 

GOTERM_BP_ALL GO:0048167~regulation of synaptic plasticity 1.26E-01 8.13E-01 
GOTERM_BP_ALL GO:0048169~regulation of long-term 

neuronal synaptic plasticity 
1.60E-01 8.66E-01 

Annotation Cluster 9 Enrichment Score: 2.7629140992115166  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0007267~cell-cell signaling 1.04E-06 5.32E-04 
GOTERM_BP_ALL GO:0007268~synaptic transmission 8.45E-06 3.24E-03 
GOTERM_BP_ALL GO:0007154~cell communication 1.18E-05 4.01E-03 
GOTERM_BP_ALL GO:0048489~synaptic vesicle transport 1.57E-02 3.54E-01 
GOTERM_BP_ALL GO:0001505~regulation of neurotransmitter 

levels 
1.87E-02 3.88E-01 

Annotation Cluster 10 Enrichment Score: 2.5594188277341177  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0051046~regulation of secretion 1.85E-08 1.89E-05 
GOTERM_BP_ALL GO:0046883~regulation of hormone 

secretion 
1.05E-03 7.40E-02 

GOTERM_BP_ALL GO:0051048~negative regulation of 1.48E-03 9.21E-02 
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secretion 
GOTERM_BP_ALL GO:0051047~positive regulation of secretion 3.71E-03 1.59E-01 
GOTERM_BP_ALL GO:0002791~regulation of peptide secretion 6.56E-03 2.28E-01 
GOTERM_BP_ALL GO:0051050~positive regulation of transport 7.20E-03 2.35E-01 
Annotation Cluster 11 Enrichment Score: 2.4611965954562742  
Category Term PValue Benjamini 
KEGG_PATHWAY rno04080:Neuroactive ligand-receptor 

interaction 
2.53E-05 3.67E-03 

GOTERM_BP_ALL GO:0030817~regulation of cAMP 
biosynthetic process 

1.16E-04 2.07E-02 

GOTERM_BP_ALL GO:0030814~regulation of cAMP metabolic 
process 

1.16E-04 2.07E-02 

GOTERM_BP_ALL GO:0030808~regulation of nucleotide 
biosynthetic process 

2.54E-04 3.65E-02 

GOTERM_BP_ALL GO:0051051~negative regulation of 
transport 

3.40E-04 3.94E-02 

GOTERM_BP_ALL GO:0030799~regulation of cyclic nucleotide 
metabolic process 

3.65E-04 4.06E-02 

GOTERM_BP_ALL GO:0007186~G-protein coupled receptor 
protein signaling pathway 

5.88E-04 5.33E-02 

GOTERM_BP_ALL GO:0006140~regulation of nucleotide 
metabolic process 

7.12E-04 5.59E-02 

GOTERM_BP_ALL GO:0051048~negative regulation of 
secretion 

1.48E-03 9.21E-02 

GOTERM_BP_ALL GO:0045761~regulation of adenylate cyclase 
activity 

2.17E-03 1.20E-01 

GOTERM_BP_ALL GO:0031279~regulation of cyclase activity 2.17E-03 1.20E-01 
GOTERM_BP_ALL GO:0051339~regulation of lyase activity 3.01E-03 1.43E-01 
GOTERM_BP_ALL GO:0019932~second-messenger-mediated 

signaling 
3.59E-03 1.61E-01 

GOTERM_BP_ALL GO:0019933~cAMP-mediated signaling 4.09E-03 1.67E-01 
GOTERM_MF_ALL GO:0004930~G-protein coupled receptor 

activity 
4.42E-03 1.23E-01 

GOTERM_BP_ALL GO:0019935~cyclic-nucleotide-mediated 
signaling 

7.14E-03 2.36E-01 

GOTERM_BP_ALL GO:0007194~negative regulation of 
adenylate cyclase activity 

2.65E-02 4.58E-01 

GOTERM_BP_ALL GO:0031280~negative regulation of cyclase 
activity 

2.65E-02 4.58E-01 

GOTERM_BP_ALL GO:0007631~feeding behavior 7.05E-02 6.78E-01 
GOTERM_BP_ALL GO:0007188~G-protein signaling, coupled to 

cAMP nucleotide second messenger 
1.27E-01 8.14E-01 
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GOTERM_BP_ALL GO:0007187~G-protein signaling, coupled to 
cyclic nucleotide second messenger 

1.51E-01 8.57E-01 

GOTERM_BP_ALL GO:0007193~inhibition of adenylate cyclase 
activity by G-protein signaling 

2.87E-01 9.53E-01 

Annotation Cluster 12 Enrichment Score: 2.038710771650711  
Category Term PValue Benjamini 
GOTERM_CC_ALL GO:0042734~presynaptic membrane 3.85E-04 9.37E-03 
GOTERM_MF_ALL GO:0008066~glutamate receptor activity 1.65E-02 3.01E-01 
GOTERM_BP_ALL GO:0007215~glutamate signaling pathway 2.03E-02 4.03E-01 
KEGG_PATHWAY rno04720:Long-term potentiation 5.43E-02 3.33E-01 
Annotation Cluster 13 Enrichment Score: 1.9337071768017942  
Category Term PValue Benjamini 

GOTERM_CC_ALL GO:0033267~axon part 1.00E-04 2.75E-03 
GOTERM_CC_ALL GO:0030673~axolemma 4.69E-03 7.37E-02 
GOTERM_CC_ALL GO:0032589~neuron projection membrane 1.73E-02 2.13E-01 
GOTERM_CC_ALL GO:0031253~cell projection membrane 2.29E-02 2.47E-01 
Annotation Cluster 14 Enrichment Score: 1.8096942956298074  
Category Term PValue Benjamini 
GOTERM_BP_ALL GO:0032501~multicellular organismal 

process 
6.07E-04 5.34E-02 

GOTERM_BP_ALL GO:0048468~cell development 1.22E-03 7.99E-02 
GOTERM_BP_ALL GO:0030030~cell projection organization 2.00E-03 1.16E-01 
GOTERM_BP_ALL GO:0048518~positive regulation of 

biological process 
2.27E-03 1.19E-01 

GOTERM_BP_ALL GO:0048666~neuron development 2.36E-03 1.21E-01 
Benjamini: Benjamini multiple testing corrected p-value 
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6.8 Using Cytoscape 

Appendix 6.8.1 Creating network interaction files from gene expression data and 

visualizing in Cytoscape. 

