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Abstract

We introduce a set of algorithms for registering, filtering and measuring the
similarity of unorganized 3D point clouds, usually obtained from multiple
views.

We contribute a method for computing the similarity between point clouds
that represent closed surfaces, specifically segmented tumours from CT scans.
We obtain watertight surfaces and utilize volumetric overlap to determine
similarity in a volumetric way. This similarity measure is used to quantify
treatment variability based on target volume segmentation both prior to and
following radiotherapy planning stages.

We also contribute an algorithm for the drift-free registration of thin, non-
rigid scans, where drift is the build-up of error caused by sequential pairwise
registration, which is the alignment of each scan to its neighbour. We construct
an average scan using mutual nearest neighbours, each scan is registered to
this average scan, after which we update the average scan and continue this
process until convergence. The use case herein is for merging scans of plants
from multiple views and registering vascular scans together.

Our final contribution is a method for filtering noisy point clouds, specif-
ically those constructed from merged depth maps as obtained from a range
scanner or multiple view stereo (MVS), applying techniques that have been
utilized in finding outliers in clustered data, but not in MVS. We utilize ker-
nel density estimation to obtain a probability density function over the space
of observed points, utilizing variable bandwidths based on the nature of the
neighbouring points, Mahalanobis and reachability distances that is more dis-
criminative than a classical Mahalanobis distance-based metric.

ii
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Chapter 1

Introduction

This thesis began its life as a theoretical work on capturing the shape of 3D

objects. To test the surface fitting method that I was working on, I began

constructing point cloud data by sampling spheres and cubes. I constructed

an approximate initial surface, evolved the shape of this surface until it fit the

points well, and recovered a good facsimile of the originally sampled surface.

Two problems arose. First, the process of evolving the surfaces requires

high precision. The surface could only be evolved extremely slowly due to the

numerical instability exhibited by the method when making large jumps in the

solution space. Second, surface evolution methods in general are notoriously

difficult to minimize when there is noise present. Any sort of perturbation

of points or the presence of outliers impacted negatively on the ability of the

method to converge.

As I tried to utilize surface evolution based methods on real problems, these

limitations became abundantly clear. The results from the depth maps that

I reconstructed from multiple images and attempted to mesh were poor due

to the prominence of outliers. Results were extremely reliant on parameteri-
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zation, with the surface “leaking” through gaps between points with excessive

spacing.

Similarly, my attempts to register depth maps and unorganized point

clouds using surface-based methods were filled with folly. Capturing the shape

of point clouds using statistical methods is the basis of this thesis. Whether it

is fitting watertight surfaces to tumours and quantifying their similarity, reg-

istering multiple point clouds into a single point cloud, or explicitly removing

outliers from an extremely noisy point cloud prior to meshing, the consistent

theme is that a good model is required to solve real world problems.

This thesis suggests some algorithms to help ameliorate the inherent prob-

lems surrounding shape recovery for both static and moving scenes and objects.

We deal with the recovery of non-rigid shape from both partial range scans

from multiple views and segmented point clouds from MRI data, as well as

the Stanford Bunny [71] and the Happy Buddha [39] data sets.

1.1 Contributions

The contributions of this thesis are as follows:

• A global method [10, 15] for non-rigid registration of multiple thin 3D

structures from range scans. Its efficacy is demonstrated on both syn-

thetic vascular data and real scans of a mature Arabidopsis plant. The

positions of both the leaves and the branches change from scan to scan

(as the plant rotates on a turntable underneath a ceiling fan). Our

global method utilizes the pair based algorithm of these scans based on

the Coherent Point Drift (CPD) algorithm of Myronenko and Song [49].

• A novel method [46, 45] for quantifying physician performance in seg-
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menting tumours from MRI data. For each tumour, we construct an

approximate surface to obtain normals, we use Boykov and Lempitsky’s

[38] flux-based method for obtaining watertight surfaces, and then we

compare these surfaces using volumetric overlap estimation (VOE).

• A method [9] for filtering point clouds using variable bandwidth in con-

junction with an anisotropic kernel density filter. We filter noisy point

clouds generated from merged, noisy depth maps in a single step, allow-

ing us to fit a surface to the resultant point cloud. This algorithm is

useful for removing outliers from range scans and other noisy 3D data,

and can work as a useful preprocessing step before registration or surface

fitting.

All work herein was performed by the author, with the exception of the

pair based registrations of the Bunny and Arabidopsis, as seen in Figures 4.2,

4.3 and Table 4.1 (performed by Ayan Chaudhury) as well as the statistical

analyses seen in Figures 3.8, 3.9 and Table 3.1 (performed by Spencer Martin.)

1.2 Publications

Three journal papers (one is in submission), along with two conference papers

have been published based on this work.

1. M.A. Brophy, A. Chaudhury, S.S. Beauchemin, and J.L. Barron. A

method for global nonrigid registration of multiple thin structures. In

Proceedings of the 12th Conference on Computer and Robot Vision (CRV),

pages 214 - 221. IEEE, June 2015.

2. M.A. Brophy, S.S. Beauchemin, and J.L. Barron. Kernel density filtering
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for noisy point clouds in one step. In Proceedings of the Irish Machine

Vision and Image Processing Conference, pages 27 – 34. August 2015.

3. A. Chaudhury, M.A. Brophy, and J.L. Barron. Junction point detection

in 3D plant point clouds using multi-modal analysis and tls approxima-

tion. In Submitted, August 25, 2015.

4. S. Martin, C. Johnson, M.A. Brophy, D.A. Palma, J.L. Barron, S.S.

Beauchemin, A.V. Louie, E. Yu, B. Yaremko, B. Ahmad, G.B. Ro-

drigues, and S. Gaede. Impact of target volume segmentation accuracy

and variability on treatment planning for 4d-ct-based non-small cell lung

cancer radiotherapy. Acta Oncologica, 54(3): 322 – 332, March 2015.

5. S. Martin, M. Brophy, G. Rodrigues, D. Palma, A. Louie, B. Yaremko,

B.A.E. Yu, S.S. Beauchemin, J.L. Barron, and S. Gaede. A proposed

framework for consensus-based lung tumour volume auto-segmentation

in four- dimensional computed tomography imaging. Physics in Medicine

and Biology, 60(4):1497 - 1518, February 2015.

1.3 Overview of Thesis

This thesis deals with algorithms for constructing meshed 3D models of ob-

jects from various data sources, be it from range scans, multiple 2D images,

physician-segmented CT data, etc.

The following chapters are unified in their application to unorganized point

clouds. Chapter 2 provides a review of energy-based methods for fitting sur-

faces to point clouds, while the chapters that follow are largely for registering,

filtering and comparing point clouds.
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In Chapter 3, we describe our method for comparison of pairs of unorga-

nized point clouds, specifically for the comparison of tumour volumes for the

purpose of quantifying physician performance in segmenting tumours from CT

scans. We utilize Boykov and Lempitsky’s [38] method for obtaining water-

tight meshes for the tumour volumes, and perform both point-based (mutual

nearest neighbours) and volumetric (Jaccard index) to quantify the variability

of a set of physicians’ performance of lung tumour volumes over the various

breathing phases.

In Chapter 4, we present a global algorithm for drift-free alignment of mul-

tiple range scans of “thin” data into a single point cloud (suitable for further

processing, such as triangular meshing and volume calculation). We consider

two sets of non-rigid data: synthetic vascular data and real Arabidopsis plant

data. Our method builds on the coherent point drift algorithm, and aligns

multiple point clouds into a single 3D point cloud. The plant data was ac-

quired in a growth chamber, where the fan caused jittering in both the branch

and leaf data. For each scan, we construct a target scan from the centroids

of its Mutual Nearest Neighbours (MNN) in all other scans and iteratively

register to this, as opposed to registering pairwise scans sequentially. We have

have adapted MNN for use in non-rigid scenarios, producing a method that

will not degrade as more scans are registered, and produces better results than

sequential pairwise registration.

Chapter 5 describes our method for filtering very noisy point clouds. We

utilize techniques that have roots in clustering data and apply it to the filter-

ing of point clouds. The probability density function (PDF) is approximated

via a method called kernel density estimation (KDE). Our filter uses Maha-

lanobis distance, variable bandwidth and reachability distance, which gives

more discriminative power than a strictly Mahalanobis distance-based KDE
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filter.

Finally, Chapter 6 presents the conclusions of the thesis and gives future

directions of research.
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Chapter 2

Energy based surface

reconstruction for point clouds

With modern range sensor technology, the ability to capture high quality struc-

tural information has never been easier: obtaining an accurate depth map for

almost any opaque object is as simple as pushing a button as range scanners

and high quality stereo algorithms are available to the masses.

Despite this, many of the problems surrounding the accurate fitting of a

surface to point cloud and merging multiple point clouds into a single scan

remain difficult. Problems in this domain are often ill-posed and thus we must

provide additional constraints on our search domain in order to find a suitable

solution.

This chapter gives an overview of methods for reconstructing 3D object

models from unorganized point clouds, initially born out of a desire to solve

this problem elegantly using evolving surfaces guided by partial differential

equations. Most of our work is both discrete and statistical in nature, using

techniques that rely on graph cuts, expectation maximization, etc. We review
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both earlier work and modern techniques.

As we mentioned above, most of the problems we solve are ill-posed, and

thus we need to understand exactly what this means and the ramifications

that this will have on our work. We begin by reviewing the fundamentals

of energy-based methods before we deal with the details of surface fitting.

Discrete, graph cut-based methods and continuous total variation methods

are the state of the art. However the utilization of flux, curvature and shape

priors that began with level sets is also illuminating.

Though this is a review of 3D methods, we’ll often introduce and illustrate

methods via 2D image segmentation, as this is where this work is rooted.

In short, though 2D and 3D (MRI or CT, for example) image segmentation

involves segmenting dense intensity data instead of sparse binary data, the

techniques for performing either one have influenced techniques for performing

the other. In short, understanding image segmentation is core to obtaining a

deeper understanding of surface fitting,
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2.1 Preliminaries: Minimization, Smoothing

and Segmentation

Many problems in Computer Vision are intricately tied: an optimal solution of

one problem often provides meaningful insight into other seemingly unrelated

problems. Most vision problems of interest are ill-posed, and thus require some

sort of restriction in terms of the solution space of its parameters in order to

find a good solution. This is true of fitting a surface to a scattered set of points

[3], where there are an infinite number of surfaces that fit said points [27].

As shown in the sections that follow, these constraints often involve finding

optimally denoised, diffused or smoothed regions to avoid getting stuck in

local minima while propagating a contour. One desires the solution space of a

function to be strict in terms of its shape: Ideally, a function is monotonically

or strictly increasing, resulting in a convex or semi-convex space to search for

the minimum.

When a solution space u is convex or semi-convex, one can guarantee a

global minimum will be obtained via gradient descent. In one dimension, such

a solution space will resemble a parabola while in two dimensions the solution

space resembles a paraboloid. The direction of the step is the one of steepest

descent, so such a scheme is guaranteed to find a global minimum since the

“steepest” path will eventually lead to a minimal value. This method of energy

minimization is extremely common in Computer Vision and can be found using

level sets. Level sets are the subject of Section 2.2.

