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Abstract

Mobile genetic elements are important factors in evolution, and greatly influence

the structure of genomes, facilitating the development of new adaptive characteristics.

The dynamics of these mobile elements can be described using various mathematical

and statistical models. In this thesis, we focus on a specific category of mobile genetic

elements, i.e. mobile promoters, which are mobile regions of DNA that initiate the

transcription of genes. We present a class of mathematical models for the evolution

of mobile promoters in prokaryotic genomes, based on data obtained from available

sequenced genomes. Our novel location-based model incorporates two biologically

meaningful regions of the genome: promoter regions and other sites in the genome.

We find the best model to describe the process using model selection techniques and

reveal the most influential parameters in this dynamic process. We then compare the

dynamics in these two regions of the genome with regards to the rates of four key

processes: duplication, loss, diversification and horizontal gene transfer (HGT).

Keywords: mobile genetic elements, mobile promoters, promoter regions
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Chapter 1

Introduction

1.1 Prokaryotes and Their Genomes

All living organisms, except viruses, can be classified into three main domains: Bac-

teria, Archaea and Eukaryota. The first two branches are relatively simple organisms

that are called prokaryotes. These are unicellular organisms with no nuclei or other

membrane-bound organelles. From the evolutionary point of view, prokaryotes were

the beginning stage of life, as two billion years ago eukaryotic cells evolved from the

symbiosis of an archaeal host and a bacterium.

Prokaryotes’ chromosomal DNA is located in the area of the cell’s cytoplasm called

the nucleoid, and has different DNA packaging from eukaryotes, which is known as

supercoiling. Most prokaryotes have a single circular DNA molecule1. Moreover,

unlike eukaryotes which reproduce sexually and typically carry two copies of each gene

(diploid), most prokaryotes are asexual organisms and their genomes only have a single

copy of each gene (haploid). Prokaryotic genomes carry much less noncoding DNA

compared to eukaryotes, probably due to limited space in their single chromosomes.

On average, 12% of prokaryote genomes consists of noncoding sequences as opposed

to upwards of 98% in eukaryotes [Ahnert et al., 2008].

1However some exceptions have been discovered, such as Vibrio cholerae bacteria (causes cholera)
that has two circular chromosomes [Trucksis et al., 1998], or the Borrelia burgdorferi bacteria (causes
Lyme disease) which contains up to 11 copies of a single linear chromosome [Ferdows and Barbour,
1989].

1
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Noncoding sequences of the genome perform various crucial functions such as ini-

tiating transcription, that is the first step of gene expression. Transcription refers

to the process by which DNA is copied into RNA. One of the important transcrip-

tional regulatory elements is a promoter, i.e. a DNA sequence that determines the

DNA strand which must be transcribed and also the direction of transcription. The

promoter indicates the transcription initiation site and launches transcription by pro-

viding a required binding site for RNA polymerase, i.e. the enzyme that is responsible

for synthesizing RNA. The promoter region (PR) is located near (typically adjacent)

to the transcription start site (TSS) and upstream in the genome from the coding se-

quence. Although eukaryotic promoters are relatively more complicated to recognize,

in prokaryotes, the promoter region for many common genes is determined gener-

ally with two sequences, TATAAT and TTGACA, at roughly -10 bps and -35 bps

upstream of the TSS, respectively.

This thesis studies and models mobile promoters, which are a sub-class of mobile

genetic elements. Mobile promoter are of interest because they can affect the evolution

of prokaryotic genomes, i.e. when the promoters activate silent genes or modify the

expression of already present genes. The data used here includes strains of E.coli

and other prokaryote genomes, 1362 genomes in total. E.coli is one of the most

well-known species of prokaryote, and the most widely studied prokaryotic model

organism. This is due in part to to its high growth rate (quick doubling time), which

makes it a good candidate for laboratory culture. Hence it has been the primary

model to study many biological phenomena e.g. bacterial conjugation, phage genetics,

horizontal gene transfer, topography of gene structure, recombinant DNA, and the

foundations of biotechnology and bioengineering discoveries resulting in more than

ten Nobel prizes.
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1.2 Mobile Genetic Elements (MGEs)

In 1950, when McClintock reported the existence of “controlling elements” in maize

chromosomes [McClintock, 1950], nobody could guess that this discovery would be

a new chapter in the old story of evolutionary research. The significance of her

research wasn’t understood initially and her work was ignored and rejected [Keirns,

2002]. However, more than thirty years later she was awarded the Nobel prize in

Physiology or Medicine for the discovery of mobile genetic elements (MGEs). The

term MGE, in general, refers to a wide range of DNA sequences with length from

hundreds to a few thousand base pairs that have the ability to move within or between

genomes, inserting themselves at other sites in the recipient genome [Craig et al.,

2002]. Here, we first highlight the role of MGEs in evolution, and review some of the

most important and prevalent types of MGEs. Then, we describe a specific type of

MGE, i.e. mobile promoters, which are the focus of this thesis.

1.2.1 MGEs in Genome Evolution

MGEs can be considered genomic parasites, since they have no specific function in

their host organisms (in the short term), and use host resources to copy themselves

into the genome. Because of these characteristics, they are also referred to as “selfish

DNA” or “junk DNA”. In addition to natural selection, genome defense mechanisms

by small RNA, RNA-mediated silencing, have evolved to protect genomes against

these parasites [Blumenstiel, 2011]. However, these protective factors could not com-

pletely prevent the propagation of MGEs, and MGEs are in fact ubiquitous in nearly

all organisms. For instance, MGEs constitute 85% of the maize genome [Schnable

et al., 2009] and nearly half2 of the human genome [Lynch and Walsh, 2007].

MGEs have a great influence on genome architecture [Kazazian, 2004], in partic-

2Up to 75% if we consider ancient mobilization events [Lynch and Walsh, 2007].
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ular genome size [Touchon and Rocha, 2007]. These elements take advantage of their

hosts to pass copies of themselves to future generations, and cause adverse muta-

tions that have deleterious effects on their host [Pasyukova et al., 2004]. Nonetheless,

evidence shows there is a mutual relation between MGEs and their host genomes

and MGEs can have positive effects for species in the long term [Kazazian, 2004],

often being the source of new adaptive characteristics in the organism e.g. antibiotic

resistance.