Create network interaction file in R as follows. 
1. Load a gene expression data matrix (rows representing genes and column 

representing samples) and subset / select data for a set of probe sets or genes 
for which network file will be created. For example, 
 
R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet" 
Copyright (C) 2014 The R Foundation for Statistical Computing 
Platform: x86_64-w64-mingw32/x64 (64-bit) 
. . .  
> load("~/R7-rma-wgcna_Nov_13.RData")# Load project data 
> dim(y.top)  # gene expression data matrix 

[1] 5674   19 
> 
> y.top[1:6,1:6] # view a portion of the data to verify 
  R7_Y_C_01 R7_Y_C_09 R7_Y_C_11 R7_Y_C_25 R7_Y_C_26 R7_Y_C_27 
A1cf   7.136422  7.144941  7.104992  7.227441  7.177077  7.312507 
A2m    8.577820  8.654121  8.613125  8.403527  8.453800  8.633708 
Aaas   8.203427  8.293036  8.274909  8.215817  8.229674  8.212953 
Aacs   8.938654  9.027368  9.073445  8.999271  8.903219  8.983764 
Aadat  7.847731  7.805649  7.906973  7.925234  8.082314  8.046692 
Aamp  11.038918 11.058953 11.095012 10.979411 11.018721 11.009730 

 
2. Create a gene list from the data 

> allGenes = as.character(row.names(y.top)) 
>  
> allGenes[1:10] 
 [1] "A1cf"   "A2m"    "Aaas"   "Aacs"   "Aadat"  "Aamp"   "Aars"   "Aarsd1" "Aass"   
[10] "Aatf"   
>  
> length(allGenes) 
[1] 5674 

 
3. Prepare a file to store data 

> fileName = "Network_Int_Data" 
>  
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> a = rep(fileName,length(allGenes)) 
>  
> length(a) 

[1] 5674 
4. Call a WGCNA function visantPrepOverall(. . . ) [REF miller etal 2010] to create 

network files. In the following example, it is instructed to generate 500 most 
highly connected interactions using a soft power of 6. 
> visantPrepOverall(a, fileName, t(y.top), allGenes, 500, 6, signed = TRUE) 
Network_Int_Data_connectivityOverall.csv written. 
201 0.3975 6 
Network_Int_Data_visantOverall.csv written. 
>  

5. The file  ..._visantOverall.csv is imported in Cytoscape to visualize resulting 
network. However, this file needs to be prepared as follows. 

6. In order to preserve some gene names, which are often confused as date and 
modified by Excel to read as date, the file  ..._visantOverall.csv is opened first in 
a note pad program e.g. NotePad++ and saved as a text file, for example  
..._visantOverall.txt. 

Note – Data can also be exported from R as tab delimited text file, from which 
desired columns can be loaded into Cytoscape. For data loaded from .csv file in 
Cytoscape, gene names are shown in the graphs as comma quoted. 

7. Next, the file is imported in Excel using “comma separated values” option and 
saved as a tab delimited text file.  

8. Optionally, a network file can also be created in .sif format from the 
..._visantOverall.csv file (by keeping only the two interaction columns separated 
by a column in between that could be filled with specific interaction type e.g. 
protein-protein) 

Import network interaction file into Cytoscape and visualize: 
1. Start Cytoscape 
2. Import network from file option in Cytoscape and load the ..._visantOverall.csv 

or the .sif format file following prompt or as File import  network  from 
file  filename. 

3. Analyze network using the option from the tools menu. 
4. Use layout “Edge weighted spring embedded” 
5. Can use Cytoscape to control network nodes and edges using styles. For 

example,  
- Nodes sizes can be made proportional to the degree (of connectivity) to make 

hub genes bigger than others 
- Edge bundling can be used to clearly separate hubs/clusters 
- Opacity can be used to highlight important genes, etc. 
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- See Cytoscape wiki manuals and tutorials 
(http://wiki.cytoscape.org/Cytoscape_3/UserManual) for details. 

 

 

Load differential expression data for network genes into Cytoscape. 
1. Save data as tab delimited text file 
2. Import data (e.g. differential expression values) file in Cytoscape as File import 
 Table  from File  filename. 

Note: While working with multiple networks in the same Cytoscape workspace, 
for example, when comparing networks, load data file separately for each 
network and associate only to that network, otherwise changing expression 
value based color for one network (e.g. control) will also automatically change 
for another (e.g. experimental).   

Note: In the limma differential expression analysis for the aged ~ young,  
- the design was A ~ Y 
- so any + value means “Age Upregulated” 
- so any - value means “Young Upregulated” 
- so map color on networks to expr/logFC values as follows: 

o Young network: 
  - logFC value == Red (expr value was high in Young) 
 + logFC value == Green (expr value was down in Young) 

o Age network: 
  - logFC value == Green (expr value was down in Aged) 
 + logFC value == Red (expr value was high in Aged) 

  

http://wiki.cytoscape.org/Cytoscape_3/UserManual
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6.9 Module Overlap Tables 

Appendix 6.9.1 R7-Y to R7-A overlap table showing the number of genes that matches 

between each pair of modules. 

      Aged 
 
Young 

Black 
(pink) 

Brown 
(black) 

Green 
(brown) grey Red 

(red) 
Turquoise 
(blue) 

Yellow 
(cyan) 

blue 54 350 39 499 28 40 5 

brown 21 308 84 314 9 11 12 

green 6 72 104 162 12 18 6 

grey 113 159 113 660 51 218 5 

red 11 21 91 142 63 13 0 

turquoise 135 188 54 541 37 173 1 

yellow 26 53 69 282 6 35 260 

Appendix 6.9.2 R7-Y to R7-A overlap table showing the p-values of the matches 

between each pair of modules in the above table. 

         Aged 

  

 Young 

Black 
(pink) 

Brown 
(black) 

Green 
(brown) grey Red (red) Turquoise 

(blue) 
Yellow 
(cyan) 

blue 9.57E-01 2.98E-32 1.00E+00 1.02E-02 9.62E-01 1.00E+00 1.00E+00 

brown 1.00E+00 5.41E-44 1.10E-01 9.96E-01 1.00E+00 1.00E+00 1.00E+00 

green 1.00E+00 7.68E-01 1.31E-24 9.11E-01 7.36E-01 1.00E+00 1.00E+00 

grey 3.22E-04 1.00E+00 9.59E-01 2.59E-04 3.26E-01 4.20E-25 1.00E+00 

red 9.98E-01 1.00E+00 1.18E-20 9.51E-01 1.93E-29 1.00E+00 1.00E+00 

turquoise 3.90E-15 1.00E+00 1.00E+00 6.12E-02 7.86E-01 2.42E-15 1.00E+00 

yellow 1.00E+00 1.00E+00 6.45E-01 1.00E+00 1.00E+00 1.00E+00 9.10E-214 
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Appendix 6.9.3 R7-Y vs. B8-Y. 

Table: B8 young modules after matching their module names to the modules of R7. 

black blue brown greenyellow grey magenta pink purple red turquoise 

200 492 467 154 937 178 197 154 447 400 

Table: R7-Y to B8-Y overlap table showing the number of genes that matches between each pair of modules. 

                     B8-Y  
R7-Y black blue brown greenyellow grey magenta pink purple red turquoise 

blue 36 128 92 7 171 55 54 36 63 78 

brown 62 90 125 7 127 20 34 9 60 29 

green 13 41 42 9 64 5 13 2 29 19 

red 3 13 11 7 68 4 9 6 56 33 

turquoise 25 75 42 38 197 45 30 41 82 142 

yellow 17 39 80 21 90 10 15 13 85 15 

Table: R7-Y to B8-Y overlap table showing the p-values of the matches between each pair of modules in the above table. 

