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Abstract 

Asthma is characterized using the spirometry measurement of the forced expiratory volume 

in one second (FEV1).  Simple and inexpensive, FEV1 provides a global estimate of lung 

function but this metric cannot regionally identify airways responsible for airflow 

limitation, asthma symptoms or control.  Work that brought about an understanding that 

airway abnormalities are heterogeneously distributed within the lung in asthma patients 

has motivated the development of pulmonary imaging approaches, such as hyperpolarized 

helium-3 (3He) and xenon-129 (129Xe) magnetic resonance imaging (MRI).  These methods 

provide a way to visualize and quantify lung regions accessed by gas during a breath-hold, 

as well as those not accessed, referred to as “ventilation defects.”  Despite the strong 

foundation for the use of MRI in asthma clinical care, clinical translation has been inhibited 

in part due to the current limited clinical and physiological understanding of ventilation 

defects.  Accordingly, our objective was to better understand the structural determinants 

and clinical consequences of MRI ventilation defects observed in asthma and to provide a 

foundation for imaging to guide clinical decisions and asthma therapy.  We evaluated the 

effect of gas properties on ventilation defects.  In asthmatics, we compared hyperpolarized 

3He and 129Xe MRI before and after bronchodilator administration and showed greater gas 

distribution abnormalities using 129Xe compared to 3He before bronchodilation.  The 

temporal behavior of asthma ventilation defects was then investigated by generating 

personalized temporal-spatial pulmonary function maps from 3He MR images acquired on 

three occasions.  Persistent and intermittent defects were visualized and quantified using 

this tool and were recognized as potential intermediate endpoints or targets for treatment.  

We then evaluated clinical and emerging computed tomography-derived airway 

morphology measurements in asthmatics with and without defects.  Ventilation defects 

were observed in two-thirds of well-controlled asthmatics who had worse lung function, 

increased airway inflammation, airway hyperresponsiveness and greater airway wall 

thickness than asthmatics without ventilation defects.  Acknowledging that asthma control 

is the primary goal of asthma treatment, we investigated the relationship, and established a 

link between worse ventilation and poor control.  These findings provide a better 

understanding of asthma ventilation defects and strongly support their potential as a novel 

treatment target. 
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CHAPTER 1 

Asthma is a chronic and phenotypically heterogeneous disease of intermittent respiratory 

symptoms and airflow limitation triggered by various stimuli, and is characterized by 

bronchial hyperresponsiveness and airways inflammation.1,2  

1 INTRODUCTION 

1.1 Motivation and Overview  

Asthma is the most common chronic respiratory disease in Canada, accounting for 

approximately 80% of chronic respiratory disease,3 affecting 8.1% or 2.4 million 

Canadians in 2014 (Figure 1-1).4   

Adapted from Life and Breath: Respiratory Disease in Canada 2008.5 

 

Asthma is most common during childhood and affects more than 13% of Canadian 

children.  In 2014, 9.2% of females and 7.0% of males were diagnosed with asthma.4  In 

2009, 228 asthma-related deaths were reported in Canada.  Internationally, an estimated 

300 million people currently have asthma and this is expected to increase to 400 million 

by 2025.6  Asthma is estimated to account for one in 250 deaths worldwide.6  Due to its 

high prevalence, asthma has an enormous economic and healthcare burden for the patient 

and society, with high rates of healthcare resource utilization that vary widely with respect 

to age and disease severity.  Asthma is also a major cause of hospitalization and repeat 

hospitalization in Canada (Figure 1-2).  Annually, the number of patients hospitalized for 

asthma is comparable to hospitalization due to chronic obstructive pulmonary disease 

Figure 1-1  Proportion of all respiratory diseases due to specific conditions in Canada. 



2 

 

(COPD) and angina.7  However, in contrast to COPD and angina, asthma-related 

hospitalizations are much more common under the age of 19, accounting for approximately 

65% of all asthma admissions.7  Asthma was a contributing factor in approximately 10% 

of hospital admissions for children under the age of 5 and 8% for those aged 5 to 14 years.5  

In 1990, the estimated cost for asthma in Canada was $504 to $648 million, of which $306 

million were direct costs.8  A study by Ismalia and colleagues indicated that the annual 

direct cost per asthma patient in Canada ranges from $366 to $647.9  

 

 

Figure 1-2  Repeat hospitalizations and hospitalization cases by age and condition in 

Canada.  

The left plot shows the number of patients with a single hospitalization, one repeat 

hospitalization and two or more repeat hospitalization by condition at first admission.  The 

right plot shows the distribution of hospitalization cases by condition and age.  Adapted 

from the Canadian Institute for Health Information’s (CIHI) publication entitled Health 

Indicators 2008.7 

 

Despite decades of active research and the staggering societal burden of asthma described 

above, the mechanism of disease and its distribution within the asthmatic lung are still not 

fully understood.  Imaging and post-mortem evidence allude to the possibility that airway 

abnormalities in asthma are heterogeneously distributed within the lung.  Currently, 

however, airways disease worsening and response to therapy in asthma are commonly 

evaluated using the forced expiratory volume in one second (FEV1) – a simple and 

inexpensive measurement of airflow obstruction.  As a result, current and newly-developed 

asthma therapies are mainly directed towards improvements in FEV1, but it is well-known 

that this global measurement does not capture the regional heterogeneity of airway 

abnormalities that may be responsible for asthma control and future risk of exacerbations 
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and lung function decline.  In other words, using current clinical tools, there is no way to 

measure regional lung abnormalities in asthma, making it difficult if not impossible to 

develop, test and guide regional asthma therapies.  Satisfying the uncertain notion that all 

airways in asthma are equally abnormal and exhibit the same temporal behavior, current 

therapies are geared to all airways.   

Pulmonary functional magnetic resonance imaging (MRI), using inhaled helium-3 (3He) 

and xenon-129 (129Xe) gas, provides a way to quantify gas distribution in vivo and it has 

the advantage that it shows exactly where functional abnormalities, termed “ventilation 

defects,” are located in the asthmatic lung.  In spite of this potential, medical imaging has 

played a very limited role in asthma research, treatment development and patient care, and 

for a variety of reasons, the numerous advantages of imaging have not been translated to 

clinical use.  Regardless of the gas used for imaging, the exact etiology of ventilation 

defects in asthma is poorly understood.  A clear understanding of ventilation defects is 

absolutely necessary prior to the clinical translation of hyperpolarized gas imaging 

methods.  Armed with such an understanding, there is the potential to use functional MRI 

to guide asthma treatment, predict treatment outcomes, identify new treatment targets and 

better understand the asthmatic lung regionally and its response to asthma treatment.  With 

the challenges impeding clinical translation in mind, the overarching objective of this thesis 

was to better understand the underlying structural determinants and clinical consequences 

of MRI ventilation defects observed in asthma and to provide a foundation for imaging to 

guide clinical decisions and asthma therapy.   

In this Chapter, the relevant background knowledge necessary to understand and motivate 

the original research presented in Chapters 2 to 5 will be summarized.  It will begin with a 

general overview of the respiratory system’s structural and functional responsibilities (1.2) 

before focusing on the pathophysiology and underlying disease mechanisms of asthma 

(1.3).  Subsequently, standard clinical measurements of asthma (1.4), diagnosis and 

classification schemas (1.5) and standard of care treatment regimens (1.6) will all be 

introduced.  The benefits and limitations of currently available imaging techniques will be 

discussed with respect to their influence on better understanding the asthmatic lung and 

contribution of imaging biomarkers that can be used to guide asthma treatment (1.7).  

Finally, the specific hypotheses and objectives of this thesis will be introduced (1.8).  



4 

 

1.2 The Respiratory System: Structure and Function 

Similar to all organ systems, the functions of the respiratory system are multifaceted and 

range from protection against inhaled pathogens to gas exchange.  While the respiratory 

system includes the oral and nasal cavities, the lungs, the airways and the muscles 

responsible for facilitating breathing, here I will elaborate on the structure and function of 

the airways and the alveoli.  The airways are a pipeline which connect the external 

environment with the alveoli where gas exchange can occur across the blood-gas interface.  

By the process of ventilation, the main function of the airways and the alveoli is to deliver 

oxygen and remove carbon dioxide from the blood to maintain normal partial pressure of 

oxygen and carbon dioxide levels in the arterial blood.  

1.2.1 The Airways: Conducting and Respiratory Zones 

Inhaled air enters the respiratory system via the nasal or oral passages which converge on 

the pharynx followed by the larynx.  Beyond the upper airways, as shown in Figure 1-3, 

the lower airways are divided into the conducting zone and the respiratory zone based on 

their structural and functional characteristics.  The conducting zone is responsible for 

carrying inhaled air to the respiratory zone where gas exchange can occur. 

Conducting Zone  

The conducting zone consists of the first sixteen airway generations, beginning with the 

trachea (generation zero) and ending with the terminal bronchioles (generation 16).10  It is 

important to emphasize that conducting zone airways do not directly participate in gas 

exchange, but instead their sole function is to conduct and humidify air.  Due to its function, 

this zone is considered anatomic deadspace - approximately 150 mL of air resides here.10  

The trachea is a long, cartilaginous and muscular conduit that follows the larynx that 

directly supplies air to lungs and bifurcates asymmetrically into the left and right main 

bronchi that supply the left and right lung respectively.  Subsequently, the main bronchi 

divide into the lobar bronchi that supply the five lobes of the lung, three of which are in 

the right lung (upper, middle and lower) and two of which are in the left lung (upper and 

lower).  The lobar bronchi then divide into the segmental bronchi that supply air to their 

corresponding bronchopulmonary segment that is structurally and functionally 

independent.  Bronchi are not individually named distal to the segmental bronchi where 
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they become narrower, shorter and more numerous as they branch dichotomously to reach 

all areas of the lung.  Secondary lobules or lung sub-segments are supplied by the small 

bronchi.  It is at this point where important structural changes occur.  Beyond the small 

bronchi, the air passages no longer contain cartilage but become embedded in the lung 

parenchyma for structural support.  Terminal bronchioles are the smallest category of air 

passages without alveoli and are the final conduit of the conducting zone.   

 

 

Figure 1-3 Characteristics of the air passages. 

Adapted from Lumb A. Nunn’s Applied Respiratory Physiology, Fifth edition.11   
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Respiratory Zone  

The respiratory zone is the last seven generations (generations 17-23) of the airway tree.10  

In contrast to the conducting zone, the air passages of the respiratory zone contain alveoli 

which facilitate gas exchange.  As shown in Figure 1-3, the respiratory bronchioles begin 

the respiratory zone and have an increasing number of alveoli budding from their muscular 

walls before giving rise to the alveolar ducts which precede the alveolar sacs that are 

completely lined with alveoli.  A pulmonary acinus is considered a single anatomical unit 

consisting of a terminal bronchiole and its subsequent respiratory bronchioles, alveolar 

ducts and sacs.  The average human lung contains 30,000 acini,12 each containing 

approximately 10,000 alveoli which together make up most of the lung volume, ranging 

from approximately 2.5 to 3 L at rest.10  

1.2.2 Site of Gas Exchange: The Alveoli 

The alveoli are the site of gas exchange and are the terminal ends of the airway tree found 

on the respiratory bronchioles, alveolar ducts and alveolar sacs.  It has been estimated that 

480 million (range: 274-790 million) alveoli exist in the average human lung and that the 

average size of a single alveolus is 4.2x106 µm3 (range: 3.3-4.8 µm3) or 200 µm in 

diameter.13  The blood-gas interface of the alveoli is comprised of two layers: the alveolar 

epithelium and the capillary endothelium, which facilitates the movement of oxygen and 

carbon dioxide between the alveolar airspace and capillary plasma.  This interface is 

extremely thin (0.2-0.3 µm) with a large surface area (50-100 m2), making it well-suited 

for efficient exchange of oxygen and carbon dioxide by passive diffusion, according to the 

principles of Fick’s law.   

1.2.3 Ventilation 

Gas reaches the blood-gas interface by the process of ventilation, which is the exchange of 

air between the external environment and the alveoli by bulk flow.10  During ventilation, 

air flows because of pressure gradients that exist between the atmosphere and alveoli.  

Inspiration occurs when the inspiratory muscles actively contract and alveolar pressure 

decreases; whereas expiration occurs when the inspiratory muscles passively relax and 

alveolar pressure increases.  The total amount of air that enters the lungs and resides in the 
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conducting and respiratory zones upon inspiration is termed tidal volume (VT) and is 

approximately 0.5 L.  As shown in Equation 1-1, total ventilation is the total volume of 

air leaving the lungs each minute and is calculated as the ventilation rate multiplied by VT.   

Equation 1-1 

Total ventilation [L/minute] = Ventilation rate × VT 

As discussed above, with each exhalation, approximately 0.15 L of “stale” air from the 

respiratory zone remains in the conducting airways and is first to commute back to the 

alveoli upon subsequent inspiration.  As shown in Equation 1-2, alveolar ventilation 

represents the amount of “fresh” air that reaches the alveoli to participate in gas exchange 

and it is therefore used to more accurately quantify ventilation efficiency by taking into 

account the dead space volume (VD).   

Equation 1-2 

Alveolar ventilation [L/minute] = Ventilation rate × (VT − VD) 

For a healthy adult, the ventilation rate, VT and VD are 12-20 breaths/minute, 0.5 L and 

0.15 L respectively.14  At 15 breaths/minute, the total ventilation is 7.50 L/minute and the 

alveolar ventilation is 5.25 L/minute.  This means that although 7.5 L of fresh air enters 

the respiratory system, only 5.25 L actually reach the alveoli.    

1.3   Pathophysiology of Asthma 

The word “asthma” originated from the Greek word aazein, meaning “to breathe with open 

mouth or to pant” generalizing that any patient experiencing dyspnea was asthmatic.15   

Given that asthma is as old as antiquity, it is not surprising that the definition and our 

understanding of the disease has evolved significantly from initial accounts as evidenced 

by the quotes below.  Today, with nearly 300 million asthmatics globally, confusion and 

controversy continue to surround the definition of asthma.16 

“Asthma is the inability to breathe without making noise.” 

Aulus Cornelius, 1st Century BC 

“If from running, gymnastic exercises, or any other work, the breathing becomes difficult, 

it is called Asthma.” 

Aretaeus the Cappodocian, 2nd Century AD 
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“Asthma is paroxysmal dyspnea of a peculiar character, generally periodic, with intervals 

of healthy respiration between attacks.” 

Henry Hyde Salter, 1860 

“Asthma is a special form of inflammation of the small bronchioles.” 

Sir William Osler, 1892 

“Asthma is a disease characterized by an increased responsiveness of the trachea and 

bronchi to various stimuli and manifested by widespread narrowing of the airways that 

changes in severity either spontaneously or as a result of therapy. 

American Thoracic Society, 1962 
 

1.3.1 Definition of Asthma 

In the 2015 Global Initiative for Asthma (GINA) report, the Global Strategy for Asthma 

Management and Prevention,1 asthma is defined as: “A heterogeneous disease usually 

characterized by chronic airway inflammation.  It is defined by a history of respiratory 

symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over 

time and in intensity, together with variable expiratory airflow limitation.”  This definition 

consists of four components: symptoms, variable airflow obstruction, airway 

hyperresponsiveness and airway inflammation.17  As described in the literature, this 

relatively broad and non-specific definition encompasses many different asthma 

phenotypes identified according to environmental triggers, inflammatory processes and 

clinical features.  In a recent review highlighting the heterogeneity of asthma, common 

clinical phenotypes were classified as trigger-induced phenotypes (occupational asthma, 

cigarette smoke induced asthma, air pollution induced asthma and exercise induced 

asthma), symptom-based phenotypes (exacerbation-prone, persistent airflow limitation, 

cough-variant, adult-onset and the obese asthma) and biomarker-based phenotypes 

(eosinophilic and neutrophilic asthma).18  Phenotyping of asthma is becoming more 

important than ever due to the development of targeted and phenotype specific approaches 

to asthma therapy.   

1.3.2 Causes and Risk  

There is no single gene or environmental exposure that causes asthma,19 although the onset 

most commonly begins in childhood.  Instead, it is widely accepted that host and 

environmental factors interact to cause asthma.19  Unfortunately this interplay is complex 
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and poorly understood.  Numerous host factors have been identified that influence the risk 

of asthma; these include genetic polymorphisms,20,21 family history of asthma,22 sex,23 

race24 and obesity.25  Similarly, numerous environmental factors have been identified that 

influence the risk of asthma; these include aeroallergen sensitization,26 respiratory 

viruses,27,28 early life microbial exposures,29,30 cigarette smoke,31 air pollution,32 vitamin D 

deficiency,33 antioxidants34 and stress.35      

1.3.3 The Asthmatic Lung 

Asthma is considered a chronic disorder that is confined to the airways and involves a 

complex interaction of airflow obstruction, airway hyperresponsiveness and inflammation 

that results in symptoms.2  As shown in Figure 1-4, as compared to a healthy airway, the 

airway lumen of an asthmatic is narrowed and obstructed, restricting airflow into and out 

of the lungs.  Characteristic structural abnormalities throughout the airway walls of 

asthmatics include goblet cell hyperplasia,36 subepithelial layer thickening,37 smooth 

muscle hyperplasia and hypertrophy,38 submucosal gland hyperplasia and hypersecretion39 

and angiogenesis.40  Together, these structural abnormalities, in conjunction with 

inflammatory changes, lead to bronchial thickening and edema as well as increased mucus 

production and bronchoconstriction, all of which contribute to the airflow obstruction 

typically found in asthma.  The mechanisms that are responsible for airflow obstruction in 

asthma include bronchoconstriction by airway smooth muscle; luminal obstruction by 

mucus and debris; and inflammation and remodeling of the airway wall.  

Bronchoconstriction occurs due to smooth muscle contraction, which results in a reduction 

in airway caliber by epithelial folding, ultimately increasing airflow resistance.  

Bronchoconstriction may occur in response to various stimuli that include allergens or 

irritants such as exercise and cold air. Airway hyperresponsiveness is an “exaggerated” 

bronchoconstrictor response to various stimuli such as those mentioned above.  While 

airways throughout the bronchial tree can be involved, the magnitude of airway narrowing 

and resultant airflow obstruction is temporally intermittent but may become persistent.41   
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Figure 1-4  Airway pathology in a healthy and an asthmatic airway. 

Histological (sectioned and stained using Movat’s pentachrome stain) and corresponding 

schematic representation of airway structures in healthy and asthmatic airways.  The 

asthmatic airway has structural remodeling, including goblet cell hyperplasia, subepithelial 

fibrosis and increased smooth muscle. 

Adapted from JV Fahy Nature Reviews 2015.42   

 

Airway inflammation has a fundamental role in the pathophysiology of asthma and 

involves the interaction of many cell types and mediators.  Although the cellular 

mechanisms behind airway inflammation are beyond the scope of this thesis, important 

inflammatory cells include lymphocytes, mast cells, eosinophils, neutrophils, dendritic 

cells, macrophages and epithelial cells.  Additionally, important inflammatory mediators 

include chemokines, cytokines, cysteinyl-leukotrienes and nitric oxide.  Immunoglobulin 
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E (IgE) is the antibody responsible for activation of allergic reactions and is important in 

the development of persistent inflammation.  

1.4   Clinical Measurements of Asthma 

Clinical measurements of asthma play an important role in diagnosis, categorizing disease 

severity and evaluating the effectiveness of medications to manage disease.  Currently, no 

single clinical tool can be used to adequately diagnose and manage asthma.  Instead, an 

integrated approach is employed which combines objective measurements of pulmonary 

function, bronchial responsiveness, airway inflammation and subjective symptom and 

quality-of-life questionnaires.  

1.4.1 Global Measurements of Pulmonary Function 

In a physician’s office and hospital pulmonary function laboratory, various aspects of lung 

function can be evaluated by performing cost-effective pulmonary function testing.  Global 

spirometry measurements and lung volumes play an important role in the diagnosis and 

management of asthma.  It is important to acknowledge that pulmonary function tests are 

dependent on patient effort, limiting their use in children and cognitively impaired 

populations.  With appropriate coaching by a trained pulmonary function technologist, the 

majority of patients can perform adequate pulmonary function manoeuvres for which 

acceptability and reproducibility criteria have been published.   

1.4.1.1 Spirometry 

Spirometry, the gold standard measurement of lung function, is an important diagnostic 

and disease monitoring test that measures volume and flow of air during inhalation and 

exhalation manoeuvres.  As shown in Figure 1-5, spirometry is often performed using a 

hand-held spirometer (Figure 1-5A) and the most commonly performed manoeuvre is the 

forced exhalation manoeuvre (Figure 1-5B).  This is performed by having a participant 

breathe normally and then inspire fully, filling their lungs completely, followed by a hard 

and fast forced exhalation.  It is important that the participant exhale as hard and as fast as 

they can and that they continue exhaling until they cannot expel any more air.  At this point, 

the end of test criteria has been met.  The duration of exhalation may extend well beyond 

15 seconds, depending on the severity of the participants airflow obstruction.  The most 
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widely reported indices derived from the forced exhalation manoeuvre are the forced vital 

capacity (FVC), the FEV1 and the ratio of FEV1 to FVC (FEV1/FVC).  As shown in Figure 

1-5B, FVC is a measure of the total volume of air that can be forcefully exhaled from full 

inspiration, whereas FEV1 is a measure of the maximum volume of air that can be forcefully 

exhaled in the first second of the manoeuvre.  Both FVC and FEV1 are measured in litres 

and are also commonly expressed as a percentage of the reference value based on the 

patient’s age, height, sex and ethnicity.  Extensive spirometry standardization criteria have 

been compiled by the ATS/ERS Task Force and are now widely applied.43  

 

 

Figure 1-5  Handheld spirometer and typical volume-time spirogram tracing. 

FEV1=forced expiratory volume in one second; FVC=forced vital capacity.  

 

1.4.1.2 Lung Volumes and Capacities 

Static lung volumes and capacities are identified on a typical volume-time spirogram 

tracing as shown in Figure 1-6B.  While the majority of these can be directly measured by 

spirometry (tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve 

volume (ERV), vital capacity (VC) and inspiratory capacity (IC)), this tes0t cannot 

determine the functional residual capacity (FRC), residual volume (RV) or total lung 

capacity (TLC).  All lung volumes are defined as follows:  TV is the volume of gas 

exchanged at mouth during a normal inhalation or exhalation during tidal breathing; IRV 

is the volume of gas that can be inhaled from the end of a normal inhalation during tidal 
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breathing; ERV is the volume of gas that can be exhaled from the end of a normal 

exhalation during tidal breathing; VC is the volume of gas exchanged at the mouth between 

a full inspiration and full exhalation; IC is the volume of gas that can be inhaled from the 

end of a normal exhalation while tidal breathing; FRC is the volume of gas remaining in 

the lungs at the end of a normal exhalation while tidal breathing; RV is the volume of gas 

remaining in the lungs at the end of a full exhalation; and TLC is the volume of gas in the 

lungs at the end of a full inhalation. 

As previously alluded to, alternative nitrogen washout, gas dilution or body 

plethysmography techniques are required to measure FRC, from which RV and TLC can 

subsequently be derived by performing “linked” spirometry manoeuvres.44  As shown in 

Figure 1-6A, a body plethysmograph is an airtight chamber that can accommodate the 

patient comfortably inside.  Briefly, the linked manoeuvre is performed by having the 

participant breathe normally and then perform a series of gentle pants against a closed 

shutter initiated at FRC.  After sufficient panting has been achieved the shutter will open 

and the participant can then resume tidal breathing followed by a full inhalation and slow 

full exhalation from which ERV and IVC can be measured.  FRC is obtained by applying 

the principles of Boyle’s law relating pressure and volume in an isothermal environment.44  

RV can then be calculated as FRC minus ERV, and TLC can be calculated as the sum of 

FRC and IC. 
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Figure 1-6  Body plethysmograph and typical volume-time spirogram tracing identifying 

lung volumes. 

TV=tidal volume; IRV=inspiratory reserve volume; ERV=expiratory reserve volume; 

VC=vital capacity; IC=inspiratory capacity; FRC=functional residual capacity; 

RV=residual volume; TLC=total lung capacity. 

 

1.4.1.3 Airway Resistance  

Airway resistance (Raw) is a measure of the resistance to flow within the airways and is 

defined in Equation 1-3 as the ratio of the driving force of airflow (difference in alveolar 

and mouth pressure) to the flow rate (measured at the mouth) and can be quantified using 

several techniques.  Raw is influenced by resistance in the mouth, pharynx, larynx, large 

airways and small airways11 and is most commonly indirectly quantified using whole body 

plethysmography.45  Raw can be derived from the specific airway resistance (sRaw) and 

FRC as shown in Equation 1-4, both of which can be directly measured using 

plethysmography.  sRaw is a corrected index that describes airway resistance regardless of 

lung volume.46  Following open shutter panting, the inverse slope of the plot of flow rate 

versus box pressure is sRaw.  In healthy adults, Raw typically falls within 0.6-2.4 

cmH2O·s·L-1.47  Both Raw and sRaw are increased in the presence of inflammation, mucus 

secretion, and bronchoconstriction.47   

Equation 1-3 

Airway resistance (Raw) [cmH2O·s·L-1]=
Alveolar pressure - Mouth pressure [cmH2O]

Flow rate (V̇) [L·s-1]
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Equation 1-4 

Airway resistance (Raw) [cmH2O·s·L-1]= 
Specific airway resistance (sRaw) [cmH2O·s]

Functional residual capacity (FRC) [L]
 

1.4.1.4 Inert Gas Washout 

Single-breath48 and multiple-breath49 inert gas washout techniques (SBW and MBW, 

respectively) were first employed more than 65 years ago to measure lung volumes and 

ventilation heterogeneity.  Although both tests are relatively simple, the MBW test is more 

informative and has been more commonly used.  MBW involves measuring the washout 

concentration of an inert tracer gas from the lungs during normal tidal breathing.  The tracer 

gas can be endogenous, such as nitrogen (N2), and washed-out of lungs by breathing 100% 

oxygen.  Alternatively, if the tracer gas is exogenous, such as sulfur hexafluoride (SF6) or 

helium (He), it must be washed-in prior to being washed out of the lung by breathing room 

air.  As shown in Figure 1-7, with each tidal breath of the washout phase, there is a decrease 

in the concentration of the exhaled tracer gas (N2 in this example) and when the gas 

concentration has decreased to 1/40th of the starting concentration, the test is complete.  

The manoeuvre is generally completed with the participant sitting upright and breathing 

through a mouthpiece while wearing nose clips.  

 

Figure 1-7  Example of a typical inert gas washout machine and inert gas multiple breath 

washout tracing. 

The MBW tracings display tidal volume (lower plot) and the corresponding nitrogen gas 

(N2) concentration (upper plot).  With each breath there is a decrease in the peak expiratory 

N2 concentration.  
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The most commonly reported MBW derived measurement is the lung clearance index 

(LCI), which is thought to be representative of whole lung ventilation heterogeneity.50  LCI 

is the number of FRC lung turnovers needed to clear the lungs of the inert marker gas and 

it is calculated as the cumulative expired gas volume (CEV) divided by FRC.51  Additional 

metrics that reflect ventilation heterogeneity in the conductive and acinar lung zones 

(Scond and Sacin, respectively) can be derived using sophisticated phase III slope analysis 

of the MBW tracing.52  Additional outcomes include FRC, trapped gas volume and closing 

capacity.  

Inert gas washout measurements are becoming particularly attractive due to their feasibility 

in the pediatric population53,54 and increased sensitivity to early disease changes55,56 while 

offering complementary information to standard pulmonary function tests.  Taken together, 

MBW indices of ventilation heterogeneity in asthmatics are elevated in comparison to 

healthy controls;57-59 are independent determinants of airway hyperresponsiveness;60 

improve with bronchodilation57,61 and inhaled corticosteroids;62,63 and worsen during 

exacerbations.64  Unfortunately, these measurements cannot regionally localize the site of 

functional abnormalities. 

1.4.2 Bronchial Responsiveness 

Reversibility of airflow obstruction and bronchial hyperresponsiveness are features of 

asthma airway pathophysiology that can be objectively evaluated.  The assessment of these 

disease characteristics are important for diagnosing asthma, categorizing disease severity 

and evaluating the effectiveness of asthma medications to manage disease. 

1.4.2.1 Assessing Bronchodilator Reversibility 

Evidence of reversible airflow obstruction is a key consideration when establishing a 

diagnosis of asthma.  The primary objective of reversibility testing is to determine whether 

a participant’s lung function is improved following bronchodilation, assessed by 

performing spirometry pre- and post-bronchodilator administration.  Baseline spirometry 

is performed after the participant has withheld their medications for an appropriate duration 

as advised by the ATS/ERS Task Force.43  Subsequently, an inhaled short-acting beta-

agonist (four 100μg doses of albuterol/salbutamol) is delivered to the participant prior to 

performing post-bronchodilator spirometry 15 minutes later.  Reversibility is commonly 
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expressed as the absolute change in FEV1 and FVC or as a percent of the pre-bronchodilator 

value, as shown in Equation 1-5.  It is generally accepted that a clinically-relevant positive 

bronchodilator response is warranted when the post-bronchodilator increase in FVC and/or 

FEV1 is ≥ 12% and 200mL from baseline.65    

Equation 1-5 

% reversibility= [
(Post-bronchodilator value) − (Pre-bronchodilator value)

(Pre-bronchodilator value)
] × 100 

 

 

1.4.2.2 Assessing Airway Hyperresponsiveness 

In addition to bronchodilator reversibility, airway hyperresponsiveness is another defining 

characteristic of asthma.66  Methacholine and exercise challenge testing are two of the most 

widely used methods to assess airway hyperresponsiveness for which standardized 

guidelines have been published.67   

Methacholine Challenge  

Methacholine induces bronchoconstriction by acting on airway smooth muscle receptors.  

Similar to reversibility testing, a methacholine test (MCT) should be performed after the 

participant has withheld their medications for an appropriate duration as advised by ATS 

guidelines.67    Aerosolized methacholine is inhaled through a nebulizer and the MCT is 

completed according to the established two-minute tidal breathing or five-breath dosimeter 

protocol described in detail by ATS.67  Briefly, baseline spirometry is first performed to 

assess pre-MCT FEV1 and subsequently the diluent or first dose of methacholine 

(0.03mg/mL) is administered.  After the nebulization has been completed, spirometry is 

repeated.  If FEV1 has not declined by 20%, the next highest concentration of methacholine 

should be delivered.  This procedure is repeated with increasing concentrations of 

methacholine until FEV1 has declined by more than 20% of baseline or until the highest 

concentration of methacholine (16mg/mL) has been reached.  

The primary outcome measure for the MCT is the provocative concentration of 

methacholine that causes a 20% decrease in FEV1 (PC20), from which the degree of airway 

hyperresponsiveness can be interpreted clinically.  Calculated according to Equation 1-6,   

PC20 ≥16mg/mL is indicative of normal airway hyperresponsiveness, whereas a PC20 
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≤4mg/mL is indicative of abnormal airway hyperresponsiveness.67  Intermediate values (< 

16 and >4 mg/mL) indicate borderline airway hyperresponsiveness and should be 

interpreted with caution.67   

Equation 1-6 

PC20 [mg/mL]=antilog [logC1+
(logC2-logC1)(20-R1)

R2-R1

] 

C1 = second-to-last methacholine concentration; C2 = last methacholine concentration; 

R1 = percent fall in FEV1 after C1; R2 = percent fall in FEV1 after C2. 