There is overwhelming evidence demonstrating the crucial role of MGEs in the

evolution of all organisms. For example in a recent study by Lynch et al. [2015] on the

evolutionary origins of pregnancy in mammals, the authors revealed the surprising

role of MGEs in the the mammalian transition from egg laying to live birth. They

determined that ancient transposable elements (TEs), which are a sub-type of MGEs,

are responsible for the emergence of the novel ability of pregnancy in early mammals.

These TEs were the origin of the cis-regulatory elements that turned off the genes

involved in the formation of the egg shell, and turned on other genes, which originally

belonged to other organs and tissues, but in the uterus “were recruited to be expressed

for new purposes”. These functions include maternal-fetal communication, and the

development of the maternal uterus immune system to protect the developing fetus

[Lynch et al., 2015].

In comparison with other organisms, prokaryotic genomes contain a large fraction

of foreign genes which are the result of Horizontal Gene Transfer (HGT) [Koonin et al.,

2001]. HGT refers to movement of a DNA segment between organisms (intercellular).

MGEs are agents of HGT, and exploring the dynamics of MGEs requires a good

understanding of the process of horizontal/lateral gene transfer. This gene exchange

between genomes plays a fundamental role in evolution, especially the evolution of

bacteria [Ochman et al., 2000].

There are three main mechanisms for HGT: transformation, conjugation and
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transduction (infection with bacteriophages). Transformation happens when the bac-

terium is in a particular state in which it is able to uptake DNA from the surrounding

environment [Gyles and Boerlin, 2013]. Indeed, damaged and short DNA molecules

exist in almost all environments and may persist for a very long time (more than half

a million years) in ideal conditions. These DNA segments are created and quickly

breakdown to very small pieces when organic matters are decomposed [Nielsen et al.,

2007]. A recent experimental study shows that bacteria can uptake DNA molecules

that belong to extinct species from thousands of years ago, through transformation,

and insert them into their genomes [Overballe-Petersen et al., 2013]. The authors

obtained DNA of a woolly mammoth from its 43,000 year old bone and mixed it with

a contemporary bacteria. They suggest that transformation and therefore HGT, can

take place with very ancient DNA sequences and may be one of the primary factors

in early bacterial evolution.

We will explain the two other mechanisms of HGT, conjugation and transduction,

in the next section as we describe the family of MGEs associated with each process.

1.2.2 Different Types of MGEs

MGEs are often categorized based on their features such as sequence characteristics or

movement mechanisms [Siefert, 2009]. It is not, however, straightforward to categorize

all of these elements disjointly and with no overlap, partly because our knowledge of

MGEs is rapidly growing and new categories are introduced constantly. Here, we

briefly review three main types of mobile genetics elements: transposable elements,

plasmids and bacteriophages.

Transposable Elements (TEs)

Transposable elements are the “jumping genes” that go through the process of trans-

position described below. They are classified into two main groups, based on their
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movement mechanism. The first group, Class I transposons, consists of retrotrans-

posons. These elements transpose by a “copy and paste” mechanism, in which they

are first transcribed to RNA and next reverse transcribed to DNA and then inserted

into the target host genome. The second group, Class II transposons, consists of

insertion sequences and DNA transposons. These elements move directly as a short

sequence of DNA in a process called “cut and paste” [Lodish et al., 2000].

Insertion sequences (ISs) are the most prevalent mobile elements in prokaryotic

genomes. They also have the simplest and smallest sequences compared to other

types of TEs, including only the genes that are necessary for their mobility [Mahillon

and Chandler, 1998]. Despite their simplicity, they play a crucial role in genome

plasticity [Schneider and Lenski, 2004]. In contrast to ISs, retrotransposons and

DNA transposons carry accessory genes beside the genes which are involved in their

transposition. These elements are the most common forms of MGEs in eukaryotic

genomes; notably numerous retrotransposons exist in plant and mammal genomes.

It is worth mentioning that transposons in the maize genome were the first MGEs

discovered [McClintock, 1950].

Plasmids

Plasmids are double-stranded DNA molecules that are separated from the chromoso-

mal DNA of the cell and are smaller than it. Although there are some species with

linear plasmids [Hinnebusch and Tilly, 1993], they typically have a circular structure.

Plasmids are more common in bacteria but they are also found in eukaryotes. They

have the ability to self-replicate and their core genes are those that encode replicative

functions. They typically don’t carry genes that are fundamental for the organism’s

survival, however they may have some beneficial genes for the organism. Antibiotic

resistance is a well known example of a beneficial effect of plasmids for bacteria [Frost

et al., 2005].
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Plasmids can move to other cells through a process called conjugation, mentioned

earlier as a HGT mechanism. This process occurs in three steps: creating a connection

to the recipient cell through a mating-pair (pilus); signaling if the host environment is

tolerable for transferring DNA such that transfer can happen; and finally transferring

the plasmid to the host cell [Frost et al., 2005].

Bacteriophages

Bacteriophages or simply phages are defined as viruses that infect bacteria. Their

genomes can be single or double stranded DNA or RNA, and either circular or linear.

These viruses have played a major role in the development of molecular biology and

genomics, in particular they are commonly used in genetic engineering (e.g. nanotech-

nology [Zhang, 2003]).

Phages are ubiquitous in bacterial populations and may be either virulent or

temperate. The former replicates rapidly and results in lysis of the host cell, while the

latter leads to lysogeny, in which the phage genome inserts into the host chromosome

and then replicates with the host as a prophage [Frost et al., 2005].

1.2.3 Mobile Promoters: A Sub-Class of MGEs

As we mentioned before, a promoter is an essential regulatory element in the gene

transcription process. In 2012, Matus-Garcia et al. published evidence of promoter

mobilization in prokaryotic genomes, identifying “putative mobile promoters” or

PMPs for short [Matus-Garcia et al., 2012]. These authors searched the promoter

regions of the 1360 available sequenced genomes of prokaryotes and found more than

4000 families of mobile promoters in these regions. Two years later, van Passel et al.

[2014] extended this work by searching whole genomes, rather than only the promoter

regions, and found three times more copies of mobile promoters, overall.

These discoveries introduced a new aspect to the concept of HGT, i.e. evidence of
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the transfer of entirely non-coding DNA sequences. As a result, regulatory elements

in bacterial genomes can be considered a new class of MGEs, since recently it has

been confirmed experimentally that these elements can transfer between genomes

by a process called “horizontal regulatory transfer” (HRT) [Oren et al., 2014]. In

HRT, the regulatory element is transferred alone, in contrast to HGT in which it is

moved with adjacent regulated genes [Koonin, 2014]. These discoveries are remarkable

because they are the first investigations to take into account the transfer of non-coding

sequences.