             B8-Y  
R7-Y  

black blue brown greenyellow grey magenta pink purple red turquoise 

 blue 7.77E-01 2.08E-04 5.57E-01 1.00E+00 9.31E-01 2.19E-04 5.25E-03 1.55E-01 1.00E+00 5.97E-01 

 brown 1.11E-08 4.15E-02 1.18E-11 1.00E+00 9.78E-01 9.62E-01 2.73E-01 1.00E+00 9.18E-01 1.00E+00 

 green 5.52E-01 5.41E-02 1.65E-02 6.87E-01 3.61E-01 9.93E-01 5.29E-01 1.00E+00 5.49E-01 9.54E-01 

 red 1.00E+00 1.00E+00 1.00E+00 8.00E-01 1.73E-02 9.94E-01 8.18E-01 8.92E-01 4.35E-09 2.06E-02 

 turquoise 9.98E-01 9.98E-01 1.00E+00 7.51E-02 1.43E-01 3.91E-02 9.62E-01 2.15E-02 8.08E-01 3.25E-15 

 yellow 8.70E-01 9.87E-01 2.81E-06 1.35E-01 8.91E-01 9.94E-01 9.42E-01 8.49E-01 8.51E-09 1.00E+00 
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Appendix 6.9.4 R7-Y vs. K9-Y. 

Table: K9 young modules after matching their module names to the modules of R7. 

black blue brown green grey magenta pink purple red turquoise yellow 

149 249 543 343 687 48 136 28 155 633 167 

Table: R7-Y to K9-Y overlap table showing the number of genes that matches between each pair of modules. 

             K9-Y 
R7-Y black blue brown green grey magenta pink purple red turquoise yellow 

blue 20 77 128 94 105 13 32 7 16 62 25 

brown 12 24 159 67 71 11 11 2 11 44 23 

green 12 10 32 31 50 2 8 3 7 35 10 

red 3 14 12 6 56 0 11 3 24 78 6 

turquoise 26 46 39 52 181 4 44 6 41 195 15 

yellow 25 17 97 27 69 5 4 2 19 57 59 

Table: R7-Y to K9-Y overlap table showing the p-values of the matches between each pair of modules in the above table. 

                K9-Y 
R7-Y black blue brown green grey magenta pink purple red turquoise yellow 

 blue 9.62E-01 4.69E-07 5.79E-04 9.75E-06 9.94E-01 9.00E-02 7.67E-02 2.48E-01 9.98E-01 1.00E+00 9.05E-01 

 brown 9.91E-01 9.86E-01 6.18E-26 1.26E-03 9.99E-01 5.94E-02 9.88E-01 9.17E-01 9.98E-01 1.00E+00 5.50E-01 

 green 2.38E-01 9.65E-01 7.22E-01 2.53E-02 1.56E-01 8.21E-01 6.47E-01 2.63E-01 8.77E-01 8.57E-01 6.31E-01 

 red 9.98E-01 8.13E-01 1.00E+00 1.00E+00 6.61E-02 1.00E+00 3.16E-01 2.95E-01 8.27E-05 5.62E-09 9.76E-01 

 turquoise 8.66E-01 8.36E-01 1.00E+00 9.98E-01 2.98E-05 9.94E-01 7.50E-04 5.36E-01 4.58E-02 7.74E-12 1.00E+00 

 yellow 5.42E-02 9.98E-01 1.13E-05 9.97E-01 9.77E-01 7.10E-01 1.00E+00 8.71E-01 5.21E-01 9.98E-01 7.80E-16 
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Appendix 6.9.5 R7-Y vs. B8-A. 

Table: B8 aged modules after matching their module names to the modules of R7. 

black blue brown green grey pink red turquoise yellow 

347 109 194 348 1534 31 471 302 290 

Table: R7-Y to B8-A overlap table showing the number of genes that matches between each pair of modules. 

              B8-A 
R7-Y black blue brown green grey pink red turquoise yellow 

blue 97 40 24 83 292 0 55 65 64 

brown 48 8 83 106 229 3 28 12 46 

green 17 5 11 35 103 2 29 15 20 

red 8 5 1 5 99 1 59 18 14 

turquoise 74 31 5 18 268 9 154 111 47 

yellow 21 2 37 42 185 5 26 9 58 

Table: R7-Y to B8-A overlap table showing the p-values of the matches between each pair of modules in the above table. 

           B8-A 
R7-Y 

black blue brown green grey pink red turquoise yellow 

blue 8.20E-05 2.48E-05 9.98E-01 3.10E-02 8.65E-01 1.00E+00 1.00E+00 2.45E-01 1.81E-01 

brown 8.40E-01 9.97E-01 5.68E-21 8.40E-14 8.15E-01 8.81E-01 1.00E+00 1.00E+00 4.62E-01 

green 9.26E-01 8.51E-01 7.35E-01 5.42E-03 3.80E-01 6.11E-01 6.70E-01 9.03E-01 4.35E-01 

red 1.00E+00 7.67E-01 1.00E+00 1.00E+00 8.27E-02 8.44E-01 1.42E-09 4.86E-01 8.04E-01 

turquoise 2.42E-01 1.73E-02 1.00E+00 1.00E+00 9.99E-01 1.42E-01 6.14E-13 4.51E-13 9.55E-01 

yellow 9.99E-01 1.00E+00 2.12E-04 2.01E-01 9.35E-03 2.28E-01 1.00E+00 1.00E+00 5.51E-07 
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Appendix 6.9.6 R7-Y vs. B7-A. 

Table: B7 aged modules after matching their module names to the modules of R7. 

black blue brown green grey magenta pink purple yellow 

230 100 298 234 714 118 174 115 157 

Table: R7-Y to B7-A overlap table showing the number of genes that matches between each pair of modules. 

            B7-A 
R7-Y black blue brown green grey magenta pink purple yellow 

blue 37 28 75 30 110 19 28 6 12 

brown 28 12 69 21 106 12 19 13 12 

green 17 3 20 25 42 7 8 6 8 

red 17 4 8 25 54 9 10 5 6 

turquoise 46 25 33 45 135 23 32 15 24 

yellow 30 3 43 33 114 12 35 37 54 

Table: R7-Y to B7-A overlap table showing the p-values of the matches between each pair of modules in the above table. 

                 B7-A   
R7-Y black blue brown green grey magenta pink purple yellow 

 blue 5.37E-01 1.46E-03 9.23E-06 9.42E-01 7.57E-01 5.43E-01 5.39E-01 1.00E+00 1.00E+00 

 brown 7.83E-01 7.32E-01 9.38E-07 9.92E-01 1.41E-01 9.02E-01 8.89E-01 8.12E-01 9.95E-01 

 green 2.87E-01 9.60E-01 4.32E-01 5.04E-03 7.65E-01 6.34E-01 8.79E-01 7.53E-01 7.97E-01 

 red 3.09E-01 8.98E-01 9.99E-01 6.15E-03 8.31E-02 3.49E-01 7.00E-01 8.77E-01 9.50E-01 

 turquoise 1.85E-01 3.71E-02 1.00E+00 2.79E-01 1.57E-01 3.33E-01 4.30E-01 9.32E-01 8.20E-01 

 yellow 9.62E-01 1.00E+00 9.04E-01 9.04E-01 8.02E-01 9.87E-01 1.39E-01 2.55E-05 2.06E-08 
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Appendix 6.9.7 R7-Y to B8-Y percentage overlap table. 

