Pulmonary Imaging to Better Understand Asthma

Sarah Svenningsen
The University of Western Ontario

Supervisor
Grace Parraga
The University of Western Ontario

Graduate Program in Medical Biophysics

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Sarah Svenningsen 2015

Follow this and additional works at: http://ir.lib.uwo.ca/etd

Part of the [Medical Biophysics Commons](http://ir.lib.uwo.ca/etd), [Respiratory System Commons](http://ir.lib.uwo.ca/etd), and the [Respiratory Tract Diseases Commons](http://ir.lib.uwo.ca/etd)

Recommended Citation
http://ir.lib.uwo.ca/etd/3352

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.
PULMONARY IMAGING TO BETTER UNDERSTAND ASTHMA

(Thesis format: Integrated Article)

by

Sarah Svenningsen, BMSc

Graduate Program in Medical Biophysics
Schulich School of Medicine and Dentistry

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Sarah Svenningsen 2015
Abstract

Asthma is characterized using the spirometry measurement of the forced expiratory volume in one second (FEV1). Simple and inexpensive, FEV1 provides a global estimate of lung function but this metric cannot regionally identify airways responsible for airflow limitation, asthma symptoms or control. Work that brought about an understanding that airway abnormalities are heterogeneously distributed within the lung in asthma patients has motivated the development of pulmonary imaging approaches, such as hyperpolarized helium-3 (3He) and xenon-129 (129Xe) magnetic resonance imaging (MRI). These methods provide a way to visualize and quantify lung regions accessed by gas during a breath-hold, as well as those not accessed, referred to as “ventilation defects.” Despite the strong foundation for the use of MRI in asthma clinical care, clinical translation has been inhibited in part due to the current limited clinical and physiological understanding of ventilation defects. Accordingly, our objective was to better understand the structural determinants and clinical consequences of MRI ventilation defects observed in asthma and to provide a foundation for imaging to guide clinical decisions and asthma therapy. We evaluated the effect of gas properties on ventilation defects. In asthmatics, we compared hyperpolarized 3He and 129Xe MRI before and after bronchodilator administration and showed greater gas distribution abnormalities using 129Xe compared to 3He before bronchodilation. The temporal behavior of asthma ventilation defects was then investigated by generating personalized temporal-spatial pulmonary function maps from 3He MR images acquired on three occasions. Persistent and intermittent defects were visualized and quantified using this tool and were recognized as potential intermediate endpoints or targets for treatment. We then evaluated clinical and emerging computed tomography-derived airway morphology measurements in asthmatics with and without defects. Ventilation defects were observed in two-thirds of well-controlled asthmatics who had worse lung function, increased airway inflammation, airway hyperresponsiveness and greater airway wall thickness than asthmatics without ventilation defects. Acknowledging that asthma control is the primary goal of asthma treatment, we investigated the relationship, and established a link between worse ventilation and poor control. These findings provide a better understanding of asthma ventilation defects and strongly support their potential as a novel treatment target.
Keywords
Asthma, Computed Tomography, Lung Function, Lung Structure, Magnetic Resonance Imaging, Hyperpolarized 3He, Hyperpolarized 129Xe, Pulmonary Imaging, Ventilation Defect
Co-Authorship Statement

The following thesis contains four manuscripts: three manuscripts have been published in scientific journals and one manuscript has been prepared for submission for publication. As the first author of these peer-reviewed manuscripts, Sarah Svenningsen was a significant contributor to all facets of the studies and in turn, manuscript preparation and submission. Specifically, Sarah made intellectual contributions to all study designs and was responsible for subject recruitment, organization and management of all patient visits. Specific tasks included the acquisition of pulmonary function and MRI data. Following data acquisition, Sarah was responsible for database organization, data analysis and interpretation, clinical/physiological interpretation of the data, drafting and final approval of manuscripts. As the Principal Investigator and Supervisor, Dr. Grace Parraga provided ongoing guidance and was responsible for study conception and experimental design, data acquisition and analysis plan and interpretation, drafting and final revisions and approval of the manuscripts as well as guarantor of integrity of the data as well as responsible for Good Clinical Practice. The management of study visits and acquisition of pulmonary function data was performed under the supervision of Sandra Blamires. Polarization of the 3He and 129Xe gas was performed by Andrew Wheatley and Adam Farag. MRI acquisition was performed by Trevor Szekeres, Heather Biernaski and David Reese. For each manuscript contained in this thesis, all other co-authors approved the final draft of the manuscript and their specific contributions are listed below.

Chapter 2 is an original research article entitled “Hyperpolarized 3He and 129Xe MRI: Differences in Asthma before Bronchodilation,” and was published in the Journal of Magnetic Resonance Imaging in December 2013. This manuscript was co-authored by Sarah Svenningsen, Miranda Kirby, Danielle Starr, Del Leary, Andrew Wheatley, Geoffrey N Maksym, David G McCormack and Grace Parraga. Miranda Kirby assisted with the acquisition of data, statistical analysis and interpretation. Danielle Starr was responsible for CT airway segmentation, analysis and interpretation. Andrew Wheatley assisted with the acquisition and analysis of the data. Del Leary, Geoffrey N Maksym and David G McCormack were responsible for clinical/physiological interpretation of the data.
Chapter 3 is an original research article entitled “Pulmonary Functional Magnetic Resonance Imaging: Asthma Temporal-Spatial Maps,” and was published in the journal *Academic Radiology* in November 2014. This manuscript was co-authored by Sarah Svenningsen, Fumin Guo, Miranda Kirby, Stephen Choy, Andrew Wheatley, David G McCormack and Grace Parraga. Fumin Guo, Stephen Choy and Andrew Wheatley contributed to the development of the algorithm and assisted with data analysis. Miranda Kirby assisted with the algorithm design, statistical analysis of the data and interpretation. David G McCormack was responsible for clinical/physiological interpretation of the data.

Chapter 4 is an original research article entitled “What are Ventilation Defects in Asthma?” and was published in the journal *Thorax* in January 2014. This manuscript was co-authored by Sarah Svenningsen, Miranda Kirby, Danielle Starr, Harvey O Coxson, Nigel AM Paterson, David G McCormack and Grace Parraga. Miranda Kirby assisted with the acquisition of data, statistical analysis and interpretation. Danielle Starr assisted with the interpretation of CT data. Harvey O Coxson assisted with the CT airway segmentation, analysis and interpretation. Nigel AM Paterson was responsible for clinical/physiological interpretation of the data.

Chapter 5 is an original research article entitled “What do Ventilation Defects reveal about Asthma Control?” and is in preparation to be submitted to the journal *Radiology* in October 2015. This manuscript is co-authored by Sarah Svenningsen, Parameswaran Nair, David G McCormack and Grace Parraga. Parameswaran Nair and David G McCormack were responsible for clinical/physiological interpretation of the data.
To the study participants who made this research possible.
Acknowledgments

I would like to thank my supervisor, Dr. Grace Parraga for providing me with this opportunity as well as continuous hands-on support and guidance throughout this endeavor. Again and again, you pushed me well-beyond my boundaries, resulting in countless opportunities and accomplishments that at one point I truly believed were not within my reach. Your wholehearted compassion for your research and your drive for discovery will forever encourage me to be engaged in work that I love, and for this I am grateful.

I am indebted to thank the members of my advisory committee, Drs. Hanif Ladak, Robert Bartha and Nigel Paterson. Thank you for being engaged in my research and career trajectory; your guidance and criticisms have been imperative to my development as a researcher, leader and communicator. I am especially grateful to Dr. David G McCormack for providing invaluable clinical insight into our research, our countless meetings were always a refreshing opportunity to talk big picture and impact. Furthermore, I am thankful for the professional mentorship, guidance and support that you provided.

Due to past and present staff and trainees, the Parraga lab has been an invaluable platform for me to build friendships, foster professional relationships and develop academic and research excellence. To Sandra Blamires: Thank you for being so excellent at what you do and for sharing your clinical and ethical expertise with me. The skillset that you have provided me with will be invaluable moving forward. To Andrew Wheatley: Thank you for taking care of my interminable computer issues, for always achieving excellent polarization and for your unparalleled organization. To David Reese and Trevor Szekeres: Thank you for your attention to detail and your dedication to obtaining consistently high quality image data. Your positive reception to difficult cases and lengthy imaging protocols was always greatly appreciated. To Miranda Kirby: I couldn’t have asked for a more accomplished, caring and patient mentor and role model. Thank you for setting the bar so high and inspiring me to reach for it. You were always there as a friend to coax me through the hard times and laughing with me through the good ones, and for this I will forever be grateful. To Damien Pike and Nikhil Kanhere: We built instant friendships as we started our graduate journey together, coming from very different backgrounds but with similar career aspirations and personal interests. Thank you both for persevering with me
through abstract seasons, manuscript submissions, committee meetings and conference presentations. Your positive outlook through these hurdles was always inspiring, and is something I strive to emulate. To Khadija Sheikh and Dante Capaldi: I am grateful for our many interesting and insightful conversations over daily coffee runs and lunches. Thank you for always being willing to help; your contributions to my personal and academic endeavors were endless and I am very appreciative of this. To Fumin Guo: Thank you for your amusing poetry and late night coding sessions. Additional thanks go to my past and present teammates who were always a pleasure to work alongside: Amir Owrangi, Steve Costella, Daniel Buchanan, Tamas Lindenmaier, Gregory Paulin, Nanxi Zha, Emma Bluemke, Danielle Starr, Alexei Ouriadov, Megan Fennema, Eric Lessard, Rachel Eddy and David Tessier.

Most importantly, I would like to thank John, my family and my friends. Your patience, understanding and continued support have contributed significantly to my success. John: Thank you for holding my hand along this journey. Without you this would not have been a possibility for me. To my parents: Thank you for giving me the chance to pursue academics and providing me with the opportunity to focus on my goals.

Finally, I would like to express my gratitude to the various sources of funding that I have received throughout my graduate studies. I acknowledge funding support from the Canadian Respiratory Research Network, the Natural Sciences and Engineering Research Council of Canada, the Ontario Graduate Scholarship, Lawson Health Research Institute and the Schulich School of Medicine and Dentistry.
Table of Contents

Abstract .. i
Co-Authorship Statement ... iii
Acknowledgments ... vi
Table of Contents .. viii
List of Tables ... xi
List of Figures .. xii
List of Abbreviations .. xv
List of Appendices ... xvii

CHAPTER 1 .. 1

1 INTRODUCTION ... 1

1.1 Motivation and Overview ... 1

1.2 The Respiratory System: Structure and Function .. 4

1.2.1 The Airways: Conducting and Respiratory Zones ... 4

1.2.2 Site of Gas Exchange: The Alveoli .. 6

1.2.3 Ventilation ... 6

1.3 Pathophysiology of Asthma ... 7

1.3.1 Definition of Asthma ... 8

1.3.2 Causes and Risk ... 8

1.3.3 The Asthmatic Lung ... 9

1.4 Clinical Measurements of Asthma ... 11

1.4.1 Global Measurements of Pulmonary Function ... 11

1.4.2 Bronchial Responsiveness .. 16

1.4.3 Inflammation .. 18

1.4.4 Validated Questionnaires .. 19

1.5 Diagnosis and Classification of Asthma ... 21

1.5.1 Asthma Diagnosis ... 22

1.5.2 Asthma Control ... 22

1.5.3 Asthma Severity .. 23
1.6 Treating Asthma
1.6.1 Controller & Reliever Treatment
1.6.2 Add-on Treatments
1.7 Imaging Asthma
1.7.1 Plain X-ray
1.7.2 X-ray Computed Tomography
1.7.3 Nuclear Medicine
1.7.4 Magnetic Resonance Imaging
1.8 Thesis Hypotheses and Objectives
1.9 References

CHAPTER 2
2 HYPERPOLARIZED 3HE AND 129XE MRI: DIFFERENCES IN ASTHMA BEFORE BRONCHODILATION
2.1 Introduction
2.2 Materials and Methods
2.2.1 Subjects and Study Design
2.2.2 Image Acquisition
2.2.3 Image Analysis
2.2.4 Statistical Analysis
2.3 Results
2.4 Discussion
2.5 References

CHAPTER 3
3 PULMONARY FUNCTIONAL MAGNETIC RESONANCE IMAGING: ASTHMA TEMPORAL-SPATIAL MAPS
3.1 Introduction
3.2 Materials and Methods
3.2.1 Study Design
3.2.2 Magnetic Resonance Imaging
3.2.3 Image Analysis
List of Tables

Table 1-1 Classification of asthma severity. ... 23

Table 2-1 Subject demographic characteristics, pulmonary function and MRI measurements.. 78

Table 2-2 Pre- and post-salbutamol hyperpolarized 3He and 129Xe MRI measurements. 82

Table 3-1 Subject demographic characteristics.. 102

Table 3-2 Repeated spirometry and hyperpolarized 3He measurements................................. 102

Table 3-3 Subject listing of demographic, spirometry and hyperpolarized 3He MRI measurements.. 103

Table 4-1 Subject demographic characteristics for asthmatics and healthy volunteers. 122

Table 4-2 Subject demographic characteristics, pulmonary function, hyperpolarized 3He MRI and x-ray CT airways measurements for asthmatics and healthy volunteers........ 125

Table 4-3S Subject listing of demographic characteristics, pulmonary function and dyspnea. .. 137

Table 5-1 Participant demographics and asthma measurements.. 142

Table 5-2 Asthma medication and control. ... 143

Table 5-3S Participant listing of demographic and other measurements............................ 157

Table 5-4S Participant listing of asthma medications.. 158
List of Figures

Figure 1-1 Proportion of all respiratory diseases due to specific conditions in Canada... 1

Figure 1-2 Repeat hospitalizations and hospitalization cases by age and condition in Canada.. 2

Figure 1-3 Characteristics of the air passages.. 5

Figure 1-4 Airway pathology in a healthy and an asthmatic airway. 10

Figure 1-5 Handheld spirometer and typical volume-time spirogram tracing........ 12

Figure 1-6 Body plethysmograph and typical volume-time spirogram tracing identifying lung volumes.. 14

Figure 1-7 Example of a typical inert gas washout machine and inert gas multiple breath washout tracing.. 15

Figure 1-8 Asthma is a heterogeneous disease consisting of several overlapping pathologies necessitating multiple biomarkers to accurately diagnose and phenotype patients... 21

Figure 1-9 2015 GINA stepwise approach to asthma treatment.......................... 25

Figure 1-10 Representative posterior-anterior chest radiograph of a healthy volunteer and an asthmatic subject.. 30

Figure 1-11 Axial CT of the right lower lobe in two representative asthmatics....... 31

Figure 1-12 Three-dimensional quantitative CT of the lungs and airways in asthma... 32

Figure 1-13 Representative coronal conventional 1H MRI of a healthy volunteer and an asthmatic subject.. 37

Figure 1-14 Representative coronal centre slice hyperpolarized 3He MRI of a healthy volunteer and an asthmatic subject.. 40

Figure 1-15 Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic subject at baseline, post-methacholine and post-salbutamol.. 42

Figure 2-1 3He and 129Xe MRI pre- and post-salbutamol.. 80

Figure 2-2 Bronchodilator response using hyperpolarized 3He and 129Xe MRI........ 81

Figure 2-3 MRI and CT for two asthmatic subjects.. 83

Figure 3-1 Pipeline to generate whole lung, two-dimensional, hyperpolarized 3He MRI temporal-spatial pulmonary function maps. .. 99
Figure 3-2 3He MRI co-registered to the corresponding 1H MRI acquired at visit 1-3, and the corresponding temporal-spatial pulmonary function maps for seven asthmatic subjects. ... 104

Figure 3-3 Three-dimensional 3He MRI temporal-spatial pulmonary function maps for three representative asthmatic subjects. ... 106

Figure 3-4 3He MRI intermittent ventilation defect percent (VDP$_I$) and persistent ventilation defect percent (VDP$_P$) anatomical differences. ... 107

Figure 3-5 Relationship of 3He MRI temporal-spatial pulmonary function with airflow obstruction at baseline and following exercise challenge... 108

Figure 4-1 Schematic for 3He MRI – Regional CT image acquisition, co-registration and analysis .. 121

Figure 4-2 Hyperpolarized 3He MRI of a representative healthy volunteer and asthmatic subjects.. 124

Figure 4-3 Relationships of MRI and CT measurements with FEV$_1$ and airways resistance ... 126

Figure 4-4 Relationship between 3He MRI VDP and CT-derived wall area percent (WA%) ... 127

Figure 4-5 Spatial relationship between ventilation defects and airways for four representative asthmatics with ventilation defects... 128

Figure 5-1 Hyperpolarized 3He MRI of representative patients with severe asthma. 144

Figure 5-2 Ventilation heterogeneity stratified by ACQ and AQLQ scores and self-reported exacerbations. ... 146

Figure 5-3 Pre- and post-bronchodilator 3He ventilation MRI ... 148

Figure 5-4 Relationship for ventilation heterogeneity and asthma control. ... 149

Figure 6-1 Performance of FEV$_1$ and 3He MRI VDP as predictors of asthma (left plot) and bronchial hyperresponsiveness (right plot). ... 170

Figure 6-2 Spatial relationship between 3He MRI ventilation (blue), ventilation defects (green) and airways (yellow) for a representative subject with severe asthma three days prior to BT while on 50 mg of prednisone... 172

Figure 6-3 Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic subject at baseline and following both methacholine and exercise-induced bronchoconstriction... 175
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Asthma Defect</td>
</tr>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>ACQ</td>
<td>Asthma Control Questionnaire</td>
</tr>
<tr>
<td>AQLQ</td>
<td>Asthma Quality-of-Life Questionnaire</td>
</tr>
<tr>
<td>BT</td>
<td>Bronchial Thermoplasty</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CEV</td>
<td>Cumulative Expired Volume</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency Department</td>
</tr>
<tr>
<td>EPR-3</td>
<td>Expert Panel Report 3</td>
</tr>
<tr>
<td>FeNO</td>
<td>Fractional Exhaled Nitric Oxide</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced Expiratory Volume in One Second</td>
</tr>
<tr>
<td>FRC</td>
<td>Functional Residual Capacity</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>IC</td>
<td>Inspiratory Capacity</td>
</tr>
<tr>
<td>LA</td>
<td>Lumen Area</td>
</tr>
<tr>
<td>LABA</td>
<td>Long Acting Beta-agonist</td>
</tr>
<tr>
<td>LCI</td>
<td>Lung Clearance Index</td>
</tr>
<tr>
<td>LTRA</td>
<td>Leukotriene Receptor Antagonist</td>
</tr>
<tr>
<td>MBNW</td>
<td>Multiple Breath Nitrogen Washout</td>
</tr>
<tr>
<td>MCT</td>
<td>Methacholine Test</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>ND</td>
<td>No Defect</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>PC₂₀</td>
<td>Provocative Concentration required to decrease FEV₁ by 20%</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>Raw</td>
<td>Airway Resistance</td>
</tr>
<tr>
<td>RG</td>
<td>Regional</td>
</tr>
<tr>
<td>ROI</td>
<td>Region-Of-Interest</td>
</tr>
<tr>
<td>RV</td>
<td>Residual Volume</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SABA</td>
<td>Short Acting Beta-agonist</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Tomography</td>
</tr>
<tr>
<td>sRaw</td>
<td>Specific Airway Resistance</td>
</tr>
<tr>
<td>TRE</td>
<td>Target Registration Error</td>
</tr>
<tr>
<td>TLC</td>
<td>Total Lung Capacity</td>
</tr>
<tr>
<td>VDP</td>
<td>Ventilation Defect Percent</td>
</tr>
<tr>
<td>VDP₁</td>
<td>Intermittent Ventilation Defect Percent</td>
</tr>
<tr>
<td>VDPₚ</td>
<td>Persistent Ventilation Defect Percent</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>VDV</td>
<td>Ventilation Defect Volume</td>
</tr>
<tr>
<td>V_D</td>
<td>Dead Space Volume</td>
</tr>
<tr>
<td>V_T</td>
<td>Total Volume</td>
</tr>
<tr>
<td>WA%</td>
<td>Wall Area Percent</td>
</tr>
<tr>
<td>WL</td>
<td>Whole Lung</td>
</tr>
<tr>
<td>WT</td>
<td>Wall Thickness</td>
</tr>
<tr>
<td>N_2</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>^1H</td>
<td>Proton</td>
</tr>
<tr>
<td>^3He</td>
<td>Helium-3</td>
</tr>
<tr>
<td>^4He</td>
<td>Helium-4</td>
</tr>
<tr>
<td>^129Xe</td>
<td>Xenon-129</td>
</tr>
</tbody>
</table>
List of Appendices

APPENDIX A – Permission for Reproduction of Scientific Articles 184
APPENDIX B – Health Science Research Ethics Board Approval Notices 187
APPENDIX C – Curriculum Vitae ... 192
CHAPTER 1

Asthma is a chronic and phenotypically heterogeneous disease of intermittent respiratory symptoms and airflow limitation triggered by various stimuli, and is characterized by bronchial hyperresponsiveness and airways inflammation.1,2

1 INTRODUCTION

1.1 Motivation and Overview

Asthma is the most common chronic respiratory disease in Canada, accounting for approximately 80% of chronic respiratory disease,3 affecting 8.1% or 2.4 million Canadians in 2014 (Figure 1-1).4

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{asthma_proportion.png}
\caption{Proportion of all respiratory diseases due to specific conditions in Canada. Adapted from Life and Breath: Respiratory Disease in Canada 2008.5}
\end{figure}

Asthma is most common during childhood and affects more than 13% of Canadian children. In 2014, 9.2% of females and 7.0% of males were diagnosed with asthma.4 In 2009, 228 asthma-related deaths were reported in Canada. Internationally, an estimated 300 million people currently have asthma and this is expected to increase to 400 million by 2025.6 Asthma is estimated to account for one in 250 deaths worldwide.6 Due to its high prevalence, asthma has an enormous economic and healthcare burden for the patient and society, with high rates of healthcare resource utilization that vary widely with respect to age and disease severity. Asthma is also a major cause of hospitalization and repeat hospitalization in Canada (Figure 1-2). Annually, the number of patients hospitalized for asthma is comparable to hospitalization due to chronic obstructive pulmonary disease
COPD and angina. However, in contrast to COPD and angina, asthma-related hospitalizations are much more common under the age of 19, accounting for approximately 65% of all asthma admissions. Asthma was a contributing factor in approximately 10% of hospital admissions for children under the age of 5 and 8% for those aged 5 to 14 years. In 1990, the estimated cost for asthma in Canada was $504 to $648 million, of which $306 million were direct costs. A study by Ismail and colleagues indicated that the annual direct cost per asthma patient in Canada ranges from $366 to $647.

Figure 1-2 Repeat hospitalizations and hospitalization cases by age and condition in Canada.

The left plot shows the number of patients with a single hospitalization, one repeat hospitalization and two or more repeat hospitalization by condition at first admission. The right plot shows the distribution of hospitalization cases by condition and age. Adapted from the Canadian Institute for Health Information’s (CIHI) publication entitled Health Indicators 2008.

Despite decades of active research and the staggering societal burden of asthma described above, the mechanism of disease and its distribution within the asthmatic lung are still not fully understood. Imaging and post-mortem evidence allude to the possibility that airway abnormalities in asthma are heterogeneously distributed within the lung. Currently, however, airways disease worsening and response to therapy in asthma are commonly evaluated using the forced expiratory volume in one second (FEV$_1$) – a simple and inexpensive measurement of airflow obstruction. As a result, current and newly-developed asthma therapies are mainly directed towards improvements in FEV$_1$, but it is well-known that this global measurement does not capture the regional heterogeneity of airway abnormalities that may be responsible for asthma control and future risk of exacerbations.
and lung function decline. In other words, using current clinical tools, there is no way to measure regional lung abnormalities in asthma, making it difficult if not impossible to develop, test and guide regional asthma therapies. Satisfying the uncertain notion that all airways in asthma are equally abnormal and exhibit the same temporal behavior, current therapies are geared to all airways.

Pulmonary functional magnetic resonance imaging (MRI), using inhaled helium-3 (3He) and xenon-129 (129Xe) gas, provides a way to quantify gas distribution \textit{in vivo} and it has the advantage that it shows exactly where functional abnormalities, termed “ventilation defects,” are located in the asthmatic lung. In spite of this potential, medical imaging has played a very limited role in asthma research, treatment development and patient care, and for a variety of reasons, the numerous advantages of imaging have not been translated to clinical use. Regardless of the gas used for imaging, the exact etiology of ventilation defects in asthma is poorly understood. A clear understanding of ventilation defects is absolutely necessary prior to the clinical translation of hyperpolarized gas imaging methods. Armed with such an understanding, there is the potential to use functional MRI to guide asthma treatment, predict treatment outcomes, identify new treatment targets and better understand the asthmatic lung regionally and its response to asthma treatment. With the challenges impeding clinical translation in mind, the overarching objective of this thesis was to better understand the underlying structural determinants and clinical consequences of MRI ventilation defects observed in asthma and to provide a foundation for imaging to guide clinical decisions and asthma therapy.

In this Chapter, the relevant background knowledge necessary to understand and motivate the original research presented in Chapters 2 to 5 will be summarized. It will begin with a general overview of the respiratory system’s structural and functional responsibilities (1.2) before focusing on the pathophysiology and underlying disease mechanisms of asthma (1.3). Subsequently, standard clinical measurements of asthma (1.4), diagnosis and classification schemas (1.5) and standard of care treatment regimens (1.6) will all be introduced. The benefits and limitations of currently available imaging techniques will be discussed with respect to their influence on better understanding the asthmatic lung and contribution of imaging biomarkers that can be used to guide asthma treatment (1.7). Finally, the specific hypotheses and objectives of this thesis will be introduced (1.8).
1.2 The Respiratory System: Structure and Function

Similar to all organ systems, the functions of the respiratory system are multifaceted and range from protection against inhaled pathogens to gas exchange. While the respiratory system includes the oral and nasal cavities, the lungs, the airways and the muscles responsible for facilitating breathing, here I will elaborate on the structure and function of the airways and the alveoli. The airways are a pipeline which connect the external environment with the alveoli where gas exchange can occur across the blood-gas interface. By the process of ventilation, the main function of the airways and the alveoli is to deliver oxygen and remove carbon dioxide from the blood to maintain normal partial pressure of oxygen and carbon dioxide levels in the arterial blood.

1.2.1 The Airways: Conducting and Respiratory Zones

Inhaled air enters the respiratory system via the nasal or oral passages which converge on the pharynx followed by the larynx. Beyond the upper airways, as shown in Figure 1-3, the lower airways are divided into the conducting zone and the respiratory zone based on their structural and functional characteristics. The conducting zone is responsible for carrying inhaled air to the respiratory zone where gas exchange can occur.

Conducting Zone

The conducting zone consists of the first sixteen airway generations, beginning with the trachea (generation zero) and ending with the terminal bronchioles (generation 16). It is important to emphasize that conducting zone airways do not directly participate in gas exchange, but instead their sole function is to conduct and humidify air. Due to its function, this zone is considered anatomic deadspace - approximately 150 mL of air resides here. The trachea is a long, cartilaginous and muscular conduit that follows the larynx that directly supplies air to lungs and bifurcates asymmetrically into the left and right main bronchi that supply the left and right lung respectively. Subsequently, the main bronchi divide into the lobar bronchi that supply the five lobes of the lung, three of which are in the right lung (upper, middle and lower) and two of which are in the left lung (upper and lower). The lobar bronchi then divide into the segmental bronchi that supply air to their corresponding bronchopulmonary segment that is structurally and functionally independent. Bronchi are not individually named distal to the segmental bronchi where
they become narrower, shorter and more numerous as they branch dichotomously to reach all areas of the lung. Secondary lobules or lung sub-segments are supplied by the small bronchi. It is at this point where important structural changes occur. Beyond the small bronchi, the air passages no longer contain cartilage but become embedded in the lung parenchyma for structural support. Terminal bronchioles are the smallest category of air passages without alveoli and are the final conduit of the conducting zone.

Figure 1-3 Characteristics of the air passages.
Adapted from Lumb A. Nunn’s Applied Respiratory Physiology, Fifth edition.11
Respiratory Zone

The respiratory zone is the last seven generations (generations 17-23) of the airway tree. In contrast to the conducting zone, the air passages of the respiratory zone contain alveoli which facilitate gas exchange. As shown in Figure 1-3, the respiratory bronchioles begin the respiratory zone and have an increasing number of alveoli budding from their muscular walls before giving rise to the alveolar ducts which precede the alveolar sacs that are completely lined with alveoli. A pulmonary acinus is considered a single anatomical unit consisting of a terminal bronchiole and its subsequent respiratory bronchioles, alveolar ducts and sacs. The average human lung contains 30,000 acini, each containing approximately 10,000 alveoli which together make up most of the lung volume, ranging from approximately 2.5 to 3 L at rest.

1.2.2 Site of Gas Exchange: The Alveoli

The alveoli are the site of gas exchange and are the terminal ends of the airway tree found on the respiratory bronchioles, alveolar ducts and alveolar sacs. It has been estimated that 480 million (range: 274-790 million) alveoli exist in the average human lung and that the average size of a single alveolus is 4.2x10^6 µm^3 (range: 3.3-4.8 µm^3) or 200 µm in diameter. The blood-gas interface of the alveoli is comprised of two layers: the alveolar epithelium and the capillary endothelium, which facilitates the movement of oxygen and carbon dioxide between the alveolar airspace and capillary plasma. This interface is extremely thin (0.2-0.3 µm) with a large surface area (50-100 m^2), making it well-suited for efficient exchange of oxygen and carbon dioxide by passive diffusion, according to the principles of Fick’s law.

1.2.3 Ventilation

Gas reaches the blood-gas interface by the process of ventilation, which is the exchange of air between the external environment and the alveoli by bulk flow. During ventilation, air flows because of pressure gradients that exist between the atmosphere and alveoli. Inspiration occurs when the inspiratory muscles actively contract and alveolar pressure decreases; whereas expiration occurs when the inspiratory muscles passively relax and alveolar pressure increases. The total amount of air that enters the lungs and resides in the
conducting and respiratory zones upon inspiration is termed tidal volume \((V_T)\) and is approximately 0.5 L. As shown in Equation 1-1, total ventilation is the total volume of air leaving the lungs each minute and is calculated as the ventilation rate multiplied by \(V_T\).

Equation 1-1

\[
\text{Total ventilation [L/minute]} = \text{Ventilation rate} \times V_T
\]

As discussed above, with each exhalation, approximately 0.15 L of “stale” air from the respiratory zone remains in the conducting airways and is first to commute back to the alveoli upon subsequent inspiration. As shown in Equation 1-2, alveolar ventilation represents the amount of “fresh” air that reaches the alveoli to participate in gas exchange and is therefore used to more accurately quantify ventilation efficiency by taking into account the dead space volume \((V_D)\).

Equation 1-2

\[
\text{Alveolar ventilation [L/minute]} = \text{Ventilation rate} \times (V_T - V_D)
\]

For a healthy adult, the ventilation rate, \(V_T\) and \(V_D\) are 12-20 breaths/minute, 0.5 L and 0.15 L respectively.\(^{14}\) At 15 breaths/minute, the total ventilation is 7.50 L/minute and the alveolar ventilation is 5.25 L/minute. This means that although 7.5 L of fresh air enters the respiratory system, only 5.25 L actually reach the alveoli.

1.3 Pathophysiology of Asthma

The word “asthma” originated from the Greek word *aazein*, meaning “to breathe with open mouth or to pant” generalizing that any patient experiencing dyspnea was asthmatic.\(^{15}\) Given that asthma is as old as antiquity, it is not surprising that the definition and our understanding of the disease has evolved significantly from initial accounts as evidenced by the quotes below. Today, with nearly 300 million asthmatics globally, confusion and controversy continue to surround the definition of asthma.\(^{16}\)

“Asthma is the inability to breathe without making noise.”
Aulus Cornelius, 1\(^{st}\) Century BC

“If from running, gymnastic exercises, or any other work, the breathing becomes difficult, it is called Asthma.”
Aretaeus the Cappodocian, 2\(^{nd}\) Century AD
“Asthma is paroxysmal dyspnea of a peculiar character, generally periodic, with intervals of healthy respiration between attacks.”
Henry Hyde Salter, 1860

“Asthma is a special form of inflammation of the small bronchioles.”
Sir William Osler, 1892

“Asthma is a disease characterized by an increased responsiveness of the trachea and bronchi to various stimuli and manifested by widespread narrowing of the airways that changes in severity either spontaneously or as a result of therapy.
American Thoracic Society, 1962

1.3.1 Definition of Asthma

In the 2015 Global Initiative for Asthma (GINA) report, the Global Strategy for Asthma Management and Prevention, asthma is defined as: “A heterogeneous disease usually characterized by chronic airway inflammation. It is defined by a history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation.” This definition consists of four components: symptoms, variable airflow obstruction, airway hyperresponsiveness and airway inflammation. As described in the literature, this relatively broad and non-specific definition encompasses many different asthma phenotypes identified according to environmental triggers, inflammatory processes and clinical features. In a recent review highlighting the heterogeneity of asthma, common clinical phenotypes were classified as trigger-induced phenotypes (occupational asthma, cigarette smoke induced asthma, air pollution induced asthma and exercise induced asthma), symptom-based phenotypes (exacerbation-prone, persistent airflow limitation, cough-variant, adult-onset and the obese asthma) and biomarker-based phenotypes (eosinophilic and neutrophilic asthma). Phenotyping of asthma is becoming more important than ever due to the development of targeted and phenotype specific approaches to asthma therapy.

1.3.2 Causes and Risk

There is no single gene or environmental exposure that causes asthma, although the onset most commonly begins in childhood. Instead, it is widely accepted that host and environmental factors interact to cause asthma. Unfortunately this interplay is complex
and poorly understood. Numerous host factors have been identified that influence the risk of asthma; these include genetic polymorphisms,20,21 family history of asthma,22 sex,23 race24 and obesity.25 Similarly, numerous environmental factors have been identified that influence the risk of asthma; these include aeroallergen sensitization,26 respiratory viruses,27,28 early life microbial exposures,29,30 cigarette smoke,31 air pollution,32 vitamin D deficiency,33 antioxidants34 and stress.35

1.3.3 The Asthmatic Lung

Asthma is considered a chronic disorder that is confined to the airways and involves a complex interaction of airflow obstruction, airway hyperresponsiveness and inflammation that results in symptoms.2 As shown in Figure 1-4, as compared to a healthy airway, the airway lumen of an asthmatic is narrowed and obstructed, restricting airflow into and out of the lungs. Characteristic structural abnormalities throughout the airway walls of asthmatics include goblet cell hyperplasia,36 subepithelial layer thickening,37 smooth muscle hyperplasia and hypertrophy,38 submucosal gland hyperplasia and hypersecretion39 and angiogenesis.40 Together, these structural abnormalities, in conjunction with inflammatory changes, lead to bronchial thickening and edema as well as increased mucus production and bronchoconstriction, all of which contribute to the airflow obstruction typically found in asthma. The mechanisms that are responsible for airflow obstruction in asthma include bronchoconstriction by airway smooth muscle; luminal obstruction by mucus and debris; and inflammation and remodeling of the airway wall. Bronchoconstriction occurs due to smooth muscle contraction, which results in a reduction in airway caliber by epithelial folding, ultimately increasing airflow resistance. Bronchoconstriction may occur in response to various stimuli that include allergens or irritants such as exercise and cold air. Airway hyperresponsiveness is an “exaggerated” bronchoconstrictor response to various stimuli such as those mentioned above. While airways throughout the bronchial tree can be involved, the magnitude of airway narrowing and resultant airflow obstruction is temporally intermittent but may become persistent.41
Figure 1-4 Airway pathology in a healthy and an asthmatic airway. Histological (sectioned and stained using Movat’s pentachrome stain) and corresponding schematic representation of airway structures in healthy and asthmatic airways. The asthmatic airway has structural remodeling, including goblet cell hyperplasia, subepithelial fibrosis and increased smooth muscle. Adapted from JV Fahy Nature Reviews 2015.42

Airway inflammation has a fundamental role in the pathophysiology of asthma and involves the interaction of many cell types and mediators. Although the cellular mechanisms behind airway inflammation are beyond the scope of this thesis, important inflammatory cells include lymphocytes, mast cells, eosinophils, neutrophils, dendritic cells, macrophages and epithelial cells. Additionally, important inflammatory mediators include chemokines, cytokines, cysteinyl-leukotrienes and nitric oxide. Immunoglobulin
E (IgE) is the antibody responsible for activation of allergic reactions and is important in the development of persistent inflammation.