1.3 Mathematical Models for MGEs

In the 1960s and 1970s, many mobile DNA sequences were discovered in bacterial

genomes. These sequences had similar characteristics to the mobile elements in maize

genomes discovered earlier by McClintock [1950]. Finally by 1980, the controversial

theory of MGEs became well known and almost universally accepted [Dawkin, 1976,

Orgel and Crick, 1980]. Since then, numerous experiments and theoretical works have

explored the dynamics of these mobile elements from the evolutionary perspective.

The growing number of genome sequencing projects, on the other hand, has resulted

in more available genomic data and consequently more identified MGEs in sequenced

genomes. This in turn has resulted in more intriguing questions about the origin, fate

and impact of these mobile elements in evolution.

Mathematical and statistical models, despite the assumptions necessary for simpli-

fication, have contributed greatly to the interesting and helpful information deduced

about the evolutionary dynamics of MGEs. While most of these models address

MGEs generally, some consider a specific type of MGE and their particular inter-

actions with their host genomes [Brookfield, 1991, Engels et al., 1990, Uyenoyama,

1985].
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Transposable elements (TEs) have been the subject of research for a long time and

are the most well-studied type of MGE in both eukaryotic and prokaryotic genomes

[Rouzic and Deceliere, 2005]. Many mathematical models have been developed to de-

scribe their dynamics and explain their evolution by considering various key factors,

including duplication, deletion, natural selection, self-regulation and genetic drift.

Charlesworth and Charlesworth [1983] proposed one of the very first simulation mod-

els for TE dynamics in eukaryotes, in order to discover the factors limiting their

spread. They discussed the dependence of fitness on TE copy numbers in Drosophila

genomes. Many more models have been proposed to determine the distribution of

TE copies and the factors controlling their abundance in genomes, and the effect

of selection on populations of TEs; for examples see the works of Ohta [1985] and

Hudson and Kaplan [1986] on eukaryotic genomes.

1.3.1 Modeling TEs in Prokaryotic Genomes

Modeling TE populations in prokaryotic genomes is different from the modeling pro-

cess in eukaryotes. Horizontal gene transfer (HGT) is an important agent of TE dy-

namics in prokaryotes and should be considered in designing mathematical models;

however these models are overall simpler since prokaryotes are haploid and asexual.

Modeling progress in this field commonly consists of applying branching process and

Markov chain approaches.

Markov processes are commonly used in modeling stochastic systems and are

applied in a wide range of areas including population modeling and mathematical

finance. A system is a Markov process if it has the “Markov property” i.e. being

memoryless. In other words, in a Markov process, the outcome of the future state

only depends on the present state and is independent of all past states. A Markov

chain is a discrete time Markov process with a finite state space. A branching process

is a particular Markov process mostly used for population modeling, in which each
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individual of generation n produces a random number of offspring for the next gen-

eration, n + 1, which is drawn from a probability distribution. This model is often

used to study the basic reproductive rate, and the probability of ultimate extinction

for the overall population.

A notable example of using branching processes is the work of Sawyer and Hartl

[1986], where they proposed six models for TE dynamics in prokaryotes using data

from three insertion sequences (IS4, IS5 and IS30 ) in 71 strains of E. coli. They

determined the equilibrium distributions of TE copy numbers and estimated the rate

of different processes. They however did not consider deletion, because its rate is

negligibly small in comparison with the transposition rate [Kleckner, 1981]. In most

of the proposed models, Sawyer and Hartl [1986] assumed that TEs reduce the fitness

of their hosts, however, they also examined a model in which TEs were assumed

to have beneficial effects on their hosts. Similar studies were published later with

analogous assumptions to demonstrate the advantages of TEs, and to argue against

the theory that TEs are selfish DNA that exist as parasites in prokaryotes’ genomes

(for example see the study by Condit et al. [1988]). In later work, Hartl and Sawyer

continued exploring the dynamics of six unrelated ISs (IS1, IS2, IS3, IS4, IS5 and

IS30 ) in the genomes of 71 strains of E. coli. They proposed various models with

different assumptions regarding transposition and fitness, and estimated the positive

correlation of HGT (mediated by plasmids) with the “presence or absence of different

types of IS sequences” [Hartl and Sawyer, 1988, Sawyer et al., 1987].

Branching processes have been utilized in many other studies modeling TEs in

prokaryotic populations. Moody [1988] proposed a probabilistic model for TEs in

haploid populations in which he considered different factors affecting TE dynamics

such as deletion, transposition and the probability of de novo acquisition. Moody

discussed the relation between deletion and transposition rates and their effects on

the stationary state. This work was later extended [Basten and Moody, 1991] by
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investigating the impacts of selection on this system.

1.3.2 Modeling Mobile Promoters

Here we describe the standard birth-death model for mobile promoter evolution pro-

posed by van Passel et al. [2014], which is also the basis of our model presented

in the next chapter. Van Passel et al. [2014] searched 1360 available prokaryotic

genomes and identified mobile promoters in these sequences. They then proposed

a model which incorporates four main events that can occur for a copy of a mobile

promoter in the genome; these are: duplication, loss, diversification and horizontal

gene transfer. Figure 1.1 illustrates their model. Here we consider a family of PMPs

with n copies. The parameter u denotes the rate at which each PMP is duplicated

in the same genome, and w denotes the rate at which each PMP is lost from the

genome. Therefore a family of n copies will create a family of n+ 1 and n− 1 copies

through duplication and loss events, respectively. The parameter v is assumed to be

the rate of diversification in which the promoter sequence is changed. Hence due to

diversification, a promoter family of n copies loses one promoter and will have n− 1

copies in the next generation. The newly created promoter through diversification

will be considered to be a new family with one PMP which is called a “singleton”

family. Singletons are also created via HGT at rate η. Finally it should be noted that

each copy of a PMP has an independent chance to undergo any of these four events,

so that the overall rates would be nu, nw and nv. However van Passel et al. found

that the diversification rate is independent of the number of existing MP copies in

the genome, so the overall rate of diversification is η rather than nη.