 

Exercise Challenge  

Exercise induces bronchoconstriction in approximately 80% of asthmatics.68  In contrast 

to methacholine, exercise is an indirect activator of smooth muscle constriction induced by 

airway dehydration and subsequent mediator release.69  Exercise challenge testing is 

preferentially performed using a treadmill or cycle ergometer as described in detail by 

ATS, although the protocols are not well standardized or uniformly implemented.67  

Briefly, 6-8 minutes of exercise (4-6 minutes at a pre-determined target intensity) should 

be completed while breathing cool (<25ºC) dry air.  The primary outcome measure for an 

exercise challenge is FEV1.  A post-exercise decreased in FEV1 >10% is considered 

abnormal and a decrease >15% is indicative of exercise-induced bronchoconstriction.  

1.4.3 Inflammation 

1.4.3.1 FeNO 

Nitric oxide (NO) is produced in the lungs and can be detected in the exhaled breath of 

humans, as first described in 1991.70  Although the exact pathophysiological role of NO in 

the lung is complex and poorly understood, its production increases in the presence of 

inflammation.71  The relationship between NO and eosinophilic airway inflammation has 

been extensively studied and has been correlated with blood eosinophils and eosinophils 

present in induced sputum, bronchoalveolar lavage and biopsies.72-77  Fractional exhaled 

nitric oxide (FeNO) is a well-established, simple, noninvasive and highly reproducible 

quantitative biomarker of eosinophilic airway inflammation that is ideally suited for serial 

monitoring of patients with airways disease.  Among the most important clinical 
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applications of FeNO are its ability to aid in the diagnosis of eosinophilic asthma and to 

predict corticosteroids-responsiveness.  Asthmatics have higher levels of NO in their 

exhaled breath as compared to healthy controls.78,79  Although not all asthmatics have 

eosinophilic inflammation, those who do tend to have elevated FeNO levels and are much 

more likely to benefit from inhaled corticosteroid (ICS) therapy than those with normal 

FeNO levels.80  According to the 2011 ATS recommendations, FeNO < 25 ppb indicates 

that eosinophilic inflammation and responsiveness to corticosteroids are unlikely, whereas 

FeNO > 50 ppb indicates that eosinophilic inflammation and responsiveness to 

corticosteroids is likely.81  Intermediate values (≥ 25 and ≤ 50 ppb) should be interpreted 

with caution.  Currently, a clinically important difference in FeNO levels has not been 

determined.  Standardized for clinical use, ATS/ERS guidelines for the measurement of 

FeNO have been published.82,83  

1.4.4 Validated Questionnaires 

1.4.4.1 Asthma Control Questionnaire 

The Asthma Control Questionnaire (ACQ)84 was designed to measure asthma control and 

the change in asthma control over time or in response to treatment.  It has been widely 

adopted as a clinical trial endpoint.85-87  The questionnaire evaluates control during the 

previous week and contains five symptom-related questions (night awakenings by 

symptoms, symptoms on waking, activity limitation, dyspnea and wheeze), pre-

bronchodilator FEV1%pred and daily rescue bronchodilator use, each scored on a seven-

point scale.  The ACQ score is calculated as the mean of five, six or seven questions to 

generate the ACQ-5 score (pre-bronchodilator FEV1%pred and daily rescue bronchodilator 

use omitted), ACQ-6 score (pre-bronchodilator FEV1%pred omitted) and ACQ-7 score 

respectively.  Scores range from zero (totally controlled) to six (severely uncontrolled).  

Asthmatics whose score ranges from 0.0 to 0.75 are considered well-controlled and those 

whose score is >1.5 are poorly-controlled.88  The cross-over point between well-controlled 

and poorly-controlled asthma is near 1.0, therefore asthmatics whose score ranges from 

0.75 to 1.5 fall into a ‘grey zone’ and should be interpreted with caution.88  The minimum 

clinically-important difference is 0.5.89   
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In addition to the ACQ, there are numerous additional questionnaires used to evaluate 

asthma control.  Some of the more common questionnaires are the Asthma Control Test 

(ACT), the Asthma Control Scoring System (ACSS), the Asthma Therapy Assessment 

Questionnaire (ATAQ), the 30-Second Asthma Test and Lara Asthma Symptom Scale 

(LASS).  

1.4.4.2 Standardized Asthma Quality of Life Questionnaire  

The Standardized Asthma Quality-of-Life Questionnaire (AQLQ(S))90 was designed to 

measure asthma-related quality-of-life.  The questionnaire evaluates quality-of-life during 

the previous two weeks and consists of 32 questions encompassing four subscore domains 

(12 questions on symptoms; 11 questions on activity limitation; 5 questions on emotional 

function and 4 questions on exposure to environmental stimuli).  A range of matters are 

assessed including activity limitation, amount of discomfort due to chest tightness, concern 

about having asthma, fear of not having access to asthma medication and symptoms from 

exposure to cigarette smoke.  Four different seven-point Likert-type response scales are 

used, ranging from one (totally limited/a very great deal/all of the time/severely limited, 

most not done) to seven (not at all limited/none/none of the time/not limited, have done 

all).  The AQLQ total score is calculated as the mean of all 32 questions and the domain 

subscores are the mean of the questions in the domain.  The minimum clinically-important 

difference is 0.5,91 although the validity of this threshold is still being discussed.  

Importantly, the AQLQ(S) has been widely adopted as a clinical trial endpoint.92 

The AQLQ preceded the AQLQ(S) and there are now additional variations including the 

Mini Asthma Quality of Life Questionnaire (Mini AQLQ) and Acute Asthma Quality of 

Life Questionnaire (Acute AQLQ).  In addition to the various AQLQ instruments, there 

are numerous additional questionnaires used to evaluate asthma-related quality-of-life.  

Some of the more common questionnaires are the Asthma Bother Profile (ABP), Asthma 

Impact Survey (AIS-6), Living with Asthma Questionnaire (LWAQ), Modified Asthma 

Quality of Life-Marks (M-AQLQ-Marks), Asthma Short Form (ASF), St. George’s 

Respiratory Questionnaire (SGRQ) and Airways Questionnaire-20 (AQ-20). 
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1.4.4.3 Dyspnea 

Dyspnea is a common symptom of asthma and the Modified Medical Research Council 

(mMRC)93 and Borg dyspnea scales94 are commonly used to assess it severity.  The 

Modified Medical Research Council dyspnea scale is one of the most commonly used 

questionnaires to assess dyspnea.  It uses a simple five-point scale which assesses the 

impact or burden of dyspnea on the patient.  Scores range from zero (breathless with 

strenuous exercise) to four (too breathless to leave the house, or breathless when dressing).  

Similarly, the modified 0-10 Borg dyspnea scale assesses how patients perceive their 

severity of dyspnea using a simple 10-point scale, with scores ranging from zero (nothing 

at all) to ten (maximal).   

1.5   Diagnosis and Classification of Asthma 

Asthma is particularly challenging to diagnose and classify due to its multiple overlapping 

pathologies that are heterogeneous between individuals (Figure 1-8).95  Although 

spirometry is most often employed to diagnose asthma, it is difficult to use spirometry to 

further classify asthma into respective phenotypic categories. With the advent of novel 

biomarkers, such as FeNO, accurate classification of asthma sub-phenotypes is possible.95  

As depicted schematically in Figure 1-8, a multifaceted approach and a gamut of 

biomarkers is required to accurately diagnose and subsequently classify asthma.96   

 

 

Figure 1-8  Asthma is a heterogeneous disease consisting of several overlapping pathologies 

necessitating multiple biomarkers to accurately diagnose and phenotype patients. 

Adapted from SJ Wadsworth, J Asthma Allergy 2011.  
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1.5.1 Asthma Diagnosis 

A history of variable respiratory symptoms, the presence of airflow obstruction or 

hyperresponsiveness, reversibility of obstruction and exclusion of alternative diagnoses 

constitutes a positive diagnosis of asthma.1,2  Respiratory symptoms indicative of asthma 

include a combination of wheeze, dyspnea, chest tightness and cough that are temporally 

intermittent and tend to worsen at night.1,2  In reality, asthma is still commonly diagnosed 

on the basis of symptoms alone.  In Ontario, Canada, only 43% of asthmatics diagnosed 

by a physician performed spirometry.97  Failure to include objective assessments in the 

diagnostic process is likely contributing to  overdiagnosis; evidence of this was observed 

in a longitudinal study across eight Canadian cities that concluded approximately 33% of 

individuals with a physician diagnosis of asthma did not have asthma when objectively 

assessed.98  Ideally, a diagnosis should be rendered through evaluation of the patient’s 

respiratory symptoms, medical history, physical examination and spirometry.1,2  

Independently, symptoms, medical history and physical exams cannot accurately exclude 

and/or confirm a diagnosis of asthma.  Spirometry is absolutely required to objectively 

assess airflow obstruction, its severity and reversibility.96  Accordingly, spirometry should 

be performed prior to and following inhalation of a short-acting bronchodilator to indicate 

the degree of obstruction and reversibility according to ATS/ERS standards.65  

Common differential diagnoses include chronic obstructive pulmonary disease, alternative 

upper airway diseases (e.g. rhinitis) and obstructions involving the large (e.g. vocal cord 

dysfunction) and small airways (e.g. bronchiolitis).2   

1.5.2 Asthma Control 

Asthma control refers to the extent that symptoms of asthma can been reduced or removed 

by treatment.17  Control encompasses two domains: current clinical control and future risk 

of exacerbations and lung function decline.17  Symptom control is gauged by evaluating 

the frequency of day-time symptoms, night-time symptoms, short-acting beta-agonist 

(SABA) use and activity limitation.  Risk is gauged by evaluating the frequency and 

severity of previous exacerbations.  Taken together, a patient’s asthma is considered to be 

well-controlled if he/she is symptom free without activity limitation or exacerbations and 

does not experience variable lung function.  As described above, multiple standardized 
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questionnaires have been designed to assess the degree of asthma control.  Some of the 

most commonly used questionnaires are the ACQ and ACT.  There is no general consensus 

between national and international guidelines regarding degrees of asthma control.  For 

example, the GINA report of 2015 used categories of “well-controlled,” “partly-

controlled” and “uncontrolled;”1 whereas the National Heart, Lung, and Blood Institute 

(NHLBI) ERP3 used “well-controlled,” “not well-controlled” and “very poorly-

controlled.”2  Regardless, the primary goal of asthma treatment is the achievement and 

maintenance of disease control.  

1.5.3 Asthma Severity 

Asthma severity can be defined by the intensity of treatment required to control asthma.17,99  

Severity can be classified as intermittent, mild, moderate and severe according to the lowest 

level of treatment required to achieve asthma control.  Shown below in Table 1-1, 

intermittent, mild, moderate and severe asthma is asthma that is well-controlled while 

receiving the indicated treatment regimen.  The indicated treatment regimens can be 

extrapolated to reflect the six-step and five-step treatment strategies proposed by the 

NHLBI100 and GINA,1 respectively.  Severe asthma is defined as asthma which requires 

treatment with high dose ICS and LABA (and/or OCS) to achieve asthma control, or 

asthma that remains uncontrolled despite maximum therapy.101  As defined, asthma 

severity can only be assessed after a patient has been on regular controller treatment for 

several months.  

Table 1-1  Classification of asthma severity. 

 Intermittent Mild Moderate Severe 

Lowest level of 
treatment required 
to achieve control  

SABA as 
needed 

Low-dose ICS or 
other low intensity 

treatment 

Low- to moderate-
dose ICS and 

LABA 

High dose ICS 
and LABA ± 

OCS 

Treatment strategy Step Allocation 

NHLBI EPR3100 1 2 3 or 4 5 or 6 
GINA1 - 1 or 2 3 4 or 5 

NHLB, Expert Panel Report 3 of the National Heart, Lung and Blood Institute; GINA, 

Global Initiative for Asthma; ICS, inhaled corticosteroids; LABA, long acting beta-

agonists; OCS, oral corticosteroids.  Adapted from DR Taylor, Eur Respir J 2008.99   
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1.6   Treating Asthma 

Similar to the majority of chronic lung diseases, no existing asthma treatments are 

preventative or curative.  Accordingly, the primary goal of asthma treatment is the 

achievement and maintenance of disease control while minimizing the risk of future 

exacerbations or lung function decline.  The majority of asthma can be well-controlled 

using a SABA for rescue during acute onset bronchoconstriction and ICS for chronic 

control.  However, as asthma severity is increased, treatment becomes more complex and 

requires personalized, phenotype-specific additive therapies.  

Towards the goal of asthma treatment, evidence-based stepwise approaches have been 

developed by the NHLBI100 and GINA1 (Figure 1-9) to guide treatment decisions. Both 

guidelines suggest that a continuous control-based management cycle (Figure 1-9), 

consisting of iterative patient assessment, treatment and review is necessary to ensure 

asthma is adequately treated.  Following each assessment, treatment can be “stepped-up” 

when asthma in not well-controlled and “stepped-down” when asthma is well-

controlled.102  The breadth of asthma medications can be categorized as controllers, 

relievers and add-on therapies.  Corticosteroids, beta-agonist bronchodilators, 

theophylline, leukotriene receptor antagonists, immunomodulators and bronchial 

thermoplasty are briefly described below. 
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Figure 1-9  2015 GINA stepwise approach to asthma treatment. 

ICS, inhaled corticosteroids; SABA, short-acting beta2-agonists; LABA, long-acting beta-

agonists; OCS, oral corticosteroids; anti-IgE, anti-immunoglobin E therapy; theoph, 

theophylline; LTRA, leukotriene receptor antagonists.  

Adapted from GINA Global Strategy for Asthma Management and Prevention, 2015.1 

 

1.6.1 Controller & Reliever Treatment  

1.6.1.1 Corticosteroids 

Corticosteroid anti-inflammatory therapy is the most effective therapy for asthma.1,2  

Corticosteroids block various inflammatory pathways, suppressing cytokine production, 

recruitment of eosinophils and the release of inflammatory mediators.41  In the 1990s, their 

efficacy was evidenced by their ability to safely reduce airflow obstruction, symptoms, 

emergency department visits, hospitalizations and asthma-related deaths, to improve 

asthma control and quality-of-life and to decrease airway hyperresponsiveness and 

exacerbation frequency.103-107  Response to this treatment is variable between asthmatics 

and is related to the type of underlying inflammation.  Asthmatics with neutrophilic 

predominant inflammation are commonly corticosteroid-resistant;108 whereas asthmatics 

with eosinophilic predominant inflammation are predominantly corticosteroid-responsive.  

As an independent controller medication, ICS demonstrate superiority over other controller 
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medications in placebo-controlled trials.109,110  Commonly used ICS include 

beclomethasone, budesonide, ciclesonide, fluticasone, mometasone and triamcinalone.   

As many as 30% of severe asthmatics require daily oral systemic corticosteroids (OCS) as 

additive maintenance therapy, with 50% requiring more than three bursts of OCS 

annually.111  Due to the well-documented negative side-effects of chronic OCS use, they 

are only recommended as an add-on treatment for severe asthmatics who remain poorly 

controlled despite high-dose ICS and long-acting beta-agonists (LABA).1,2  OCS are more 

commonly used in short bursts (3-7 days) during an exacerbation to gain control of 

symptoms as they speed the resolution and prevent relapse of exacerbations.112,113  

1.6.1.2 Beta-agonist Bronchodilators  

Short-acting and long-acting beta-agonists (SABA and LABA, respectively) are the most 

commonly used bronchodilators for treating asthma.  SABAs, such as salbutamol, are a 

highly-effective reliever of acute bronchoconstriction in mild, moderate and severe asthma.  

LABAs, salmeterol and formoterol, cause bronchodilation for greater than 12 hours114 and 

are used in combination with ICS for long-term control in moderate and severe asthma.  

The clinical benefit of monotherapy therapy with SABA and LABAs is inferior to that of 

ICS and has been linked to adverse outcomes,115 accordingly LABAs are rarely used 

independently.  When used in combination with ICS, LABAs have an additive effect, 

improving lung function and symptom control.116,117  The effects of beta-agonists are the 

result of their binding to beta-adrenoceptors, present on airway smooth muscle, epithelial 

and inflammatory cells.  Its major mechanism of action is initiated when beta-

adrenoceptors on the airway smooth muscle are stimulated, increasing cyclic AMP, which 

causes the smooth muscle to relax.  The variable rate of onset and the duration of effect 

between SABAs and LABAs is due to their hydrophilic and lipophilic characteristics that 

govern their interaction with beta-adrenoceptors.114 

1.6.2 Add-on Treatments  

1.6.2.1 Theophylline  

Low-dose theophylline, is a relatively weak bronchodilator that may have an anti-

inflammatory and immunomodulatory effect.41  Due to the availability of safer and more 



27 

 

effective treatments, such as ICS and beta-agonists, theophylline is considered an 

alternative controller option or add-on treatment.1,2,118  The clinical benefit of adding 

theophylline to ICS treatment was found to only minimally improve lung function.119  The 

clinical utility of theophylline is complicated due to its toxicity and associated side-effects 

at effective doses, which is particularly problematic as its bronchodilator effect is dose-

dependent.  Despite guideline recommendations, theophylline is one of the most prescribed 

medications for asthma internationally because of its low cost.  This relates to its use in 

developing nations where access to superior and more expensive alternatives is limited.  

1.6.2.2 Leukotriene Receptor Antagonists (LTRAs)  

LTRAs reduce bronchoconstriction and inflammation in response to various stimuli; they 

are considered an alternative first-line therapy, but are most commonly used as add-on 

treatment.1,2  Leukotrienes are biochemical mediators that are released from inflammatory 

cells such as mast cells, eosinophils and macrophages in response to various stimuli.41,120 

Binding of cysteinyl-leukotrienes to cysteinyl-leukotrienes receptors results in smooth 

muscle constriction, mucus secretion, edema and inflammation.41,120 For the treatment of 

asthma, montelukast (Singulair) is the most commonly used LTRA, blocking the effect of 

cysteinyl-leukotrienes receptors.  LTRAs are considered an alternative first-line therapy as 

they are less effective than ICS when used independently.121  In a multicentre, randomized, 

double-blind, placebo-controlled trial, montelukast improved airway obstruction, 

exacerbations, control and blood eosinophils in stable asthma.122  In a subsequent trial, the 

clinical benefit of adding montelukast to ICS treatment was found to be as effective as 

doubling the ICS dose.123  Multiple studies have concluded that adding LTRA to ICS 

results in comparable124 or worse outcomes125,126 than achieved by adding LABA to ICS.127  

1.6.2.3 Anticholinergic bronchodilators 

Anticholinergic bronchodilators are considered a clinically valuable add-on treatment for 

the treatment of asthma.  Anticholinergic agents inhibit cholinergic activity by competing 

with acetylcholine at muscarinic receptors to permit dilation of the airways.41  

Acetylcholine, which acts through muscarinic receptors, is a key player in the regulation 

of airway smooth muscle tone and mucus gland secretion.128  Studies evaluating the 

efficacy of Tiotropium Bromide (Spiriva), a long-acting muscarinic antagonist, reported 
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improved lung function and symptoms, reduced frequency of SABA use and reduced risk 

of future exacerbations in asthmatics taking ICSs and LABAs.129-131    

1.6.2.4 Immunomodulators  

Immunomodulator is an umbrella term used to encompass many different pharmaceutical 

agents aimed at modulating cell signalling and the immunologic responses in asthma.  

Omalizumab, a monoclonal antibody that interrupts the allergic cascade by binding free 

immunoglobulin E (IgE), is considered a phenotype-guided add-on treatment for allergic 

asthma that cannot be well-controlled with ICS.1,2  In patients with moderate-to-severe 

allergic asthma, large-scale clinical trials have proven omalizumab reduces exacerbations 

and symptoms, improves quality-of-life and has a steroid-sparing effect.132-135  In 

subsequent trials, adding omalizumab to ICS treatment was proven clinically beneficial 

due to further improved lung function and a reduction in exacerbations.  While omalizumab 

is the only immunomodulator currently integrated into treatment guidelines, numerous 

clinical trials have emerged to evaluate novel pharmaceutical agents engineered to target 

various pathways important to the pathogenesis of asthma.  Potential new treatments 

include: anti-interleukin 5 (IL-5) antibodies, mepolizumab136 and reslizumab;87 anti-IL-13 

antibodies, lebrikizumab137 and tralokinumab;138 anti-TNF-α antibody, golimumab;139 

tyrosine kinase inhibitor, masitinib;140 IL-2Rα antibody, daclizumab;141 and CXCR2 

antagonist, SCH527123.142    

1.6.2.5 Bronchial Thermoplasty 

Bronchial thermoplasty is a novel nonpharmacological outpatient treatment procedure for 

severe asthma.  During three bronchoscopy sessions, radiofrequency energy is delivered to 

all of the bronchopulmonary segments to disrupt bronchial smooth muscle.143  The effect 

of this procedure is a reduction in airway smooth muscle mass in the treated airways, 

resulting in a reduced potential for bronchoconstriction.144,145  The safety and efficacy of 

bronchial thermoplasty have been evaluated in numerous clinical trials, including a multi-

centre, randomized, double-blinded, sham-controlled trial, that together demonstrated 

improved asthma control, quality-of-life, and decreased exacerbation frequency, 

hospitalizations and ED visits following treatment.86,146,147  The long-term effectiveness 

was recently evaluated and reduced hospitalizations and exacerbation frequency were 
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shown to persist five years after treatment.148,149  Despite its excellent safety and efficacy 

profile, the worldwide literature consists of only about 200 patients who have received this 

treatment.  

1.7   Imaging Asthma 

Currently, the clinical use of imaging in asthma is minimal and largely confined to chest 

radiography and x-ray computed tomography (CT).  Through research initiatives, novel 

imaging biomarkers of lung structure and function have been developed, many of which 

have the potential to impact asthma diagnosis, management and evaluation of treatment 

effect.  X-ray CT, single photon emission computed tomography (SPECT), positron 

emission tomography (PET) and MRI based techniques can be used to non-invasively 

evaluate regional ventilation.  Imaging has provided valuable insight into the underlying 

disease mechanisms of asthma, and will be discussed below.  

1.7.1 Plain X-ray 

The chest radiograph (Figure 1-10) is the oldest and most common type of image used to 

evaluate the lung as it is relatively inexpensive and fast.  Unfortunately, the utility of chest 

radiographs is limited as they are two-dimensional projection images of the three-

dimensional anatomy and are therefore limited by tissue superimposition.  A posterior-

anterior chest radiograph is obtained with the patient standing upright, with the x-ray 

source positioned behind them so that the x-ray beam enters from the posterior side and 

exits the anterior side of the patient.150  Different anatomical structures absorb x-rays to 

different extents and this is termed attenuation, the principle behind the contrast in an x-

ray image.150  Highly attenuating tissues such as bone absorb many x-rays and appear white 

on an x-ray image.  In contrast, low attenuating tissues such as lung parenchyma absorb 

very few x-rays and therefore appear black on an x-ray image.  The radiation dose 

associated with a typical posterior-anterior chest radiograph is 0.01 mSv,151 approximately 

equivalent to 0.6% of the annual background radiation in Toronto, Canada (1.6 mSv).    

Chest radiographs are rarely useful in the diagnosis and management of asthma as they are 

often normal.  However, their strength lies in the ability to reveal complications or 

alternative causes of “asthma-like symptoms.”  A study by Paganin and colleagues 

concluded that only 38% of chest radiographs were abnormal in adults with chronic 
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asthma.152  Radiographic findings associated with asthma are generally subtle and they 

include increased lung volume, increased lung lucency and bronchial wall thickening.153  

Increased lung volume or hyperinflation is the most common radiographic observation and 

is seen as increased lung length and flattening of the diaphragm (Figure 1-10).41  The 

prevalence of bronchial wall thickening identified on chest radiographs has been related to 

asthma severity.152  

 
Figure 1-10  Representative posterior-anterior chest radiograph of a healthy volunteer and 

an asthmatic subject. 

In asthma, diaphragm flattening is indicative of hyperinflation.  Healthy case courtesy of 

Dr. Usman Bashir, Radiopaedia.org, rID: 18394; Asthma case courtesy of Dr. Garth 

Kruger, Radiopaedia.org, rID: 21812. 

 

1.7.2 X-ray Computed Tomography 

Since its advent in the 1970s, x-ray CT has become the imaging modality of choice for the 

evaluation of pulmonary disease.  Through technological advancements, the entire lung 

volume can now be captured with sub-millimetre isotropic spatial resolution in a single 

breath-hold using multiple-row detector CT scanners.154  This increased spatial resolution 

and the potential for isotropic voxels permit multi-planar and three-dimensional 

reconstructions.155  Similar to plain radiography, the attenuation properties of tissues 

govern image contrast in x-ray CT.  In CT however, attenuation values are measured in 
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Hounsfield units (HU) and range from -1000 HU for air, 0 HU for water and to 

approximately 700 HU for bone.155   

CT of asthmatic subjects have shown abnormal findings such as bronchial wall thickening, 

bronchial wall dilation, luminal narrowing, bronchiectasis, mosaic lung attenuation, mucus 

plugging and atelectasis (Figure 1-11).152,156  In asthma research studies, CT has been used 

extensively to directly evaluate the large airways and to indirectly evaluate the small 

airways (<2mm).  As detailed below, CT-derived metrics are correlated with clinical 

symptoms and are highly sensitive to treatment response.  Gupta and colleagues used CT 

to evaluate 185 severe asthmatics and reported that abnormalities were present in 80% of 

study participants.157   

 
 

Figure 1-11  Axial CT of the right lower lobe in two representative asthmatics. 

At baseline (panel A), after inhalation of methacholine (panel B) and then salbutamol 

(panel C) there are visually obvious variations in bronchial lumen diameters (highlighted 

by white arrow) consistent with bronchoconstriction and subsequent bronchodilation.158  In 

a separate asthmatic (panel D) mosaic attenuation due to air-trapping is observed.159 

Reproduced with permission from Beigelman-aubry et al (2002)158 and Sung et al 

(2007).159  

 

The architecture of the large airways is assessed by quantifying metrics similar to those 

employed in histological studies such as the airway wall area percent (Equation 1-7), 

airway wall thickness percent (Equation 1-8) and airway lumen area.  Initial airway 

quantification techniques relied on manual tracing; however, due to the obvious limitations 

of this approach, semi-automated and automated computer-based approaches have since 

been developed.  Three-dimensional approaches enable up to ten generations of the airway 
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tree to be segmented, and reliable quantification can be achieved for first to sixth generation 

airways.154,160  Furthermore, automated three-dimensional approaches allow for the 

identification of airways using standardized clinical nomenclature, as demonstrated in 

Figure 1-12.160   Awadh and colleagues were the first to quantify airway wall thickness in 

the segmental and sub-segmental airways of asthmatics and healthy controls using a 

manual approach.  They reported that asthmatics had a greater airway wall thickness as 

compared to controls and that wall thickness was increased with increasing asthma 

severity.161  Subsequent investigations have compared airway measurements in normal and 

asthmatic subjects using various quantification techniques and their results support the 

initial findings by Awadh et al.162-167  Furthermore, CT airway measurements have been 

correlated with asthma severity,167-169 airflow obstruction,162,164,167,168,170 airway 

hyperresponsiveness163,168,171 and pathology.168  Following interventions such as deep 

inspiration,172 methacholine challenge166 and ICS therapy,165,173,174 the airways have been 

shown to behave in the expected direction.  

Equation 1-7 

Wall Area Percent [%] = 
Airway wall area

Total airway area
×100 

Equation 1-8 

Wall Thickness Percent [%] = 
Airway wall thickness

Airway outer diameter
×100 

   

 

Figure 1-12  Three-dimensional quantitative CT of the lungs and airways in asthma.  

Coronal CT (left panel) and the corresponding three-dimensional rendering of the lung and 

airway tree using Pulmonary Workstation 2.0 (VIDA) (middle panel). The trachea, left 
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main bronchus and left upper lobe bronchus pathway is highlighted (in blue) and the 

segmental LB3 airway is quantified (right panel).  In cross-section, the pathway and LB3 

airway boundaries are outlined in red.   

 

The small airways (<2mm) cannot be directly evaluated using CT as they are beyond the 

current spatial resolution limit of the technique.  However, air trapping in asthma is thought 

to be an indirect measure of small airway obstruction and can be visualized as 

heterogeneous regions of low attenuation on CT (Figure 1-11).  As expected, regions of 

low attenuation are more apparent on expiratory as compared to inspiratory scans. Various 

metrics have been used to quantify the extent of air trapping on CT and these include 

scoring systems, threshold and percentile techniques and lung density expiratory to 

inspiratory ratios.  Threshold techniques use a specific threshold of HU (e.g. -950 HU, -

910 HU, -856 HU) and the percentage of the lung less than this threshold is calculated.175  

Percentile techniques require a specific percentile point (e.g. lowest 15th percentile) to be 

selected and the HU value for the corresponding percentile is determined.175  Using various 

CT-derived gas trapping metrics, investigators have observed significantly elevated gas 

trapping in asthmatics over healthy controls.158,176  Other investigators correlated CT 

measurements of gas trapping in asthma with asthma severity,177 airflow 

obstruction,170,176,178 airway hyperresponsiveness and disease duration.178  Zeidler and 

colleagues performed a double-blinded, cross-over study to compare the effect of 

montelukast versus placebo on small airway function in mild-to-moderate asthma.  

Compared to placebo, montelukast resulted in significantly less air trapping on CT.179  

Moreover, other interventional studies have shown that air trapping on CT worsens 

following methacholine158 and improves following treatment with ICS.180,181  These studies 

similarly concluded that CT is a more sensitive method to assess treatment response in the 

small airways than conventional lung function tests.  

In addition to providing rich qualitative and quantitative structural information regarding 

the airways and lung parenchyma, functional assessments of ventilation and perfusion are 

also possible with novel CT techniques.  Introduced in the late 1980s, xenon ventilation 

CT182 is a technique used to non-invasively measure regional pulmonary ventilation in lung 

diseases.  CT is performed after the participant inhales radiodense xenon and ventilation 

can in turn be assessed because the airspaces that contain xenon have increased CT density 
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in comparison to those that do not.183  However, this technique is limited as xenon 

enhancement is poor and this has motivated xenon ventilation imaging using a dual-energy 

CT based approach.  Using dual-energy CT, Chea and colleagues observed ventilation 

defects in 80% of stable asthmatics who had significantly worse airflow obstruction and 

thicker airway walls than asthmatics without defects.183  Using the same approach, another 

group of investigators observed an increase in xenon ventilation defects following 

methacholine that resolved following salbutamol inhalation.184  

Despite the rich qualitative and quantitative structural and functional information that CT 

can provide, it is disadvantaged due to its use of ionizing radiation.  The radiation dose 

associated a clinical chest CT is approximately 8 mSv,151 equivalent to roughly five years 

of background radiation in Toronto, Canada (1.6 mSv) or 400 plain chest radiographs.  This 

becomes a major concern in asthma research and patient care as serial imaging capabilities 

are necessary for disease management and the evaluation of response to treatment or 

intervention.
 