1.4 Clinical Measurements of Asthma

Clinical measurements of asthma play an important role in diagnosis, categorizing disease severity and evaluating the effectiveness of medications to manage disease. Currently, no single clinical tool can be used to adequately diagnose and manage asthma. Instead, an integrated approach is employed which combines objective measurements of pulmonary function, bronchial responsiveness, airway inflammation and subjective symptom and quality-of-life questionnaires.

1.4.1 Global Measurements of Pulmonary Function

In a physician’s office and hospital pulmonary function laboratory, various aspects of lung function can be evaluated by performing cost-effective pulmonary function testing. Global spirometry measurements and lung volumes play an important role in the diagnosis and management of asthma. It is important to acknowledge that pulmonary function tests are dependent on patient effort, limiting their use in children and cognitively impaired populations. With appropriate coaching by a trained pulmonary function technologist, the majority of patients can perform adequate pulmonary function manoeuvres for which acceptability and reproducibility criteria have been published.

1.4.1.1 Spirometry

Spirometry, the gold standard measurement of lung function, is an important diagnostic and disease monitoring test that measures volume and flow of air during inhalation and exhalation manoeuvres. As shown in Figure 1-5, spirometry is often performed using a hand-held spirometer (Figure 1-5A) and the most commonly performed manoeuvre is the forced exhalation manoeuvre (Figure 1-5B). This is performed by having a participant breathe normally and then inspire fully, filling their lungs completely, followed by a hard and fast forced exhalation. It is important that the participant exhale as hard and as fast as they can and that they continue exhaling until they cannot expel any more air. At this point, the end of test criteria has been met. The duration of exhalation may extend well beyond 15 seconds, depending on the severity of the participants airflow obstruction. The most
widely reported indices derived from the forced exhalation manoeuvre are the forced vital capacity (FVC), the FEV\textsubscript{1} and the ratio of FEV\textsubscript{1} to FVC (FEV\textsubscript{1}/FVC). As shown in Figure 1-5B, FVC is a measure of the total volume of air that can be forcefully exhaled from full inspiration, whereas FEV\textsubscript{1} is a measure of the maximum volume of air that can be forcefully exhaled in the first second of the manoeuvre. Both FVC and FEV\textsubscript{1} are measured in litres and are also commonly expressed as a percentage of the reference value based on the patient’s age, height, sex and ethnicity. Extensive spirometry standardization criteria have been compiled by the ATS/ERS Task Force and are now widely applied.43

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{spirometer.png}
\caption{Handheld spirometer and typical volume-time spirogram tracing. FEV\textsubscript{1}=forced expiratory volume in one second; FVC=forced vital capacity.}
\end{figure}

\subsection*{1.4.1.2 Lung Volumes and Capacities}
Static lung volumes and capacities are identified on a typical volume-time spirogram tracing as shown in Figure 1-6B. While the majority of these can be directly measured by spirometry (tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve volume (ERV), vital capacity (VC) and inspiratory capacity (IC)), this test cannot determine the functional residual capacity (FRC), residual volume (RV) or total lung capacity (TLC). All lung volumes are defined as follows: TV is the volume of gas exchanged at mouth during a normal inhalation or exhalation during tidal breathing; IRV is the volume of gas that can be inhaled from the end of a normal inhalation during tidal...
breathing; ERV is the volume of gas that can be exhaled from the end of a normal exhalation during tidal breathing; VC is the volume of gas exchanged at the mouth between a full inspiration and full exhalation; IC is the volume of gas that can be inhaled from the end of a normal exhalation while tidal breathing; FRC is the volume of gas remaining in the lungs at the end of a normal exhalation while tidal breathing; RV is the volume of gas remaining in the lungs at the end of a full exhalation; and TLC is the volume of gas in the lungs at the end of a full inhalation.

As previously alluded to, alternative nitrogen washout, gas dilution or body plethysmography techniques are required to measure FRC, from which RV and TLC can subsequently be derived by performing “linked” spirometry manoeuvres. As shown in Figure 1-6A, a body plethysmograph is an airtight chamber that can accommodate the patient comfortably inside. Briefly, the linked manoeuvre is performed by having the participant breathe normally and then perform a series of gentle pants against a closed shutter initiated at FRC. After sufficient panting has been achieved the shutter will open and the participant can then resume tidal breathing followed by a full inhalation and slow full exhalation from which ERV and IVC can be measured. FRC is obtained by applying the principles of Boyle’s law relating pressure and volume in an isothermal environment. RV can then be calculated as FRC minus ERV, and TLC can be calculated as the sum of FRC and IC.
Figure 1-6 Body plethysmograph and typical volume-time spirogram tracing identifying lung volumes.
TV=tidal volume; IRV=inspiratory reserve volume; ERV=expiratory reserve volume; VC=vital capacity; IC=inspiratory capacity; FRC=functional residual capacity; RV=residual volume; TLC=total lung capacity.

1.4.1.3 Airway Resistance
Airway resistance (Raw) is a measure of the resistance to flow within the airways and is defined in Equation 1-3 as the ratio of the driving force of airflow (difference in alveolar and mouth pressure) to the flow rate (measured at the mouth) and can be quantified using several techniques. Raw is influenced by resistance in the mouth, pharynx, larynx, large airways and small airways\(^{11}\) and is most commonly indirectly quantified using whole body plethysmography.\(^{45}\) Raw can be derived from the specific airway resistance (sRaw) and FRC as shown in Equation 1-4, both of which can be directly measured using plethysmography. sRaw is a corrected index that describes airway resistance regardless of lung volume.\(^{46}\) Following open shutter panting, the inverse slope of the plot of flow rate versus box pressure is sRaw. In healthy adults, Raw typically falls within 0.6-2.4 cmH\(_2\)O·s·L\(^{-1}\).\(^{47}\) Both Raw and sRaw are increased in the presence of inflammation, mucus secretion, and bronchoconstriction.\(^{47}\)

Equation 1-3

\[
\text{Airway resistance (Raw) [cmH}_2\text{O·s·L}^{-1}] = \frac{\text{Alveolar pressure - Mouth pressure [cmH}_2\text{O]}}{\text{Flow rate (V) [L·s}^{-1}]}
\]
Equation 1-4

\[
\text{Airway resistance (Raw) [cmH}_2\text{O·s·L}^{-1]} = \frac{\text{Specific airway resistance (sRaw) [cmH}_2\text{O·s]}}{\text{Functional residual capacity (FRC) [L]}}
\]

1.4.1.4 *Inert Gas Washout*

Single-breath\(^4^8\) and multiple-breath\(^4^9\) inert gas washout techniques (SBW and MBW, respectively) were first employed more than 65 years ago to measure lung volumes and ventilation heterogeneity. Although both tests are relatively simple, the MBW test is more informative and has been more commonly used. MBW involves measuring the washout concentration of an inert tracer gas from the lungs during normal tidal breathing. The tracer gas can be endogenous, such as nitrogen (N\(_2\)), and washed-out of lungs by breathing 100% oxygen. Alternatively, if the tracer gas is exogenous, such as sulfur hexafluoride (SF\(_6\)) or helium (He), it must be washed-in prior to being washed out of the lung by breathing room air. As shown in Figure 1-7, with each tidal breath of the washout phase, there is a decrease in the concentration of the exhaled tracer gas (N\(_2\) in this example) and when the gas concentration has decreased to 1/40\(^{th}\) of the starting concentration, the test is complete. The manoeuvre is generally completed with the participant sitting upright and breathing through a mouthpiece while wearing nose clips.

Figure 1-7 Example of a typical inert gas washout machine and inert gas multiple breath washout tracing.

The MBW tracings display tidal volume (lower plot) and the corresponding nitrogen gas (N\(_2\)) concentration (upper plot). With each breath there is a decrease in the peak expiratory N\(_2\) concentration.
The most commonly reported MBW derived measurement is the lung clearance index (LCI), which is thought to be representative of whole lung ventilation heterogeneity.50 LCI is the number of FRC lung turnovers needed to clear the lungs of the inert marker gas and it is calculated as the cumulative expired gas volume (CEV) divided by FRC.51 Additional metrics that reflect ventilation heterogeneity in the conductive and acinar lung zones (Scond and Sacin, respectively) can be derived using sophisticated phase III slope analysis of the MBW tracing.52 Additional outcomes include FRC, trapped gas volume and closing capacity.

Inert gas washout measurements are becoming particularly attractive due to their feasibility in the pediatric population53,54 and increased sensitivity to early disease changes55,56 while offering complementary information to standard pulmonary function tests. Taken together, MBW indices of ventilation heterogeneity in asthmatics are elevated in comparison to healthy controls;57-59 are independent determinants of airway hyperresponsiveness;60 improve with bronchodilation57,61 and inhaled corticosteroids;62,63 and worsen during exacerbations.64 Unfortunately, these measurements cannot regionally localize the site of functional abnormalities.

1.4.2 Bronchial Responsiveness

Reversibility of airflow obstruction and bronchial hyperresponsiveness are features of asthma airway pathophysiology that can be objectively evaluated. The assessment of these disease characteristics are important for diagnosing asthma, categorizing disease severity and evaluating the effectiveness of asthma medications to manage disease.

1.4.2.1 Assessing Bronchodilator Reversibility

Evidence of reversible airflow obstruction is a key consideration when establishing a diagnosis of asthma. The primary objective of reversibility testing is to determine whether a participant’s lung function is improved following bronchodilation, assessed by performing spirometry pre- and post-bronchodilator administration. Baseline spirometry is performed after the participant has withheld their medications for an appropriate duration as advised by the ATS/ERS Task Force.43 Subsequently, an inhaled short-acting beta-agonist (four 100μg doses of albuterol/salbutamol) is delivered to the participant prior to performing post-bronchodilator spirometry 15 minutes later. Reversibility is commonly
expressed as the absolute change in FEV$_1$ and FVC or as a percent of the pre-bronchodilator value, as shown in \textbf{Equation 1-5}. It is generally accepted that a clinically-relevant positive bronchodilator response is warranted when the post-bronchodilator increase in FVC and/or FEV$_1$ is $\geq 12\%$ and 200mL from baseline.65

\textbf{Equation 1-5}

\[
\% \text{ reversibility} = \left[\frac{(\text{Post-bronchodilator value}) - (\text{Pre-bronchodilator value})}{(\text{Pre-bronchodilator value})} \right] \times 100
\]

1.4.2.2 \textit{Assessing Airway Hyperresponsiveness}

In addition to bronchodilator reversibility, airway hyperresponsiveness is another defining characteristic of asthma.66 Methacholine and exercise challenge testing are two of the most widely used methods to assess airway hyperresponsiveness for which standardized guidelines have been published.67

\textit{Methacholine Challenge}

Methacholine induces bronchoconstriction by acting on airway smooth muscle receptors. Similar to reversibility testing, a methacholine test (MCT) should be performed after the participant has withheld their medications for an appropriate duration as advised by ATS guidelines.67 Aerosolized methacholine is inhaled through a nebulizer and the MCT is completed according to the established two-minute tidal breathing or five-breath dosimeter protocol described in detail by ATS.67 Briefly, baseline spirometry is first performed to assess pre-MCT FEV$_1$ and subsequently the diluent or first dose of methacholine (0.03mg/mL) is administered. After the nebulization has been completed, spirometry is repeated. If FEV$_1$ has not declined by 20\%, the next highest concentration of methacholine should be delivered. This procedure is repeated with increasing concentrations of methacholine until FEV$_1$ has declined by more than 20\% of baseline or until the highest concentration of methacholine (16mg/mL) has been reached.

The primary outcome measure for the MCT is the provocative concentration of methacholine that causes a 20\% decrease in FEV$_1$ (PC$_{20}$), from which the degree of airway hyperresponsiveness can be interpreted clinically. Calculated according to \textbf{Equation 1-6}, PC$_{20} \geq 16$mg/mL is indicative of normal airway hyperresponsiveness, whereas a PC$_{20}$
≤4 mg/mL is indicative of abnormal airway hyperresponsiveness. Intermediate values (< 16 and >4 mg/mL) indicate borderline airway hyperresponsiveness and should be interpreted with caution.

Equation 1-6

$$PC_{20} [mg/mL]=\text{antilog} \left(\log C_1 + \frac{(\log C_2 - \log C_1)(20-R_1)}{R_2 - R_1} \right)$$

$C_1 =$ second-to-last methacholine concentration; $C_2 =$ last methacholine concentration; $R_1 =$ percent fall in FEV$_1$ after C_1; $R_2 =$ percent fall in FEV$_1$ after C_2.

Exercise Challenge

Exercise induces bronchoconstriction in approximately 80% of asthmatics. In contrast to methacholine, exercise is an indirect activator of smooth muscle constriction induced by airway dehydration and subsequent mediator release. Exercise challenge testing is preferentially performed using a treadmill or cycle ergometer as described in detail by ATS, although the protocols are not well standardized or uniformly implemented. Briefly, 6-8 minutes of exercise (4-6 minutes at a pre-determined target intensity) should be completed while breathing cool (<25ºC) dry air. The primary outcome measure for an exercise challenge is FEV$_1$. A post-exercise decreased in FEV$_1$ >10% is considered abnormal and a decrease >15% is indicative of exercise-induced bronchoconstriction.

1.4.3 Inflammation

1.4.3.1 FeNO

Nitric oxide (NO) is produced in the lungs and can be detected in the exhaled breath of humans, as first described in 1991. Although the exact pathophysiological role of NO in the lung is complex and poorly understood, its production increases in the presence of inflammation. The relationship between NO and eosinophilic airway inflammation has been extensively studied and has been correlated with blood eosinophils and eosinophils present in induced sputum, bronchoalveolar lavage and biopsies. Fractional exhaled nitric oxide (FeNO) is a well-established, simple, noninvasive and highly reproducible quantitative biomarker of eosinophilic airway inflammation that is ideally suited for serial monitoring of patients with airways disease. Among the most important clinical
applications of FeNO are its ability to aid in the diagnosis of eosinophilic asthma and to predict corticosteroids-responsiveness. Asthmatics have higher levels of NO in their exhaled breath as compared to healthy controls.78,79 Although not all asthmatics have eosinophilic inflammation, those who do tend to have elevated FeNO levels and are much more likely to benefit from inhaled corticosteroid (ICS) therapy than those with normal FeNO levels.80 According to the 2011 ATS recommendations, FeNO < 25 ppb indicates that eosinophilic inflammation and responsiveness to corticosteroids are unlikely, whereas FeNO > 50 ppb indicates that eosinophilic inflammation and responsiveness to corticosteroids is likely.81 Intermediate values (≥ 25 and ≤ 50 ppb) should be interpreted with caution. Currently, a clinically important difference in FeNO levels has not been determined. Standardized for clinical use, ATS/ERS guidelines for the measurement of FeNO have been published.82,83

1.4.4 Validated Questionnaires

1.4.4.1 Asthma Control Questionnaire
The Asthma Control Questionnaire (ACQ)84 was designed to measure asthma control and the change in asthma control over time or in response to treatment. It has been widely adopted as a clinical trial endpoint.85-87 The questionnaire evaluates control during the previous week and contains five symptom-related questions (night awakenings by symptoms, symptoms on waking, activity limitation, dyspnea and wheeze), pre-bronchodilator FEV1%pred and daily rescue bronchodilator use, each scored on a seven-point scale. The ACQ score is calculated as the mean of five, six or seven questions to generate the ACQ-5 score (pre-bronchodilator FEV1%pred and daily rescue bronchodilator use omitted), ACQ-6 score (pre-bronchodilator FEV1%pred omitted) and ACQ-7 score respectively. Scores range from zero (totally controlled) to six (severely uncontrolled). Asthmatics whose score ranges from 0.0 to 0.75 are considered well-controlled and those whose score is >1.5 are poorly-controlled.88 The cross-over point between well-controlled and poorly-controlled asthma is near 1.0, therefore asthmatics whose score ranges from 0.75 to 1.5 fall into a ‘grey zone’ and should be interpreted with caution.88 The minimum clinically-important difference is 0.5.89
In addition to the ACQ, there are numerous additional questionnaires used to evaluate asthma control. Some of the more common questionnaires are the Asthma Control Test (ACT), the Asthma Control Scoring System (ACSS), the Asthma Therapy Assessment Questionnaire (ATAQ), the 30-Second Asthma Test and Lara Asthma Symptom Scale (LASS).

1.4.4.2 Standardized Asthma Quality of Life Questionnaire
The Standardized Asthma Quality-of-Life Questionnaire (AQLQ(S))90 was designed to measure asthma-related quality-of-life. The questionnaire evaluates quality-of-life during the previous two weeks and consists of 32 questions encompassing four subscore domains (12 questions on symptoms; 11 questions on activity limitation; 5 questions on emotional function and 4 questions on exposure to environmental stimuli). A range of matters are assessed including activity limitation, amount of discomfort due to chest tightness, concern about having asthma, fear of not having access to asthma medication and symptoms from exposure to cigarette smoke. Four different seven-point Likert-type response scales are used, ranging from one (totally limited/a very great deal/all of the time/severely limited, most not done) to seven (not at all limited/none/none of the time/not limited, have done all). The AQLQ total score is calculated as the mean of all 32 questions and the domain subscores are the mean of the questions in the domain. The minimum clinically-important difference is 0.5,91 although the validity of this threshold is still being discussed. Importantly, the AQLQ(S) has been widely adopted as a clinical trial endpoint.92

The AQLQ preceded the AQLQ(S) and there are now additional variations including the Mini Asthma Quality of Life Questionnaire (Mini AQLQ) and Acute Asthma Quality of Life Questionnaire (Acute AQLQ). In addition to the various AQLQ instruments, there are numerous additional questionnaires used to evaluate asthma-related quality-of-life. Some of the more common questionnaires are the Asthma Bother Profile (ABP), Asthma Impact Survey (AIS-6), Living with Asthma Questionnaire (LWAQ), Modified Asthma Quality of Life-Marks (M-AQLQ-Marks), Asthma Short Form (ASF), St. George’s Respiratory Questionnaire (SGRQ) and Airways Questionnaire-20 (AQ-20).
1.4.4.3 Dyspnea

Dyspnea is a common symptom of asthma and the Modified Medical Research Council (mMRC)93 and Borg dyspnea scales94 are commonly used to assess it severity. The Modified Medical Research Council dyspnea scale is one of the most commonly used questionnaires to assess dyspnea. It uses a simple five-point scale which assesses the impact or burden of dyspnea on the patient. Scores range from zero (breathless with strenuous exercise) to four (too breathless to leave the house, or breathless when dressing). Similarly, the modified 0-10 Borg dyspnea scale assesses how patients perceive their severity of dyspnea using a simple 10-point scale, with scores ranging from zero (nothing at all) to ten (maximal).

1.5 Diagnosis and Classification of Asthma

Asthma is particularly challenging to diagnose and classify due to its multiple overlapping pathologies that are heterogeneous between individuals (\textbf{Figure 1-8}).95 Although spirometry is most often employed to diagnose asthma, it is difficult to use spirometry to further classify asthma into respective phenotypic categories. With the advent of novel biomarkers, such as FeNO, accurate classification of asthma sub-phenotypes is possible.95 As depicted schematically in \textbf{Figure 1-8}, a multifaceted approach and a gamut of biomarkers is required to accurately diagnose and subsequently classify asthma.96

\textbf{Figure 1-8} Asthma is a heterogeneous disease consisting of several overlapping pathologies necessitating multiple biomarkers to accurately diagnose and phenotype patients. Adapted from SJ Wadsworth, J Asthma Allergy 2011.
1.5.1 Asthma Diagnosis

A history of variable respiratory symptoms, the presence of airflow obstruction or hyperresponsiveness, reversibility of obstruction and exclusion of alternative diagnoses constitutes a positive diagnosis of asthma. Respiratory symptoms indicative of asthma include a combination of wheeze, dyspnea, chest tightness and cough that are temporally intermittent and tend to worsen at night. In reality, asthma is still commonly diagnosed on the basis of symptoms alone. In Ontario, Canada, only 43% of asthmatics diagnosed by a physician performed spirometry. Failure to include objective assessments in the diagnostic process is likely contributing to overdiagnosis; evidence of this was observed in a longitudinal study across eight Canadian cities that concluded approximately 33% of individuals with a physician diagnosis of asthma did not have asthma when objectively assessed. Ideally, a diagnosis should be rendered through evaluation of the patient’s respiratory symptoms, medical history, physical examination and spirometry. Independently, symptoms, medical history and physical exams cannot accurately exclude and/or confirm a diagnosis of asthma. Spirometry is absolutely required to objectively assess airflow obstruction, its severity and reversibility. Accordingly, spirometry should be performed prior to and following inhalation of a short-acting bronchodilator to indicate the degree of obstruction and reversibility according to ATS/ERS standards.

Common differential diagnoses include chronic obstructive pulmonary disease, alternative upper airway diseases (e.g. rhinitis) and obstructions involving the large (e.g. vocal cord dysfunction) and small airways (e.g. bronchiolitis).

1.5.2 Asthma Control

Asthma control refers to the extent that symptoms of asthma can be reduced or removed by treatment. Control encompasses two domains: current clinical control and future risk of exacerbations and lung function decline. Symptom control is gauged by evaluating the frequency of day-time symptoms, night-time symptoms, short-acting beta-agonist (SABA) use and activity limitation. Risk is gauged by evaluating the frequency and severity of previous exacerbations. Taken together, a patient’s asthma is considered to be well-controlled if he/she is symptom free without activity limitation or exacerbations and does not experience variable lung function. As described above, multiple standardized
questionnaires have been designed to assess the degree of asthma control. Some of the most commonly used questionnaires are the ACQ and ACT. There is no general consensus between national and international guidelines regarding degrees of asthma control. For example, the GINA report of 2015 used categories of “well-controlled,” “partly-controlled” and “uncontrolled;” whereas the National Heart, Lung, and Blood Institute (NHLBI) ERP3 used “well-controlled,” “not well-controlled” and “very poorly-controlled.” Regardless, the primary goal of asthma treatment is the achievement and maintenance of disease control.

1.5.3 Asthma Severity

Asthma severity can be defined by the intensity of treatment required to control asthma. Severity can be classified as intermittent, mild, moderate and severe according to the lowest level of treatment required to achieve asthma control. Shown below in Table 1-1, intermittent, mild, moderate and severe asthma is asthma that is well-controlled while receiving the indicated treatment regimen. The indicated treatment regimens can be extrapolated to reflect the six-step and five-step treatment strategies proposed by the NHLBI and GINA, respectively. Severe asthma is defined as asthma which requires treatment with high dose ICS and LABA (and/or OCS) to achieve asthma control, or asthma that remains uncontrolled despite maximum therapy. As defined, asthma severity can only be assessed after a patient has been on regular controller treatment for several months.

Table 1-1 Classification of asthma severity.

<table>
<thead>
<tr>
<th>Intermittent</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest level of treatment required to achieve control</td>
<td>SABA as needed</td>
<td>Low-dose ICS or other low intensity treatment</td>
<td>Low- to moderate-dose ICS and LABA</td>
</tr>
</tbody>
</table>

Treatment strategy Step Allocation

<table>
<thead>
<tr>
<th>NHLBI EPR3</th>
<th>GINA</th>
<th>1</th>
<th>2</th>
<th>3 or 4</th>
<th>5 or 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>1 or 2</td>
<td>3</td>
<td>4 or 5</td>
<td></td>
</tr>
</tbody>
</table>

NHLB, Expert Panel Report 3 of the National Heart, Lung and Blood Institute; GINA, Global Initiative for Asthma; ICS, inhaled corticosteroids; LABA, long acting beta-agonists; OCS, oral corticosteroids. Adapted from DR Taylor, Eur Respir J 2008.
1.6 Treating Asthma

Similar to the majority of chronic lung diseases, no existing asthma treatments are preventative or curative. Accordingly, the primary goal of asthma treatment is the achievement and maintenance of disease control while minimizing the risk of future exacerbations or lung function decline. The majority of asthma can be well-controlled using a SABA for rescue during acute onset bronchoconstriction and ICS for chronic control. However, as asthma severity is increased, treatment becomes more complex and requires personalized, phenotype-specific additive therapies.

Towards the goal of asthma treatment, evidence-based stepwise approaches have been developed by the NHLBI100 and GINA1 (Figure 1-9) to guide treatment decisions. Both guidelines suggest that a continuous control-based management cycle (Figure 1-9), consisting of iterative patient assessment, treatment and review is necessary to ensure asthma is adequately treated. Following each assessment, treatment can be “stepped-up” when asthma is not well-controlled and “stepped-down” when asthma is well-controlled.102 The breadth of asthma medications can be categorized as controllers, relievers and add-on therapies. Corticosteroids, beta-agonist bronchodilators, theophylline, leukotriene receptor antagonists, immunomodulators and bronchial thermoplasty are briefly described below.
1.6.1 Controller & Reliever Treatment

1.6.1.1 Corticosteroids
Corticosteroid anti-inflammatory therapy is the most effective therapy for asthma.1,2 Corticosteroids block various inflammatory pathways, suppressing cytokine production, recruitment of eosinophils and the release of inflammatory mediators. In the 1990s, their efficacy was evidenced by their ability to safely reduce airflow obstruction, symptoms, emergency department visits, hospitalizations and asthma-related deaths, to improve asthma control and quality-of-life and to decrease airway hyperresponsiveness and exacerbation frequency.$^{103-107}$ Response to this treatment is variable between asthmatics and is related to the type of underlying inflammation. Asthmatics with neutrophilic predominant inflammation are commonly corticosteroid-resistant,108 whereas asthmatics with eosinophilic predominant inflammation are predominantly corticosteroid-responsive. As an independent controller medication, ICS demonstrate superiority over other controller
medications in placebo-controlled trials. Commonly used ICS include beclomethasone, budesonide, ciclesonide, fluticasone, mometasone and triamcinalone.

As many as 30% of severe asthmatics require daily oral systemic corticosteroids (OCS) as additive maintenance therapy, with 50% requiring more than three bursts of OCS annually. Due to the well-documented negative side-effects of chronic OCS use, they are only recommended as an add-on treatment for severe asthmatics who remain poorly controlled despite high-dose ICS and long-acting beta-agonists (LABA). OCS are more commonly used in short bursts (3-7 days) during an exacerbation to gain control of symptoms as they speed the resolution and prevent relapse of exacerbations.

1.6.1.2 Beta-agonist Bronchodilators
Short-acting and long-acting beta-agonists (SABA and LABA, respectively) are the most commonly used bronchodilators for treating asthma. SABAs, such as salbutamol, are a highly-effective reliever of acute bronchoconstriction in mild, moderate and severe asthma. LABAs, salmeterol and formoterol, cause bronchodilation for greater than 12 hours and are used in combination with ICS for long-term control in moderate and severe asthma. The clinical benefit of monotherapy therapy with SABA and LABAs is inferior to that of ICS and has been linked to adverse outcomes, accordingly LABAs are rarely used independently. When used in combination with ICS, LABAs have an additive effect, improving lung function and symptom control. The effects of beta-agonists are the result of their binding to beta-adrenoceptors, present on airway smooth muscle, epithelial and inflammatory cells. Its major mechanism of action is initiated when beta-adrenoceptors on the airway smooth muscle are stimulated, increasing cyclic AMP, which causes the smooth muscle to relax. The variable rate of onset and the duration of effect between SABAs and LABAs is due to their hydrophilic and lipophilic characteristics that govern their interaction with beta-adrenoceptors.

1.6.2 Add-on Treatments

1.6.2.1 Theophylline
Low-dose theophylline, is a relatively weak bronchodilator that may have an anti-inflammatory and immunomodulatory effect. Due to the availability of safer and more
effective treatments, such as ICS and beta-agonists, theophylline is considered an alternative controller option or add-on treatment.1,2,118 The clinical benefit of adding theophylline to ICS treatment was found to only minimally improve lung function.119 The clinical utility of theophylline is complicated due to its toxicity and associated side-effects at effective doses, which is particularly problematic as its bronchodilator effect is dose-dependent. Despite guideline recommendations, theophylline is one of the most prescribed medications for asthma internationally because of its low cost. This relates to its use in developing nations where access to superior and more expensive alternatives is limited.

1.6.2.2 Leukotriene Receptor Antagonists (LTRAs)

LTRAs reduce bronchoconstriction and inflammation in response to various stimuli; they are considered an alternative first-line therapy, but are most commonly used as add-on treatment.1,2 Leukotrienes are biochemical mediators that are released from inflammatory cells such as mast cells, eosinophils and macrophages in response to various stimuli.41,120 Binding of cysteinyl-leukotrienes to cysteinyl-leukotrienes receptors results in smooth muscle constriction, mucus secretion, edema and inflammation.41,120 For the treatment of asthma, montelukast (Singulair) is the most commonly used LTRA, blocking the effect of cysteinyl-leukotrienes receptors. LTRAs are considered an alternative first-line therapy as they are less effective than ICS when used independently.121 In a multicentre, randomized, double-blind, placebo-controlled trial, montelukast improved airway obstruction, exacerbations, control and blood eosinophils in stable asthma.122 In a subsequent trial, the clinical benefit of adding montelukast to ICS treatment was found to be as effective as doubling the ICS dose.123 Multiple studies have concluded that adding LTRA to ICS results in comparable or worse outcomes125,126 than achieved by adding LABA to ICS.127

1.6.2.3 Anticholinergic bronchodilators

Anticholinergic bronchodilators are considered a clinically valuable add-on treatment for the treatment of asthma. Anticholinergic agents inhibit cholinergic activity by competing with acetylcholine at muscarinic receptors to permit dilation of the airways.41 Acetylcholine, which acts through muscarinic receptors, is a key player in the regulation of airway smooth muscle tone and mucus gland secretion.128 Studies evaluating the efficacy of Tiotropium Bromide (Spiriva), a long-acting muscarinic antagonist, reported
improved lung function and symptoms, reduced frequency of SABA use and reduced risk of future exacerbations in asthmatics taking ICSs and LABAs.129-131

1.6.2.4 \textit{Immunomodulators}

Immunomodulator is an umbrella term used to encompass many different pharmaceutical agents aimed at modulating cell signalling and the immunologic responses in asthma. Omalizumab, a monoclonal antibody that interrupts the allergic cascade by binding free immunoglobulin E (IgE), is considered a phenotype-guided add-on treatment for allergic asthma that cannot be well-controlled with ICS.1,2 In patients with moderate-to-severe allergic asthma, large-scale clinical trials have proven omalizumab reduces exacerbations and symptoms, improves quality-of-life and has a steroid-sparing effect.132-135 In subsequent trials, adding omalizumab to ICS treatment was proven clinically beneficial due to further improved lung function and a reduction in exacerbations. While omalizumab is the only immunomodulator currently integrated into treatment guidelines, numerous clinical trials have emerged to evaluate novel pharmaceutical agents engineered to target various pathways important to the pathogenesis of asthma. Potential new treatments include: anti-interleukin 5 (IL-5) antibodies, mepolizumab136 and reslizumab;87 anti-IL-13 antibodies, lebrikizumab137 and tralokinumab;138 anti-TNF-\(\alpha\) antibody, golimumab;139 tyrosine kinase inhibitor, masitinib;140 IL-2R\(\alpha\) antibody, daclizumab;141 and CXCR2 antagonist, SCH527123.142

1.6.2.5 \textit{Bronchial Thermoplasty}

Bronchial thermoplasty is a novel nonpharmacological outpatient treatment procedure for severe asthma. During three bronchoscopy sessions, radiofrequency energy is delivered to all of the bronchopulmonary segments to disrupt bronchial smooth muscle.143 The effect of this procedure is a reduction in airway smooth muscle mass in the treated airways, resulting in a reduced potential for bronchoconstriction.144,145 The safety and efficacy of bronchial thermoplasty have been evaluated in numerous clinical trials, including a multi-centre, randomized, double-blinded, sham-controlled trial, that together demonstrated improved asthma control, quality-of-life, and decreased exacerbation frequency, hospitalizations and ED visits following treatment.86,146,147 The long-term effectiveness was recently evaluated and reduced hospitalizations and exacerbation frequency were

shown to persist five years after treatment.148,149 Despite its excellent safety and efficacy profile, the worldwide literature consists of only about 200 patients who have received this treatment.

1.7 Imaging Asthma

Currently, the clinical use of imaging in asthma is minimal and largely confined to chest radiography and x-ray computed tomography (CT). Through research initiatives, novel imaging biomarkers of lung structure and function have been developed, many of which have the potential to impact asthma diagnosis, management and evaluation of treatment effect. X-ray CT, single photon emission computed tomography (SPECT), positron emission tomography (PET) and MRI based techniques can be used to non-invasively evaluate regional ventilation. Imaging has provided valuable insight into the underlying disease mechanisms of asthma, and will be discussed below.

1.7.1 Plain X-ray

The chest radiograph (Figure 1-10) is the oldest and most common type of image used to evaluate the lung as it is relatively inexpensive and fast. Unfortunately, the utility of chest radiographs is limited as they are two-dimensional projection images of the three-dimensional anatomy and are therefore limited by tissue superimposition. A posterior-anterior chest radiograph is obtained with the patient standing upright, with the x-ray source positioned behind them so that the x-ray beam enters from the posterior side and exits the anterior side of the patient.150 Different anatomical structures absorb x-rays to different extents and this is termed attenuation, the principle behind the contrast in an x-ray image.150 Highly attenuating tissues such as bone absorb many x-rays and appear white on an x-ray image. In contrast, low attenuating tissues such as lung parenchyma absorb very few x-rays and therefore appear black on an x-ray image. The radiation dose associated with a typical posterior-anterior chest radiograph is 0.01 mSv,151 approximately equivalent to 0.6\% of the annual background radiation in Toronto, Canada (1.6 mSv).

Chest radiographs are rarely useful in the diagnosis and management of asthma as they are often normal. However, their strength lies in the ability to reveal complications or alternative causes of “asthma-like symptoms.” A study by Paganin and colleagues concluded that only 38\% of chest radiographs were abnormal in adults with chronic
asthma. Radiographic findings associated with asthma are generally subtle and they include increased lung volume, increased lung lucency and bronchial wall thickening. Increased lung volume or hyperinflation is the most common radiographic observation and is seen as increased lung length and flattening of the diaphragm (Figure 1-10). The prevalence of bronchial wall thickening identified on chest radiographs has been related to asthma severity.

![Healthy and Asthma Chest Radiographs](image.png)

Figure 1-10 Representative posterior-anterior chest radiograph of a healthy volunteer and an asthmatic subject. In asthma, diaphragm flattening is indicative of hyperinflation. Healthy case courtesy of Dr. Usman Bashir, Radiopaedia.org, rID: 18394; Asthma case courtesy of Dr. Garth Kruger, Radiopaedia.org, rID: 21812.

1.7.2 X-ray Computed Tomography

Since its advent in the 1970s, x-ray CT has become the imaging modality of choice for the evaluation of pulmonary disease. Through technological advancements, the entire lung volume can now be captured with sub-millimetre isotropic spatial resolution in a single breath-hold using multiple-row detector CT scanners. This increased spatial resolution and the potential for isotropic voxels permit multi-planar and three-dimensional reconstructions. Similar to plain radiography, the attenuation properties of tissues govern image contrast in x-ray CT. In CT however, attenuation values are measured in
Hounsfield units (HU) and range from -1000 HU for air, 0 HU for water and to approximately 700 HU for bone.155

CT of asthmatic subjects have shown abnormal findings such as bronchial wall thickening, bronchial wall dilation, luminal narrowing, bronchiectasis, mosaic lung attenuation, mucus plugging and atelectasis (Figure 1-11).152,156 In asthma research studies, CT has been used extensively to directly evaluate the large airways and to indirectly evaluate the small airways (<2mm). As detailed below, CT-derived metrics are correlated with clinical symptoms and are highly sensitive to treatment response. Gupta and colleagues used CT to evaluate 185 severe asthmatics and reported that abnormalities were present in 80% of study participants.157

![Figure 1-11 Axial CT of the right lower lobe in two representative asthmatics.](image)

At baseline (panel A), after inhalation of methacholine (panel B) and then salbutamol (panel C) there are visually obvious variations in bronchial lumen diameters (highlighted by white arrow) consistent with bronchoconstriction and subsequent bronchodilation.158 In a separate asthmatic (panel D) mosaic attenuation due to air-trapping is observed.159 Reproduced with permission from Beigelman-aubry et al (2002)158 and Sung et al (2007).159

The architecture of the large airways is assessed by quantifying metrics similar to those employed in histological studies such as the airway wall area percent (Equation 1-7), airway wall thickness percent (Equation 1-8) and airway lumen area. Initial airway quantification techniques relied on manual tracing; however, due to the obvious limitations of this approach, semi-automated and automated computer-based approaches have since been developed. Three-dimensional approaches enable up to ten generations of the airway
tree to be segmented, and reliable quantification can be achieved for first to sixth generation airways.154,160 Furthermore, automated three-dimensional approaches allow for the identification of airways using standardized clinical nomenclature, as demonstrated in Figure 1-12.160 Awadh and colleagues were the first to quantify airway wall thickness in the segmental and sub-segmental airways of asthmatics and healthy controls using a manual approach. They reported that asthmatics had a greater airway wall thickness as compared to controls and that wall thickness was increased with increasing asthma severity.161 Subsequent investigations have compared airway measurements in normal and asthmatic subjects using various quantification techniques and their results support the initial findings by Awadh et al.162-167 Furthermore, CT airway measurements have been correlated with asthma severity,167-169 airflow obstruction,162,164,167,168,170 airway hyperresponsiveness163,168,171 and pathology.168 Following interventions such as deep inspiration,172 methacholine challenge166 and ICS therapy,165,173,174 the airways have been shown to behave in the expected direction.