In this thesis we propose an extended model which is a generalized location-based

model for the evolution of mobile promoters in prokaryotic genomes. We use two

datasets from previous work on mobile promoters. Unlike the standard model, our

model is a two dimensional model which investigates the dynamics of mobile pro-
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Figure 1.1: The standard 1D model for family of n mobile promoters. Four processes
are involved in this dynamics: duplication (u), loss (w), diversification (v), and hor-
izontal gene transfer (η). All processes, except HGT, occur in the rates related to
number of the MP copies in genome. Figure reprinted from van Passel et al. [2014].

moters inside and outside promoter regions (PRs), separately. Following a standard

birth-death process, in this 2-D model, each new copy of a mobile promoter, which

is created by duplication (or received via HGT), inserts either inside the promoter

region or at other sites of the genome. Moreover, we consider two different sets of

acting rates for inside promoter regions and at other sites of the genome. Hence with

this new model we can compare the rates of gene duplication, and loss of mobile pro-

moters outside and inside promoter regions. We describe this model in more detail

in the next chapter.

1.4 Computational Model Fitting

The next step after expressing a biological system in terms of parameters in math-

ematical expressions, i.e. the model formation process, is applying model selection

techniques and statistical inferences to deduce the properties of the underlying bio-

logical system and to estimate the parameters of the model [Burnham and Anderson,

2002]. Both the standard birth-death model of van Passel et al. [2014], and also our

location-based model, which we present in the next chapter, are defined based on a

set of parameters, i.e. the rates of different processes; these rates should be derived

from available genomic data. This is achieved by fitting these models to the observed

data. More specifically, we search for the parameter values at which the observed
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data is most likely to be generated by the model, or is most similar to simulated data

produced by the model in its stationary state. This can be formulated as a classic

optimization problem; where in the former we are using a log-likelihood loss function,

and in the latter we minimize a Sum of Squared Errors (SSE).

Although optimization is a classic and well-studied computational problem, it is

in most cases an NP-hard problem, and computationally expensive, especially when

dealing with functions describing real world phenomena, which are non-convex and

may have many local optima. This is also the case in our model. In these cases, com-

mon local minimization routines such as the Nelder-Mead simplex algorithm perform

poorly. Instead, one should use a global optimization approach; these are typically

Monte-Carlo-based stochastic methods, such as simulated annealing. Here, we ap-

plied the “Basin Hopping” global optimization approach which tries to find the best

possible global minimum of a function. Rooted in physics, basin hopping is an it-

erative stochastic process built upon a local minimizer, which accepts or rejects the

parameters in each iteration.

1.4.1 Model Selection and Accuracy

“all models are wrong, but some are useful.”

Box 1976

It is far from realistic to expect to find the full and exact truth regarding a

complicated biological system from a mathematical model with its many idealizations

and simplifications. Although a model cannot reveal the complete reality of a system,

it can provide useful insights into the underlying process, if it is well-defined and

selected properly. Model selection is the process of choosing the best model from a

set of candidate models, in an attempt to answer this simple question: what is the

best model to use to describe a system?

In the past two decades, many techniques have been developed for model selection,
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including stepwise procedures such as backward elimination and forward selection to

find the right number of variables, cross-validation techniques to avoid overfitting,

and criterion-based procedures which are defined based on a tradeoff between the

simplicity and accuracy of the model [Burnham and Anderson, 2002]. Two well-

known criteria used in the latter class are the Akaike information criterion (AIC) and

the the Bayesian information criterion (BIC), which are used in this thesis.

More formally, let k denote the number of parameters of the model, and n the

sample size, or the number of observations, then the Akaike information criterion

(AIC) is defined as:

AIC = 2k − 2ln(L)

where L is the likelihood of the data. The Bayes Factor and Bayesian information

criterion (BIC) is closely related to the AIC and is defined as:

BIC = kln(n) − 2ln(L)

In order to find the most qualified model by Akaike and Bayesian information

criteria, one should search the set of candidate models to find the model with the

lowest AIC or BIC. In fact, these criteria provide the possibility of comparing different

models by making a trade off between the complexity of the model and the information

lost, since to reach the minimum AIC value, the number of parameters, k, should

reduced while the likelihood, L, should be increased. Finally it should be noted

that the AIC and BIC cannot confirm the validity of the general model. In other

words, by applying these criteria we do not figure out whether our general model is

defined appropriately. The two following variations, AIC and BIC corrected, are also

proposed for when the sample size is relatively small, where n denotes the sample

size.
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AICc = AIC +
2k(k + 1)

n− k − 1

BICc = BIC − kln(2π)

Applying AICc prevents overfitting which can happen when using the AIC if the

sample size, n, is not larger than k2.

1.4.2 Relative Probability

Although the model with the lowest AIC (or BIC) is considered to be the “best” model

to fit the data, it is possible that several candidate models have relatively similar

AIC values. In this situation, the relative probability can be used to determine the

statistical significance of the selected model. The relative probability, R is computed

as R = exp ((AICmin − AIC)/2).

The model with the lowest AIC always has relative probability 1.0, however there

could be several candidate models that cannot be rejected, if their relative probabil-

ities are also high (for example, higher than 0.05). This situation did not occur in

the model selection process described in the following chapter. However techniques

such as Bayesian model averaging [Hoeting et al., 1999] can be used when several

candidate models cannot be rejected based on relative probability.

1.5 Thesis Statement and Contribution

Here, we extend the previous model of the birth, death and diversification of mobile

promoters [van Passel et al., 2014], and propose a novel location-based extension. The

new model incorporates two biologically meaningful parts of the genome: i) Inside

promoter regions and ii) other sites of the genome. The model considers four key

factors in genome alteration: i) duplication, ii) loss, iii) diversification, iv) horizontal
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gene transfer (HGT). The research question of this thesis is to determine whether the

rates of gene duplication and loss of PMPs have meaningful differences outside and

inside promoter regions. If yes, we would like to shed light on the biological reasons

underlying these differences.

In the next section, we present our general model in detail, and present and discuss

the results and findings. Our main finding can be summarized as “Mobile promoters

are much more stable in promoter regions of the genome than in other regions.”
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Chapter 2

A Location-Based Birth, Death

and Diversification Model for

Mobile Promoters in Prokaryotes

Mobile genetic elements (MGEs) are DNA sequences with the ability to move to new

sites in genomes (within and between them). These genetic elements are ubiquitous in

nearly all creatures despite the fact that natural selection and genome defense systems

restrict their propagation to protect the genome [Blumenstiel, 2011]. Although MGEs

are considered to be genomic parasites with detrimental effects on their hosts, evidence

shows they may have long term benefits for the species [Kazazian, 2004]; antibiotic

resistance in bacteria is one famous example [Boutoille et al., 2004]. MGEs indeed

have a significant importance from an evolutionary point of view, particularly in

prokaryotes [Ochman et al., 2000].