R7 Young 
Modules 
(R7-Y) 

Total in 
R7-Y 

R7-Y module 
matched to 
B8-Y 
modules 

Maximum 
gene shared 
with  B8-Y all  
modules 

Total genes 
matched to 
the best 
matched 
module 

p-value Overlap (%) 

brown 759 black, brown 563 125 1.20E-11 22.20 

yellow 731 brown, red 385 85 8.50E-09 22.08 

turquoise 1129 turquoise, 
greenyellow 

717 142 3.30E-15 19.80 

blue 1015 black, brown 720 92 5.60E-01 12.78 

green 380 brown 237 42 1.70E-02 17.72 

red 341 red, 
turquoise 

210 56 4.40E-09 26.67 

Appendix 6.9.8 R7-Y to K9-Y percentage overlap table. 

R7 Young 
Modules 
(R7-Y) 

Total in 
R7-Y 

R7-Y 
module 
matched to 
K9-Y 
modules 

Maximum 
gene shared 
with  K9-Y all  
modules 

Total genes 
matched to 
the best 
matched 
module 

p-value Overlap (%) 

brown 759 brown, 
green 

435 159 6.18E-26 36.55 

yellow 731 brown, 
yellow 

381 59 7.80E-16 15.49 

turquoise 1129 red, 
turquoise 

649 195 7.74E-12 30.05 

blue 1015 blue, green 579 77 4.70E-07 13.30 

green 380 green 200 31 2.53E-02 15.50 

red 341 Red 213 78 5.62E-09 36.62 
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Appendix 6.9.9 R7-Y to B8-A percentage overlap table. 

Young 
Modules 
(R7-Y) 

Total in 
R7-Y 

R7-Y module 
matched to 
B8-A all 
modules 

Maximum 
gene shared 
with B8-A all  
modules 

Total genes 
matched to 
the best 
matched 
module 

p-value Overlap (%) 

brown 759 brown, green 194 83 5.68E-21 42.78 

yellow 731 yellow, 
brown 

290 58 5.51E-07 20.00 

turquoise 1129 turq, red, 
blue 

302 111 6.14E-13 36.75 

blue 1015 blue, green 109 40 2.48E-05 36.70 

green 380 green 348 35 5.42E-03 10.06 

red 341 red 471 59 1.42E-09 12.53 

Appendix 6.9.10 R7-Y to B7-A percentage overlap table. 

Young 
Modules 
(R7-Y) 

Total in 
R7-Y 

R7-Y module 
matched to 
B7-A all 
modules 

Maximum 
gene shared 
with B7-A all 
modules 

Total genes 
matched to 
the best 
matched 
module 

p-value Overlap 
(%) 

brown 759 brown 298 69 9.38E-07 23.15 

yellow 731 yellow, 
purple 

157 54 2.06E-08 34.39 

turquoise 1129 blue 100 25 3.72E-02 25.00 

blue 1015 blue 100 28 1.46E-03 28.00 

green 380 green 234 25 5.00E-03 10.68 

red 341 green 138 25 6.15E-03 18.12 

 

 

 

 



  

264 

 

6.10 Meta-Analysis of the ASLI Candidate Hub Genes 

Appendix 6.10.1 Effect size estimates of top candidate ASLI hub genes in R7 (yellow) “learning and memory” module. 

Gene Probe ID 
(RGU34A or 
RAE230A) 

Rat 
Gene ID 

Number 
ES z-

value 

p-value 
of z-
value 

pBH of 
z-value Q value p-value 

of Q tau.2 I2 
Symbol Of 

Study 

Camk1g D86557_at 171358 5 -0.53 -2.10 0.04 0.19 10.63 0.03 0.19 62.40 

Cdk5r1 rc_AA850669_at 116671 2 -0.66 -2.21 0.03 0.17 1.22 0.27 0.04 18.10 

Cntn1 D38492_at 117258 5 0.36 2.09 0.04 0.20 5.46 0.24 0.04 26.70 

Dlg3 1388280_a_at 58948 3 -0.69 -1.92 0.06 0.25 7.35 0.03 0.28 72.80 

Dlgap1 U67987_s_at 65040 5 -0.12 -0.47 0.64 0.80 12.35 0.01 0.23 67.60 

Dpp6 M76426_at 29272 5 -0.42 -0.88 0.38 0.64 36.78 0.00 0.99 89.10 

Eif5 rc_AI012604_at 56783 5 0.42 2.05 0.04 0.21 7.41 0.12 0.09 46.00 

Gabrg1 X57514_at 140674 5 0.22 1.32 0.19 0.46 5.25 0.26 0.03 23.90 

Impact 1375310_at 497198 3 0.41 2.28 0.02 0.15 0.53 0.77 0.00 0.00 

Kcnab2 X76724_at 29738 5 0.04 0.29 0.77 0.88 3.61 0.46 0.00 0.00 

Mapk1 1398346_at 116590 3 -0.55 -1.47 0.14 0.41 7.98 0.02 0.31 74.90 

Mapre1 1375525_at 114764 3 -0.41 -2.28 0.02 0.15 1.04 0.60 0.00 0.00 

Ndfip2 1389364_at 361089 3 -0.38 -1.22 0.22 0.50 5.84 0.05 0.19 65.70 

Ppp2r2c D38261_at 117256 5 -0.43 -1.24 0.22 0.50 20.01 0.00 0.46 80.00 

Prkacb D10770_s_at 293508 5 -0.12 -0.53 0.60 0.78 9.36 0.05 0.15 57.30 
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Pten rc_AA963447_at 50557 5 -0.37 -2.58 0.01 0.09 1.49 0.83 0.00 0.00 

Rasgrp1 AF060819_s_at 29434 5 -0.50 -1.20 0.23 0.51 28.63 0.00 0.73 86.00 

Scn2b U37147_at 25349 5 -0.28 -1.84 0.07 0.28 4.21 0.38 0.01 4.90 

Stxbp1 1370840_at 25558 3 -0.32 -1.79 0.07 0.29 0.57 0.75 0.00 0.00 

Legends: ES, effect size; pBH, p-value with Benjamini and Hochberg correction; FC, fold change; DE, differentially expressed; Q = Cochran's Q test for significant 

heterogeneity; I^2 = Ratio of true heterogeneity to total variation. 
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Appendix 6.10.2 Forest plot of Camk1g.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.

 

Appendix 6.10.3 Forest plot of Cdk5r1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.4 Forest plot of Cntn1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.5 Forest plot of Dlg3.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.6 Forest plot of Dpp6.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.7 Forest plot of Eif5.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.8 Forest plot of Gabrg1. For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.9 Forest plot of Kcnab2. For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.10 Forest plot of Mapk1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.11 Forest plot of Mapre1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.12 Forest plot of Ppp2r2c.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.13 Forest plot of Prkacb.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.14 Forest plot of Rasgrp1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 

 

Appendix 6.10.15 Forest plot of Scn2b.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot.
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Appendix 6.10.16 Forest plot of Stxbp1.  For the selected probe set for this gene the 

individual study specific SMDs and their 95% confidence intervals are plotted and shown 

on each row. The effect size results are shown at the bottom of the plot. 
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6.11 Validation of Hub Genes: Yellow Module 

Appendix 6.11.1 Repeatability of young R7 yellow module hub genes in B8 young 

matching (red and brown) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 are 

shown. Candidate hub genes are marked by an ‘*’ beside them. 