 

1.7.3 Nuclear Medicine 

Gamma Scintigraphy & Single Photon Emission Computed Tomography (SPECT) 

Scintigraphy and SPECT can be used to regionally evaluate perfusion and ventilation in 

the lungs.  Following the injection or inhalation of a radionuclide tracer, gamma radiation 

is used to form an image of radioactivity within the body.  Radionuclide tracers emit 

gamma rays at a specific energy that can be detected by a gamma camera that converts 

absorbed energy into an electrical signal that can be displayed as an image.  Accordingly, 

regions of high radionuclide concentration appear as hot spots on the image.  Similar to 

how x-ray CT compares to plain x-ray, SPECT compares to scintigraphy.185  Scintigraphy 

uses gamma radiation to form two-dimensional images of radioactivity within the body, 

whereas SPECT offers a three-dimensional image.   

A tracer that is radioactive itself or labelled with a radionuclide is required.185  For regional 

imaging of ventilation, radioactive gases, radioactively-labelled aerosols and Technegas 

can be used.185  The most commonly used radioactive gases are xenon-133 (133Xe) and 

krypton-81m (81mKr).  The radionuclide technetium-99m (99mTc) is used as 99mTc-
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diethylene-triamine pentaacetate (DTPA) aerosol and Technegas.185  The inhaled 

deposition of Technegas has been shown to be similar to the distribution of inhaled 133Xe 

gas, and is preferred as its deposition within the lungs remains unchanged for more than 20 

minutes.186 

Scintigraphy using inhaled 133Xe gas was the first method to identify regional ventilation 

abnormities in asthma.187,188  Engel and colleagues were the first investigators to show the 

effect of methacholine-induced bronchoconstriction on regional ventilation.189  Nearly ten 

years later, the effect of histamine-induced bronchoconstriction on ventilation was 

observed.190  In the late 1990s, King and colleagues began to measure ventilation in asthma 

using SPECT and an inhaled bolus of Technegas.  As hypothesized based on previous 

scintigraphy studies, ventilation was compromised in asthmatics compared to healthy 

controls.191  Using the same technique, the investigators subsequently observed increased 

ventilation abnormalities following methacholine challenge in asthma.192  Importantly, the 

team demonstrated a link between ventilation defects and peripheral airways disease 

measured by MBNW.192  Not necessarily representative of ventilation, SPECT has been 

used extensively in research to investigate the regional deposition of inhaled aerosols when 

labelled with the radionuclide 99mTc.193,194  

Similar to x-ray based imaging methods, an obvious limitation of SPECT is its 

radionuclide-dependent radiation exposure.  A lung ventilation-perfusion study using 

99mTc exposes the subject to an effective dose of 2-3mSv.185  Furthermore, SPECT suffers 

from poor spatial resolution (~15mm) and motion artifact due to long acquisition times.  

Positron Emission Tomography (PET) 

Similar to SPECT, PET offers three-dimensional images of radioactivity and requires the 

injection or inhalation of a positron-emitting radioisotope.  As the radioisotope decays 

within the patient, positrons are emitted and then quickly annihilated when they come into 

contact with an electron.  As a result, two photons are emitted approximately 180º to one 

another.195  The emitted photons can be detected and a three-dimensional map of 

radioactivity can be reconstructed to generate a PET image.195    

Regional ventilation, perfusion and ventilation/perfusion matching can be assessed with 

nitrogen-13 (13NN) PET following bolus injection or inhalation of 13NN.  13NN has a half-
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life of ten minutes and is not soluble in blood or tissue.195  The bolus injection technique is 

used to deliver 13NN to the lung via the bloodstream.  Accordingly, unventilated lung 

regions, termed ventilation defects, retain the tracer due to gas trapping whereas the tracer 

is quickly washed out of ventilated lung regions.  Conversely, when the alternative 

inhalation technique is used, the tracer does not reach poorly-ventilated regions of the 

lungs.  Intravenous bolus injection of 13NN was used by Venegas and colleagues in a study 

evaluating the effect of methacholine-induced bronchoconstriction on regional ventilation 

in mild-to-moderate asthmatics.196  Following bronchoconstriction, the investigators 

observed regions of poor ventilation.196  Using the same technique, similar results were 

observed in mild asthmatics but in a subsequent study, lung perfusion was shown to 

redistribute away from ventilation defects.197  The effect of omalizumab treatment on 

ventilation and ventilation/perfusion matching metrics was assessed in a small group of 

uncontrolled allergic asthmatics but no effect was observed.198   

18F-fluorodeoxyglucose (FDG) is the most commonly used PET tracer in clinical practice 

due to its high uptake by metabolically active cells, such as cancer cells.154  Interest has 

surrounded the utility of FDG-PET as a biomarker of eosinophilic and neutrophilic 

inflammation in the lungs of asthmatics.199,200  Future work is required to determine the 

utility of this approach in asthma.  

1.7.4 Magnetic Resonance Imaging 

MRI does not require ionizing radiation and, due to this obvious advantage, the past 25 

years have seen an accelerated development of pulmonary MRI.  However, conventional 

1H MRI has numerous inherent limitations that have motivated the development of 

alternative inhaled gas contrast methods since the 1990s.  Oxygen-enhanced, fluorinated 

gas and hyperpolarized gas MRI are capable of imaging lung structure and function.  Of 

these techniques, hyperpolarized gas MRI has been most widely applied in pulmonary 

research; however, despite its utility, clinical translation has been slow.   

1.7.4.1 Conventional 1H MRI 

Conventional 1H MRI is challenging due to the lung’s inherent properties.  Primarily 

consisting of air, the density of the human lung is approximately 0.1 g/cm3, making it the 

least dense organ in the body201.  Accordingly, the lungs inherently low 1H density 
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translates to low 1H MRI signal intensity.  Furthermore, the lung consists of millions of 

alveoli or air-tissue interfaces.  These numerous air-tissue interfaces create significant local 

magnetic field inhomogeneities referred to as susceptibility artifacts, further inducing 1H 

MRI signal loss.201  Finally, due to cardiac and respiratory motion, the images are highly 

susceptible to motion artifacts.  Due to these limitations, as shown in Figure 1-13, the lungs 

appear as black holes and resultantly healthy and asthmatic lungs are relatively 

indistinguishable using conventional 1H MRI sequences.    

 

Figure 1-13  Representative coronal conventional 1H MRI of a healthy volunteer and an 

asthmatic subject. 

Due to the low 1H density within the lung, 1H MRI cannot visually distinguish structural 

abnormalities inherent to the asthmatic lung.   

 

Despite these shortcomings, alternative and potentially more sensitive 1H MRI techniques 

such as ultra-short echo time (UTE),202 oxygen-enhanced203 and Fourier decomposition204 

methods have been developed.  Advantageously, both oxygen-enhanced and Fourier 

decompositions methods provide functional information, offering insight into ventilation 

and perfusion characteristics.  Even with the advent of these alternative techniques, the 

application of 1H MRI in asthma has been limited.  Static and dynamic oxygen-enhanced 

MRI methods have been used to assess oxygen delivery, uptake and washout in asthma.205-

208  Oxygen-enhanced MRI metrics are sensitive to asthma severity205-207 and correlate with 
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FEV1.
207  Most recently, the oxygen transfer function has been shown to decrease in asthma 

subjects after a segmental endobronchial allergen challenge and was correlated with 

bronchoalveolar lavage eosinophil counts.208  Although yet to be evaluated in asthma, 

Fourier decomposition MRI allows lung perfusion and ventilation to be assessed, and 

preliminary studies have demonstrated excellent feasibility and reproducibility in healthy 

volunteers and subjects with respiratory disease.204,209-211  Similarly, UTE methods have 

not been evaluated in subjects with asthma.  However, in a murine asthma model UTE 1H 

MRI was used to quantify peribronchial eosinophilic inflammation that correlated with 

lung function parameters.212    

1.7.4.2 Inhaled Gas MRI 

Over the past two decades, MRI using inhaled hyperpolarized and fluorinated gases has 

been used to investigate lung function and structure in healthy volunteers and subjects with 

pulmonary disease.  Thus far, the field of inhaled gas MRI has been dominated by 

hyperpolarized gas techniques, using 129Xe and 3He.  Unlike conventional 1H MRI, 

specialized polarizer equipment and multinuclear radio-frequency hardware are necessary.  

Furthermore, this approach requires the subject to inhale an anoxic gas mixture and 

perform a short breath-hold (8-14 seconds) during image acquisition.  The field slowly 

began to take shape following the seminal investigation by Albert and colleagues who 

produced the first hyperpolarized 129Xe MR images of excised mouse lungs.213  Using spin-

exchange optical pumping, Albert and colleagues recognized that the longitudinal 

polarization of 3He and 129Xe gas nuclei could be increased by approximately 100,000 

times.214  This strong signal makes it possible to acquire data from the hyperpolarized gas 

itself once inhaled by the patient. 

The process of polarization is achieved by spin-exchange optical pumping, circularly 

polarized light bombards a glass cell housing rubidium and a noble gas situated within a 

helmholtz coil.215  The circularly polarized light is absorbed by the rubidium atoms, 

resulting in spin-polarization of its valence electrons.  Subsequent collisions between the 

noble gas and polarized rubidium atoms result in the transfer of angular momentum from 

rubidium electrons to the noble gas nucleus, thereby increasing its nuclear-spin 

polarization.215   
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While initial investigations used hyperpolarized 129Xe gas, the field quickly transitioned to 

hyperpolarized 3He gas due to its three-fold higher nuclear gyromagnetic ratio (129Xe: 

11.78 MHz/T; 3He: 33.43 MHz/T) and greater achievable polarization (129Xe: 8-25%; 3He: 

30-40%) – both of which contribute to the greater MRI signal achieved with 3He than 129Xe 

gas.215  More recently, the limited quantity and resultant high cost of 3He gas has motivated 

the field to shift its focus back towards 129Xe gas as it is widely available and a less 

expensive alternative.216,217  Notably, advances in polarizer technology have resulted in 

improved 129Xe polarization that has improved the overall MRI signal.  It is important to 

acknowledge that excellent safety and tolerability of both 3He and 129Xe MRI has been 

demonstrated in healthy volunteers and subjects with pulmonary disease.218,219  Studies 

have shown no clinically significant adverse effects of 3He or 129Xe inhalation.218,219  With 

this method, regional ventilation, lung microstructure and gas exchange have been 

qualitatively and quantitatively evaluated in clinical research.  

Ventilation Imaging  

Spin density imaging of hyperpolarized 3He or 129Xe, acquired during breath-hold, provides 

an opportunity to visualize with high spatial resolution those areas of the lung that 

participate in gas distribution and those that do not.  As shown in Figure 1-14, in healthy 

young adults, inhalation of hyperpolarized gas results in homogeneous signal suggesting 

that all areas of the lung are participating equally in ventilation.  In contrast, characteristic 

regions of signal void are observed in asthma (Figure 1-14), corresponding to areas of the 

lungs that are not ventilated within the time-course of a breath-hold scan.  Regions of signal 

void, termed ventilation defects, have also been observed in cystic fibrosis, COPD, 

bronchiectasis, lung cancer and the healthy elderly. 
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Figure 1-14  Representative coronal centre slice hyperpolarized 3He MRI of a healthy 

volunteer and an asthmatic subject.   
3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). 

Unlike the representative healthy volunteer, the asthmatic subject has visually obvious 

ventilation defects.   

 

The presence of ventilation abnormalities were initially quantified using visual scoring and 

manual segmentation, but semi-automated220,221 and automated222 segmentation 

approaches are now more commonly employed.  Quantitative MRI-derived metrics include 

the ventilation defect volume,223,224 ventilated volume,225 ventilation coefficient of 

variation226,227 and the ventilation defect percent (VDP).  VDP is a measure of the 

ventilation defect volume normalized to the thoracic cavity volume, as shown in Equation 

1-9.  VDP is now a widely disseminated biomarker220,221,225 due to its demonstrated 

reproducibility,220 relation to standard measurements of lung function228 and its sensitivity 

to disease severity and treatment response.229 

Equation 1-9 

Ventilation Defect Percent (VDP) [%]=
Ventilation defect volume

Thoracic cavity volume
×100 

Many clinical research studies using hyperpolarized gas MRI have been performed in 

asthma to evaluate ventilation heterogeneity.224,226,230-239  In 2001, Altes and colleagues 

were the first to observe heterogeneous ventilation in non-symptomatic asthmatic adults 
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with normal lung function using hyperpolarized 3He MRI.235  In addition to this seminal 

study, numerous others have observed worse ventilation in asthmatics compared to healthy 

controls (Figure 1-14).226,233,235,237  While the majority of investigational studies to date 

have evaluated adults, a recent study by Cadmen and colleagues imaged asthmatic children 

for the first time.239 Similar to previous observations in adults, a greater number and larger 

size of ventilation defects were observed in children with asthma than those without 

asthma.239  In one of the largest studies evaluating 58 asthmatics with varying disease 

severity, ventilation worsened with the increase of disease severity.233  With respect to lung 

function, the number of ventilation defects224,236 and the number of ventilation defects per 

slice232,233 were inversely correlated with FEV1, but not ventilation volume234 or VDP.237  

VDP was, however, correlated with airways resistance, FeNO and dyspnea.237  

Without ionizing radiation, there is enormous potential for serial and longitudinal treatment 

evaluation studies using hyperpolarized gas MRI.  Accordingly, and for obvious reasons, 

interest has surrounded the temporal variability of focal MRI ventilation defects in asthma.  

In a 30-minute scan-rescan study, all defects were found to be persistent.235  Another study 

concluded that approximately 75% of defects remained in the same location when 

evaluated twice in the same day.231  Over longer periods of time (7-476 days) many 

ventilation defects were persistent or reoccurred in the same location.230-232  Similarly, 

following repeat bronchoconstriction on separate days, the majority of defects were also 

induced in the same locations.232  With methacholine226,232,236,237 and exercise230,236 induced 

bronchoconstriction, numerous new ventilation defects and more heterogeneous 

ventilation patterns have been observed.  Alternatively, salbutamol-induced 

bronchodilation has been shown to improve, but not completely reverse, induced 

ventilation abnormalities.232,234,236,237  Figure 1-15  shows the ventilation distribution for a 

representative asthmatic at baseline, post-methacholine challenge and post-salbutamol 

inhalation.  A double-blinded, placebo-controlled, multi-institutional study assessed the 

response of 3He MRI ventilation to montelukast therapy in exercise-induced 

bronchoconstriction.234  Following exercise, the authors observed a larger drop in 

ventilation volume while receiving placebo than while receiving treatment.234  These 

studies demonstrate the sensitivity of MRI ventilation to bronchoconstriction and 

treatment.         
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Figure 1-15  Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic 

subject at baseline, post-methacholine and post-salbutamol.   
3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). 

Ventilation abnormalities are present at baseline that become worse following 

methacholine-induced bronchoconstriction.  Post-salbutamol, ventilation is improved but 

abnormalities are not completely resolved.   

 

It is probable that ventilation defects in asthma are the result of gas trapping and airway 

obstruction, although their etiology remains to be investigated.  In an attempt to evaluate 

the structural determinants of ventilation defects in asthma, Fain and colleagues evaluated 

3He MRI in conjunction with CT and bronchoalveolar lavage.224  It was concluded that 

global metrics of ventilation volume were not related to inflammatory markers.  However, 

subsequent regional analysis suggested that ventilation defects may be associated with 

abnormal inflammation as poorly-ventilated lobes had elevated neutrophils as compared to 

well-ventilated lobes in the same patient. 224  Furthermore, in the same asthmatics, a spatial 

relationship between ventilation defects and CT hyperlucency was observed.224  

Taken together, these studies suggest that in asthma, ventilation defects are related to 

airways disease, are regionally heterogeneous, temporally variable and responsive to 

therapy and provocation.  MRI ventilation defects vary in size, ranging from tiny focal 

hypo-ventilated spots to lobar in nature, and are often observed in asthmatics despite 

normal lung function.  Most importantly, these studies suggest that asthma is a disease that 

involves selected airways focally rather than diffusely, a concept that could revolutionize 

asthma management and treatment. With the field’s imminent transition to 129Xe MRI, 

asthma has yet to be evaluated using this alternative approach.  While it can be 
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hypothesized that the knowledge gained from 3He MRI investigations will be transferable, 

direct comparisons are required.     

Diffusion-weighted Imaging  

Another type of hyperpolarized gas MR image that has been commonly acquired uses 

diffusion-weighted MRI, providing a sensitive and rapid approach for evaluating the lung 

microstructure.240  Within the lungs, movement of gas atoms is restricted by tissue 

boundaries.  Therefore, a quantitative apparent diffusion coefficient (ADC) map can be 

generated that is representative of airspace size.241  While both 3He and 129Xe ADC 

measurements have been obtained in the lung, 3He ADC has been more extensively studied 

demonstrating high reproducibility242-244 and correlation with histology measurements of 

airspace size.245  For obvious reasons, ADC studies have been most commonly employed 

in COPD, while to date there have only been a few investigations in asthma.237,239,246,247  

While heterogeneous gas diffusion coefficients have been observed throughout the 

asthmatic lung, contradiction surrounds the differences in whole lung microstructure 

between asthmatics and healthy controls.  One study has shown increased gas diffusion 

coefficients in asthma compared to healthy controls,246 whereas another study observed no 

difference.237  In the only study evaluating gas diffusion in asthmatic children, Cadmen and 

colleagues reported a greater degree of restricted diffusion in children with asthma 

compared to children without asthma.239  In the only treatment study, ADC in asthma was 

quantified at baseline, post-methacholine challenge and following salbutamol inhalation.237  

An increased ADC was observed following methacholine, indicative of gas trapping, which 

was subsequently reduced followed salbutamol inhalation.237  A recent study indicated 

ADC in asthma is related to the acinar component of ventilation heterogeneity due to its 

relationship with the MBNW derived metric Scond.  The same authors also observed that 

ADC was strongly related to FVC and a CT marker of gas trapping.247  

1.8 Thesis Hypotheses and Objectives 

The overarching objective of this thesis was to develop and apply novel pulmonary imaging 

methods to better understand asthma and to provide a foundation for functional imaging to 

guide clinical decisions and treatment in patients with asthma.  The specific objectives and 

hypotheses tested in each chapter of this thesis are introduced below.  
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In Chapter 2, our objective was to quantitatively compare hyperpolarized 3He and 129Xe 

MRI within a five-minute period before and after bronchodilator administration in a small 

group of well-controlled asthmatic adults.  We wanted to understand the effect of the gas 

physical properties on ventilation defects in asthma.  The transition from 3He to 129Xe gas 

is a necessary step to facilitate broad clinical integration of hyperpolarized gas MRI.  Due 

to the higher density and viscosity of 129Xe gas, we hypothesized that 129Xe MRI would 

reveal more ventilation abnormalities pre-bronchodilator than 3He MRI and that these 

differences would be diminished post-bronchodilator.   

In Chapter 3, our objective was to exploit the inherent temporal and spatial pulmonary 

function information provided by hyperpolarized 3He MRI and develop image processing 

methods to regionally identify temporally persistent and intermittent ventilation defects 

that could be used to measure, optimize and guide asthma treatment.  In this proof-of-

concept study, seven asthmatic subjects underwent MR imaging at three timepoints over a 

two-week period.  We hypothesized that patient-specific temporal-spatial pulmonary 

function maps could be generated from 3He MRI to visualize and quantify temporally 

persistent and intermittent ventilation defects. 

In Chapter 4, our objective was to determine the underlying structural and clinical 

determinants of asthma ventilation defects by evaluating well-established clinical and 

emerging imaging (hyperpolarized 3He MRI and CT) measurements in healthy volunteers 

and subjects with well-controlled asthma.  In addition to evaluating the relationship 

between airway structure and lung function, we asked the question: Are asthmatics with 

ventilation defects different from asthmatics without ventilation defects?  We hypothesized 

that there would be a quantitative and spatial relationship between MRI ventilation defects 

and abnormal airways and that ventilation defects would be related to well-established 

clinical measurements of asthma. 

In Chapter 5, our objective was to evaluate the relationship between MBNW and MRI 

measurements of ventilation, and to better understand their link to asthma control.  

Multiple-breath gas washout studies have previously demonstrated a link between poor 

asthma control and increased ventilation abnormalities, and this led to the questions: What 

is the relationship between in vivo ventilation defects quantified using MRI and asthma 
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control? Can ventilation defects serve as an intermediate endpoint of outcomes like 

exacerbations, quality-of-life and asthma control?  We wanted to understand this 

relationship because the primary goal of asthma treatment is the achievement and 

maintenance of disease control.  Accordingly, we hypothesized that MRI and MBNW 

measurements of ventilation would be related, and contribute to poor asthma control. 

In Chapter 6, an overview and summary of the important findings and conclusions of 

Chapters 2-5 will be provided.  The study specific limitations as well as general limitations 

of the hyperpolarized gas MRI studies presented will be discussed, and some potential 

solutions will be offered.  The thesis ends with a roadmap for future studies that could build 

on the foundation of knowledge generated by this work.  
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CHAPTER 2 

To better understand ventilation defects in asthma, here we quantitatively compared 

hyperpolarized 3He and 129Xe MRI in a small group of well-controlled asthmatics before 

and after bronchodilator administration.  

The contents of this chapter were previously published in the Journal of Magnetic 

Resonance Imaging: S Svenningsen, M Kirby, D Starr, D Leary, A Wheatley, G Maksym, 

DG McCormack and G Parraga.  Hyperpolarized 3He and 129Xe Magnetic Resonance 

Imaging Differences in Asthma prior to Bronchodilation. J Magn Reson Imaging 2013; 

38(6):1521-1530.  Permission to reproduce this article was granted by John Wiley & Sons 

and is provided in Appendix A.   

2 HYPERPOLARIZED 3HE AND 129XE MRI: DIFFERENCES IN 

ASTHMA BEFORE BRONCHODILATION 

2.1 Introduction 

Asthma – a chronic inflammatory disease of the airways is characterized by acute 

intermittent attacks of airflow limitation resulting in symptoms of dyspnea, cough, chest 

tightness, and wheeze.1,2  Reversible airflow obstruction occurs in response to external 

stimuli that trigger acute effects such as bronchoconstriction, plasma exudation, edema and 

mucus hypersecretion.  It is believed that untreated chronic airway inflammation leads to 

airway remodeling, resulting in numerous physiological and functional consequences 

including airflow limitation and ventilation abnormalities.3,4  The diagnosis and monitoring 

of asthma are commonly performed using the spirometry measurement5,6 of the forced 

expiratory volume in 1s (FEV1) -a global measure of airflow limitation that is relatively 

insensitive to changes in small airway structure and function.7,8  

Multiple-breath-nitrogen washout (MBNW) studies have clearly shown that ventilation is 

heterogeneous in asthma9,10 and that this heterogeneity is likely related to airway hyper-

responsiveness,11 although similar to FEV1, MBNW measurements cannot provide 

regional information.  Imaging studies including those using nuclear medicine 

scintigraphy,12-14 positron emission tomography15 and x-ray computed tomography (CT)16-

18 have provided a regional picture of heterogeneous ventilation abnormalities in asthma.  

Additionally, at our site19 and other centres,20-25 magnetic resonance imaging (MRI) using 

hyperpolarized helium-3 (3He) has shown regional ventilation heterogeneity20,21,25 and the 

surprising spatial-temporal persistence of ventilation abnormalities or defects22,23 in 
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asthma.  Moreover, in asthma, hyperpolarized 3He ventilation defects have been correlated 

with disease severity21 and ventilation defects become larger and/or more numerous after 

methacholine challenge and exercise.19,24,25   

Hyperpolarized 3He MRI remains a specialized imaging research tool, primarily because 

the restricted quantity and unpredictable cost of 3He gas26 has limited uptake in pulmonary 

medicine.  These issues do not pertain to hyperpolarized 129Xe MRI, an alternative contrast 

agent27 that was used to obtain the first reported MR ventilation images.28,29  With recent 

advances in polarization physics,30-33 129Xe MRI has been further developed to provide 

high resolution measurements of both 129Xe pulmonary ventilation and diffusion.28,29,32,34-

41  The safety and tolerability38,42 of 129Xe MRI was recently evaluated and a direct 

quantitative comparison with 3He MRI was reported in COPD and healthy subjects.43  This 

previous work showed significantly greater 129Xe as compared to 3He ventilation defects 

in COPD subjects, although in healthy volunteers there were no differences observed.43  

Similarly, previous work qualitatively compared 3He and 129Xe MRI gas distribution in 

subjects with cystic fibrosis (CF) and showed 3He and 129Xe ventilation defects were in 

good agreement for some subjects, but in other subjects, 129Xe ventilation defects were 

larger and/or more numerous.44  Although it is unclear what the structural determinants or 

mechanisms are behind the differences between 3He and 129Xe gas distribution, such 

differences are believed to reflect differences in the physical properties of the inspired 

gases and their interaction with pulmonary abnormalities that are not present in healthy 

volunteers.  A potential mechanism responsible for the differences in 3He and 129Xe gas 

distribution is the effect of gas density and viscosity on flow resistance in the airways, 

which is dependent on airway lumen dimensions.45  Structural narrowing of the airway 

lumen is a common feature in asthma and COPD, resulting in increased resistance to flow 

in the airways.  Thus, the higher density and viscosity of 129Xe gas may result in greater 

resistance to flow through narrowed airways, contributing to greater 129Xe MRI as 

compared to 3He MRI ventilation defects.      

To our knowledge, the direct comparison of 129Xe and 3He MRI has not been performed in 

asthmatics.  Accordingly, here we quantitatively compared hyperpolarized 3He and 129Xe 

MRI within a short 5-minute period before and 25-30 minutes after salbutamol 

administration in a small group of well-controlled asthmatic adults. 
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2.2     Materials and Methods 

2.2.1 Subjects and Study Design 

All subjects provided written informed consent to the study protocol approved by the local 

research ethics board and Health Canada, and the study was compliant with the Personal 

Information Protection and Electronic Documents Act (PIPEDA, Canada) and the Health 

Insurance Portability and Accountability Act (HIPAA, USA).  Seven subjects were 

enrolled between the ages of 18 and 60 years of age (mean age=47±7 years; n=4 males) 

with a physician diagnosis of asthma and FEV1 ≥ 60%pred (Table 2-1).  Before salbutamol 

administration, vital signs were recorded, pulmonary function tests completed, and MRI 

was performed.  Post-bronchodilator imaging and pulmonary function tests were 

performed 25-30 minutes after administration of 200µg salbutamol (Apo-Salvent CRC 

Free Inhalation Aerosol; Apotex, Toronto, Ontario, Canada) delivered through a 

pressurized metered dose inhaler and AeroChamber Plus valved holding chamber (Trudell 

Medical International, London, Canada).   

Spirometry and plethysmography were performed pre- and post-salbutamol using a 

MedGraphics Elite Series plethysmograph (MedGraphics, St. Paul, MN, USA).  All 

manoeuvres were performed according to the American Thoracic Society (ATS) 

guidelines.46  All subjects also underwent a previous imaging session 326±199 days prior 

to this study.  At this time, hyperpolarized 3He MRI and thoracic CT were performed prior 

to methacholine challenge and 3He MRI was repeated following methacholine, as 

previously described.19 

2.2.2 Image Acquisition 

MRI was performed on a whole body 3.0 Tesla Discovery 750MR (General Electric Health 

Care, Milwaukee, WI, USA) MRI system with broadband imaging capability as previously 

described.47  Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag 

(Jensen Inert Products, Coral Springs, FL, USA) from functional residual capacity (FRC), 

and image acquisition was performed in 8-15s under breath-hold conditions.  To minimize 

the potential for differences or bias in the levels of inspiration between 3He and 129Xe MRI, 

extensive coaching was performed and the order of 3He and 129Xe MRI acquisition was 
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randomized.  Conventional 1H MRI was performed prior to hyperpolarized 3He and 129Xe 

MRI with subjects scanned during 1.0L breath-hold of ultrahigh purity, medical grade 

nitrogen (N2) (Spectra Gases, Alpha, NJ) using the whole body radiofrequency (RF) coil 

and 1H fast spoiled gradient-recalled-echo sequence (10s data acquisition, TR = 4.3ms, TE 

= 1.2ms, flip angle = 20 degrees, field of view (FOV) = 40cm x 40cm; matrix, 128 x 128; 

14-17 slices; slice thickness = 15mm, 0mm gap) as previously described.47   

Hyperpolarized 3He MRI was enabled using a linear bird-cage transmit/receive chest coil 

(RAPID Biomedical GmbH, Wuerzburg Germany).  A turn-key system (HeliSpin™) was 

used to polarize 3He gas to 30—40% and doses (5mL/kg body weight) were administered 

in 1.0L Tedlar® bags diluted with N2.  
3He MRI coronal static ventilation images were 

acquired using a fast gradient-recalled echo method (9s data acquisition, TR = 3.8ms, TE 

= 1ms, flip angle = 1 degree, FOV = 40cm x 40cm; matrix, 128 x 128; 14-17 slices; slice 

thickness = 15mm, 0mm gap) as previously described.47 

Hyperpolarized 129Xe MRI was enabled using a custom-made, unshielded quadrature-

asymmetric bird-cage coil model tuned to 35.34MHz, as previously described.48,49  129Xe 

gas (86% enriched) was polarized to 10—60% using a turn-key polarizer (XeBox-E10, 

Xemed LLC, New Hampshire, USA).  Doses of hyperpolarized 129Xe gas were dispensed 

directly into the pre-rinsed 1.0L Tedlar® bags pre-filled with 4He to generate a 50/50 

mixture.  129Xe MRI coronal static ventilation images were acquired using a 3D fast 

gradient-recalled-echo sequence with centric phase-encoding ordering in the y direction 

and normal sampling in the z direction during a breath-hold of the 1.0L 129Xe/4He mixture 

(14s data acquisition, TR = 6.7ms, TE = 1.5ms, flip angle = variable, FOV = 40cm × 40cm; 

matrix, 128 x 128; 14-17 slices; 15mm slice thickness, 0 gap) as previously described.43  

Thoracic CT was performed using a 64-slice Lightspeed VCT scanner (GEHC, Milwaukee, 

WI USA) using a detector configuration of 64×0.625mm, 120 kVp, 100 effective mA, tube 

rotation time of 500ms and a pitch of 1.0.  In order to reduce the radiation dose delivered 

to each subject, CT images were acquired for 56 (versus a total of 400 possible) 1.25mm 

thick slices in a region-of-interest (ROI) spatially identified by 3He MRI to contain 

ventilation defects.  In order to spatially register CT and 3He MRI breath-hold volumes and 
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anatomy, CT was acquired similar to MRI with subjects in breath-hold after inhalation of 

a 1.0L Tedlar® bag of N2 from FRC. 