MGEs vary from relatively short sequences that only contain the genes required

for their mobility, e.g. insertion sequences (ISs), to longer sequences that carry many

accessory genes. These mobile elements are considered to be a key source of alter-

ation in genome architecture [Kazazian, 2004], especially in genome plasticity. They

20
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underlie the rapid dynamics of evolution in prokaryotic genomes [Frost et al., 2005],

and are important features in transcriptional rewiring [Perez and Groisman, 2009],

in which for example regulatory elements activate silent genes [Stoebel and Dorman,

2010]. Mobile promoters (MPs) are regulatory elements that are a sub-class of MGEs

[Matus-Garcia et al., 2012, van Passel et al., 2014] and are considered to be one of

the possible underlying factors in transcriptional rewiring [Nijveen et al., 2012].

A promoter is a region of DNA that marks the start of the transcription process.

It has been recently discovered that these regulatory elements are mobile. Evidence of

promoter mobility was first proposed by Matus-Garcia et al. [2012], following a search

of 1360 sequenced prokaryote genomes. Matus-Garcia et al. searched promoter re-

gions (PRs) of these genomes, as explained in greater detail in the following section,

to identify putative mobile promoters (PMPs), which they defined to be “homologous

promoter sequences with non-homologous coding sequences”. Their dataset included

13,111 copies of PMPs overall. Van Passel et al. [2014] extended this work to search

full genomes and expanded the previous data set to nearly 40,000 PMPs, providing

strong evidence of promoter mobility. These two studies have two remarkable aspects.

First, they introduce MPs as a new class of MGEs and produce datasets describing

the distribution of MPs in prokaryotic genomes. Second, they are the first studies

which present a new idea regarding horizontal gene transfer (HGT). More specifically,

they provide evidence of the transfer of non-coding DNA sequences in isolation. Two

years later, Oren et al. [2014] confirmed that regulatory elements can transfer with-

out adjacent genes, a process that the authors called “horizontal regulatory transfer

(HRT)”.

As more MGEs have been discovered, more curiosity about the origins and fate

of these elements has arisen. Questions regarding population dynamics and fitness

effects, and the impact of factors such as horizontal transfer and drift have naturally

emerged. Therefore much effort has been put into modeling these processes mathe-
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matically. Approaches range from numerical models and simulations for the TE pop-

ulation in eukaryotic genomes [Rouzic and Deceliere, 2005] to more simple modeling

approaches for ISs in prokaryotic genomes, such as branching processes and Markov

chain models [Sawyer and Hartl, 1986]. In particular, van Passel et al. [2014] focused

on mobile promoters and presented a birth-death-diversification model, in which they

proposed a model for the distribution of MPs both within and among genomes. The

extinction probability of MP lineages has also been determined [Drakos and Wahl,

2015].

In this article, we investigate the differences in the dynamics of MPs between

promoter regions and other sites of the genome. In order to do that, we build a new

two dimensional model based on the previously proposed model for the dynamics of

MPs [van Passel et al., 2014]. The previous model is notable not only because it is the

first proposed model for MPs, but it is also the first model for MGEs that considers the

effect of genetic diversification. Our new location-dependent model is built to include

four key parameters in these dynamics: duplication, deletion and diversification of

MP copies, in addition to the acquisition of promoter copies via HGT. We then apply

our model to data describing MPs in 1360 sequenced prokaryotic genomes. Our

expectation was that MPs would exhibit greater stability in promoter regions, where

their dynamics may have a crucial impact on the survival of the organism.



23

2.1 Methods

In this section, we introduce our location-based model for the dynamics of mobile

promoters (MPs), which we call the promoter general model or PGM for short. This

new model considers distinct rates for the main dynamic processes for two different

parts of the genome, i.e. inside and outside of promoter regions. This model, when

fitted to real data as presented in the next section, can be used to shed light on

how the dynamics of MPs and the rates of these processes differ inside and outside

promoter regions.

2.1.1 Promoter General Model (PGM)

The PGM is a two dimensional model which describes the distribution of mobile pro-

moters in prokaryotic genomes. As stated previously the PGM is defined based on

the main processes involved in the maintenance of mobile promoters, i.e. the rates

of duplication, loss, diversification and HGT. The PGM considers different rates for

these factors in two distinct regions of genome, and hence is able to reveal differences

in the dynamics in these two regions. Since the PGM does not include any assump-

tion specific to promoters, one may note that it can be applied to mobile genetic

elements in prokaryotes in general, in order to compare any two distinct parts of the

genome. Here, we consider each genome to consist of regions inside and outside of

promoter regions; we then find the stationary state of the model and fit this simulated

(predicted) data to the observed data for MPs, obtained from the previous studies

on the available sequenced genomes, which is described later in detail.

Figure 2.1 illustrates the overall view of the PGM. It includes all the possible events

that can happen for a family with n1 promoters inside and n2 promoters outside of

promoter regions. This family of (n1,n2) copies can create a family of (n1 + i,n2 + j)

in the next generation, where i and j could be 0 or 1.
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Figure 2.1: The PGM; 2D model for a family of (n1, n2) MPs, where n1 and n2 denote
the number of MP copies inside and outside of promoter regions (PRs), respectively.
Four processes are involved in these dynamics: duplication (u), loss (w), diversifica-
tion (v), and horizontal gene transfer (η). These rates are differentiated by subscript
1 for inside and 2 for outside of PRs. A newly created promoter by duplication is
inserted into PRs with the probability p1, and to outside PRs with probability of
1− p1. For instance, a duplication results in a transition from (n1, n2) to (n1 + 1, n2)
with the rate of (n1u1 + n2u2)p1. Similarly, a promoter that is created via HGT is
inserted in PRs with probability p2 and to outside PRs with probability 1 − p2. The
α-values are assigned to investigate the relations between the number of MP copies
and the rate of each process, where if α is estimated to be 1, it confirms that the
number of copies affects these rates, and otherwise α = 0 and there is no effect.