Equation 1-7

\[
\text{Wall Area Percent [\%]} = \frac{\text{Airway wall area}}{\text{Total airway area}} \times 100
\]

Equation 1-8

\[
\text{Wall Thickness Percent [\%]} = \frac{\text{Airway wall thickness}}{\text{Airway outer diameter}} \times 100
\]
main bronchus and left upper lobe bronchus pathway is highlighted (in blue) and the segmental LB3 airway is quantified (right panel). In cross-section, the pathway and LB3 airway boundaries are outlined in red.

The small airways (<2mm) cannot be directly evaluated using CT as they are beyond the current spatial resolution limit of the technique. However, air trapping in asthma is thought to be an indirect measure of small airway obstruction and can be visualized as heterogeneous regions of low attenuation on CT (Figure 1-11). As expected, regions of low attenuation are more apparent on expiratory as compared to inspiratory scans. Various metrics have been used to quantify the extent of air trapping on CT and these include scoring systems, threshold and percentile techniques and lung density expiratory to inspiratory ratios. Threshold techniques use a specific threshold of HU (e.g. -950 HU, -910 HU, -856 HU) and the percentage of the lung less than this threshold is calculated. Percentile techniques require a specific percentile point (e.g. lowest 15th percentile) to be selected and the HU value for the corresponding percentile is determined. Using various CT-derived gas trapping metrics, investigators have observed significantly elevated gas trapping in asthmatics over healthy controls. Other investigators correlated CT measurements of gas trapping in asthma with asthma severity, airflow obstruction, airway hyperresponsiveness and disease duration. Zeidler and colleagues performed a double-blinded, cross-over study to compare the effect of montelukast versus placebo on small airway function in mild-to-moderate asthma. Compared to placebo, montelukast resulted in significantly less air trapping on CT. Moreover, other interventional studies have shown that air trapping on CT worsens following methacholine and improves following treatment with ICS. These studies similarly concluded that CT is a more sensitive method to assess treatment response in the small airways than conventional lung function tests.

In addition to providing rich qualitative and quantitative structural information regarding the airways and lung parenchyma, functional assessments of ventilation and perfusion are also possible with novel CT techniques. Introduced in the late 1980s, xenon ventilation CT is a technique used to non-invasively measure regional pulmonary ventilation in lung diseases. CT is performed after the participant inhales radiodense xenon and ventilation can in turn be assessed because the airspaces that contain xenon have increased CT density.
in comparison to those that do not. However, this technique is limited as xenon enhancement is poor and this has motivated xenon ventilation imaging using a dual-energy CT based approach. Using dual-energy CT, Chea and colleagues observed ventilation defects in 80% of stable asthmatics who had significantly worse airflow obstruction and thicker airway walls than asthmatics without defects. Using the same approach, another group of investigators observed an increase in xenon ventilation defects following methacholine that resolved following salbutamol inhalation.

Despite the rich qualitative and quantitative structural and functional information that CT can provide, it is disadvantaged due to its use of ionizing radiation. The radiation dose associated a clinical chest CT is approximately 8 mSv, equivalent to roughly five years of background radiation in Toronto, Canada (1.6 mSv) or 400 plain chest radiographs. This becomes a major concern in asthma research and patient care as serial imaging capabilities are necessary for disease management and the evaluation of response to treatment or intervention.

1.7.3 Nuclear Medicine

Gamma Scintigraphy & Single Photon Emission Computed Tomography (SPECT)

Scintigraphy and SPECT can be used to regionally evaluate perfusion and ventilation in the lungs. Following the injection or inhalation of a radionuclide tracer, gamma radiation is used to form an image of radioactivity within the body. Radionuclide tracers emit gamma rays at a specific energy that can be detected by a gamma camera that converts absorbed energy into an electrical signal that can be displayed as an image. Accordingly, regions of high radionuclide concentration appear as hot spots on the image. Similar to how x-ray CT compares to plain x-ray, SPECT compares to scintigraphy. Scintigraphy uses gamma radiation to form two-dimensional images of radioactivity within the body, whereas SPECT offers a three-dimensional image.

A tracer that is radioactive itself or labelled with a radionuclide is required. For regional imaging of ventilation, radioactive gases, radioactively-labelled aerosols and Technegas can be used. The most commonly used radioactive gases are xenon-133 (\(^{133}\text{Xe}\)) and krypton-81m (\(^{81}\text{mKr}\)). The radionuclide technetium-99m (\(^{99}\text{mTc}\)) is used as \(^{99}\text{mTc}-\)
diethylene-triamine pentaacetate (DTPA) aerosol and Technegas.185 The inhaled deposition of Technegas has been shown to be similar to the distribution of inhaled 133Xe gas, and is preferred as its deposition within the lungs remains unchanged for more than 20 minutes.186

Scintigraphy using inhaled 133Xe gas was the first method to identify regional ventilation abnormalities in asthma.187,188 Engel and colleagues were the first investigators to show the effect of methacholine-induced bronchoconstriction on regional ventilation.189 Nearly ten years later, the effect of histamine-induced bronchoconstriction on ventilation was observed.190 In the late 1990s, King and colleagues began to measure ventilation in asthma using SPECT and an inhaled bolus of Technegas. As hypothesized based on previous scintigraphy studies, ventilation was compromised in asthmatics compared to healthy controls.191 Using the same technique, the investigators subsequently observed increased ventilation abnormalities following methacholine challenge in asthma.192 Importantly, the team demonstrated a link between ventilation defects and peripheral airways disease measured by MBNW.192 Not necessarily representative of ventilation, SPECT has been used extensively in research to investigate the regional deposition of inhaled aerosols when labelled with the radionuclide 99mTc.193,194

Similar to x-ray based imaging methods, an obvious limitation of SPECT is its radionuclide-dependent radiation exposure. A lung ventilation-perfusion study using 99mTc exposes the subject to an effective dose of 2-3mSv.185 Furthermore, SPECT suffers from poor spatial resolution (\textasciitilde 15mm) and motion artifact due to long acquisition times.

\textit{Positron Emission Tomography (PET)}

Similar to SPECT, PET offers three-dimensional images of radioactivity and requires the injection or inhalation of a positron-emitting radioisotope. As the radioisotope decays within the patient, positrons are emitted and then quickly annihilated when they come into contact with an electron. As a result, two photons are emitted approximately 180\textdegree to one another.195 The emitted photons can be detected and a three-dimensional map of radioactivity can be reconstructed to generate a PET image.195

Regional ventilation, perfusion and ventilation/perfusion matching can be assessed with nitrogen-13 (13NN) PET following bolus injection or inhalation of 13NN. 13NN has a half-
life of ten minutes and is not soluble in blood or tissue.195 The bolus injection technique is used to deliver 13NN to the lung via the bloodstream. Accordingly, unventilated lung regions, termed ventilation defects, retain the tracer due to gas trapping whereas the tracer is quickly washed out of ventilated lung regions. Conversely, when the alternative inhalation technique is used, the tracer does not reach poorly-ventilated regions of the lungs. Intravenous bolus injection of 13NN was used by Venegas and colleagues in a study evaluating the effect of methacholine-induced bronchoconstriction on regional ventilation in mild-to-moderate asthmatics.196 Following bronchoconstriction, the investigators observed regions of poor ventilation.196 Using the same technique, similar results were observed in mild asthmatics but in a subsequent study, lung perfusion was shown to redistribute away from ventilation defects.197 The effect of omalizumab treatment on ventilation and ventilation/perfusion matching metrics was assessed in a small group of uncontrolled allergic asthmatics but no effect was observed.198

18F-fluorodeoxyglucose (FDG) is the most commonly used PET tracer in clinical practice due to its high uptake by metabolically active cells, such as cancer cells.154 Interest has surrounded the utility of FDG-PET as a biomarker of eosinophilic and neutrophilic inflammation in the lungs of asthmatics.199,200 Future work is required to determine the utility of this approach in asthma.

1.7.4 Magnetic Resonance Imaging

MRI does not require ionizing radiation and, due to this obvious advantage, the past 25 years have seen an accelerated development of pulmonary MRI. However, conventional 1H MRI has numerous inherent limitations that have motivated the development of alternative inhaled gas contrast methods since the 1990s. Oxygen-enhanced, fluorinated gas and hyperpolarized gas MRI are capable of imaging lung structure and function. Of these techniques, hyperpolarized gas MRI has been most widely applied in pulmonary research; however, despite its utility, clinical translation has been slow.

1.7.4.1 Conventional 1H MRI

Conventional 1H MRI is challenging due to the lung’s inherent properties. Primarily consisting of air, the density of the human lung is approximately 0.1 g/cm3, making it the least dense organ in the body.201 Accordingly, the lungs inherently low 1H density
translates to low 1H MRI signal intensity. Furthermore, the lung consists of millions of alveoli or air-tissue interfaces. These numerous air-tissue interfaces create significant local magnetic field inhomogeneities referred to as susceptibility artifacts, further inducing 1H MRI signal loss.201 Finally, due to cardiac and respiratory motion, the images are highly susceptible to motion artifacts. Due to these limitations, as shown in Figure 1-13, the lungs appear as black holes and resultantly healthy and asthmatic lungs are relatively indistinguishable using conventional 1H MRI sequences.

![Healthy Asthma](image)

Figure 1-13 Representative coronal conventional 1H MRI of a healthy volunteer and an asthmatic subject. Due to the low 1H density within the lung, 1H MRI cannot visually distinguish structural abnormalities inherent to the asthmatic lung.

Despite these shortcomings, alternative and potentially more sensitive 1H MRI techniques such as ultra-short echo time (UTE),202 oxygen-enhanced203 and Fourier decomposition204 methods have been developed. Advantageously, both oxygen-enhanced and Fourier decompositions methods provide functional information, offering insight into ventilation and perfusion characteristics. Even with the advent of these alternative techniques, the application of 1H MRI in asthma has been limited. Static and dynamic oxygen-enhanced MRI methods have been used to assess oxygen delivery, uptake and washout in asthma.205-208 Oxygen-enhanced MRI metrics are sensitive to asthma severity205-207 and correlate with
Most recently, the oxygen transfer function has been shown to decrease in asthma subjects after a segmental endobronchial allergen challenge and was correlated with bronchoalveolar lavage eosinophil counts. Although yet to be evaluated in asthma, Fourier decomposition MRI allows lung perfusion and ventilation to be assessed, and preliminary studies have demonstrated excellent feasibility and reproducibility in healthy volunteers and subjects with respiratory disease. Similarly, UTE methods have not been evaluated in subjects with asthma. However, in a murine asthma model UTE 1H MRI was used to quantify peribronchial eosinophilic inflammation that correlated with lung function parameters.

1.7.4.2 Inhaled Gas MRI

Over the past two decades, MRI using inhaled hyperpolarized and fluorinated gases has been used to investigate lung function and structure in healthy volunteers and subjects with pulmonary disease. Thus far, the field of inhaled gas MRI has been dominated by hyperpolarized gas techniques, using 129Xe and 3He. Unlike conventional 1H MRI, specialized polarizer equipment and multinuclear radio-frequency hardware are necessary. Furthermore, this approach requires the subject to inhale an anoxic gas mixture and perform a short breath-hold (8-14 seconds) during image acquisition. The field slowly began to take shape following the seminal investigation by Albert and colleagues who produced the first hyperpolarized 129Xe MR images of excised mouse lungs. Using spin-exchange optical pumping, Albert and colleagues recognized that the longitudinal polarization of 3He and 129Xe gas nuclei could be increased by approximately 100,000 times. This strong signal makes it possible to acquire data from the hyperpolarized gas itself once inhaled by the patient.

The process of polarization is achieved by spin-exchange optical pumping, circularly polarized light bombards a glass cell housing rubidium and a noble gas situated within a helmholtz coil. The circularly polarized light is absorbed by the rubidium atoms, resulting in spin-polarization of its valence electrons. Subsequent collisions between the noble gas and polarized rubidium atoms result in the transfer of angular momentum from rubidium electrons to the noble gas nucleus, thereby increasing its nuclear-spin polarization.
While initial investigations used hyperpolarized 129Xe gas, the field quickly transitioned to hyperpolarized 3He gas due to its three-fold higher nuclear gyromagnetic ratio (129Xe: 11.78 MHz/T; 3He: 33.43 MHz/T) and greater achievable polarization (129Xe: 8-25%; 3He: 30-40%) – both of which contribute to the greater MRI signal achieved with 3He than 129Xe gas. More recently, the limited quantity and resultant high cost of 3He gas has motivated the field to shift its focus back towards 129Xe gas as it is widely available and a less expensive alternative. Notably, advances in polarizer technology have resulted in improved 129Xe polarization that has improved the overall MRI signal. It is important to acknowledge that excellent safety and tolerability of both 3He and 129Xe MRI has been demonstrated in healthy volunteers and subjects with pulmonary disease. Studies have shown no clinically significant adverse effects of 3He or 129Xe inhalation. With this method, regional ventilation, lung microstructure and gas exchange have been qualitatively and quantitatively evaluated in clinical research.

Ventilation Imaging

Spin density imaging of hyperpolarized 3He or 129Xe, acquired during breath-hold, provides an opportunity to visualize with high spatial resolution those areas of the lung that participate in gas distribution and those that do not. As shown in **Figure 1-14**, in healthy young adults, inhalation of hyperpolarized gas results in homogeneous signal suggesting that all areas of the lung are participating equally in ventilation. In contrast, characteristic regions of signal void are observed in asthma (**Figure 1-14**), corresponding to areas of the lungs that are not ventilated within the time-course of a breath-hold scan. Regions of signal void, termed ventilation defects, have also been observed in cystic fibrosis, COPD, bronchiectasis, lung cancer and the healthy elderly.
Figure 1-14 Representative coronal centre slice hyperpolarized 3He MRI of a healthy volunteer and an asthmatic subject. 3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). Unlike the representative healthy volunteer, the asthmatic subject has visually obvious ventilation defects.

The presence of ventilation abnormalities were initially quantified using visual scoring and manual segmentation, but semi-automated220,221 and automated222 segmentation approaches are now more commonly employed. Quantitative MRI-derived metrics include the ventilation defect volume,223,224 ventilated volume,225 ventilation coefficient of variation226,227 and the ventilation defect percent (VDP). VDP is a measure of the ventilation defect volume normalized to the thoracic cavity volume, as shown in Equation 1-9. VDP is now a widely disseminated biomarker220,221,225 due to its demonstrated reproducibility,220 relation to standard measurements of lung function228 and its sensitivity to disease severity and treatment response.229

Equation 1-9

\[
\text{Ventilation Defect Percent (VDP) } [\%] = \frac{\text{Ventilation defect volume}}{\text{Thoracic cavity volume}} \times 100
\]

Many clinical research studies using hyperpolarized gas MRI have been performed in asthma to evaluate ventilation heterogeneity.$^{224,226,230-239}$ In 2001, Altes and colleagues were the first to observe heterogeneous ventilation in non-symptomatic asthmatic adults.
with normal lung function using hyperpolarized 3He MRI. In addition to this seminal study, numerous others have observed worse ventilation in asthmatics compared to healthy controls (Figure 1-14). While the majority of investigational studies to date have evaluated adults, a recent study by Cadmen and colleagues imaged asthmatic children for the first time. Similar to previous observations in adults, a greater number and larger size of ventilation defects were observed in children with asthma than those without asthma. In one of the largest studies evaluating 58 asthmatics with varying disease severity, ventilation worsened with the increase of disease severity. With respect to lung function, the number of ventilation defects and the number of ventilation defects per slice were inversely correlated with FEV$_1$, but not ventilation volume or VDP. VDP was, however, correlated with airways resistance, FeNO and dyspnea.

Without ionizing radiation, there is enormous potential for serial and longitudinal treatment evaluation studies using hyperpolarized gas MRI. Accordingly, and for obvious reasons, interest has surrounded the temporal variability of focal MRI ventilation defects in asthma. In a 30-minute scan-rescan study, all defects were found to be persistent. Another study concluded that approximately 75% of defects remained in the same location when evaluated twice in the same day. Over longer periods of time (7-476 days) many ventilation defects were persistent or reoccurred in the same location. Similarly, following repeat bronchoconstriction on separate days, the majority of defects were also induced in the same locations. With methacholine and exercise induced bronchoconstriction, numerous new ventilation defects and more heterogeneous ventilation patterns have been observed. Alternatively, salbutamol-induced bronchodilation has been shown to improve, but not completely reverse, induced ventilation abnormalities. Figure 1-15 shows the ventilation distribution for a representative asthmatic at baseline, post-methacholine challenge and post-salbutamol inhalation. A double-blinded, placebo-controlled, multi-institutional study assessed the response of 3He MRI ventilation to montelukast therapy in exercise-induced bronchoconstriction. Following exercise, the authors observed a larger drop in ventilation volume while receiving placebo than while receiving treatment. These studies demonstrate the sensitivity of MRI ventilation to bronchoconstriction and treatment.
Figure 1-15 Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic subject at baseline, post-methacholine and post-salbutamol. 3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). Ventilation abnormalities are present at baseline that become worse following methacholine-induced bronchoconstriction. Post-salbutamol, ventilation is improved but abnormalities are not completely resolved.

It is probable that ventilation defects in asthma are the result of gas trapping and airway obstruction, although their etiology remains to be investigated. In an attempt to evaluate the structural determinants of ventilation defects in asthma, Fain and colleagues evaluated 3He MRI in conjunction with CT and bronchoalveolar lavage. 224 It was concluded that global metrics of ventilation volume were not related to inflammatory markers. However, subsequent regional analysis suggested that ventilation defects may be associated with abnormal inflammation as poorly-ventilated lobes had elevated neutrophils as compared to well-ventilated lobes in the same patient. 224 Furthermore, in the same asthmatics, a spatial relationship between ventilation defects and CT hyperlucency was observed.224

Taken together, these studies suggest that in asthma, ventilation defects are related to airways disease, are regionally heterogeneous, temporally variable and responsive to therapy and provocation. MRI ventilation defects vary in size, ranging from tiny focal hypo-ventilated spots to lobar in nature, and are often observed in asthmatics despite normal lung function. Most importantly, these studies suggest that asthma is a disease that involves selected airways focally rather than diffusely, a concept that could revolutionize asthma management and treatment. With the field’s imminent transition to 129Xe MRI, asthma has yet to be evaluated using this alternative approach. While it can be
hypothesized that the knowledge gained from 3He MRI investigations will be transferable, direct comparisons are required.

Diffusion-weighted Imaging

Another type of hyperpolarized gas MR image that has been commonly acquired uses diffusion-weighted MRI, providing a sensitive and rapid approach for evaluating the lung microstructure. Within the lungs, movement of gas atoms is restricted by tissue boundaries. Therefore, a quantitative apparent diffusion coefficient (ADC) map can be generated that is representative of airspace size. While both 3He and 129Xe ADC measurements have been obtained in the lung, 3He ADC has been more extensively studied demonstrating high reproducibility and correlation with histology measurements of airspace size. For obvious reasons, ADC studies have been most commonly employed in COPD, while to date there have only been a few investigations in asthma. While heterogeneous gas diffusion coefficients have been observed throughout the asthmatic lung, contradiction surrounds the differences in whole lung microstructure between asthmatics and healthy controls. One study has shown increased gas diffusion coefficients in asthma compared to healthy controls, whereas another study observed no difference. In the only study evaluating gas diffusion in asthmatic children, Cadmen and colleagues reported a greater degree of restricted diffusion in children with asthma compared to children without asthma. In the only treatment study, ADC in asthma was quantified at baseline, post-methacholine challenge and following salbutamol inhalation. An increased ADC was observed following methacholine, indicative of gas trapping, which was subsequently reduced followed salbutamol inhalation. A recent study indicated ADC in asthma is related to the acinar component of ventilation heterogeneity due to its relationship with the MBNW derived metric Scond. The same authors also observed that ADC was strongly related to FVC and a CT marker of gas trapping.

1.8 Thesis Hypotheses and Objectives

The overarching objective of this thesis was to develop and apply novel pulmonary imaging methods to better understand asthma and to provide a foundation for functional imaging to guide clinical decisions and treatment in patients with asthma. The specific objectives and hypotheses tested in each chapter of this thesis are introduced below.
In Chapter 2, our objective was to quantitatively compare hyperpolarized 3He and 129Xe MRI within a five-minute period before and after bronchodilator administration in a small group of well-controlled asthmatic adults. We wanted to understand the effect of the gas physical properties on ventilation defects in asthma. The transition from 3He to 129Xe gas is a necessary step to facilitate broad clinical integration of hyperpolarized gas MRI. Due to the higher density and viscosity of 129Xe gas, we hypothesized that 129Xe MRI would reveal more ventilation abnormalities pre-bronchodilator than 3He MRI and that these differences would be diminished post-bronchodilator.

In Chapter 3, our objective was to exploit the inherent temporal and spatial pulmonary function information provided by hyperpolarized 3He MRI and develop image processing methods to regionally identify temporally persistent and intermittent ventilation defects that could be used to measure, optimize and guide asthma treatment. In this proof-of-concept study, seven asthmatic subjects underwent MR imaging at three timepoints over a two-week period. We hypothesized that patient-specific temporal-spatial pulmonary function maps could be generated from 3He MRI to visualize and quantify temporally persistent and intermittent ventilation defects.

In Chapter 4, our objective was to determine the underlying structural and clinical determinants of asthma ventilation defects by evaluating well-established clinical and emerging imaging (hyperpolarized 3He MRI and CT) measurements in healthy volunteers and subjects with well-controlled asthma. In addition to evaluating the relationship between airway structure and lung function, we asked the question: Are asthmatics with ventilation defects different from asthmatics without ventilation defects? We hypothesized that there would be a quantitative and spatial relationship between MRI ventilation defects and abnormal airways and that ventilation defects would be related to well-established clinical measurements of asthma.

In Chapter 5, our objective was to evaluate the relationship between MBNW and MRI measurements of ventilation, and to better understand their link to asthma control. Multiple-breath gas washout studies have previously demonstrated a link between poor asthma control and increased ventilation abnormalities, and this led to the questions: What is the relationship between in vivo ventilation defects quantified using MRI and asthma
control? Can ventilation defects serve as an intermediate endpoint of outcomes like exacerbations, quality-of-life and asthma control? We wanted to understand this relationship because the primary goal of asthma treatment is the achievement and maintenance of disease control. Accordingly, we hypothesized that MRI and MBNW measurements of ventilation would be related, and contribute to poor asthma control.

In Chapter 6, an overview and summary of the important findings and conclusions of Chapters 2-5 will be provided. The study specific limitations as well as general limitations of the hyperpolarized gas MRI studies presented will be discussed, and some potential solutions will be offered. The thesis ends with a roadmap for future studies that could build on the foundation of knowledge generated by this work.
1.9 References

(7) Canadian Institute for Health Information. *Health Indicators 2008*: Canadian Institute for Health Information 2008.

(36) Fahy JV. Goblet cell and mucin gene abnormalities in asthma. *Chest* 2002;122:320S-26S.

(126) Fish JE, Israel E, Murray JJ, et al. Salmeterol powder provides significantly better benefit than montelukast in asthmatic patients receiving concomitant inhaled corticosteroid therapy. *Chest* 2001;120:423-30.

(175) Washko GR, Parraga G, Coxson HO. Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging. Respirology 2012;17:432-44.

CHAPTER 2

To better understand ventilation defects in asthma, here we quantitatively compared hyperpolarized 3He and 129Xe MRI in a small group of well-controlled asthmatics before and after bronchodilator administration.

The contents of this chapter were previously published in the Journal of Magnetic Resonance Imaging: S Svenningsen, M Kirby, D Starr, D Leary, A Wheatley, G Maksym, DG McCormack and G Parraga. Hyperpolarized 3He and 129Xe Magnetic Resonance Imaging Differences in Asthma prior to Bronchodilation. J Magn Reson Imaging 2013; 38(6):1521-1530. Permission to reproduce this article was granted by John Wiley & Sons and is provided in Appendix A.

2 HYPERPOLARIZED 3HE AND 129XE MRI: DIFFERENCES IN ASTHMA BEFORE BRONCHODILATION

2.1 Introduction

Asthma – a chronic inflammatory disease of the airways is characterized by acute intermittent attacks of airflow limitation resulting in symptoms of dyspnea, cough, chest tightness, and wheeze.\(^1,2\) Reversible airflow obstruction occurs in response to external stimuli that trigger acute effects such as bronchoconstriction, plasma exudation, edema and mucus hypersecretion. It is believed that untreated chronic airway inflammation leads to airway remodeling, resulting in numerous physiological and functional consequences including airflow limitation and ventilation abnormalities.\(^3,4\) The diagnosis and monitoring of asthma are commonly performed using the spirometry measurement\(^5,6\) of the forced expiratory volume in 1s (FEV\(_1\)) - a global measure of airflow limitation that is relatively insensitive to changes in small airway structure and function.\(^7,8\)

Multiple-breath-nitrogen washout (MBNW) studies have clearly shown that ventilation is heterogeneous in asthma\(^9,10\) and that this heterogeneity is likely related to airway hyper-responsiveness,\(^11\) although similar to FEV\(_1\), MBNW measurements cannot provide regional information. Imaging studies including those using nuclear medicine scintigraphy,\(^12-14\) positron emission tomography\(^15\) and x-ray computed tomography (CT)\(^16-18\) have provided a regional picture of heterogeneous ventilation abnormalities in asthma. Additionally, at our site\(^19\) and other centres,\(^20-25\) magnetic resonance imaging (MRI) using hyperpolarized helium-3 (3He) has shown regional ventilation heterogeneity\(^20,21,25\) and the surprising spatial-temporal persistence of ventilation abnormalities or defects\(^22,23\) in
asthma. Moreover, in asthma, hyperpolarized 3He ventilation defects have been correlated with disease severity21 and ventilation defects become larger and/or more numerous after methacholine challenge and exercise.19,24,25

Hyperpolarized 3He MRI remains a specialized imaging research tool, primarily because the restricted quantity and unpredictable cost of 3He gas26 has limited uptake in pulmonary medicine. These issues do not pertain to hyperpolarized 129Xe MRI, an alternative contrast agent27 that was used to obtain the first reported MR ventilation images.28,29 With recent advances in polarization physics,30-33 129Xe MRI has been further developed to provide high resolution measurements of both 129Xe pulmonary ventilation and diffusion.28,29,32,34-41 The safety and tolerability38,42 of 129Xe MRI was recently evaluated and a direct quantitative comparison with 3He MRI was reported in COPD and healthy subjects.43 This previous work showed significantly greater 129Xe as compared to 3He ventilation defects in COPD subjects, although in healthy volunteers there were no differences observed.43 Similarly, previous work qualitatively compared 3He and 129Xe MRI gas distribution in subjects with cystic fibrosis (CF) and showed 3He and 129Xe ventilation defects were in good agreement for some subjects, but in other subjects, 129Xe ventilation defects were larger and/or more numerous.44 Although it is unclear what the structural determinants or mechanisms are behind the differences between 3He and 129Xe gas distribution, such differences are believed to reflect differences in the physical properties of the inspired gases and their interaction with pulmonary abnormalities that are not present in healthy volunteers. A potential mechanism responsible for the differences in 3He and 129Xe gas distribution is the effect of gas density and viscosity on flow resistance in the airways, which is dependent on airway lumen dimensions.45 Structural narrowing of the airway lumen is a common feature in asthma and COPD, resulting in increased resistance to flow in the airways. Thus, the higher density and viscosity of 129Xe gas may result in greater resistance to flow through narrowed airways, contributing to greater 129Xe MRI as compared to 3He MRI ventilation defects.

To our knowledge, the direct comparison of 129Xe and 3He MRI has not been performed in asthmatics. Accordingly, here we quantitatively compared hyperpolarized 3He and 129Xe MRI within a short 5-minute period before and 25-30 minutes after salbutamol administration in a small group of well-controlled asthmatic adults.
2.2 Materials and Methods

2.2.1 Subjects and Study Design

All subjects provided written informed consent to the study protocol approved by the local research ethics board and Health Canada, and the study was compliant with the Personal Information Protection and Electronic Documents Act (PIPEDA, Canada) and the Health Insurance Portability and Accountability Act (HIPAA, USA). Seven subjects were enrolled between the ages of 18 and 60 years of age (mean age=47±7 years; n=4 males) with a physician diagnosis of asthma and FEV$_1$ ≥ 60%$_{\text{pred}}$ (Table 2.1). Before salbutamol administration, vital signs were recorded, pulmonary function tests completed, and MRI was performed. Post-bronchodilator imaging and pulmonary function tests were performed 25-30 minutes after administration of 200µg salbutamol (Apo-Salvent CRC Free Inhalation Aerosol; Apotex, Toronto, Ontario, Canada) delivered through a pressurized metered dose inhaler and AeroChamber Plus valved holding chamber (Trudell Medical International, London, Canada).

Spirometry and plethysmography were performed pre- and post-salbutamol using a MedGraphics Elite Series plethysmograph (MedGraphics, St. Paul, MN, USA). All manoeuvres were performed according to the American Thoracic Society (ATS) guidelines. All subjects also underwent a previous imaging session 326±199 days prior to this study. At this time, hyperpolarized 3He MRI and thoracic CT were performed prior to methacholine challenge and 3He MRI was repeated following methacholine, as previously described.

2.2.2 Image Acquisition

MRI was performed on a whole body 3.0 Tesla Discovery 750MR (General Electric Health Care, Milwaukee, WI, USA) MRI system with broadband imaging capability as previously described. Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag (Jensen Inert Products, Coral Springs, FL, USA) from functional residual capacity (FRC), and image acquisition was performed in 8-15s under breath-hold conditions. To minimize the potential for differences or bias in the levels of inspiration between 3He and 129Xe MRI, extensive coaching was performed and the order of 3He and 129Xe MRI acquisition was
randomized. Conventional 1H MRI was performed prior to hyperpolarized 3He and 129Xe MRI with subjects scanned during 1.0L breath-hold of ultrahigh purity, medical grade nitrogen (N_2) (Spectra Gases, Alpha, NJ) using the whole body radiofrequency (RF) coil and 1H fast spoiled gradient-recalled-echo sequence (10s data acquisition, TR = 4.3ms, TE = 1.2ms, flip angle = 20 degrees, field of view (FOV) = 40cm x 40cm; matrix, 128 x 128; 14-17 slices; slice thickness = 15mm, 0mm gap) as previously described. 47

Hyperpolarized 3He MRI was enabled using a linear bird-cage transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg Germany). A turn-key system (HeliSpin™) was used to polarize 3He gas to 30—40% and doses (5mL/kg body weight) were administered in 1.0L Tedlar® bags diluted with N_2. 3He MRI coronal static ventilation images were acquired using a fast gradient-recalled echo method (9s data acquisition, TR = 3.8ms, TE = 1ms, flip angle = 1 degree, FOV = 40cm x 40cm; matrix, 128 x 128; 14-17 slices; slice thickness = 15mm, 0mm gap) as previously described. 47

Hyperpolarized 129Xe MRI was enabled using a custom-made, unshielded quadrature-asymmetric bird-cage coil model tuned to 35.34MHz, as previously described. 48,49 129Xe gas (86% enriched) was polarized to 10—60% using a turn-key polarizer (XeBox-E10, Xemed LLC, New Hampshire, USA). Doses of hyperpolarized 129Xe gas were dispensed directly into the pre-rinsed 1.0L Tedlar® bags pre-filled with 4He to generate a 50/50 mixture. 129Xe MRI coronal static ventilation images were acquired using a 3D fast gradient-recalled-echo sequence with centric phase-encoding ordering in the y direction and normal sampling in the z direction during a breath-hold of the 1.0L 129Xe/4He mixture (14s data acquisition, TR = 6.7ms, TE = 1.5ms, flip angle = variable, FOV = 40cm × 40cm; matrix, 128 x 128; 14-17 slices; 15mm slice thickness, 0 gap) as previously described. 43

Thoracic CT was performed using a 64-slice Lightspeed VCT scanner (GEHC, Milwaukee, WI USA) using a detector configuration of 64×0.625mm, 120 kVp, 100 effective mA, tube rotation time of 500ms and a pitch of 1.0. In order to reduce the radiation dose delivered to each subject, CT images were acquired for 56 (versus a total of 400 possible) 1.25mm thick slices in a region-of-interest (ROI) spatially identified by 3He MRI to contain ventilation defects. In order to spatially register CT and 3He MRI breath-hold volumes and
anatomy, CT was acquired similar to MRI with subjects in breath-hold after inhalation of a 1.0L Tedlar® bag of N₂ from FRC.

2.2.3 Image Analysis

³He and ¹²⁹Xe MRI semi-automated segmentation was performed to quantify lung volumes using custom software generated using MATLAB R2007b (The Mathworks Inc., Natick, MA, USA), as previously described.⁵⁰ To compare the distribution of both ³He and ¹²⁹Xe gases within the lung, we segmented the ³He and ¹²⁹Xe images based on pixel signal intensity. Briefly, ³He and ¹²⁹Xe static ventilation images were segmented using a K-means approach that classified voxel intensity values into five clusters ranging from signal void (cluster 1 (C1) or ventilation defect volume (VDV)) and hypo-intense (cluster 2 (C2)) to hyper-intense signal (cluster 5 (C5)), and therefore generating a gas distribution cluster-map. For delineation of the ventilation defect boundaries, a seeded region-growing algorithm⁵¹ was used to segment the ¹H MRI thoracic cavity for registration to the cluster-map. ³He and ¹²⁹Xe VDP were generated using VDV normalized to the thoracic cavity volume. Similarly, for the remaining ventilation clusters, the segmented ¹H thoracic cavity volume was used to generate a cluster percentage representing a normalized cluster volume for the lung. All measurements were performed by the same observer (S.S.) with two years of experience performing semi-automated ³He MR image segmentation. The reproducibility of the semi-automated method was previously determined⁵⁰ on the basis of intra-observer variability of five repeated ³He MRI VDP measurements for five asthmatic subjects.

The signal-to-noise ratio (SNR) was calculated for each ³He and ¹²⁹Xe static ventilation slice and then averaged to obtain a single SNR value for each subject image. Briefly, SNR was determined by calculating the mean voxel value within a 5 x 5 cm² voxel region of interest (ROI) for four representative ROI within the lung parenchyma, and dividing by the standard deviation of the voxel values for four representative ROI of the same size in the image background where there was no lung structure, as previously described.⁴³

Ventilation heterogeneity was estimated according to previously described methods²⁵ using the coefficient of variation (COV). Briefly, a ventilated lung ROI was defined as gas
distribution cluster-map clusters C2-C5. For each voxel within the ventilated lung ROI a local ventilation heterogeneity value was calculated by computing the coefficient of variation of the signal intensity in the voxels 5 x 5 neighborhood. Mean COV for each slice was calculated for each 3He and 129Xe static ventilation slice and then averaged to obtain a single COV value for each subject.