2.2.3 Image Analysis 

3He and 129Xe MRI semi-automated segmentation was performed to quantify lung volumes 

using custom software generated using MATLAB R2007b (The Mathworks Inc., Natick, 

MA, USA), as previously described.50  To compare the distribution of both 3He and 129Xe 

gases within the lung, we segmented the 3He and 129Xe images based on pixel signal 

intensity.  Briefly, 3He and 129Xe static ventilation images were segmented using a K-means 

approach that classified voxel intensity values into five clusters ranging from signal void 

(cluster 1 (C1) or ventilation defect volume (VDV)) and hypo-intense (cluster 2 (C2)) to 

hyper-intense signal (cluster 5 (C5)), and therefore generating a gas distribution cluster-

map.  For delineation of the ventilation defect boundaries, a seeded region-growing 

algorithm51  was used to segment the 1H MRI thoracic cavity for registration to the cluster-

map.  3He and 129Xe VDP were generated using VDV normalized to the thoracic cavity 

volume.  Similarly, for the remaining ventilation clusters, the segmented 1H thoracic cavity 

volume was used to generate a cluster percentage representing a normalized cluster volume 

for the lung.  All measurements were performed by the same observer (S.S.) with two years 

of experience performing semi-automated 3He MR image segmentation.  The 

reproducibility of the semi-automated method was previously determined50 on the basis of 

intra-observer variability of five repeated 3He MRI VDP measurements for five asthmatic 

subjects.  

The signal-to-noise ratio (SNR) was calculated for each 3He and 129Xe static ventilation 

slice and then averaged to obtain a single SNR value for each subject image.  Briefly, SNR 

was determined by calculating the mean voxel value within a 5 x 5 cm2 voxel region of 

interest (ROI) for four representative ROI within the lung parenchyma, and dividing by the 

standard deviation of the voxel values for four representative ROI of the same size in the 

image background where there was no lung structure, as previously described.43   

Ventilation heterogeneity was estimated according to previously described methods25 

using the coefficient of variation (COV).  Briefly, a ventilated lung ROI was defined as gas 
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distribution cluster-map clusters C2-C5.  For each voxel within the ventilated lung ROI a 

local ventilation heterogeneity value was calculated by computing the coefficient of 

variation of the signal intensity in the voxels 5 x 5 neighborhood.  Mean COV for each 

slice was calculated for each 3He and 129Xe static ventilation slice and then averaged to 

obtain a single COV value for each subject. 

Partial CT image analysis was performed using software (Pulmonary Workstation 2.0, 

VIDA Diagnostics; Iowa City, IA, USA) to generate wall area percent (WA%) and lumen 

area (LA).  An automated airway tree segmentation algorithm (VIDA) was applied, 

however, a manual component was introduced to the algorithm if the trachea and main 

bronchus were not present in the image. Seed-points were manually placed within the 

lumen of the airway of interest to initiate manual segmentation of the airway.  To confirm 

the spatial relationship between a ventilation defect and the corresponding airway of 

interest, the partial CT was manually registered to the corresponding MR image using 3D 

Slicer manual registration software (http://www.slicer.org).52  

2.2.4 Statistical Analysis  

In order to determine the statistical significance of the difference between pulmonary 

function tests and MRI measurements pre- and post-salbutamol we performed a 

multivariate analysis of variance (MANOVA) and repeated measures analysis of variance 

(ANOVA) using SPSS 20.0 (IBM, Armonk, NY, USA).  Furthermore, in order to 

determine if the change observed following salbutamol inhalation using 129Xe MRI was 

significantly greater than the change observed using 3He MRI, we performed a three-way 

mixed-design repeated measures ANOVA, using SPSS 20.0.  In this analysis subject was 

treated as a between-subjects factor, and treatment (pre- and post-salbutamol) and gas (3He 

and 129Xe) was treated as a within-subjects factor.  Finally, because 3He MRI often has 

higher SNR than 129Xe MRI, there is the potential for regions of reduced signal intensity 

to appear as ventilation defects in low SNR 129Xe images.  Therefore, Pearson correlations 

(r) were performed to determine the relationship between the difference in 3He and 129Xe 

VDP with the difference between 3He and 129Xe SNR using GraphPad Prism version 4.00 

(Graphpad Software Inc, San Diego, CA, USA).  In all statistical analyses, results were 

http://www.slicer.org/
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considered statistically significant when the probability of making a Type I error was less 

than 5% (p < 0.05). 

2.3 Results 

Table 2-1 shows demographic characteristics, pulmonary function, and MRI 

measurements for seven mild-to-moderate asthma subjects (four males) pre- and post-

salbutamol.  For all subjects, mean age was 47±7 years and mean body mass index was 

27±4 kg/m2.  Pre-bronchodilator mean FEV1 was 76±6%pred and mean FVC was 

91±12%pred.  All subjects were considered to be well-controlled with ≤ 1 asthma 

exacerbation resulting in hospitalization in the calendar year prior to the study visit.    

Table 2-1 Subject demographic characteristics, pulmonary function and MRI 

measurements. 

 Pre-Salbutamol 

(n=7)  

Post-Salbutamol 

(n=7) 

Significance of 

Difference (p)* 

Subject Demographics 

Age yrs (±SD) 47 (7) - - 

Male Sex  4 - - 

BMI kg/m2 (±SD) 27 (4) - - 

Pulmonary Function Test 

FEV1 %pred  (±SD) 76 (6) 83 (10) 0.01 

FVC %pred (±SD)   91 (12) 93 (13) 0.35 

FEV1/FVC % (±SD) 67 (7) 71 (6) 0.01 

TLC %pred (±SD) 104 (8) 103 (10) 0.41 

RV %pred (±SD) 136 (16) 123 (12) 0.17 

RV/TLC (%)(±SD) 40 (8) 37 (6) 0.15 

IC %pred (±SD) 101 (16) 112 (18) 0.02  

FRC %pred (±SD) 108 (17) 95 (16) 0.003  

Raw %pred (±SD) 184 (72) 133 (56) 0.04  

MRI Measurements    
3He VDP % (±SD) 6 (5) 4 (3) 0.001 
129Xe VDP % (±SD) 8 (5) 5 (4) <0.0001 
3He COV (±SD) 0.282 (0.018) 0.269 (0.024) <0.0001 
129Xe COV (±SD) 0.309 (0.028) 0.296 (0.036) 0.002 

SD=Standard Deviation, BMI=Body Mass Index, FEV1=Forced Expiratory Volume in 

1s, %pred=Percent Predicted, FVC=Forced Vital Capacity, TLC=Total Lung Capacity, 

RV=Residual Volume, IC=Inspiratory Capacity, FRC=Functional Residual Capacity, 

Raw=Airway resistance, VDP=Ventilation Defect Percent, COV=Coefficient of 

Variation.   

*Significance of difference (p<.05) determined using a multivariate analysis of variance. 
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Figure 2-1 shows for two representative asthmatics (subject A and B), 3He and 129Xe MRI 

coronal slices before and after bronchodilator administration as well as signal intensity 

cluster maps and COV maps.  For both subjects, there were visibly obvious regional 

ventilation abnormalities in the MRI and cluster maps.  As shown, 129Xe gas distribution 

was qualitatively more heterogeneous (COV maps) compared to 3He MRI, with regions of 

patchy signal void (cluster and COV maps).  As shown in Figure 2-1, following salbutamol 

administration, for both 129Xe and 3He MRI, some ventilation abnormalities disappeared 

whereas others persisted. 
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Figure 2-1  3He and 129Xe MRI pre- and post-salbutamol. 

Hyperpolarized 3He and 129Xe MRI for two representative subjects (Subjects A and B) pre- 

and post-salbutamol.  Static ventilation MRI, corresponding cluster maps and coefficient 

of variation (COV) maps are shown for:  

A) 43 yr old male, baseline FEV1=82%pred, baseline FEV1/FVC=69%;  

B) 50 yr old female, baseline FEV1=71%pred, baseline FEV1/FVC=68%.   

C1 = cluster 1, C2 = cluster 2, C3 = cluster 3, C4 = cluster 4, and C5 = cluster 5.  
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As shown in Table 2-1, for all subjects there was a significant improvement in mean 

FEV1%pred (p=0.01), FEV1/FVC (p=0.01), IC %pred (p=0.02), FRC %pred (p=0.003), and 

airways resistance (Raw %pred p=0.04) after the administration of salbutamol.    Pre-

bronchodilator 129Xe VDP (8 ± 5%) was significantly greater than 3He VDP (6 ± 5%, 

p=0.003); post-bronchodilator 3He (4 ± 3%) and 129Xe VDP (5 ± 4%) were not significantly 

different.  SNR was significantly lower for 129Xe MRI compared to 3He MRI both pre- 

(3He: 46±21, 129Xe: 22±8, p=0.02) and post-bronchodilator (3He: 36±16, 129Xe: 22±10, 

p=0.005), importantly however, the difference between 3He and 129Xe VDP pre-

bronchodilator (r=0.02, p=0.96) was not related to image SNR.  The COV for 129Xe MRI 

ventilation was significantly greater than for 3He MRI ventilation, both pre- (p<0.0001) 

and post-bronchodilator (p<0.0001).  

In Table 2-1 and shown in more detail in Figure 2-2, there was a significant improvement 

post-salbutamol for 3He (p=0.001) and 129Xe MRI VDP (p<0.0001) with the improvement 

in 129Xe MRI VDP significantly greater than for 3He MRI VDP (p=0.008).  Post-

salbutamol, both 3He (p<0.0001) and 129Xe (p=0.002) COV were significantly decreased.  

There was no relationship for the difference in VDP post-salbutamol with SNR (3He MRI, 

r=-0.30, p=0.51; 129Xe MRI, r=-0.32, p=0.49).  A subject listing of all MRI measurements 

is provided in Table 2-2.   

 
Figure 2-2  Bronchodilator response using hyperpolarized 3He and 129Xe MRI. 

Mean hyperpolarized 3He and 129Xe ventilation defect percent (VDP) and ventilation 

coefficient of variation (COV) pre- (white) and post-salbutamol (grey).  Values are means 

for all subject slices, and error bars are ± SD. *p ≤ 0.01, **p ≤ 0.001, ***p ≤ 0.0001. 
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Table 2-2  Pre- and post-salbutamol hyperpolarized 3He and 129Xe MRI measurements. 
Pre – Salbutamol 

 3He MRI 129Xe MRI 

Subject VDP 

(%) 

C2 

(%) 

C3 

(%) 

C4 

(%) 

C5 

(%) 

VDP 

(%) 

C2 

(%) 

C3 

(%) 

C4 

(%) 

C5 

(%) 

1
‡
 3 12 40 29 16 4 9 35 36 16 

2 1 10 37 33 19 3 9 28 40 21 

3
§
 17 11 32 26 15 18 9 26 28 20 

4
*
 6 12 39 29 15 8 15 19 36 23 

5
†
 6 12 37 35 10 7 11 35 34 14 

6 6 12 40 29 12 7 13 33 34 14 

7 5 11 40 30 14 8 11 30 38 14 

Mean (±SD) 6 (5) 11 (1) 38 (3) 30 (3) 14 (3) 8 (5) 11 (2) 29 (6) 35 (4) 17 (4) 

Post – Salbutamol 

 3He MRI 129Xe MRI 

Subject VDP 

(%) 

C2 

(%) 

C3 

(%) 

C4 

(%) 

C5 

(%) 

VDP 

(%) 

C2 

(%) 

C3 

(%) 

C4 

(%) 

C5 

(%) 

1
‡
 2 10 44 30 14 2 9 32 40 17 

2 1 10 41 30 18 1 6 17 45 31 

3
§
 12 12 31 31 14 13 12 21 34 20 

4
*
 4 10 35 32 19 4 10 27 37 23 

5
†
 3 9 40 33 14 4 9 31 38 18 

6 6 12 42 28 12 8 17 25 35 15 

7 4 11 39 31 15 4 14 29 42 12 

Mean(±SD) 4 (3) 11(1) 39(4) 31(2) 15(2) 5 (4) 11(4) 26(5) 39(4) 19(6) 

VDP=ventilation defect percent (C1=Cluster 1), C2 =Cluster 2, C3=Cluster 3, 

C4=Cluster 4, C5=Cluster 5, SD=standard deviation.  † Subject A, ‡ Subject B, § Subject 

C, * Subject D 

 

To further investigate the difference in 3He and 129Xe gas distribution detected prior to 

salbutamol inhalation we evaluated the spatial relationship of airways and ventilation 

defects using thoracic CT.  All subjects underwent a previous imaging session, 326±199 

days prior to this study when hyperpolarized 3He MRI and thoracic CT were acquired as 

previously described.19  In Figure 2-3, we show the centre coronal slice 3He and 129Xe MRI 

and the corresponding centre slice 3He MRI following methacholine challenge19 for 2 

subjects: Subject C, a 41yr old male, FEV1=75% pred; and Subject D, a 36 year old female, 

FEV1=86%pred.  As shown with arrows in Figure 2-3, for Subject C, a large sub-segmental 

ventilation defect distal to the apical bronchus of the right upper lobe (RB1) was visualized 

using 129Xe MRI and also using 3He MRI but only after provocation with methacholine, at 

the PC20.  Thoracic CT for this subject revealed a 4th generation apical sub-segmental 

bronchus of the right upper lobe as the airway that was spatially proximal to this specific 
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ventilation defect.  The CT-derived WA% and LA for this 4th generation airway were 78% 

and 2.9 mm2 respectively, both of which are worse than previously reported values for a 

group of older asthmatic men (WA%=55-80% and LA=5-15mm2).53  For Subject D, there 

was no evidence of a right upper lobe ventilation abnormality and CT-derived 

measurements WA% and LA were 69% and 3.8 mm2 respectively for the same 4th 

generation apical sub-segmental bronchus.  

 
Figure 2-3  MRI and CT for two asthmatic subjects. 

Hyperpolarized 3He and 129Xe MRI and post-methacholine 3He MRI for two subjects (C 

and D)  

C) 41 yr old male, FEV1=75%pred, FEV1/FVC=66%.  White arrows identify a right upper 

lobe ventilation defect visible using 129Xe MRI, and for 3He MRI, only post-methacholine 

at PC20. Regional CT is shown with the apical segmental bronchus of the right upper lobe 

in red which is proximal to the 129Xe and 3He post-methacholine ventilation defect.  The 

cross-sectional slice of the airway is shown and the airway of interest is identified in a 

schematic of the bronchial tree. 

D) 36 yr old female, FEV1=86%pred, FEV1/FVC=73% with no ventilation defect in the right 

upper lobe.   
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2.4 Discussion 

Hyperpolarized 3He MRI of asthma has been performed over the last 2 decades19-25,54,55 

and across numerous studies, asthma ventilation defects have been shown to be spatially 

and temporally persistent,22,23 and some of these ventilation defects partially or fully 

resolve following inhaled or systemic therapy.19,20,24,25  Unfortunately, we still do not have 

a full understanding of the structural or physiological determinants of such asthma 

ventilation abnormalities,56 although armed with such an understanding there is the 

potential to use functional MRI to guide asthma therapy, to identify new therapeutic targets 

or at least, better understand regional pulmonary response to asthma therapy.  A recent 

pilot study that compared 3He and 129Xe MRI in older healthy and COPD subjects43 showed 

greater 129Xe MRI ventilation defects in COPD suggesting that 129Xe MRI may provide 

enhanced sensitivity to airway abnormalities in obstructive lung disease.  In COPD there 

are multiple mechanisms that may be responsible for 3He and 129Xe ventilation differences 

including increased airways resistance and the presence of emphysema and the effects of 

collateral ventilation.43,57  To try to get a better understanding of the structure-function 

relationships in the asthmatic lung, and to tease out the different contributing etiological 

factors that result in ventilation defects in asthma, here we directly compared 

hyperpolarized 3He and 129Xe MRI ventilation defects before and after salbutamol 

inhalation.  We made a number of important observations: 1) 129Xe VDP and COV were 

significantly greater than 3He MRI VDP and COV before salbutamol inhalation, 2) there 

were significantly greater post-salbutamol improvements in 129Xe MRI VDP such that 3He 

and 129Xe MRI were not significantly different post-salbutamol, and, 3) a remodeled sub-

segmental airway was shown to be spatially related to a sub-segmental 129Xe MRI 

ventilation defect that was not visible using 3He MRI, except at PC20, after methacholine 

administration. 

First, we directly compared hyperpolarized 3He and 129Xe MRI acquired within 

approximately five minutes of one another and observed that 129Xe MRI VDP and COV 

were both qualitatively and quantitatively greater than 3He MRI-derived VDP and COV.  

We note that in this study, the differences between 3He and 129Xe MRI VDP were not large 

– much smaller in fact than previously reported in COPD.43  Although VDP was not large, 
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qualitatively, there certainly was evidence of increased 129Xe ventilation heterogeneity 

compared to 3He and these differences were quantified using the 3He and 129Xe ventilation 

COV.  We note that SNR was lower for 129Xe as compared to 3He MRI, and therefore there 

is the potential for regions of the lung with reduced signal intensity to appear as ventilation 

defects in low SNR 129Xe images.  However, we observed that the difference between 3He 

and 129Xe SNR was not significantly correlated with the difference between 3He and 129Xe 

VDP.  Therefore, VDP and COV differences might well reflect other differences in the 

physical properties of the inspired gases and perhaps their interactions with airway 

abnormalities present in the asthmatic lung.  For example, in asthma, like COPD, the small 

airways (<2mm) are the major site of airflow obstruction and are believed to result in 

increased airways resistance.58  129Xe gas has both a greater density and viscosity than 3He 

(pure 129Xe gas has approximately 40 times greater density and 1.5 times greater viscosity 

than pure 3He gas)57 and this has an effect on resistance to both turbulent and laminar flow 

in the airways, as previously described.45  Importantly, we have previously estimated the 

density and viscosity of the inspired 3He-N2 (40/60) and 129Xe-4He gas mixtures (50/50).57  

The estimated density of the inspired 3He-N2 gas mixture and 129Xe-4He gas mixture was 

0.61kg/m3 and 2.65kg/m3, respectively, and the estimated viscosity of the 3He-N2 mixture 

and 129Xe-4He mixture was 1.99x10-4P and 2.55x10-4P, respectively.57  The increased 

density of 129Xe gas would tend to increase the gas Reynold’s number, thereby increasing 

the probability for turbulent flow with higher airflow resistance; laminar flow resistance 

would also increase proportionately to the change in viscosity according to Poiseulle’s 

equation.45  The increased density and viscosity of 129Xe gas could lead to slower filling or 

decreased access to lung units distal to narrowed or obstructed airways, amplifying 

ventilation differences arising from airway abnormalities between the gases.   

In COPD, emphysema may be an additional factor responsible for the differences in 3He 

and 129Xe MRI ventilation and may account for the larger 129Xe/3He MRI differences 

previously observed in COPD43 compared to asthma.  In emphysematous lung tissue, 

resistance to flow through collateral channels is low whereas in normal lung tissue, flow 

resistance through collateral channels is very high.59  Regardless, the results observed here 

in asthma support further interrogation using dynamic imaging approaches such as recently 

reported in COPD.60  It is also important to note that previous work has also shown that the 
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mixture of 129Xe/4He gas administered during image acquisition performed here better 

approximates the self-diffusion coefficient of room air in the lung,43 as compared to 3He/N2 

or 3He/4He gas mixtures, supporting the notion that 129Xe gas distribution might provide a 

better estimate of “ground truth” ventilation abnormalities.   

Second, and as might be expected, we observed a significant regional improvement in both 

3He and 129Xe MRI VDP following salbutamol administration, with the 129Xe MRI 

improvement significantly greater than 3He MRI.  Regional improvements in ventilation 

have previously been reported following salbutamol inhalation using xenon-enhanced 

dual-energy CT in asthma.61  However, to our knowledge this is the first study to report a 

change in 129Xe MRI ventilation abnormalities following inhaled salbutamol.  Beta-2 (β2) 

adrenergic receptor agonists promote smooth muscle relaxation and dilation, increasing 

airway caliber with concomitant decreased resistance to flow.  Post-salbutamol, for all 

subjects, the global measurement of airways resistance was significantly decreased and this 

may have resulted in the improved and more similar regional distribution of 3He and 129Xe 

gas post-salbutamol.  This suggests that increased airway caliber following bronchodilator 

administration allows for similar access of 3He and 129Xe to lung regions, as previously 

reported in healthy subjects.43 

Finally, in a single asthmatic, we showed that a relatively large sub-segmental ventilation 

defect that was visualized using 129Xe MRI, was also visible using 3He MRI, but only after 

methacholine challenge at the PC20.  Thoracic CT acquired within a year of this study and 

contemporaneous to the methacholine challenge was used to locate the airway proximal to 

this defect.  A 4th generation apical segmental bronchus of the right upper lobe was 

identified as the significantly remodeled airway that was spatially related to this ventilation 

defect.  Furthermore, in another asthmatic with a normally ventilated right upper lobe, the 

same 4th generation airway showed more “normal” airway morphology.  It is clear that 

airway diameters and wall thicknesses vary among individuals and we acknowledge that 

we do not believe that one defect in one subject confirms our hypothesis.  However, these 

results support the hypothesis that in asthma, 3He gas may penetrate lung regions through 

partially obstructed airways that 129Xe gas cannot access during a short breath-hold scan; 

in other words 3He MRI may mask clinically relevant airway abnormalities in asthma.  This 

interesting finding warrants further investigation in a larger group of asthmatic subjects to 
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determine whether there is indeed a relationship between abnormal airway 

pathophysiology and the differences between 3He and 129Xe gas distribution.   

We acknowledge that this work was limited by the small number of subjects evaluated and 

therefore caution should be exercised in generalizing these results to a more general asthma 

population.  Indeed, the reported VDP in this small group of asthmatics was low and may 

be related to the nearly normal FVC for these subjects, reflecting the fact that these subjects 

(who were enrolled from a tertiary care asthma centre) were receiving optimal asthma 

therapy.  The low baseline VDP also suggests that the differences in 3He and 129Xe VDP 

reported here might provide a conservative estimate of the differences that would be 

observed in a larger, less specialized asthma subject group.  What is clear though, is that 

salbutamol effectively negated the differences observed between 3He and 129Xe VDP.  

Future studies should aim to evaluate a large group of healthy volunteers and asthmatic 

subjects with varying disease severity.  Additionally, clinical tests such as dyspnea scores 

and measurements of exercise performance should be performed.  The clinical relevance 

of the difference in 3He and 129Xe gas distribution detected could then be determined by 

direct comparison with established measures that are patient-centred and clinically 

relevant.  

Over the last two decades, an international imaging physics research effort has been 

undertaken to develop non-invasive MRI methods, with the promise of direct and serial 

structure-function measurements of the lung without radiation burden or risk.  Yet, the 

treatment and monitoring of patients with asthma is still mainly based on spirometry and 

some emerging inflammatory biomarkers.62  Certainly, low accessibility and the 

high/unpredictable cost of 3He gas has also limited its development and use.26  It is 

important to note that the relatively low and predictable cost of 129Xe gas provides the 

potential for greater accessibility of pulmonary functional imaging for research and patient 

care.  One advantage of 129Xe gas is that it is capable of passive transmembrane diffusion 

and it is soluble in tissues and blood.  Hyperpolarized 129Xe MRI dissolved phase imaging 

has shown good spatial agreement with the corresponding ventilation image.34.  The 

differences between 3He and 129Xe MRI gas distribution shown here are unlikely to be 

related to transmembrane diffusion of 129Xe gas as it has been estimated that only 1-2% of 

the inhaled 129Xe gas dose is dissolved in the tissues and blood, during the 10-15s breath-
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hold.21  Regardless of the gas used for imaging, we think that the lack of a clear 

understanding of the clinical or physiological meaning of MRI ventilation defects will also 

impede its development as a clinical tool, necessitating more detailed physiological and 

modeling studies.  In this study, we observed small but significant differences between 

129Xe and 3He MRI VDP before salbutamol inhalation that suggested 129Xe MRI may be 

more sensitive to airflow obstruction in asthma that is responsive to salbutamol.  It is not 

clear which one of the currently available pulmonary functional MRI methods (including 

oxygen-enhanced MRI)63,64 provides ventilation estimates that are closest to ground truth 

(ie. ventilation that occurs with molecular oxygen mixed in air).   The availability of 

oxygen-enhanced and 129Xe MRI will certainly facilitate the research that still needs to be 

done to investigate the fundamental anatomical and morphological determinants that 

govern the occurrence and location of a ventilation defect, including bronchoscopy with 

biopsy and histological assessment.  MRI can be considered complementary to CT and 

endobronchial biopsy because the anatomical determinants of small airway ventilation 

defects may be beyond the resolution of CT and perhaps the reach of an endoscope or 

optical coherence tomography probe65 as well.    

In conclusion, we evaluated hyperpolarized 3He and 129Xe MRI ventilation defects in a 

small group of asthmatics before and after salbutamol inhalation and reported significantly 

greater (worse) 129Xe compared to 3He VDP and COV pre-salbutamol.   We identified a 

remodeled airway that was spatially related to a sub-segmental ventilation defect visualized 

only with 129Xe MRI.  These results suggest that the higher density and viscosity of 129Xe 

gas (which is more similar to molecular oxygen in air than 3He gas) may help reveal 

ventilation abnormalities prior to bronchodilation that are not observed using 3He MRI. 
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CHAPTER 3 

Hyperpolarized 3He MRI previously revealed the temporal and spatial heterogeneity of 

ventilation defects in asthmatics, but these findings have not been used in treatment studies 

or to guide personalized treatment.  Accordingly, here we generated personalized 3He MRI 

temporal-spatial pulmonary function maps to regionally identify temporally persistent and 

intermittent ventilation defects that may be used to optimize, evaluate and guide asthma 

treatment.   

The contents of this chapter were previously published in Academic Radiology:  S 

Svenningsen, F Guo, M Kirby, S Choy, A Wheatley, DG McCormack and G Parraga.  

Pulmonary Functional Magnetic Resonance Imaging: Asthma Temporal-spatial Maps. 

Acad Radiol 2014; 21(11):1402-1410.  Permission to reproduce this article was granted 

by Elsevier and is provided in Appendix A.   

3 PULMONARY FUNCTIONAL MAGNETIC RESONANCE 

IMAGING: ASTHMA TEMPORAL-SPATIAL MAPS 

3.1 Introduction 

Asthma is a chronic pulmonary disease1 characterized by acute and predominantly 

reversible episodes of airflow limitation and airway hyperresponsiveness that leads to 

airway remodeling2,3  Currently used asthma measurements are largely dependent on 

spirometry measurements of airflow limitation made at the mouth.  Such measurements 

tend to over-estimate large airway constriction and under-estimate small airways disease4 

and these measurements cannot regionally identify the airways responsible for airflow 

limitation, asthma symptoms or control.  

Currently, pulmonary imaging techniques play a minor role in the clinical diagnosis and 

management of asthma, although quantitative measurements of regional structural and 

functional pulmonary abnormalities5 can be derived using a number of imaging methods.  

For example, x-ray computed tomography (CT) has been used to show airway remodeling 

and evidence of gas trapping in asthmatics.6,7  Single-photon emission computed 

tomography8,9 and positron-emission tomography10 have revealed the spatial distribution 

and extent of airway remodeling in asthmatics at rest and during exacerbations.  

Hyperpolarized noble gas magnetic resonance imaging (MRI), using either 3He or 129Xe, 

also provides a way to visualize and quantify lung regions that participate in ventilation 

and those that do not.11,12  Longitudinal and interventional 3He MRI studies have revealed 
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the regional and temporal nature of ventilation defects in asthma before and after 

provocation (exercise and methacholine) and therapy.13-15  Previous work also showed that 

in asthma, ventilation defects are related to disease severity,16 CT measurements of gas 

trapping17 and airway morphological abnormalities.18  Taken together, these studies 

suggest that in asthma, ventilation defects are related to airways disease, are regionally 

heterogeneous, temporally variable and responsive to therapy and provocation.19-22  

Asthma ventilation defects may be considered as therapy targets or intermediate endpoints 

as they are present in older asthmatics with more advanced or severe disease, increased 

indices of inflammation and more severely remodeled airways.18   

There is enormous potential for imaging methods to improve the efficacy or cost-

effectiveness of asthma therapy.  However until now, the presence, location and/or 

variability of such defects has not yet been used to guide or interpret the efficacy of asthma 

therapy.  The purpose of this proof-of-concept study, therefore, was to exploit the inherent 

temporal and spatial pulmonary function information provided by hyperpolarized 3He MRI 

to identify temporally persistent and intermittent ventilation defects as potential targets for 

therapy.   

3.2 Materials and Methods 

3.2.1 Study Design 

Subjects who were 18-55 years of age, with a physician diagnosis of asthma and forced 

expiratory volume in one second (FEV1) ≥ 60%pred were recruited from a tertiary care 

asthma clinic.  All subjects provided written informed consent to a study protocol that was 

in compliance with the Health Insurance Portability and Accountability Act and approved 

by the local Research Ethics Board and Health Canada.  All subjects consented to three 

study visits, each 5±2 days apart, that took place between May 2007 and May 2008.  At 

each visit, pre- and post-exercise challenge, spirometry was performed followed by 1H and 

3He MRI.   Spirometry was performed using an ndd EasyOne spirometer (ndd 

Medizintechnik AG, Zurich, Switzerland) and FEV1, forced vital capacity (FVC) and 

FEV1/FVC were obtained according to the American Thoracic Society guidelines.23  The 

exercise challenge was performed according to American Thoracic Society guidelines.24  

Briefly the subject exercised (after a 2-minute warm-up) for 6 minutes on a treadmill, while 
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inhaling compressed, room temperature dry air, at a workload which increased the heart 

rate to 80-90% of the individual’s age predicted maximum. 

3.2.2 Magnetic Resonance Imaging 

Following spirometry, MRI was performed using a whole body 3.0 Tesla Excite 12.0 MR 

system (GE Healthcare, Milwaukee, WI, USA), as previously described.25  Subjects were 

in the supine position and all image acquisitions were performed under breath-hold 

conditions (15 sec) following inspiration of a 1.0 L gas mixture from functional residual 

capacity (FRC).  To minimize the potential for differences in the level of inspiration 

between imaging sessions, extensive coaching was performed prior to and during each 

imaging session.  To ensure that each inhalation was performed from FRC, subjects were 

instructed to take two tidal breaths before inhaling the gas mixture from the 1.0 L Tedlar® 

bag (Jensen Inert Products, Coral Springs, FL, USA).  