We consider 4 main situations that can occur for a copy of a MP in the genome:

duplication, loss, diversification and horizontal gene transfer (HGT). We take u to

denote the rate at which each MP is duplicated in the same genome, noting that

the mechanism of MP duplication is not yet completely understood. We take w as

the rate at which each MP is lost from a genome, this could reflect either excision

or loss of mobility through, for example a deletion. The parameter v represents the

diversification rate. Diversification occurs when the sequence of the MP changes
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sufficiently such that it would no longer be classified as the same family (less than

80% sequence identity). When diversification occurs, a family with (n1,n2) copies

will become a family of (n1 − 1,n2) copies, for example, and create a new family with

either (1,0) or (0,1) copies. The parameter η denotes the rate of HGT. We assume

that the recipient genome does not already have a copy of the transferred MP, so that

HGT always creates a new family with (1,0) or (0,1) copies. It should be noted that

HGT preserves the original and makes a new MP copy.

Following a standard birth-death process, each MP copy has an independent

chance for each process to occur, so the overall rates for a family of n copies would be

nu, nw, nv and nη. We then go one step further with generalizing this by assuming

nα rather than n, where α is 0 or 1 [Bichsel et al., 2013]. Accordingly, the overall

rates would be nαuu, nαww, nαvv, nαηη. For instance, duplication would occur for a

family of n MPs at rate u when αu is 0 or at rate nu when αu is 1.

The previous one dimensional model for MPs proposed in van Passel et al. [2014],

also considers the four rates of u, v, w, and η for respectively duplication, loss,

diversification, and horizontal gene transfer events. We divide each of these rates

into 2 distinct parameters, i.e. first one for the rate inside promoter regions (PRs),

distinguished by subscript 1, and the second one for the rate outside of the PRs,

denoted by subscript 2. Thus the PGM includes u1, w1, v1 for the rates of events in

PRs and u2, w2, v2 for the rates outside of PRs. Again as an example, duplication

happens at rate n1u1 in PRs and at rate n2u2 outside of these regions. For simplicity,

we did not assign two different rates to η.

Moreover, we include the probabilities p1 and p2, which consider the chance that

a new copy of a MP, which is created through duplication or received via HGT, is

inserted inside (or outside) the promoter region. In other words, a new MP created

through duplication is inserted inside the PRs with probability p1, and outside of the

PRs with probability 1− p1; the same follows for p2 and a new MP created via HGT.
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As mentioned above, single copies are created when genomes receive a new pro-

moter via HGT, or when existing promoters diversify to a different sequence and are

consequently considered to be a new family of promoter. Van Passel et al. named

these “singletons”, and reported a large number of MP families that only include a

single copy of the MP in prokaryotic genomes. Here, as also shown in Figure 2.1,

these singletons are denoted by either of these two states: (1,0) if the copy is located

inside the PRs, or (0,1) if the copy is located outside of PRs.

2.1.2 Dataset Description

Each element of our dataset gives the observed number of MP families with (n1,n2)

copies, where n1 and n2 denote the number of MPs inside and outside of promoter

regions, respectively. To construct this dataset we benefit from two consecutive stud-

ies that have published datasets of MP families in promoter regions and the entire

genome. In the first study Matus-Garcia et al. [2012] extracted 100 nucleotide seg-

ments, 150-50 nucleotides upstream from the translation start site, from all coding

sequences in 1362 available sequenced prokaryotic genomes. They then searched these

regions (which we will refer to as promoter regions, PR) for homologous sequences, in

order to identify mobile regulatory elements. In their conservative search, they con-

sidered homologous sequences to be a MP family, if “they share 80% identity in at

least 50 nucleotides and also have non-homologous up- and down-stream sequences”.

13,111 MPs were found in 1043 genomes through intragenomic and intergenomic

searching. The second study extended the previous work by searching entire genomes

to identify sequences homologous to MPs that were identified previously. They found

3 times more MPs, 39,441 copies, of which 90% were located in noncoding regions of

the genome [van Passel et al., 2014]. For each of the 4047 MP families identified in

these studies, we use the dataset of Matus-Garcia’s work for the number of promoters
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in PRs, n1, and the number of promoters outside of PRs, n2, is calculated with a

simple subtraction of n1 from the observed counts per genome in the second study.

It should be mentioned that the first study dataset does not include families with

a single MP copy. As a result we assume n1 > 2 in our model selection and data

fitting process, however we do not make this assumption for n2. We also note that

the two studies used almost identical, but not identical, bioinformatics techniques.

This resulted in small inconsistencies in the data, but affected less than 1.45 % of the

data points in our study.

2.1.3 Model Selection and Data Fitting

In the model selection process, we fit the equilibrium distribution of the model to the

observed data. Note that this distribution depends on the ratios of the rates, not each

rate in isolation. Therefore data fitting was conducted based on u2/u1, w1/u1, w2/u1,

v1/u1 and v2/u1 denoting different rates for duplication, deletion and diversification

in the two distinct parts of the genome, and η/u1 representing the rate of HGT.

Together with the probabilities p1 and p2, that are constrained to be on the interval

[0,1], the PGM has 8 parameters that can freely vary.

Furthermore the PGM also includes four exponents αu, αw, αv and αη that can

be either 0 or 1 and make each process linear or constant. It is unclear at the outset

whether each of these processes (parameters) is necessary to explain the observed

data. For example, a model that includes duplication and deletion, but does not

include diversification, may be sufficient to capture the data. We therefore consider

possible subsets of the above parameters, creating nested models of the PGM, as our

candidate models.

Given a set of parameter values, the PGM (and its nested/derived models) typi-

cally converge to a stationary state, which is the data generated by the model, denoted

PGMp. To fit this model to the observed data, then, we find the parameter values for
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which the PGMp is closest to the observed data, i.e. a classic optimization problem.

To solve this minimization problem we use the basin-hopping algorithm (with the

L-BFGS-B method for the local minimization function) from the SciPy [Jones et al.,

2001] package in the Python programming language.

Our model selection technique is to simply choose the model with the maximum

quality i.e. the simplest model with the lowest parameter numbers that could describe

the observed data, whereas our full PGM is the most complex model. We measure the

relative quality of a model compared to other models, using the Akaike information

criterion (AIC) which is defined as: AIC = 2k− 2ln(L) where k denotes the number

of parameters of the model and L is the likelihood of the data. Our candidate models

all originate from the general model, PGM, and each one has a subset of parameters

of the general model. We also enumerate all possible combination of α-values and try

each nested model with all of these combinations.