The idea behind the piecewise-smooth Mumford-Shah functional [48] was

to provide both a smooth approximation u of an image I, and a partitioning

that divided the image along its discontinuous areas [11]. It’s an intuitive
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notion: One imagines that the segmentation of an image that obtains the

maximal smoothness for each area would result in very good separation of

objects that exist in the image. The functional, given by Brox and Cremers

[11]:

E(u,K) =

∫
Ω

(u− I)2dx+ λ

∫
Ω−K
|∇|∇u|2dx + v|K| (2.1)

operates on the image I : Ω→ R with domain Ω ⊂ R2 and seeks the edge set

K that partitions function u into smooth sections, where u is an approximation

of I. Thus, K segments Ω into n (which is unknown prior to minimization)

disjoint regions, Ω1···n. The functional seeks both the optimal u and the optimal

K. v ≥ 0 and λ ≥ 0 are weighting parameters.

As pointed out by Brox and Cremers [11], Mumford and Shah [48] wrote

nearly 100 pages of theory without ever suggesting how one would actually

find a minimizer of Equation (2.1) or its simplified (piecewise-constant) form,

the latter of which is obtained when λ→∞ as:

E(u,K) =
∑
i

∫
Ωi

(ui − I)2dx+ vo|K|, (2.2)

where v0 is the re-scaled version of v, and each ui is now a single value, as op-

posed to in Equation (2.1), where it was a function. In other words, the image

is approximated by a piecewise constant function, as opposed to a piecewise

smooth one. This is why it is referred to as the cartoon limit. It has been the

focus of a large body of work that has followed.



11

2.2 Level Sets and Snakes

Kass et al.’s [36] seminal paper on snakes in the late 80’s served as a source

of inspiration for a huge body of work that includes geodesic active contours,

active contours without edges, etc. Variational methods like snakes are still

applied to problems in image segmentation, stereo, multiview reconstruction,

and more recently to multi-region segmentation.

The original formulation of snakes evolved a contour according to a com-

bination of image forces and external constraint forces

E(C ) = α

∫ 1

0

|C ′(q)2dq + β

∫ 1

0

|C ′′(q)|2dq − λ
∫ 1

0

|∇I (C (q))|dq (2.3)

where C is a curve that is parameterized by q, yielding a point in R2. In the

original implementation, a term was included to allow for user interactivity

to avoid the contours tendency to get stuck in local minima. The first two

terms (α and β) control the first- and second-order smoothness of the con-

tour’s internal energy. The first-order term makes the snake behave like a

“membrane”, while the second-order term makes it act like a “thin plate” [36].

The attractiveness of the contour to edges (the external energy) is controlled

by λ. This external force ensures that a local minimum is found at an image

edge, while the internal force ensures piecewise smoothness of the contour.

This energy is then converted to its Euler-Lagrange equation and solved

via gradient descent. The success of such a scheme is highly dependent on a

good initialization, however. As was noted by Kass et al. [36], the contour

must be placed near the solution to avoid getting stuck in local minima.
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2.2.1 Geodesic Active Contours

Caselles et al.’s [14] scheme for image segmentation, while inspired by snakes,

was based on curve evolution via mean curvature and geometric flows, not

energy minimization. Their method involved contour propagation (deforma-

tion) according to a velocity function defined in terms of curve regularity and

closeness to a boundary. By embedding an evolving contour C into a level

set formulation, the representation of C is both implicit and parameter free.

Further, different topologies can be captured by the zero level set, and thus

contours are able to split and join without requiring any sort of heuristics,

a definite improvement on the original snakes implementation. Multi-object

segmentation may be performed without knowing the number of objects in

advance.

Caselles et al.’s functional:

EGAC(C) =

∫ L(C)

0

g(|∇I0(C(s))|)ds, (2.4)

the so-called geodesic active contour, removes the parameterization of the curve

C that was present in Equation (2.3). It is replaced with the total Euclidean

length of the curve, L(C), as defined by the Euclidean element of length, ds.

The boundary function:

g(|∇I0|) =
1

1 + β|∇I0|2
, (2.5)

is essentially an edge detector with a weighting function β. The correspond-

ing Euler-Lagrange equation allows one to utilize gradient descent to find a
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minimizer of Equation (2.4):

∂tC = (κg − 〈∇g,N〉)N ,

or in level set form as:

∂tφ =

(
κg + 〈∇g, ∇φ

|∇φ|
〉
)
, (2.6)

where the evolving curve C is embedded as the zero level set of φ such that

C(t) = {x ∈ RN |φ(x, t) = 0}.

2.3 Graph Cuts

For many vision problems that can be approximated by level sets, graph cuts

can find a global minimum for many binary labeling problems as well as a

good approximation for multi-labeling problems. Instead of evolving a surface

based on forces related to topology, weighted by the data, solving problems

with graph cuts instead involves solving problems by finding a way to embed

them on an appropriate graph, performing various modifications and then

finding a minimum cut along the edges of the graph. Graph cuts came to

prominence for image segmentation, specifically for separating a foreground

object from its background. This is a classic binary labeling problem, solving

the same problem as Chan-Vese did in Equation (2.15).

A graph is built with two types of links, t-links (to terminal nodes) and n-

links (to neighbouring nodes). The nodes typically represent a discrete grid. In

the case of an image, each pixel would have a node, and it would have n-links

to its neighbouring pixels/nodes, possibly the neighbours of its neighbours,
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etc. A node will also have a t-link to either an s- or t-node, i.e., a source or

a sink. The assignment of these nodes depends on initialization strategy, and

will change based on the strong moves that are performed during optimization.

Prior to finding the max-flow/min-cut, the labels for nodes are found using

α-expansion and α–β-swap.

In iterative α-expansion, any subset of pixels can be changed to a label

α that is fixed; the algorithm goes through each possible label until no more

improvements can be made. At each step, a region Pα can only expand. α-

expansion allows, for a selected label α to change any node’s label to α, so long

as it decreases the total energy of the min-cut. Likewise, a α–β-swap allows

for any two labels to be swapped so long as they decrease the total energy of

the min cut.

Graph cuts energies typically have both a data and a smoothness term. A

data term might be intensity if the graph represents an image, or a distance

function if a set of points has been discretized and embedded on a graph for

the purpose of segmentation. If the smoothness term is metric then we use

α-expansion, otherwise, we use α–β-swap.

The smoothness term is specifically for penalizing discontinuities between

neighbouring points. In other words, it penalizes differing labels that neigh-

bour one another.

2.3.1 Multiview Graph Cuts

Vogiatzis et al. [74] construct a dense graph from photo-consistency values,

which is different from fitting surfaces to point clouds, but They use graph cuts

to find the minimum of a dense grid where each node represents the centre of
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a voxel. The weights between two nodes is

wij =
4πh2

3
ρ

(
xi + xj

2

)
(2.7)

where xi and xj are connected voxels, and ρ(·) is a photo-consistency / match-

ing function. A ballooning force wb = λh3 connects each point to the sink,

while the voxels on the perimeter of the volume have value ∞.

Sormann et al. [66] take a set of depth maps and construct a signed distance

function for each, which are then combined. They dilate the zero level set to

form a watertight “crust” band, and calculate the confidence at each voxel

from an unsigned distance function using the method of Hornung and Kobbert

[29], who find the minimum cut of the unsigned distance function around a

“dilated” crust of input points, the output of which is a closed / watertight

surface. They perform volumetric diffusion on the unsigned distance function.

The use of unsigned distance removes the need for orientation data and is more

robust to noise. The points are placed / rasterized on the grid and then an

unsigned dilation operator is utilized.

The diffusion simply happens iteratively over a 6-neighbourhood until all

non-empty voxels v on the grid are 6-connected.

φ(v) =
1

|N(v)|+ 1

(
φ(v) + Σu∈N(v)φ(u)

)
, (2.8)

with the constraint that φ(v) remains zero for all initial sparse surface

points. The number of diffusion steps is not overly important, in fact, even

with no diffusion steps, a min cut on φ will yield a surface.
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2.4 Total Variation

Total variation, for a continuous signal is computed as integral of the absolute

gradient, or for a discrete signal, as V (u) =
∑

n |∇u|. Total variation lessens

oscillations, but allows for discontinuities. It is used as a regularization term.

As was noted above, the success of the geodesic active contour model is

also contingent on a good initialization due to the presence of local minima in

the solution space. Bresson et al. [24] unified the Rudin, Osher and Fatemi

(ROF) model

EROF (u, λ) =

∫
Ω

|∇u|dx+ λ

∫
Ω

(u− f)2dx, (2.9)

with the geodesic active contour model [7]. The ROF model denoises images

while preserving edges. Instead of embedding the contour as the zero level set

of a higher-order function, they instead chose to iteratively minimize an energy

u and segment the result using some threshold µ ∈ [0, 1], typically chosen to

be µ > 0.5.

Bresson et al. replaced the total variation norm in Equation (2.9) with

their own weighted total variation norm TVg(u), with the previously-defined

weight function, g(x). This weighted norm

TVg(u) = g

∫
Ω

|∇u|dx (2.10)

introduces a link between the ROF model and the geodesic active contour

functional from Equation (2.4). When one sets the input u of the weighted

total variation norm to be a characteristic function, one obtains the geodesic
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active contour

TVg(u = 1ΩC
) =

∫
Ω

g(x)|∇1ΩC
|dx (2.11)

=

∫
C

g(x)ds = EGAC(C). (2.12)

Note that the gradient of the characteristic function is the boundary of the

closed region, ∂Ω. Thus, the only values integrated over are the diffusivities g

values on the boundary C, ∂Ω.

They also replaced the L2-norm with the L1-norm, noting that in the regu-

larization process, the disappearing of features is determined entirely in terms

of geometric characteristics, specifically the area and length of the contours

and not contrast (as it is when using the L2-norm).

Their non-strictly convex energy functional

EGGAC(u, λ) =

∫
Ω

g(x)|∇u|dx+ λ

∫
Ω

|u− f |dx,

is very similar to the ROF model. Using the calculus of variations, one obtains

a partial differential equation

∂u

∂t
= gdiv

(
∇u
|∇u|

)
+ < ∇g, ∇u

|∇u|
> +λ

u− f
|u− f |

,

from which the resultant energy u is thresholded, and a global minimum is

obtained. This is proved in Bresson et al.’s [7] appendix.