Partial CT image analysis was performed using software (Pulmonary Workstation 2.0, VIDA Diagnostics; Iowa City, IA, USA) to generate wall area percent (WA%) and lumen area (LA). An automated airway tree segmentation algorithm (VIDA) was applied, however, a manual component was introduced to the algorithm if the trachea and main bronchus were not present in the image. Seed-points were manually placed within the lumen of the airway of interest to initiate manual segmentation of the airway. To confirm the spatial relationship between a ventilation defect and the corresponding airway of interest, the partial CT was manually registered to the corresponding MR image using 3D Slicer manual registration software (http://www.slicer.org).52

2.2.4 Statistical Analysis

In order to determine the statistical significance of the difference between pulmonary function tests and MRI measurements pre- and post-salbutamol we performed a multivariate analysis of variance (MANOVA) and repeated measures analysis of variance (ANOVA) using SPSS 20.0 (IBM, Armonk, NY, USA). Furthermore, in order to determine if the change observed following salbutamol inhalation using 129Xe MRI was significantly greater than the change observed using 3He MRI, we performed a three-way mixed-design repeated measures ANOVA, using SPSS 20.0. In this analysis subject was treated as a between-subjects factor, and treatment (pre- and post-salbutamol) and gas (3He and 129Xe) was treated as a within-subjects factor. Finally, because 3He MRI often has higher SNR than 129Xe MRI, there is the potential for regions of reduced signal intensity to appear as ventilation defects in low SNR 129Xe images. Therefore, Pearson correlations (r) were performed to determine the relationship between the difference in 3He and 129Xe VDP with the difference between 3He and 129Xe SNR using GraphPad Prism version 4.00 (Graphpad Software Inc, San Diego, CA, USA). In all statistical analyses, results were
considered statistically significant when the probability of making a Type I error was less than 5% (p < 0.05).

2.3 Results

Table 2-1 shows demographic characteristics, pulmonary function, and MRI measurements for seven mild-to-moderate asthma subjects (four males) pre- and post-salbutamol. For all subjects, mean age was 47±7 years and mean body mass index was 27±4 kg/m². Pre-bronchodilator mean FEV₁ was 76±6% pred and mean FVC was 91±12% pred. All subjects were considered to be well-controlled with ≤ 1 asthma exacerbation resulting in hospitalization in the calendar year prior to the study visit.

Table 2-1 Subject demographic characteristics, pulmonary function and MRI measurements.

<table>
<thead>
<tr>
<th></th>
<th>Pre-Salbutamol (n=7)</th>
<th>Post-Salbutamol (n=7)</th>
<th>Significance of Difference (p)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age yrs (±SD)</td>
<td>47 (7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male Sex</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BMI kg/m² (±SD)</td>
<td>27 (4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulmonary Function Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁ %pred (±SD)</td>
<td>76 (6)</td>
<td>83 (10)</td>
<td>0.01</td>
</tr>
<tr>
<td>FVC %pred (±SD)</td>
<td>91 (12)</td>
<td>93 (13)</td>
<td>0.35</td>
</tr>
<tr>
<td>FEV₁/FVC % (±SD)</td>
<td>67 (7)</td>
<td>71 (6)</td>
<td>0.01</td>
</tr>
<tr>
<td>TLC %pred (±SD)</td>
<td>104 (8)</td>
<td>103 (10)</td>
<td>0.41</td>
</tr>
<tr>
<td>RV %pred (±SD)</td>
<td>136 (16)</td>
<td>123 (12)</td>
<td>0.17</td>
</tr>
<tr>
<td>RV/TLC (%) (±SD)</td>
<td>40 (8)</td>
<td>37 (6)</td>
<td>0.15</td>
</tr>
<tr>
<td>IC %pred (±SD)</td>
<td>101 (16)</td>
<td>112 (18)</td>
<td>0.02</td>
</tr>
<tr>
<td>FRC %pred (±SD)</td>
<td>108 (17)</td>
<td>95 (16)</td>
<td>0.003</td>
</tr>
<tr>
<td>Raw %pred (±SD)</td>
<td>184 (72)</td>
<td>133 (56)</td>
<td>0.04</td>
</tr>
<tr>
<td>MRI Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>³He VDP % (±SD)</td>
<td>6 (5)</td>
<td>4 (3)</td>
<td>0.001</td>
</tr>
<tr>
<td>¹²⁹Xe VDP % (±SD)</td>
<td>8 (5)</td>
<td>5 (4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>³He COV (±SD)</td>
<td>0.282 (0.018)</td>
<td>0.269 (0.024)</td>
<td><0.0001</td>
</tr>
<tr>
<td>¹²⁹Xe COV (±SD)</td>
<td>0.309 (0.028)</td>
<td>0.296 (0.036)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

SD=Standard Deviation, BMI=Body Mass Index, FEV₁=Forced Expiratory Volume in 1s, %pred=Percent Predicted, FVC=Forced Vital Capacity, TLC=Total Lung Capacity, RV=Residual Volume, IC=Inspiratory Capacity, FRC=Functional Residual Capacity, Raw=Airway resistance, VDP=Ventilation Defect Percent, COV=Coefficient of Variation.

*Significance of difference (p<.05) determined using a multivariate analysis of variance.
Figure 2-1 shows for two representative asthmatics (subject A and B), 3He and 129Xe MRI coronal slices before and after bronchodilator administration as well as signal intensity cluster maps and COV maps. For both subjects, there were visibly obvious regional ventilation abnormalities in the MRI and cluster maps. As shown, 129Xe gas distribution was qualitatively more heterogeneous (COV maps) compared to 3He MRI, with regions of patchy signal void (cluster and COV maps). As shown in Figure 2-1, following salbutamol administration, for both 129Xe and 3He MRI, some ventilation abnormalities disappeared whereas others persisted.
Hyperpolarized 3He and 129Xe MRI for two representative subjects (Subjects A and B) pre- and post-salbutamol. Static ventilation MRI, corresponding cluster maps and coefficient of variation (COV) maps are shown for:

A) 43 yr old male, baseline FEV₁=82%pred, baseline FEV₁/FVC=69%;
B) 50 yr old female, baseline FEV₁=71%pred, baseline FEV₁/FVC=68%.
C₁ = cluster 1, C₂ = cluster 2, C₃ = cluster 3, C₄ = cluster 4, and C₅ = cluster 5.
As shown in Table 2-1, for all subjects there was a significant improvement in mean FEV\textsubscript{1} %\textsubscript{pred} (p=0.01), FEV\textsubscript{1}/FVC (p=0.01), IC %\textsubscript{pred} (p=0.02), FRC %\textsubscript{pred} (p=0.003), and airways resistance (Raw %\textsubscript{pred} p=0.04) after the administration of salbutamol. Pre-bronchodilator 129Xe VDP (8 ± 5%) was significantly greater than 3He VDP (6 ± 5%, p=0.003); post-bronchodilator 3He (4 ± 3%) and 129Xe VDP (5 ± 4%) were not significantly different. SNR was significantly lower for 129Xe MRI compared to 3He MRI both pre- (3He: 46±21, 129Xe: 22±8, p=0.02) and post-bronchodilator (3He: 36±16, 129Xe: 22±10, p=0.005), importantly however, the difference between 3He and 129Xe VDP pre-bronchodilator (r=0.02, p=0.96) was not related to image SNR. The COV for 129Xe MRI ventilation was significantly greater than for 3He MRI ventilation, both pre- (p<0.0001) and post-bronchodilator (p<0.0001).

In Table 2-1 and shown in more detail in Figure 2-2, there was a significant improvement post-salbutamol for 3He (p=0.001) and 129Xe MRI VDP (p<0.0001) with the improvement in 129Xe MRI VDP significantly greater than for 3He MRI VDP (p=0.008). Post-salbutamol, both 3He (p<0.0001) and 129Xe (p=0.002) COV were significantly decreased. There was no relationship for the difference in VDP post-salbutamol with SNR (3He MRI, r=-0.30, p=0.51; 129Xe MRI, r=-0.32, p=0.49). A subject listing of all MRI measurements is provided in Table 2-2.

![Figure 2-2](image)

Figure 2-2 Bronchodilator response using hyperpolarized 3He and 129Xe MRI. Mean hyperpolarized 3He and 129Xe ventilation defect percent (VDP) and ventilation coefficient of variation (COV) pre- (white) and post-salbutamol (grey). Values are means for all subject slices, and error bars are ± SD. *p ≤ 0.01, **p ≤ 0.001, ***p ≤ 0.0001.
Table 2-2 Pre- and post-salbutamol hyperpolarized 3He and 129Xe MRI measurements.

<table>
<thead>
<tr>
<th>Subject</th>
<th>VDP (%)</th>
<th>C2 (%)</th>
<th>C3 (%)</th>
<th>C4 (%)</th>
<th>C5 (%)</th>
<th>VDP (%)</th>
<th>C2 (%)</th>
<th>C3 (%)</th>
<th>C4 (%)</th>
<th>C5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1†</td>
<td>3</td>
<td>12</td>
<td>40</td>
<td>29</td>
<td>16</td>
<td>4</td>
<td>9</td>
<td>35</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>37</td>
<td>33</td>
<td>19</td>
<td>3</td>
<td>9</td>
<td>28</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>3§</td>
<td>17</td>
<td>11</td>
<td>32</td>
<td>26</td>
<td>15</td>
<td>18</td>
<td>9</td>
<td>26</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>4*</td>
<td>6</td>
<td>12</td>
<td>39</td>
<td>29</td>
<td>15</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>5†</td>
<td>6</td>
<td>12</td>
<td>37</td>
<td>35</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>35</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>40</td>
<td>29</td>
<td>12</td>
<td>7</td>
<td>13</td>
<td>33</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>40</td>
<td>30</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>30</td>
<td>38</td>
<td>14</td>
</tr>
<tr>
<td>Mean (±SD)</td>
<td>6 (5)</td>
<td>11 (1)</td>
<td>38 (3)</td>
<td>30 (3)</td>
<td>14 (3)</td>
<td>8 (5)</td>
<td>11 (2)</td>
<td>29 (6)</td>
<td>35 (4)</td>
<td>17 (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>VDP (%)</th>
<th>C2 (%)</th>
<th>C3 (%)</th>
<th>C4 (%)</th>
<th>C5 (%)</th>
<th>VDP (%)</th>
<th>C2 (%)</th>
<th>C3 (%)</th>
<th>C4 (%)</th>
<th>C5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1†</td>
<td>2</td>
<td>10</td>
<td>44</td>
<td>30</td>
<td>14</td>
<td>2</td>
<td>9</td>
<td>32</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>41</td>
<td>30</td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>17</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>3§</td>
<td>12</td>
<td>12</td>
<td>31</td>
<td>31</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>21</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>4*</td>
<td>4</td>
<td>10</td>
<td>35</td>
<td>32</td>
<td>19</td>
<td>4</td>
<td>10</td>
<td>27</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>5†</td>
<td>3</td>
<td>9</td>
<td>40</td>
<td>33</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>31</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>42</td>
<td>28</td>
<td>12</td>
<td>8</td>
<td>17</td>
<td>25</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>11</td>
<td>39</td>
<td>31</td>
<td>15</td>
<td>4</td>
<td>14</td>
<td>29</td>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>Mean(±SD)</td>
<td>4 (3)</td>
<td>11(1)</td>
<td>39(4)</td>
<td>31(2)</td>
<td>15(2)</td>
<td>5 (4)</td>
<td>11(4)</td>
<td>26(5)</td>
<td>39(4)</td>
<td>19(6)</td>
</tr>
</tbody>
</table>

VDP=ventilation defect percent (C1=Cluster 1), C2 =Cluster 2, C3=Cluster 3, C4=Cluster 4, C5=Cluster 5, SD=standard deviation. † Subject A, ‡ Subject B, § Subject C, * Subject D.

To further investigate the difference in 3He and 129Xe gas distribution detected prior to salbutamol inhalation we evaluated the spatial relationship of airways and ventilation defects using thoracic CT. All subjects underwent a previous imaging session, 326±199 days prior to this study when hyperpolarized 3He MRI and thoracic CT were acquired as previously described. In Figure 2-3, we show the centre coronal slice 3He and 129Xe MRI and the corresponding centre slice 3He MRI following methacholine challenge for 2 subjects: Subject C, a 41yr old male, FEV$_1$=75% pred; and Subject D, a 36 year old female, FEV$_1$=86% pred. As shown with arrows in Figure 2-3, for Subject C, a large sub-segmental ventilation defect distal to the apical bronchus of the right upper lobe (RB1) was visualized using 129Xe MRI and also using 3He MRI but only after provocation with methacholine, at the PC$_{20}$. Thoracic CT for this subject revealed a 4th generation apical sub-segmental bronchus of the right upper lobe as the airway that was spatially proximal to this specific
ventilation defect. The CT-derived WA% and LA for this 4th generation airway were 78% and 2.9 mm² respectively, both of which are worse than previously reported values for a group of older asthmatic men (WA% = 55-80% and LA = 5-15 mm²). For Subject D, there was no evidence of a right upper lobe ventilation abnormality and CT-derived measurements WA% and LA were 69% and 3.8 mm² respectively for the same 4th generation apical sub-segmental bronchus.

Figure 2-3 MRI and CT for two asthmatic subjects. Hyperpolarized 3He and 129Xe MRI and post-methacholine 3He MRI for two subjects (C and D)

C) 41 yr old male, FEV₁ = 75% pred, FEV₁/FVC = 66%. White arrows identify a right upper lobe ventilation defect visible using 129Xe MRI, and for 3He MRI, only post-methacholine at PC₂₀. Regional CT is shown with the apical segmental bronchus of the right upper lobe in red which is proximal to the 129Xe and 3He post-methacholine ventilation defect. The cross-sectional slice of the airway is shown and the airway of interest is identified in a schematic of the bronchial tree.

D) 36 yr old female, FEV₁ = 86% pred, FEV₁/FVC = 73% with no ventilation defect in the right upper lobe.
2.4 Discussion

Hyperpolarized \(^3\)He MRI of asthma has been performed over the last 2 decades\(^{19-25,54,55}\) and across numerous studies, asthma ventilation defects have been shown to be spatially and temporally persistent,\(^{22,23}\) and some of these ventilation defects partially or fully resolve following inhaled or systemic therapy.\(^{19,20,24,25}\) Unfortunately, we still do not have a full understanding of the structural or physiological determinants of such asthma ventilation abnormalities,\(^{56}\) although armed with such an understanding there is the potential to use functional MRI to guide asthma therapy, to identify new therapeutic targets or at least, better understand regional pulmonary response to asthma therapy. A recent pilot study that compared \(^3\)He and \(^{129}\)Xe MRI in older healthy and COPD subjects\(^{43}\) showed greater \(^{129}\)Xe MRI ventilation defects in COPD suggesting that \(^{129}\)Xe MRI may provide enhanced sensitivity to airway abnormalities in obstructive lung disease. In COPD there are multiple mechanisms that may be responsible for \(^3\)He and \(^{129}\)Xe ventilation differences including increased airways resistance and the presence of emphysema and the effects of collateral ventilation.\(^{43,57}\) To try to get a better understanding of the structure-function relationships in the asthmatic lung, and to tease out the different contributing etiological factors that result in ventilation defects in asthma, here we directly compared hyperpolarized \(^3\)He and \(^{129}\)Xe MRI ventilation defects before and after salbutamol inhalation. We made a number of important observations: 1) \(^{129}\)Xe VDP and COV were significantly greater than \(^3\)He MRI VDP and COV before salbutamol inhalation, 2) there were significantly greater post-salbutamol improvements in \(^{129}\)Xe MRI VDP such that \(^3\)He and \(^{129}\)Xe MRI were not significantly different post-salbutamol, and, 3) a remodeled sub-segmental airway was shown to be spatially related to a sub-segmental \(^{129}\)Xe MRI ventilation defect that was not visible using \(^3\)He MRI, except at PC\(_{20}\), after methacholine administration.

First, we directly compared hyperpolarized \(^3\)He and \(^{129}\)Xe MRI acquired within approximately five minutes of one another and observed that \(^{129}\)Xe MRI VDP and COV were both qualitatively and quantitatively greater than \(^3\)He MRI-derived VDP and COV. We note that in this study, the differences between \(^3\)He and \(^{129}\)Xe MRI VDP were not large – much smaller in fact than previously reported in COPD.\(^{43}\) Although VDP was not large,
qualitatively, there certainly was evidence of increased 129Xe ventilation heterogeneity compared to 3He and these differences were quantified using the 3He and 129Xe ventilation COV. We note that SNR was lower for 129Xe as compared to 3He MRI, and therefore there is the potential for regions of the lung with reduced signal intensity to appear as ventilation defects in low SNR 129Xe images. However, we observed that the difference between 3He and 129Xe SNR was not significantly correlated with the difference between 3He and 129Xe VDP. Therefore, VDP and COV differences might well reflect other differences in the physical properties of the inspired gases and perhaps their interactions with airway abnormalities present in the asthmatic lung. For example, in asthma, like COPD, the small airways (<2mm) are the major site of airflow obstruction and are believed to result in increased airways resistance. 58 129Xe gas has both a greater density and viscosity than 3He (pure 129Xe gas has approximately 40 times greater density and 1.5 times greater viscosity than pure 3He gas) 57 and this has an effect on resistance to both turbulent and laminar flow in the airways, as previously described. 45 Importantly, we have previously estimated the density and viscosity of the inspired 3He-N_2 (40/60) and 129Xe-4He gas mixtures (50/50). 57 The estimated density of the inspired 3He-N_2 gas mixture and 129Xe-4He gas mixture was 0.61kg/m3 and 2.65kg/m3, respectively, and the estimated viscosity of the 3He-N_2 mixture and 129Xe-4He mixture was 1.99×10^{-4}P and 2.55×10^{-4}P, respectively. 57 The increased density of 129Xe gas would tend to increase the gas Reynold’s number, thereby increasing the probability for turbulent flow with higher airflow resistance; laminar flow resistance would also increase proportionately to the change in viscosity according to Poiseuille’s equation. 45 The increased density and viscosity of 129Xe gas could lead to slower filling or decreased access to lung units distal to narrowed or obstructed airways, amplifying ventilation differences arising from airway abnormalities between the gases.

In COPD, emphysema may be an additional factor responsible for the differences in 3He and 129Xe MRI ventilation and may account for the larger 129Xe/3He MRI differences previously observed in COPD 43 compared to asthma. In emphysematous lung tissue, resistance to flow through collateral channels is low whereas in normal lung tissue, flow resistance through collateral channels is very high. 59 Regardless, the results observed here in asthma support further interrogation using dynamic imaging approaches such as recently reported in COPD. 60 It is also important to note that previous work has also shown that the
mixture of 129Xe/4He gas administered during image acquisition performed here better approximates the self-diffusion coefficient of room air in the lung, as compared to 3He/N_2 or 3He/4He gas mixtures, supporting the notion that 129Xe gas distribution might provide a better estimate of “ground truth” ventilation abnormalities.

Second, and as might be expected, we observed a significant regional improvement in both 3He and 129Xe MRI VDP following salbutamol administration, with the 129Xe MRI improvement significantly greater than 3He MRI. Regional improvements in ventilation have previously been reported following salbutamol inhalation using xenon-enhanced dual-energy CT in asthma. However, to our knowledge this is the first study to report a change in 129Xe MRI ventilation abnormalities following inhaled salbutamol. Beta-2 (β_2) adrenergic receptor agonists promote smooth muscle relaxation and dilation, increasing airway caliber with concomitant decreased resistance to flow. Post-salbutamol, for all subjects, the global measurement of airways resistance was significantly decreased and this may have resulted in the improved and more similar regional distribution of 3He and 129Xe gas post-salbutamol. This suggests that increased airway caliber following bronchodilator administration allows for similar access of 3He and 129Xe to lung regions, as previously reported in healthy subjects.

Finally, in a single asthmatic, we showed that a relatively large sub-segmental ventilation defect that was visualized using 129Xe MRI, was also visible using 3He MRI, but only after methacholine challenge at the PC$_{20}$. Thoracic CT acquired within a year of this study and contemporaneous to the methacholine challenge was used to locate the airway proximal to this defect. A 4th generation apical segmental bronchus of the right upper lobe was identified as the significantly remodeled airway that was spatially related to this ventilation defect. Furthermore, in another asthmatic with a normally ventilated right upper lobe, the same 4th generation airway showed more “normal” airway morphology. It is clear that airway diameters and wall thicknesses vary among individuals and we acknowledge that we do not believe that one defect in one subject confirms our hypothesis. However, these results support the hypothesis that in asthma, 3He gas may penetrate lung regions through partially obstructed airways that 129Xe gas cannot access during a short breath-hold scan; in other words 3He MRI may mask clinically relevant airway abnormalities in asthma. This interesting finding warrants further investigation in a larger group of asthmatic subjects to
determine whether there is indeed a relationship between abnormal airway pathophysiology and the differences between 3He and 129Xe gas distribution.

We acknowledge that this work was limited by the small number of subjects evaluated and therefore caution should be exercised in generalizing these results to a more general asthma population. Indeed, the reported VDP in this small group of asthmatics was low and may be related to the nearly normal FVC for these subjects, reflecting the fact that these subjects (who were enrolled from a tertiary care asthma centre) were receiving optimal asthma therapy. The low baseline VDP also suggests that the differences in 3He and 129Xe VDP reported here might provide a conservative estimate of the differences that would be observed in a larger, less specialized asthma subject group. What is clear though, is that salbutamol effectively negated the differences observed between 3He and 129Xe VDP. Future studies should aim to evaluate a large group of healthy volunteers and asthmatic subjects with varying disease severity. Additionally, clinical tests such as dyspnea scores and measurements of exercise performance should be performed. The clinical relevance of the difference in 3He and 129Xe gas distribution detected could then be determined by direct comparison with established measures that are patient-centred and clinically relevant.

Over the last two decades, an international imaging physics research effort has been undertaken to develop non-invasive MRI methods, with the promise of direct and serial structure-function measurements of the lung without radiation burden or risk. Yet, the treatment and monitoring of patients with asthma is still mainly based on spirometry and some emerging inflammatory biomarkers. Certainly, low accessibility and the high/unpredictable cost of 3He gas has also limited its development and use. It is important to note that the relatively low and predictable cost of 129Xe gas provides the potential for greater accessibility of pulmonary functional imaging for research and patient care. One advantage of 129Xe gas is that it is capable of passive transmembrane diffusion and it is soluble in tissues and blood. Hyperpolarized 129Xe MRI dissolved phase imaging has shown good spatial agreement with the corresponding ventilation image. The differences between 3He and 129Xe MRI gas distribution shown here are unlikely to be related to transmembrane diffusion of 129Xe gas as it has been estimated that only 1-2% of the inhaled 129Xe gas dose is dissolved in the tissues and blood, during the 10-15s breath-
Regardless of the gas used for imaging, we think that the lack of a clear understanding of the clinical or physiological meaning of MRI ventilation defects will also impede its development as a clinical tool, necessitating more detailed physiological and modeling studies. In this study, we observed small but significant differences between 129Xe and 3He MRI VDP before salbutamol inhalation that suggested 129Xe MRI may be more sensitive to airflow obstruction in asthma that is responsive to salbutamol. It is not clear which one of the currently available pulmonary functional MRI methods (including oxygen-enhanced MRI)63,64 provides ventilation estimates that are closest to ground truth (ie. ventilation that occurs with molecular oxygen mixed in air). The availability of oxygen-enhanced and 129Xe MRI will certainly facilitate the research that still needs to be done to investigate the fundamental anatomical and morphological determinants that govern the occurrence and location of a ventilation defect, including bronchoscopy with biopsy and histological assessment. MRI can be considered complementary to CT and endobronchial biopsy because the anatomical determinants of small airway ventilation defects may be beyond the resolution of CT and perhaps the reach of an endoscope or optical coherence tomography probe65 as well.

In conclusion, we evaluated hyperpolarized 3He and 129Xe MRI ventilation defects in a small group of asthmatics before and after salbutamol inhalation and reported significantly greater (worse) 129Xe compared to 3He VDP and COV pre-salbutamol. We identified a remodeled airway that was spatially related to a sub-segmental ventilation defect visualized only with 129Xe MRI. These results suggest that the higher density and viscosity of 129Xe gas (which is more similar to molecular oxygen in air than 3He gas) may help reveal ventilation abnormalities prior to bronchodilation that are not observed using 3He MRI.
2.5 References

(2) Locksley RM. Asthma and allergic inflammation. *Cell* 2010;140:777-83.

(6) Celli BR. The importance of spirometry in COPD and asthma: effect on approach to management. *Chest* 2000;117:15S-9S.

(63) Ohno Y, Chen Q, Hatabu H. Oxygen-enhanced magnetic resonance ventilation

(64) Ohno Y, Hatabu H. Basics concepts and clinical applications of oxygen-enhanced MR

(65) Coxson HO, Quiney B, Sin DD, et al. Airway wall thickness assessed using computed
tomography and optical coherence tomography. _Am J Respir Crit Care Med_ 2008;177:1201-06.
Hyperpolarized 3He MRI previously revealed the temporal and spatial heterogeneity of ventilation defects in asthmatics, but these findings have not been used in treatment studies or to guide personalized treatment. Accordingly, here we generated personalized 3He MRI temporal-spatial pulmonary function maps to regionally identify temporally persistent and intermittent ventilation defects that may be used to optimize, evaluate and guide asthma treatment.

The contents of this chapter were previously published in Academic Radiology: S Svenningsen, F Guo, M Kirby, S Choy, A Wheatley, DG McCormack and G Parraga. Pulmonary Functional Magnetic Resonance Imaging: Asthma Temporal-spatial Maps. Acad Radiol 2014; 21(11):1402-1410. Permission to reproduce this article was granted by Elsevier and is provided in Appendix A.

3 PULMONARY FUNCTIONAL MAGNETIC RESONANCE IMAGING: ASTHMA TEMPORAL-SPATIAL MAPS

3.1 Introduction

Asthma is a chronic pulmonary disease1 characterized by acute and predominantly reversible episodes of airflow limitation and airway hyperresponsiveness that leads to airway remodeling2,3 Currently used asthma measurements are largely dependent on spirometry measurements of airflow limitation made at the mouth. Such measurements tend to over-estimate large airway constriction and under-estimate small airways disease4 and these measurements cannot regionally identify the airways responsible for airflow limitation, asthma symptoms or control.

Currently, pulmonary imaging techniques play a minor role in the clinical diagnosis and management of asthma, although quantitative measurements of regional structural and functional pulmonary abnormalities5 can be derived using a number of imaging methods. For example, x-ray computed tomography (CT) has been used to show airway remodeling and evidence of gas trapping in asthmatics.6,7 Single-photon emission computed tomography8,9 and positron-emission tomography10 have revealed the spatial distribution and extent of airway remodeling in asthmatics at rest and during exacerbations. Hyperpolarized noble gas magnetic resonance imaging (MRI), using either 3He or 129Xe, also provides a way to visualize and quantify lung regions that participate in ventilation and those that do not.11,12 Longitudinal and interventional 3He MRI studies have revealed
the regional and temporal nature of ventilation defects in asthma before and after provocation (exercise and methacholine) and therapy.13-15 Previous work also showed that in asthma, ventilation defects are related to disease severity,16 CT measurements of gas trapping17 and airway morphological abnormalities.18 Taken together, these studies suggest that in asthma, ventilation defects are related to airways disease, are regionally heterogeneous, temporally variable and responsive to therapy and provocation.19-22 Asthma ventilation defects may be considered as therapy targets or intermediate endpoints as they are present in older asthmatics with more advanced or severe disease, increased indices of inflammation and more severely remodeled airways.18

There is enormous potential for imaging methods to improve the efficacy or cost-effectiveness of asthma therapy. However until now, the presence, location and/or variability of such defects has not yet been used to guide or interpret the efficacy of asthma therapy. The purpose of this proof-of-concept study, therefore, was to exploit the inherent temporal and spatial pulmonary function information provided by hyperpolarized 3He MRI to identify temporally persistent and intermittent ventilation defects as potential targets for therapy.

3.2 Materials and Methods

3.2.1 Study Design

Subjects who were 18-55 years of age, with a physician diagnosis of asthma and forced expiratory volume in one second (FEV$_1$) \geq 60%$^{\text{pred}}$ were recruited from a tertiary care asthma clinic. All subjects provided written informed consent to a study protocol that was in compliance with the Health Insurance Portability and Accountability Act and approved by the local Research Ethics Board and Health Canada. All subjects consented to three study visits, each 5±2 days apart, that took place between May 2007 and May 2008. At each visit, pre- and post-exercise challenge, spirometry was performed followed by 1H and 3He MRI. Spirometry was performed using an ndd EasyOne spirometer (ndd Medizintechnik AG, Zurich, Switzerland) and FEV$_1$, forced vital capacity (FVC) and FEV$_1$/FVC were obtained according to the American Thoracic Society guidelines.23 The exercise challenge was performed according to American Thoracic Society guidelines.24 Briefly the subject exercised (after a 2-minute warm-up) for 6 minutes on a treadmill, while
inhaling compressed, room temperature dry air, at a workload which increased the heart rate to 80-90% of the individual’s age predicted maximum.

3.2.2 Magnetic Resonance Imaging

Following spirometry, MRI was performed using a whole body 3.0 Tesla Excite 12.0 MR system (GE Healthcare, Milwaukee, WI, USA), as previously described. Subjects were in the supine position and all image acquisitions were performed under breath-hold conditions (15 sec) following inspiration of a 1.0 L gas mixture from functional residual capacity (FRC). To minimize the potential for differences in the level of inspiration between imaging sessions, extensive coaching was performed prior to and during each imaging session. To ensure that each inhalation was performed from FRC, subjects were instructed to take two tidal breaths before inhaling the gas mixture from the 1.0 L Tedlar® bag (Jensen Inert Products, Coral Springs, FL, USA).

Hyperpolarized 3He MRI static ventilation imaging was enabled using a single-channel, rigid, transmit-receive elliptical chest coil (RAPID Biomedical GmbH, Wuerzburg, DEU) as previously described. Hyperpolarized 3He gas (30-40% polarization) was provided by a turnkey system (HeliSpin™, GE Healthcare, Durham, NC, USA) and administered to subjects (dose: 5mL/kg of body weight) in a 3He/N$_2$ mixture. Hyperpolarized 3He MRI static ventilation images were acquired following inspiration of the hyperpolarized 3He/N$_2$ gas mixture using a fast two-dimensional gradient echo sequence with the following parameters: repetition time, 4.3 msec; echo time, 1.4 msec; flip angle, 7°; field of view, 44 x 44 cm; matrix size, 128 x 128; slice gap, 0 mm; 14 contiguous slices; and slice thickness, 15 mm. Subsequent to hyperpolarized 3He MRI, conventional 1H MRI was performed during a 1.0 L breath-hold of 4He/N$_2$ to mimic the 3He MRI breath-hold manoeuvre. For 1H imaging, a fast spoiled gradient recalled echo sequence was applied with the following parameters: repetition time, 4.7 msec; echo time, 1.2 msec; flip angle, 30°; field of view, 44 x 44 cm; matrix size, 256 x 256; slice gap, 0 mm; 14 contiguous slices; and slice thickness, 15 mm.
3.2.3 Image Analysis

3.2.3.1 Overview of Pipeline

Figure 3-1 provides a summary of the registration and segmentation pipeline used to generate whole lung, two-dimensional, temporal-spatial pulmonary function maps. The inputs to the pipeline are \(N \) \(^3\)He images acquired at visits \(i \in \{1,2,...,N\} \), where \(N \geq 2 \), and an associated \(^1\)H MR image acquired at an arbitrary visit \(j \), \(j \in \{1,2,...,N\} \). The pipeline consists of four steps: 1) Registration, 2) \(^1\)H MRI Segmentation\(^26\), 3) \(^3\)He MRI Segmentation\(^26\) and, 4) Temporal Map Generation and was developed using 3D Slicer 4.2 open source platform (http://www.slicer.org, Boston, MA, USA) and MATLAB R2013A (The Mathworks Inc. Natick, MA, USA). In this proof-of-concept demonstration, \(^3\)He MR images were acquired at three visits (\(N=3 \)), and an associated \(^1\)H MR image was arbitrarily chosen at visit 2 (\(j=2 \)).

![Diagram of the pipeline](image)

Figure 3-1 Pipeline to generate whole lung, two-dimensional, hyperpolarized \(^3\)He MRI temporal-spatial pulmonary function maps.

The pipeline is divided into four steps: 1) Registration, 2) \(^1\)H MRI Segmentation, 3) \(^3\)He MRI Segmentation and, 4) Temporal Map Generation. The inputs to the pipeline are \(N \) \(^3\)He MR images acquired at visits \(i \in \{1,2,...,N\} \), where \(N \geq 2 \), and an associated \(^1\)H MR image acquired at an arbitrary visit \(j \), \(j \in \{1,2,...,N\} \).

3.2.3.2 Step 1: Registration

As shown in Figure 3-1, using 3D Slicer, \(^3\)He MR images acquired at each visit \(i \), \(^3\)He\(_{visit_i}\), \(i \in \{1,2,...,N\} \), and the \(^1\)H MR image acquired at visit \(j \), are co-registered to \(^3\)He\(_{visit=j}\) to generate temporal-spatial pulmonary function maps. \(^3\)He\(_{visit=j}\), corresponding to the same visit at which the \(^1\)H MR image was acquired, is used as the fixed image for each inter-
visit $^{3}\text{He}_{\text{visit}_i}$-$^{3}\text{He}_{\text{visit}_j}$ and intra-visit $^{1}\text{H}_{\text{visit}_i}$-$^{3}\text{He}_{\text{visit}_j}$ registration. Inter-visit $^{3}\text{He}_{\text{visit}_i}$-$^{3}\text{He}_{\text{visit}_j}$ registration is required to correct for misalignment between two ^{3}He MRI scans acquired at visit i and j due to inter-visit patient position variability on the scanner bed. $^{3}\text{He}_{\text{visit}_i}$-$^{3}\text{He}_{\text{visit}_j}$ co-registration is performed using an automated non-rigid deformable (B-spline) registration method. Intra-visit $^{1}\text{H}_{\text{visit}_i}$-$^{3}\text{He}_{\text{visit}_j}$ co-registration is employed using landmark-based affine registration with 4-7 corresponding anatomical fiducial markers, such the carina, trachea, primary bronchi and the diaphragm.

3.2.3.3 Step 2: ^{1}H MRI Segmentation
The thoracic cavity mask, which identifies the lung boundary and intern the thoracic cavity volume (TCV), is generated by segmenting $^{1}\text{H}_{\text{visit}_i}$ using a seeded-region growing algorithm, as previously described. There is a subsequent manual editing option implemented to permit user modification of the automatically generated mask.

3.2.3.4 Step 3: ^{3}He MRI Segmentation
For each visit i, automated $^{3}\text{He}_{\text{visit}_i}$ ventilation segmentation is achieved using a hierarchical K-means clustering method, as previously described. The resulting ^{3}He cluster maps consist of five clusters that represent signal intensity classes ranging from no signal (cluster 1 (C1), or ventilation defect volume (VDV)), hypo-intense signal (C2) to hyper-intense signal (C5). Subsequently, ^{3}He clusters C2-C5 are merged and thoracic cavity masking was performed to generate corresponding ^{3}He ventilation masks (VM). ^{3}He MRI ventilation defect percent (VDP) was quantified by normalizing VDV to the TCV, as previously described.

3.2.3.5 Step 4: Temporal Map Generation
To convey the short-term temporal behavior of ^{3}He gas distribution, temporal-spatial pulmonary function maps are generated from N ^{3}He ventilation masks and consist of three clusters: 1) persistent defect, 2) intermittent defect, and 3) persistent ventilation. Temporal-spatial pulmonary function map voxels are deemed as “persistent defect” if the corresponding ^{3}He MRI ventilation mask voxels were ventilation defect (C1) at each visit. Similarly, a voxel is deemed persistently ventilated if the corresponding ventilation mask voxels were ventilated (C2-C5) at each visit. A voxel is deemed as “intermittent defect” if the corresponding voxels were not consistently ventilation (C2-C5) or ventilation defect
(C1) at each visit. Persistent ventilation defect percent (VDP\textsubscript{P}), intermittent ventilation defect percent (VDP\textsubscript{I}) and persistent ventilation percent (PVP) were generated as the ratio of each volume to the 1H MRI TCV.

3.2.4 Registration Performance Evaluation

Registration accuracy was estimated using the target registration error (TRE),29 defined as the distance between corresponding fiducial points in the fixed image and the moving images after registration. Distinguishing anatomical landmarks that were readily apparent to the human observer, including the carina, trachea, primary bronchi and the diaphragm, were used as fiducials.

3.2.5 Statistical Analysis

Repeated-measures analysis of variance (ANOVA) were performed to evaluate changes in spirometry measurements, 3He polarization, 3He dose and 3He MRI VDP across timepoints using IBM SPSS Statistics version 21.00 (SPSS Inc., Chicago, IL, USA). Paired two-tailed t-tests were used for statistical comparison of temporal-spatial pulmonary function map (VDP\textsubscript{P} and VDP\textsubscript{I}) anterior-centre-posterior (AP) and superior-middle-inferior (SI) differences, as previously described,20 using GraphPad Prism version 6.02 (GraphPad Software, Inc., San Diego, CA, USA). Relationships between temporal-spatial pulmonary function maps (VDP\textsubscript{P} and VDP\textsubscript{I}) and spirometry were evaluated using Spearman correlation coefficients (r) and linear regressions (r2) generated using GraphPad Prism. The mean of all spirometric measurements, acquired at visit 1, 2 and 3, were used to assess relationships. Results were considered statistically significant when the probability of making a Type I error was less than 5% (p < 0.05).