In generating candidate models, we assume duplication and deletion to be crucial

processes in MP dynamics. The main reason for this assumption is the fact that

models without these two parameters do not typically converge to a steady state

distribution. Moreover, these two processes were previously found to be the most

important parameters in the 1D MP model, and occur at a higher rate than any

other parameters [van Passel et al., 2014]. Therefore we eliminate/prune all the

nested models without at least one u and one w, which results in a reduction in the

total number of candidate models. In total, we consider roughly 8700 nested models

within the PGM.

2.1.4 Sensitivity

After having determined the best model to describe the MP distribution and con-

sequently exploring the most influential parameters in these dynamics, we want to

examine the robustness of our proposed model. In more detail, we evaluate the sensi-
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tivity of the model’s parameters, through a bootstrapping procedure involving 1000

random samples. Each sample contains 90% of the original data. In other words,

for each sample we draw 90% of the available 4047 MP families, and repeat the data

fitting step for that sample given our selected PGM model, to estimate the parameter

values for that sample. The purpose of this experiment is to see how the parameters

vary on different samples, to confirm that we have not over-fitted our model, and to

see which process is more robust in the MP dynamics by estimating the parameters’

pattern of variation. We present the results of our sensitivity analysis in two figures,

showing variation in the actual values of the parameters and also variation in the

values when normalized by their median.

2.2 Results

2.2.1 Model Selection and Data Fitting

As explained in the previous section, we assumed our candidate models to be all

the nested models of the PGM with at least two to eight free parameters, i.e. only

eliminating those models without at least one parameter for duplication and one for

deletion. However, we did investigate the majority of the nested models, enumerating

all the candidate models, and hence we can claim that our model identification process

is deterministic [Burnham and Anderson, 2002]. It should however be noted that our

models did not take natural selection into account, based on the earlier study by van

Passel et al. [2014] which did not find any evidence for selection in MP dynamics.

Figure 2.2 illustrates the AIC values for all candidate models, grouped by the

number of free parameters. As shown in the zoomed figure, the minimum AIC value

belongs to a sub-model with 6 free parameters. We can take this 6-parameter model to

be the single best model due to a large gap between its AIC value and the AIC values

of competing models, i.e. 10.82 with the next best model (also a 6-parameter model)
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Figure 2.2: Quality of different models plotted as a function of the number of pa-
rameters in that model. The best model is the model with lowest AIC value which
is a model with 6 free parameters, shown better in the zoomed figure at the bot-
tom. This plot and the ones presented afterward are generated using the Matplotlib
package [Hunter, 2007].
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Figure 2.3: The relative probability of candidate models, plotted as a function of
the number of parameters in that model. The relative probability is computed as
R = exp ((AICmin − AIC)/2). Only models with R > 10−30 are plotted. The
square corresponds to the model with the minimum AIC. The inset represents the
probabilities on a linear y-axis.

and 24.15 with the third best model (a 7-parameter model). We obtained the same

result when using other criteria for model selection, namely Bayesian Information

Criteria (BIC), and their corrected sample-size versions (i.e. AICc and BICc).

We can confirm that the selected model is significantly better than other candidate

models also by comparing their relative probabilities, plotted in Figure 2.3.

Figure 2.4 shows the selected model and its parameters; the actual values of the

parameters for this best model are summarized in the first row of Table 2.1.

During the model selection process, we considered all possible sets for α-values

and examined each candidate model with all of these 16 options. The best data fitting

was obtained when: αu = 1, αw = 1, αv = 1 and αη = 0. These exponential values

reveal the dependency of duplication, loss and diversification rates on the number of
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Figure 2.4: Here we can see the selected/simplified model with the actual values
estimated for the α parameters, i.e. αu = αv = αw = 1 and αη = 0.

promoters in the MP family. In contrast, the exponent associated with HGT, αη,

implies that promoter families undergo HGT at a constant rate, independent of the

number of copies in a family.

Examining the best model, we are able to determine the most important processes

in MP dynamics. These parameters and their values are shown in Table 2.1. The

values indicate a high rate for u2/u1 which implies that duplication occurs at a sig-

nificantly higher rate outside of PRs. Moreover, the probability p1 implies that these

new promoters from duplication are mostly (90%) inserted outside of PRs. Deletion

and diversification in PRs, w1 and v1 can be ignored as the best model does not in-

clude these parameters, implying their rates are negligible. In contrast, deletion and

diversification events outside of PRs, w2 and v2, are important although their rates

are lower than duplication and HGT. Finally HGT, η, happens at the highest rate,

and roughly all the new promoters received via HGT are inserted in PRs. This may
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explain the maintenance of MPs in PRs although the duplication rate is low in this

regions.

parameters u2/u1 w2/u1 v2/u1 η/u1 p1 p2 AIC

best fit values 18.58 2.55 2.42 21.90 0.13 1.0 32605

sensitivity

median 18.40 0.97 1.90 22.21 0.14 1.0 29373

mean 16.86 1.67 2.16 20.39 0.21 0.98 30828

min 1.09 0.00 0.68 1.79 0.04 0.83 29031

max 37.22 5.52 13.84 79.00 0.77 1.0 41489

s.d. 6.36 1.55 1.34 7.84 0.20 0.05 3889

cov 0.38 0.93 0.62 0.38 0.94 0.05 0.13

Table 2.1: Best fit values and sensitivity of the best model’s parameters.

In Figure 2.5 we see the result of the best model fitted to the observed data,

and in Figure 2.6 we show the comparison of fits for fixed values of either n1 or n2

(cross-sections). Thus we can confirm by inspection that the selected model has good

agreement with the observed data.