2.4.1 Total Variation Surface Reconstruction

In addition to creating a solver for the Chan Vese functional, Jian et al. [34]

also introduce a method for fitting 3D surfaces to point clouds.
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Zach et al. [76] utilize the total variation (TV) |∇u| introduced by Rudin et

al. [24] on robust range image integration. They minimize an energy functional

consisting of both the TV term for regularization and an L1 data term for data

fidelity. Their energy function is fairly straightforward

E =

∫ {
|∇u|+ λΣi∈I(x)wi|u− fi|

}
dx. (2.13)

2.5 Chan-Vese: Active Contours without Edges

Chan and Vese [73] proposed to solve the segmentation problem posed by

the piecewise-constant Mumford-Shah functional by further simplifying the

problem to a two-phase segmentation. While active contours rely heavily on a

strong gradient separating the foreground and background of the image, Chan

and Vese find a boundary that minimizes both the interior pixels’ variance

from the interior mean, and the exterior pixels’ variance from the exterior

mean. To define these regions, they utilize the Heaviside function

H(φ) =

 1 φ ≥ 0

0 φ < 0
(2.14)

Contour C is embedded as the zero level set of a 3D function φ. Their func-

tional

ECV (φ, c1, c2) =

∫
Ω

{Hε(φ)(I(w)− c1)2 + (1−Hε(φ))(I(w)− c2)2 + λ|∇Hε(φ)|}dw,

(2.15)

attempts to find the best approximation of I as a pair of unconnected regions

with only two values, with respect to the L2 norm [7]. c1 and c2 represent the



19

mean values of I in the interior and exterior, and are formally defined as

c1 =

∫
I(x)H(φ)dx∫
H(φ)dx

(2.16)

c2 =

∫
I(x)(1−H(φ))dx∫

(1−H(φ))dx
. (2.17)

In practise, both the Heaviside function and the Dirac function are regu-

larized [73]. Using these regularizations in Equation (2.15) and computing the

subsequent Euler-Lagrange equations results in a PDE

∂φ

∂t
= δε(φ)(λin(I(x)− cin)2 − λout(I(x)− cout)2 + µ) in Ω

∂φ

∂n
= 0 on ∂Ω

φ = φ0 in Ω,

where ∂φ
∂n

is the partial derivative of φ in the direction of the outward normal

to the boundary ∂Ω.

Chan Vese suffers from the fact that it is highly dependent on its initializa-

tion. Like snakes, the model is not convex – it suffers from being a two valued

function [26].

2.5.1 Shape Priors in Level Set Formulations

When most objects are projected onto a 2D plane, their resultant 2d bound-

aries vary depending on the orientation of the plane with respect to the object.

Therefore, when using a shape prior, it is necessary to estimate the projective

transformation parameters along with the best fit of the shape prior.

Rousson and Paragios [58] proposed embedding a shape prior into a level
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set formulation by generating a signed distance function from a pre-defined

2D contour. They defined equivalence between two objects of equal shape by

their contours Ω1,Ω2 ⊂ R2 by their signed distance functions φ1, φ2

φ2(x, y) = rφ1

[
(x− a) cos θ + (y − b) sin θ

r
,
−(x− a) sin θ + (y − b) cos θ

r

]
,

noting a unique solution to |∇φ| = 1, constrained by

φ =


> 0 x ∈ Ω\∂Ω

= 0 x ∈ ∂Ω

< 0 x ∈ R2\Ω

, (2.18)

where (a, b) is the centre of φ2, and r and θ are the scaling factor and angle

of rotation, respectively. One can generate an object’s equivalent shapes by

choosing different values for (a, b, r, θ).

Chan and Zhu added a shape prior to the Chan-Vese functional (2.15)

ECV+SP (φ) = ECV (φ) + Eshape(φ),

where

Eshape(φ) =

∫
Ω

(H(φ)−H(ψ0))2dydx.

Instead of only iteratively solving for ∂φ
∂t

, one iterates back and forth between

solving for ∂φ
∂t

and the gradient descents for the shape priors transformational

parameters: translational (∂a
∂t

, b
∂t

), scale (∂r
∂t

), and rotational (∂θ
∂t

).
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2.6 Segmentation of Point Clouds with Level

Sets

Once a set of disparity maps have been calculated and perspectively projected

into a 3D volume, a surface can be evolved to fit the points using the convection

method of Zhao et al. [79]. This is demonstrated on a sparse 2D point cloud

in Figure 2.1, although the evolution equation used:

∂φ

∂t
= ∇d(x) · ∇φ+ d(x)∇ · ∇φ

|∇φ|
, (2.19)

is different than the one used by Zhao et al. [79] in that it incorporates mean

curvature in the regularization.

2.7 Flux-based Functionals

Unlike Zhao et al. [79] who utilize distance from sparse surface points, Savad-

jiev et al. [62] reconstruct the surface by utilizing a field of vectors that are

normal to the surface. They assume that for the points in a small neighbour-

hood there exists a surface that the points have been sampled from. They

find normals and smooth them based on local curvature, and then solve for

the flux. Flux takes a vector field as input and produces a scalar which is

essentially the amount of flow through a unit area of a surface. A minimizer

for the functional

flux(t) =

∫ 1

0

< V,N > ||Cp||dp =

∫ L(t)

0

< V,N > ds (2.20)
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(a) Initial contour.
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(c) Point cloud to segment (S).
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(e) Recovered contour.

Figure 2.1: Level set segmentation of a 2D point cloud.
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(a) Initial contour. (b) After 600 iterations.

(c) After 700 iterations. (d) After 800 iterations

Figure 2.2: Level set segmentation of a 3D point cloud of a cube.
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is found using level sets as described in 2.2. The normal vector field of a

level set φ is N = δφ/|δφ|. The point cloud to which we wish to fit a surface

has normal information for each point, but a dense field is required to evolve

the level set. A box filter is used obtain F but propagate smoothed normal

information. F drives surface evolution towards the points

φt + Fφ = 0. (2.21)

The idea of using flux for segmentation was introduced by Vasilevskiy and

Siddiqi [72] and applied to 2D and 3D MRA images of blood vessels. They

take an image I and compute the flux by using its gradient ∇I as the vector

field V , wishing to maximize the flux through its boundary, which is either a

curve or a surface.

2.7.1 Continuous Global Optimization

Pan and Skala [52] start with a set of points with weak orientation data (like

[38]) and use total variation to measure the smoothness of function

Es =

∫ ∫ ∫
S

|∇f(x, y, z)|dxdydz (2.22)

where | · | is the L1 norm. A smaller norm indicates a more smooth function,

which a larger norm means the space is less smooth.

They use flux for their data term. A vector field F approximates the normal

directions via a smoothing filter. They design Ed such that the gradient of the

implicit function is best aligned with this vector field

Ed =

∫
Ω

< ∇f, F > (2.23)
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i.e. the optimal dot product between ∇f and F is zero.

2.7.2 Global Minimization for Shape Fitting

Lempitsky and Boykov [38] build on both graph cuts and Savadjiev et al.’s

[62] functional. They choose to solve for a sparse set of normals where only

weak orientation data is necessary. They too utilize a flux-based functional

max
S←−
∫
S

< vs, ns > ds, (2.24)

though they solve for a thin band around the discretized points on the grid,

which is expanded as as needed using their TouchExpand [38] algorithm.

Neighbouring nodes are connected via n-links, these represent the regu-

larizing term. The data term is represented by t-links, where nodes with

potentials greater than zero U(p) > 0 are connected to the source and nodes

with potentials less than zero U(p) < 0 are connected to the sink.

2.7.3 Power Watersheds

Couprie et al. [20] also use a graph based solution to find a solution to the

total variation problem mentioned above, specifically looking for the solution

u to

min
u∈[0,1]

∫
Ω

w(z)p|∇u(z)|qdz, (2.25)

subject to u(z) = 0∀z ∈ Ωin and u(z) = 1∀z ∈ Ωout, where Ωin is the set

of labels inside of the surface and Ωout is the outside set. They construct a

graph G of edges (E) and nodes (V ), discretizing the points on the grid and

weighting each edge based on how far it is from an actual point.
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Each unlabeled sub-graph with maximal weight is merged into a single

point, and then for each plateau (a maximal set of connected edges with iden-

tical weight), we look in the neighbourhood of each node and assign the node

the value

min
x

∑
eij inE

wpij|xi − xj|q (2.26)

s.t.x(F ) = 1, x(B) = 0. (2.27)

where

wij = min(dP (i), dP (j)),

and dP (·) is the distance between the nearest point in the set of all nodes P .

The power watersheds algorithm looks for a labeling xx of G, which is

initialized with seed labels x(B) and x(F ) on some points.

The algorithm is evaluated by iteratively finding an unlabeled node with

maximal weight, and then finding the maximal sub-graph of edges with equal

weight.

If this graph contains nodes with a known label then we find the surface

label based on minimizing Equation (2.26). Otherwise, all nodes are merged

and we find the next unlabeled node with maximal weight. Like Boykov and

Lempitsky [38], the power watershed algorithm can operate in a thin band,

which they define as the subset of the grid where the thresholded distance

function at least divides nodes into the foreground and background.



27

2.8 Summary of Methods

The previous sections provided an overview of energy based methods for sur-

face fitting to point clouds. Some of the reviewed algorithms are in 2D space,

but the problems in 2D and 3D are extremely similar, and many of the 3D

algorithms described above were inspired by the 2D algorithms mentioned.

Graph cut based methods have proved to be extremely effective for 3D

surface fitting, as have TV methods. Surfaces constructed using graph cuts

will have small metrification artifacts [5], and level sets based methods will

often get stuck in local minima. TV methods lack metrification artifacts, but

are difficult to implement when compared with graph cuts. Both are great

choices.
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Chapter 3

A Method for Quantitative

Comparison of 4D-CT Lung

Tumour Segmentations

3.1 Introduction

Internal imaging techniques have made it possible to develop treatments that

are minimally invasive. It is, however, incredibly difficult for an oncologist

to accurately determine the boundaries of a tumour; there is huge variability

among a group of oncologists’ segmentations of a tumour in a single patient.

Inter-observer variability is the biggest source of uncertainty in treatment plan-

ning in radiotherapy [31]. We wish to quantify treatment variability based on

target volume segmentation both prior to and following radiotherapy planning

stages. The gross tumour volume (GTV) is the portion of the tumour that can

be imaged: its volume does not necessarily contain the entirety of tumuorous

growth [12]. Often the segmentation process of internal tumours from four-
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dimensional computed tomography (4D-CT) is complicated by tumour motion

during the breathing cycle. Oncologists therefore provide segmentations at ten

breathing phases (0%, 10%, · · · , 90%) to ensure that dosages will be applied

to the entirety of the tumour. These respiratory phases each represent a per-

centage of full inspiration.

In addition, tumours are “gated”, which essentially means that some ad-

justment for the tumour’s position between these breathing phases is accounted

for using some type of motion tracking. Generating a 4D-CT usually involves

combining multiple 3D-CTs at various phases of the breathing cycle.

There has been substantial research into auto-segmentation of target vol-

umes from 4D-CT, but currently the most effective method is to segment the

gross tumour volume (GTV) on each CT data set (i.e. each respiratory phase),

which we then combine these to form a single integrated gross tumour volume

(IGTV). To account for low contrast and/or unseen areas of disease, the mar-

gin of this volume is expanded by 5-10mm. We refer to this larger volume as

the clinical target volume (CTV); it is the area that we wish to treat.

Finally, a similar and related term is the planned treatment volume (PTV).

The PTV’s purpose is to address the fact that uncertainties exist in both the

planning and delivery of radiographic treatment. The dose may be distributed

unevenly, and likewise, there areas of the body for which exposure to radiation

would have severe effects, and thus the PTV must factor these things in as

well. These are referred to as organs at risk (OR) [12].

The data we utilize are unorganized point clouds, segmented tumours from

CT data; it is not intensity data. We start with the points that each physician

specified as the boundaries on each slice in the CT data. The CT scans and

segmentations were obtained at the London Regional Cancer Program. The

subsequent statistical analysis, as seen in [45, 46] were performed by the other
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contributors, and are present to help explain the larger significance of the

work.