3.3 Results

Subject demographic characteristics are shown in Table 3-1 for seven adults with asthma (n=4 males, mean age=28±9 years), all of whom completed three imaging sessions with a mean inter-visit interval of 5±2 days. In total there were 8 adverse events in 6 subjects. All adverse events were related to hypoxia, defined as a temporary decrease in SpO\textsubscript{2} below 88%, and these were temporally related to MRI breath-hold manoeuvres. Table 3-2 shows
mean spirometry and hyperpolarized 3He measurements acquired at each visit and Table 3-3 provides a subject listing of all measurements.

Table 3-1 Subject demographic characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Asthma (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(±SD) [range]</td>
</tr>
<tr>
<td>Age years</td>
<td>28 (9) [21-47]</td>
</tr>
<tr>
<td>Male/Female</td>
<td>4/3</td>
</tr>
<tr>
<td>BMI kg/m2</td>
<td>26 (4) [21-33]</td>
</tr>
<tr>
<td>SaO$_2$</td>
<td>97 (2) [94-98]</td>
</tr>
<tr>
<td>FEV$_1$ %pred</td>
<td>88 (11) [65-99]</td>
</tr>
<tr>
<td>FVC %pred</td>
<td>104 (10) [89-120]</td>
</tr>
<tr>
<td>FEV$_1$/FVC %</td>
<td>72 (8) [61-81]</td>
</tr>
</tbody>
</table>

SD=Standard Deviation; BMI=Body Mass Index; SaO$_2$=Arterial Oxygen Saturation; FEV$_1$=Forced Expiratory Volume in 1s; %pred= Percent Predicted; FVC=Forced Vital Capacity.

Table 3-2 Repeated spirometry and hyperpolarized 3He measurements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time-point (n=7)</th>
<th>Sig of Diff (p)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(±SD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visit 1</td>
<td>Visit 2</td>
</tr>
<tr>
<td>Spirometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV$_1$ %pred</td>
<td>88 (11)</td>
<td>86 (12)</td>
</tr>
<tr>
<td>FVC %pred</td>
<td>104 (10)</td>
<td>101 (15)</td>
</tr>
<tr>
<td>FEV$_1$/FVC %</td>
<td>72 (8)</td>
<td>71 (7)</td>
</tr>
<tr>
<td>Hyperpolarized 3He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose mL</td>
<td>386 (70)</td>
<td>380 (76)</td>
</tr>
<tr>
<td>Polarization %</td>
<td>13 (2)</td>
<td>12 (2)</td>
</tr>
<tr>
<td>MRI VDP %</td>
<td>4 (2)</td>
<td>4 (3)</td>
</tr>
</tbody>
</table>

Sig of Diff=Significance of difference; SD=Standard Deviation; FEV$_1$=Forced Expiratory Volume in 1s; %pred=Percent Predicted; FVC=Forced Vital Capacity; MRI=Magnetic Resonance Imaging; VDP=Ventilation Defect Percent.

3Significance of difference (p<0.05) determined using a repeated-measures analysis of variance.
Table 3-3 Subject listing of demographic, spirometry and hyperpolarized 3He MRI measurements.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>FEV$_1$%pred</th>
<th>FVC%pred</th>
<th>FEV$_1$/FVC%</th>
<th>Dose mL</th>
<th>Polarization%</th>
<th>VDP%</th>
<th>VDP$_p$%</th>
<th>VDP$_i$%</th>
<th>PVP%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>M</td>
<td>89/88/77</td>
<td>108/103/95</td>
<td>69/70/68</td>
<td>390/390</td>
<td>13/14/11</td>
<td>3/5/8</td>
<td>6.45</td>
<td>92.96</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>M</td>
<td>85/83/84</td>
<td>94/96/87</td>
<td>76/73/81</td>
<td>420/420</td>
<td>13/14/11</td>
<td>1/1/1</td>
<td>1.49</td>
<td>98.49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>M</td>
<td>88/91/94</td>
<td>120/127/126</td>
<td>62/60/63</td>
<td>390/390</td>
<td>15/12/13</td>
<td>7/9/2</td>
<td>0.30</td>
<td>92.47</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>M</td>
<td>95/89/90</td>
<td>106/101/95</td>
<td>75/74/79</td>
<td>490/490</td>
<td>11/9/12</td>
<td>2/2/1</td>
<td>0.03</td>
<td>96.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>F</td>
<td>94/96/95</td>
<td>102/105/102</td>
<td>81/81/82</td>
<td>290/250</td>
<td>10/8/9</td>
<td>4/1/2</td>
<td>0.02</td>
<td>98.01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>F</td>
<td>99/93/87</td>
<td>108/100/105</td>
<td>77/78/70</td>
<td>420/400</td>
<td>14/13/14</td>
<td>2/4/5</td>
<td>0.13</td>
<td>96.53</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>F</td>
<td>65/58/62</td>
<td>89/77/83</td>
<td>61/64/62</td>
<td>300/320</td>
<td>14/13/9</td>
<td>6/6/2</td>
<td>0.34</td>
<td>92.98</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>28</td>
<td>-</td>
<td>88/86/84</td>
<td>104/101/99</td>
<td>72/71/72</td>
<td>386/380</td>
<td>13/12/12</td>
<td>4/4/4</td>
<td>0.20</td>
<td>95.47</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>9</td>
<td>-</td>
<td>11/12/12</td>
<td>10/15/14</td>
<td>8/7/8</td>
<td>70/76/95</td>
<td>2/2/2</td>
<td>2/3/3</td>
<td>0.22</td>
<td>2.40</td>
<td>2.58</td>
</tr>
</tbody>
</table>

V1=Visit 1; V2=Visit 2; V3=Visit 3; FEV$_1$=Forced Expiratory Volume in 1s; %pred=Percent Predicted; FVC=Forced Vital Capacity; VDP=Ventilation Defect Percent; VDP$_p$=Persistent Ventilation Defect Percent; VDP$_i$=Intermittent Ventilation Defect Percent; PVP=Persistent Ventilation Percent.

Figure 3-2 shows representative coronal hyperpolarized 3He MRI slices, acquired at each visit, for each subject. All asthmatics evaluated had visually obvious 3He MRI gas distribution abnormalities at one or more of their imaging timepoints and qualitative differences in the distribution of 3He gas were observed between visits, as shown in Figure 3-2. However, despite regional gas distribution differences, as shown in Table 3-2, spirometry (FEV$_1$%pred, p=0.22; FVC%pred, p=0.18; FEV$_1$/FVC%, p=0.76) and whole lung 3He MRI VDP (p=0.93) were not significantly different between visits. Additionally, 3He dose (p=0.74) and polarization (p=0.31) was not different between imaging sessions.
Figure 3-2 3He MRI co-registered to the corresponding 1H MRI acquired at visit 1-3, and the corresponding temporal-spatial pulmonary function maps for seven asthmatic subjects. Regional differences in the spatial distribution of 3He MRI ventilation defects are visually apparent between visits for each subject. This short-term temporal 3He ventilation defect behaviour is shown in the corresponding two-dimensional temporal-spatial map for each subject.
3.3.1 Temporal-Spatial Pulmonary Function Maps

Temporal-spatial pulmonary function maps were generated from 3He MR images acquired at three visits ($N = 3$), and an associated 1H MR image was arbitrarily chosen at visit 2 ($j = 2$).

3.3.1.1 Target Registration Error
Four corresponding fiducials were marked on each image volume (3He$_{\text{visit1}}$, 3He$_{\text{visit2}}$, 3He$_{\text{visit3}}$ and 1H$_{\text{visit2}}$), for a total of 168 fiducials (24 per subject). The mean distance between corresponding fiducials in the 3He-3He and 1H-3He image sets was 22 ± 12 mm and 19 ± 10 mm, respectively. For inter-visit 3He-3He registration, the mean TRE value for all 112 fiducials (56 pairs) was 7 ± 5 mm (range: 1 mm-29 mm). For intra-visit 1H-3He registration, the mean TRE for all 56 fiducials (28 pairs) was 6 ± 3 mm (range: 2 mm-14 mm).

3.3.1.2 Ventilation Defect Temporal Behavior
Figure 3-2 shows temporal-spatial pulmonary function maps for each subject and these spatially quantified the short-term temporal behavior of 3He MRI ventilation defects. Lung regions with persistent (black) and intermittent ventilation defects (blue) were identified, the remaining regions were persistently ventilated (cyan). For all subjects evaluated, the mean persistent ventilation defect percent was low (mean VDP$_P$=0.2±0.2%) as was mean intermittent ventilation defect percent (VDP$_I$=4±2%). Mean persistent ventilation percent was high (PVP=95±3%) across the three imaging sessions.

3.3.1.3 Anatomic Differences
As qualitatively shown in Figure 3-3 and quantitatively described in Figure 3-4, VDP$_P$ and VDP$_I$ were evaluated in the AP and SI regions of interest. VDP$_I$ was significantly greater in the posterior as compared to the centre (p=0.02) and anterior (p=0.04) lung regions but VDP$_P$ was not different. In the inferior lung region, VDP$_I$ was significantly greater (p=0.04) than the superior lung region, while VDP$_P$ was not different.
Figure 3-3 Three-dimensional 3He MRI temporal-spatial pulmonary function maps for three representative asthmatic subjects. 3D 3He MRI in the coronal, axial and sagittal view to qualitatively evaluate persistent and intermittent ventilation defects. Both persistent and intermittent ventilation defects are prominent in the gravity-dependent posterior and inferior lung regions.
Figure 3-4 3He MRI intermittent ventilation defect percent (VDP$_I$) and persistent ventilation defect percent (VDP$_P$) anatomical differences. Plots show anatomical differences in VDP$_I$ and VDP$_P$ for regions of interest in the anterior-centre-posterior (A, B) and superior-middle-inferior directions (C, D). Box and whisker plots represent: minimum, 25th percentile, median, 75th percentile, and maximum. Statistically significant differences between regions of interest are shown.

3.3.1.4 Relationships with Spirometry

Figure 3-5 shows correlations for VDP$_P$ and VDP$_I$ with baseline and post-exercise FEV$_1$/FVC. Both VDP$_P$ and VDP$_I$ were negatively correlated with baseline (VDP$_P$: r=-0.87, p=0.01; VDP$_I$: r=-0.96, p=0.0008) and post-exercise FEV$_1$/FVC (VDP$_P$: r=-0.79, p=0.04; VDP$_I$: r=-0.96, p=0.003). There were no significant correlations for VDP$_P$ or VDP$_I$ with FEV$_1$%$_{pred}$ or FVC%$_{pred}$.
Figure 3-5 Relationship of 3He MRI temporal-spatial pulmonary function with airflow obstruction at baseline and following exercise challenge. Baseline FEV$_1$/FVC was significantly correlated with intermittent ventilation defect percent (VDP$_i$) ($r=\ -0.96$, $p=0.0008$) (A), and persistent ventilation defect percent (VDP$_p$) ($r=-0.87$, $p=0.01$) (B). Post-exercise FEV$_1$/FVC was significantly correlated with VDP$_i$ ($r=-0.96$, $p=0.003$) (C), and VDP$_p$ ($r=-0.79$, $p=0.04$) (D). Dotted lines indicate the 95% limits of agreement.

3.4 Discussion

We aimed to exploit 3He MRI ventilation measurements to generate asthma temporal-spatial pulmonary function maps in acknowledgement of the paucity of real-time visualization/quantification tools available to identify temporal changes in regional ventilation, especially in response to therapy. Therefore, here we developed a registration-segmentation pipeline to generate 3He MRI temporal maps in mild-to-moderate asthmatics in order to spatially quantify temporally persistent and intermittent ventilation defects.
First, we acquired 3He MRI in seven asthmatic subjects, in whom there were no changes in pulmonary function tests or 3He MRI VDP during a three-week data acquisition period. For most subjects however, there were visually obvious differences in the regional distribution of 3He ventilation defects over the three-week time period. Previous studies have evaluated 3He MRI ventilation defects following bronchoconstriction13,20,21,30 and bronchodilation,20,22 and these studies quantitatively described changes in the size and number of ventilation defects. Other studies13,14,30 have evaluated ventilation defect reproducibility prior to and following bronchoconstriction and bronchodilation. These studies suggested that the location and the temporal occurrence of ventilation defects prior to broncho-provocation were heterogeneous.30 We think that this important information can be quantified and simplified using multiple 3He MRI time-points and that using a single snapshot in time would likely be insufficient to quantify the complex interactions between space, time and airway hyperresponsiveness. Persistent ventilation defects represented regions that were always abnormal, perhaps due to remodeled, narrowed and/or collapsed airways that altered the time constants for lung filling beyond the timeframe for MRI acquisition (15 sec). Intermittent defects may be related to a number of underlying physiological airway abnormalities such as variable airway lumen diameter, exposure to triggers of hyperresponsiveness or mucus plugging.

MRI temporal-spatial pulmonary function maps may be used to regionally locate the specific airways that are proximal to persistent or intermittent ventilation abnormalities as potential targets for localized airway treatment such as bronchial thermoplasty.31 For example, as shown in \textbf{Figure 3-2} and \textbf{Figure 3-3}, for subject 3, the map provides evidence of highly localized disease. For this subject, measurements of response to therapy to localize treatment should be directed to the lower left lobe, and can avoid the upper left lobe and the right lung.

Second, we observed that intermittent ventilation defects and persistently ventilated lung showed regional differences or biases. All subjects were imaged in the supine position, and in the gravity-dependent lung regions (posterior and inferior) VDP\textsubscript{1} was increased. This suggests that ventilation defects are more variable over time in dependent lung regions, a finding which must be further investigated. This finding is supported by previous quantitative findings in both asthmatic and healthy subjects20 that VDP is greater
in the dependent lung regions. Although the physiological mechanism responsible for this observation is not known, airway collapse may be a plausible explanation.

Finally, we observed correlations for airflow obstruction (FEV$_1$/FVC) with VDP$_I$ and VDP$_P$ at baseline and following exercise-induced bronchoconstriction. Due to an increased sensitivity of asthmatic airways to a range of constrictor agonists, bronchial hyperresponsiveness is often referred to as the “hallmark” of asthma. Accordingly, intermittent defects were identified in an attempt to spatially identify hyperresponsive airways as potential therapy targets. We hypothesized that asthmatics with intermittent defects would show greater response to broncho-provocation and interestingly, we did observe a strong relationship between intermittent defects and post-exercise FEV$_1$/FVC ($r=-0.96$, $p=0.003$) in these seven asthmatics. This lends support to the notion that temporal-spatial measurements may be identifying hyper-responsive lung regions or ROI that are more likely to constrict during an exacerbation.

Although this preliminary demonstration provides promising proof-of-concept results, we must acknowledge several limitations. Importantly, a sample size of seven is small, therefore, our feasibility results should be considered a conservative estimate of VDP$_P$ and VDP$_I$. In fact, the immediate application of our method may be better-suited to poorly-controlled and more severe asthma. Additionally, the maps generated here captured week-to-week lung function variability and not long-term ventilation defect persistence or disease progression. The temporal persistence of ventilation defects was previously shown to decrease with time,14 therefore a longer inter-visit interval than used here might yield fewer persistent defect ROIs. Additionally, we recognize the importance of potential registration errors and the effect this has on map interpretation – especially on the lung periphery where sub-segmental defects tend to appear. In our experience, most registration errors are derived from scan-to-scan variability/differences in lung inflation levels, potentially due to gas trapping, and we therefore implemented a deformable registration method to minimize this. If the methodology developed here was extended to generate maps to display transient ROI in response to methacholine and/or salbutamol, the application of the non-rigid registration algorithm presented here would be even more essential to account for larger changes in lung volumes and shape. Finally, we must consider our approach as a precursor to temporal-spatial pulmonary function maps.
generated using hyperpolarized 129Xe gas22 as these will certainly play a more prominent role in the future.32 Clearly, prior to the clinical application of this potential pulmonary image-guidance tool extensive efficacy evaluations are required. Specifically, a randomized two-arm evaluation comparing the efficacy of conventional and image-guided treatment will be necessary to determine if similar changes in asthma control and quality-of-life can be achieved as those obtained following conventional therapy.

By “seeing” the disease and its variability over time, we can potentially help improve asthma treatments and outcomes, amounting to enormous clinical value. Therefore, this work must be viewed as a first necessary step towards the development of high resolution image-guidance maps to help target specific airway abnormalities in asthmatics who undergo localized asthma therapies, such as bronchial thermoplasty, that currently are not guided by imaging to abnormally functioning lung. In conclusion, personalized asthma temporal-spatial pulmonary function maps were generated from thoracic 3He MRI to visualize and quantify regional ventilation defects observed over time.
3.5 References

CHAPTER 4

Towards the goal of understanding the structural determinants and clinical consequences of MRI ventilation defects in asthma, we evaluated well-established clinical and emerging CT-derived airway morphology measurements in healthy volunteers and asthmatics with and without ventilation defects.

The contents of this chapter were previously published in the journal Thorax: S Svenningsen, M Kirby, D Starr, HO Coxson, NA Paterson, DG McCormack and G Parraga. What are Ventilation Defects in Asthma? Thorax 2014; 69(1):63-71. Permission to reproduce this article was granted by BMJ Publishing Group Ltd and is provided in Appendix A.

4 WHAT ARE VENTILATION DEFECTS IN ASTHMA?

4.1 Introduction

Asthma is typically diagnosed and characterized using the spirometry measurement\(^1,2\) of the forced expiratory volume in 1 second (FEV\(_1\)). Although relatively simple and inexpensive, spirometry measurements provide a global estimate of the morphological changes in the small and medium-sized airways that are believed to be related to luminal inflammation, airway remodeling and constriction. We now realize using multiple breath nitrogen washout studies\(^3,4\) and pulmonary imaging methods, that functional abnormalities in asthma are in fact regionally heterogeneous,\(^5-7\) temporally persistent\(^8-10\) and that these abnormalities regionally respond to broncho-provocation\(^7,11,12\) and to bronchodilator therapy.\(^11,13\) Thoracic x-ray computed tomography (CT) has been used for over a decade as a non-invasive method to investigate structure-function relationships of asthmatic airways and has shown strong relationships between CT-derived airway measurements with inflammation,\(^14,15\) spirometry\(^14-21\) and disease severity.\(^14,16,20,22\) However, while these CT data are encouraging, they are still somewhat limited because it is well recognized that CT cannot resolve or measure airways beyond the 5\(^{th}\) or 6\(^{th}\) generation. Moreover, even using new lower dose and iterative reconstruction methods,\(^23\) CT is not recommended for longitudinal studies and studies of young adults and children because of the potential risks associated with exposure to ionizing radiation. Other pulmonary imaging methods such as nuclear medicine scintigraphy\(^24-26\) and positron emission tomography (PET)\(^27\) are also limited clinically because of inherently low spatial resolution.
Hyperpolarized 3He magnetic resonance imaging (MRI) has been previously used to visualize heterogeneous and abnormal gas distribution in asthma. Regions of signal void or ventilation defects have been shown to be temporally persistent$^{8-10}$ and to correlate significantly with spirometry,6,28,29 disease severity6 and CT measurements of gas trapping. In addition, 3He MRI also provides a way to perform intensive serial measurements due in part to its excellent safety profile,30 and the speed with which imaging can be performed. More specifically, 3He MRI ventilation defects have been shown to increase from baseline following both methacholine7,11,12 and exercise12 challenge, and decrease from baseline following salbutamol administration.13 In asthma, the relationship between ventilation defects and patient outcomes such as exacerbation frequency and severity has not yet been evaluated, however this has been evaluated in chronic obstructive pulmonary disease (COPD).31 Recently, there has been growing interest in the clinical application of hyperpolarized gas MRI to assess treatment efficacy and furthermore to guide localized airway treatments in asthma. Preliminary work in severe asthma has shown improved 3He gas distribution following localized bronchial thermoplasty treatment.32 While these results provide a strong foundation for the use of MRI in asthma research and patient care, a major drawback has been that we do not clearly understand the etiology of MRI ventilation defects.33 It has been speculated that MRI ventilation defects reflect regional airway narrowing that may be the consequence of airway remodeling;34 however, to our knowledge, the direct spatial and quantitative relationship between MRI ventilation defects and CT airway measurements has not been reported in asthmatics. Therefore, our objective was to determine the underlying structural and clinical determinants of asthma ventilation abnormalities by evaluating well-established clinical and emerging imaging (hyperpolarized 3He MRI and CT) measurements in healthy volunteers and subjects with asthma.

4.2 Methods

4.2.1 Study Subjects

All subjects provided written informed consent to a study protocol approved by the local research ethics board, and the study was compliant with the Personal Information Protection and Electronic Documents Act (PIPEDA, Canada) and the Health Insurance
Portability and Accountability Act (HIPAA, USA). Subjects were enrolled between 18 and 60 years of age, including mild-to-moderate35 asthmatics, and healthy subjects with no history or diagnosis of asthma or any other chronic or current acute respiratory illness. Asthmatic subjects were phenotyped from health records based on disease severity and symptoms from a tertiary care centre (interdisciplinary Allergy and Respirology asthma care centre); all asthma subjects had a current physician diagnosis of asthma, were currently under treatment for asthma and had a positive methacholine challenge within the past five years. At a single visit, spirometry, plethysmography, fractional exhaled nitric oxide (FeNO) breath analysis and pulmonary CT was performed within 30 minutes of MRI.

4.2.2 Pulmonary Function Tests

Spirometry and plethysmography were performed according to American Thoracic Society Guidelines36 using an \textit{ndd EasyOne} spirometer (\textit{ndd} Medizintechnik AG, Zurich, Switzerland) and a \textit{MedGraphics Elite Series} plethysmograph (MedGraphics, St. Paul, MN, USA), respectively. FeNO was measured using a \textit{Niox Mino} (Aerocrine Inc. USA, New Providence, NJ, USA). Methacholine challenge was performed as previously described11 and the provocative concentration causing a 20\% decrease in FEV\textsubscript{1} (PC\textsubscript{20}) was determined. Borg and modified Medical Research Council (mMRC) dyspnea scores were recorded.

4.2.3 Magnetic Resonance Imaging

MRI was performed on a whole body 3.0 Tesla Discovery 750MR (General Electric Health Care, Milwaukee, WI, USA) system with broadband imaging capability, as previously described.37 Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag (Jensen Inert Products, Coral Springs, FL, USA) from functional residual capacity (FRC), and image acquisition was performed in 8-15s under breath-hold conditions. Conventional 1H MRI was performed prior to hyperpolarized 3He MRI, both methods are previously described.37

3He MR images were qualitatively and quantitatively evaluated for ventilation abnormalities by a single trained observer. Upon qualitative inspection, asthmatic subjects were classified into two groups, 1) asthmatics with no ventilation defects (ND) and
asthmatics with ventilation defects (AD). If 3He gas was homogeneously distributed throughout the lung and there were no visible ventilation defects the subject was classified as belonging to the ND group. In contrast, if 3He gas was heterogeneously distributed throughout the lung and/or there were visually obvious ventilation defects, the subject was classified as belonging to the AD group. Quantitative evaluation of 3He MRI was performed to estimate ventilation defect percent (VDP) and ventilation heterogeneity using the coefficient of variation (COV). 3He MRI semi-automated segmentation was performed to quantify lung volumes using custom software generated using MATLAB R2007b (The Mathworks Inc., Natick, MA, USA), as previously described.\(^{38}\) As shown in Figure 4-1, 3He static ventilation images were segmented using a K-means approach that classified voxel intensity values into five clusters ranging from signal void (cluster 1 (C1) or ventilation defect volume (VDV)) to hyper-intense signal (cluster 5 (C5)) to create a gas distribution cluster-map. 3He MRI VDP was generated using VDV normalized to the thoracic cavity volume. Whole lung and regional VDP specific to the CT region-of-interest (ROI) were generated for each subject. Ventilation heterogeneity was estimated according to previously described methods\(^7\) using the COV. Briefly, a ventilated lung ROI was defined as gas distribution cluster-map clusters C2-C5. For each voxel within the ventilated lung ROI a local ventilation heterogeneity value was calculated by computing the COV of the signal intensity in the voxels 5 x 5 neighborhood. Mean COV for each slice was calculated for each 3He static ventilation slice and then averaged to obtain a single COV value for each subject.

4.2.4 Computed Tomography

Following 3He MRI, thoracic CT was performed with the same inhalation breath-hold volume and manoeuvre used for MRI, in order to match CT and MRI lung volume and anatomy. CT imaging was performed in the supine position using a 64-slice Lightspeed VCT scanner (GEHC, Milwaukee, WI USA) using a detector configuration of 64×0.625 mm, 120 kVp, 100 mA, 0.5 second gantry rotation, and a pitch of 1.25. To reduce the radiation dose, CT was obtained for a 4cm axial ROI where there were visually obvious MRI ventilation defects. In the case where there were no visually obvious ventilation defects, the CT volume was acquired in the superior region of the lung. This approach
resulted in CT volumes consisting of 32-80 slices and a total effective dose ranging from 0.37 mSv to 0.14 mSv, (generated using the CT parameters and algorithm at www.impactscan.org).

CT image analysis was performed using Pulmonary Workstation 2.0, (VIDA Diagnostics; Iowa City, IA, USA) to generate bronchial wall area percent, wall thickness percent and lumen area for all 3rd-5th generation segmental bronchi analyzed and lumen area was normalized to body surface area. As shown in Figure 4-1, an automated airway tree segmentation algorithm was applied with a manual seed-point in the airway lumen introduced if the trachea and main bronchus were not present in the image. For each subject, all airway segment measurements were averaged to report whole lung means. To identify potential spatial relationships between ³He MRI ventilation defects and corresponding airways, CT-MRI co-registration was performed using 3D Slicer registration software (http://www.slicer.org).
Figure 4-1 Schematic for 3He MRI – Regional CT image acquisition, co-registration and analysis.
A region-of-interest (ROI) (green-yellow rectangle) with ventilation defects was located using 3He MRI. Following MRI, regional CT was acquired in that specific ROI. Ventilation defect percent (VDP) was quantified for the whole lung and the CT-derived ROI and an automated airway tree segmentation algorithm (VIDA) was applied to obtain airway measurements. Using the carina and trachea as a landmark, the regional CT with rendered airways was rigidly co-registered with the corresponding MR image to confirm the spatial relationship between ventilation defects and corresponding airways.
4.2.5 Statistical Analysis

Pulmonary function tests, MRI and CT measurements were compared between subject groups using unpaired Student t-tests performed using SPSS 20.0 (IBM, Armonk, NY, USA). Linear regression (r^2) and Spearman rank correlation coefficients (r) were performed using GraphPad Prism version 4.00 (Graphpad Software Inc, San Diego, CA, USA). Results were considered statistically significant when the probability of making a Type I error was less than 5% ($p < 0.05$).

4.3 Results

We enrolled 34 subjects including 26 subjects with a clinical diagnosis of asthma and previous methacholine challenge results consistent with asthma, and 8 healthy volunteers. Table 4-1 shows subject demographic data, pulmonary function measurements, and dyspnea scores for the two subgroups, and a subject listing of all data is provided in the online supplement, Table 4-3S.

Table 4-1 Subject demographic characteristics for asthmatics and healthy volunteers.

<table>
<thead>
<tr>
<th></th>
<th>Healthy (n=8)</th>
<th>Asthmatics (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age yrs (±SD)</td>
<td>34 (11)</td>
<td>35 (11)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>4/4</td>
<td>12/14</td>
</tr>
<tr>
<td>BMI kg/m2 (±SD)</td>
<td>23 (3)</td>
<td>25 (5)</td>
</tr>
<tr>
<td>Pulmonary Function Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV$_1$ %pred (±SD)</td>
<td>102 (10)</td>
<td>84 (15)</td>
</tr>
<tr>
<td>FVC %pred (±SD)</td>
<td>103 (10)</td>
<td>93 (11)</td>
</tr>
<tr>
<td>FEV$_1$/FVC % (±SD)</td>
<td>81 (6)</td>
<td>74 (11)</td>
</tr>
<tr>
<td>sRaw cmH$_2$O·s (±SD)</td>
<td>3.0 (0.5)</td>
<td>6.9 (4.7)</td>
</tr>
<tr>
<td>FeNO ppb (±SD)</td>
<td>18*</td>
<td>44 (45)</td>
</tr>
<tr>
<td>PC$_{20}$ mg/ml (±SD)</td>
<td>42.3 (19.2)</td>
<td>5.9 (12.3)</td>
</tr>
<tr>
<td>Dyspnea Scores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mMRC Score (±SD)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Borg Score (±SD)</td>
<td>0 (0)</td>
<td>0.5 (1)</td>
</tr>
</tbody>
</table>

SD=Standard Deviation, BMI=Body Mass Index, FEV$_1$=Forced Expiratory Volume in 1s, %pred=Percent Predicted, FVC=Forced Vital Capacity, sRaw=Specific Airway Resistance, FeNO=Fraction of Exhaled Nitric Oxide, PC$_{20}$=provocative concentration of methacholine sufficient to induce a 20% decrease in FEV$_1$, mMRC=modified Medical Research Council. *n=1
Upon qualitative visual inspection, nine of the 26 asthmatics had no ventilation defects (ND) and 17 had visually obvious asthma ventilation defects (AD). Figure 4-2 shows posterior, centre and anterior 3He MRI static ventilation coronal slices (in blue) co-registered to the 1H anatomical MRI (in grey-scale) for a representative healthy volunteer as well as ND and AD asthmatics with yellow arrows identifying ventilation defects. For both healthy volunteers and ND asthmatics, 3He gas was homogeneously distributed throughout the lung whereas in contrast, AD asthmatics had visually obvious ventilation heterogeneity and ventilation defects. Of the 8 healthy volunteers and 26 asthmatics evaluated, 2 healthy volunteers and 12 asthmatics underwent imaging across multiple timepoints ranging from 4 years prior, to 2 years following the study session reported here. In accordance with the study visit data presented here, both healthy volunteers had no ventilation defects at their additional timepoint. All asthmatics who underwent multiple imaging timepoints were AD asthmatics and all of these subjects had ventilation defects at their additional timepoint and in the same spatial locations. Moreover, for all asthmatic subjects with repeated imaging measurements (n=12), VDP was not significantly different (p=0.49) from measurements acquired and reported in this study.

As shown in Table 4-2, AD subjects were significantly older than ND subjects (p=0.01) with significantly worse FEV$_1$/FVC (p=0.0003), specific airways resistance (sRaw) (p=0.004), FeNO (p=0.03), PC$_{20}$ (p=0.008), COV (p=0.046), wall thickness percent (p=0.02) and lumen area normalized to body surface area (p=0.04), but importantly there was no mean difference for FEV$_1$ (p=0.08), FVC (p=0.71) or dyspnea (mMRC: p=0.79, Borg: p=0.12). As compared to healthy subjects, AD subjects had significantly worse FEV$_1$ (p=0.001), FEV$_1$/FVC (p=0.003), sRaw (p=0.003), PC$_{20}$ (p<0.0001), COV (p=0.007) wall area percent (p=0.001), wall thickness percent (p=0.04), and lumen area normalized to body surface area (p=0.0003), but there was no significant difference for FVC (p=0.06). ND subjects had significantly worse FVC (p=0.04), PC$_{20}$ (p=0.02) and wall area percent (0.03) compared to healthy volunteers, but no significant difference for FEV$_1$ (p=0.09), FEV$_1$/FVC (p=0.36), sRaw (p=0.36), COV (p=0.11), wall thickness percent (p=0.61) or lumen area normalized to body surface area (p=0.26).
Figure 4-2 Hyperpolarized 3He MRI of a representative healthy volunteer and asthmatic subjects.

3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale) for posterior, centre and anterior coronal slices for a representative healthy volunteer, an asthmatic with no ventilation defects, and two asthmatics with ventilation defects. Yellow arrows identify ventilation defects.

Healthy Volunteer: 27 yr old female, FEV$_1$=105%$_{\text{pred}}$, FEV$_1$/FVC=85%, sRaw=2.60 cmH$_2$O·s; Asthmatic 1 No Defects: 23 yr old female, FEV$_1$=82%$_{\text{pred}}$, FEV$_1$/FVC=79%, sRaw=3.80 cmH$_2$O·s; Asthmatic 2 Defects: 25 yr old female, FEV$_1$=87%$_{\text{pred}}$, FEV$_1$/FVC=69%, sRaw=5.36 cmH$_2$O·s; Asthmatic 3 Defects: 42 yr old male, FEV$_1$=72%$_{\text{pred}}$, FEV$_1$/FVC=65%, sRaw=13.85 cmH$_2$O·s.
Table 4-2 Subject demographic characteristics, pulmonary function, hyperpolarized \(^3\)He MRI and x-ray CT airways measurements for asthmatics and healthy volunteers.

<table>
<thead>
<tr>
<th></th>
<th>Healthy (n=8)</th>
<th>Asthma (n=26)</th>
<th>Significance of Difference(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ND (n=9)</td>
<td>AD (n=17)</td>
<td>HV vs. ND</td>
</tr>
<tr>
<td>Subject Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age yrs (±SD)</td>
<td>34 (11)</td>
<td>27 (8)</td>
<td>39 (11)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>4/4</td>
<td>2/7</td>
<td>10/7</td>
</tr>
<tr>
<td>Pulmonary Function Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV(_1) %(^\text{pred}) (±SD)</td>
<td>102 (10)</td>
<td>91 (13)</td>
<td>81 (14)</td>
</tr>
<tr>
<td>FVC %(^\text{pred}) (±SD)</td>
<td>103 (10)</td>
<td>92 (10)</td>
<td>94 (11)</td>
</tr>
<tr>
<td>FEV(_1)/FVC % (±SD)</td>
<td>81 (6)</td>
<td>84 (7)</td>
<td>69 (10)</td>
</tr>
<tr>
<td>sRaw cmH(_2)O·s (±SD)</td>
<td>2.96</td>
<td>3.42(1.22)</td>
<td>8.51(4.95)</td>
</tr>
<tr>
<td>FeNO ppb (±SD)</td>
<td>18(^\dagger)</td>
<td>17 (9)(^\ddagger)</td>
<td>60 (50)(^\delta)</td>
</tr>
<tr>
<td>PC(_{20}) mg/ml (±SD)</td>
<td>42.3</td>
<td>14.3(16.8)</td>
<td>1.4 (3.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mMRC Score (±SD)</td>
<td>0.0 (0.0)</td>
<td>0.7 (0.7)</td>
<td>0.8 (1.0)</td>
</tr>
<tr>
<td>Borg Score (±SD)</td>
<td>0.1 (0.2)</td>
<td>0.2 (0.3)</td>
<td>0.7 (0.8)</td>
</tr>
<tr>
<td>(^3)He MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Lung VDP%</td>
<td>1.22</td>
<td>1.31(0.32)</td>
<td>4.26(3.28)</td>
</tr>
<tr>
<td>(±SD)</td>
<td>(0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional VDP%</td>
<td>0.94</td>
<td>0.95(0.40)</td>
<td>2.35(0.98)</td>
</tr>
<tr>
<td>(±SD)</td>
<td>(0.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Lung COV</td>
<td>0.22</td>
<td>0.23(0.01)</td>
<td>0.26(0.03)</td>
</tr>
<tr>
<td>(±SD)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional CT(^\¥)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA% (±SD)</td>
<td>62 (2)</td>
<td>66 (3)</td>
<td>69 (3)</td>
</tr>
<tr>
<td>WT% (±SD)</td>
<td>24 (4)</td>
<td>25 (2)</td>
<td>29 (4)</td>
</tr>
<tr>
<td>LA mm(^2) (±SD)</td>
<td>18 (3)</td>
<td>14 (6)</td>
<td>11 (4)</td>
</tr>
<tr>
<td>LA/BSA mm(^2)/m(^2) (±SD)</td>
<td>10 (2)</td>
<td>8 (3)</td>
<td>6 (2)</td>
</tr>
</tbody>
</table>

ND=Asthmatics with No Defects, AD=Asthmatics with Defects, SD=Standard Deviation, FEV\(_1\)=Forced Expiratory Volume in 1s, %\(^\text{pred}\)=Percent Predicted, FVC=Forced Vital Capacity, sRaw=Specific Airway Resistance, FeNO=Fraction of Exhaled Nitric Oxide, PC\(_{20}\)=provocative concentration of methacholine sufficient to induce a 20% decrease in FEV\(_1\), mMRC=modified Medical Research Council, VDP=Ventilation Defect Percent, COV=Coefficient of Variation, WA%=Wall Area Percent, WT%=Wall Thickness Percent, LA=Lumen Area, BSA=Body Surface Area. \(^*\)Significance of difference (p<0.05) determined using a t-test. \(^\dagger\)n=1; \(^\ddagger\)n=8; \(^\delta\)n=13; \(^\¥\)HV: n=5; ND: n=9; AD: n=9.
Figure 4-3 shows the correlations for FEV$_1$ and sRaw with whole lung VDP, regional VDP and wall area percent. FEV$_1$ was significantly correlated with both 3He MRI VDP (whole lung: $r=-0.61$, $p=0.0002$; regional: $r=-0.55$, $p=0.006$) and wall area percent ($r=-0.49$, $p=0.02$). In addition, sRaw was significantly correlated with both 3He MRI VDP (whole lung: $r=0.77$, $p<0.0001$; regional: $r=0.81$, $p<0.0001$) and wall area percent ($r=0.48$, $p=0.02$). Additionally, FEV$_1$ and sRaw were significantly correlated with whole lung 3He MRI COV (FEV$_1$: $r=-0.49$, $p=0.003$; sRaw: $r=0.59$, $p=0.0003$). Figure 4-4 demonstrates that for all subjects wall area percent was significantly correlated with whole lung ($r=0.42$, $p=0.046$) and regional VDP ($r=0.43$, $p=0.04$).