Hyperpolarized 3He MRI static ventilation imaging was enabled using a single-channel, 

rigid, transmit-receive elliptical chest coil (RAPID Biomedical GmbH, Wuerzburg, DEU) 

as previously described.25  Hyperpolarized 3He gas (30-40% polarization) was provided by 

a turnkey system (HeliSpinTM, GE Healthcare, Durham, NC, USA) and administered to 

subjects (dose: 5mL/kg of body weight) in a 3He/N2 mixture.25  Hyperpolarized 3He MRI 

static ventilation images were acquired following inspiration of the hyperpolarized 3He/N2 

gas mixture using a fast two-dimensional gradient echo sequence with the following 

parameters: repetition time, 4.3 msec; echo time, 1.4 msec; flip angle, 7○; field of view, 44 

x 44 cm; matrix size, 128 x 128; slice gap, 0 mm; 14 contiguous slices; and slice thickness, 

15 mm.  Subsequent to hyperpolarized 3He MRI, conventional 1H MRI was performed 

during a 1.0 L breath-hold of 4He/N2 to mimic the 3He MRI breath-hold manoeuvre.  For 

1H imaging, a fast spoiled gradient recalled echo sequence was applied with the following 

parameters: repetition time, 4.7 msec; echo time, 1.2 msec; flip angle, 30○; field of view, 

44 x 44 cm; matrix size, 256 x 256; slice gap, 0 mm; 14 contiguous slices; and slice 

thickness, 15 mm. 
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3.2.3 Image Analysis 

3.2.3.1 Overview of Pipeline 

Figure 3-1 provides a summary of the registration and segmentation pipeline used to 

generate whole lung, two-dimensional, temporal-spatial pulmonary function maps.  The 

inputs to the pipeline are N  3He images acquired at visits  Ni ...,2,1 , where 2N , and 

an associated 1H MR image acquired at an arbitrary visit j ,  Nj ...,2,1 .  The pipeline 

consists of four steps: 1) Registration, 2) 1H MRI Segmentation26, 3) 3He MRI 

Segmentation26 and, 4) Temporal Map Generation and was developed using 3D Slicer 4.2 

open source platform (http://www.slicer.org, Boston, MA, USA) and MATLAB R2013A 

(The Mathworks Inc. Natick, MA, USA).  In this proof-of-concept demonstration, 3He MR 

images were acquired at three visits ( 3N ), and an associated 1H MR image was 

arbitrarily chosen at visit 2 ( 2j ). 

 

Figure 3-1  Pipeline to generate whole lung, two-dimensional, hyperpolarized 3He MRI 

temporal-spatial pulmonary function maps. 

The pipeline is divided into four steps: 1) Registration, 2) 1H MRI Segmentation, 3) 3He 

MRI Segmentation and, 4) Temporal Map Generation.  The inputs to the pipeline are N  
3He MR images acquired at visits  Ni ...,2,1 , where 2N , and an associated 1H MR 

image acquired at an arbitrary visit j ,  Nj ...,2,1 . 

 

3.2.3.2 Step 1: Registration 

As shown in Figure 3-1, using 3D Slicer, 3He MR images acquired at each visit i, 3Hevisiti, 

 Ni ...,2,1 , and the 1H MR image acquired at visit j, are co-registered to 3Hevisiti=j to 

generate temporal-spatial pulmonary function maps.  3Hevisiti=j, corresponding to the same 

visit at which the 1H MR image was acquired, is used as the fixed image for each inter-

http://www.slicer.org/
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visit 3Hevisiti-
3Hevisiti=j and intra-visit 1Hvisitj-

3Hevisiti=j registration.  Inter-visit 3Hevisiti-

3Hevisiti=j registration is required to correct for misalignment between two 3He MRI scans 

acquired at visit i and j due to inter-visit patient position variability on the scanner bed.  

3Hevisiti-
3Hevisiti=j co-registration is performed using an automated non-rigid deformable (B-

spline) registration method.  Intra-visit 1Hvisitj-
3Hevisiti=j co-registration is employed using 

landmark-based affine registration with 4-7 corresponding anatomical fiducial markers, 

such the carina, trachea, primary bronchi and the diaphragm. 

3.2.3.3 Step 2: 1H MRI Segmentation 

The thoracic cavity mask, which identifies the lung boundary and intern the thoracic cavity 

volume (TCV), is generated by segmenting 1Hvisitj using a seeded-region growing 

algorithm,27 as previously described.26  There is a subsequent manual editing option 

implemented to permit user modification of the automatically generated mask.   

3.2.3.4 Step 3: 3He MRI Segmentation  

For each visit i, automated 3Hevisiti ventilation segmentation is achieved using a hierarchical 

K-means clustering method, as previously described.26  The resulting 3He cluster maps 

consist of five clusters that represent signal intensity classes ranging from no signal (cluster 

1 (C1), or ventilation defect volume (VDV)), hypo-intense signal (C2) to hyper-intense 

signal (C5).  Subsequently, 3He clusters C2-C5 are merged and thoracic cavity masking 

was performed to generate corresponding 3He ventilation masks (VM).  3He MRI 

ventilation defect percent (VDP) was quantified by normalizing VDV to the TCV, as 

previously described.28   

3.2.3.5 Step 4: Temporal Map Generation  

To convey the short-term temporal behavior of 3He gas distribution, temporal-spatial 

pulmonary function maps are generated from N 3He ventilation masks and consist of three 

clusters: 1) persistent defect, 2) intermittent defect, and 3) persistent ventilation.  Temporal-

spatial pulmonary function map voxels are deemed as “persistent defect” if the 

corresponding 3He MRI ventilation mask voxels were ventilation defect (C1) at each visit.  

Similarly, a voxel is deemed persistently ventilated if the corresponding ventilation mask 

voxels were ventilated (C2-C5) at each visit.  A voxel is deemed as “intermittent defect” if 

the corresponding voxels were not consistently ventilation (C2-C5) or ventilation defect 
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(C1) at each visit.   Persistent ventilation defect percent (VDPP), intermittent ventilation 

defect percent (VDPI) and persistent ventilation percent (PVP) were generated as the ratio 

of each volume to the 1H MRI TCV.   

3.2.4 Registration Performance Evaluation  

Registration accuracy was estimated using the target registration error (TRE),29 defined as 

the distance between corresponding fiducial points in the fixed image and the moving 

images after registration.  Distinguishing anatomical landmarks that were readily apparent 

to the human observer, including the carina, trachea, primary bronchi and the diaphragm, 

were used as fiducials.   

3.2.5 Statistical Analysis 

Repeated-measures analysis of variance (ANOVA) were performed to evaluate changes in 

spirometry measurements, 3He polarization, 3He dose and 3He MRI VDP across timepoints 

using IBM SPSS Statistics version 21.00 (SPSS Inc., Chicago, IL, USA).  Paired two-tailed 

t-tests were used for statistical comparison of temporal-spatial pulmonary function map 

(VDPP and VDPI) anterior-centre-posterior (AP) and superior-middle-inferior (SI) 

differences, as previously described,20 using GraphPad Prism version 6.02 (GraphPad 

Software, Inc., San Diego, CA, USA).  Relationships between temporal-spatial pulmonary 

function maps (VDPP and VDPI) and spirometry were evaluated using Spearman 

correlation coefficients (r) and linear regressions (r2) generated using GraphPad Prism.  The 

mean of all spirometric measurements, acquired at visit 1, 2 and 3, were used to assess 

relationships.  Results were considered statistically significant when the probability of 

making a Type I error was less than 5% (p < 0.05). 

3.3 Results 

Subject demographic characteristics are shown in Table 3-1 for seven adults with asthma 

(n=4 males, mean age=28±9 years), all of whom completed three imaging sessions with a 

mean inter-visit interval of 5±2 days.  In total there were 8 adverse events in 6 subjects.  

All adverse events were related to hypoxia, defined as a temporary decrease in SpO2 below 

88%, and these were temporally related to MRI breath-hold manoeuvres.  Table 3-2 shows 
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mean spirometry and hyperpolarized 3He measurements acquired at each visit and Table 

3-3 provides a subject listing of all measurements.   

Table 3-1  Subject demographic characteristics. 

 

Table 3-2  Repeated spirometry and hyperpolarized 3He measurements. 

 Time-point (n=7) 

(±SD) Sig of Diff (p)* 

Parameter Visit 1 Visit 2 Visit 3 

Spirometry     

 FEV1 %pred 88 (11)  86 (12) 84 (12) 0.22 

 FVC %pred 104 (10) 101 (15) 99 (14) 0.18 

 FEV1/FVC %  72 (8) 71 (7) 72 (8) 0.76 

Hyperpolarized 3He  

 Dose mL 386 (70) 380 (76) 386 (95) 0.74 

 Polarization % 13 (2)  12 (2) 12 (2)  0.31 

 MRI VDP %  4 (2)  4 (3)  4 (3)  0.93 

Sig of Diff=Significance of difference; SD=Standard Deviation; FEV1=Forced 

Expiratory Volume in 1s; %pred=Percent Predicted; FVC=Forced Vital Capacity; 

MRI=Magnetic Resonance Imaging; VDP=Ventilation Defect Percent. 
*Significance of difference (p<0.05) determined using a repeated-measures analysis of 

variance.  

 

  

 

Parameter  

Asthma (n=7) 

(±SD) [range] 

Age years  28 (9) [21-47] 

Male/Female 4/3 

BMI kg/m-2   26 (4) [21-33] 

SaO2 97 (2) [94-98] 

FEV1 %pred  88 (11) [65-99] 

FVC %pred   104 (10) [89-120] 

FEV1/FVC %  72 (8) [61-81] 

SD=Standard Deviation; BMI=Body Mass Index; SaO2=Arterial Oxygen Saturation; 

FEV1=Forced Expiratory Volume in 1s; %pred= Percent Predicted; FVC=Forced Vital 

Capacity. 
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Table 3-3  Subject listing of demographic, spirometry and hyperpolarized 3He MRI 

measurements.   

V1=Visit 1; V2=Visit 2; V3=Visit 3; FEV1=Forced Expiratory Volume in 1s; 

%pred=Percent Predicted; FVC=Forced Vital Capacity; VDP=Ventilation Defect Percent; 

VDPP=Persistent Ventilation Defect Percent; VDPI=Intermittent Ventilation Defect 

Percent; PVP=Persistent Ventilation Percent. 

 

Figure 3-2 shows representative coronal hyperpolarized 3He MRI slices, acquired at each 

visit, for each subject.  All asthmatics evaluated had visually obvious 3He MRI gas 

distribution abnormalities at one or more of their imaging timepoints and qualitative 

differences in the distribution of 3He gas were observed between visits, as shown in Figure 

3-2.  However, despite regional gas distribution differences, as shown in Table 3-2, 

spirometry (FEV1%pred, p=0.22; FVC%pred, p=0.18; FEV1/FVC%, p=0.76) and whole lung 

3He MRI VDP (p=0.93) were not significantly different between visits.  Additionally, 3He 

dose (p=0.74) and polarization (p=0.31) was not different between imaging sessions.      
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Figure 3-2  3He MRI co-registered to the corresponding 1H MRI acquired at visit 1-3, and 

the corresponding temporal-spatial pulmonary function maps for seven asthmatic subjects.  

Regional differences in the spatial distribution of 3He MRI ventilation defects are visually 

apparent between visits for each subject.  This short-term temporal 3He ventilation defect 

behaviour is shown in the corresponding two-dimensional temporal-spatial map for each 

subject. 
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3.3.1 Temporal-Spatial Pulmonary Function Maps 

Temporal-spatial pulmonary function maps were generated from 3He MR images acquired 

at three visits ( 3N ), and an associated 1H MR image was arbitrarily chosen at visit 2 (

2j ). 

3.3.1.1 Target Registration Error 

Four corresponding fiducials were marked on each image volume (3Hevisit1, 
3Hevisit2, 

3Hevisit3 and 
1Hvisit2), for a total of 168 fiducials (24 per subject).  The mean distance between 

corresponding fiducials in the 3He-3He and 1H-3He image sets was 22±12mm and 

19±10mm, respectively.  For inter-visit 3He-3He registration, the mean TRE value for all 

112 fiducials (56 pairs) was 7±5mm (range: 1mm-29mm).  For intra-visit 1H-3He 

registration, the mean TRE for all 56 fiducials (28 pairs) was 6±3mm (range: 2mm-14mm). 

3.3.1.2 Ventilation Defect Temporal Behavior 

Figure 3-2 shows temporal-spatial pulmonary function maps for each subject and these 

spatially quantified the short-term temporal behavior of 3He MRI ventilation defects.  Lung 

regions with persistent (black) and intermittent ventilation defects (blue) were identified, 

the remaining regions were persistently ventilated (cyan).  For all subjects evaluated, the 

mean persistent ventilation defect percent was low (mean VDPP=0.2±0.2%) as was mean 

intermittent ventilation defect percent (VDPI=4±2%).  Mean persistent ventilation percent 

was high (PVP=95±3%) across the three imaging sessions.   

3.3.1.3 Anatomic Differences 

As qualitatively shown in Figure 3-3 and quantitatively described in Figure 3-4, VDPP 

and VDPI were evaluated in the AP and SI regions of interest.  VDPI was significantly 

greater in the posterior as compared to the centre (p=0.02) and anterior (p=0.04) lung 

regions but VDPP was not different.  In the inferior lung region, VDPI was significantly 

greater (p=0.04) than the superior lung region, while VDPP was not different.   
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Figure 3-3  Three-dimensional 3He MRI temporal-spatial pulmonary function maps for 

three representative asthmatic subjects. 

3D 3He MRI in the coronal, axial and sagittal view to qualitatively evaluate persistent and 

intermittent ventilation defects.  Both persistent and intermittent ventilation defects are 

prominent in the gravity-dependent posterior and inferior lung regions.  
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Figure 3-4  3He MRI intermittent ventilation defect percent (VDPI) and persistent 

ventilation defect percent (VDPP) anatomical differences. 

Plots show anatomical differences in VDPI and VDPP for regions of interest in the anterior-

centre-posterior (A, B) and superior-middle-inferior directions (C, D).  Box and whisker 

plots represent: minimum, 25th percentile, median, 75th percentile, and maximum.  

Statistically significant differences between regions of interest are shown. 

 

3.3.1.4 Relationships with Spirometry 

Figure 3-5 shows correlations for VDPP and VDPI with baseline and post-exercise 

FEV1/FVC.  Both VDPP and VDPI were negatively correlated with baseline (VDPP: r=-

0.87, p=0.01; VDPI: r=-0.96, p=0.0008) and post-exercise FEV1/FVC (VDPP: r=-0.79, 

p=0.04; VDPI: r=-0.96, p=0.003). There were no significant correlations for VDPP or VDPI 

with FEV1%pred or FVC%pred.  
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Figure 3-5  Relationship of 3He MRI temporal-spatial pulmonary function with airflow 

obstruction at baseline and following exercise challenge. 

Baseline FEV1/FVC was significantly correlated with intermittent ventilation defect 

percent (VDPI) (r=-0.96, p=0.0008) (A), and persistent ventilation defect percent (VDPP) 

(r=-0.87, p=0.01) (B).  Post-exercise FEV1/FVC was significantly correlated with VDPI 

(r=-0.96, p=0.003) (C), and VDPP (r=-0.79, p=0.04) (D).  Dotted lines indicate the 95% 

limits of agreement.  

 

3.4 Discussion 

We aimed to exploit 3He MRI ventilation measurements to generate asthma temporal-

spatial pulmonary function maps in acknowledgement of the paucity of real-time 

visualization/quantification tools available to identify temporal changes in regional 

ventilation, especially in response to therapy.  Therefore, here we developed a registration-

segmentation pipeline to generate 3He MRI temporal maps in mild-to-moderate asthmatics 

in order to spatially quantify temporally persistent and intermittent ventilation defects.  



109 

 

First, we acquired 3He MRI in seven asthmatic subjects, in whom there were no changes 

in pulmonary function tests or 3He MRI VDP during a three-week data acquisition period.  

For most subjects however, there were visually obvious differences in the regional 

distribution of 3He ventilation defects over the three-week time period.  Previous studies 

have evaluated 3He MRI ventilation defects following bronchoconstriction13,20,21,30 and 

bronchodilation,20,22 and these studies quantitatively described changes in the size and 

number of ventilation defects.  Other studies13,14,30 have evaluated ventilation defect 

reproducibility prior to and following bronchoconstriction and bronchodilation.  These 

studies suggested that the location and the temporal occurrence of ventilation defects prior 

to broncho-provocation were heterogeneous.30  We think that this important information 

can be quantified and simplified using multiple 3He MRI time-points and that using a single 

snapshot in time would likely be insufficient to quantify the complex interactions between 

space, time and airway hyperresponsiveness.  Persistent ventilation defects represented 

regions that were always abnormal, perhaps due to remodeled, narrowed and/or collapsed 

airways that altered the time constants for lung filling beyond the timeframe for MRI 

acquisition (15 sec).  Intermittent defects may be related to a number of underlying 

physiological airway abnormalities such as variable airway lumen diameter, exposure to 

triggers of hyperresponsiveness or mucus plugging.   

MRI temporal-spatial pulmonary function maps may be used to regionally locate the 

specific airways that are proximal to persistent or intermittent ventilation abnormalities as 

potential targets for localized airway treatment such as bronchial thermoplasty.31  For 

example, as shown in Figure 3-2 and Figure 3-3, for subject 3, the map provides evidence 

of highly localized disease.  For this subject, measurements of response to therapy to 

localize treatment should be directed to the lower left lobe, and can avoid the upper left 

lobe and the right lung.    

Second, we observed that intermittent ventilation defects and persistently ventilated lung 

showed regional differences or biases.  All subjects were imaged in the supine position, 

and in the gravity-dependent lung regions (posterior and inferior) VDPI was increased.  

This suggests that ventilation defects are more variable over time in dependent lung 

regions, a finding which must be further investigated.  This finding is supported by 

previous quantitative findings in both asthmatic and healthy subjects20 that VDP is greater 
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in the dependent lung regions.  Although the physiological mechanism responsible for this 

observation is not known, airway collapse may be a plausible explanation.   

Finally, we observed correlations for airflow obstruction (FEV1/FVC) with VDPI and 

VDPP at baseline and following exercise-induced bronchoconstriction.  Due to an increased 

sensitivity of asthmatic airways to a range of constrictor agonists, bronchial 

hyperresponsiveness is often referred to as the “hallmark” of asthma.  Accordingly, 

intermittent defects were identified in an attempt to spatially identify hyperresponsive 

airways as potential therapy targets.  We hypothesized that asthmatics with intermittent 

defects would show greater response to broncho-provocation and interestingly, we did 

observe a strong relationship between intermittent defects and post-exercise FEV1/FVC 

(r=-0.96, p=0.003) in these seven asthmatics.  This lends support to the notion that 

temporal-spatial measurements may be identifying hyper-responsive lung regions or ROI 

that are more likely to constrict during an exacerbation.    

Although this preliminary demonstration provides promising proof-of-concept results, we 

must acknowledge several limitations.  Importantly, a sample size of seven is small, 

therefore, our feasibility results should be considered a conservative estimate of VDPP and 

VDPI.  In fact, the immediate application of our method may be better-suited to poorly-

controlled and more severe asthma.  Additionally, the maps generated here captured week-

to-week lung function variability and not long-term ventilation defect persistence or 

disease progression.  The temporal persistence of ventilation defects was previously shown 

to decrease with time,14 therefore a longer inter-visit interval than used here might yield 

fewer persistent defect ROIs.  Additionally, we recognize the importance of potential 

registration errors and the effect this has on map interpretation – especially on the lung 

periphery where sub-segmental defects tend to appear.  In our experience, most registration 

errors are derived from scan-to-scan variability/differences in lung inflation levels, 

potentially due to gas trapping, and we therefore implemented a deformable registration 

method to minimize this.  If the methodology developed here was extended to generate 

maps to display transient ROI in response to methacholine and/or salbutamol, the 

application of the non-rigid registration algorithm presented here would be even more 

essential to account for larger changes in lung volumes and shape.  Finally, we must 

consider our approach as a precursor to temporal-spatial pulmonary function maps 
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generated using hyperpolarized 129Xe gas22 as these will certainly play a more prominent 

role in the future.32  Clearly, prior to the clinical application of this potential pulmonary 

image-guidance tool extensive efficacy evaluations are required.  Specifically, a 

randomized two-arm evaluation comparing the efficacy of conventional and image-guided 

treatment will be necessary to determine if similar changes in asthma control and quality-

of-life can be achieved as those obtained following conventional therapy.   

By “seeing” the disease and its variability over time, we can potentially help improve 

asthma treatments and outcomes, amounting to enormous clinical value.  Therefore, this 

work must be viewed as a first necessary step towards the development of high resolution 

image-guidance maps to help target specific airway abnormalities in asthmatics who 

undergo localized asthma therapies, such as bronchial thermoplasty, that currently are not 

guided by imaging to abnormally functioning lung.  In conclusion, personalized asthma 

temporal-spatial pulmonary function maps were generated from thoracic 3He MRI to 

visualize and quantify regional ventilation defects observed over time. 
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CHAPTER 4 

Towards the goal of understanding the structural determinants and clinical consequences 

of MRI ventilation defects in asthma, we evaluated well-established clinical and emerging 

CT-derived airway morphology measurements in healthy volunteers and asthmatics with 

and without ventilation defects.   

The contents of this chapter were previously published in the journal Thorax: S 

Svenningsen, M Kirby, D Starr, HO Coxson, NA Paterson, DG McCormack and G 

Parraga.  What are Ventilation Defects in Asthma? Thorax 2014; 69(1):63-71.  Permission 

to reproduce this article was granted by BMJ Publishing Group Ltd and is provided in 

Appendix A.   

4 WHAT ARE VENTILATION DEFECTS IN ASTHMA? 

4.1 Introduction 

Asthma is typically diagnosed and characterized using the spirometry measurement1,2 of 

the forced expiratory volume in 1 second (FEV1).  Although relatively simple and 

inexpensive, spirometry measurements provide a global estimate of the morphological 

changes in the small and medium-sized airways that are believed to be related to luminal 

inflammation, airway remodeling and constriction.  We now realize using multiple breath 

nitrogen washout studies3,4 and pulmonary imaging methods, that functional abnormalities 

in asthma are in fact regionally heterogeneous,5-7 temporally persistent8-10 and that these 

abnormalities regionally respond to broncho-provocation7,11,12 and to bronchodilator 

therapy.11,13  Thoracic x-ray computed tomography (CT) has been used for over a decade 

as a non-invasive method to investigate structure-function relationships of asthmatic 

airways and has shown strong relationships between CT-derived airway measurements 

with inflammation,14,15 spirometry14-21 and disease severity.14,16,20,22  However, while these 

CT data are encouraging, they are still somewhat limited because it is well recognized that 

CT cannot resolve or measure airways beyond the 5th or 6th generation.  Moreover, even 

using new lower dose and iterative reconstruction methods,23 CT is not recommended for 

longitudinal studies and studies of young adults and children because of the potential risks 

associated with exposure to ionizing radiation.  Other pulmonary imaging methods such as 

nuclear medicine scintigraphy24-26 and positron emission tomography (PET)27 are also 

limited clinically because of inherently low spatial resolution.   
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Hyperpolarized 3He magnetic resonance imaging (MRI) has been previously used to 

visualize heterogeneous and abnormal gas distribution in asthma.  Regions of signal void 

or ventilation defects have been shown to be temporally persistent8-10 and to correlate 

significantly with spirometry,6,28,29 disease severity6 and CT measurements of gas 

trapping.28  In addition, 3He MRI also provides a way to perform intensive serial 

measurements due in part to its excellent safety profile,30 and the speed with which imaging 

can be performed.  More specifically, 3He MRI ventilation defects have been shown to 

increase from baseline following both methacholine7,11,12 and exercise12 challenge, and 

decrease from baseline following salbutamol administration.13  In asthma, the relationship 

between ventilation defects and patient outcomes such as exacerbation frequency and 

severity has not yet been evaluated, however this has been evaluated in chronic obstructive 

pulmonary disease (COPD).31  Recently, there has been growing interest in the clinical 

application of hyperpolarized gas MRI to assess treatment efficacy and furthermore to 

guide localized airway treatments in asthma.  Preliminary work in severe asthma has shown 

improved 3He gas distribution following localized bronchial thermoplasty treatment.32  

While these results provide a strong foundation for the use of MRI in asthma research and 

patient care, a major drawback has been that we do not clearly understand the etiology of 

MRI ventilation defects.33  It has been speculated that MRI ventilation defects reflect 

regional airway narrowing that may be the consequence of airway remodeling;34 however, 

to our knowledge, the direct spatial and quantitative relationship between MRI ventilation 

defects and CT airway measurements has not been reported in asthmatics.  Therefore, our 

objective was to determine the underlying structural and clinical determinants of asthma 

ventilation abnormalities by evaluating well-established clinical and emerging imaging 

(hyperpolarized 3He MRI and CT) measurements in healthy volunteers and subjects with 

asthma. 

4.2 Methods 

4.2.1 Study Subjects 

All subjects provided written informed consent to a study protocol approved by the local 

research ethics board, and the study was compliant with the Personal Information 

Protection and Electronic Documents Act (PIPEDA, Canada) and the Health Insurance 
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Portability and Accountability Act (HIPAA, USA).  Subjects were enrolled between 18 

and 60 years of age, including mild-to-moderate35 asthmatics, and healthy subjects with no 

history or diagnosis of asthma or any other chronic or current acute respiratory illness.  

Asthmatic subjects were phenotyped from health records based on disease severity and 

symptoms from a tertiary care centre (interdisciplinary Allergy and Respirology asthma 

care centre); all asthma subjects had a current physician diagnosis of asthma, were 

currently under treatment for asthma and had a positive methacholine challenge within the 

past five years.  At a single visit, spirometry, plethysmography, fractional exhaled nitric 

oxide (FeNO) breath analysis and pulmonary CT was performed within 30 minutes of MRI. 

4.2.2 Pulmonary Function Tests 

Spirometry and plethysmography were performed according to American Thoracic Society 

Guidelines36 using an ndd EasyOne spirometer (ndd Medizintechnik AG, Zurich, 

Switzerland) and a MedGraphics Elite Series plethysmograph (MedGraphics, St. Paul, 

MN, USA), respectively.  FeNO was measured using a Niox Mino (Aerocrine Inc. USA, 

New Providence, NJ, USA).  Methacholine challenge was performed as previously 

described 11 and the provocative concentration causing a 20% decrease in FEV1 (PC20) was 

determined.  Borg and modified Medical Research Council (mMRC) dyspnea scores were 

recorded. 

4.2.3 Magnetic Resonance Imaging 

MRI was performed on a whole body 3.0 Tesla Discovery 750MR (General Electric Health 

Care, Milwaukee, WI, USA) system with broadband imaging capability, as previously 

described.37  Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag 

(Jensen Inert Products, Coral Springs, FL, USA) from functional residual capacity (FRC), 

and image acquisition was performed in 8-15s under breath-hold conditions.  Conventional 

1H MRI was performed prior to hyperpolarized 3He MRI, both methods are previously 

described.37   

3He MR images were qualitatively and quantitatively evaluated for ventilation 

abnormalities by a single trained observer.  Upon qualitative inspection, asthmatic subjects 

were classified into two groups, 1) asthmatics with no ventilation defects (ND) and 
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asthmatics with ventilation defects (AD).  If 3He gas was homogenously distributed 

throughout the lung and there were no visible ventilation defects the subject was classified 

as belonging to the ND group.  In contrast, if 3He gas was heterogeneously distributed 

throughout the lung and/or there were visually obvious ventilation defects, the subject was 

classified as belonging to the AD group.  Quantitative evaluation of 3He MRI was 

performed to estimate ventilation defect percent (VDP) and ventilation heterogeneity using 

the coefficient of variation (COV).  3He MRI semi-automated segmentation was performed 

to quantify lung volumes using custom software generated using MATLAB R2007b (The 

Mathworks Inc., Natick, MA, USA), as previously described.38  As shown in Figure 4-1, 

3He static ventilation images were segmented using a K-means approach that classified 

voxel intensity values into five clusters ranging from signal void (cluster 1 (C1) or 

ventilation defect volume (VDV)) to hyper-intense signal (cluster 5 (C5)) to create a gas 

distribution cluster-map.  3He MRI VDP was generated using VDV normalized to the 

thoracic cavity volume.  Whole lung and regional VDP specific to the CT region-of-interest 

(ROI) were generated for each subject.  Ventilation heterogeneity was estimated according 

to previously described methods7 using the COV.  Briefly, a ventilated lung ROI was 

defined as gas distribution cluster-map clusters C2-C5.  For each voxel within the 

ventilated lung ROI a local ventilation heterogeneity value was calculated by computing 

the COV of the signal intensity in the voxels 5 x 5 neighborhood.  Mean COV for each 

slice was calculated for each 3He static ventilation slice and then averaged to obtain a single 

COV value for each subject.   

4.2.4 Computed Tomography 

Following 3He MRI, thoracic CT was performed with the same inhalation breath-hold 

volume and manoeuvre used for MRI, in order to match CT and MRI lung volume and 

anatomy.  CT imaging was performed in the supine position using a 64-slice Lightspeed 

VCT scanner (GEHC, Milwaukee, WI USA) using a detector configuration of 64×0.625 

mm, 120 kVp, 100 mA, 0.5 second gantry rotation, and a pitch of 1.25.  To reduce the 

radiation dose, CT was obtained for a 4cm axial ROI where there were visually obvious 

MRI ventilation defects.  In the case where there were no visually obvious ventilation 

defects, the CT volume was acquired in the superior region of the lung.  This approach 
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resulted in CT volumes consisting of 32-80 slices and a total effective dose ranging from 

0.37 mSv to 0.14 mSv, (generated using the CT parameters and algorithm at 

www.impactscan.org).   

CT image analysis was performed using Pulmonary Workstation 2.0, (VIDA Diagnostics; 

Iowa City, IA, USA) to generate bronchial wall area percent, wall thickness percent and 

lumen area  for all 3rd-5th generation segmental bronchi analyzed and lumen area was 

normalized to body surface area.39  As shown in Figure 4-1, an automated airway tree 

segmentation algorithm was applied with a manual seed-point in the airway lumen 

introduced if the trachea and main bronchus were not present in the image.  For each 

subject, all airway segment measurements were averaged to report whole lung means.  To 

identify potential spatial relationships between 3He MRI ventilation defects and 

corresponding airways, CT-MRI co-registration was performed using 3D Slicer 

registration software (http://www.slicer.org).40 

http://www.impactscan.org/
http://www.slicer.org/
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Figure 4-1  Schematic for 3He MRI – Regional CT image acquisition, co-registration and 

analysis. 

A region-of-interest (ROI) (green-yellow rectangle) with ventilation defects was located 

using 3He MRI.  Following MRI, regional CT was acquired in that specific ROI. 

Ventilation defect percent (VDP) was quantified for the whole lung and the CT-derived 

ROI and an automated airway tree segmentation algorithm (VIDA) was applied to obtain 

airway measurements.  Using the carina and trachea as a landmark, the regional CT with 

rendered airways was rigidly co-registered with the corresponding MR image to confirm 

the spatial relationship between ventilation defects and corresponding airways. 
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4.2.5 Statistical Analysis 

Pulmonary function tests, MRI and CT measurements were compared between subject 

groups using unpaired Student t-tests performed using SPSS 20.0 (IBM, Armonk, NY, 

USA).  Linear regression (r2) and Spearman rank correlation coefficients (r) were 

performed using GraphPad Prism version 4.00 (Graphpad Software Inc, San Diego, CA, 

USA).  Results were considered statistically significant when the probability of making a 

Type I error was less than 5% (p < 0.05). 

4.3 Results 

We enrolled 34 subjects including 26 subjects with a clinical diagnosis of asthma and 

previous methacholine challenge results consistent with asthma, and 8 healthy volunteers.  

Table 4-1 shows subject demographic data, pulmonary function measurements, and 

dyspnea scores for the two subgroups, and a subject listing of all data is provided in the 

online supplement, Table 4-3S.  