We contribute a method for computing a similarity measure for the volu-

metric comparison of sparse point clouds of tumours as segmented from CT

data (as well as the actual computation of volumetric overlap and distance-

based error) for the compared point clouds in the data set.

3.2 Background

For reasons we described in Chapter 2, we rely on Lempitsky and Boykov’s

[38] flux-based method for providing a globally optimal surface for each point

cloud. Their method solves for a sparse set of normals where only weak ori-

entation data is necessary. They rasterize the points onto a dense 3D volume

and solve their functional on a thin band surrounding the points, using the

Touch Expand algorithm. Touch Expand is an algorithm for solving max-flow

problems on a graph with source and sink arcs.

The surface fitting function

max
S←−
∫
S

< vs, ns > ds (3.1)

uses normals and the surface velocity and is specifically for the circumstance

when perfect data is available. That is obviously not the case here, and thus

the elastic membrane prior is utilized. We want to compute

min
S←−
∫
S

λds−
∫
S

< v, ns > ds. (3.2)

For the graph’s set of nodes contains two special terminal nodes, the source
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s and the sink t. We then have non-terminal nodes p ∈ P , each of which

represents a voxel and is connected to its neighbouring nodes via n-links and

terminal links of the form (s, p) and (p, t), as was explained in Section 2.3.

Neighbouring nodes are connected via n-links, these represent the regu-

larizing term. The data term is represented by t-links, where nodes with

potentials greater than zero U(p) > 0 are connected to the source and nodes

with potentials less than zero U(p) < 0 are connected to the sink.

We also utilize the method’s closed topology, which works by extending

the boundary of the dense grid in each dimension and setting the boundary

points’ t-links to a large, negative value.

The sparse vector field {v̄i|p̄i ∈ P} is blurred by the width of the flux’s

diffuse radius, a parameter set prior to run-time. In practice, a box filter is

used to perform this n times, where n is a preset parameter. The result of this

blurring is to obtain a semi-dense field v̄p = ΣN
i=1v̄

i
p. These vectors are a set

of semi-dense averaged normals, obtained by applying said box filter to sparse

normals.

3.3 Problem

The method by which physicians segment a dense 4d image to produce a 3D

point cloud, outlining the perimeter of 2D slices, produces a set of points that

incompletely describes the surface. Specifically, the segmentation is performed

by a physician in an application called Pinnacle Treatment Planning System

[67]. On the periphery of each dimension, the edge is implied, i.e., in one

slice there will be a segmentation performed, and then in the adjacent slice

there won’t be. In some cases, the segmentation in the next-to-last slice will

be substantial and large gaps remain to be filled. This is the reality of the
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current process of segmentation, not a problem with a physician failing to do

their job.

Given sparse and incomplete data, as we see on the top of Figure 3.1a, how

do we compare the difference between two point clouds in a meaningful way?

This makes using volumetric methods for comparison difficult. Similarly, using

point based methods don’t solve this problem either; we have large swaths

which are implied parts of the tumour that also need to be quantified.

3.4 Methodology

Ten patients with Non-Small Cell Lung Cancer (NSCLC) were imaged us-

ing 4d-CT using a Big Bore CT scanner, along with the Real-time Position

Management (RPM) system for gating. The 4d data has x, y, z and intensity

values, where thez-axis is the coronal plane, the x-axis is the sagittal plane,

the y-axis is the axial plane and their units are in millimetres (mm). RPM in-

volves having markers placed on the patient’s abdomen or chest, and tracking

these markers using an infrared camera. Using this, the images are generated

at the breathing phases and correspond to one another, both for a patient’s

images captured at different phases, and other patients’ images captured at

the same phase [46].

Thus, 10 4D-CT images are generated for each patient, an example of

which can be seen in Figure 3.2 A 4D-CT can be thought of as a “stack”

of intensity images: a loaf of multi-coloured bread is an apt comparison. A

physician takes each of these “slices” for a single breathing phase, and must

identify the interior of the tumour for this slice from the exterior, typically

with a mouse by clicking around the boundary of the tumour. In addition

to this being a difficult task – the largest source of uncertainty of treatment
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(a)

(b)

Figure 3.1: Two different views of the same segmented primary GTV. Note
the top of the surface is flat and this made the volume fitting more challenging
because the flux width has to be wider to ensure that the entire surface is
contained. The flat top is visible in (a).
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Figure 3.2: Slices of physician provided segmentations for patient E. The GTVs
on different axes are shown at top left, top right and bottom left, while the
bottom right image shows the superimposed 3D meshes for all segmentations.
Top left shows a slice at z = 52.7, top right shows slice x = 5.62 and bottom
left shows slice y = −18.485.
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is inter-observer variation [31] – it is also a highly time consuming task, as a

single 4D-CT image often has more than 100 slices.

3.5 Point Cloud Construction

Each 2D point (xi, yi) is combined with its zs, the height (i.e. slice) measure-

ment, and these points are collected to make a single point cloud, an example

of which is seen in Figure 3.3. The larger goal of this work is to determine the

efficacy of treatment, but the technical goal is to deliver a method that can

consistently measure how well the treatment is administered, i.e. how much

overlap there is between the tumour and the treated area.

Figure 3.3: Point cloud extracted from physician segmentations.
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3.5.1 Surface Fitting

The nature of the point clouds combined with our need for a watertight surface

created a significant challenge in providing an accurate surface fitting. If one

thinks about the slices of a 3D-CT, the “top” of the tumour will typically be

quite wide in terms of the segmentation. The other points are generally fairly

evenly-spaced, but the top and bottom often have a large gap and this makes

getting a “tight” fitting surface a problem. To generate accurate, automated

and watertight segmentations for almost 1000 images is a challenge.

The flux based surface fitting method requires approximate orientation

data for computing the max-flow/min-cut. It is, as they note, acceptable to

use a single normal for all points in a single range scan. We do not have the

benefit of such orientation information, so we first fit an approximate surface

and then find vertex normals based on this surface.

Our C++ application (trimesh normal) that imported each of these files

sequentially first constructed an approximate surface mesh to get a field of

normal vectors that is approximates the true field. We used the ball pivoting

algorithm to first fit the approximate surface, and then compute the normals

using said surface. Our application uses VCGLIB’s [18] routines for ball pivot-

ing, normal estimation and orientation, and TouchExpand [38] for watertight

surface fitting.

Ball pivoting is an advancing front algorithm [1]. A “seed” point is selected,

and two neighbours are searched for such that they can be circumscribed in the

radius of the ball with an empty interior. If such a pair of vertices are found,

a triangle is created [22]. The ball is then pivoted, i.e. it is rotated around the

edge until it circumscribes another point, forming another triangle. In the case

where multiple points are found, the point with the smallest distance from the
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Figure 3.4: Approximate meshed surface for point cloud seen in Figure 3.3, as
fitted using the ball pivoting algorithm.

edge is chosen. This process is continued until all edges have been traversed,

at which point a new seed triangle is found [1].

The ball pivoting algorithm is uses a sphere of radius r (in our case r = 1)

and “rolls” it over the point cloud, adding a triangle (i.e. edges and a surface)

if the ball contains three points only. In Figure 3.4 we see the approximate sur-

face fit after ball pivoting has been applied, which we then utilize to compute

surface normals.
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Figure 3.5: Normals calculated for an approximate surface.

3.5.2 Computing Normals

We first calculate the per face normals for our newly-constructed mesh. For

each triangle with vertices p1, p2, p3, we calculate vector u = p1 − p2 and

v = p3 − p1, then the normal n = u × v. The choice of variable assignment

determines the orientation of the normal, i.e., whether it points inward or

outward, so we wind the normals subsequently.

We then normalize the lengths of these normals and utilize them to compute

the normal for each vertex. We use equally weighted averaging of facets, i.e.

nv||
∑3

i=1 ni, where nv is a vertex normal and || implies parallelism and thus

subsequent normalization, i.e. nv = nv
nv

|nv | , we borrow this notation from [35].

As we said above, the computed normals’ orientation is strictly based on

our assignment of each pi to a vertex. We the wind the normals to ensure that
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they are pointing outward, an example of such a field can be seen in Figure

3.5.

Computing accurate surfaces for each patient ended up being heavily com-

putationally expensive. Computing almost 1000 watertight, globally optimal

surfaces is expensive, and one of our requirements was that the resultant 3D

volumes are comparable. Our bounding box encapsulated every point, but

also had a boundary at the maximum and minimum of each dimension, as

TouchExpand needs sufficient space around a voxel to approximate the energy

using neighbouring voxels: when neighbouring points are boundaries, we expe-

rienced trouble with convergence. We settled on a grid size of 150×150×150,

which is quite large and resulted in expensive surface computations, but given

that the bounding box encapsulated all tumours, it was necessary to have high

resolution since in practice some tumour volumes would only be occupying a

small amount of the bounding box.

There was an element of trial and error in generating a set of terms that

could accurately capture an appropriate surface for our entire set of point

clouds. In practice it was very easy to tell when a surface was not watertight:

when we computed the volumetric overlap [28] where Eo is zero when overlap

is perfect, and one when no overlap exists.

3.5.3 Minimal Surface Fitting to Segmented Point Cloud

As we discussed in Chapter 2, we use the minimal surface as a guiding principle

for our surface fitting: we wish to obtain the surface with a volume that

encapsulates the points to which we are trying to fit the surface. In the

preliminaries, we mentioned that this idea was introduced to the vision world

by Caselles et al. [14], though their level sets-based method was prone to local
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minima due to the level sets implementation.

Instead, we use a graph cuts-based method, specifically the flux-based

method as introduced by Boykov and Lempitsky [38]. Again, as we men-

tioned in the introduction, graph cuts-based methods promise to provide a

global minimizer for the proposed functional.

From the ball pivoting algorithm, we now have a mesh, comprised of faces

with normals, from which we generate vertex normals. We then rasterize our

vertices onto a discrete grid and compute the flux for these points.

For our purposes, we used TouchExpand with a topology constraint (closed

surface) with a larger diffuse radius for the flux (df = 2, versus the default of

df = 1), as well as an extra iteration. This is to ensure that we can guarantee

a closed surface.

The result of TouchExpand is a binary, dense 3D volume where the inside

of the point cloud is marked by 1’s and the outside by 0’s. Given our problem

of computing volumetric overlap, this is convenient, as we can compute Eo

directly by just iterating over all points.

We performed a cursory visual inspection of each generated mesh to en-

sure a watertight result, however, our method could easily detect when we

lacked convergence, i.e. a closed surface. If the volumetric overlap was less

than a reasonable threshold (generally 70%), it was usually obvious that

trimesh normal surf had failed to obtain a watertight surface for one (or both)

of the point clouds. While each tumour had been segmented by eight doctors,

the level of agreement between them was generally at least 70%.
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3.6 Similarity Quantification

We chose the method of Lempitsky and Boykov [38] after our evaluation of

many methods, as seen in Chapter 2, primarily because it solves both our core

problems. Surface evolution methods and local methods cannot guarantee

finding a global minimum when fitting a watertight surface to a point cloud.

Their TouchExpand library is freely available and has an optional shape prior

for closed surfaces.