Figure 4-3 Relationships of MRI and CT measurements with FEV$_1$ and airways resistance.

(A) Negative relationship between 3He MRI VDP and FEV$_1$%$_{pred}$ (WL: $r=-0.61$, $r^2=0.20$, $p=0.0002$; RG: $r=-0.55$, $r^2=0.26$, $p=0.006$).

(B) Positive relationship between 3He MRI VDP and specific airways resistance (sRaw) (WL: $r=0.77$, $r^2=0.62$, $p<0.0001$; RG: $r=0.81$, $r^2=0.75$, $p<0.0001$).

(C) Negative relationship between wall area percent and FEV$_1$%$_{pred}$ ($r=-0.49$, $r^2=0.23$, $p=0.02$).

(D) Positive relationship between wall area percent and specific airways resistance (sRaw) ($r=0.48$, $r^2=0.21$, $p=0.02$).

WL=whole lung, RG=regional, WA%=wall area percent
Figure 4-4 Relationship between 3He MRI VDP and CT-derived wall area percent (WA%). WA% was significantly correlated with both whole lung 3He MRI VDP ($r = 0.42$, $r^2 = 0.11$, $p = 0.046$) and regional 3He MRI VDP ($r = 0.43$, $r^2 = 0.15$, $p = 0.04$). Dashed lines represent the 95% confidence intervals of the regression line.

Figure 4-5 shows hyperpolarized 3He MRI ventilation maps for four asthmatics with the 3He MRI ventilation map in blue co-registered to the CT volume with the airway tree segmented in yellow. The qualitative spatial relationship between ventilation defects (yellow arrows) and remodeled airways (white arrows) is shown.
Figure 4-5 Spatial relationship between ventilation defects and airways for four representative asthmatics with ventilation defects.

3He MRI gas distribution (in blue) registered to the regional CT of the thorax (in grey-scale) with the airway tree segmented in yellow. Airway measurements are for the specific airway (white arrow) spatially related to the ventilation defect (yellow arrow) of interest. Panel A is a 29 yr old male FEV$_1$=81%$_{pred}$, regional VDP=5%, wall area=71%, lumen area=5mm2; Panel B is a 49 yr old male, FEV$_1$=60%$_{pred}$, regional VDP=3%, wall area =67%, lumen area=12mm2; Panel C is a 25 yr old female, FEV$_1$=87%$_{pred}$, regional VDP=2%, wall area =75%, lumen area=5mm2; Panel D is a 58 yr old male, FEV$_1$=73%$_{pred}$, regional VDP=1%, wall area=70%, lumen area=5mm2.

4.4 Discussion

To better understand the structural and clinical determinants of MRI ventilation defects in asthma, and, in turn, what it might mean for an asthmatic to have ventilation defects, we evaluated well-established clinical measurements and emerging CT and 3He MRI measurements of airway structure and function.
We think that it is interesting that 9/26 (35%) subjects with clinical findings and methacholine challenge results diagnostic of asthma had a 3He MRI gas distribution that was qualitatively and quantitatively (VDP and COV) similar to healthy volunteers. It is important to note that all of the healthy volunteers had a homogenous gas distribution with no visual or quantitative evidence of ventilation defects, which is in agreement with previous work at our centre$^{11,41-43}$ and others.5,7,44 In contrast, and as expected based on previous investigations,$^{5-9,11,12}$ the remaining 17/26 (65%) asthmatics had obvious ventilation abnormalities. This observation prompted us to ask the question: *Are asthmatics with ventilation defects different than asthmatics without ventilation defects?* The results here suggest that asthmatics with ventilation defects are older, with worse FEV$_1$/FVC, (but similar FEV$_1$), and greater airways resistance, airway responsiveness, and airway inflammation/remodeling. Such findings suggest that ventilation defects may reflect long-term or progressive airway remodeling in patients with a longer history of disease or perhaps more severe or advanced disease. Regardless, the constellation of clinical and imaging findings in these asthmatics suggest that more aggressive therapy or compliance to therapy is required. This is a hypothesis that can be tested in future imaging studies of older and/or more severe asthmatics.

A number of studies have quantitatively investigated asthma airway structure using CT and showed that bronchial wall thickness was related to asthma severity, duration of disease and airflow obstruction.$^{14-22}$ Similarly, 3He MRI has previously shown that ventilation defects were related to asthma severity6 and in a preliminary report,45 half of a small group of asthmatics (7/15) showed no obvious ventilation defects, with significantly different bronchial wall thickness (but not bronchial wall area) compared to asthmatics with ventilation defects. Here, we prospectively acquired both MRI and CT within about 30 minutes using the same lung volume and breath-hold manoeuvre to try to mimic the same airway and parenchyma dimensions using both imaging methods. We must consider that because 3He gas is itself, highly diffusive and may penetrate even narrowed airways, there is the possibility that even when bronchial wall thickness and lumen area are abnormal, some 3He gas ventilation is possible. In support of this explanation, we note the recent report of indirect or collateral ventilation in COPD that was directly visualized using
hyperpolarized 3He MRI46 – likely possible only because the timeframe for imaging was relatively long and 3He gas is highly diffusive.

We also observed that regional CT airway morphology and 3He ventilation defect measurements were significantly correlated. This important finding suggests that there is a relationship between airways that are remodeled and/or constricted and ventilation defects. Previous studies have demonstrated that focal regions of hyperlucency on CT (likely related to gas trapping) were spatially correlated with 3He MRI ventilation defects28 and bronchoalveolar lavage had higher total and percent neutrophils in areas of the lung with greater ventilation defects, suggestive of increased inflammation. Although we observed significant relationships between airway dimensions and defects, these relationships were modest, perhaps because of the heterogeneity of asthma and the asthma patients evaluated here, or because of the relatively low dose partial CT region of interest that was utilized. It is important to acknowledge that in asthma, the airways from the large bronchi to the alveolar ducts may be involved,47 thus using CT to measure airway dimensions has limitations because CT cannot spatially resolve the small airways ($<$2mm) sufficiently to provide accurate measurements. In addition to small and heterogeneously distributed ventilation defects, some of the asthmatics evaluated here presented large wedge shaped defects; these have previously been reported using single photon emission computed tomography (SPECT) imaging with Technegas25 and are believed to be the result of segmental airway narrowing. Following MRI-CT registration we were able to identify and quantify segmental bronchi that were spatially related to ventilation defects. Larger ‘segmental’ ventilation defects may be the result of proximal remodeled sub-segmental airways feeding these regions of signal void. Unfortunately, due to the limitations of the spatial resolution of the CT images, we cannot comment on the structure of the smaller airways distal to the sub-segmental airways quantified here, which may further contribute to the abnormal gas distributions observed.

Large and temporally persistent 3He ventilation defects, provide excellent targets for therapy and could potentially guide localized airway treatments such as bronchial thermoplasty. Although we have focused our attention on ventilation defects, areas of hyper-intense signal intensity are often observed in asthmatic subjects in conjunction with ventilation defects. Similar to regions of signal void, to our knowledge, the underlying
etiology of these regions has not been investigated. We hypothesize that hyper-intense signal may be due to hyperinflation and note that investigation of these regions is warranted in asthma.

We recognize and acknowledge that this work was limited by the relatively small number of subjects evaluated, although we note that this is the single largest prospective study that directly compared CT and 3He MRI in asthmatics and healthy subjects. Furthermore, the subjects evaluated here were enrolled from a multi-disciplinary asthma care centre and therefore they represent a diverse group of asthmatics that have been mainly referred to improve asthma symptoms and control. As shown in Figure 4-3, there was a single subject with elevated VDP as compared to the other AD subjects and we confirmed that this 42 year old male had experienced an asthma exacerbation that required hospitalization approximately 5 months prior to hyperpolarized 3He MRI performed here. This subject’s asthma was previously well-controlled and the exacerbation was determined to be the result of sudden cessation of asthma medication. It is important to note that the relationships presented in Figure 4-3 remain statistically significant when this outlier is removed from the analysis. Certainly, this is a hypothesis generating study and therefore marginally significant p-values should be interpreted with caution, and larger studies are required for more extensive phenotyping and characterization of asthmatics and to test the hypotheses generated here. We must also acknowledge that our analysis was limited because of the acquisition of partial CT thoracic volumes.

In summary, our results showed that asthmatics with 3He MRI ventilation abnormalities were older, with greater airway hyperresponsiveness, and worse measurements of FEV$_1$/FVC and airways resistance/inflammation as well as abnormally remodeled airways in comparison to asthmatics without ventilation defects. Hyperpolarized 3He ventilation abnormalities were spatially and quantitatively related to remodeled airways in asthmatics providing a better understanding of the etiology of heterogeneous ventilation abnormalities in asthma and the clinical meaning of these abnormalities in asthmatics with similar FEV$_1$.
4.5 References

(2) Celli BR. The importance of spirometry in COPD and asthma: effect on approach to management. *Chest* 2000;117:15S-9S.

4.6 Supplementary Material

Table 4-3S Subject listing of demographic characteristics, pulmonary function and dyspnea.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>FEV₁ (%pred)</th>
<th>FVC (%pred)</th>
<th>FEV₁/FVC (%)</th>
<th>IC (%pred)</th>
<th>RV (%pred)</th>
<th>TLC (%pred)</th>
<th>sRaw (cmH₂O.s)</th>
<th>FeNO (ppb)</th>
<th>PC₂₀ (mg/ml)</th>
<th>mMRC</th>
<th>Baseline</th>
<th>Borg</th>
<th>Post-MCh</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>49</td>
<td>F</td>
<td>69</td>
<td>94</td>
<td>59</td>
<td>116</td>
<td>144</td>
<td>110</td>
<td>10.20</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>005</td>
<td>45</td>
<td>F</td>
<td>78</td>
<td>87</td>
<td>72</td>
<td>124</td>
<td>108</td>
<td>102</td>
<td>4.97</td>
<td>-</td>
<td>2.4</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>006</td>
<td>23</td>
<td>F</td>
<td>96</td>
<td>91</td>
<td>92</td>
<td>107</td>
<td>104</td>
<td>97</td>
<td>1.50</td>
<td>8</td>
<td>16.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>007</td>
<td>24</td>
<td>M</td>
<td>81</td>
<td>85</td>
<td>81</td>
<td>86</td>
<td>111</td>
<td>94</td>
<td>3.22</td>
<td>12</td>
<td>27.9</td>
<td>0</td>
<td>0.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>008</td>
<td>34</td>
<td>M</td>
<td>82</td>
<td>79</td>
<td>84</td>
<td>110</td>
<td>105</td>
<td>91</td>
<td>2.67</td>
<td>16</td>
<td>55.2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>30</td>
<td>F</td>
<td>102</td>
<td>101</td>
<td>87</td>
<td>135</td>
<td>82</td>
<td>96</td>
<td>2.25</td>
<td>21</td>
<td>3.4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>017</td>
<td>23</td>
<td>F</td>
<td>112</td>
<td>102</td>
<td>96</td>
<td>128</td>
<td>164</td>
<td>122</td>
<td>3.95</td>
<td>12</td>
<td>13.2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>018</td>
<td>22</td>
<td>F</td>
<td>79</td>
<td>83</td>
<td>82</td>
<td>90</td>
<td>115</td>
<td>91</td>
<td>5.58</td>
<td>37</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>020</td>
<td>23</td>
<td>F</td>
<td>82</td>
<td>91</td>
<td>79</td>
<td>104</td>
<td>69</td>
<td>87</td>
<td>3.80</td>
<td>17</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>024</td>
<td>20</td>
<td>F</td>
<td>108</td>
<td>110</td>
<td>86</td>
<td>138</td>
<td>85</td>
<td>99</td>
<td>2.88</td>
<td>10</td>
<td>9.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Mean(±SD)</td>
<td>27(8)</td>
<td>-</td>
<td>91(13)</td>
<td>92(10)</td>
<td>84(7)</td>
<td>114(18)</td>
<td>105(25)</td>
<td>98(10)</td>
<td>3.42(1.22)</td>
<td>17(9)</td>
<td>14.3(16.8)</td>
<td>0.7(0.7)</td>
<td>0.2(0.3)</td>
<td>3.4(1.4)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-3S Continued

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>FEV₁ (%pred)</th>
<th>FVC (%pred)</th>
<th>FEV₁/FVC (%)</th>
<th>IC (%pred)</th>
<th>RV (%pred)</th>
<th>TLC (%pred)</th>
<th>sRaw (cmH₂O.s)</th>
<th>FeNO (ppb)</th>
<th>PC₂₀ (mg/ml)</th>
<th>mMRC</th>
<th>Baseline</th>
<th>Borg</th>
<th>Post-MCh</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>49</td>
<td>F</td>
<td>69</td>
<td>94</td>
<td>59</td>
<td>116</td>
<td>144</td>
<td>110</td>
<td>10.20</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>002</td>
<td>30</td>
<td>M</td>
<td>96</td>
<td>105</td>
<td>75</td>
<td>122</td>
<td>108</td>
<td>109</td>
<td>5.11</td>
<td>-</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>003</td>
<td>29</td>
<td>M</td>
<td>81</td>
<td>100</td>
<td>66</td>
<td>118</td>
<td>115</td>
<td>111</td>
<td>19.50</td>
<td>114</td>
<td>0.1</td>
<td>1</td>
<td>0.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>004</td>
<td>49</td>
<td>F</td>
<td>59</td>
<td>75</td>
<td>63</td>
<td>84</td>
<td>130</td>
<td>96</td>
<td>-</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>23</td>
<td>F</td>
<td>98</td>
<td>93</td>
<td>91</td>
<td>101</td>
<td>113</td>
<td>95</td>
<td>2.93</td>
<td>116</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>012</td>
<td>25</td>
<td>F</td>
<td>87</td>
<td>107</td>
<td>69</td>
<td>119</td>
<td>98</td>
<td>101</td>
<td>5.36</td>
<td>50</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>013</td>
<td>37</td>
<td>M</td>
<td>77</td>
<td>77</td>
<td>81</td>
<td>107</td>
<td>135</td>
<td>97</td>
<td>10.42</td>
<td>31</td>
<td>0.1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>014</td>
<td>29</td>
<td>F</td>
<td>92</td>
<td>102</td>
<td>77</td>
<td>98</td>
<td>96</td>
<td>97</td>
<td>2.64</td>
<td>18</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>015</td>
<td>47</td>
<td>M</td>
<td>60</td>
<td>82</td>
<td>57</td>
<td>99</td>
<td>115</td>
<td>94</td>
<td>6.51</td>
<td>45</td>
<td>0.3</td>
<td>0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>016</td>
<td>53</td>
<td>M</td>
<td>104</td>
<td>104</td>
<td>77</td>
<td>111</td>
<td>82</td>
<td>100</td>
<td>4.78</td>
<td>22</td>
<td>16.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>019</td>
<td>42</td>
<td>M</td>
<td>72</td>
<td>88</td>
<td>65</td>
<td>110</td>
<td>144</td>
<td>108</td>
<td>13.85</td>
<td>40</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>022</td>
<td>24</td>
<td>F</td>
<td>99</td>
<td>111</td>
<td>132</td>
<td>130</td>
<td>94</td>
<td>108</td>
<td>6.40</td>
<td>187</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>025</td>
<td>58</td>
<td>M</td>
<td>73</td>
<td>99</td>
<td>56</td>
<td>91</td>
<td>121</td>
<td>110</td>
<td>8.38</td>
<td>29</td>
<td>1.0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>026</td>
<td>37</td>
<td>M</td>
<td>93</td>
<td>93</td>
<td>66</td>
<td>105</td>
<td>107</td>
<td>109</td>
<td>4.33</td>
<td>-</td>
<td>2.6</td>
<td>1</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>028</td>
<td>41</td>
<td>F</td>
<td>66</td>
<td>92</td>
<td>59</td>
<td>129</td>
<td>165</td>
<td>113</td>
<td>15.74</td>
<td>-</td>
<td>0.8</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>029</td>
<td>31</td>
<td>F</td>
<td>75</td>
<td>95</td>
<td>63</td>
<td>114</td>
<td>136</td>
<td>106</td>
<td>13.76</td>
<td>69</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>031</td>
<td>35</td>
<td>M</td>
<td>77</td>
<td>77</td>
<td>70</td>
<td>98</td>
<td>98</td>
<td>78</td>
<td>5.23</td>
<td>23</td>
<td>1</td>
<td>1.5</td>
<td>0</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Mean(±SD)</td>
<td>39(11)</td>
<td>-</td>
<td>81(14)</td>
<td>94(11)</td>
<td>69(10)</td>
<td>109(13)</td>
<td>117(22)</td>
<td>103(8)</td>
<td>8.51(4.95)</td>
<td>60(50)</td>
<td>1.4(3.9)</td>
<td>0.8(1.0)</td>
<td>0.7(0.8)</td>
<td>2.7(1.1)</td>
<td></td>
</tr>
</tbody>
</table>

SD=Standard Deviation, FEV₁=Forced Expiratory Volume in 1s, %pred= Percent Predicted, FVC=Forced Vital Capacity, IC= Inspiratory Capacity, RV=Residual Volume, TLC=Total Lung Capacity, sRaw=Specific Airway Resistance, FeNO=Fraction of Exhaled Nitric Oxide, PC₂₀=provocative concentration of methacholine sufficient to induce a 20% decrease in FEV₁, mMRC=modified Medical Research Council.
CHAPTER 5

Improving asthma control is the primary treatment goal for asthmatics. Links between asthma control and ventilation defects have not been ascertained so we endeavoured to answer the question, “What is the relationship of asthma control with in vivo ventilation defects quantified and regionally visualized using MRI?”

The contents of this chapter are in preparation to be submitted to the journal Radiology: S Svenningsen, P Nair, DG McCormack and G Parraga. What do Ventilation Defects Reveal about Asthma Control? Radiology (To be submitted December 2015).

5 WHAT DO VENTILATION DEFECTS REVEAL ABOUT ASTHMA CONTROL?

5.1 Introduction

The primary goal of asthma treatment is the achievement and maintenance of disease control. Unfortunately, approximately 50% of asthmatics remain poorly controlled with up-to 10% of these patients experiencing severe and life-threatening exacerbations.\(^1\) It is now well-understood that the clinical and pathophysiological characteristics of poorly-controlled asthma are heterogeneous which makes treatment decisions particularly complex. Because of this heterogeneity, sensitive and specific disease biomarkers are required to guide treatment decisions aimed at improving asthma control. Recent studies using multiple-breath-gas-washout techniques have suggested that poor asthma control may be related to ventilation heterogeneity.\(^2,3\) Although the exact pathophysiological abnormalities responsible for ventilation heterogeneity are unclear, these may include regional variations in luminal accumulation of inflammatory cells, mucus, albumin and fibrin, thickening of the airway walls, smooth muscle hyperplasia and hypertrophy, subepithelial fibrosis and mucus cell metaplasia.

Ventilation heterogeneity measured using the lung clearance index (LCI), was first described over 65 years ago,\(^4\) and has endured as a biomarker of obstructive lung disease. Ventilation heterogeneity in asthmatics is elevated in comparison to healthy controls,\(^5-7\) is an independent determinant of airway hyperresponsiveness,\(^8\) improves with bronchodilation\(^5,9\) and inhaled corticosteroids\(^3,10\) and worsens during exacerbations.\(^11\) Although this mature body of research strongly supports the notion that LCI is sensitive to
ventilation heterogeneity in asthma, such measurements cannot localize the site of these functional abnormalities.

On the other hand ventilation defects may be regionally identified and visualized using pulmonary imaging methods12,13 including noble gas magnetic resonance imaging (MRI).14 It was previously established that in well-controlled asthmatics, focal MRI ventilation defects are associated with worse lung function, increased airway inflammation, airway hyperresponsiveness and greater airway wall thickness.15 Furthermore, MRI ventilation defects are temporally and spatially persistent,16 worsen in response to bronchoconstriction and improve following bronchodilation.17

Until now however, the relationship between ventilation defects and asthma control and exacerbations has not been ascertained. Therefore, the purpose of this small study in severe asthmatics was to investigate MBNW and MRI measurements of ventilation heterogeneity to better understand their relationship with asthma control. We hypothesized that MRI ventilation defects and the lung clearance index would be correlated, and that both would be biomarkers of poor asthma control. Given the relative lack of therapy options for severe asthma, this is important because regional ventilation defects and the lung clearance index provide endpoints that might be helpful in guiding treatment decisions aimed at improving asthma control.

5.2 Methods

5.2.1 Study Participants and Design

Participants provided written informed consent to a study protocol approved by a local research ethics board, and the study was compliant with the Personal Information Protection and Electronic Documents Act (PIPEDA, Canada) and the Health Insurance Portability and Accountability Act (HIPAA, USA). Patients between 18 and 70 years of age with a diagnosis of severe asthma, according to the Global Initiative of Asthma (GINA) treatment step criteria 18 and under the care of a respirologist were recruited from two academic tertiary care centres (McMaster and Western Universities, Canada).

During a single 2-hour visit, all participants performed pre- and post-bronchodilator spirometry, MBNW and MRI. Asthma-control and quality-of-life was assessed using the
Asthma-Control-Questionnaire (ACQ; 7-item version)19 and Standardized-Asthma-Quality-of-Life-Questionnaire (AQLQ(S)),20 respectively. Borg and modified Medical Research Council dyspnea scores were recorded. Clinical history of severe asthma exacerbations, emergency department (ED) visits and hospitalizations for respiratory symptoms were self-reported. As previously defined,21 a severe asthma exacerbation was a worsening of symptoms requiring treatment with oral or intravenous corticosteroids, OR a doubling of inhaled corticosteroid (ICS) dose for \(\geq 3 \) days, OR any temporary increase in the dosage of oral corticosteroids (OCS) for subjects taking maintenance OCS. Methacholine challenge was performed within 6 months previous to the MRI visit to determine the provocative concentration resulting in a \(\geq 20\% \) decrease in FEV\(_1\) (PC\(_{20}\)).

5.2.2 Pulmonary Function Tests and Bronchial Challenge

Spirometry was performed according to American Thoracic Society Guidelines22 using a MedGraphics Elite Series plethysmograph (MedGraphics; St. Paul, MN, USA). For post-bronchodilator measurements, four 100μg doses of Novo-Salbutamol® HFA (Teva Novopharm Ltd.; Toronto, ON, Canada) were delivered through a pressurized meter dose inhaler using an AeroChamber Plus spacer (Trudell Medical International; London, ON, Canada). All participants were instructed to withhold their short-acting beta-agonists 12 hours prior to their visit (overnight).

5.2.3 Lung Clearance Index

The multiple breath washout manoeuvre was performed using 100\% oxygen (O\(_2\)) for nitrogen washout and the ndd EasyOne Pro® LAB system (ndd Medical Technologies; AG, Zurich, Switzerland) equipped with an ultrasonic flow and molar mass sensor. With the volunteer seated upright and breathing through a mouth piece while wearing nose clips, the washout phase was initiated after several breaths of room air by switching from room air to 100\% O\(_2\) at end expiration. Tidal breathing of 100\% O\(_2\) was performed until washout was complete (expired N\(_2\) concentration <2.5\% of test start). Functional residual capacity (FRC) was calculated from the cumulative volume of expired N\(_2\) divided by the difference between the end-tidal concentration at the start and end of the washout. The cumulative expired volume (CEV) was the cumulative volume of expired air during the washout. The
lung clearance index (LCI) was the number of FRC lung turnovers required to reach N₂ concentration <2.5% of test start and was generated as CEV divided by FRC as previously described. The washout manoeuvre was performed in duplicate and LCI was reported as the mean of two washout manoeuvres.

5.2.4 Magnetic Resonance Imaging

MRI was performed on a whole body 3.0 Tesla Discovery MR750 (General Electric Health Care, Milwaukee, WI, USA) system with broadband imaging capability, as previously described. Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag (Jensen Inert Products; Coral Springs, FL, USA) from FRC, and image acquisition was performed in 8-15s under breath-hold conditions. Conventional ¹H MRI was performed 5 minutes prior to hyperpolarized ³He MRI and both methods were previously described.

Quantitative evaluation was performed by a single trained observer (S.S) using custom semi-automated segmentation software generated using MATLAB R2007b (The Mathworks Inc.; Natick, MA, USA), as previously described. ³He MRI ventilation defect percent (VDP) was generated and defined as the ventilation defect volume normalized to the thoracic cavity volume.

5.2.5 Statistical Analysis

Data were tested for normality using the Shapiro-Wilk normality test and when data were not normal, non-parametric tests were performed. Univariate relationships were evaluated using linear regressions (r²), Pearson correlations (r) and when the data were not normal, Spearman correlations (ρ). Paired two-tailed t-tests and Wilcoxon matched-pairs signed rank tests were used to evaluate the effect of bronchodilator therapy on ventilation heterogeneity. Unpaired t-tests and Mann-Whitney tests were performed to compare ventilation heterogeneity in subjects stratified by ACQ (≤2 or >2) and AQLQ scores (≥5 or <5) and previous 6-month exacerbation history (<1 or ≥1). All statistical analyses were performed using GraphPad Prism version 6.02 (GraphPad Software Inc.; La Jolla, CA, USA) and results were considered statistically significant when the probability of making a Type I error was < 5% (p < 0.05).
5.3 Results

5.3.1 Study Participants

Table 5-1 provides a summary of demographic and asthma characteristics for 18 participants (6 males/12 females, 46±12 years) with severe asthma. The mean duration of asthma was 31±15 years (range=7-57), pre-bronchodilator FEV₁ was 68±24%_{pred} (range=33-103%_{pred}) and pre-bronchodilator FEV₁/FVC was 65±15% (range=35-88%). A participant listing provided in Table 5-3 (supplement) shows there was abnormal ventilation heterogeneity (both VDP and LCI) for 13 participants and there was normal VDP/LCI or normal VDP/abnormal LCI for five subjects.

Table 5-1 Participant demographics and asthma measurements.

<table>
<thead>
<tr>
<th>Parameter (±SD)</th>
<th>Severe Asthma (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-bronchodilator</td>
</tr>
<tr>
<td>Age years</td>
<td>46 (12)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>6/12</td>
</tr>
<tr>
<td>Duration of asthma years</td>
<td>31 (15)</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>29 (5)</td>
</tr>
<tr>
<td>FEV₁ L</td>
<td>2.2 (0.8)</td>
</tr>
<tr>
<td>FEV₁ %_{pred}</td>
<td>68 (24)</td>
</tr>
<tr>
<td>FVC L</td>
<td>3.5 (1.0)</td>
</tr>
<tr>
<td>FVC %_{pred}</td>
<td>83 (19)</td>
</tr>
<tr>
<td>FEV₁/FVC %</td>
<td>65 (15)</td>
</tr>
<tr>
<td>PC₂₀ mg/mL</td>
<td>1.4 (2.8)*</td>
</tr>
<tr>
<td>Lung clearance index</td>
<td>10.5 (3.0)</td>
</tr>
<tr>
<td>Ventilation defect percent %</td>
<td>12 (11)</td>
</tr>
</tbody>
</table>

SD=standard deviation; BMI=body mass index; FEV₁=forced expiratory volume in 1 second; %_{pred}=percent predicted; FVC=forced vital capacity; PC₂₀=methacholine concentration for 20% decrease in FEV₁. *n=5; †n=17

Asthma medications and control parameters are summarized in Table 5-2. A participant listing of these data is also provided in Table 5-4 (supplement). Despite receiving medium-to-high dose inhaled corticosteroids (ICS) and long-acting beta-agonists (GINA treatment step 4-5), all 18 participants had poorly-controlled disease as evidenced by mean ACQ score (2.3±0.9, range=1.0-4.3). Eight (44%) participants were prednisone-dependent (dosage ranging from 2.5 to 50 mg/day). One or more severe asthma exacerbations were
reported by nine (50%) and 15 (83%) participants in the previous 6- and 12-months respectively.

Table 5-2 Asthma medication and control.

<table>
<thead>
<tr>
<th>Asthma Medications</th>
<th>Severe Asthma (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled corticosteroid n (%)</td>
<td>18 (100%)</td>
</tr>
<tr>
<td>Long-acting β2-agonist n (%)</td>
<td>18 (100%)</td>
</tr>
<tr>
<td>Long-acting anticholinergic n (%)</td>
<td>7 (39%)</td>
</tr>
<tr>
<td>Oral corticosteroid n (%)</td>
<td>8 (47%)</td>
</tr>
<tr>
<td>Leukotriene receptor antagonist n (%)</td>
<td>9 (53%)</td>
</tr>
<tr>
<td>Anti-immunoglobulin E n (%)</td>
<td>1 (6%)</td>
</tr>
</tbody>
</table>

Asthma Control

ACQ score*	2.3 (0.9)
AQLQ total score*	4.6 (1.2)
mMRC dyspnea score*	1.3 (1.0)
Borg dyspnea score*	2.5 (2.3)
Severe exacerbation previous 6 months n (%)	9 (50%)
Severe exacerbation previous year n (%)	15 (83%)
ED visit previous 6 months n (%)	1 (6%)
ED visit previous year n (%)	4 (22%)
Hospitalization previous 6 months n (%)	0 (0%)
Hospitalization previous year n (%)	1 (6%)

Values are mean (±SD) except when indicated otherwise. ACQ=asthma control questionnaire; AQLQ=asthma quality-of-life questionnaire; mMRC=modified Medical Research Council; ED=emergency department. *n=16

5.3.2 Ventilation Heterogeneity

Figure 5-1 shows pre-bronchodilator coronal 3He MRI ventilation (in blue) co-registered to 1H anatomical MRI (in grey-scale) for six representative participants. As shown qualitatively in **Figure 5-1**, there was a greater number and volume of 3He MRI ventilation abnormalities in participants with worse ACQ. For example, in subject S17 there was a relatively homogeneous ventilation pattern, normal LCI and relatively good asthma control whereas for subjects S16, S06, S13 and S04, there was qualitatively abnormal ventilation that was concomitant with worse asthma control.

Table 5-1 shows that both VDP (pre-salbutamol=12±11%, post-salbutamol=8±8%, p=0.008) and LCI (pre-salbutamol=10.5±3.0, post-salbutamol=9.5±2.6, p=0.02) significantly improved following bronchodilation. One participant (S12) could not
complete the post-bronchodilator MBNW manoeuvre due to fatigue and was excluded from this evaluation.

Figure 5-1 Hyperpolarized \(^3\)He MRI of representative patients with severe asthma. Centre coronal slice \(^3\)He MRI ventilation in blue co-registered to anatomical \(^1\)H MRI in grey-scale for six representative severe asthmatics. S07: 55 year-old female, \(\text{FEV}_1=77\%_{\text{pred}}, \text{ACQ}=1.4, \text{LCI}=9.7, \text{VDP}=2\%\); S17: 39 year-old female, \(\text{FEV}_1=66\%_{\text{pred}}, \text{ACQ}=1.7, \text{LCI}=6.7, \text{VDP}=3\%\); S16: 48 year-old male, \(\text{FEV}_1=78\%_{\text{pred}}, \text{ACQ}=2.3, \text{LCI}=8.6, \text{VDP}=8\%\); S06: 45 year-old male, \(\text{FEV}_1=34\%_{\text{pred}}, \text{ACQ}=2.7, \text{LCI}=11.5, \text{VDP}=14\%\); S13: 56 year-old male, \(\text{FEV}_1=34\%_{\text{pred}}, \text{ACQ}=3.1, \text{LCI}=17.5, \text{VDP}=33\%\); S04: 60 year-old female, \(\text{FEV}_1=47\%_{\text{pred}}, \text{ACQ}=4.3, \text{LCI}=14.0, \text{VDP}=35\%\).
5.3.3 Ventilation Heterogeneity and Asthma Control

Figure 5-2 shows VDP and LCI in participants stratified by ACQ score (ACQ≤2, n=7 and ACQ>2, n=9), AQLQ score (AQLQ≥5, n=7 and AQLQ<5, n=9) and by the number of self-reported exacerbations in the past 6 months (exacerbations <1, n=9 and exacerbations ≥1, n=9). As shown in Figure 5-2A, there was significantly worse VDP (18±13% versus 6±5%; p=0.04), but not LCI (11.2±3.6 versus 9.4±2.4; p=0.3), in the subgroup of asthmatics with ACQ scores >2. There was also significantly worse VDP (18±13% versus 6±5%; p=0.04), but not LCI (11.4±3.3 versus 9.1±2.6; p=0.2), in the subgroup of asthmatics with AQLQ scores <5. Figure 5-2C also shows that there was a trend towards worse VDP (17±13% versus 8±5%; p=0.053), but not LCI (11.2±3.8 versus 9.7±1.8; p=0.3), in asthmatics reporting ≥1 exacerbation in the past 6-months. There were 15 subjects with exacerbations in the previous 12-months (VDP=13±12%; LCI=10.3±3.2).
Figure 5-2 Ventilation heterogeneity stratified by ACQ and AQLQ scores and self-reported exacerbations.

A) Significantly worse VDP (>2 ACQ, VDP=18±13%; ≤2 ACQ, VDP=6±5, p=0.04), but not LCI (>2 ACQ, LCI=11.2±3.6; ACQ≤2, LCI=9.4±2.4, p=0.29) for subjects with ACQ >2.

B) Significantly worse VDP (AQLQ<5, VDP=18±13; AQLQ≥5, VDP=6±5, p=0.04), but not LCI (AQLQ<5, LCI=11.4±3.3; AQLQ≥5, LCI= 9.1±2.6, p=0.16), for subjects with AQLQ total scores <5.

C) There was a trend towards greater VDP (exacerbations ≥1, VDP=17±13%; exacerbations<1, VDP=8±5%; p=0.053), but not LCI (exacerbations ≥1, LCI=11.2±3.8 exacerbations<1, LCI= 9.7±1.8; p=0.3), for subjects with ≥1 exacerbation in past 6-months.

Box-and-whiskers plots show minimum, 25th percentile, median, 75th percentile, and maximum with each individual value superimposed on the graph. += mean. ACQ=asthma control questionnaire; AQLQ=asthma quality-of-life questionnaire; LCI=lung clearance index; VDP=ventilation defect percent.
5.3.4 Relationships

Given the different results for the ACQ and AQLQ subgroups with VDP and LCI measurements, we also evaluated the bilateral relationships for LCI and VDP and their post-salbutamol changes. **Figure 5-3** qualitatively shows some of these relationships in individual participants. For example, for subjects S11, S03 and S15, there was significantly improved VDP, with minimal post-salbutamol change in LCI. In contrast, for subjects S02, S13 and S05, there was significantly improved LCI with a minimal post-salbutamol change in VDP. **Figure 5-4A** shows that there were strong VDP-LCI correlations pre- (r=0.86, r²=0.74, p<0.0001) and post-bronchodilator (r=0.93, r²=0.86, p<0.0001). However, as shown in **Figure 5-4B**, the post-bronchodilator change in VDP was not correlated with the post-bronchodilator change in LCI (r=0.44, r²=0.01, p=0.08). As shown in **Figure 5-4C and D**, VDP (r=0.62, r²=0.38, p=0.01) was correlated with ACQ score and LCI (r=0.49, r²=0.24, p=0.052) showed a similar trend. VDP and LCI were not related to AQLQ score (VDP: r=-0.34, r²=0.11, p=0.20; LCI: r=-0.22, r²=0.05, p=0.40) or exacerbations in the past 6 (VDP: r=0.31, r²=0.02, p=0.21; LCI: r=0.08, r²=0.0001, p=0.77) and 12-months (VDP: r=0.03, r²=0.003, p=0.92; LCI: r=-0.21, r²=0.06, p=0.41).
Figure 5-3 Pre- and post-bronchodilator 3He ventilation MRI.
S11: 40 year-old female, ACQ=2.3, ΔLCI=-0.8, ΔVDP=-11%; S03: 61 year-old male, ACQ=2.1, ΔLCI=-1.4, ΔVDP=-13%; S15: 42 year-old male, ACQ=1.4, ΔLCI=0.6, ΔVDP=-4%; S02: 67 year-old male, ACQ=NA, ΔLCI=-3.8, ΔVDP=-5%; S13: 56 year-old male, ACQ=3.1, ΔLCI=-2.1, ΔVDP=-5%; S05: 38 year-old female, ACQ=1.9, ΔLCI=-2.2, ΔVDP=-1%.
Figure 5-4 Relationship for ventilation heterogeneity and asthma control.