Table 4-1 Subject demographic characteristics for asthmatics and healthy volunteers. 

SD=Standard Deviation, BMI=Body Mass Index, FEV1=Forced Expiratory Volume in 1s, 

%pred= Percent Predicted, FVC=Forced Vital Capacity, sRaw=Specific Airway Resistance, 

FeNO=Fraction of Exhaled Nitric Oxide, PC20= provocative concentration of methacholine 

sufficient to induce a 20% decrease in FEV1, mMRC=modified Medical Research Council. 
*n=1 

 

 

 

Healthy  

(n=8) 

Asthmatics 

(n=26) 
Subject Demographics 
Age yrs (±SD) 34 (11) 35 (11) 

Male/Female 4/4 12/14 

BMI kg/m2  (±SD) 23 (3) 25 (5) 
Pulmonary Function Tests 
FEV1 %pred(±SD) 102 (10) 84 (15) 

FVC %pred  (±SD) 103 (10) 93 (11) 

FEV1/FVC % (±SD)   81 (6) 74 (11) 

sRaw cmH2O·s (±SD) 3.0 (0.5) 6.9 (4.7) 

FeNO ppb (±SD) 18*  44 (45) 

PC20 mg/ml (±SD) 42.3 (19.2) 5.9 (12.3) 

Dyspnea Scores 
mMRC Score (±SD) 0 (0) 1 (1) 

Borg Score (±SD) 0 (0) 0.5 (1) 
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Upon qualitative visual inspection, nine of the 26 asthmatics had no ventilation defects 

(ND) and 17 had visually obvious asthma ventilation defects (AD).  Figure 4-2 shows 

posterior, centre and anterior 3He MRI static ventilation coronal slices (in blue) co-

registered to the 1H anatomical MRI (in grey-scale) for a representative healthy volunteer 

as well as ND and AD asthmatics with yellow arrows identifying ventilation defects.  For 

both healthy volunteers and ND asthmatics, 3He gas was homogeneously distributed 

throughout the lung whereas in contrast, AD asthmatics had visually obvious ventilation 

heterogeneity and ventilation defects.  Of the 8 healthy volunteers and 26 asthmatics 

evaluated, 2 healthy volunteers and 12 asthmatics underwent imaging across multiple 

timepoints ranging from 4 years prior, to 2 years following the study session reported here.  

In accordance with the study visit data presented here, both healthy volunteers had no 

ventilation defects at their additional timepoint.  All asthmatics who underwent multiple 

imaging timepoints were AD asthmatics and all of these subjects had ventilation defects at 

their additional timepoint and in the same spatial locations.  Moreover, for all asthmatic 

subjects with repeated imaging measurements (n=12), VDP was not significantly different 

(p=0.49) from measurements acquired and reported in this study.   

As shown in Table 4-2, AD subjects were significantly older than ND subjects (p=0.01) 

with significantly worse FEV1/FVC (p=0.0003), specific airways resistance (sRaw) 

(p=0.004), FeNO (p=0.03), PC20 (p=0.008), COV (p=0.046), wall thickness percent 

(p=0.02) and lumen area normalized to body surface area  (p=0.04), but importantly there 

was no mean difference for FEV1 (p=0.08), FVC (p=0.71) or dyspnea (mMRC: p=0.79, 

Borg: p=0.12).  As compared to healthy subjects, AD subjects had significantly worse 

FEV1 (p=0.001), FEV1/FVC (p=0.003), sRaw (p=0.003), PC20 (p<0.0001), COV (p=0.007) 

wall area percent (p=0.001), wall thickness percent (p=0.04), and lumen area normalized 

to body surface area (p=0.0003), but there was no significant difference for FVC (p=0.06).  

ND subjects had significantly worse FVC (p=0.04), PC20 (p=0.02) and wall area percent 

(0.03) compared to healthy volunteers, but no significant difference for FEV1 (p=0.09), 

FEV1/FVC (p=0.36), sRaw (p=0.36), COV (p=0.11), wall thickness percent (p=0.61) or 

lumen area normalized to body surface area (p=0.26). 
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Figure 4-2  Hyperpolarized 3He MRI of a representative healthy volunteer and asthmatic 

subjects. 
3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale) 

for posterior, centre and anterior coronal slices for a representative healthy volunteer, an 

asthmatic with no ventilation defects, and two asthmatics with ventilation defects.  Yellow 

arrows identify ventilation defects.  

Healthy Volunteer: 27 yr old female, FEV1=105%pred, FEV1/FVC=85%, sRaw=2.60 

cmH2O·s; Asthmatic 1 No Defects: 23 yr old female, FEV1=82%pred, FEV1/FVC=79%, 

sRaw=3.80 cmH2O·s; Asthmatic 2 Defects: 25 yr old female, FEV1=87%pred, 

FEV1/FVC=69%, sRaw=5.36 cmH2O·s; Asthmatic 3 Defects: 42 yr old male, 

FEV1=72%pred, FEV1/FVC=65%, sRaw=13.85 cmH2O·s. 
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Table 4-2 Subject demographic characteristics, pulmonary function, hyperpolarized 3He 

MRI and x-ray CT airways measurements for asthmatics and healthy volunteers. 

ND=Asthmatics with No Defects, AD=Asthmatics with Defects, SD=Standard Deviation, 

FEV1=Forced Expiratory Volume in 1s, %pred= Percent Predicted, FVC=Forced Vital 

Capacity, sRaw=Specific Airway Resistance, FeNO=Fraction of Exhaled Nitric Oxide, 

PC20= provocative concentration of methacholine sufficient to induce a 20% decrease in 

FEV1, mMRC=modified Medical Research Council, VDP=Ventilation Defect Percent, 

COV=Coefficient of Variation, WA%=Wall Area Percent, WT%=Wall Thickness Percent, 

LA=Lumen Area, BSA=Body Surface Area. *Significance of difference (p<0.05) 

determined using a t-test.  †n=1; ‡n=8; δn=13; ¥HV: n=5; ND: n=9; AD: n=9. 

  

 Healthy  

(n=8) 

Asthma  

(n=26) 

Significance of Difference*  

(p) 

  ND  

(n=9) 

AD 

(n=17) 

HV vs. 

ND 

HV vs. 

AD 

ND vs. 

AD 

Subject Demographics 
Age yrs (±SD) 34 (11) 27 (8) 39 (11) 0.19 0.29 0.01 

Male/Female 4/4 2/7 10/7 - - - 

Pulmonary Function Tests 

FEV1 %pred(±SD) 102 (10) 91 (13) 81 (14) 0.09 0.001 0.08 

FVC %pred  (±SD) 103 (10) 92 (10) 94 (11) 0.04 0.06 0.71 

FEV1/FVC % (±SD)   81 (6) 84 (7) 69 (10) 0.36 0.003 0.0003 

sRaw cmH2O·s 

(±SD) 

2.96 

(0.53) 

3.42(1.22) 8.51(4.95) 0.36 0.003 0.004 

FeNO ppb (±SD) 18† 17 (9)‡ 60 (50)δ - - 0.03 

PC20 mg/ml (±SD) 42.3 

(19.2) 

14.3(16.8) 1.4 (3.9) 0.02 <0.0001 0.008 

Dyspnea 

mMRC Score (±SD) 0.0 (0.0) 0.7 (0.7) 0.8 (1.0) 0.02 0.04 0.79 

Borg Score (±SD) 0.1 (0.2) 0.2 (0.3) 0.7 (0.8) 0.28 0.047 0.12 
3He MRI       

Whole Lung VDP% 

(±SD) 

1.22 

(0.19) 

1.31(0.32) 4.26(3.28) - - - 

Regional VDP% 

(±SD)¥ 

0.94 

(0.28) 

0.95(0.40) 2.35(0.98) - - - 

Whole Lung COV 

(±SD) 

0.22 

(0.02) 

0.23(0.01) 0.26(0.03) 0.11 0.007 0.046 

Regional CT¥       

WA% (±SD) 62 (2) 66 (3) 69 (3) 0.03 0.001 0.08 

WT%  (±SD)  24 (4) 25 (2) 29 (4) 0.61 0.04 0.02 

LA mm2 (±SD)  18 (3) 14 (6) 11 (4) 0.19 0.002 0.12 

LA/BSA mm2/m2 

(±SD)  

10 (2) 8 (3) 6 (2) 0.26 0.0003 0.04 
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Figure 4-3 shows the correlations for FEV1 and sRaw with whole lung VDP, regional VDP 

and wall area percent.  FEV1 was significantly correlated with both 3He MRI VDP (whole 

lung: r=-0.61, p=0.0002; regional: r=-0.55, p=0.006) and wall area percent (r=-0.49, 

p=0.02).   In addition, sRaw was significantly correlated with both 3He MRI VDP (whole 

lung: r=0.77, p<0.0001; regional: r=0.81, p<0.0001) and wall area percent (r=0.48, 

p=0.02).  Additionally, FEV1 and sRaw were significantly correlated with whole lung 3He 

MRI COV (FEV1: r=-0.49, p=0.003; sRaw: r=0.59, p=0.0003).  Figure 4-4 demonstrates 

that for all subjects wall area percent was significantly correlated with whole lung (r=0.42, 

p=0.046) and regional VDP (r=0.43, p=0.04).   

 

Figure 4-3  Relationships of MRI and CT measurements with FEV1 and airways resistance. 

(A) Negative relationship between 3He MRI VDP and FEV1%pred (WL: r=-0.61, r2=0.20, 

p=0.0002; RG: r=-0.55, r2=0.26, p=0.006). 

(B) Positive relationship between 3He MRI VDP and specific airways resistance (sRaw) 

(WL: r=0.77, r2=0.62, p<0.0001; RG: r=0.81, r2=0.75, p<0.0001). 

(C) Negative relationship between wall area percent and FEV1%pred (r=-0.49, r2=0.23, 

p=0.02).  

(D) Positive relationship between wall area percent and specific airways resistance (sRaw) 

(r=0.48, r2=0.21, p=0.02). 

WL=whole lung, RG=regional, WA%=wall area percent 
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Figure 4-4  Relationship between 3He MRI VDP and CT-derived wall area percent (WA%) 

WA% was significantly correlated with both whole lung 3He MRI VDP (r =0.42, r2=0.11, 

p=0.046) and regional 3He MRI VDP (r =0.43, r2=0.15, p=.04). 

Dashed lines represent the 95% confidence intervals of the regression line.  

 

 

Figure 4-5 shows hyperpolarized 3He MRI ventilation maps for four asthmatics with the 

3He MRI ventilation map in blue co-registered to the CT volume with the airway tree 

segmented in yellow.  The qualitative spatial relationship between ventilation defects 

(yellow arrows) and remodeled airways (white arrows) is shown. 
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Figure 4-5  Spatial relationship between ventilation defects and airways for four 

representative asthmatics with ventilation defects. 
3He MRI gas distribution (in blue) registered to the regional CT of the thorax (in grey-

scale) with the airway tree segmented in yellow.  Airway measurements are for the specific 

airway (white arrow) spatially related to the ventilation defect (yellow arrow) of interest. 

Panel A is a 29 yr old male FEV1=81%pred, regional VDP=5%, wall area=71%, lumen 

area=5mm2; Panel B is a 49 yr old male, FEV1=60% pred, regional VDP=3%, wall area 

=67%, lumen area=12mm2 ; Panel C is a 25 yr old female, FEV1=87% pred, regional 

VDP=2%, wall area =75%, lumen area=5mm2; Panel D is a 58 yr old male, FEV1=73% 

pred, regional VDP=1%, wall area=70%, lumen area=5mm2.  

 

4.4 Discussion  

To better understand the structural and clinical determinants of MRI ventilation defects in 

asthma, and, in turn, what it might mean for an asthmatic to have ventilation defects, we 

evaluated well-established clinical measurements and emerging CT and 3He MRI 

measurements of airway structure and function.  
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We think that it is interesting that 9/26 (35%) subjects with clinical findings and 

methacholine challenge results diagnostic of asthma had a 3He MRI gas distribution that 

was qualitatively and quantitatively (VDP and COV) similar to healthy volunteers.  It is 

important to note that all of the healthy volunteers had a homogenous gas distribution with 

no visual or quantitative evidence of ventilation defects, which is in agreement with 

previous work at our centre11,41-43 and others.5,7,44  In contrast, and as expected based on 

previous investigations,5-9,11,12 the remaining 17/26 (65%) asthmatics had obvious 

ventilation abnormalities.  This observation prompted us to ask the question: Are 

asthmatics with ventilation defects different than asthmatics without ventilation defects?  

The results here suggest that asthmatics with ventilation defects are older, with worse 

FEV1/FVC, (but similar FEV1), and greater airways resistance, airway responsiveness, and 

airway inflammation/remodeling.  Such findings suggest that ventilation defects may 

reflect long-term or progressive airway remodeling in patients with a longer history of 

disease or perhaps more severe or advanced disease.  Regardless, the constellation of 

clinical and imaging findings in these asthmatics suggest that more aggressive therapy or 

compliance to therapy is required.  This is a hypothesis that can be tested in future imaging 

studies of older and/or more severe asthmatics.  

A number of studies have quantitatively investigated asthma airway structure using CT and 

showed that bronchial wall thickness was related to asthma severity, duration of disease 

and airflow obstruction.14-22  Similarly, 3He MRI has previously shown that ventilation 

defects were related to asthma severity6 and in a preliminary report,45 half of a small group 

of asthmatics (7/15) showed no obvious ventilation defects, with significantly different 

bronchial wall thickness (but not bronchial wall area) compared to asthmatics with 

ventilation defects.  Here, we prospectively acquired both MRI and CT within about 30 

minutes using the same lung volume and breath-hold manoeuvre to try to mimic the same 

airway and parenchyma dimensions using both imaging methods.  We must consider that 

because 3He gas is itself, highly diffusive and may penetrate even narrowed airways, there 

is the possibility that even when bronchial wall thickness and lumen area are abnormal, 

some 3He gas ventilation is possible.  In support of this explanation, we note the recent 

report of indirect or collateral ventilation in COPD that was directly visualized using 
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hyperpolarized 3He MRI46 – likely possible only because the timeframe for imaging was 

relatively long and 3He gas is highly diffusive.   

We also observed that regional CT airway morphology and 3He ventilation defect 

measurements were significantly correlated.  This important finding suggests that there is 

a relationship between airways that are remodeled and/or constricted and ventilation 

defects.  Previous studies have demonstrated that focal regions of hyperlucency on CT 

(likely related to gas trapping) were spatially correlated with 3He MRI ventilation defects28 

and bronchoalveolar lavage had higher total and percent neutrophils in areas of the lung 

with greater ventilation defects, suggestive of increased inflammation.  Although we 

observed significant relationships between airway dimensions and defects, these 

relationships were modest, perhaps because of the heterogeneity of asthma and the asthma 

patients evaluated here, or because of the relatively low dose partial CT region of interest 

that was utilized.  It is important to acknowledge that in asthma, the airways from the large 

bronchi to the alveolar ducts may be involved,47 thus using CT to measure airway 

dimensions has limitations because CT cannot spatially resolve the small airways (<2mm) 

sufficiently to provide accurate measurements.  In addition to small and heterogeneously 

distributed ventilation defects, some of the asthmatics evaluated here presented large 

wedge shaped defects; these have previously been reported using single photon emission 

computed tomography (SPECT) imaging with Technegas25 and are believed to be the result 

of segmental airway narrowing.  Following MRI-CT registration we were able to identify 

and quantify segmental bronchi that were spatially related to ventilation defects.  Larger 

‘segmental’ ventilation defects may be the result of proximal remodeled sub-segmental 

airways feeding these regions of signal void.  Unfortunately, due to the limitations of the 

spatial resolution of the CT images, we cannot comment on the structure of the smaller 

airways distal to the sub-segmental airways quantified here, which may further contribute 

to the abnormal gas distributions observed.   

Large and temporally persistent 3He ventilation defects, provide excellent targets for 

therapy and could potentially guide localized airway treatments such as bronchial 

thermoplasty.  Although we have focused our attention on ventilation defects, areas of 

hyper-intense signal intensity are often observed in asthmatic subjects in conjunction with 

ventilation defects.  Similar to regions of signal void, to our knowledge, the underlying 
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etiology of these regions has not been investigated.  We hypothesize that hyper-intense 

signal may be due to hyperinflation and note that investigation of these regions is warranted 

in asthma. 

We recognize and acknowledge that this work was limited by the relatively small number 

of subjects evaluated, although we note that this is the single largest prospective study that 

directly compared CT and 3He MRI in asthmatics and healthy subjects.  Furthermore, the 

subjects evaluated here were enrolled from a multi-disciplinary asthma care centre and 

therefore they represent a diverse group of asthmatics that have been mainly referred to 

improve asthma symptoms and control.  As shown in Figure 4-3, there was a single subject 

with elevated VDP as compared to the other AD subjects and we confirmed that this 42 

year old male had experienced an asthma exacerbation that required hospitalization 

approximately 5 months prior to hyperpolarized 3He MRI performed here.  This subject’s 

asthma was previously well-controlled and the exacerbation was determined to be the result 

of sudden cessation of asthma medication.  It is important to note that the relationships 

presented in Figure 4-3 remain statistically significant when this outlier is removed from 

the analysis.  Certainly, this is a hypothesis generating study and therefore marginally 

significant p-values should be interpreted with caution, and larger studies are required for 

more extensive phenotyping and characterization of asthmatics and to test the hypotheses 

generated here.  We must also acknowledge that our analysis was limited because of the 

acquisition of partial CT thoracic volumes.   

In summary, our results showed that asthmatics with 3He MRI ventilation abnormalities 

were older, with greater airway hyperresponsiveness, and worse measurements of 

FEV1/FVC and airways resistance/inflammation as well as abnormally remodeled airways 

in comparison to asthmatics without ventilation defects.  Hyperpolarized 3He ventilation 

abnormalities were spatially and quantitatively related to remodeled airways in asthmatics 

providing a better understanding of the etiology of heterogeneous ventilation abnormalities 

in asthma and the clinical meaning of these abnormalities in asthmatics with similar FEV1. 
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4.6 Supplementary Material  

Table 4-3S  Subject listing of demographic characteristics, pulmonary function and dyspnea. 
Subject Age Gender FEV1 FVC FEV1/FVC IC RV TLC sRaw FeNO PC20 mMRC Borg 
 (yrs)  (%pred) (%pred) (%) (%pred) (%pred) (%pred) (cmH2O·s) (ppb) (mg/ml)  Baseline Post-MCh 

Healthy Volunteers (n=8) 
021 27 F 105 105 85 124 107 113 2.60 18 8.5 0 0 0.0 
023 39 M 86 95 72 125 182 118 2.77 - 54.4 0 0 0.0 
027 24 M 108 110 80 113 179 121 4.00 - - 0 0.5 2.0 
030 50 F 106 107 79 134 75 110 3.08 - - 0 0 2.0 
031 26 F 97 90 93 99 109 96 3.24 - 46.1 0 0 0.5 
033 23 M 93 91 85 110 99 99 2.18 - 52.6 0 0 0.0 
034 30 M 101 108 77 111 102 109 2.81 - 49.9 0 0 0.5 
035 50 F 117 118 79 126 88 115 3.01 - - 0 0 0.5 
Mean(±SD) 34(11) - 102(10) 103(10) 81(6) 118(11) 118(40) 110(9) 2.96(0.53) - 42.3(19.2) 0(0) 0.1(0.2) 0.7(0.8) 

Asthmatics with No Defects (n=9) 
005 45 F 78 87 72 124 108 102 4.97 - 2.4 2 0.5 4 
006 23 F 96 91 92 107 104 97 1.50 8 16.9 1 1 7 
007 24 M 81 85 81 86 111 94 3.22 12 27.9 0 0.5 3 
008 34 M 82 79 84 110 105 91 2.67 16 55.2 0 0 3 
010 30 F 102 101 87 135 82 96 2.25 21 3.4 1 0 2 
017 23 F 112 102 96 128 164 122 3.95 12 13.2 0 0 3 
018 22 F 79 83 82 90 115 91 5.58 37 0.4 0 0 3 
020 23 F 82 91 79 104 69 87 3.80 17 0.3 1 0 2 
024 20 F 108 110 86 138 85 99 2.88 10 9.1 1 0 4 
Mean(±SD) 27(8) - 91(13) 92(10) 84(7) 114(18) 105(25) 98(10) 3.42(1.22) 17(9) 14.3(16.8) 0.7(0.7) 0.2(0.3) 3.4(1.4) 

Asthmatics with Defects (n=17) 
001 49 F 69 94 59 116 144 110 10.20 38 0.08 0 1 1 
002 30 M 96 105 75 122 108 109 5.11 - 0.2 0 0 4 
003 29 M 81 100 66 118 115 111 19.50 114 0.1 1 0.5 3 
004 49 F 59 75 63 84 130 96 - - 0.07 0 0 2 
011 23 F 98 93 91 101 113 95 2.93 116 0.2 1 1 3 
012 25 F 87 107 69 119 98 101 5.36 50 0.1 1 0 3 
013 37 M 77 77 81 107 135 97 10.42 31 0.1 4 1 3 
014 29 F 92 102 77 98 96 97 2.64 18 1.3 1 1 3 
015 47 M 60 82 57 99 115 94 6.51 45 0.3 0 0.5 4 
016 53 M 104 104 77 111 82 100 4.78 22 16.3 0 0 4 
019 42 M 72 88 65 110 144 108 13.85 40 0.1 1 0 1 
022 24 F 99 111 76 132 90 108 6.40 187 0.2 0 0 3 
025 58 M 73 99 56 91 121 110 8.38 29 1.0 0 0.5 0 
026 37 M 93 93 66 105 107 109 4.33 - 2.6 1 0.5 3 
028 36 F 66 92 59 129 165 113 15.74 - 0.8 1 3 3 
029 41 M 75 95 63 114 136 106 13.76 69 0.1 1 2 3 
032 49 M 69 77 70 98 98 87 6.31 23 1.0 1 0.5 3 
Mean(±SD) 39(11) - 81(14) 94(11) 69(10) 109(13) 117(22) 103(8) 8.51(4.95) 60(50) 1.4(3.9) 0.8(1.0) 0.7(0.8) 2.7(1.1) 

SD=Standard Deviation, FEV1=Forced Expiratory Volume in 1s, %pred= Percent Predicted, FVC=Forced Vital Capacity, IC=Inspiratory 

Capacity, RV=Residual Volume, TLC=Total Lung Capacity, sRaw=Specific Airway Resistance, FeNO=Fraction of Exhaled Nitric 

Oxide, PC20=provocative concentration of methacholine sufficient to induce a 20% decrease in FEV1, mMRC=modified Medical 

Research Council.  
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CHAPTER 5 

Improving asthma control is the primary treatment goal for asthmatics.  Links between 

asthma control and ventilation defects have not been ascertained so we endeavoured to 

answer the question, “What is the relationship of asthma control with in vivo ventilation 

defects quantified and regionally visualized using MRI?” 

The contents of this chapter are in preparation to be submitted to the journal Radiology: S 

Svenningsen, P Nair, DG McCormack and G Parraga.  What do Ventilation Defects Reveal 

about Asthma Control? Radiology (To be submitted December 2015).    

5 WHAT DO VENTILATION DEFECTS REVEAL ABOUT 

ASTHMA CONTROL? 

5.1 Introduction 

The primary goal of asthma treatment is the achievement and maintenance of disease 

control.  Unfortunately, approximately 50% of asthmatics remain poorly controlled with 

up-to 10% of these patients experiencing severe and life-threatening exacerbations.1  It is 

now well-understood that the clinical and pathophysiological characteristics of poorly-

controlled asthma are heterogeneous which makes treatment decisions particularly 

complex.  Because of this heterogeneity, sensitive and specific disease biomarkers are 

required to guide treatment decisions aimed at improving asthma control.  Recent studies 

using multiple-breath-gas-washout techniques have suggested that poor asthma control 

may be related to ventilation heterogeneity.2,3  Although the exact pathophysiological 

abnormalities responsible for ventilation heterogeneity are unclear, these may include 

regional variations in luminal accumulation of inflammatory cells, mucus, albumin and 

fibrin, thickening of the airway walls, smooth muscle hyperplasia and hypertrophy, sub-

epithelial fibrosis and mucus cell metaplasia.   

Ventilation heterogeneity measured using the lung clearance index (LCI), was first 

described over 65 years ago,4 and has endured as a biomarker of obstructive lung disease.  

Ventilation heterogeneity in asthmatics is elevated in comparison to healthy controls,5-7 is 

an independent determinant of airway hyperresponsiveness,8 improves with 

bronchodilation5,9 and inhaled corticosteroids3,10 and worsens during exacerbations.11  

Although this mature body of research strongly supports the notion that LCI is sensitive to 
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ventilation heterogeneity in asthma, such measurements cannot localize the site of these 

functional abnormalities. 

On the other hand ventilation defects may be regionally identified and visualized using 

pulmonary imaging methods12,13 including noble gas magnetic resonance imaging (MRI).14  

It was previously established that in well-controlled asthmatics, focal MRI ventilation 

defects are associated with worse lung function, increased airway inflammation, airway 

hyperresponsiveness and greater airway wall thickness.15  Furthermore, MRI ventilation 

defects are temporally and spatially persistent,16 worsen in response to bronchoconstriction 

and improve following bronchodilation.17  

Until now however, the relationship between ventilation defects and asthma control and 

exacerbations has not been ascertained.  Therefore, the purpose of this small study in severe 

asthmatics was to investigate MBNW and MRI measurements of ventilation heterogeneity 

to better understand their relationship with asthma control.  We hypothesized that MRI 

ventilation defects and the lung clearance index would be correlated, and that both would 

be biomarkers of poor asthma control. Given the relative lack of therapy options for severe 

asthma, this is important because regional ventilation defects and the lung clearance index 

provide endpoints that might be helpful in guiding treatment decisions aimed at improving 

asthma control.  

5.2 Methods 

5.2.1 Study Participants and Design 

Participants provided written informed consent to a study protocol approved by a local 

research ethics board, and the study was compliant with the Personal Information 

Protection and Electronic Documents Act (PIPEDA, Canada) and the Health Insurance 

Portability and Accountability Act (HIPAA, USA).  Patients between 18 and 70 years of 

age with a diagnosis of severe asthma, according to the Global Initiative of Asthma (GINA) 

treatment step criteria 18 and under the care of a respirologist were recruited from two 

academic tertiary care centres (McMaster and Western Universities, Canada). 

During a single 2-hour visit, all participants performed pre- and post-bronchodilator 

spirometry, MBNW and MRI.  Asthma-control and quality-of-life was assessed using the 
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Asthma-Control-Questionnaire (ACQ; 7-item version)19 and Standardized-Asthma-

Quality-of-Life-Questionnaire (AQLQ(S)),20 respectively.  Borg and modified Medical 

Research Council dyspnea scores were recorded.  Clinical history of severe asthma 

exacerbations, emergency department (ED) visits and hospitalizations for respiratory 

symptoms were self-reported.  As previously defined,21 a severe asthma exacerbation was 

a worsening of symptoms requiring treatment with oral or intravenous corticosteroids, OR 

a doubling of inhaled corticosteroid (ICS) dose for ≥ 3 days, OR any temporary increase 

in the dosage of oral corticosteroids (OCS) for subjects taking maintenance OCS.  

Methacholine challenge was performed within 6 months previous to the MRI visit to 

determine the provocative concentration resulting in a ≥20% decrease in FEV1 (PC20).   

5.2.2 Pulmonary Function Tests and Bronchial Challenge 

Spirometry was performed according to American Thoracic Society Guidelines 22 using a 

MedGraphics Elite Series plethysmograph (MedGraphics; St. Paul, MN, USA).  For post-

bronchodilator measurements, four 100μg doses of Novo-Salbutamol® HFA (Teva 

Novopharm Ltd.; Toronto, ON, Canada) were delivered through a pressurized meter dose 

inhaler using an AeroChamber Plus spacer (Trudell Medical International; London, ON, 

Canada).  All participants were instructed to withhold their short-acting beta-agonists 12 

hours prior to their visit (overnight).   

5.2.3 Lung Clearance Index 

The multiple breath washout manoeuvre was performed using 100% oxygen (O2) for 

nitrogen washout and the ndd EasyOne Pro® LAB system (ndd Medical Technologies; AG, 

Zurich, Switzerland) equipped with an ultrasonic flow and molar mass sensor.  With the 

volunteer seated upright and breathing through a mouth piece while wearing nose clips, the 

washout phase was initiated after several breaths of room air by switching from room air 

to 100% O2 at end expiration.  Tidal breathing of 100% O2 was performed until washout 

was complete (expired N2 concentration <2.5% of test start).  Functional residual capacity 

(FRC) was calculated from the cumulative volume of expired N2 divided by the difference 

between the end-tidal concentration at the start and end of the washout.  The cumulative 

expired volume (CEV) was the cumulative volume of expired air during the washout.  The 
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lung clearance index (LCI) was the number of FRC lung turnovers required to reach N2 

concentration<2.5% of test start and was generated as CEV divided by FRC as previously 

described.23  The washout manoeuvre was performed in duplicate and LCI was reported as 

the mean of two washout manoeuvres.  

5.2.4 Magnetic Resonance Imaging  

MRI was performed on a whole body 3.0 Tesla Discovery MR750 (General Electric Health 

Care, Milwaukee, WI, USA) system with broadband imaging capability, as previously 

described.24  Subjects were instructed to inhale a gas mixture from a 1.0L Tedlar® bag 

(Jensen Inert Products; Coral Springs, FL, USA) from FRC, and image acquisition was 

performed in 8-15s under breath-hold conditions.  Conventional 1H MRI was performed 5 

minutes prior to hyperpolarized 3He MRI and both methods were previously described.24   

Quantitative evaluation was performed by a single trained observer (S.S) using custom 

semi-automated segmentation software generated using MATLAB R2007b (The 

Mathworks Inc.; Natick, MA, USA), as previously described.25  3He MRI ventilation defect 

percent (VDP) was generated and defined as the ventilation defect volume normalized to 

the thoracic cavity volume.25 

5.2.5 Statistical Analysis 

Data were tested for normality using the Shapiro-Wilk normality test and when data were 

not normal, non-parametric tests were performed.  Univariate relationships were evaluated 

using linear regressions (r2), Pearson correlations (r) and when the data were not normal, 

Spearman correlations ().  Paired two-tailed t-tests and Wilcoxon matched-pairs signed 

rank tests were used to evaluate the effect of bronchodilator therapy on ventilation 

heterogeneity.  Unpaired t-tests and Mann-Whitney tests were performed to compare 

ventilation heterogeneity in subjects stratified by ACQ (≤2 or >2) and AQLQ scores (≥5 

or <5) and previous 6-month exacerbation history (<1 or ≥1).  All statistical analyses were 

performed using GraphPad Prism version 6.02 (GraphPad Software Inc.; La Jolla, CA, 

USA) and results were considered statistically significant when the probability of making 

a Type I error was < 5% (p < 0.05). 
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5.3 Results 

5.3.1 Study Participants 

Table 5-1 provides a summary of demographic and asthma characteristics for 18 

participants (6 males/12 females, 46±12 years) with severe asthma.   The mean duration of 

asthma was 31±15 years (range=7-57), pre-bronchodilator FEV1 was 68±24%pred 

(range=33-103%pred) and pre-bronchodilator FEV1/FVC was 65±15% (range=35-88%).  A 

participant listing provided in Table 5-3 (supplement) shows there was abnormal 

ventilation heterogeneity (both VDP and LCI) for 13 participants and there was normal 

VDP/LCI or normal VDP/abnormal LCI for five subjects.  