Definition 3.6.1 (Volumetric Overlap). For two watertight surfaces S and G

that exist on the same grid structure, if all occupied voxels si are occupied by

G and all voxels gi are occupied by S, we say that a perfect volumetric overlap

(V OE = 0) occurs

More specifically, the volumetric overlap is

Eo(S,G) = 1− (|S ∩G|)/(|S ∪G|). (3.3)

We use Eo, a.k.a. the Jaccard index because, as we point out in [46],

using R2 error is disproportionately punishing as distance increases between a

source and target. Moreover, the numbers aren’t comparable between tumours

of largely varying sizes: we wish to know how well the physician performed

independent of the size of the tumour.

Definition 3.6.2 (Nearest Neighbour of x and Y ). For a point x, the nearest

neighbour in a set of points Y = {y1, · · · , yn} is the point yi with minimum

Euclidean distance from x, i.e.

NN(x, Y ) = min
√

(x− yi)2,∀yi ∈ Y .

Likewise, we also have the Nearest Neighbours for two sets
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Definition 3.6.3 (Nearest Neighbours of X and Y ). For a set of points X,

the nearest neighbours of a set of points Y is a set such that NN(X, Y ) =

NN(xj, Y )∀xj ∈ X .

Definition 3.6.4 (Symmetric Nearest Neighbour). For two sets of points X

and Y , two points xm and yn are considered symmetric (i.e. mutual) nearest

neighbours if yn is the nearest neighbour of xm and yn is the nearest neighbour

of xm.

In practice, we store our point clouds in kdtrees to improve the complexity

of computing nearest neighbour options, which we use to compute the sym-

metric RMS − E, which is the RMS − E for symmetric nearest neighbours.

3.7 Results

As we see in Figure 3.10, segmentations of patient B’s GTV will vary greatly

among physicians. Each colour represents a different physician’s segmentation.

In the top left and bottom left of Figure 3.10, we see a large difference on

the y-axis; each physician has a very different view of what does and does not

encompass the tumour. Indeed, the reconstructions shown in the bottom right

of Figure 3.10 (each has a different colour), are extremely different from one

another.

This, in fact, is a moderate variation. Figures 3.6 and 3.7 show how dra-

matically different a set of physicians’ interpretation of what does and does

not constitute a tumour can be in both primary and nodal data.

For the VOE of the primary IGTV, the combined GTVs from all 10 breath-

ing phases, in terms of observer (intra-patient) we saw a large variation. In-

dividual patient VOE measures can be seen in Figure 3.8. Overall, VOE was
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(a)

(b)

(c)

Figure 3.6: Three different segmentations of patient 3’s nodal tumour by dif-
ferent physicians.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Six segmentations of patient 3’s primary tumour by different physi-
cians.
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Figure 3.8: Graph of volumetric overlap for gated tumours for each patient.

Figure 3.9: Graph of RMS distance for gated tumours for each patient.
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(9.0 ± .6) to (35.6 ± 7.5) and in nodal tumours (16.4 ± .5) to (29.1 ± 4.1).

We saw inter-patient σ from 0.6% to 13.2% for primary tumours and from

1.5% to 13.1% for nodal tumours. For symmetric RMS distances (individ-

ual results can be seen in Figure 3.9), we saw (3.4 ± .4)mm to (7.8 ± .8)mm

for primary IGTVs with standard deviations in the range (0.2mm, 1.2mm).

The nodal IGTVs had mean observer RMS symmetric distances ranging from

(4.1 ± .8)mm to (6.5 ± .7)mm with σ ranging from 0.2mm to 3.2mm. Note

that RMS is a distance but VOE is a ratio, hence the lack of a unit in the

former.

The symmetric RMS distances are affected by the size of the tumour vol-

ume, and the nodes are smaller than the primary volume. It is also substan-

tially more difficult to accurately segment the nodal volumes, partially because

nodes tend to exist in low contrast areas.

Both lymph nodes can be affected, in which case there will be more than

one nodal volume. The process of constructing an initial, approximate sur-

face, calculating surface normals and then utilizing [38] handles this constraint

effectively, utilizing the same parameters as those used for the GTV to ensure

that comparisons are fair.

For each of the hundreds of segmented point clouds, our method success-

fully fit a watertight figure, some examples of which can be seen in Figures 3.1.

This required an element of trial and error, as it was necessary to find param-

eters that would avoid smoothing out contours and still maintain a watertight

surface. Our results demonstrate a clear trend, so in addition to guarantees

that TouchExpand provides in terms of optimality, we can feel confident that

it successfully captures an accurately modeled, representative shape.

The COVs (coefficient of variation) of physician segmentations of both the

primary and nodal IGTVs, as seen in Figure 3.1 are extremely enlightening.
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Table 3.1: Coefficient of Variation for VOE.

Two patients did not have nodal tumours, but of the five of the eight who did,

the COVs of nodal IGTVs were larger than the primary IGTVs, though for

patient D, the primary GTV has a very large COV (93.25%). Overall, both

nodal and primary GTV segmentations tend to have very high COVs.

3.8 Conclusions and Future Work

One clear conclusion from our research is that there is a high degree of variation

among physicians’ interpretations of what is and is not tumourous growth and

thus their resultant segmentations and dose distributions are highly variable.

This is true of both primary and nodal tumours, and though nodal tumour

performance is more variable, both suffer from the same problem to a large

degree.

Advancements in technology have brought about improved target localiza-

tion via gating of imaged data, as well as methods to more effectively target

tumours with radiation. The process of segmentation remains error prone;

quantification of performance and subsequent feedback will only improve the
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performance of physicians and help ensure that patients are being given ap-

propriate dosages.

Because the human cost is so high, experimentation is limited. The data set

that we have produced here was hugely time consuming to compile, meanwhile,

limited human and physical capital within the health-care system is the norm.

Any steps toward automation and standardization will be a huge win, and the

method presented is a step in that direction.

We would like, in future work, to perform a similar analysis on different

types of tumours, in hopes of obtaining a quantitative measure of what types

of tumours are most difficult to segment.
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Figure 3.10: Slices of physician provided segmentations for patient B GTV on
different axes are shown at top left, top right and bottom left, while bottom
right shows the superimposed 3D meshes for all segmentations. Top left shows
a slice at z = 53.400, top right shows slice x = −5.313 and bottom bottom
left shows a slice at y = −17.808.
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Chapter 4

Global Registration of Multiple

Thin Structures

Building a 3D model is extremely useful for many practical applications where

inferring measurements about the shape or size of an object is a require-

ment. With the rapid acceleration of hardware capability in terms of CPU

power, storage and 3D scanners, we can now capture huge amounts of data

and the fidelity of the resultant models is constrained by the quality of merg-

ing/reconstruction algorithms. Due to recent advancements of robotic tech-

nologies and low cost laser scanners, building real time automated systems

is becoming possible for plant science and agricultural applications, where a

major task is to build a 3D model of the plant to analyze different biological

properties (like growth, etc.). However, the complex recursive structure of

a plant makes the problem of aligning multiple views extremely hard, unlike

building a 3D model of a rigid object like Stanford bunny. Also in medical

robotics, automatic analysis of medical images is a crucial step. A common

application is to build a 3D model of thin artery data from multiple tomo-
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graphic or CT images. This involves pairwise registration and alignment of

different scans. However, registration of vascular data is a challenging prob-

lem and despite several years of research ([64], [21]), still it remains an open

problem in medical imaging community. One motivation of this chapter is to

address the problem of aligning multiple views of thin recursive structures like

plant or vascular data. We show an example of the latter in Figure 4.1.

We introduce a drift-free algorithm for merging non-rigid scans, where drift

is the build-up of alignment error caused by sequential pairwise registration.

Sequential pairwise registration entails the alignment of each scan to its neigh-

bour, followed by the alignment of another neighbouring scan to the resultant

scan, and so on. The error between any two scans accumulates the error from

the previously merged scans used in the current merging.

Inspired by Toldo et al.’s work [69] in rigid registration, we solve this prob-

lem by constructing an “average” scan to which we register. For a scan X,

we find the set of points that are Mutual Nearest Neighbours (MNN) for each

point in the scan from every other scan. That is, we compute the MNNs for

each point in X for each scan individually, and we then combine them into a

single scan that is composed of the calculated centroids from each point. We

describe this in Section 4.2. To overcome the limitations of 2D image-based

plant analysis (lack of accurate spatial and volumetric information [53]), 3D

imaging is essential for measuring various plant parameters that indicate plant

growth. A significant body of literature has been reported on plant growth

analysis. For example, Clark et al. [19] proposed a high throughput software

system for analyzing root of a plant. Paproki et al. [53] demonstrated a 3D

approach for measuring plant growth in the vegetative stage. They captured

data as high resolution 2D images and generated 3D mesh data from these

images. Recently, Paulus et al. [55] used 3D laser scanning technology to
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Figure 4.1: A subset of the views of the synthetic vascular data. We take one
scan and then apply a set of random, non-rigid deformations to obtain our
data set.

perform organ classification of plants. Li et al. [41] proposed a technique to

track budding and bifurcation of plants from raw point cloud data.

In order to obtain the 3D structure of an object, a range scanner is used

to capture point cloud data from multiple viewpoints. These data sets are

merged together and then triangulated to build a polygonal mesh of the ob-

ject. However, most of the current methods for doing this concentrate on the

optimization involved in reconstructing standard 3D models, with the con-
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straint that the calculation be computationally inexpensive. Here, we are

interested mainly in modeling complex plant objects and, as well, have to con-

sider the non-rigidity of the plant caused by the inter-scan movement of the

object due to weak and uncontrollable wind currents in the growth chamber.

We are investigating how well a plant’s volume is a function of its growth as

a long term goal.

Registration is a fundamental task in 3D reconstruction, where the aim is to

find a coordinate transformation to align source and target views (referred to

as pairwise registration). The basic Iterative Closest Point (ICP) [2] algorithm

finds a rigid transformation that registers two views using local optimization.

Several variants and applications of the classical ICP were reported in the

literature [71, 78, 47, 57, 59, 30, 4]. Registration of the set of plant range

scans, using the existing methods whose implementations are available, were

poor because of the inter-scan movements between different parts of the plant

range images (the plant is not rigid). Further, due to the way our (Arabidopsis)

plant’s branches are interleaved, we found that ICP could not find a reasonable

registration and would frequently get stuck.

Recently, Gaussian Mixture Models (GMM) have been used for non-rigid

registration. Our plant data is extremely sparse in the flowering stage (with

long stems, a few leaves and flowers), so it is necessary to use a large area of

support to construct the GMMs to smooth the solution space, and as a result,

the registrations are not sufficiently good to pass a visual inspection. We have

concluded from our experimental work, that Myronenko et al.’s Coherent Point

Drift (CPD) [50, 49] method works best for aligning two point clouds of the

plant data. However, Myronenko et al. didn’t consider aligning more than two

views. We propose an algorithm based on CPD which can align many views

with minimal error. Our data (of the Arabidopsis plant) consists of 12 views



54

of the plant, uniformly sampled at 30◦ increments, thus allowing a complete

3D reconstruction of the plant. We roughly align adjacent point clouds from

adjacent range scans by performing rigid pairwise registration and then use

our global method to create the final point cloud.