A) VDP was significantly correlated with LCI pre- (r=0.86, r²=0.74, p<0.0001, y=3.1x-20.0) and post-bronchodilator (r=0.93, r²=0.86, p<0.0001).

B) The change in VDP and LCI post-bronchodilator was not correlated (r=0.44, r²=0.01, p=0.08).

C) VDP was significantly correlated with ACQ (r=0.62, r²=0.38, p=0.01).

D) There was a trend for an LCI–ACQ correlation (r=0.49, r²=0.24, p=0.052).

Dotted lines=95% confidence intervals; ACQ=asthma control questionnaire; LCI=lung clearance index; VDP=ventilation defect percent.

5.4 Discussion

In an endeavour to answer the question: Are MRI ventilation defects related to asthma control?, we evaluated MRI and LCI measurements in 18 severe asthmatics. We observed:

1) abnormal VDP and LCI were strongly correlated but there were different responses to salbutamol, 2) there was significantly worse VDP but not LCI in asthmatics with an ACQ score >2 and AQLQ score <5, which was supported by a significant VDP-ACQ correlation,
and, 3) there was a trend towards greater VDP, but not LCI, in asthmatics with ≥1 exacerbation in the past 6-months.

To our knowledge, this is the first direct evaluation of MRI and LCI ventilation heterogeneity and their relationship with asthma control. Similar to previous imaging17,26 and multiple-breath washout studies27 we observed abnormally heterogeneous ventilation that improved post-bronchodilator. The strong correlation for LCI and VDP was not surprising. The fact that there was no relationship for the post-bronchodilator change in VDP and LCI was not expected, but may be explained by a number of mechanistic differences in the measurements themselves.

The temporal resolution of both approaches relative to the time constants for lung segment filling and emptying are important to consider. For example, inert gas washout measurements are made over a time-course of many minutes of normal tidal breathing and based on the time needed to exchange N\textsubscript{2} with O\textsubscript{2} in lung regions accessible to inhaled gas. In contrast, MRI ventilation defects are typically measured during a single 8-10s inhalation breath-hold; hence, inhaled-gas MRI provides a rapid visual snapshot of where the inhaled gas goes when inhaled from FRC. In the case of airway narrowing or gas trapping that are both common in severe asthma, long time constants for lung filling and emptying are expected and this may explain some of the differences for VDP and LCI observed here.

In addition to temporal resolution differences, there may be differences in the apparent spatial resolution of the MBNW and MRI methods used. In principle, LCI measurements may be influenced by any or all of the conducting and acinar lung zones.27 For ventilation MRI, there is somewhat coarse spatial resolution (3x3x15mm) and this may result in an underestimation of very small ventilation defects. Supporting this notion, subjects S07 and S14 reported relatively well-controlled disease (ACQ=1.4 and 1.0) but abnormal LCI and relatively homogeneous MRI ventilation. Another explanation, previously proposed,27 suggests that even small ventilation defects may increase LCI well beyond the upper-limit of normal, resulting in an overestimation of disease severity. Supporting this view, subject 07 had an abnormal LCI (9.7) and only a single small hypo-ventilated region (VDP=2%). Importantly, this 55 yr old female was prescribed oral prednisone (7.5mg/day) and ICS (Budesonide > 1000µg), and was relatively well-controlled (ACQ=1.4). We also observed
post-bronchodilator imaging improvements in patients in whom LCI did not change, such as in subject S04. This 60 year old female reported very poor control (ACQ=4.3) and highly heterogeneous ventilation (VDP=35%; LCI=14.0) despite high-dose OCS maintenance therapy (prednisone 50mg/day) and ICS (Fluticasone propionate dose>1000µg). Similar VDP responses have been reported in COPD patients with little or no bronchodilator reversibility measured using FEV$_1$.28

The most important observation stemming from this study was the finding of significantly worse VDP in asthmatics with ACQ>2 and AQLQ<5 and a trend toward worse VDP in asthmatics with more frequent exacerbations. These findings were not observed using LCI measurements, perhaps because of the small sample size and/or because LCI is a less sensitive measure of the underlying pathophysiology responsible for asthma control. This novel imaging result was also supported by a significant relationship for VDP (and a trend for a significant relation for LCI) with ACQ score. It is worth noting that a previous ventilation imaging study using single photon emission computerized tomography (SPECT), reported no relationship for ACQ score and ventilation.29 This discordant result may stem from the inherently low spatial resolution of SPECT or small sample size, or perhaps because the asthmatics in the previous study were well-controlled. Previous seminal studies point to the clinical importance of airflow obstruction,30 airway inflammation,31 respiratory system reactance32 and inert-gas washout ventilation heterogeneity measurements of asthma.2,3 Yet, some of these measurements underestimate asthma pathophysiology because of their relative insensitivity to the peripheral airway abnormalities directly responsible for asthma symptoms and control. In view of the limitations of conventional clinical asthma measurements, we think our results strongly support the use of pulmonary MRI in clinical research and in the management of severe asthmatics in whom control is difficult to achieve.

We recognize a number of study limitations including the small number of study participants. However, pulmonary imaging measurements are quite sensitive and therefore significant differences may be detected using small sample sizes. Nonetheless, caution should be exercised in generalizing our results to a general asthma population. We also acknowledge that asthma patients were recruited from two major tertiary care centres, so FeNO and sputum inflammometry were not available for the majority of patients. If these
were available, we could try to tease out the relative contribution of luminal inflammation to ventilation heterogeneity and asthma control. Furthermore, we did not (for logistical reasons) evaluate a comparator group of well-controlled asthmatics or asthmatics with more moderate disease. Because of this, we could not ascertain the relative contribution of asthma severity to ventilation heterogeneity in this study, but this relationship was previously explored in well-controlled patients with mild to moderate asthma. It is noteworthy that there was no difference in ventilation heterogeneity for participants prescribed oral prednisone versus those who were not prednisone-dependent. Postural effects should also be considered when comparing MRI and MBNW measurements of ventilation heterogeneity because imaging was performed supine, whereas MBNW was performed upright. In one previous study, gas trapping was increased in supine asthmatic children but this was not the case for MBNW ventilation heterogeneity measurements. Regardless, to mitigate and minimize postural effects including atelectasis, imaging was completed within 5 minutes, limiting the time that patients remained supine, which limits atelectasis.

While there is strong evidence that poor asthma control is associated with an increased risk for future severe asthma events and exacerbations, biomarkers that identify the source and regional location of poor control are generally lacking and many are not readily available except in highly specialized care centres, beyond the reach of the vast majority of asthma patients. In this context, we note that MBNW biomarkers are more universally available and previously revealed the efficacy of aerosolized ultrafine steroid particles in a subset of asthma patients with abnormal acinar airways. Moreover, emerging biomarkers of airway inflammation have been proposed and used as therapy targets to significantly decrease asthma exacerbations. The results of our study argue for the continued development and use of novel and conventional ventilation heterogeneity biomarkers and measurements of asthma.

In conclusion, in a small group of poorly-controlled severe asthmatics, MRI ventilation defects were significantly worse in the subgroup of patients with worse asthma control and quality-of-life. Hence, regional ventilation defects may be considered as intermediate endpoints of asthma that can be used to evaluate therapies in relatively small studies that target improved asthma control and quality-of-life.
5.5 References

5.6 Supplementary Material

Table 5-38 Participant listing of demographic and other measurements.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Demographics</th>
<th>Spirometry</th>
<th>Ventilation heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age (yrs)</td>
<td>FEV<sub>1</sub> (L)</td>
<td>Pre/Post (%)</td>
</tr>
<tr>
<td></td>
<td>Sex (M/F)</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>Duration (yrs)</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>ACQ Score</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>AQLQ Scores</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>Dyspnea Scores</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>mMRC Borg</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>Exacerbations (n)*</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>ED visits (n)*</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>Hospitalizations (n)*</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>FEV<sub>1</sub>/FVC Pre/Post (%)</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>LCI Pre/Post</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
<tr>
<td></td>
<td>VDP Pre/Post (%)</td>
<td>Pre/Post</td>
<td>Post</td>
</tr>
</tbody>
</table>

SD=standard deviation; M=Male; F=Female; BMI=body mass index; ACQ=asthma control questionnaire; AQLQ=asthma quality-of-life questionnaire; Tota=Total; Acti=Activity; mMRC=modified Medical Research Council; ED=emergency department; FEV₁=forced expiratory volume in 1 second; BD=bronchodilator; FVC=forced vital capacity; LCI=lung clearance index; VDP=ventilation defect percent. *in previous 6 months/in previous year.
Table 5-4S Participant listing of asthma medications.

<table>
<thead>
<tr>
<th>Subject</th>
<th>SABA</th>
<th>LABA</th>
<th>LAAC</th>
<th>ICS</th>
<th>OCS</th>
<th>LTRA</th>
<th>Anti-IgE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generic</td>
<td>Dose(µg/d)</td>
<td>Generic</td>
<td>Dose(µg/d)</td>
<td>Generic</td>
<td>Dose(µg/d)</td>
<td>Generic</td>
</tr>
<tr>
<td>001</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>002</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>003</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>Tiotropium</td>
<td>18</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>004</td>
<td>Salbutamol</td>
<td>Salmeterol</td>
<td>100</td>
<td>Tiotropium</td>
<td>18</td>
<td>Fluticasone</td>
<td>2500</td>
</tr>
<tr>
<td>005</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>36</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>1200</td>
</tr>
<tr>
<td>006</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>20</td>
<td>Tiotropium</td>
<td>18</td>
<td>Mometasone furoate/Fluticasone</td>
<td>800/100</td>
</tr>
<tr>
<td>007</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>Tiotropium</td>
<td>18</td>
<td>Budesonide</td>
<td>1600</td>
</tr>
<tr>
<td>008</td>
<td>Salbutamol</td>
<td>Salmeterol</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>Fluticasone</td>
<td>1000</td>
</tr>
<tr>
<td>009</td>
<td>Terbutaline</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>010</td>
<td>Salbutamol</td>
<td>Salmeterol</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>Fluticasone</td>
<td>1500</td>
</tr>
<tr>
<td>011</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide/Ciclesonide</td>
<td>800/800</td>
</tr>
<tr>
<td>012</td>
<td>Salbutamol</td>
<td>Salmeterol</td>
<td>100</td>
<td>Tiotropium</td>
<td>18</td>
<td>Fluticasone/Ciclesonide</td>
<td>1000/400</td>
</tr>
<tr>
<td>013</td>
<td>Salbutamol</td>
<td>Salmeterol</td>
<td>100</td>
<td>Tiotropium</td>
<td>18</td>
<td>Fluticasone</td>
<td>1000</td>
</tr>
<tr>
<td>014</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>015</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>1200</td>
</tr>
<tr>
<td>016</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide/Ciclesonide</td>
<td>800/800</td>
</tr>
<tr>
<td>017</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>Budesonide</td>
<td>800</td>
</tr>
<tr>
<td>018</td>
<td>Salbutamol</td>
<td>Formoterol</td>
<td>20</td>
<td>Aclidinium bromide</td>
<td>800</td>
<td>Mometasone furoate/Ciclesonide</td>
<td>800/800</td>
</tr>
</tbody>
</table>

SABA=Short-acting beta-agonist; LABA=Long-acting beta-agonist; LAAC=Long-acting anticholinergics; ICS=Inhaled Corticosteroids; OCS=Oral corticosteroids; LTRA=Leukotriene Receptor Antagonists; Anti-IgE=Anti-immunoglobulin E.
CHAPTER 6

6 Conclusions and Future Directions

The final chapter of this thesis revisits our rationale and research objectives and provides a summary of the important findings and conclusions of Chapters 2-5. Subsequently, study specific limitations, general limitations and potential solutions are presented. Finally, a roadmap for future studies in asthma motivated by the work presented in this thesis will be outlined.

6.1 Overview of Rationale and Research Questions

The forced expiratory volume in one second (FEV$_1$) currently plays an important role in the diagnosis and management of asthma; and it is also universally used as a primary endpoint of lung function in the majority of asthma clinical trials.1,2 However, FEV$_1$ is a global measurement made at the mouth that cannot be used to ascertain regional lung function and it is relatively insensitive to subtle changes and peripheral airway pathology in asthma.3 For decades, the concept of regionally heterogeneous airway abnormalities in asthma has been acknowledged. This regional heterogeneity was first noted in cadavers using post mortem ex $vivo$ gross sections and histology.4 Shortly after, single-breath and multiple-breath washout studies in living patients were also indicative of ventilation heterogeneity in asthma, but due to the limitations of this technique, the regional site of functional abnormalities could not be ascertained.5 Accordingly, beyond specialized academic centres, it has been difficult to investigate asthmatics based on the suggested regional nature of their underlying pathology. There has therefore been an urgent need for non-invasive and quantitative imaging methods to regionally evaluate asthma.

In response to this demand, numerous imaging methods have been developed and are currently available to non-invasively evaluate asthma regionally,6 however, they are not all well-suited for serial and longitudinal investigations. While CT is widely available and provides high spatial and temporal resolution images of lung structure7,8 and function,9 it is burdened by radiation exposure, a particular concern when evaluating asthmatic children and young adults. Similarly, nuclear medicine methods are burdened by ionizing radiation exposure and are further limited by relatively poor spatial resolution.$^{10-12}$
In contrast, functional MRI using hyperpolarized 3He and 129Xe is not limited by radiation exposure. The recent development of this approach has demonstrated promise for functional imaging of asthma13 as it provides an opportunity to visualize, with high spatial and temporal resolution, those areas of the lung that participate in gas distribution and those that do not. In healthy young adults, inhalation of hyperpolarized gas results in homogeneous signal suggesting that all areas of the lung are participating equally in ventilation.14-17 In contrast, characteristic ventilation defects are observed in asthma, corresponding to areas of the lung that are not ventilated within the time-course of a breath-hold scan.13,18-27 Previous work using this technique provides a strong foundation for its use in asthma research and patient care; however, a major drawback is that the clinical and physiological meaning of MRI-derived ventilation defects is poorly understood. Furthermore, the heterogeneity of asthma is under appreciated by the medical community. Regardless of the gas used for imaging, a clear understanding of ventilation defects is absolutely necessary prior to the clinical translation of hyperpolarized gas imaging methods. Therefore, in spite of the well-demonstrated potential for pulmonary imaging to provide a better understanding of the regional aspects of asthma, it currently takes on an insignificant role in asthma clinical care and treatment evaluation and guidance.

Accordingly, the overarching objective of this thesis was to develop and apply novel pulmonary imaging methods to better understand asthma and to provide a foundation for functional imaging to guide clinical decisions and therapy in patients with asthma. The specific research questions investigated here included: 1) Do the different properties of 129Xe and 3He gas result in significant differences in 129Xe compared to 3He gas distribution before and after bronchodilator administration in well-controlled asthmatics? (CHAPTER 2); 2) Can the inherent temporal and spatial pulmonary function information provided by hyperpolarized 3He MRI be used to visualize and quantify temporally persistent and intermittent ventilation defects as potential targets for therapy? (CHAPTER 3); 3) Are asthmatics with 3He MRI ventilation defects different from asthmatics without ventilation defects with respect their airway structure and standard clinical measurements of disease? (CHAPTER 4) and, 4) What is the relationship of asthma control with ventilation defects quantified and regionally visualized using 3He MRI? (CHAPTER 5).
6.2 Summary and Conclusions

In Chapter 2, we quantitatively compared hyperpolarized 3He and 129Xe MRI in a small group of seven asthmatics before and after salbutamol inhalation. Prior to salbutamol inhalation, 129Xe VDP (8±5%) was significantly greater than 3He VDP (6±5%, p=0.003). Post-salbutamol, there was a significant improvement in both 129Xe (5±4%, p<0.0001) and 3He (4±3%, p=0.001) VDP, but the improvement in 129Xe VDP was significantly greater (p=0.008). For a single asthmatic, a sub-segmental 129Xe MRI ventilation defect that was visible only prior to salbutamol inhalation but not visible using 3He MRI was spatially related to a remodeled airway (WA%=78%, LA=2.9 mm²). These results indicate that hyperpolarized 129Xe MRI may help reveal ventilation abnormalities prior to bronchodilation that are not observed using hyperpolarized 3He MRI.

In Chapter 3, we exploited the temporal and spatial information inherent to 3He MRI to generate pulmonary ventilation temporal-spatial maps that could be used to measure, optimize and guide asthma therapy. In this proof-of-concept study, seven asthmatics underwent spirometry and 3He MRI on three occasions, each 5±2 days apart. A registration and segmentation pipeline was developed to generate temporal-spatial pulmonary function maps. This enabled the regional mapping of temporally persistent and intermittent ventilation defects that were normalized to the 1H MRI thoracic cavity volume to generate VDP_P and VDP_I. Persistent and intermittent ventilation defects were identified and were strongly correlated with FEV$_1$/FVC (VDP_P: r=-0.87, p=0.01; VDP_I: r=-0.96, p=0.0008). These findings suggest that temporal-spatial pulmonary maps generated from 3He MRI can be used to quantify temporally persistent and intermittent ventilation defects as asthma intermediate endpoints and targets for therapy.

In Chapter 4, we evaluated well-established clinical as well as 3He MRI and x-ray CT airway measurements in eight healthy and 26 asthmatic subjects to better understand the determinants of 3He MRI ventilation defects in asthma. Prior to broncho-provocation, 17 asthmatics (17/26=65%) had visually obvious evidence of ventilation defects and nine asthmatics had no ventilation defects (9/26=35%). Asthmatics with defects were older (p=0.01) with worse FEV$_1$/FVC (p=0.0003), airways resistance (p=0.004), FeNO (p=0.03), lower PC$_{20}$ (p=0.008), and wall thickness percent (p=0.02), compared to asthmatics without
defects. We also identified a moderate correlation for wall area percent with VDP (r=0.43, p=0.04). These results indicate that asthmatics with 3He MRI ventilation defects are older with significantly worse airway hyperresponsiveness, inflammation and airway remodeling in comparison to asthmatics without defects; and that hyperpolarized 3He ventilation abnormalities are spatially and quantitatively related to abnormally remodeled airways.

In Chapter 5, we evaluated MBNW and MRI measurements of ventilation heterogeneity and their relationship with asthma control in 18 severe asthmatics. Mean VDP was 12±11% and LCI was 10.5±3.0 with both VDP (p=0.008) and LCI (p=0.02) improving post-bronchodilator. While VDP was strongly correlated with LCI (r=0.86, p<0.0001), the post-bronchodilator change in VDP and LCI was not correlated (p=0.08). There was significantly worse VDP but not LCI in asthmatics with ACQ >2 (p=0.04) and AQLQ<5 (p=0.04). Notably, VDP (but not LCI, p=0.052) was correlated with ACQ score (r=0.62, p=0.01). MRI ventilation defects were significantly worse in severe asthma patients with poor asthma control and poor quality-of-life. This is important, because as an intermediate endpoint, ventilation defects may be used to target therapy to improve clinically-important asthma outcomes.

In summary, we have provided: 1) evidence that hyperpolarized 129Xe MRI may be more sensitive than 3He MRI to ventilation abnormalities; 2) a new method to quantify temporally persistent and intermittent ventilation defects that may be used as intermediate endpoints and targets for therapy; 3) evidence that asthmatics with 3He ventilation defects are older with significantly worse airway hyperresponsiveness, inflammation and airway remodeling in comparison to asthmatics without defects; and, 4) evidence that ventilation defects are significantly worse in severe asthmatics with poor asthma control and poor quality-of-life.

6.3 Limitations

In this section, some of the most significant limitations of the studies presented in Chapters 2-5 are discussed. It should be noted that a description of the study specific limitations are also presented within the discussion section of the respective Chapters. In addition to
Chapter specific limitations, this section includes a description of general limitations common to Chapters 2-5.

6.3.1 Study Specific Limitations

Hyperpolarized 3He and 129Xe MRI: Differences in Asthma before Bronchodilation (Chapter 2)

In the study presented in Chapter 2, thoracic CTs were not contemporaneously acquired and this limited our ability to investigate the relationship between lung structure and function. However, for two of the seven asthmatics evaluated, partial thoracic CTs were acquired approximately one year before 3He and 129Xe MRI. In a single asthmatic, we observed a large wedge shaped ventilation defect at baseline using 129Xe MRI but not using 3He MRI; the defect was spatially related to a partially obstructed airway. This serendipitous finding led us to hypothesize that 3He gas may penetrate lung regions through partially obstructed airways that 129Xe gas cannot access during a short breath-hold scan. Unfortunately, without whole lung thoracic CTs for all seven subjects we were unable to further investigate, and statistically evaluate, the relationship between abnormal airway pathophysiology and the differences between 3He and 129Xe gas distribution.

Another limitation was that ventilation abnormalities, quantified as VDP, for the small group of mild-to-moderate asthmatics with well-controlled disease evaluated in this study were not large. The mean pre-salbutamol VDP was low as compared to a previous study of asthma, but importantly was higher than previously reported values observed for healthy volunteers of a similar age. Accordingly, the differences in 3He and 129Xe ventilation defects reported here might be a conservative estimate of the differences that would be observed in a larger group of asthmatics with a range of disease severity. Ideally, a range of mild, moderate and severe asthmatics would have been evaluated to ascertain if the differences observed between the two gases were dependent on disease severity.

Similarly, we were unable to ascertain the clinical relevance of the improvement in both 3He and 129Xe VDP following salbutamol inhalation. This endeavor was not possible as clinically-relevant measurements such as dyspnea or exercise capacity were not collected at the time of study. Importantly, however, the smallest detectable difference (SDD), defined as the smallest difference that can be measured with prospectively determined
confidence not due to measurement error (variability) has been previously calculated for 3He MRI and the mean change in the 3He (0.11L) and 129Xe MRI (0.14L) ventilation defect volume measured in this study was greater than the SDD (0.05L). 28 Although the SDD is not a measure of clinical relevance, this confirms that the changes detected were not due to measurement variability. In future attempts to determine the clinical relevance of the changes detected using 3He and 129Xe MRI, we will evaluate the degree of dyspnea and/or exercise capacity in study participants.

Pulmonary Functional Magnetic Resonance Imaging: Asthma Temporal-Spatial Maps (Chapter 3)

In the longitudinal study presented in Chapter 3, we did not obtain well-established clinical measurements of asthma or x-ray CT, and therefore questions regarding the clinical relevance of our data could not be investigated. Importantly, between visits we observed qualitative regional differences in the distribution of 3He gas within the lung. These temporal differences, termed “intermittent defects” were quantified and visualized using the temporal-spatial pulmonary function maps. Unfortunately, we were unable to ascertain whether these asthmatics experienced symptomatic worsening over the two weeks that could be attributed to their variable ventilation heterogeneity. Furthermore, it would have been important to investigate the differences in CT-derived airway morphology for airways spatially related to intermittent defects, persistent defects and persistently-ventilated lung regions.

The maps generated in this study captured the week-to-week lung function variability in a small group of seven asthmatics. Previous work by de Lange and colleagues have demonstrated that the persistence of ventilation defects in asthma decreases with time.20 Accordingly, it would be very important to evaluate these subjects over a longer period of time to determine whether the variability captured over a short two-week period is representative of the ventilation variability over longer periods of time, in the absence of an exacerbation. Before these temporal abnormalities are used as therapy targets or as an intermediate endpoint, this concept will first need to be investigated.

Another limitation of this study is that we currently do not know what “type” of ventilation defect, if any, is the best target for localized airway treatment in asthma. For example, in
addition to the persistent and intermittent ventilation defects identified in this study, dynamic ROI that respond to broncho-provocation (methacholine/exercise) or bronchodilation (salbutamol) could potentially be excellent targets for localized treatment. It is important to note however that this study provided proof-of-concept results; with this segmentation and registration pipeline, the methodology can subsequently be uniquely tailored to probe a wide variety of ventilation defect behaviours over time or in response to treatment. For example, the pipeline has been subsequently tailored to regionally quantify and visualize the temporal behaviour of ventilation defects in cystic fibrosis patients who underwent \(^{3}\text{He} \text{MRI} \) on two occasions over four years.\(^{29}\)

As a technical limitation, the temporal-spatial pulmonary function maps are susceptible to image registration errors that can have an effect on map interpretation. Scan-to-scan variability/differences in lung volume and patient position in the MRI scanner, particularly patient tilting, make registration across visits particularly challenging. Rotations out of plane are particularly cumbersome since our voxels have anisotropic dimensions (3.125 mm x 3.125 mm, slice thickness 15 mm). However, despite this limitation, we were able to achieve sufficient registrations between visits. We do acknowledge, however, that there were a few regions identified along the periphery of the maps with intermittent ventilation that may be attributed purely to mismatches in image registration. However, these occurrences were acknowledged and represent a very small percentage of the overall thoracic cavity volume.

What are Ventilation Defects in Asthma? (Chapter 4)

In the study presented in Chapter 4, we evaluated a relatively broad range of asthmatics who were not enrolled based on disease severity or symptoms. Importantly, however, they were patients from an interdisciplinary (Allergy and Respirology) asthma care centre, were between 18 and 60 years of age and had a physician diagnosis of asthma and a positive methacholine challenge within the past five years. The strength of this study would have been considerably improved if at least severity was documented based on the GINA treatment step score. Furthermore, it would have been advantageous to quantify asthma control using one of the many asthma control questionnaires. Unfortunately, the GINA
step score and asthma control questionnaires were not utilized in the asthma care clinic, nor the research study, and therefore could not be evaluated in this study.

Another limitation of this study was the use of partial thoracic CTs that reduced the number of airways that could be quantified. However, we strongly believe that whenever possible, lower dose partial CTs should be acquired and be used to quantify airway morphology in young subjects, in whom the benefit-risk ratio does not support more extensive CT imaging. In spite of the partial and lower dose CT volume, we were able to generate quantitative information and showed there was a significant relationship between CT airway measurements and 3He MRI overall, and for specific defects and airways in certain cases.

What do Ventilation Defects Reveal about Asthma Control? (Chapter 5)

In the study presented in Chapter 5, we evaluated severe asthmatics who were poorly controlled but did not include a control group of patients with less severe asthma but with the same degree of poor asthma control. Accordingly, we could not ascertain the relative contribution of asthma severity and asthma control to ventilation defects. In other words, we could not address the important question, "Is the same ventilation heterogeneity observed in milder asthmatics who are poorly controlled?" Future studies are necessary to investigate this important question.

Another limitation of this study was that MRI and MBNW measurements of ventilation heterogeneity were obtained in different positions, introducing the potential for postural effects. Imaging was performed supine, whereas MBNW was performed upright and this may have influenced the strength of the demonstrated relationships between MRI and MBNW measurements of ventilation heterogeneity. From previous experience, we have observed that MBNW measurements of ventilation heterogeneity are significantly worse when performed supine as compared to when performed upright. Regardless, we took necessary steps to mitigate and minimize potential postural effects in this study. Specifically, imaging was completed within five minutes to limit the time that the patients had to remain supine, which has been shown to limit atelectasis.30
6.3.2 General Limitations

One limitation to the studies presented in Chapters 2-5 was the small number of subjects evaluated, therefore, caution should be exercised in generalizing these results to the broader asthma population. Importantly, however, hyperpolarized gas MRI measurements are quite sensitive and therefore, as demonstrated in these studies and many others, significant differences may be detected using small sample sizes. Moreover, at the time of study initiation for the majority of these investigations, there was little prior MRI data in asthma available to help generate power calculations and so these were not performed. Regardless, future studies should aim to evaluate larger groups of asthmatics to confirm the results observed in these studies.

Pertinent to both Chapters 2 and 4, we acknowledge that the quantitative measurement of ventilation heterogeneity employed here, the COV, is likely affected by partial volumes inherent to both 3He and 129Xe MR images. Errors induced by partial volumes have the potential to influence the accuracy of the COV estimations reported in Chapters 2 and 4. Our objective was not to develop a novel quantitative metric to evaluate ventilation heterogeneity; instead, a previously published method developed by Tzeng and colleagues was adopted. Edge and/or partial volume effects can be visualized in the cluster and COV maps of ventilation (Figure 2-1). With respect to Chapter 2, in accordance with Tzeng and colleagues, we made the assumption that the elevated COV values observed toward the edges cancel out when images are compared, as this effect is present both pre- and post-salbutamol. Therefore, although we acknowledge that edge and/or partial volume effects likely influence our COV maps, this does not influence or alter our overall conclusions which interrogated relative change.

In Chapters 2-5 our attention was directed towards ventilation defects; however, it is well-understood that ventilation visualized using hyperpolarized gas MRI is not binary. The studies presented in this thesis have overlooked the potential clinical significance of lung regions in asthma that have signal hyper-intensity. Many of the asthmatics evaluated in these studies have had a very heterogeneous MRI gas distribution with regions of hyper-intense signal intensity in addition to ventilation defects. We are interested in these regions of hyper-intense signal intensity and the physiological mechanisms that may cause them.
These regions may be due to hyperinflation and therefore may indicate underlying structural abnormalities within the asthmatic lung. The same semi-automated segmentation image analysis software employed in these studies to quantify VDP can be used to quantify the gradation of signal intensity observed in hyperpolarized gas MR images. This analysis method segments static ventilation images using a k-means clustering algorithm that classifies voxel signal intensity values into five clusters and is therefore able to quantify hyper-intense signal regions. In future studies, it will be important to investigate these regions in addition to ventilation defects.

Another important limitation to this work in general is the limited 3He access, and the high cost of 3He gas that has thus far restricted translation of this imaging method beyond specialized MR physics centres. As previously discussed, this shortage is forcing the noble gas MRI community to transition to 129Xe gas, a less expensive and more readily available contrast agent. While both 3He and 129Xe MRI were acquired within a five-minute period for the study presented in Chapter 2, the remaining study designs (Chapters 3-5) did not include 129Xe MRI. In Chapter 2, significantly greater 129Xe as compared to 3He ventilation defects were observed in asthma, suggesting that 129Xe gas may be more sensitive to airway abnormalities than 3He gas. Although this increased sensitivity is advantageous moving forward, the observed difference suggests that our findings presented in Chapters 3-5 using 3He gas may not be a direct reflection of what would be observed using 129Xe gas. For example, in Chapter 4 we observed that 65% of well-controlled asthmatics had 3He ventilation defects. If this study were to be repeated using 129Xe MRI, one might hypothesize that ventilation defects would be visually obvious in nearly 100% of the same asthmatics. Similarly, in Chapter 3, one might hypothesize that 129Xe MRI temporal-spatial pulmonary function maps of the same asthmatics would have increased intermittent and persistent ventilation defects. Regardless of this speculation, future 129Xe MRI studies are required to validate the results presented here using 3He MRI. Moreover, future research and potential clinical applications of noble gas MRI will most definitely utilize 129Xe gas. In accordance with this trajectory, relevant studies that are currently underway at the Robarts Research Institute are now using 129Xe MRI.
6.4 Future Directions

6.4.1 Functional MRI of Ventilation in Asthma: Sensitivity, Specificity and Comparison with FEV$_1$

Our results presented in Chapters 4 and 5 indicate that asthmatics with worse MRI ventilation, but not FEV$_1$, have worse asthma control, greater airways resistance and greater airway hyperresponsiveness. These results strongly support the notion that MRI ventilation defects may be more sensitive than FEV$_1$ to structural and functional changes in the asthmatic lung. Moreover, it is well-understood that FEV$_1$ is relatively insensitive to structural and functional changes in the small airways <2mm.31 Taken together, the work presented in this thesis and previous work of others using hyperpolarized 3He and 129Xe MRI provides a strong foundation for the use of MRI in asthma research and clinical care. To accelerate clinical translation and regulatory approval of hyperpolarized gas MRI, studies must be performed to validate MRI-derived measurements of ventilation against clinical gold-standards, such as FEV$_1$.

We have performed preliminary analysis in a small proof-of-concept study in which spirometry, hyperpolarized 3He MRI and a methacholine challenge were performed in a single visit. We wanted to evaluate and compare the performance of FEV$_1$ and 3He MRI VDP to discriminate:

1. *Patients with a clinical diagnosis of asthma from healthy volunteers*

2. *Patients with and without bronchial hyperresponsiveness*

We speculated that MRI ventilation defects may be a more accurate predictor of asthma and bronchial hyperresponsiveness than FEV$_1$. Preliminary data was obtained for 34 subjects (Asthma: n=25, Healthy: n=9) who performed spirometry, hyperpolarized 3He MRI, and a methacholine challenge during a single study visit. Receiver-operating characteristic (ROC) curves were used to characterize the performance of FEV$_1$ and MRI VDP as predictors of asthma and bronchial hyperresponsiveness (Figure 6-1). Optimum diagnostic cut-offs were determined according to the maximum Youden’s index value (J=sensitivity+specificity-1) and the corresponding sensitivity, specificity, positive and negative likelihood ratios were calculated.
As shown in Figure 6-1, similar to FEV₁, MRI measurements of ventilation discriminated: 1) patients with a clinical diagnosis of asthma from healthy volunteers (AUC_{FEV₁}=0.82, p=0.006; AUC_{MRI VDP}=0.79, p=0.01); and 2) patients with and without bronchial hyperresponsiveness (AUC_{FEV₁}=0.83, p=0.0009; AUC_{MRI VDP}=0.88, p=0.0002). Importantly, estimated likelihood ratios suggested that the most accurate diagnosis of asthma and bronchial hyperresponsiveness was established using ³He MRI, not FEV₁. These preliminary results validated functional MRI against FEV₁, a clinically-accepted measurement of asthma, and this is a necessary step towards clinical translation and regulatory approval. As demonstrated in Chapter 2 of this thesis, ¹²⁹Xe MRI is more sensitive to ventilation abnormalities in asthma than ³He MRI. Accordingly, next steps require a similar but larger scale validation study of ¹²⁹Xe MRI in asthma.

![Figure 6-1](image.png)

Figure 6-1 Performance of FEV₁ and ³He MRI VDP as predictors of asthma (left plot) and bronchial hyperresponsiveness (right plot). Receiver-operating characteristic curves show the sensitivity, specificity and area under the curve for FEV₁ (solid black line) and ³He MRI VDP (broken blue line).
6.4.2 Efficacy of Functional MRI Guided Bronchial Thermoplasty

We now have an understanding of the underlying structural determinants of regional ventilation defects observed using MRI in asthma. The proof-of-concept results presented in Chapter 4 strongly support the notion that MRI ventilation defects are directly related to abnormally remodeled airways that are regionally heterogeneous in the asthmatic lung. Therefore, we speculate that abnormally remodeled airways, proximal to MRI ventilation defects, may be excellent targets for localized asthma treatment. In a similar fashion, normally functioning airways, proximal to well or normally-ventilated lung regions could be avoided during localized treatment. Current asthma treatments aim to treat all accessible airways.

Bronchial thermoplasty (BT), an established localized asthma treatment, aims to permanently reduce smooth muscle mass in the lobar and segmental bronchi with the goal of improving symptoms and asthma control.32 To date, the effectiveness and safety of BT has been evaluated in four clinical trials,33-36 and this work has demonstrated persistent improvement in asthma control, quality-of-life and fewer exacerbations following treatment in some patients. Despite its demonstrated safety and efficacy, BT is a time-consuming procedure. The current conventional whole-lung treatment approach targets all accessible airways throughout the lungs during three bronchoscopy sessions, each separated by approximately three weeks. Accordingly, the treatment assumes that all airways in the asthmatic lung are homogeneously remodeled, which may result in treatment of normally functioning airways. If a personalized, image-guided treatment approach were to be adopted that targeted only abnormally functioning airways, treatment time, cost and adverse effects might be reduced while patient outcomes may be improved.