Table 5-1  Participant demographics and asthma measurements. 

Parameter (±SD) Severe Asthma (n=18) 

 Pre-bronchodilator Post-bronchodilator 

Age years  46 (12) - 

Male/Female 6/12 - 

Duration of asthma years  31 (15) - 

BMI kg/m2  29 (5) - 

FEV1  L 2.2 (0.8) 2.5 (0.8) 

FEV1  %pred 68 (24) 75 (26) 

FVC  L 3.5 (1.0) 3.6 (1.0) 

FVC  %pred 83 (19) 88 (17) 

FEV1/FVC  % 65 (15) 68 (16) 

PC20  mg/mL 1.4 (2.8)* - 

Lung clearance index 10.5 (3.0) 9.5 (2.6)† 

Ventilation defect percent  %  12 (11) 8 (8) 

SD=standard deviation; BMI=body mass index; FEV1=forced expiratory volume in 1 

second; %pred=percent predicted; FVC=forced vital capacity; PC20=methacholine 

concentration for 20% decrease in FEV1. 
*n=5; †n=17  

 

Asthma medications and control parameters are summarized in Table 5-2.  A participant 

listing of these data is also provided in Table 5-4 (supplement).  Despite receiving medium-

to-high dose inhaled corticosteroids (ICS) and long-acting beta-agonists (GINA treatment 

step 4-5),18 all 18 participants had poorly-controlled disease as evidenced by mean ACQ 

score (2.3±0.9, range=1.0-4.3).  Eight (44%) participants were prednisone-dependent 

(dosage ranging from 2.5 to 50 mg/day).  One or more severe asthma exacerbations were 
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reported by nine (50%) and 15 (83%) participants in the previous 6- and 12-months 

respectively.   

Table 5-2  Asthma medication and control. 

 Severe Asthma (n=18) 

Asthma Medications  

 Inhaled corticosteroid n (%) 18 (100%) 

 Long-acting β2-agonist n (%) 18 (100%) 

 Long-acting anticholinergic n (%) 7 (39%) 

 Oral corticosteroid n (%) 8 (47%) 

 Leukotriene receptor antagonist n (%) 9 (53%) 

 Anti-immunoglobulin E n (%) 1 (6%) 

Asthma Control  

 ACQ score* 2.3 (0.9) 

 AQLQ total score* 4.6 (1.2) 

 mMRC dyspnea score* 1.3 (1.0) 

 Borg dyspnea score* 2.5 (2.3) 

 Severe exacerbation previous 6 months n (%) 9 (50%) 

 Severe exacerbation previous year n (%) 15 (83%) 

 ED visit previous 6 months n (%) 1 (6%) 

 ED visit previous year n (%) 4 (22%) 

 Hospitalization previous 6 months n (%)  0 (0%) 

 Hospitalization previous year n (%) 1 (6%) 

Values are mean (±SD) except when indicated otherwise.  ACQ=asthma control 

questionnaire; AQLQ=asthma quality-of-life questionnaire; mMRC=modified Medical 

Research Council; ED=emergency department. *n=16 

5.3.2 Ventilation Heterogeneity 

Figure 5-1 shows pre-bronchodilator coronal 3He MRI ventilation (in blue) co-registered 

to 1H anatomical MRI (in grey-scale) for six representative participants.  As shown 

qualitatively in Figure 5-1, there was a greater number and volume of 3He MRI ventilation 

abnormalities in participants with worse ACQ.  For example, in subject S17 there was a 

relatively homogeneous ventilation pattern, normal LCI and relatively good asthma control 

whereas for subjects S16, S06, S13 and S04, there was qualitatively abnormal ventilation 

that was concomitant with worse asthma control.   

Table 5-1 shows that both VDP (pre-salbutamol=12±11%, post-salbutamol=8±8%, 

p=0.008) and LCI (pre-salbutamol=10.5±3.0, post-salbutamol=9.5±2.6, p=0.02) 

significantly improved following bronchodilation.  One participant (S12) could not 
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complete the post-bronchodilator MBNW manoeuvre due to fatigue and was excluded 

from this evaluation.    

 

Figure 5-1  Hyperpolarized 3He MRI of representative patients with severe asthma. 

Centre coronal slice 3He MRI ventilation in blue co-registered to anatomical 1H MRI in 

grey-scale for six representative severe asthmatics.  S07: 55 year-old female, 

FEV1=77%pred, ACQ=1.4, LCI=9.7, VDP=2%; S17: 39 year-old female, FEV1=66%pred, 

ACQ=1.7, LCI=6.7, VDP=3%; S16: 48 year-old male, FEV1=78%pred, ACQ=2.3, LCI=8.6, 

VDP=8%; S06: 45 year-old male, FEV1=34%pred, ACQ=2.7, LCI=11.5, VDP=14%; S13: 

56 year-old male, FEV1=34%pred, ACQ=3.1, LCI=17.5, VDP=33%; S04: 60 year-old 

female, FEV1=47%pred, ACQ=4.3, LCI=14.0, VDP=35%. 
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5.3.3 Ventilation Heterogeneity and Asthma Control 

Figure 5-2 shows VDP and LCI in participants stratified by ACQ score (ACQ≤2, n=7 and 

ACQ>2, n=9), AQLQ score (AQLQ≥5, n=7 and AQLQ<5, n=9) and by the number of self-

reported exacerbations in the past 6 months (exacerbations <1, n=9 and exacerbations ≥1, 

n=9).  As shown in Figure 5-2A, there was significantly worse VDP (18±13% versus 

6±5%; p=0.04), but not LCI (11.2±3.6 versus 9.4±2.4; p=0.3), in the subgroup of 

asthmatics with ACQ scores >2.  There was also significantly worse VDP (18±13% versus 

6±5%; p=0.04), but not LCI (11.4±3.3 versus 9.1±2.6; p=0.2), in the subgroup of 

asthmatics with AQLQ scores <5.  Figure 5-2C also shows that there was a trend towards 

worse VDP (17±13% versus 8±5%; p=0.053), but not LCI (11.2±3.8 versus 9.7±1.8; 

p=0.3), in asthmatics reporting ≥1 exacerbation in the past 6-months.  There were 15 

subjects with exacerbations in the previous 12-months (VDP=13±12%; LCI=10.3±3.2).  
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Figure 5-2  Ventilation heterogeneity stratified by ACQ and AQLQ scores and self-

reported exacerbations.    

A) Significantly worse VDP (>2 ACQ, VDP=18±13%; ≤2 ACQ, VDP=6±5, p=0.04), but 

not LCI (>2 ACQ, LCI=11.2±3.6; ACQ≤2, LCI=9.4±2.4, p=0.29) for subjects with 

ACQ >2.  

B) Significantly worse VDP (AQLQ<5, VDP=18±13; AQLQ≥5, VDP=6±5, p=0.04), but 

not LCI (AQLQ<5, LCI=11.4±3.3; AQLQ≥5, LCI= 9.1±2.6, p=0.16), for subjects 

with AQLQ total scores <5.   

C) There was a trend towards greater VDP (exacerbations ≥1, VDP=17±13%; 

exacerbations<1, VDP=8±5%; p=0.053), but not LCI (exacerbations ≥1, 

LCI=11.2±3.8 exacerbations<1, LCI= 9.7±1.8; p=0.3), for subjects with ≥1 

exacerbation in past 6-months.   

Box-and-whiskers plots show minimum, 25th percentile, median, 75th percentile, and 

maximum with each individual value superimposed on the graph.  += mean.  ACQ=asthma 

control questionnaire; AQLQ=asthma quality-of-life questionnaire; LCI=lung clearance 

index; VDP=ventilation defect percent. 
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5.3.4 Relationships 

Given the different results for the ACQ and AQLQ subgroups with VDP and LCI 

measurements, we also evaluated the bilateral relationships for LCI and VDP and their 

post-salbutamol changes.  Figure 5-3 qualitatively shows some of these relationships in 

individual participants.  For example, for subjects S11, S03 and S15, there was significantly 

improved VDP, with minimal post-salbutamol change in LCI.  In contrast, for subjects 

S02, S13 and S05, there was significantly improved LCI with a minimal post-salbutamol 

change in VDP.  Figure 5-4A shows that there were strong VDP-LCI correlations pre- 

(r=0.86, r2=0.74, p<0.0001) and post-bronchodilator (r=0.93, r2=0.86, p<0.0001).  However, 

as shown in Figure 5-4B, the post-bronchodilator change in VDP was not correlated with 

the post-bronchodilator change in LCI (r=0.44, r2=0.01, p=0.08).  As shown in Figure 

5-4C and D, VDP (r=0.62, r2=0.38, p=0.01) was correlated with ACQ score and LCI 

(r=0.49, r2=0.24, p=0.052) showed a similar trend.  VDP and LCI were not related to 

AQLQ score (VDP: r=-0.34, r2=0.11, p=0.20; LCI: r=-0.22, r2=0.05, p=0.40) or 

exacerbations in the past 6 (VDP: r=0.31, r2=0.02, p=0.21; LCI: r=0.08, r2=0.0001, p=0.77) 

and 12-months (VDP: r=0.03, r2=0.003, p=0.92; LCI: r=-0.21, r2=0.06, p=0.41).  
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Figure 5-3  Pre- and post-bronchodilator 3He ventilation MRI.   

S11: 40 year-old female, ACQ=2.3, ΔLCI=-0.8, ΔVDP=-11%; S03: 61 year-old male, 

ACQ=2.1, ΔLCI=-1.4, ΔVDP=-13; S15: 42 year-old male, ACQ=1.4, ΔLCI=0.6, ΔVDP=-

4%; S02: 67 year-old male, ACQ=NA, ΔLCI=-3.8, ΔVDP=-5%; S13: 56 year-old male, 

ACQ=3.1, ΔLCI=-2.1, ΔVDP=-5%; S05: 38 year-old female, ACQ=1.9, ΔLCI=-2.2, 

ΔVDP=-1%. 
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Figure 5-4  Relationship for ventilation heterogeneity and asthma control. 

A) VDP was significantly correlated with LCI pre- (r=0.86, r2=0.74, p<0.0001, 

y=3.1x-20.0) and post-bronchodilator (r=0.93, r2=0.86, p<0.0001).  

B) The change in VDP and LCI post-bronchodilator was not correlated (r=0.44, 

r2=0.01, p=0.08). 

C) VDP was significantly correlated with ACQ (r=0.62, r2=0.38, p=0.01). 

D) There was a trend for an LCI–ACQ correlation (r=0.49, r2=0.24, p=0.052). 

Dotted lines=95% confidence intervals; ACQ=asthma control questionnaire; LCI=lung 

clearance index; VDP=ventilation defect percent. 

 

5.4 Discussion  

In an endeavour to answer the question: Are MRI ventilation defects related to asthma 

control?, we evaluated MRI and LCI measurements in 18 severe asthmatics.  We observed: 

1) abnormal VDP and LCI were strongly correlated but there were different responses to 

salbutamol, 2) there was significantly worse VDP but not LCI in asthmatics with an ACQ 

score >2 and AQLQ score <5, which was supported by a significant VDP-ACQ correlation, 
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and, 3) there was a trend towards greater VDP, but not LCI, in asthmatics with ≥1 

exacerbation in the past 6-months.  

To our knowledge, this is the first direct evaluation of MRI and LCI ventilation 

heterogeneity and their relationship with asthma control.  Similar to previous imaging17,26 

and multiple-breath washout studies27 we observed abnormally heterogeneous ventilation 

that improved post-bronchodilator.  The strong correlation for LCI and VDP was not 

surprising.  The fact that there was no relationship for the post-bronchodilator change in 

VDP and LCI was not expected, but may be explained by a number of mechanistic 

differences in the measurements themselves.   

The temporal resolution of both approaches relative to the time constants for lung segment 

filling and emptying are important to consider.  For example, inert gas washout 

measurements are made over a time-course of many minutes of normal tidal breathing and 

based on the time needed to exchange N2 with O2 in lung regions accessible to inhaled gas.  

In contrast, MRI ventilation defects are typically measured during a single 8-10s inhalation 

breath-hold; hence, inhaled-gas MRI provides a rapid visual snapshot of where the inhaled 

gas goes when inhaled from FRC.  In the case of airway narrowing or gas trapping that are 

both common in severe asthma, long time constants for lung filling and emptying are 

expected and this may explain some of the differences for VDP and LCI observed here.    

In addition to temporal resolution differences, there may be differences in the apparent 

spatial resolution of the MBNW and MRI methods used.  In principle, LCI measurements 

may be influenced by any or all of the conducting and acinar lung zones.27  For ventilation 

MRI, there is somewhat coarse spatial resolution (3x3x15mm) and this may result in an 

underestimation of very small ventilation defects.  Supporting this notion, subjects S07 and 

S14 reported relatively well-controlled disease (ACQ=1.4 and 1.0) but abnormal LCI and 

relatively homogeneous MRI ventilation.  Another explanation, previously proposed,27 

suggests that even small ventilation defects may increase LCI well beyond the upper-limit 

of normal, resulting in an overestimation of disease severity.   Supporting this view, subject 

07 had an abnormal LCI (9.7) and only a single small hypo-ventilated region (VDP=2%).  

Importantly, this 55 yr old female was prescribed oral prednisone (7.5mg/day) and ICS 

(Budesonide > 1000µg), and was relatively well-controlled (ACQ=1.4).  We also observed 
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post-bronchodilator imaging improvements in patients in whom LCI did not change, such 

as in subject S04.  This 60 year old female reported very poor control (ACQ=4.3) and 

highly heterogeneous ventilation (VDP=35%; LCI=14.0) despite high-dose OCS 

maintenance therapy (prednisone 50mg/day) and ICS (Fluticasone propionate 

dose>1000µg).  Similar VDP responses have been reported in COPD patients with little or 

no bronchodilator reversibility measured using FEV1.
28   

The most important observation stemming from this study was the finding of significantly 

worse VDP in asthmatics with ACQ>2 and AQLQ<5 and a trend toward worse VDP in 

asthmatics with more frequent exacerbations.  These findings were not observed using LCI 

measurements, perhaps because of the small sample size and/or because LCI is a less 

sensitive measure of the underlying pathophysiology responsible for asthma control.  This 

novel imaging result was also supported by a significant relationship for VDP (and a trend 

for a significant relation for LCI) with ACQ score.   It is worth noting that a previous 

ventilation imaging study using single photon emission computerized tomography 

(SPECT), reported no relationship for ACQ score and ventilation.29  This discordant result 

may stem from the inherently low spatial resolution of SPECT or small sample size, or 

perhaps because the asthmatics in the previous study were well-controlled.  Previous 

seminal studies point to the clinical importance of airflow obstruction,30 airway 

inflammation,31 respiratory system reactance32 and inert-gas washout ventilation 

heterogeneity measurements of asthma.2,3  Yet, some of these measurements underestimate 

asthma pathophysiology because of their relative insensitivity to the peripheral airway 

abnormalities directly responsible for asthma symptoms and control.  In view of the 

limitations of conventional clinical asthma measurements, we think our results strongly 

support the use of pulmonary MRI in clinical research and in the management of severe 

asthmatics in whom control is difficult to achieve.   

We recognize a number of study limitations including the small number of study 

participants.  However, pulmonary imaging measurements are quite sensitive and therefore 

significant differences may be detected using small sample sizes.  Nonetheless, caution 

should be exercised in generalizing our results to a general asthma population.  We also 

acknowledge that asthma patients were recruited from two major tertiary care centres, so 

FeNO and sputum inflammometry were not available for the majority of patients.  If these 
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were available, we could try to tease out the relative contribution of luminal inflammation 

to ventilation heterogeneity and asthma control.  Furthermore, we did not (for logistical 

reasons) evaluate a comparator group of well-controlled asthmatics or asthmatics with 

more moderate disease.  Because of this, we could not ascertain the relative contribution 

of asthma severity to ventilation heterogeneity in this study, but this relationship was 

previously explored in well-controlled patients with mild to moderate asthma.15  It is 

noteworthy that there was no difference in ventilation heterogeneity for participants 

prescribed oral prednisone versus those who were not prednisone-dependent.   Postural 

effects should also be considered when comparing MRI and MBNW measurements of 

ventilation heterogeneity because imaging was performed supine, whereas MBNW was 

performed upright.  In one previous study, gas trapping was increased in supine asthmatic 

children but this was not the case for MBNW ventilation heterogeneity measurements.33  

Regardless, to mitigate and minimize postural effects including atelectasis, imaging was 

completed within 5 minutes, limiting the time that patients remained supine, which limits 

atelectasis.34   

While there is strong evidence that poor asthma control is associated with an increased risk 

for future severe asthma events35 and exacerbations,36 biomarkers that identify the source 

and regional location of poor control are generally lacking and many are not readily 

available except in highly specialized care centres, beyond the reach of the vast majority 

of asthma patients.  In this context, we note that MBNW biomarkers are more universally 

available and previously revealed the efficacy of aerosolized ultrafine steroid particles in a 

subset of asthma patients with abnormal acinar airways.10  Moreover, emerging biomarkers 

of airway inflammation have been proposed37 and used as therapy targets to significantly 

decrease asthma exacerbations.38-40  The results of our study argue for the continued 

development and use of novel and conventional ventilation heterogeneity biomarkers and 

measurements of asthma.   

In conclusion, in a small group of poorly-controlled severe asthmatics, MRI ventilation 

defects were significantly worse in the subgroup of patients with worse asthma control and 

quality-of-life.  Hence, regional ventilation defects may be considered as intermediate 

endpoints of asthma that can be used to evaluate therapies in relatively small studies that 

target improved asthma control and quality-of-life.   
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5.6 Supplementary Material  

Table 5-3S  Participant listing of demographic and other measurements. 
 Demographics  Questionnaires and Exacerbation History  Spirometry  Ventilation heterogeneity 

 Age Sex BMI  Duration ACQ   AQLQ Scores  Dyspnea Scores  Exacerbations ED visits Hospitalizations  FEV1 FVC FEV1/FVC  LCI VDP 

Subject (yrs) (M/F) (kg/m2)  (yrs) Score  Tota Acti  mMRC Borg  (n)* (n)* (n)*  Pre/Post(L) Pre/Post(L) Pre/Post(%)  Pre/Post Pre/Post(%) 

001 34 F 40  16 -  - -  - -  0/2 0/0 0/0  2.2/2.5 3.0/3.2 74/80  9.5/8.8 12/10 
002 67 M 28  7 -  - -  - -  0/0 0/0 0/0  3.1/3.4 4.8/5.0 66/68  12.6/8.8 11/6 
003 61 M 33  7 2.1  4.6 4.6  0.0 4.0  1/3 0/0 0/0  2.7/3.4 5.0/5.8 54/59  13.4/12.1 30/17 
004 60 F 33  39 4.3  3.2 2.7  3.0 9.0  2/4 0/2 0/0  1.0/0.9 2.1/2.0 46/46  14.0/14.4 35/20 
005 38 F 30  36 1.9  5.9 6.0  1.0 1.0  0/1 0/0 0/0  1.4/1.6 1.7/2.0 82/79  11.5/9.3 7/6 
006 45 M 25  44 2.7  4.7 4.6  1.0 1.0  0/0 0/0 0/0  1.5/1.6 3.3/3.4 44/47  11.5/10.6 14/11 
007 55 F 33  20 1.4  5.0 5.1  1.0 3.0  0/1 0/0 0/0  2.1/2.3 2.9/3.1 71/76  9.7/9.3 2/3 
008 47 F 30  34 2.3  5.3 5.3  2.0 2.0  2/5 1/1 0/0  3.0/3.0 3.7/3.6 80/83  6.3/7.1 2/2 
009 21 F 20  18 2.7  3.1 3.6  2.0 5.0  0/5 0/0 0/0  3.4/3.5 3.8/3.7 88/94  7.0/7.3 1/2 
010 45 F 31  41 1.6  4.0 4.9  0.0 0.5  4/18 0/0 0/0  3.0/3.3 3.8/3.8 78/86  7.4/6.6 4/1 
011 40 F 29  27 2.3  4.8 4.7  1.0 1.0  6/12 0/0 0/0  2.1/2.4 3.3/3.4 65/72  10.6/9.8 18/7 
012 31 F 37  28 2.0  5.8 5.8  2.0 1.0  3/4 0/3 0/1  0.9/1.4 2.3/3.1 42/46  13.4/NA 15/5 
013 56 M 25  55 3.1  4.2 4.4  - -  2/3 0/0 0/0  1.5/1.5 4.4/4.2 35/37  17.5/15.5 33/29 
014 44 F 27  23 1.0  5.6 5.6  1.0 0.5  0/1 0/0 0/0  2.9/3.0 3.8/3.9 74/79  7.7/7.3 3/2 
015 42 M 33  28 1.4  4.6 5.5  1.0 2.0  0/0 0/0 0/0  2.7/3.1 4.0/4.4 67/71  9.5/10.1 8/4 
016 48 M 30  46 2.3  5.5 6.4  0.0 3.0  0/1 0/0 0/0  2.9/3.2 4.2/4.4 69/72  8.6/8.2 8/8 
017 39 F 22  36 1.7  6.1 6.2  1.0 0.5  5/7 0/0 0/0  2.2/2.4 4.0/3.9 56/62  6.7/6.1 3/2 
018 59 F 23  57 4.3  1.7 2.4  3.0 4.0  4/8 0/1 0/0  1.4/1.6 1.9/2.7 71/58  11.6/11.0 15/16 
Mean 
(±SD) 

46 
(12) 

12F/ 
6M 

29 
(5) 

 31 
(15) 

2.3 
(0.9) 

 4.6 
(1.2) 

4.9 
(1.2) 

 1.3 
(1.0) 

2.5 
(2.3) 

 9(50%)/ 
15(83%) 

1(6%)/ 
4(22%) 

0(0%)/ 
1(6%) 

 2.2(0.8)/ 
2.5(0.8) 

3.5(1.0)/ 
3.6(1.0) 

65(15)/ 
68(16) 

 10.5(3.0)/ 
9.5(2.7) 

12(11)/ 
8(8) 

SD=standard deviation; M=Male; F=Female; BMI=body mass index; ACQ=asthma control questionnaire; AQLQ=asthma quality-of-

life questionnaire; Tota=Total; Acti=Activity; mMRC=modified Medical Research Council; ED=emergency department; FEV1=forced 

expiratory volume in 1 second; BD=bronchodilator; FVC=forced vital capacity; LCI=lung clearance index; VDP=ventilation defect 

percent. *in previous 6 months/in previous year. 
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Table 5-4S  Participant listing of asthma medications. 
 SABA  LABA  LAAC  ICS  OCS  LTRA  Anti-IgE 

Subject Generic  Generic Dose(µg/d)  Generic Dose(µg/d)  Generic Dose(µg/d)  Generic Dose(mg/d)   Generic Dose(mg/d)  Generic  Dose(mg) 

001 Salbutamol  Formoterol 12  -- --  Budesonide 400  Prednisone 4  -- --  -- -- 
002 Salbutamol  Formoterol 24  -- --  Budesonide 800  Prednisone 12.5  -- --  -- -- 
003 Salbutamol  Formoterol 24  Tiotropium 18  Budesonide 800  Prednisone 20  Montelukast 10  -- -- 
004 Salbutamol  Salmeterol 100  Tiotropium 18  Fluticasone 2500  Prednisone 50  Montelukast 10  -- -- 
005 Salbutamol  Formoterol 36  -- --  Budesonide/Beclometasone 1200/800  Prednisone 2.5  -- --  -- -- 
006 Salbutamol  Formoterol 20  Tiotropium 18  Mometasone furoate/Fluticasone 800/1000  -- --  Montelukast 10  -- -- 
007 Salbutamol  Formoterol 24  Tiotropium 18  Budesonide 1600  Prednisone 7.5  -- --  -- -- 
008 Salbutamol  Salmeterol 100  -- --  Fluticasone 1000  -- --  Montelukast 10  -- -- 
009 Terbutaline  Formoterol 24  -- --  Budesonide 800  -- --  Montelukast 10  -- -- 
010 Salbutamol  Salmeterol 100  -- --  Fluticasone 1500  -- --  Montelukast 10  -- -- 
011 Salbutamol  Formoterol 24  -- --  Budesonide/Ciclesonide 800/800  Prednisone 7.5  Montelukast 10  -- -- 
012 Salbutamol  Salmeterol 100  Tiotropium 18  Fluticasone/Ciclesonide 1000/400  Prednisone 3  Montelukast 10  -- -- 
013 Salbutamol  Salmeterol 100  Tiotropium 18  Fluticasone 1000  -- --  -- --  -- -- 
014 Salbutamol  Formoterol 24  -- --  Budesonide 800  -- --  -- --  -- -- 
015 Salbutamol  Formoterol 24  -- --  Budesonide 1200  -- --  -- --  -- -- 
016 Salbutamol  Formoterol 24  -- --  Budesonide/Ciclesonide 800/800  -- --  -- --  Omalizumab 150 
017 Salbutamol  Formoterol 24  -- --  Budesonide 800  -- --  Montelukast 10  -- -- 
018 Salbutamol  Formoterol 20  Aclidinium bromide 800  Mometasone furoate/Ciclesonide 800/800  -- --  -- --  -- -- 

SABA=Short-acting beta-agonist; LABA=Long-acting beta-agonist; LAAC=Long-acting anticholinergics; ICS=Inhaled 

Corticosteroids; OCS=Oral corticosteroids; LTRA=Leukotriene Receptor Antagonists; Anti-IgE=Anti-immunoglobulin E.
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CHAPTER 6 

6 Conclusions and Future Directions 

The final chapter of this thesis revisits our rationale and research objectives and provides 

a summary of the important findings and conclusions of Chapters 2-5.  Subsequently, study 

specific limitations, general limitations and potential solutions are presented.  Finally, a 

roadmap for future studies in asthma motivated by the work presented in this thesis will be 

outlined.   

6.1 Overview of Rationale and Research Questions 

The forced expiratory volume in one second (FEV1) currently plays an important role in 

the diagnosis and management of asthma; and it is also universally used as a primary 

endpoint of lung function in the majority of asthma clinical trials.1,2  However, FEV1 is a 

global measurement made at the mouth that cannot be used to ascertain regional lung 

function and it is relatively insensitive to subtle changes and peripheral airway pathology 

in asthma.3  For decades, the concept of regionally heterogeneous airway abnormalities in 

asthma has been acknowledged.  This regional heterogeneity was first noted in cadavers 

using post mortem ex vivo gross sections and histology.4  Shortly after, single-breath and 

multiple-breath washout studies in living patients were also indicative of ventilation 

heterogeneity in asthma, but due to the limitations of this technique, the regional site of 

functional abnormalities could not be ascertained.5  Accordingly, beyond specialized 

academic centres, it has been difficult to investigate asthmatics based on the suggested 

regional nature of their underlying pathology.  There has therefore been an urgent need for 

non-invasive and quantitative imaging methods to regionally evaluate asthma.   

In response to this demand, numerous imaging methods have been developed and are 

currently available to non-invasively evaluate asthma regionally,6 however, they are not all 

well-suited for serial and longitudinal investigations.  While CT is widely available and 

provides high spatial and temporal resolution images of lung structure7,8 and function,9 it 

is burdened by radiation exposure, a particular concern when evaluating asthmatic children 

and young adults.  Similarly, nuclear medicine methods are burdened by ionizing radiation 

exposure and are further limited by relatively poor spatial resolution.10-12    
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In contrast, functional MRI using hyperpolarized 3He and 129Xe is not limited by radiation 

exposure.  The recent development of this approach has demonstrated promise for 

functional imaging of asthma13 as it provides an opportunity to visualize, with high spatial 

and temporal resolution, those areas of the lung that participate in gas distribution and those 

that do not.  In healthy young adults, inhalation of hyperpolarized gas results in 

homogeneous signal suggesting that all areas of the lung are participating equally in 

ventilation.14-17  In contrast, characteristic ventilation defects are observed in asthma, 

corresponding to areas of the lung that are not ventilated within the time-course of a breath-

hold scan.13,18-27  Previous work using this technique provides a strong foundation for its 

use in asthma research and patient care; however, a major drawback is that the clinical and 

physiological meaning of MRI-derived ventilation defects is poorly understood.  

Furthermore, the heterogeneity of asthma is under appreciated by the medical community.  

Regardless of the gas used for imaging, a clear understanding of ventilation defects is 

absolutely necessary prior to the clinical translation of hyperpolarized gas imaging 

methods.  Therefore, in spite of the well-demonstrated potential for pulmonary imaging to 

provide a better understanding of the regional aspects of asthma, it currently takes on an 

insignificant role in asthma clinical care and treatment evaluation and guidance.    

Accordingly, the overarching objective of this thesis was to develop and apply novel 

pulmonary imaging methods to better understand asthma and to provide a foundation for 

functional imaging to guide clinical decisions and therapy in patients with asthma.  The 

specific research questions investigated here included: 1) Do the different properties of 

129Xe and 3He gas result in significant differences in 129Xe compared to 3He gas distribution 

before and after bronchodilator administration in well-controlled asthmatics? (CHAPTER 

2); 2) Can the inherent temporal and spatial pulmonary function information provided by 

hyperpolarized 3He MRI be used to visualize and quantify temporally persistent and 

intermittent ventilation defects as potential targets for therapy? (CHAPTER 3); 3) Are 

asthmatics with 3He MRI ventilation defects different from asthmatics without ventilation 

defects with respect their airway structure and standard clinical measurements of disease? 

(CHAPTER 4) and, 4) What is the relationship of asthma control with ventilation defects 

quantified and regionally visualized using 3He MRI? (CHAPTER 5).  
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6.2 Summary and Conclusions 

In Chapter 2, we quantitatively compared hyperpolarized 3He and 129Xe MRI in a small 

group of seven asthmatics before and after salbutamol inhalation.  Prior to salbutamol 

inhalation, 129Xe VDP (8±5%) was significantly greater than 3He VDP (6±5%, p=0.003).  

Post-salbutamol, there was a significant improvement in both 129Xe (5±4%, p<0.0001) and 

3He (4±3%, p=0.001) VDP, but the improvement in 129Xe VDP was significantly greater 

(p=0.008).  For a single asthmatic, a sub-segmental 129Xe MRI ventilation defect that was 

visible only prior to salbutamol inhalation but not visible using 3He MRI was spatially 

related to a remodeled airway (WA%=78%, LA=2.9 mm2).  These results indicate that 

hyperpolarized 129Xe MRI may help reveal ventilation abnormalities prior to 

bronchodilation that are not observed using hyperpolarized 3He MRI. 