4.1 Previous Work

Among several robust methods for registration, some notable work can be

found in [16, 70, 77, 65]. These algorithms belong to a similar class of ap-

proaches. We found that various non-rigid registration methods are reason-

ably effective in registering adjacent scans, but any attempt to merge multiple

registrations into a single point cloud was problematic.

Fitzgibbon [23] modified ICP by deriving an error function between the

model and target data which is minimized by the Levenberg-Marquardt algo-

rithm (LMICP). The energy is formulated in terms of the L2 distance of the

closest point in the data to each point in the model, but he instead computed

distances to each point in a discrete volume, thus allowing to compute the

spatial derivatives needed for energy minimization. This approach makes the

registration process more general than ICP. The method requires rigid data

points and works well on the standard Stanford Bunny data set (which satis-

fies this constraint). Applying the algorithm to our plant data yielded poor

results.

The Point Cloud Library (PCL) [42] provides some libraries for point cloud

alignment and is based on Rusu et al.’s method [61, 60] for Fast Point Feature

Histogram (FPFH). Rusu et al.’s contribution is in finding efficient matching of

features between two sets of point clouds. Each point in a data set is assigned

multiple informative labels as features and these are then used to establish
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correspondence, thus resulting in a good initial alignment for registration.

The geometrical information (16 dimensional) for the neighbourhood of each

point is extracted and stored in histograms. The method has also been shown

to be robust to pose invariance. Unfortunately, this method still does not

overcome the difficulties associated with iterative algorithms like ICP. We have

implemented Rusu et al.’s algorithm using the point cloud library. The results

are shown later in this section.

Some robust rigid registration methods have used GMM: Jian and Ve-

muri [33] followed this approach (GMMReg) and represented the point set by

Gaussian mixtures. They proposed an approach to minimize the discrepancy

between two Gaussian mixtures by minimizing the L2 distance between two

mixtures. However, they can’t handle large data sets. Their experimental re-

sults are for the downsampled Bunny data set. The algorithm does not work

for our plant data set (over 2 million points). In fact, for complex plant struc-

tures, it is impossible to retain the geometry of the model by downsampling

the over 2 million points (to about 5000 points, which the algorithm can pro-

cess).1 The plant under consideration has lot of branches and has a canopy of

leaves at its base, which makes the geometry more complicated. The Stanford

Bunny can be approximated by a few hundred points, but for plant structures

using such a small number of points is not possible. Hence, we could not apply

this algorithm in our plant data.

The Coherent Point Drift (CPD) registration method was proposed by

Myronenko et al. [50, 49]. Their method is based on GMM, where the cen-

troids are moved together. Given two point clouds,M = (x1, x2, ..., xm)T and

S = (y1, y2, ..., yn)T , in general for a point x, the GMM probability density

1Correspondence between the authors and ourselves revealed that this downsampling
could not be avoided.
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function will be p(x) =
∑M+1

i=1 P (i)p(x|i), where:

p(x|i) =
1

(2πσ2)D/2
exp[−||x− yi||

2

2σ2
]. (4.1)

Instead of maximizing the GMM posterior probability, the negative log-likelihood

function can be minimized to obtain the optimal alignment:

E(θ, σ2) = −
N∑
j=1

log

M+1∑
i=1

P (i)p(x|i). (4.2)

They iteratively use the Expectation Maximization algorithm to optimize

the cost function. The algorithm is also robust to noise. We have used this

algorithm and have run the same 2 adjacent point clouds of our plant data as

for the other algorithms we tested.

We present a comparative framework to perform a quantitative comparison

in registering two point clouds. First, we show our experimental results on

the Bunny data (downsampled to 376 points). We show our results on real

Arabidopsis plant data. The results are shown in Figure 4.2 for the Stanford

Bunny data set and Figure 4.3 for the real Arabidopsis plant.

To perform quantitative analysis of results we manually chose a small num-

ber of 3D points in the 2 scans that we believe are correct correspondences. For

the Bunny and Arabidopsis plant data, we manually acquired 18 and 44 cor-

respondences respectively and used them as ground truth. Using that ground

truth, we computed the average error rate as the L2 distances (in mm) between

source and target points, where the correspondence was manually measured

for the different algorithms. These are listed in Table 4.1. We can observe

that for Bunny data sets, almost all the algorithms work well. However, for

real Arabidopsis data, the error measures are considerably higher. We note

that while collecting the ground truth correspondence points, there may have
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Figure 4.2: Pairwise registration results for two scans of the Stanford Bunny.
Top row: original two views, Bottom row: results obtained using Rusu et al.
(FPFH) [61], Fitzgibbon (LMICP) [23], Jian and Vemuri (GMMReg) [33] and
Myronenko and Song (CPD) [49].

Algorithms

Data sets FPFH LMICP GMMReg CPD

Bunny 0.149 0.046 0.012 0.014
Arabidopsis Plant 9.661 8.302 N/A 3.254

Table 4.1: Quantitative results for different algorithms and data sets.

been some errors. Although it is difficult to capture the exact error, we expect

the error to be in the range 2-5 mm for each point. As we can see, CPD works

best among all other methods in processing plant data.

4.2 Proposed Method

We first approximately align the scans sequentially, and then we use a global

method to refine our result. The global method involves registering each scan
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Figure 4.3: Pairwise registration results two scans of the real Arabidopsis plant
data. Top row: the original two views. Bottom row: results obtained using
Rusu et al. [61], Fitzgibbon [23] and Myronenko and Song [49].

Xi to an “average” shape, which we construct using the centroids of the mutual

nearest neighbours (MNN) of each point. For Xi, we use scans Xj where j 6= i

to obtain the average shape Ycent from the centroids, and Xi is then registered

to this average shape. This is repeated for every scan until the result converges.

We modify Equation (4.1) to perform global registration

p(x|i) =
1

(2πσ2)D/2
exp[−||x− ŷi||

2

2σ2
], (4.3)

where ŷi ∈ Ycent are the points in the target scan Ycent , which is constructed

from all scans other than itself.

For a pair of scans X and Y , we say that a point xi ∈ X and yj ∈ Y are
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MNN if xi = xin and yjn = yj, where

xin = min(|xp − yj|),∀xp ∈ X, (4.4)

and

yjn = min(|yq − xi|),∀yq ∈ Y. (4.5)

For each point xj in scan Xi, we find the set of points {xk|xk ∈ Xl ∧

MNN(xk, xj)}, where l 6= i, i.e. all scans other than Xi. For each of these

sets of points xk, we find the centroid

xcent =
n∑
i

xk
n
. (4.6)

We register Xcent, the set of centroids calculated for each xj, to scan Xi.

Although CPD alone is effective in registering pairs with a fair amount of

overlap, when registering multiple scans, especially scans that have not been

pre-aligned, our method achieves a much better fit both visually and quan-

titatively than CPD by itself, utilizing sequential pairwise registration. Our

method is a two step process, beginning with aligning the scans approximately.

We then register a single scan to the “average” shape, constructed from all

other scans, and update the set to include the newly registered result and

performing the same process with all other sets of scans. In this way, we avoid

accumulation of merging error.
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4.2.1 Approximate Alignment

We capture a set of scans around the plant at 30◦ increments. After acquiring

them, we first solve for the rigid transformation T0 = (R0,~t0) (where R is a

rotation angle and ~t is a translation vector) between the the first scan (X0)

and the second scan (X1) using the rigid version of CPD. After we solve for

~t0, for each scan Xi, we apply the transformation i times as follows:

X̂i = RiXi + ~ti, (4.7)

where Ri =
∏i

k=0R0 and ~ti =
∑i

0
~t0. Our new set of transformed scans

X̂ should now be roughly aligned. We use this method to obtain a rigid

registration. The initial registration is important when the pair of scans to be

registered has minimal overlap. The approximately aligned scans can be seen

in Figure 4.4.

4.2.2 Global Non-Rigid Registration via MNN

Once the initial registration is complete, we use CPD in conjunction with MNN

to recover the non-rigid deformation field that the plant undergoes between

the capture of each scan. At this point, the scans should be approximately

aligned to one another. We now construct the centroid/average scan and then

register to it.

Global Registration

We use Algorithm 1 to merge all scans, where MNN(·) computes the mutual

nearest neighbour for each point in scans Xi and Xj and the centroids function

likewise takes the centroids computed for each point in each scan and combines
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them into one average scan using Equation (4.6). For each point in scan Xi,

we find the single nearest neighbour from all other scans and use the set of

distances to compute the L2-norm.

Algorithm 1 MNN Registration

Require: X = [X1, · · · , Xn], where each Xi is a range scan that has been
approximately adjusted. A predefined tolerance tolmax.
tol =

∑N
i=1 error L2(Xi)/N

while err > tolmax do
for i = 1 to N do

for j = 1 to N do
if j 6= i then
Xicent = MNN( Xj, Xi )

end if
end for
Xcent = centroids( X1cent , · · · , XNcent )
Xi =register cpd( Xcent, Xi)
err = norm(Xcent, Xi)

end for
end while

4.3 Results

We show our results for the synthetic and plant data in the following sections.

4.3.1 Synthetic Vascular Data

We first demonstrate the efficacy of our method on synthetic vascular data.

We take a 3D point cloud of synthetic veins, as generated by VascuSynth [32]

and apply a non-rigid deformation to the point cloud to create a total of 20

scans. This was performed using the deformation method provided with the

CPD software, which essentially constructs a matrix from random data and
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uses that to construct a displacement field to apply. We use the parameters

sampling = 0.1, power = 3 and λ = 4, the latter of which represents the

relationship between fit and regularization. Initially and σ = 5 and we increase

its value by 0.5 for each successive deformation. This gives us a new set of

point clouds, as seen in Figure 4.6.

The magnitude of this transformation is substantially larger than those

created by the wind in the Arabidopsis set. We utilized more scans than we

did with the Arabidopsis in hopes of verifying our hypothesis that pairwise

registration gets progressively worse as we add more scans, though the effect

of drift is partially obscured by the fact that the deformation increases between

the first and each successive scan.

The L2 error of the merged scans using sequential pairwise was higher

than MNN and the resultant shape no longer looked like the initial one when

we used the default CPD parameters (λ = 1, β = 1), where λ controls the

“stiffness” and β controls the point “spread”. In order to maintain the shape

of the veins, we couldn’t use a value of λ < 70. The quantitative results for the

pairwise sequential method in Figure 4.7 were calculated using λ = 90, which

still ends up rendering a badly warped result. In addition, as we increased the

value of λ, the drift increased quickly.

By contrast, MNN performs very well on this data, as seen in Figure 4.6.

Quantitatively, we have shown that it easily outperforms sequential pairwise

registration, that our method limits drift.