 Hub 
Gene R7 KME B8 KME 

Mean 
KME 

t-test  
p-value 

Dlgap1* 0.98 0.69 0.83 0.11 

Fkbp1a 0.88 0.73 0.80 0.06 

Rab3a 0.75 0.82 0.79 0.03 

Ppp4r2 0.74 0.83 0.79 0.04 

Xpr1 0.84 0.71 0.78 0.05 

Glul 0.86 0.68 0.77 0.08 

Dlg3* 0.99 0.51 0.75 0.20 

Stxbp1* 0.96 0.52 0.74 0.18 

Sri 0.86 0.61 0.74 0.10 

Got1 0.78 0.68 0.73 0.04 

Zfp292 0.49 0.96 0.73 0.20 

Psme4 0.84 0.55 0.70 0.13 

Cacng3 0.71 0.65 0.68 0.03 

Mapre1* 0.99 0.35 0.67 0.28 

Cnpy2 0.56 0.78 0.67 0.11 

Nsf 0.95 0.36 0.65 0.27 

Dpp6* 0.93 0.38 0.65 0.26 

Arfgap1 0.62 0.67 0.65 0.03 

Odc1 0.38 0.91 0.65 0.25 

Pafah1b2 0.73 0.55 0.64 0.09 

 

 



  

275 

 

Appendix 6.11.2 Repeatability of young R7 yellow module hub genes in young K9 

matching (brown and yellow) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 

are shown. Candidate hub genes are marked by an ‘*’ beside them. 

 Hub Gene R7 KME K9 KME 
Mean 
KME 

t-test  p-
value 

Scn2b* 0.93 0.93 0.93 0.00 

Prkacb* 1.00 0.85 0.92 0.05 

Pclo 0.88 0.92 0.90 0.01 

Dctn4 0.85 0.87 0.86 0.01 

Cacnb4* 0.78 0.93 0.86 0.06 

Ndfip2* 0.87 0.81 0.84 0.02 

Mtpn 0.96 0.72 0.84 0.09 

Cntn1* 0.86 0.81 0.83 0.02 

Impact* 0.97 0.68 0.83 0.11 

Dnal1 0.92 0.71 0.82 0.08 

Pten* 0.78 0.86 0.82 0.03 

G3bp2 0.88 0.75 0.81 0.05 

Dnm1l 0.94 0.68 0.81 0.10 

Trim23 0.89 0.69 0.79 0.08 

Ranbp2 0.84 0.72 0.78 0.05 

Akap6 0.95 0.60 0.77 0.14 

Tmem30a 0.76 0.77 0.77 0.00 

Fam91a1 0.59 0.94 0.77 0.14 

Atf2 0.78 0.75 0.77 0.01 

Arl1 0.81 0.70 0.76 0.05 
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Appendix 6.11.3 Repeatability of young R7 yellow module hub genes in young B8 

matching (brown and red), and young K9 matching (brown and yellow) modules. 

Twenty hub genes with the highest mean 𝒌𝑰𝑴 are shown. Candidate hub genes are 

marked by an ‘*’ beside them. 

Hub Gene  R7 KME B8 KME K9 KME 
Mean 
KME 

t-test     
p-value 

Ppp4r2 0.74 0.83 0.48 0.68 0.02 

Tmf1 0.48 0.80 0.76 0.68 0.02 

Klhl7 0.25 0.99 0.76 0.67 0.09 

Tmem30a 0.76 0.46 0.77 0.66 0.02 

Xpr1 0.84 0.71 0.39 0.65 0.04 

Dnm1l 0.94 0.31 0.68 0.64 0.07 

Papola 0.58 0.71 0.62 0.63 0.00 

Cntn1* 0.86 0.20 0.81 0.62 0.10 

Mapk1* 0.96 0.32 0.53 0.60 0.08 

Pafah1b2 0.73 0.55 0.49 0.59 0.01 

Gnai1 0.94 0.26 0.55 0.58 0.10 

Kdm1b 0.31 0.73 0.69 0.57 0.05 

Nlgn1 0.59 0.58 0.51 0.56 0.00 

Tm2d1 0.32 0.59 0.75 0.56 0.05 

Gpm6b 0.64 0.38 0.55 0.52 0.02 

Tardbp 0.50 0.75 0.31 0.52 0.05 

Fbxo8 0.56 0.38 0.53 0.49 0.01 

Prepl 0.96 0.24 0.26 0.49 0.18 

Pggt1b 0.84 0.21 0.40 0.48 0.12 

Rragd 0.63 0.55 0.27 0.48 0.05 
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Appendix 6.11.4 Repeatability of aged R7 yellow module hub genes in B8 aged 

matching (red and brown) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 are 

shown. Candidate hub genes are marked by an ‘*’ beside them. 

Hub Gene R7 KME B8 KME Mean 
KME 

t-test   
p-value 

Stxbp1* 0.95 0.70 0.83 0.10 

Dlgap1* 0.75 0.86 0.81 0.04 

Psmd8 0.59 0.93 0.76 0.14 

Nsf 0.90 0.58 0.74 0.13 

Dpp6* 0.94 0.48 0.71 0.20 

Glul 0.75 0.67 0.71 0.04 

Zfp706 0.61 0.76 0.69 0.07 

Tmem30a 0.82 0.54 0.68 0.13 

Ptk2b 0.56 0.75 0.66 0.10 

Gpm6b 0.34 0.92 0.63 0.27 

Zfp238 0.77 0.48 0.63 0.14 

Rab3a 0.61 0.65 0.63 0.02 

Rac1 0.77 0.49 0.63 0.14 

Ube2l3 0.69 0.57 0.63 0.06 

Thy1 0.67 0.57 0.62 0.05 

Rnf4 0.85 0.37 0.61 0.24 

Trim9 0.66 0.56 0.61 0.05 

Skp1 0.52 0.68 0.60 0.08 

Vps52 0.63 0.56 0.60 0.04 

Pkia 0.62 0.56 0.59 0.04 
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Appendix 6.11.5 Repeatability of aged R7 yellow module hub genes in B7 aged 

matching (purple and yellow) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 

are shown. Candidate hub genes are marked by an ‘*’ beside them. 

Hub Gene R7 KME B7 KME Mean 
KME 

t-test   p-
value 

Nek9 0.77 0.82 0.79 0.02 

Il1rap 0.79 0.77 0.78 0.01 

Lyst 0.83 0.69 0.76 0.06 

Prkacb* 1.00 0.45 0.72 0.23 

Kit 0.94 0.46 0.70 0.21 

Camk1g* 0.70 0.70 0.70 0.00 

Gpam 0.71 0.67 0.69 0.02 

Lgr4 0.75 0.62 0.68 0.06 

B3gat1 0.77 0.58 0.67 0.09 

Mapk1* 0.94 0.40 0.67 0.24 

Akap1 0.67 0.66 0.67 0.00 

Zfp706 0.61 0.72 0.67 0.05 

Gabbr1 0.83 0.49 0.66 0.16 

Atp1b2 0.75 0.55 0.65 0.09 

Grm7 0.78 0.51 0.65 0.13 

Kcnq3 0.78 0.51 0.65 0.13 

Bmp3 0.55 0.70 0.62 0.08 

Bcl2l1 0.71 0.54 0.62 0.09 

Nlgn3 0.73 0.51 0.62 0.11 

Tef 0.87 0.37 0.62 0.24 
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Appendix 6.11.6 Repeatability of aged R7 yellow module hub genes in B7 aged 

matching (purple and yellow) modules and aged B8 matching (brown and yellow) 

modules. Hub genes with the highest mean 𝒌𝑰𝑴 are shown. Candidate hub genes are 

marked by an ‘*’ beside them. There were only five hub genes that were common 

among the three networks. 