In a study currently underway, we aim to use pulmonary functional MRI to guide BT treatment, evaluate BT treatment response and to generate new knowledge required to better understand airway-targeted therapy in severe asthma. All participants will have severe asthma and will undergo up to three pre-therapy MRIs to evaluate ventilation reproducibility and post-prednisone effects, and there will also be two longitudinal post-therapy MRIs to evaluate treatment effect. All participants will be randomized to MRI-directed or conventional BT and we will measure airway function and treatment response.
using conventional and imaging tests as well as questionnaires that capture how well asthma is controlled and how patients are feeling.

For those participants randomized to the MRI-directed treatment arm, patient-specific BT treatment plans will be developed to identify specific airways to be targeted during a single-session BT treatment procedure. Briefly, low-dose thoracic CT will be used to generate a detailed three-dimensional model of the airway tree. Following CT, all subjects will undergo further MR imaging following methacholine challenge or salbutamol inhalation. As shown for a representative subject in Figure 6-2, the post-challenge MRI will be co-registered to the low-dose CT with airway rendering to enable spatial comparisons between ventilation defects and airways. Patient-specific treatment plans will identify target airways, prioritized in order of importance and grouped by lobe to be targeted. Airways demonstrating dynamic or static bronchoconstriction will be targeted based on their spatial proximity to ventilation defects.

![Figure 6-2](image_url)

Figure 6-2 Spatial relationship between 3He MRI ventilation (blue), ventilation defects (green) and airways (yellow) for a representative subject with severe asthma three days prior to BT while on 50 mg of prednisone. 3He MRI registered to the CT of the thorax (in grey-scale) with the airways segmented in yellow to identify airways demonstrating dynamic bronchoconstriction following methacholine challenge to be targeted for treatment based on their spatial proximity to ventilation defects.

This study will address the following research questions:

1) *Do regional ventilation defects resolve following BT?*
2) What is the relationship between ventilation defects and patient outcomes following BT?

3) Can MRI-guided BT treatment to specific abnormal airways result in improved asthma control and quality-of-life?

4) Are patient outcomes related to image-guided BT significantly different than those achieved using the conventional treatment approach?

5) Can MRI identify characteristic ventilation defects that predict BT response?

One functional MRI study, evaluating seven severe asthmatics, has provided promising preliminary evidence supporting the notion that MRI ventilation defects decrease after BT treatment. Our study will be the first to evaluate the effect of a localized airway intervention on regional ventilation visualized using MRI in asthma. The use of functional MRI in this context will provide a better understanding of BT treatment, providing a foundation of knowledge for studies aimed at assessing the ability of imaging methods to guide localized treatment to only abnormally-functioning airways. We hypothesize that treatment of only specific abnormal airways, proximal to MRI ventilation defects, will result in improved MRI gas distribution, airway hyperresponsiveness, asthma control and quality-of-life that is not significantly different from patients in the conventional therapy group. We also hypothesize that improved ventilation will be related to improvements in well-established clinical measurements of asthma.

6.4.3 Imaging Exercise-induced and Methacholine-induced Bronchoconstriction using Hyperpolarized Gas MRI: Same Ventilation Defects or Not?

Airway hyperresponsiveness is a universal defining feature of asthma. It is currently measured clinically to aid in the diagnosis and management of asthma, and is often employed in clinical trials to evaluate the effectiveness of novel asthma therapies. Airway hyperresponsiveness can be assessed using both direct and indirect stimuli which induce bronchoconstriction via different mechanistic pathways; however, these differences are poorly understood. A better understanding of airway hyper-responsiveness and the
mechanisms that contribute to this process in asthma is required to achieve better patient outcomes.

He MRI has been used to visualize regionally heterogeneous ventilation in response to both exercise-23 and methacholine-induced22,23 bronchoconstriction, suggesting that not all airways respond to provocation equally. However, the spatial relationship between exercise- and methacholine-induced ventilation defects has not been investigated in the same asthmatics. In other words, it is currently unknown if the same airways in asthma respond in a similar manner to both indirect and direct stimuli. It has been hypothesized that clinical assessments of airway hyperresponsiveness induced by indirect methods correlate better with the clinical features of asthma.40 This hypothesis has not been tested using MRI, therefore it is unknown whether indirect or direct stimuli induced ventilation defects correlate more strongly with the clinical features of asthma. If non-invasive imaging measurements are going to be used as intermediate endpoints in clinical trials of new therapies, we think future MRI studies should investigate these concepts.

By acquiring pulmonary CT and well-established clinical measurements of asthma in addition to performing MRI following both exercise and methacholine challenge in the same asthmatics, the following research questions can be addressed:

1) Are MRI ventilation defects observed in the same focal lung regions following exercise- and methacholine-induced bronchoconstriction in asthma?

2) Are exercise- or methacholine-induced MRI ventilation defects more strongly correlated with well-established clinical measurements of asthma?

3) Are CT-derived measurements of airway structure different for those airways proximal to ventilation defects observed following methacholine and exercise induced bronchoconstriction?

Comparative imaging studies have the potential to provide a better understanding of the underlying mechanisms involved in airway hyperresponsiveness, and in turn provide a better understanding of potential treatment targets in asthma. So far at our centre, four asthmatics have undergone MR imaging prior to and following both exercise- and methacholine-induced bronchoconstriction. Imaging results from one of the four asthmatics is shown in Figure 6-3. Preliminary data suggests that exercise and
methacholine-induced bronchoconstriction will induce a similar decrease in well-established clinical measurements of asthma; however, visually obvious regional differences in gas distribution will be observed using MRI that cannot be detected by spirometry.

![Baseline, Post-Methacholine, Post-Exercise](image)

Figure 6-3 Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic subject at baseline and following both methacholine and exercise-induced bronchoconstriction. 3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). Ventilation abnormalities are present at baseline that become worse following methacholine- and exercise-induced bronchoconstriction.

6.4.4 Functional MRI of Asthma: Alternative Approaches

It is well-established that direct visualization of the lung airspaces using functional MRI is important and that it provides numerous advantages over clinically available tools. Motivating the work presented in Chapter 2, 3He MRI is not well-suited to be a widely available clinical tool due to the limited availability of 3He gas.\(^{41}\) This roadblock has initiated further development of 129Xe MRI and oxygen enhanced MRI,\(^ {42}\) as well as motivated the need for alternative approaches to visualize lung function using non-polarized inhaled gases and 1H MRI. These emerging methods come with tradeoffs regarding cost, access and importantly, image quality.

Fluorine-19 (19F) MRI of the lungs uses inert fluorinated gases (e.g. tetrafluoromethane (CF$_4$), sulfur hexafluoride (SF$_6$), perfluoropropane (C$_3$F$_8$ or PFP)) and may offer comparable regional lung function information to hyperpolarized gas MRI, but at a much lower cost.\(^ {43-46}\) This approach to functional lung imaging has the advantage of using gases that are inexpensive, abundant and do not need to be polarized prior to their use. Halaweish
and colleagues have been the first to apply this approach in patients with asthma, demonstrating its sensitivity to ventilation defects in two subjects.44

Free-breathing pulmonary 1H MRI is another approach currently being developed with the ability to evaluate lung function.47-50 Fourier decomposition of the 1H signal intensity acquired during tidal breathing was introduced by Bauman and colleagues to generate ventilation and perfusion images.47 This unique approach does not require a contrast agent and can be implemented on the majority of clinical scanners without the requirement for specialized multi-nuclear hardware; however, it is limited by cumbersome post-processing. Unlike 19F MRI, this approach has not yet been evaluated in patients with asthma.

With these promising alternative functional MRI approaches in the pipeline, future studies are required to investigate their utility in the asthmatic population. Specifically, initial investigations should be focused towards direct qualitative and quantitative comparisons of ventilation abnormalities derived from these alternative approaches with those identified using hyperpolarized gas MRI. Such proof-of-concept demonstrations are currently underway in COPD51 and should be emulated in asthma. One major advantage of these alternative functional MRI approaches is their direct translational ability as they can be implemented in most medical imaging centres with access to a clinical MRI scanner. This advantage is fundamentally important, making these alternative functional MRI approaches more likely to find a place in the clinical setting.

6.5 Significance and Impact

Even though it is well-understood that FEV$_1$ does not reflect the regional nature of asthma, the assessment of novel therapies and disease management continues to depend on this global metric. Using hyperpolarized gas MRI, heterogeneous ventilation defects are observed and the regional, patient-specific nature of asthma can be safely and non-invasively visualized – providing information that is not available using alternative clinical methods. This thesis significantly advances our understanding of the structural determinants of MRI ventilation defects identified in asthma and what it means clinically to be an asthmatic with ventilation defects. The studies presented in this thesis provide strong evidence that ventilation defects in asthma are not random, but are heterogeneously distributed in the lungs, spatially related to airway abnormalities and are related to worse
clinical characteristics of asthma including airway hyperresponsiveness, airway inflammation, airflow obstruction and disease control. It is also now well-understood that 129Xe MRI is more sensitive to airway abnormalities in asthma than 3He MRI, which is important for future clinical translation of this imaging method beyond specialized academic centres.

This thesis confirms that regional ventilation defects are a clinically relevant imaging-based biomarker of asthma and provides a foundation of knowledge supporting the need for clinical integration of functional MRI. Armed with this understanding, there is enormous potential for MRI ventilation defects to be used as intermediate endpoints of asthma that can be used to evaluate novel treatments and to better inform treatment decisions. Furthermore, the development of novel asthma treatments may be directed towards focal ventilation defects. Hence, there is the potential for functional MRI to guide validated localized airway treatments, such as bronchial thermoplasty, to abnormal airways that lead to ventilation defects. These advances in our understanding of asthma may very likely impact asthma management and how new treatment will be developed and evaluated. By “seeing” asthma and how it regionally responds to treatment and provocation, and how it changes over time, there is increased potential for more effective treatments, reduced treatment time, and improved patient outcomes.
6.6 References

(1) Celli BR. The importance of spirometry in COPD and asthma: effect on approach to management. *Chest* 2000;117:15S-9S.

(38) Busse WW. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. *Chest* 2010;138:4S-10S.

APPENDIX

APPENDIX A – Permission for Reproduction of Scientific Articles

<table>
<thead>
<tr>
<th>JOHNN WILEY AND SONS LICENSE TERMS AND CONDITIONS</th>
<th>May 04, 2015</th>
</tr>
</thead>
</table>

This Agreement between Sarah Svenningsen ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>3622100120683</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>May 04, 2015</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Journal of Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Hyperpolarized 3He and 129Xe MRI: Differences in asthma before bronchodilatation</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Sarah Svenningsen, Miranda Kirby, Danielle Starr, Del Leary, Andrew Wheatley, Geoffrey M. Makay, David C. McCormack, Grace Parraga</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Apr 15, 2013</td>
</tr>
<tr>
<td>Pages</td>
<td>10</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>Author of this Wiley article</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Full article</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>Evaluation of Regional Pulmonary Structure and Function in Asthma using Hyperpolarized Noble Gas Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Jan 2016</td>
</tr>
<tr>
<td>Expected size (number of pages)</td>
<td>250</td>
</tr>
</tbody>
</table>
| Requestor Location | Sarah Svenningsen
1151 Richmond Street North
London, ON N6A 3B7
Canada
Attn: Sarah Svenningsen |
| Billing Type | Invoice |
| Billing Address | Sarah Svenningsen
1151 Richmond Street North
London, ON N6A 3B7
Canada
Attn: Sarah Svenningsen |
| Total | 0.00 CAD |

Terms and Conditions
This is an Agreement between Sarah Svenningsen ("You") and Elsevier ("Elsevier"). It consists of your order details, the terms and conditions provided by Elsevier ("Elsevier"), and the payment terms and conditions.

<table>
<thead>
<tr>
<th>Order Number</th>
<th>501005990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Date</td>
<td>May 04, 2015</td>
</tr>
<tr>
<td>Licensed content publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Licensed content publication</td>
<td>Academic Radiology</td>
</tr>
<tr>
<td>Licensed content title</td>
<td>Pulmonary Functional Magnetic Resonance Imaging Asthma Temporal–Spatial Maps</td>
</tr>
<tr>
<td>Licensed content author</td>
<td>None</td>
</tr>
<tr>
<td>Licensed content date</td>
<td>November 2014</td>
</tr>
<tr>
<td>Licensed content volume number</td>
<td>21</td>
</tr>
<tr>
<td>Licensed content issue number</td>
<td>11</td>
</tr>
<tr>
<td>Number of pages</td>
<td>9</td>
</tr>
<tr>
<td>Start Page</td>
<td>1402</td>
</tr>
<tr>
<td>End Page</td>
<td>1410</td>
</tr>
<tr>
<td>Type of Use</td>
<td>reuse in a thesis/dissertation</td>
</tr>
<tr>
<td>Intended publisher of new work</td>
<td>other</td>
</tr>
<tr>
<td>Portion</td>
<td>full article</td>
</tr>
<tr>
<td>Format</td>
<td>both print and electronic</td>
</tr>
<tr>
<td>Are you the author of this Elsevier article?</td>
<td>Yes</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Title of your thesis/dissertation</td>
<td>Evaluation of Regional Pulmonary Structure and Function in Asthma using Hyperpolarized Noble Gas Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Jan 2016</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Elsevier VAT number</td>
<td>GB 494 6272 12</td>
</tr>
<tr>
<td>Permissions price</td>
<td>Not Available</td>
</tr>
<tr>
<td>VAT/Local Sales Tax</td>
<td>Not Available</td>
</tr>
<tr>
<td>Total</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
This Agreement between Sarah Svenningsen ("You") and BMJ Publishing Group Ltd. ("BMJ Publishing Group Ltd.") consists of your license details and the terms and conditions provided by BMJ Publishing Group Ltd. and Copyright Clearance Center.

License Number 3674890801814
License date Jul 23, 2015
Licensed Content Publisher BMJ Publishing Group Ltd.
Licensed Content Publication Thorax
Licensed Content Title What are ventilation defects in asthma?
Licensed Content Author Sarah Svenningsen, Miranda Kirby, Danielle Starr, Harvey O Coxson, Nigel A M Paterson, David G McCormack, Grace Parraga
Licensed Content Date Jan 1, 2014
Licensed Content Volume Number
Licensed Content Issue Number 1
Volume number 69
Issue number 1
Type of Use Dissertation/Thesis
Requestor type Author of this article
Format Print and electronic
Portion Figure/table/extract
Number of figure/table extracts 5
Description of figure/table extracts Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Table 1 Table 2
Will you be translating? No
Circulation/distribution 1
Title of your thesis/dissertation Pulmonary Imaging of Asthma to Better understand the Asthmatic Lung and Guide Asthma Therapy
Expected completion date Nov 2015
Estimated size (pages) 250
BMJ VAT number 674738491
Billing Type Invoice
Billing Address Sarah Svenningsen
1151 Richmond Street North
London, ON N6A 5B7
Use of Human Subjects - Ethics Approval Notice

Principal Investigator: Dr. D. McCormack
Review Number: 13109
Review Date: February 20, 2007
Revision Number:
Protocol Title: A 3 Period, Double-Blind, Randomized Crossover Study to Evaluate the Effects of a Single Dose of Montelukast Compared with Placebo on Exercise-Induced Bronchconstriction as Assessed by Hyperpolarized Gas Magnetic Resonance Imaging
Department and Institution: Respirology, London Health Sciences Centre
Ethics Approval Date: March 21, 2007
Expiry Date: June 30, 2007
Documents Received for Information: Protocol, 31-Jan-2007, IB, ed 6, 08 Sept 2005; Prod Mon, July 21, 2006

This is to notify you that The University of Western Ontario Research Ethics Board for Health Sciences Research involving Human Subjects (HSREB) which is organized and operates according to the Tri-Council Policy Statement and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines; and the applicable laws and regulations of Ontario has reviewed and granted full board approval to the above named research study on the approval date noted above. The membership of this REB also complies with the membership requirements for REBs as defined in Division 5 of the Food and Drug Regulations.

This approval shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB’s periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the UWO Updated Approval Request Form.

During the course of the research, no deviations from, or changes to, the protocol or consent form may be initiated without prior written approval from the HSREB except when necessary to eliminate immediate hazards to the subject or when the change(s) involve only logistical or administrative aspects of the study (e.g. change of monitor, telephone number). Expedited review of minor change(s) in ongoing studies will be considered. Subjects must receive a copy of the signed information/consent documentation.

Investigators must promptly disc report to the HSREB:
a) changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study;
b) all adverse and unexpected experiences or events that are both serious and unexpected;
c) new information that may adversely affect the safety of the subjects or the conduct of the study.

If these changes/adverse events require a change to the information/consent documentation, and/or recruitment advertisement, the newly revised information/consent documentation, and/or advertisement, must be submitted to this office for approval.

Members of the HSREB who are named as investigators in research studies, or declare a conflict of interest, do not participate in discussion related to, nor vote on, such studies when they are presented to the HSREB.

Chair of HSREB: Dr. John W. McDonald
Deputy Chair: Susan Hoddinott

This is an official document. Please retain the original in your files.
Office of Research Ethics
The University of Western Ontario
Room 550 Support Services Building, London, ON, Canada N6A 3K7
Telephone: (519) 661-3036 Fax: (519) 850-2466 Email: ethics@uwow.ca
Website: www.uwo.ca/researchethics

Use of Human Subjects - Ethics Approval Notice

Principal Investigator: Dr. G. Parraga
Review Number: 15928
Review Date: January 00, 2011
Revision Number: 6
Approved Local # of Participants: 34

Protocol Title: Hyperpolarized Helium-3 Magnetic Resonance Ventilation Heterogeneity and Airway Hyper-Reactivity in Asthma

Department and Institution: Imaging, Roarts Research Institute
Sponsor: INTERNAL RESEARCH FUND-UWO
Ethics Approval Date: January 07, 2011
Expiry Date: March 31, 2011
Documents Reviewed and Approved: Addition of healthy volunteers (10), revised study methodology, revised inclusion criteria and revised letter of information & consent form dated Nov 25/10

This is to notify you that the University of Western Ontario Research Ethics Board for Health Sciences Research Involving Human Subjects (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans and the Health Canada/ICH Good Clinical Practice Practices, Consolidated Guidelines, and the applicable laws and regulations of Ontario has reviewed and granted approval to the above referenced revision(s) or amendment(s) on the approval date noted above. The membership of this RER also complies with the membership requirements for RERs as defined in Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB's periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the UWO Updated Approval Request Form.

During the course of the research, any deviations from, or changes to, the protocol or consent form may be initiated without prior written approval from the HSREB except when necessary to eliminate immediate hazards to the subject or when the change(s) involve only logistical or administrative aspects of the study (e.g. change of monitor, telephone number). Expedited review of minor change(s) in ongoing studies will be considered. Subjects must receive a copy of the signed information/consent documentation.

Investigators must promptly also report to the HSREB:

- a) changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study;
- b) all adverse and unexpected experiences or events that are both serious and unexpected;
- c) new information that may adversely affect the safety of the subjects or the conduct of the study.

If these changes/adverse events require a change to the information/consent documentation, and/or recruitment advertisement, the newly revised information/consent documentation, and/or advertisement, must be submitted to this office for approval.

Members of the HSREB who are named as investigators in research studies, or declare a conflict of interest, do not participate in discussion related to, nor vote on, such studies when they are presented to the HSREB.

Chair of HSREB: Dr. Joseph Gilbert
FDA Ref #: IRB 00200940

This is an official document. Please retain the original in your files.
Use of Human Participants - Ethics Approval Notice

Principal Investigator: Dr. Grace Parraga
Review Number: 18130
Review Level: Full Board
Approved Local Adult Participants: 100
Approved Local Minor Participants: 0
Protocol Title: A Single-center Study Evaluating Hyperpolarized 129Xenon Magnetic Resonance Imaging in Subjects with Chronic Lung Disease
Department & Institution: Imaging Institute, Robarts Research Institute
Sponsor: Canadian Institutes of Health Research

Ethics Approval Date: August 12, 2011

Documents Reviewed & Approved & Documents Received for Information:

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Comments</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWO Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter of Information & Consent</td>
<td></td>
<td>2011/07/13</td>
</tr>
<tr>
<td>Advertisement</td>
<td></td>
<td>2011/07/13</td>
</tr>
<tr>
<td>Protocol</td>
<td>Received for information only</td>
<td>2011/06/22</td>
</tr>
</tbody>
</table>

This is to notify you that the University of Western Ontario Health Sciences Research Ethics Board (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research Involving Humans and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines; and the applicable laws and regulations of Ontario has reviewed and granted approval to the above referenced study on the approval date noted above. The membership of this HSREB also complies with the membership requirements for REB's as defined by Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB's periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the UWO Updated Approval Request form.

Members of the HSREB that are named as investigators in research studies, or declare a conflict of interest, do not participate in discussions related to, nor vote on, such studies when they are presented to the HSREB.

The Chair of the HSREB is Dr. Joseph Gilbert. The UWO HSREB is registered with the U.S. Department of Health & Human Services under the IRB registration number IRB 00000004.
Principal Investigator: Dr. Grace Parraga
File Number: 10400
Review Level: Full Board
Protocol Title: Hyperpolarized Magnetic Resonance Imaging in Asthma Pre- and Post-Bronchial Thermoplasty
Department & Institution: Schulich School of Medicine and Dentistry, Imaging Research, Robarts Research Institute
Sponsor: Lawson Health Research Institute

Ethics Approval Date: January 03, 2014
Ethics Expiry Date: February 28, 2017

Documents Reviewed & Approved & Documents Received for Information:

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Comments</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments</td>
<td>Asthma Quality of Life Questionnaire with Standardized Activities (AQLQ(S))</td>
<td>2013/08/15</td>
</tr>
<tr>
<td>Instruments</td>
<td>Asthma Control Questionnaire</td>
<td>2013/08/15</td>
</tr>
<tr>
<td>Instruments</td>
<td>Modified Borg Scale Questionnaire</td>
<td>2013/08/15</td>
</tr>
<tr>
<td>Instruments</td>
<td>mRISC Dyspnea Score Questionnaire</td>
<td>2013/08/15</td>
</tr>
<tr>
<td>Protocol</td>
<td>Roberts Protocol-Received for Information</td>
<td>2013/12/19</td>
</tr>
<tr>
<td>Letter of Information & Consent</td>
<td>version 2</td>
<td></td>
</tr>
<tr>
<td>Western University Protocol</td>
<td>including Study Design diagram</td>
<td>2013/12/19</td>
</tr>
</tbody>
</table>

This is to notify you that the University of Western Ontario Health Sciences Research Ethics Board (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research Involving Humans and the Health Canada/Ontario Good Clinical Practice Practice: Consolidated Guidelines, and the applicable laws and regulations of Ontario has reviewed and granted approval to the above referenced study on the approval date noted above. The membership of this HSREB also complies with the membership requirements for REBs as defined in Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB's periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the University of Western Ontario Updated Approval Request form.

Member of the HSREB that are named as investigators in research studies, or declare a conflict of interest, do not participate in discussions related to, nor vote on, such studies when they are presented to the HSREB.

The Chair of the HSREB is Dr. Joseph Gilbert. The HSREB is registered with the U.S. Department of Health & Human Services under the IRB registration number IRB 00000640.

This is an official document. Please retain the original in your files.
Principal Investigator: Dr. Grace Parraga
Review Level: Full Board
Approved Local Adult Participants: 200
Approved Local Minor Participants: 0
Protocol Title: Structure and Function MRI of Asthma
Department & Institution: Schulich School of Medicine and Dentistry/Imaging, Robarts Research Institute
Sponsor:
Ethics Approval Date: April 08, 2013
Ethics Expiry Date: March 31, 2020

Documents Reviewed & Approved & Documents Received for Information:

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Comments</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Roberts Protocol - Received for information only</td>
<td>2013/02/06</td>
</tr>
<tr>
<td>Instruments</td>
<td>Telephone Script</td>
<td>2013/03/14</td>
</tr>
<tr>
<td>Letter of Information & Consent</td>
<td>ROB0037 ICF March 13 2013</td>
<td>2013/03/13</td>
</tr>
<tr>
<td>Western University Protocol</td>
<td>(including study instruments & questionnaires)</td>
<td></td>
</tr>
</tbody>
</table>

This is to notify you that the University of Western Ontario Health Sciences Research Ethics Board (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research Involving Humans and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines and the applicable laws and regulations of Ontario has reviewed and granted approval to the above referenced study on the approval date noted above. The membership of the HSREB also complies with the membership requirements for REB’s as defined in Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB’s periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the University of Western Ontario Updated Approval Request form.

Member of the HSREB that are named as investigators in research studies, or declare a conflict of interest, do not participate in discussions related to, nor vote on, such studies when they are presented to the HSREB.

The Chair of the HSREB is Dr. Joseph Gilbert. The HSREB is registered with the U.S. Department of Health & Human Services under the IRB registration number IRB 00000540.
APPENDIX C – Curriculum Vitae

EDUCATION

September 2007 – April 2011
Bachelor of Medical Science
Honours Specialization Medical Biophysics (Medical Science Concentration)
The University of Western Ontario, London, Ontario, Canada

September 2011 – November 2015
Doctor of Philosophy
Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
Supervisor: Dr. Grace Parraga
Thesis: “Pulmonary Imaging of Asthma to Better understand the Asthmatic Lung and Guide Asthma Therapy”

RESEARCH POSITIONS

May 2009 – August 2009
Undergraduate Research Assistant, Summer Research Assistantship
London Regional Cancer Program & Robarts Research Institute, London, Canada
Supervisor: Dr. Brian Yaremko & Dr. Grace Parraga
Project: Optimizing Radiation Treatment Plans for Lung Cancer Patients

September 2010 – April 2011
Fourth Year Undergraduate Honours Thesis Student
Robarts Research Institute, London, Canada
Supervisor: Dr. Grace Parraga
Project: Quantitative Evaluation of Hyperpolarized 3He Magnetic Resonance Imaging of Lung Function Variability in Cystic Fibrosis

May 2011 – August 2011
Research Assistant, Summer Research Assistantship
Robarts Research Institute, London, Canada
Supervisor: Dr. Grace Parraga
Project: Hyperpolarized 3He and 129Xenon Magnetic Resonance Imaging of Asthma

September 2011 – November 2015
Graduate Research Assistant, Doctoral
Department of Medical Biophysics, The University of Western Ontario, London, Canada
Supervisor: Dr. Grace Parraga
Thesis: Pulmonary Imaging of Asthma to Better understand the Asthmatic Lung and Guide Asthma Therapy

RESEARCH–SPECIFIC HONOURS, SCHOLARSHIPS AND AWARDS

2011 Western Graduate Research Scholarship, The University of Western Ontario
Awarded to a full time graduate student for stipend support who has maintained an average of 80% or more.
Institutional
$7,645 CAD

2012 Educational Stipend Award, International Society for Magnetic Resonance in Medicine (ISMRM)
Awarded to support the attendance of students, postdoctoral and clinical trainees to present abstracts at the international scientific meeting held in Melbourne, Australia.
International
$540 USD

2012 Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Graduate Scholarship – Masters (CGS-M)
Awarded to high-caliber scholars who are engaged in Master’s programs, CGS is offered to the top-ranked applicants.
National
$17,500 CAD

2012 Ontario Graduate Scholarship (Declined)
A merit based scholarship (based on academic standing) that encourages excellence in graduate studies and is available to students in all disciplines of academic study.
Provincial
$15,000 CAD

2012 Western Graduate Research Scholarship, The University of Western Ontario
Awarded to a full time graduate student for stipend support who has maintained an average of 80% or more.
Institutional
$7,867 CAD

2013 Educational Stipend Award, International Society for Magnetic Resonance in Medicine (ISMRM)
Awarded to support the attendance of students, postdoctoral and clinical trainees to present abstracts at the international scientific meeting held in Salt Lake City, Utah, USA.
International
$440 USD

2013 London Health Research Day Poster Award (1st place), Schulich School of Medicine and Dentistry, The University of Western Ontario
Awarded to the top poster presenter in the Imaging category.
Institutional
$500 CAD

2013 Lawson Internal Research Fund Spring 2013 Studentship Award
Successful grant application reviewed and awarded by the Lawson Health Research Institute (LHRI).
Institutional
194

$15,000

2013 Radiological Society of North America (RSNA) Trainee Research Prize Competition Finalist
Awarded to the highest ranked abstracts submitted for the RSNA Trainee Research Prize.
International $0

2013 Western Graduate Research Scholarship, The University of Western Ontario
Awarded to a full time graduate student for stipend support who has maintained an average of 80% or more.
Institutional $7,975

2013 Dean’s MSc Transfer to PhD Stipend for Graduate Research, Schulich School of Medicine and Dentistry, The University of Western Ontario
Awarded to two students annually by Dean Michael Strong. Recipients must have successfully transferred from the MSc to PhD program, have an outstanding academic record and have demonstrate research excellence.
Institutional $15,000

2014 Educational Stipend Award, International Society for Magnetic Resonance in Medicine (ISMRM)
Awarded to support the attendance of students, postdoctoral and clinical trainees to present abstracts at the international scientific meeting held in Milan, Italy.
International $435 USD

2014 London Health Research Day Platform Presentation Award (2nd place), Schulich School of Medicine and Dentistry, The University of Western Ontario
Awarded to the top platform presenters who presented first author original research abstracts.
Institutional $600

2014 Canadian Institutes of Health Research (CIHR) National Student Research Poster Competition Participant
Nominated by the University of Western Ontario as being within the top 5% of doctoral students in the field of health sciences.
National $0

2014 International Society of Magnetic Resonance in Medicine (ISMRM) Merit Award Summa Cum Laude
Awarded to those whose abstract score was in the top 5% of those submitted for review to be presented at the annual international meeting.
International
2014 Ontario Graduate Scholarship
A merit based scholarship (based on academic standing) that encourages excellence in graduate studies and is available to students in all disciplines of academic study.
Provincial
$15,000 CAD

2014 Canadian Institutes of Health Research (CIHR) Canadian Student Health Research Forum Funding Competition
Selected by CIHR to receive funding to reimburse travel and accommodations for participation in the 2014 Canadian Student Health Research Forum in Winnipeg, Canada.
National
$833

2014 Award of Excellence (Silver category) in the Canadian Institutes of Health Research (CIHR) National Research Poster Competition
Awarded to the top poster presenters who presented first author original research abstracts.
National
$250

2014 Nellie Farthing Fellowship in Medical Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario
Established in 1960 to recognize a full-time doctoral student in the Medical Sciences, selection for this award is based on research excellence. One fellowship is awarded annually.
Institutional
$3,000

2014 Canadian Respiratory Research Network (CRRN) PhD Fellowship, Canadian Lung Association/Canadian Thoracic Society
Awarded to PhD candidates based on their grant proposal, academic excellence & research potential. Up to two fellowships are awarded annually.
National
$22,000 CAD

2015 Ontario Institute for Cancer Research (OICR) Imaging Translation Program Poster Presentation Winner (2nd Place), Imaging Network Ontario Symposium
Awarded to the top poster presenters at the 13th annual Imaging Network of Ontario Symposium.
National
$300 CAD

Awarded to the first author of the top ranked abstract presented at the annual international meeting held in Denver, Colorado, USA.

International
$500 USD

2015 International Society of Magnetic Resonance in Medicine (ISMRM) Merit Award Magna Cum Laude
Awarded to those whose abstract score was in the top 15% of those submitted for review to be presented at the annual international meeting.

International

2015 Drs. Madge and Charles Macklin Fellowship for Publication in Medical Sciences
Awarded based on the significance of the candidate’s 1st author publication in a high impact peer reviewed journal. Up to two fellowships are awarded annually.

Institutional
$4,250 CAD

OTHER HONOURS, SCHOLARSHIPS AND AWARDS

2007 Western Scholarship of Excellence, The University of Western Ontario
Awarded upon admission to Western students who have an entrance average of 90-94.9%.
Institutional
$2,000

PUBLICATIONS and PRESENTATIONS

A. Refereed Journal Manuscripts (17 published, 1 in press, 1 in preparation)

Published (17)

14. DPI Capaldi, K Sheikh, F Guo, S Svenningsen, R Etemad-Rezai, J Leipsic, HO Coxson, DG McCormack and G Parraga. Free-breathing Pulmonary 1H and

In Press (1)

In Preparation (1)

B. Published Refereed Conference Papers (3)

3. DPI Capaldi, S Svenningsen, IA Cunningham and G Parraga. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging. *Proc SPIE.* 9417, Medical Imaging 2015: Biomedical Applications in Molecular,
C. Peer Reviewed Published Conference Abstracts (39)

International Society for Magnetic Resonance in Medicine Proceedings 2014:22, A0772

International Society for Magnetic Resonance in Medicine Proceedings 2014:22, A2280

16. DPI Capaldi, F Guo, S Svenningsen, W Ma, K Sheikh, R Etemad-Rezai, J Leipsic, HO Coxson, DG McCormack and G Parraga. Comparison of Pulmonary ¹H non-contrast and Hyperpolarized ³He MRI Ventilation Abnormalities in Bronchiectasis and COPD.

202

38. S Svenningsen, DPI Capaldi, P Nair, DG McCormack and G Parraga. Linking Ventilation Heterogeneity and Asthma Control: Out with the Old and in with the New? 7th International Workshop on Pulmonary Functional Imaging Proceedings 2015

D. Peer Reviewed Oral Presentations (10) *presenter

Variability. 10th Imaging Network Ontario Symposium, Toronto, Ontario, Canada (02/12)

10. **S Svenningsen**, DPI Capaldi, P Nair, DG McCormack and G Parraga. Linking Ventilation Heterogeneity and Asthma Control: Out with the Old and in with the New? 7th International Workshop on Pulmonary Functional Imaging, Edinburgh, Scotland (09/15)
E. Peer Reviewed Poster Presentations (15) *presenter

4. S Svenningsen*, M Kirby, A Wheatley, A Farag, A Ouriadov, GE Santyr, DG McCormack and G Parraga. Anatomical Distribution of Hyperpolarized 3He and 129Xe MRI Apparent Diffusion Coefficients in Asthma. International Society for Magnetic Resonance in Medicine, Melbourne, Australia (05/12)

POST-GRADUATE EDUCATIONAL DEVELOPMENT

Graduate Teaching Assistant
January 2013 – May 2013
9550 Principles of Communication and Knowledge Translation for Biomedical Engineers
Graduate Program in Biomedical Engineering
The University of Western Ontario, London, Canada

Graduate Marking Assistant
March 2013 – June 2015
Respiration and Airways (Year 1)
Department of Medicine
The University of Western Ontario, London, Canada

Graduate Student Supervisor
May 2012 - November 2015
Danielle Starr, B.Eng.

Summer Student (May 2012-August 2012)
Project: Measurement of CT Airways in Asthma
Michal Stankiewicz, 4th year Medical Biophysics, UWO

Undergraduate Student (May 2013-May 2014)
Project: Forced Oscillation Measurements of Respiratory Resistance in COPD
Gregory Paulin, B.MSc., Medical Biophysics MSc Candidate, UWO
Masters Student (May 2013-May 2014)
Project: Differences in Hyperpolarized 3He Ventilation Imaging after 4 years in Cystic Fibrosis

Emma Bluemke, 2nd year Medical Biophysics, UWO

Undergraduate Student (May 2014-May 2015)
Project: Relating Multiple Breath Nitrogen Washout and 3He MRI

Megan Fennema, 4th year Biomedical Engineering, UOG

Co-op Student (May 2015-November 2015)
Project: On the role of airways disease as a predictor of asthma control in severe asthmatics using FOT and MRI

Rachel Eddy, B.Eng., Medical Biophysics MSc Candidate, UWO

Masters Student (May 2015-November 2015)
Project: Image-guided asthma treatment

RESEARCH FUNDING APPLICATIONS

Grants

Canadian Lung Association National Grant Review (Unsuccessful)
Proposal: Pulmonary Functional Imaging of Asthma Pre- and Post-Bronchial Thermoplasty
December 2013

Lawson Health Research Institute Spring 2013 Internal Research Fund (Successful)
Hyperpolarized Gas Magnetic Resonance Imaging of Severe Asthma: The Effect of Bronchial Thermoplasty on Regional Lung Function
May 2013

PROFESSIONAL MEMBERSHIPS

2008 – 2015 Canadian Organization of Physicists in Medicine
Student Member

2010 – 2015 American Thoracic Society
Student Member

2010 – 2015 International Society of Magnetic Resonance in Medicine
Student Member

2012 – 2015 Canadian Thoracic Society
Student Member