4.3.2 Plant Data

Figure 4.5 shows all 12 scans, merged into a single point cloud after sub-

sampling each scan. Each colour in the point cloud represent a different scan.
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Despite the noisiness of the range scans from jitter, our method successfully

performed the 12 view registration, resulting in a single point cloud that ac-

curately captures the shape of the Arabidopsis plant. By ensuring that the

scans are all approximately registered before proceeding (for both methods),

we minimize the likelihood that erroneous parts of the point cloud data-sets

will bias the motion of a scan that is being registered. Figure 4.8 displays the

resultant error between the first scan in the set and all subsequent scans. First,

we see that the error is lower for scans that have more overlap (the first scan

shares a fair deal of overlap with the last, for example) for both sequential pair-

wise and our proposed methods. We see that our method always outperforms

its pairwise counterpart. Sequential registration still rendered a useful result,

though as the number of scans grows, the drift would theoretically increase.
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Figure 4.4: 12 scans of the Arabidopsis plant, prior to registration, but with
rotation and and translation pre-applied.
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(a)

(b)

Figure 4.5: 12 scans captured in 30◦ increments about the plant and then
merged into a single point cloud using MNN. Shown from two viewpoints,
front facing on the left and from above on the right.
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Figure 4.6: 20 synthetic scans of vascular data merged into a single point cloud
using MNN, as seen from two viewpoints, front and back.
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Figure 4.7: MNN versus sequential pairwise registration on vascular data,
registering the first scan to each of the subsequent scans.
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Figure 4.8: MNN versus sequential pairwise registration on the plant data.
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4.4 Conclusions and Future Work

We have presented an approach to merge multiple scans into a single point

cloud. Our plan is to triangulate this cloud into a triangular mesh and measure

the volume of the plant. We hope that the quantitative volumes of the plant

over time comprise a growth metric for the plant that is both non-invasive and

non-contact. We have chosen an effective algorithm to work on sparse plant

data and built our model on top of it: it can handle thin, non-rigid objects.

One possible future research direction may be computing a quantitative anal-

ysis of how many scans should be sufficient to reconstruct the plant within

tolerable range (for example, using 8, 6 or 4 scans instead of 12 scans), and

we are also working on faster methods for registration using approximations

of CPD or even a coarse-to-fine scheme, as our current solution will take hours

to register a pair of Arabidopsis scans. We also intend to use the junction

points proposed by Chaudhury et al. [15] to obtain an initial alignment more

efficiently.
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Chapter 5

Kernel Density Filtering for

Noisy Point Clouds in One Step

We present a method for filtering noisy point clouds, specifically those con-

structed from merged depth maps as obtained from a range scanner or multiple

view stereo (MVS), applying techniques that have previously been used in find-

ing outliers in clustered data, but not in MVS or range scanning. This work

initially fit well with the work presented in Chapter 4, when we were using

an earlier version of the registration algorithm and this filtering aided in the

convergence of the calculation. However, when we switched to a global method

(as presented in Chapter 4) the filtering only added minimal improvement to

the registration at significant computational cost. That said, computing a

GMM for a large point cloud is very CPU intensive, taking 12 hours for a

single Arabidopsis scan. Using a kernel density method like the one described

in this chapter is much simpler and will yield results in a more efficient fashion

than traditional GMMs.

We estimate the probability density function (PDF) over the space of ob-
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served points via a technique called kernel density estimation. We utilize

Mahalanobis distance and a variable bandwidth for weighting kernels accord-

ingly, based on the nature of neighbouring points. Further, we incorporate a

distance metric called the Reachability Distance that, as we show in our re-

sults, gives better discrimination than a classical Mahalanobis distance-based

metric. With the addition of this nearest neighbour metric, we can produce re-

sults that are ready for meshing without any post-processing of the cloud. We

mesh our filtered point clouds using a traditional surface fitting technique that

is unequipped to deal with noise to demonstrate the efficacy of our method.

5.1 Introduction

Following a renaissance in energy-based MVS methods in the literature, there

has been a return to methods that merge depth maps from multiple views

to generate a representative point cloud. This change in methodology can be

traced back to the work of Goesele et al. [25], whose simple method generated

depth maps for each camera using adjacent views, and then merged those

depth maps using third-party software designed to merge range images into a

complex model. Prior to this, the MVS literature was dominated by methods

that evaluated photo-consistency over a dense grid and then used an energy

minimization technique to extract a representative surface, which is often the

minimal surface.

A cursory glance at recent results on the Middlebury multi-view stereo

data sets [25] indicates incredible improvement of modern stereo matching

algorithms over their predecessors. Such advancements are possible because

of the improvements in disparity map generation like ordering constraints, bi-

directional image matching, etc. That said, merging multiple depth maps and
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fitting a surface to the resultant point cloud remains a challenging endeavour,

at least partially because of the presence of outliers and the general location of

these outliers. These outliers can be very difficult to filter, as outlier clusters

can occur both near to and far away from the true surface. Mahalanobis

distance-based density estimation cannot correctly identify points that are

close to the centre of these outlier clusters as not being part of the surface.

The goal of this algorithm is to demonstrate that it is possible to fit a

surface to a point cloud with very large quantity of outliers (a ratio of 5:1

outliers to inliers), by filtering using anisotropic kernel density estimation with

variable bandwidth, and subsequently fitting a surface to this filtered cloud

using standard surface meshing software [17]. We take clean, merged point

clouds and populate them with noise. This way, we know the ground truth

and can thus quantify this method’s ability to discriminate inliers from outliers

with the Receiver Operating Characteristic (ROC) curves [56].

Our method uses a process called kernel density estimation to construct

a probability density function over the space of discrete data that we obtain

from measured data. The target application is filtering point clouds obtained

from MVS data. Xi et al. [75] and Schall et al. [63] utilize a similar process,

but our method differs from theirs in that we use a variable bandwidth based

on the nearest neighbour of each point that contributes to a density estimate,

as inspired by [37, 43, 68]. These works utilize variable bandwidths in finding

outliers in clustered data. Our key observation is that these metrics are also

very effective in filtering MVS and range scan data. Mahalanobis distance

works well for discrimination of points near the true surface, in our experience

better than Euclidean distance-based methods, but is prone to accept false

positives near the centre of a cluster of outliers. Xi et al. [75] note that,

when necessary, they apply their filter repeatedly until they get a result that
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is visually acceptable. Our method provides sufficient discriminatory ability

such that it can be applied to a noisy point cloud once and the result can be

meshed as is. We quantify our results and compare the discriminatory ability

of our method with the Mahalanobis distance-based method used in [75].

5.2 Previous Work

Lu et al. [44] utilize tensor voting (TV) with a minimal surface-based fitting

scheme to reconstruct surfaces from highly noisy (1:1 signal-to-noise ratio)

point clouds. They use the level set formulation of Zhao et al. [79] to evolve

an initial implicit surface to fit the points, but add an extra term to influence

the motion in the direction of the tensor.

When working with noisy data, one way to deal with outliers is to average

them out. This is the method utilized by Goesele et al. [25]. The software they

use, VRIP, converts each depth map into a signed distance function (SDF),

and then merges these SDFs using a weighted averaging based on the angle

between the observed points and the sensor in each depth map. The area over

which a point can be averaged with another point is referred to as its “ramp”.

Such a method results in smoothing of observations, and subsequent depth

based methods that explicitly filter out a subset of the point cloud construct

a surface from actual, unsmoothed observations.

Li et al. [40] identify “tracks”, matched features that are found in at least

three different views of an object, and then use bundle adjustment to recover

the 3D point. If the reprojection error is above a certain threshold in one of

the images, the point in question is discarded.

Campbell et al. [13] keep multiple hypotheses for prospective matches,

and then use a spatial consistency measure in a Markov Random Field min-
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imization scheme to recover better matches. If a point’s hypotheses are not

spatially consistent with its neighbours, it is discarded. Bradley et al. [6]

construct point clouds using multi-scale matching and then use an iterative

filtering method for outlier detection on the resultant point cloud. They com-

pute the projection of a point and its neighbours to a plane and then evaluate

the fit using a density function.

Xi et al.’s [75] work is the reference point for our method. They merge

depth maps constructed from multiple views and use an anisotropic kernel

density estimation method combined with a projected line search to obtain

the maximum along each normal to find the maximum area of density on each

normals path. We forego the use of reprojection error and “ramps” and instead

use a density estimator to determine the quality of an observation. Schall et

al. [63] also use an anisotropic kernel for filtering. Their method is similar to

Xi et al. [75] in that they use an iterative method to move points along the

normal direction to areas of maximal density. Further, they eliminate noise

from high quality scans, and generate smooth surfaces from very high quality

scans. Our focus is somewhat different, in that we study the circumstance

where the quantity of outliers equals or exceeds the number of inliers, testing

the ability to discern between inliers and the types of outliers that we see in

photometric stereo, i.e. those that are both clustered near and far from the

true surface. Further, we wish to simply filter the point cloud, as opposed to

iteratively shifting the points to the area of highest density along the normal.
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(a) Buddha statue.

(b) Statue, noise added.

Figure 5.1: The Buddha point cloud with 5:1 ratio of noise to inliers added.
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(a) Bunny.

(b) Bunny, noise added.

Figure 5.2: The Bunny point cloud with 5:1 ratio of noise to inliers added.

We assert that if a slightly better density estimator is used, one that uses

both Mahalanobis distance, an adaptive bandwidth and the reachability dis-
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tance utilized previously for clustering by Breunig et al. [8], we can mesh

resultant point clouds without any further complication. We use a more ad-

vanced nearest neighbour metric, point clouds from range scans and MVS can

be filtered without the projected line search while yielding an output cloud that

can be meshed using an off-the-shelf method without any other pre-processing.

We test this method on both the Bunny and Buddha data sets, as seen in Fig-

ures 5.2 and 5.1 respectively, where we can see that five randomly generated

outliers have been added to the bounding volume for every point on the sur-

face.

5.3 Obtaining a Probability Density Function

from Measured Data

The easiest way to construct a probability density function from a set of points

is a binning approach, similar to the construction of a histogram. Consider

the problem in 1D: Say we have a set of measured data X = [x1, x2, . . . , xn]

where each data point xi is a scalar-valued observation. If we construct a set

of k bins and simply count the number of items that fall within each bin, we

can easily construct a histogram.

A number of questions arise:

• How many bins should we use?

• Where should our bins start and end?

• How does this strategy scale in higher dimensions, i.e., how do we deter-

mine the orientation of the bins in multiple dimensions?

The next section introduces a better method for constructing a PDF.
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5.3.1 Kernel Density Functions

Kernel density functions propose to solve the problem of obtaining a proba-

bility density function in a different way. Instead of creating arbitrary bins

of data, the density is instead evaluated at each point, using the distance to

neighbouring points as input to a kernel function, the most commonly used of

which is the Gaussian kernel [75]

K(x) =
1

(2π)d
exp

(
−x

2

)
, (5.1)

where d is the dimension. This is referred to as the Parzen Window technique

[54]. For each point xi ∈ X, we rely on all points within a predefined radius

to calculate the density of xi using the kernel K(x)

f(xi) =
Ck,d
n · h

n∑
j=1

K

(
||xi − xj||2

h

)
, (5.2)

where the points xj are the n neighbouring points of xi within radius r, Ck,d

is a weight constant and h is the bandwidth.

Intuitively, f(xi) will be close to 1 if the sum of distances between xi and

its neighbouring points is small compared to the bandwidth. In other words,

areas that contain a large number of points inside of their radius will yield a

large density estimate and thus are more likely to be considered inliers than

outliers.