Hub 
Gene 

R7 KME B7 KME B8 KME Mean 
KME 

t-test   p-
value 

Zfp706 0.61 0.72 0.76 0.70 0.00 

Dlgap1* 0.75 0.43 0.86 0.68 0.03 

Sqstm1 0.46 0.70 0.31 0.49 0.05 

Grb2 0.23 0.43 0.52 0.39 0.04 

Zfp386 0.22 0.23 0.52 0.32 0.08 
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6.12 Validation of Hub Genes: Brown Module 

Appendix 6.12.1 Repeatability of young R7 brown module hub genes in young B8 

matching (black and brown) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 

are shown. Candidate hub genes are marked by an ‘*’ beside them.  

Hub Gene R7 KME B8 KME Mean 
KME 

t-test  p-
value 

Rpe* 0.89 0.90 0.89 0.00 

Zhx1 0.76 1.00 0.88 0.09 

Ate1 0.71 1.00 0.85 0.11 

Myo5b 0.79 0.91 0.85 0.05 

Phf20l1 0.76 0.86 0.81 0.04 

B3galnt1 0.88 0.67 0.78 0.09 

Ctsl1 0.82 0.73 0.77 0.04 

Aff4 0.80 0.74 0.77 0.03 

Cast 0.87 0.67 0.77 0.08 

Ist1 0.73 0.80 0.77 0.03 

Slc6a15 0.69 0.81 0.75 0.05 

Eif5b 0.69 0.77 0.73 0.03 

Tmem161b 0.88 0.56 0.72 0.14 

Snx2 0.46 0.97 0.72 0.22 

Fpgt 0.66 0.73 0.70 0.03 

Sucla2 0.54 0.85 0.70 0.14 

Fbxo3 0.79 0.60 0.69 0.09 

Tox4 0.66 0.72 0.69 0.03 

Chchd3 0.76 0.62 0.69 0.07 

Gng10 0.78 0.57 0.68 0.10 
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Appendix 6.12.2 Repeatability of young R7 brown module hub genes in young K9 

matching (brown and green) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 

are shown. Candidate hub genes are marked by an ‘*’ beside them.  

Hub Gene R7 KME K9 KME Mean 
KME 

t-test   p-
value 

Rpe* 0.89 0.87 0.88 0.01 

Fmr1 0.89 0.82 0.85 0.03 

Tcerg1 0.69 1.00 0.85 0.11 

Mtmr6 0.86 0.80 0.83 0.02 

Aff4 0.80 0.85 0.82 0.02 

Btbd1 0.82 0.81 0.81 0.01 

Fyttd1 0.92 0.63 0.77 0.12 

Ndufaf4 0.88 0.66 0.77 0.09 

Psip1 0.65 0.86 0.75 0.09 

LOC100912470 0.76 0.75 0.75 0.01 

Glyr1 0.77 0.73 0.75 0.02 

Taf9b 0.66 0.83 0.75 0.07 

Arpc5 0.53 0.94 0.74 0.17 

B3galnt1 0.88 0.59 0.74 0.13 

Hars 0.67 0.80 0.73 0.06 

Tm9sf2 0.87 0.60 0.73 0.12 

Wdr13 0.72 0.74 0.73 0.01 

Rapgef4 0.79 0.66 0.73 0.06 

Fkbp3 0.75 0.70 0.72 0.02 

Tmem161b 0.88 0.57 0.72 0.13 
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Appendix 6.12.3 Repeatability of young R7 brown module hub genes in matching 

young B8 black and brown, and K9 brown and green modules. Twenty hub genes with 

the highest mean 𝒌𝑰𝑴 are shown. Candidate hub genes are marked by an ‘*’ beside 

them. 

Hub Gene 
R7 KME B8 KME K9 KME 

Mean 
KME 

t-test     p-
value 

Rpe* 0.89 0.90 0.87 0.88 0.00 

Zhx1 0.76 1.00 0.68 0.81 0.01 

Aff4 0.80 0.74 0.85 0.80 0.00 

Ate1 0.71 1.00 0.61 0.77 0.02 

Eif5b 0.69 0.77 0.73 0.73 0.00 

B3galnt1 0.88 0.67 0.59 0.71 0.01 

Slc6a15 0.69 0.81 0.63 0.71 0.01 

LOC100910334 0.48 0.77 0.86 0.71 0.03 

Ctsl1 0.82 0.73 0.54 0.69 0.01 

Glyr1 0.77 0.57 0.73 0.69 0.01 

Fkbp3 0.75 0.58 0.70 0.68 0.01 

Tmem161b 0.88 0.56 0.57 0.67 0.02 

Fpgt 0.66 0.73 0.61 0.67 0.00 

Phf20l1 0.76 0.86 0.38 0.66 0.05 

Naa38 0.55 0.60 0.85 0.66 0.02 

Hnrpd 0.45 0.85 0.67 0.66 0.03 

Etfa 0.59 0.62 0.70 0.64 0.00 

Cnksr2 0.70 0.63 0.57 0.63 0.00 

Trappc6b 0.55 0.76 0.58 0.63 0.01 

Fyttd1 0.92 0.30 0.63 0.61 0.08 
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Appendix 6.12.4 Repeatability of aged R7 brown module hub genes in aged B8 

matching (brown and green) modules. Twenty hub genes with the highest mean 𝒌𝑰𝑴 

are shown. Candidate hub genes are marked by an ‘*’ beside them. 

Hub Gene R7 KME B8 KME Mean 
KME 

t-test  
p-value 

Araf 1.00 0.78 0.89 0.08 

Spag9 0.98 0.75 0.87 0.09 

Ndufs1 0.75 0.96 0.85 0.08 

Slc6a15 0.93 0.73 0.83 0.07 

Spast 0.90 0.73 0.81 0.07 

Mtmr6 0.69 0.93 0.81 0.10 

MGC112830 0.82 0.78 0.80 0.01 

Casc4 0.87 0.72 0.80 0.06 

Ccdc104 0.78 0.79 0.79 0.00 

RGD1309995 0.67 0.91 0.79 0.10 

Dars 0.67 0.88 0.77 0.08 

Aff4 0.78 0.77 0.77 0.00 

Pkn2 0.55 1.00 0.77 0.18 

Slc30a5 0.79 0.75 0.77 0.02 

Fmr1 0.90 0.63 0.77 0.11 

Rapgef4 0.93 0.60 0.76 0.14 

Rpl4 0.81 0.71 0.76 0.04 

Psip1 0.77 0.74 0.75 0.02 

Eif3m 0.83 0.67 0.75 0.07 

Foxg1 0.78 0.70 0.74 0.03 
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Appendix 6.12.5 Repeatability of aged R7 brown module hub genes in aged B7 brown 

module. Twenty hub genes with the highest mean 𝒌𝑰𝑴 are shown. Candidate hub genes 

are marked by an ‘*’ beside them. 