In Chapter 3, we exploited the temporal and spatial information inherent to 3He MRI to 

generate pulmonary ventilation temporal-spatial maps that could be used to measure, 

optimize and guide asthma therapy.  In this proof-of-concept study, seven asthmatics 

underwent spirometry and 3He MRI on three occasions, each 5±2 days apart.  A registration 

and segmentation pipeline was developed to generate temporal-spatial pulmonary function 

maps.  This enabled the regional mapping of temporally persistent and intermittent 

ventilation defects that were normalized to the 1H MRI thoracic cavity volume to generate 

VDPP and VDPI.  Persistent and intermittent ventilation defects were identified and were 

strongly correlated with FEV1/FVC (VDPP: r=-0.87, p=0.01; VDPI: r=-0.96, p=0.0008). 

These findings suggest that temporal-spatial pulmonary maps generated from 3He MRI can 

be used to quantify temporally persistent and intermittent ventilation defects as asthma 

intermediate endpoints and targets for therapy.  

In Chapter 4, we evaluated well-established clinical as well as 3He MRI and x-ray CT 

airway measurements in eight healthy and 26 asthmatic subjects to better understand the 

determinants of 3He MRI ventilation defects in asthma.  Prior to broncho-provocation, 17 

asthmatics (17/26=65%) had visually obvious evidence of ventilation defects and nine 

asthmatics had no ventilation defects (9/26=35%).  Asthmatics with defects were older 

(p=0.01) with worse FEV1/FVC (p=0.0003), airways resistance (p=0.004), FeNO (p=0.03), 

lower PC20 (p=0.008), and wall thickness percent (p=0.02), compared to asthmatics without 



162 

 

defects.  We also identified a moderate correlation for wall area percent with VDP (r=0.43, 

p=0.04).  These results indicate that asthmatics with 3He MRI ventilation defects are older 

with significantly worse airway hyperresponsiveness, inflammation and airway 

remodeling in comparison to asthmatics without defects; and that hyperpolarized 3He 

ventilation abnormalities are spatially and quantitatively related to abnormally remodeled 

airways.   

In Chapter 5, we evaluated MBNW and MRI measurements of ventilation heterogeneity 

and their relationship with asthma control in 18 severe asthmatics.  Mean VDP was 

12±11% and LCI was 10.5±3.0 with both VDP (p=0.008) and LCI (p=0.02) improving 

post-bronchodilator.  While VDP was strongly correlated with LCI (r=0.86, p<0.0001), the 

post-bronchodilator change in VDP and LCI was not correlated (p=0.08).  There was 

significantly worse VDP but not LCI in asthmatics with ACQ >2 (p=0.04) and AQLQ<5 

(p=0.04).  Notably, VDP (but not LCI, p=0.052) was correlated with ACQ score (r=0.62, 

p=0.01).  MRI ventilation defects were significantly worse in severe asthma patients with 

poor asthma control and poor quality-of-life.  This is important, because as an intermediate 

endpoint, ventilation defects may be used to target therapy to improve clinically-important 

asthma outcomes.   

In summary, we have provided: 1) evidence that hyperpolarized 129Xe MRI may be more 

sensitive than 3He MRI to ventilation abnormalities; 2) a new method to quantify 

temporally persistent and intermittent ventilation defects that may be used as intermediate 

endpoints and targets for therapy; 3) evidence that asthmatics with 3He ventilation defects 

are older with significantly worse airway hyperresponsiveness, inflammation and airway 

remodeling in comparison to asthmatics without defects; and, 4) evidence that ventilation 

defects are significantly worse in severe asthmatics with poor asthma control and poor 

quality-of-life. 

6.3 Limitations 

In this section, some of the most significant limitations of the studies presented in Chapters 

2-5 are discussed.  It should be noted that a description of the study specific limitations are 

also presented within the discussion section of the respective Chapters.  In addition to 
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Chapter specific limitations, this section includes a description of general limitations 

common to Chapters 2-5. 

6.3.1 Study Specific Limitations 

Hyperpolarized 3He and 129Xe MRI: Differences in Asthma before Bronchodilation 

(Chapter 2) 

In the study presented in Chapter 2, thoracic CTs were not contemporaneously acquired 

and this limited our ability to investigate the relationship between lung structure and 

function.  However, for two of the seven asthmatics evaluated, partial thoracic CTs were 

acquired approximately one year before 3He and 129Xe MRI.  In a single asthmatic, we 

observed a large wedge shaped ventilation defect at baseline using 129Xe MRI but not using 

3He MRI; the defect was spatially related to a partially obstructed airway.  This 

serendipitous finding led us to hypothesize that 3He gas may penetrate lung regions through 

partially obstructed airways that 129Xe gas cannot access during a short breath-hold scan.  

Unfortunately, without whole lung thoracic CTs for all seven subjects we were unable to 

further investigate, and statistically evaluate, the relationship between abnormal airway 

pathophysiology and the differences between 3He and 129Xe gas distribution.   

Another limitation was that ventilation abnormalities, quantified as VDP, for the small 

group of mild-to-moderate asthmatics with well-controlled disease evaluated in this study 

were not large.  The mean pre-salbutamol VDP was low as compared to a previous study 

of asthma,22 but importantly was higher than previously reported values observed for 

healthy volunteers of a similar age.22  Accordingly, the differences in 3He and 129Xe 

ventilation defects reported here might be a conservative estimate of the differences that 

would be observed in a larger group of asthmatics with a range of disease severity.  Ideally, 

a range of mild, moderate and severe asthmatics would have been evaluated to ascertain if 

the differences observed between the two gases were dependent on disease severity.   

Similarly, we were unable to ascertain the clinical relevance of the improvement in both 

3He and 129Xe VDP following salbutamol inhalation.  This endeavor was not possible as 

clinically-relevant measurements such as dyspnea or exercise capacity were not collected 

at the time of study.  Importantly, however, the smallest detectable difference (SDD), 

defined as the smallest difference that can be measured with prospectively determined 
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confidence not due to measurement error (variability) has been previously calculated for 

3He MRI and the mean change in the 3He (0.11L) and 129Xe MRI (0.14L) ventilation defect 

volume measured in this study was greater than the SDD (0.05L).28  Although the SDD is 

not a measure of clinical relevance, this confirms that the changes detected were not due 

to measurement variability.  In future attempts to determine the clinical relevance of the 

changes detected using 3He and 129Xe MRI, we will evaluate the degree of dyspnea and/or 

exercise capacity in study participants.  

Pulmonary Functional Magnetic Resonance Imaging: Asthma Temporal-Spatial Maps 

(Chapter 3) 

In the longitudinal study presented in Chapter 3, we did not obtain well-established clinical 

measurements of asthma or x-ray CT, and therefore questions regarding the clinical 

relevance of our data could not be investigated.  Importantly, between visits we observed 

qualitative regional differences in the distribution of 3He gas within the lung.  These 

temporal differences, termed “intermittent defects” were quantified and visualized using 

the temporal-spatial pulmonary function maps.  Unfortunately, we were unable to ascertain 

whether these asthmatics experienced symptomatic worsening over the two weeks that 

could be attributed to their variable ventilation heterogeneity.  Furthermore, it would have 

been important to investigate the differences in CT-derived airway morphology for airways 

spatially related to intermittent defects, persistent defects and persistently-ventilated lung 

regions.      

The maps generated in this study captured the week-to-week lung function variability in a 

small group of seven asthmatics.  Previous work by de Lange and colleagues have 

demonstrated that the persistence of ventilation defects in asthma decreases with time.20  

Accordingly, it would be very important to evaluate these subjects over a longer period of 

time to determine whether the variability captured over a short two-week period is 

representative of the ventilation variability over longer periods of time, in the absence of 

an exacerbation.  Before these temporal abnormalities are used as therapy targets or as an 

intermediate endpoint, this concept will first need to be investigated.  

Another limitation of this study is that we currently do not know what “type” of ventilation 

defect, if any, is the best target for localized airway treatment in asthma.  For example, in 
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addition to the persistent and intermittent ventilation defects identified in this study, 

dynamic ROI that respond to broncho-provocation (methacholine/exercise) or 

bronchodilation (salbutamol) could potentially be excellent targets for localized treatment.  

It is important to note however that this study provided proof-of-concept results; with this 

segmentation and registration pipeline, the methodology can subsequently be uniquely 

tailored to probe a wide variety of ventilation defect behaviours over time or in response 

to treatment.  For example, the pipeline has been subsequently tailored to regionally 

quantify and visualize the temporal behaviour of ventilation defects in cystic fibrosis 

patients who underwent 3He MRI on two occasions over four years.29    

As a technical limitation, the temporal-spatial pulmonary function maps are susceptible to 

image registration errors that can have an effect on map interpretation.  Scan-to-scan 

variability/differences in lung volume and patient position in the MRI scanner, particularly 

patient tilting, make registration across visits particularly challenging.  Rotations out of 

plane are particularly cumbersome since our voxels have anisotropic dimensions (3.125 

mm x 3.125 mm, slice thickness 15 mm).  However, despite this limitation, we were able 

to achieve sufficient registrations between visits.  We do acknowledge, however, that there 

were a few regions identified along the periphery of the maps with intermittent ventilation 

that may be attributed purely to mismatches in image registration.  However, these 

occurrences were acknowledged and represent a very small percentage of the overall 

thoracic cavity volume.   

What are Ventilation Defects in Asthma? (Chapter 4) 

In the study presented in Chapter 4, we evaluated a relatively broad range of asthmatics 

who were not enrolled based on disease severity or symptoms.  Importantly, however, they 

were patients from an interdisciplinary (Allergy and Respirology) asthma care centre, were 

between 18 and 60 years of age and had a physician diagnosis of asthma and a positive 

methacholine challenge within the past five years.  The strength of this study would have 

been considerably improved if at least severity was documented based on the GINA 

treatment step score.  Furthermore, it would have been advantageous to quantify asthma 

control using one of the many asthma control questionnaires.  Unfortunately, the GINA 



166 

 

step score and asthma control questionnaires were not utilized in the asthma care clinic, 

nor the research study, and therefore could not be evaluated in this study. 

Another limitation of this study was the use of partial thoracic CTs that reduced the number 

of airways that could be quantified.  However, we strongly believe that whenever possible, 

lower dose partial CTs should be acquired and be used to quantify airway morphology in 

young subjects, in whom the benefit-risk ratio does not support more extensive CT 

imaging.  In spite of the partial and lower dose CT volume, we were able to generate 

quantitative information and showed there was a significant relationship between CT 

airway measurements and 3He MRI overall, and for specific defects and airways in certain 

cases.   

What do Ventilation Defects Reveal about Asthma Control? (Chapter 5) 

In the study presented in Chapter 5, we evaluated severe asthmatics who were poorly 

controlled but we did not include a control group of patients with less severe asthma but 

with the same degree of poor asthma control.  Accordingly, we could not ascertain the 

relative contribution of asthma severity and asthma control to ventilation defects.  In other 

words, we could not address the important question, "Is the same ventilation heterogeneity 

observed in milder asthmatics who are poorly controlled?"  Future studies are necessary to 

investigate this important question.  

Another limitation of this study was that MRI and MBNW measurements of ventilation 

heterogeneity were obtained in different positions, introducing the potential for postural 

effects.  Imaging was performed supine, whereas MBNW was performed upright and this 

may have influenced the strength of the demonstrated relationships between MRI and 

MBNW measurements of ventilation heterogeneity.  From previous experience, we have 

observed that MBNW measurements of ventilation heterogeneity are significantly worse 

when performed supine as compared to when performed upright.  Regardless, we took 

necessary steps to mitigate and minimize potential postural effects in this study.  

Specifically, imaging was completed within five minutes to limit the time that the patients 

had to remain supine, which has been shown to limit atelectasis.30   
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6.3.2 General Limitations 

One limitation to the studies presented in Chapters 2-5 was the small number of subjects 

evaluated, therefore, caution should be exercised in generalizing these results to the broader 

asthma population.  Importantly, however, hyperpolarized gas MRI measurements are 

quite sensitive and therefore, as demonstrated in these studies and many others, significant 

differences may be detected using small sample sizes.  Moreover, at the time of study 

initiation for the majority of these investigations, there was little prior MRI data in asthma 

available to help generate power calculations and so these were not performed.  Regardless, 

future studies should aim to evaluate larger groups of asthmatics to confirm the results 

observed in these studies.  

Pertinent to both Chapters 2 and 4, we acknowledge that the quantitative measurement of 

ventilation heterogeneity employed here, the COV, is likely affected by partial volumes 

inherent to both 3He and 129Xe MR images.  Errors induced by partial volumes have the 

potential to influence the accuracy of the COV estimations reported in Chapters 2 and 4.  

Our objective was not to develop a novel quantitative metric to evaluate ventilation 

heterogeneity; instead, a previously published method developed by Tzeng and colleagues 

was adopted.27  Edge and/or partial volume effects can be visualized in the cluster and COV 

maps of ventilation (Figure 2-1).  With respect to Chapter 2, in accordance with Tzeng and 

colleagues, we made the assumption that the elevated COV values observed toward the 

edges cancel out when images are compared, as this effect is present both pre- and post-

salbutamol.27  Therefore, although we acknowledge that edge and/or partial volume effects 

likely influence our COV maps, this does not influence or alter our overall conclusions 

which interrogated relative change. 

In Chapters 2-5 our attention was directed towards ventilation defects; however, it is well-

understood that ventilation visualized using hyperpolarized gas MRI is not binary.  The 

studies presented in this thesis have overlooked the potential clinical significance of lung 

regions in asthma that have signal hyper-intensity.  Many of the asthmatics evaluated in 

these studies have had a very heterogeneous MRI gas distribution with regions of hyper-

intense signal intensity in addition to ventilation defects.  We are interested in these regions 

of hyper-intense signal intensity and the physiological mechanisms that may cause them.  
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These regions may be due to hyperinflation and therefore may indicate underlying 

structural abnormalities within the asthmatic lung.  The same semi-automated 

segmentation image analysis software employed in these studies to quantify VDP can be 

used to quantify the gradation of signal intensity observed in hyperpolarized gas MR 

images.28  This analysis method segments static ventilation images using a k-means 

clustering algorithm that classifies voxel signal intensity values into five clusters and is 

therefore able to quantify hyper-intense signal regions.  In future studies, it will be 

important to investigate these regions in addition to ventilation defects.  

Another important limitation to this work in general is the limited 3He access, and the high 

cost of 3He gas that has thus far restricted translation of this imaging method beyond 

specialized MR physics centres.  As previously discussed, this shortage is forcing the noble 

gas MRI community to transition to 129Xe gas, a less expensive and more readily available 

contrast agent.  While both 3He and 129Xe MRI were acquired within a five-minute period 

for the study presented in Chapter 2, the remaining study designs (Chapters 3-5) did not 

include 129Xe MRI.  In Chapter 2, significantly greater 129Xe as compared to 3He ventilation 

defects were observed in asthma, suggesting that 129Xe gas may be more sensitive to airway 

abnormalities than 3He gas.  Although this increased sensitivity is advantageous moving 

forward, the observed difference suggests that our findings presented in Chapters 3-5 using 

3He gas may not be a direct reflection of what would be observed using 129Xe gas.  For 

example, in Chapter 4 we observed that 65% of well-controlled asthmatics had 3He 

ventilation defects.  If this study were to be repeated using 129Xe MRI, one might 

hypothesize that ventilation defects would be visually obvious in nearly 100% of the same 

asthmatics.  Similarly, in Chapter 3, one might hypothesize that 129Xe MRI temporal-spatial 

pulmonary function maps of the same asthmatics would have increased intermittent and 

persistent ventilation defects.  Regardless of this speculation, future 129Xe MRI studies are 

required to validate the results presented here using 3He MRI.  Moreover, future research 

and potential clinical applications of noble gas MRI will most definitely utilize 129Xe gas.  

In accordance with this trajectory, relevant studies that are currently underway at the 

Robarts Research Institute are now using 129Xe MRI.       
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6.4 Future Directions 

6.4.1 Functional MRI of Ventilation in Asthma: Sensitivity, Specificity 

and Comparison with FEV1  

Our results presented in Chapters 4 and 5 indicate that asthmatics with worse MRI 

ventilation, but not FEV1, have worse asthma control, greater airways resistance and 

greater airway hyperresponsiveness.  These results strongly support the notion that MRI 

ventilation defects may be more sensitive than FEV1 to structural and functional changes 

in the asthmatic lung.  Moreover, it is well-understood that FEV1 is relatively insensitive 

to structural and functional changes in the small airways <2mm.31  Taken together, the 

work presented in this thesis and previous work of others using hyperpolarized 3He and 

129Xe MRI provides a strong foundation for the use of MRI in asthma research and clinical 

care.  To accelerate clinical translation and regulatory approval of hyperpolarized gas MRI, 

studies must be performed to validate MRI-derived measurements of ventilation against 

clinical gold-standards, such as FEV1.    

We have performed preliminary analysis in a small proof-of-concept study in which 

spirometry, hyperpolarized 3He MRI and a methacholine challenge were performed in a 

single visit.  We wanted to evaluate and compare the performance of FEV1 and 
3He MRI 

VDP to discriminate: 

1. Patients with a clinical diagnosis of asthma from healthy volunteers 

2. Patients with and without bronchial hyperresponsiveness  

We speculated that MRI ventilation defects may be a more accurate predictor of asthma 

and bronchial hyperresponsiveness than FEV1.  Preliminary data was obtained for 34 

subjects (Asthma: n=25, Healthy: n=9) who performed spirometry, hyperpolarized 3He 

MRI, and a methacholine challenge during a single study visit.  Receiver-operating 

characteristic (ROC) curves were used to characterize the performance of FEV1 and MRI 

VDP as predictors of asthma and bronchial hyperresponsiveness (Figure 6-1).  Optimum 

diagnostic cut-offs were determined according to the maximum Youden’s index value 

(J=sensitivity+specificity-1) and the corresponding sensitivity, specificity, positive and 

negative likelihood ratios were calculated. 
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As shown in Figure 6-1, similar to FEV1, MRI measurements of ventilation discriminated: 

1) patients with a clinical diagnosis of asthma from healthy volunteers (AUCFEV1=0.82, 

p=0.006; AUCMRI VDP=0.79, p=0.01); and 2) patients with and without bronchial 

hyperresponsiveness (AUCFEV1=0.83, p=0.0009; AUCMRI VDP=0.88, p=0.0002).  

Importantly, estimated likelihood ratios suggested that the most accurate diagnosis of 

asthma and bronchial hyperresponsiveness was established using 3He MRI, not FEV1.  

These preliminary results validated functional MRI against FEV1, a clinically-accepted 

measurement of asthma, and this is a necessary step towards clinical translation and 

regulatory approval.  As demonstrated in Chapter 2 of this thesis, 129Xe MRI is more 

sensitive to ventilation abnormalities in asthma than 3He MRI.  Accordingly, next steps 

require a similar but larger scale validation study of 129Xe MRI in asthma.   

 

Figure 6-1  Performance of FEV1 and 3He MRI VDP as predictors of asthma (left plot) 

and bronchial hyperresponsiveness (right plot). 

Receiver-operating characteristic curves show the sensitivity, specificity and area under 

the curve for FEV1 (solid black line) and 3He MRI VDP (broken blue line).  
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6.4.2 Efficacy of Functional MRI Guided Bronchial Thermoplasty  

We now have an understanding of the underlying structural determinants of regional 

ventilation defects observed using MRI in asthma.  The proof-of-concept results presented 

in Chapter 4 strongly support the notion that MRI ventilation defects are directly related to 

abnormally remodeled airways that are regionally heterogeneous in the asthmatic lung.  

Therefore, we speculate that abnormally remodeled airways, proximal to MRI ventilation 

defects, may be excellent targets for localized asthma treatment.  In a similar fashion, 

normally functioning airways, proximal to well or normally-ventilated lung regions could 

be avoided during localized treatment.  Current asthma treatments aim to treat all accessible 

airways.   

Bronchial thermoplasty (BT), an established localized asthma treatment, aims to 

permanently reduce smooth muscle mass in the lobar and segmental bronchi with the goal 

of improving symptoms and asthma control.32  To date, the effectiveness and safety of BT 

has been evaluated in four clinical trials,33-36 and this work has demonstrated persistent 

improvement in asthma control, quality-of-life and fewer exacerbations following 

treatment in some patients.  Despite its demonstrated safety and efficacy, BT is a time-

consuming procedure.  The current conventional whole-lung treatment approach targets all 

accessible airways throughout the lungs during three bronchoscopy sessions, each 

separated by approximately three weeks.  Accordingly, the treatment assumes that all 

airways in the asthmatic lung are homogeneously remodeled, which may result in treatment 

of normally functioning airways.  If a personalized, image-guided treatment approach were 

to be adopted that targeted only abnormally functioning airways, treatment time, cost and 

adverse effects might be reduced while patient outcomes may be improved. 

In a study currently underway, we aim to use pulmonary functional MRI to guide BT 

treatment, evaluate BT treatment response and to generate new knowledge required to 

better understand airway-targeted therapy in severe asthma.  All participants will have 

severe asthma and will undergo up to three pre-therapy MRIs to evaluate ventilation 

reproducibility and post-prednisone effects, and there will also be two longitudinal post-

therapy MRIs to evaluate treatment effect.  All participants will be randomized to MRI-

directed or conventional BT and we will measure airway function and treatment response 
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using conventional and imaging tests as well as questionnaires that capture how well 

asthma is controlled and how patients are feeling.   

For those participants randomized to the MRI-directed treatment arm, patient-specific BT 

treatment plans will be developed to identify specific airways to be targeted during a single-

session BT treatment procedure.  Briefly, low-dose thoracic CT will be used to generate a 

detailed three-dimensional model of the airway tree.  Following CT, all subjects will 

undergo further MR imaging following methacholine challenge or salbutamol inhalation.  

As shown for a representative subject in Figure 6-2, the post-challenge MRI will be co-

registered to the low-dose CT with airway rendering to enable spatial comparisons between 

ventilation defects and airways. Patient-specific treatment plans will identify target 

airways, prioritized in order of importance and grouped by lobe to be targeted.  Airways 

demonstrating dynamic or static bronchoconstriction will be targeted based on their spatial 

proximity to ventilation defects. 

 

 

Figure 6-2 Spatial relationship between 3He MRI ventilation (blue), ventilation defects 

(green) and airways (yellow) for a representative subject with severe asthma three days 

prior to BT while on 50 mg of prednisone.  
3He MRI registered to the CT of the thorax (in grey-scale) with the airways segmented in 

yellow to identify airways demonstrating dynamic bronchoconstriction following 

methacholine challenge to be targeted for treatment based on their spatial proximity to 

ventilation defects.  

This study will address the following research questions: 

1) Do regional ventilation defects resolve following BT?  
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2) What is the relationship between ventilation defects and patient outcomes following 

BT? 

3) Can MRI-guided BT treatment to specific abnormal airways result in improved 

asthma control and quality-of-life?  

4) Are patient outcomes related to image-guided BT significantly different than those 

achieved using the conventional treatment approach? 

5) Can MRI identify characteristic ventilation defects that predict BT response? 

One functional MRI study, evaluating seven severe asthmatics, has provided promising 

preliminary evidence supporting the notion that MRI ventilation defects decrease after BT 

treatment.37  Our study will be the first to evaluate the effect of a localized airway 

intervention on regional ventilation visualized using MRI in asthma.  The use of functional 

MRI in this context will provide a better understanding of BT treatment, providing a 

foundation of knowledge for studies aimed at assessing the ability of imaging methods to 

guide localized treatment to only abnormally-functioning airways.  We hypothesize that 

treatment of only specific abnormal airways, proximal to MRI ventilation defects, will 

result in improved MRI gas distribution, airway hyperresponsiveness, asthma control and 

quality-of-life that is not significantly different from patients in the conventional therapy 

group.  We also hypothesize that improved ventilation will be related to improvements in 

well-established clinical measurements of asthma.   

6.4.3 Imaging Exercise-induced and Methacholine-induced 

Bronchoconstriction using Hyperpolarized Gas MRI: Same 

Ventilation Defects or Not?  

Airway hyperresponsiveness is a universal defining feature of asthma.38  It is currently 

measured clinically to aid in the diagnosis and management of asthma, and is often 

employed in clinical trials to evaluate the effectiveness of novel asthma therapies.  Airway 

hyperresponsiveness can be assessed using both direct and indirect stimuli which induce 

bronchoconstriction via different mechanistic pathways; however, these differences are 

poorly understood.39  A better understanding of airway hyper-responsiveness and the 
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mechanisms that contribute to this process in asthma is required to achieve better patient 

outcomes.  

3He MRI has been used to visualize regionally heterogeneous ventilation in response to 

both exercise-23 and methacholine-induced22,23 bronchoconstriction, suggesting that not all 

airways respond to provocation equally.  However, the spatial relationship between 

exercise- and methacholine-induced ventilation defects has not been investigated in the 

same asthmatics.  In other words, it is currently unknown if the same airways in asthma 

respond in a similar manner to both indirect and direct stimuli.  It has been hypothesized 

that clinical assessments of airway hyperresponsiveness induced by indirect methods 

correlate better with the clinical features of asthma.40  This hypothesis has not been tested 

using MRI, therefore it is unknown whether indirect or direct stimuli induced ventilation 

defects correlate more strongly with the clinical features of asthma.  If non-invasive 

imaging measurements are going to be used as intermediate endpoints in clinical trials of 

new therapies, we think future MRI studies should investigate these concepts. 

By acquiring pulmonary CT and well-established clinical measurements of asthma in 

addition to performing MRI following both exercise and methacholine challenge in the 

same asthmatics, the following research questions can be addressed: 

1) Are MRI ventilation defects observed in the same focal lung regions following 

exercise- and methacholine-induced bronchoconstriction in asthma?  

2) Are exercise- or methacholine-induced MRI ventilation defects more strongly 

correlated with well-established clinical measurements of asthma? 

3) Are CT-derived measurements of airway structure different for those airways 

proximal to ventilation defects observed following methacholine and exercise 

induced bronchoconstriction?   

Comparative imaging studies have the potential to provide a better understanding of the 

underlying mechanisms involved in airway hyperresponsiveness, and in turn provide a 

better understanding of potential treatment targets in asthma.  So far at our centre, four 

asthmatics have undergone MR imaging prior to and following both exercise- and 

methacholine-induced bronchoconstriction.  Imaging results from one of the four 

asthmatics is shown in Figure 6-3.  Preliminary data suggests that exercise and 
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methacholine-induced bronchoconstriction will induce a similar decrease in well-

established clinical measurements of asthma; however, visually obvious regional 

differences in gas distribution will be observed using MRI that cannot be detected by 

spirometry.   

 

Figure 6-3  Representative coronal centre slice hyperpolarized 3He MRI of an asthmatic 

subject at baseline and following both methacholine and exercise-induced 

bronchoconstriction.   
3He MRI gas distribution (in blue) registered to the 1H MRI of the thorax (in grey-scale). 

Ventilation abnormalities are present at baseline that become worse following 

methacholine- and exercise-induced bronchoconstriction.  

6.4.4 Functional MRI of Asthma: Alternative Approaches  

It is well-established that direct visualization of the lung airspaces using functional MRI is 

important and that it and provides numerous advantages over clinically available tools.  

Motivating the work presented in Chapter 2, 3He MRI is not well-suited to be a widely 

available clinical tool due to the limited availability of 3He gas.41  This roadblock has 

initiated further development of 129Xe MRI and oxygen enhanced MRI,42 as well as 

motivated the need for alternative approaches to visualize lung function using non-

polarized inhaled gases and 1H MRI.  These emerging methods come with tradeoffs 

regarding cost, access and importantly, image quality.  

Fluorine-19 (19F) MRI of the lungs uses inert fluorinated gases (e.g. tetrafluoromethane 

(CF4), sulfur hexafluoride (SF6), perfluoropropane (C3F8 or PFP)) and may offer 

comparable regional lung function information to hyperpolarized gas MRI, but at a much 

lower cost.43-46  This approach to functional lung imaging has the advantage of using gases 

that are inexpensive, abundant and do not need to be polarized prior to their use.  Halaweish 
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and colleagues have been the first to apply this approach in patients with asthma, 

demonstrating its sensitivity to ventilation defects in two subjects.44   

Free-breathing pulmonary 1H MRI is another approach currently being developed with the 

ability to evaluate lung function.47-50  Fourier decomposition of the 1H signal intensity 

acquired during tidal breathing was introduced by Bauman and colleagues to generate 

ventilation and perfusion images.47  This unique approach does not require a contrast agent 

and can be implemented on the majority of clinical scanners without the requirement for 

specialized multi-nuclear hardware; however, it is limited by cumbersome post-processing.  

Unlike 19F MRI, this approach has not yet been evaluated in patients with asthma.   

With these promising alternative functional MRI approaches in the pipeline, future studies 

are required to investigate their utility in the asthmatic population.  Specifically, initial 

investigations should be focused towards direct qualitative and quantitative comparisons 

of ventilation abnormalities derived from these alternative approaches with those identified 

using hyperpolarized gas MRI.  Such proof-of-concept demonstrations are currently 

underway in COPD51 and should be emulated in asthma.  One major advantage of these 

alternative functional MRI approaches is their direct translational ability as they can be 

implemented in most medical imaging centres with access to a clinical MRI scanner.  This 

advantage is fundamentally important, making these alternative functional MRI 

approaches more likely to find a place in the clinical setting.  

6.5 Significance and Impact 

Even though it is well-understood that FEV1 does not reflect the regional nature of asthma, 

the assessment of novel therapies and disease management continues to depend on this 

global metric.  Using hyperpolarized gas MRI, heterogeneous ventilation defects are 

observed and the regional, patient-specific nature of asthma can be safely and non-

invasively visualized – providing information that is not available using alternative clinical 

methods.  This thesis significantly advances our understanding of the structural 

determinants of MRI ventilation defects identified in asthma and what it means clinically 

to be an asthmatic with ventilation defects.  The studies presented in this thesis provide 

strong evidence that ventilation defects in asthma are not random, but are heterogeneously 

distributed in the lungs, spatially related to airway abnormalities and are related to worse 
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clinical characteristics of asthma including airway hyperresponsiveness, airway 

inflammation, airflow obstruction and disease control.  It is also now well-understood that 

129Xe MRI is more sensitive to airway abnormalities in asthma than 3He MRI, which is 

important for future clinical translation of this imaging method beyond specialized 

academic centres.   

This thesis confirms that regional ventilation defects are a clinically relevant imaging-

based biomarker of asthma and provides a foundation of knowledge supporting the need 

for clinical integration of functional MRI.  Armed with this understanding, there is 

enormous potential for MRI ventilation defects to be used as intermediate endpoints of 

asthma that can be used to evaluate novel treatments and to better inform treatment 

decisions.  Furthermore, the development of novel asthma treatments may be directed 

towards focal ventilation defects.  Hence, there is the potential for functional MRI to guide 

validated localized airway treatments, such as bronchial thermoplasty, to abnormal airways 

that lead to ventilation defects.  These advances in our understanding of asthma may very 

likely impact asthma management and how new treatment will be developed and evaluated.  

By “seeing” asthma and how it regionally responds to treatment and provocation, and how 

it changes over time, there is increased potential for more effective treatments, reduced 

treatment time, and improved patient outcomes.   
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