5.3.2 Mahalanobis Distance

Xi et al. [75] utilize a more advanced method for filtering, based on the ob-

servation that the distribution of noise in point clouds tends to be anisotropic
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in nature. Thus, they evaluate an anisotropic kernel f of fixed radius r and

shape at each point x to estimate its density utilizing its neighbouring points

within distance r. Instead of using the L2 distance between points within r,

they find the distance to the centre of mass by making use of

f(x) =
Ck,d
n

n∑
i=1

K(dΣ(x, xi)), (5.3)

where the kernel K is as defined previously. dΣ(·, ·) is the Mahalanobis dis-

tance, which is defined as

dΣ(x, xi) =
(
(x− xi)TH−1(x− xi)

)1/2
,

where the covariance matrix

H = DDT ,

can be constructed using

D = (x1 − x, x2 − x, · · · , xn − x).

They find the location of highest density within the neighbourhood (r) and

then use the distance to this point as the distance for the kernel to evaluate.

This method discriminates between inliers and outliers when near the “true”

surface much more robustly than the basic kernel density estimation method

that we defined in Equation (5.2). We found that this method still had good

discriminatory power when the signal-to-noise ratio was 1:10, i.e. we added

10 randomly generated outliers for each inlier in the point cloud’s bounding

volume. Their method is prone to errors when there are clusters of outliers in

a small area, a common occurrence.
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This method isn’t new, it has been used in outlier estimation when dealing

with clusters of data in the past. Likewise, our work is based on well-founded

principles that are known in the literature. It hasn’t been applied to this

domain, and its discriminatory ability is notable.

5.3.3 Local Bandwidth Estimation

The idea to use a local estimate of bandwidth h(xi) comes from Latecki et

al. [37] who applied it to detecting outliers in clusters of data. It effectively

unweights points whose n-th nearest neighbour is any larger than a very small

distance from the point itself. Applying this to surface fitting makes a lot of

sense, as points that lay near the true surface should have a neighbour in its

very near vicinity.

5.4 Methodology

Based on the density of the nearest neighbour, we can weight each kernel

accordingly. In other words, if a neighbouring point xi itself has a low density,

the bandwidth h(xi) will be lower and thus the contribution to the magnitude

of f(x) will be smaller than an equally distant point that exists in an area of

higher density.

f(xi) =
1

n

n∑
j=1

1

h(xj)d
K

(
dΣ(xj, xi)

h(xj)

)
(5.4)

The bandwidth is the distance of the nearest neighbour to xi, the dimension

d is 3, n = size(NN(xi)), where NN(·) is the set containing the nearest

neighbours of xi, the points within the radius r. The Gaussian kernel is as
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defined previously. The bandwidth,

h(xj) = min(dΣ(xj, xk))

where xk ∈ NN(xj), i.e., xk is the nearest neighbour to xj, when Mahalanobis

distance is used to determine the “closeness” of two points. This method

differs from the anisotropic kernel density method described in the previous

section in that the density of a point relies on the density of its neighbouring

points. In other words, we could have a point xi and its nearest k points, and

in the previous method, its kernel density estimate q(xi) would be the same

irrespective of the points surrounding these neighbours.

5.4.1 Reachability Distance

We can extend this idea further by replacing the numerator of Equation (5.4)

with a more robust metric called the reachability distance, where

rd(xi, xj) = max(dΣ(xj, xi), dΣ(xk, xj)). (5.5)

This yields

f(xi) =
1

n

n∑
j=1

1

h(xj)d
K

(
rd(xi, xj)

h(xj)

)
, (5.6)

and is thus composed of both the distance from xi to its neighbours xj, and dis-

tances of neighbouring points xj to their nearest neighbour (xk). If rd(xi, xj) =

dΣ(xi, xj) then the inside of K is − dΣ(xi,xj)

2dΣ(xj ,xk)
where the numerator is greater

than the denominator, and thus yields an increasingly smaller value as this dif-

ference increases when evaluated by the exponential. If rd(xi, xj) = dΣ(xj, xk)

then the inside of the exponential is −1
2

and thus gives the minimal value.
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If this neighbour xj’s nearest neighbour is quite far away, i.e., xk is a

somewhat “isolated” point, it gives us very little information about the nature

of point xi, as being in the same neighbourhood as a likely outlier is not a

great clue that xi is an inlier. If, however, the distance to xj is larger than the

distance to xj’s nearest neighbour, we can say that having such a point in the

neighbourhood is good evidence, and it is thus more likely that xi is indeed

an inlier!

5.5 Kernel Density Filtering on Data with Ad-

ditive Noise

We approach it first using anisotropic kernel density estimation, where we eval-

uate the density of the data within a set radius of each data point. Equation

(5.3) evaluates the contribution of each point within this area, and takes into

account the local density of each of these points as well.

We filter the signal by removing points whose density are below some

threshold τ ∈ [0, 1]. In practice, the median density is used. The method

struggles with clusters of outliers though, and a substantial percentage of in-

liers are removed before the outliers fall below τ .

Interestingly, when we use the nearest-neighbour kernel density estimate,

even in conjunction with the less discriminative L2-norm, we still recover a

much more accurate signal. That said, the performance of the anisotropic

kernel density near the signal is better.
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5.6 Results

We test our algorithm on the Bunny and Buddha data sets from Stanford and

add random noise of a 5:1 ratio to determine the ability of our density-based

method to discriminate between inliers and outliers. This means that for each

point on the surface, we add five randomly generated outliers in the bounding

box. To quantify the filter’s ability to discriminate between an inlier, i.e. a

member of the normal class (“NC”) and an outlier (“OC”), we generate a

ROC curve, which plots the detection rate (rD ) versus the false alarm rate

(rFA)

rD = TP
TP+FN (5.7)

rFA = FP
FP+TN (5.8)

where TP is the number of true positives, FN is the number of false negatives,

and FP is the number of false positives and TN is the number of true negatives.

The nature of these terms is explained the confusion matrix seen in Table

5.1. A perfect ROC curve has an area of one beneath said curve.

Predicted Predicted
Outlier Normal

Class (OC) Class (NC)
Actual True False

Outliers Positive Negative
Actual False True
Normal Positive Negative
Class

Table 5.1: Confusion matrix describing the different classifications of inliers
and outliers.

As can be seen from the ROC curves in Figures 5.4 and 5.3, our method of-
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Figure 5.3: ROC curve for anisotropic filters on the Bunny point cloud with
5:1 noise. The reachability distance/adaptive method is in red.
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Figure 5.4: ROC curve for anisotropic filters on the Buddha point cloud with
5:1 noise. The reachability distance/adaptive method is in red.
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(a) Reachability distance. (b) Mahalanobis distance.

Figure 5.5: Buddha, filtered. The reachability distance-based filtering method
leaves almost no outliers.
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fers excellent discrimination between inliers and outliers in both circumstances.

When one uses a strictly Mahalanobis-based density estimator on the Bunny

data, a substantial portion of outliers remain. To make this more clear, we

display the remaining points in the resultant cloud in Figure 5.6. There are far

too many outliers in Figure 5.6b to allow for the fitting of a surface points, and

true surface points are being thresholded as we remove more outliers. In Fig-

ure 5.6a, a few outliers remain, but they occur in such low densities that they

do not interfere with the subsequent surface fitting. We meshed the points

from Figure 5.6a in Figure 5.6c with the ball pivoting algorithm of Bernardini

et al. [1].
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(a) Reachability distance.

(b) Fixed Mahalanobis.

Figure 5.6: The Bunny point cloud with 5:1 noise, filtered.
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Likewise, we see that our method works extremely well on the Buddha data

set. Most impressive is its ability to handle the thin part of the statue above

the head. As we see in Figure 5.5, despite the addition of 5:1 noise, we can

still perform an accurate reconstruction of the surface with our method.

We also experimented with using the k nearest neighbours of xi for esti-

mation of the Mahalanobis distance in the above examples, but we found that

the slight increase in discrimination was not worth the added time complexity.

Adjusting the area of support, r, has an effect on the nature of the filtering.

If the algorithm is having trouble removing outliers near the surface, it may

be useful to decrease the radius of the points that contribute to the density

estimate. Increasing r will include more points with a larger distance to a point

xi if it is an outlier, but it will do the same for an inlier. The radius should

be large enough to contain a sufficient number of points (for our purposes,

≥ 50), but small enough that the density estimates are excessively “smooth”.

Ideally, the estimation of f for any outlier near the surface will include a

large sampling of inliers (i.e. actual surface points) to weight the centre of

mass correctly, yielding a small distance to points on the surface, and a large

distance to outliers. Further, if there are thin areas on the surface, a small r

can be useful to ensure that a density estimate at x is only influenced by its

neighbours on the surface, not close by points that belong to a different part

of the surface.

5.7 Conclusions and Future Work

We have demonstrated that our filtering method performs well on both the

Buddha and Bunny data sets when they are corrupted by large amounts of

noise. In reality, point clouds obtained from MVS or range scanning are not
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even near as noisy as our two corrupted point clouds. That said, the nature

of the noise may be such that noise resides near the true surface, and it will

thus be more difficult for the method to decipher whether a point is an inlier

or an outlier.

In the future, we would like to automate the process of fitting a surface

to our filtered cloud, possibly by including our density estimate in a surface

evolution scheme, similar to the level set-based method of Zhao et al. [79],

with an extra term for density. It might be effective to include the confidence

measure of each point in the point cloud from the stereo matching process.

In the end, the goal is to obtain extremely accurate multi-view surface recon-

structions of objects from multiple views, and a filtering method like the one

we’ve presented is a step in that direction.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Most meaningful problems in computer vision are under-constrained, and this

is true of surface fitting to point clouds: there are an infinite number of possible

surfaces that fit to a set of scattered points [27]. It is thus extremely important

to leverage the best tools available for solving the optimization problems that

arise. We frame problems in a global context when it is possible to do so, and

we attempt to utilize the appropriate models for capturing the true nature of

the data with which we work. The methods that we described in the preceding

chapters for filtering, registering and comparing 3D point clouds adhere to

these ideas.

Chapter 3 outlined our method for quantifying performance of physicians

in segmenting tumours from CT data. We based our method on Boykov and

Lempitsky’s [38] method, and by having a guarantee that our watertight sur-

faces are minimal, we can make meaningful insights into the variability of

tumour segmentation.
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Chapter 4 described our method for registration of multiple thin point

clouds. By iteratively registering each scan to a target scan that captures all

scans, we removed the issues with drift that are endemic to sequential, local

registration methods for multiple scan registration.

Finally, Chapter 5 described a method for filtering very noisy point clouds.

By using reachability distance for estimating kernel density, we are able to

remove far more outliers in a single step than we would be able to using a

regular Mahalanobis-based kernel density estimate.

6.2 Future Work

We wish to continue our work in point cloud registration, specifically registra-

tion of point clouds of thin structures. We will be exploring use of the bounded

generalized Gaussian mixture model [51] to capture thin data structures more

effectively. We would like to investigate methods for faster registration of large

point clouds, either through more efficient computation of mixture models or

by utilizing kernel density methods. It should also be noted that many of these

algorithms are parallelizable to a degree, and this strategy should be explored

as well.

We also wish to quantify physician performance on different types of tu-

mours, in hopes of obtaining a measure of what types of tumours are the most

difficult to segment. Finally, we would like to automate the process of fitting

a surface to highly noisy point clouds by incorporating our density estimate

in a surface evolution based scheme.
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