Hub Gene R7 KME B7 KME Mean 
KME 

t-test  p-
value 

Cct3 0.80 0.93 0.86 0.05 

Slc6a15 0.93 0.67 0.80 0.10 

Aifm1 0.74 0.85 0.80 0.04 

Eif3m 0.83 0.73 0.78 0.04 

Hdac2 0.69 0.81 0.75 0.05 

Hdhd2 0.62 0.86 0.74 0.10 

Etfa 0.70 0.76 0.73 0.03 

Dync1i2 0.63 0.77 0.70 0.06 

Calm2 0.58 0.81 0.69 0.10 

Ctsl1 0.81 0.56 0.69 0.12 

Spast 0.90 0.45 0.68 0.20 

Ivns1abp 0.44 0.88 0.66 0.20 

Foxg1 0.78 0.53 0.65 0.12 

Trim32 0.70 0.60 0.65 0.05 

Rap1b 0.61 0.68 0.64 0.03 

Naca 0.70 0.56 0.63 0.07 

Sec62 0.56 0.69 0.62 0.07 

Psma1 0.63 0.61 0.62 0.01 

Tspan3 0.76 0.46 0.61 0.15 

Zranb2 0.65 0.54 0.59 0.06 
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Appendix 6.12.6 Repeatability of aged R7 brown module hub genes in matching aged 

B7 brown module, and B8 brown and green modules. Twenty hub genes with the 

highest mean 𝒌𝑰𝑴 are shown. Candidate hub genes are marked by an ‘*’ beside them. 

Hub Gene R7 KME B7 KME B8 KME Mean 
KME 

t-test  p-
value 

Slc6a15 0.93 0.67 0.73 0.78 0.01 

Eif3m 0.83 0.73 0.67 0.74 0.00 

Spast 0.90 0.45 0.73 0.69 0.03 

Hdac2 0.69 0.81 0.58 0.69 0.01 

Foxg1 0.78 0.53 0.70 0.67 0.01 

Ctsl1 0.81 0.56 0.62 0.66 0.01 

Etfa 0.70 0.76 0.50 0.65 0.01 

Trappc6b 0.56 0.58 0.80 0.65 0.01 

Ppp1cb 0.62 0.45 0.77 0.62 0.02 

Rap1b 0.61 0.68 0.55 0.61 0.00 

Cnbp 0.58 0.43 0.81 0.61 0.03 

Hook1 0.59 0.36 0.84 0.60 0.05 

Psma1 0.63 0.61 0.54 0.59 0.00 

Dync1i2 0.63 0.77 0.37 0.59 0.04 

Naca 0.70 0.56 0.45 0.57 0.02 

Gnl3 0.61 0.56 0.53 0.56 0.00 

Ivns1abp 0.44 0.88 0.34 0.56 0.08 

Map2k1 0.47 0.56 0.64 0.56 0.01 

Zranb2 0.65 0.54 0.47 0.55 0.01 

Ate1 0.64 0.46 0.50 0.54 0.01 
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6.13 Differential expression vs. differential connectivity 

Appendix 6.13.1: Comparing gene expression and connectivity between young and 

aged R7 samples using scatter plots. 

Mean gene expressions for each gene across all aged and young arrays were calculated. 

The gene expression values were then scaled to lie between 0 and 1 by dividing them 

with the maximum mean expression. The young and aged mean scaled gene expression 

values were plotted in the scatter plot (on the left image below) along the y and x axis, 

respectively. Similarly, connectivity for each gene was calculated, scaled to lie between 

0 and 1, and plotted on the right scatter plot. Spearman’s rank correlation test (rho) was 

performed between young vs. aged gene expression as well as young vs. aged network 

connectivity. The results show that the overall gene expressions between the young and 

aged samples are highly correlated (rho = 0.998), which is not the case for the gene 

networks connectivity patterns between the same samples as the correlations between 

them are very weak (rho = 0.389). This observation highlights the fact that differential 

connectivity is not the same as differential expression. 
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6.14 Glossary of terms 

Appendix 6.14.1 Glossary of terms used in the thesis. 

Adjacency matrix: The connection strengths in an undirected network can be 

represented by an adjacency matrix, a symmetric matrix whose entries lie between 0 

and 1. The element 𝑎𝑖𝑗  is the connection strength between nodes i and j. As a 

convention, the diagonal elements are set to 1, 𝑎𝑖𝑗 = 1 (Langfelder and Horvath, 2008; 

Zhang and Horvath, 2005). 

Affymetrix oligonucleotide microarray: In Affymetrix expression array, oligonucleotides 

of 25 base pairs in length are used to probe genes. There are two types of probes: 

reference probes that match a target sequence exactly, called the perfect match (PM), 

and partner probes which differ from the reference probes only by a single base in the 

center of the sequence, called the mismatch (MM) probes. Typically 16–20 of these 

probe pairs, each interrogating a different part of the sequence for a gene, make up 

what is known as a probe set. Some more recent arrays, such as the HG-U133 arrays, 

use as few as 11 probes in a probe set (Lipshutz et al., 1999; Warrington et al., 2000). 

Co-expression (correlation) Network: Co-expression networks are undirected gene 

networks. The nodes of such a network correspond to genes (and their expression 

profiles), and edges between genes represent connection strengths (Langfelder and 

Horvath, 2008; Zhang and Horvath, 2005). 

Connection Strength: Connection strength between a pair of genes is determined by the 

pairwise correlations between their expression profiles (Langfelder and Horvath, 2008; 

Zhang and Horvath, 2005).  

Connectivity: For each gene, the connectivity is defined as the sum of connection 

strengths with the other network genes: 𝑘𝑖 =  ∑ 𝑎𝑢≠𝑖 𝑢𝑖. In co-expression networks, the 

connectivity measures how correlated a gene is with all other network genes 

(Langfelder and Horvath, 2008; Zhang and Horvath, 2005). 
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Data normalization: The term “normalization” as applied to microarray data does not 

refer to the normal (Gaussian) distribution, but instead it refers to the process of 

correcting two or more datasets prior to comparing their gene expression values 

(Pevsner, 2009). 

Gene co-expression network: In gene co-expression networks, the nodes represent 

genes (or probe sets of a microarray) measured across a given set of microarray samples 

and the connections represent the strength of co-expression. Various measures of co-

expression can be used, for example Pearson or robust correlation (in which case the co-

expression network is also a correlation network), information-theoretic methods such 

as mutual information, and other measures of co-expression similarity (Langfelder and 

Horvath, 2008; Zhang and Horvath, 2005). 

Hub gene: This loosely defined term is used as an abbreviation of “highly connected 

gene". By definition, hub genes inside co-expression modules tend to have high 

connectivity (i.e. genes with many connections with other genes) (Langfelder and 

Horvath, 2008; Zhang and Horvath, 2005). 

Intramodular connectivity 𝒌𝑰𝑴: Intramodular connectivity measures how connected or 

co-expressed a given gene is with respect to the genes of a particular module. The 

intramodular connectivity may be interpreted as a measure of module membership 

(Langfelder and Horvath, 2008; Zhang and Horvath, 2005). 

Mismatch (MM): Same as PM but with a single base change for the middle (13th) base. 

The purpose is to measure non-specific binding and background noise. 

Module eigengene E: The module eigengene E is defined as the first principal 

component of a given module. It can be considered as a representative of the gene 

expression profiles in a module (Langfelder and Horvath, 2008; Zhang and Horvath, 

2005). 
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Module membership also known as eigengene-based connectivity 𝒌𝑴𝑬: For each gene, 

a "fuzzy" measure of module membership is defined by correlating its gene expression 

profile with the module eigengene of a given module. For example, 𝑀𝑀𝑏𝑙𝑢𝑒(𝑖) =

 𝐾𝑐𝑜𝑟,𝑖
𝑏𝑙𝑢𝑒 = 𝑐𝑜𝑟(𝑋𝑖,𝐸𝑏𝑙𝑢𝑒) measures how correlated gene i is to the blue module 

eigengene. 𝑀𝑀𝑏𝑙𝑢𝑒(𝑖) measures the membership of the i-th gene with respect to the 

blue module. If 𝑀𝑀𝑏𝑙𝑢𝑒(𝑖) is close to 0, the i-th gene is not part of the blue module. On 

the other hand, if 𝑀𝑀𝑏𝑙𝑢𝑒(𝑖) is close to 1 or -1, it is highly connected to the blue module 

genes. The sign of module membership encodes whether the gene has a positive or a 

negative relationship with the blue module eigengene. The module membership 

measure can be defined for all input genes (irrespective of their original module 

membership). It turns out that the module membership measure is highly related to the 

intramodular connectivity 𝑘𝐼𝑀. Highly connected intramodular hub genes tend to have 

high module membership values to the respective module (Langfelder and Horvath, 

2008; Zhang and Horvath, 2005). 

Module: Module consists of a group of genes whose expression profiles are highly 

correlated across the samples. Module is a type of sub-network which consists of 

clusters of highly interconnected genes. In an unsigned co-expression network, modules 

correspond to clusters of genes with high absolute correlations. In a signed network, 

modules correspond to positively correlated genes (Langfelder and Horvath, 2008; 

Zhang and Horvath, 2005).  

Network density: The mean adjacency (connection strength) among all nodes in a 

network (Langfelder and Horvath, 2008; Zhang and Horvath, 2005). 

NP-hard problem: A problem is NP-hard if an algorithm for solving it can be translated 

into one for solving any NP-problem (nondeterministic polynomial time) problem. NP-

hard therefore means "at least as hard as any NP-problem," although it might, in fact, be 

harder (Weisstein, 2015). 
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Perfect match (PM): A 25-mer probe complementary to a reference sequence of 

interest (e.g. part of a gene) 

Probe: An oligonucleotide of 25 base-pairs (“25-mer”) in length 

Probe set: Typically 16–20 probe pairs, each interrogating a different part of the 

sequence for a gene, make up what is known as a probe set (Lipshutz et al., 1999; 

Warrington et al., 2000). 

Scale-free network: Scale-free network has grown a lot of interest in recent years. The 

term scale-free refers to the distribution principle of how many links there are per node. 

The defining property of scale-free networks is that the probability that a node is 

connected with k other nodes decays as a power law distribution (Barabasi and Albert, 

1999; Barabasi and Bonabeau, 2003; Jeong et al., 2000). For example, the probability 

distribution function 𝑃(𝑘) of the degree k of scale-free networks is described by 

𝑃(𝑘) ≈ 𝑘−𝛾. Many real world networks show the properties of scale-free network, for 

example, the physical structure of the internet (router level, domain level, and web 

links), social networks like e-mail networks, the structure of software modules, etc. 

Interestingly many biological networks such as yeast protein-protein interaction 

network (Carter et al., 2004; Han et al., 2004; Jeong et al., 2001) also demonstrate scale-

free property. Scale-free networks are extremely heterogeneous, their topology being 

dominated by a few highly connected nodes (hubs) which link the rest of the less 

connected nodes to the system. (Langfelder and Horvath, 2008; Zhang and Horvath, 

2005). 

Soft-threshold: Soft-threshold is a value that is used to raise the power of gene co-

expression measures in weighted co-expression networks. It is determined in such a way 

so that the resulting network follows approximate scale free topology (Langfelder and 

Horvath, 2008; Zhang and Horvath, 2005). 

Sub-network:  A subnetwork of a network can be any collection (subset) of nodes from 

the network, together with the adjacencies (connection strengths) between the nodes. 
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Thus, a subnetwork of a network also forms a (smaller) network on its own (Langfelder 

and Horvath, 2008; Zhang and Horvath, 2005). 

Topological overlap and topological overlap matrix (TOM): A major goal of gene 

correlation network analysis is to identify groups or "modules" of highly interconnected 

genes. Modules are groups of genes whose expression profiles are highly correlated 

across the samples. Modules are identified by searching for genes with similar patterns 

of connection strengths to other genes, or genes with high topological overlap. The 

topological overlap is a measure of node similarity. Topological overlap of two nodes 

reflects their relative interconnectedness (i.e. how close the neighbors of gene 1 are to 

the neighbors of gene 2). In order to identify network modules, generalized topological 

overlap matrix (GTOM) is calculated using the adjacency and connectivity values. The 

topological overlap values determine which genes will be in which module and form a 

network. The values range between 1 and 0 representing maximum and minimum 

interconnectedness. Module identification method in WGCNA is based on using node 

dissimilarity measure in conjunction with a clustering method. Since topological overlap 

is non-negative and symmetric, it is turned into a dissimilarity measure by subtracting 

from one. Genes are average linkage hierarchically clustered using 1-topological overlap 

as the distance measure and modules are determined by choosing a height cutoff for 

the resulting dendrogram. In the dendrogram, discrete branches of the tree correspond 

to modules of co-expressed genes (Langfelder and Horvath, 2008; Zhang and Horvath, 

2005). 

Weighted gene co-expression Network: Weighted gene co-expression network is 

created by raising the absolute value of the correlation between the expression profiles 

of a pair of genes to a power 𝛽 ≥  1 (soft thresholding). This approach emphasizes high 

correlations at the expense of low correlations. Specifically, the function 𝑎𝑖𝑗 =

|𝑐𝑜𝑟�𝑥𝑖, 𝑥𝑗�|𝛽 represents the adjacency of an unsigned network. However, using the 

absolute value of the correlation may obscure biologically relevant information, since no 

distinction is made between gene repression and activation. In contrast, in signed 
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networks the similarity between genes reflects the sign of the correlation of their 

expression profiles. A simple transformation of the correlation is used and the adjacency 

is defined by the adjacency function 𝑎𝑖𝑗 = [ 1
2

 (1 +  𝑐𝑜𝑟�𝑥𝑖 , 𝑥𝑗�)]𝛽. As in the unsigned 

measure, the signed similarity takes on a value between 0 and 1. Note that the unsigned 

similarity between two oppositely expressed genes (𝑐𝑜𝑟�𝑥𝑖, 𝑥𝑗� =  −1)  equals 1, while 

it equals to 0 for the signed similarity. Similarly, while the unsigned co-expression 

measure of two genes with zero correlation remains zero, the signed similarity equals to 

0.5. (Langfelder and Horvath, 2008; Mason et al., 2009; Zhang and Horvath, 2005). 
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