2.2.2 Sensitivity Analysis

We performed the bootstrapping technique described above for the selected model

to assess the sensitivity of its six parameters. Figure 2.7 shows the result of our

sensitivity analysis for the parameters of the best model. These results are also

presented in Table 2.1 where in most cases the mean and median of the bootstrapping

result compares well with the best fit parameter value. The model seems to be robust

to random sampling for all parameters, with the possible exception of w2, the rate

at which MP copies are lost from outside promoter regions. Note that the coefficient

of variation (cov, i.e. s.d./mean) of w2 is 0.93, indicating a wide variation in this

parameter among bootstrap samples. We also note that, during the model selection

process, we observed a high rate for u2, the duplication rate outside PRs, for almost
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Figure 2.5: Result of best model fitted to the observed data. The shaded surface
represents the distribution of observed/real data, while the predicted distribution is
plotted on top as a wireframe. The exact parameter values resulting in this fit are
reported in the first row of Table 2.1.
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Figure 2.6: Cross-section of the 3D fit presented in Figure 2.5. The observed dis-
tribution is marked with solid line, while the dashed line represents the distribution
predicted by the model.

all the nested models that had an acceptable fit. Thus our conclusion that u2 is high

relative to u1 is robust to model selection and bootstrapping. On the other hand,

although the cov of probability p1 is high, this is largely due to the effect of outlier

as illustrated in the boxplots of Figure 2.7.
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Figure 2.7: Descriptive statistics for values of the parameters for the best model,
when fitted to 1000 samples from the data (each containing 90% of the whole dataset).
Boxes show the first and third quartiles, Q1 and Q3, whereas the median (i.e. second
quartiles) is marked by a horizontal line within each box. The variation outside the
quartiles is illustrated by whiskers which are marked by dashed lines and denote the
1.5 (Q3 −Q1). The points falling outside the whiskers’ range are treated as outliers,
and are plotted as individual points, denoted by a plus sign.
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2.3 Discussion

One intriguing question addressed in this study is the relation between the number

of MP copies and the rates of the underlying processes. We used α-exponents in

our model in order to explore these relationships. Model selection and data fitting

processes resulted in: αu = αw = αv = 1 and αη = 0. These values are in complete

agreement with the α-values of the 1-D model published by van Passel et al. [2014]

and also the model of IS5 insertion sequences proposed by Bichsel et al. [2013].

The rates of deletion and diversification in promoter regions, i.e. w1 and v1, con-

tribute to the loss of promoter copies from PRs. These rates are predicted to be

negligible in our model. One possible explanation could be very high selective pres-

sure in these regions, such that promoter loss typically has a strong deleterious effect.

If the organism does not survive, this results in a lack of associated data to study.

In other words, the promoters in PRs possibly are constrained such that a change in

their sequences may interfere with their functionality. Conversely, promoters outside

of PRs are more capable of changing sequence since their diversification is less likely

to be lethal for the genome.

Duplication in PRs, u1, also occurs at a relatively low rate, while the probability

p2 indicates that almost all the promoters created via HGT are inserted in PRs. This

high rate of promoter acquisition through HGT may explain the maintenance of MPs

in PRs despite their low rate of duplication. These rates suggest that the main factor

in the maintenance of MPs in PRs is HGT, since the duplication rate is low in these

regions, and most promoters created via HGT are inserted in these regions.

Further, the reason that most of the promoters created via HGT are inserted in

PRs may be answered by considering the HGT mechanism itself. One possible reason

could be that promoters can find required homologous sequences for recombination

in promoter regions more frequently than in other sites of the genome.

In contrast to the low rate of duplication in PRs, the duplication rate outside of
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PRs, u2, is high and as the probability p2 implies, approximately 90% of the promoters

newly created through duplication are inserted in these regions.

The mobile promoter data from entire genomes shows that over 27,000 copies of

the total of 40,000 MPs exist outside promoter regions. This can be explained by the

high rate of duplication in these regions. Although promoter loss through deletion

and diversification outside of PRs occurs at a lower rate compared to duplication,

these processes still play an important role in the MP dynamics in these regions. The

parameters w2 and v2 represent the rate of deletion and diversification outside of PRs

which together are estimated to be less than half of the duplication rate.

Overall, we observe that rates are lower or negligible in PRs compared with other

regions, which implies a more unstable dynamics in non-promoter regions, and more

stability in PRs.

There are many lines along which the work presented here could be extended. The

first possible future direction is to apply and reconfirm the proposed PGM model with

a more accurate dataset, one that uses the same scanning methods for searching PRs

and other sites of genome. The second line to extend this work is to apply this

location-based model to other types of mobile genetic elements, and investigate how

and if their dynamics can be described with the proposed PGM model. The last but

not least extension for our model is expand it to incorporate more factors, and cover

more complex cases, for instance to explore the effects of selection.
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Chapter 3

Conclusion

In this work, we examined the dynamics of mobile genetic elements (MGEs), which

play an important role in the evolution of all creatures. Prokaryotic genomes were our

main focus, which we studied to answer intriguing questions about the distribution of

MGEs. Although some types of MGEs, for example transposable elements (TEs), are

well-studied, newly discovered classes of MGEs are still not completely understood

and there are many questions about their dynamics to be answered. In particular,

promoters are regulatory elements which recent evidence shows can be mobile within

or between genomes, and therefore they are classified as a new type of MGE.

Following two recent studies on mobile promoters (MPs) by van Passel et al.

[2014] and Matus-Garcia et al. [2012], we proposed a novel model for the dynamics

of MPs which allowed us to explore MP dynamics with respect to their location in

the genome. With this new model we were able to discover significant differences

in the dynamics of mobile promoters in two different regions of the genome. In

more detail, we considered regions inside of promoter regions and outside of promoter

regions, and observed that mobile promoters duplicate, diversify, excise and transfer

at considerably different rates in these regions. Our model is however more general,

and one may apply this newly proposed location-based model to any two distinct

41
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parts of the genome, for example coding and non-coding regions. Moreover, since in

the model development process we did not make any specific assumption based on

promoters, this model can also be applied to other types of MGEs.

Applying the model to the available data, we investigated the most important pro-

cesses required to describe the dynamics of mobile promoters, and also the expected

rates at which they occur. We discovered the simplest model that could describe

the observed data, through enumerating a large number of candidate models and

employing model selection techniques, resulting in a 6-parameter model. We further

confirmed the statistical significance of the best model, and the robustness of its pa-

rameters through sampling and bootstrapping techniques. Hence we are confident

that the biological interpretations provided in the thesis are well-supported by our

computational results. One of the main biological findings of our work is that mobile

promoters are much more stable inside promoter regions, and most of their dynamic

behaviour occurs outside of promoter regions.

Finally, we should also point out that in our analysis we did not include natural

selection. However, the fact that rates for deletion and diversification in promoter

regions were predicted to be negligible by our results, may actually suggest the ex-

istence of strong selection in these regions. Thus, incorporating natural selection in

the proposed model, and investigating its possible effects on the dynamics of mobile

promoters is an interesting topic, and an important direction for future work. An-

other potential improvement in this model is to assume two different rates for the

HGT process inside and outside of promoter regions. As mentioned in Chapter 2, we

did not consider distinct rates for this process in order to avoid making the model

too complicated. However, considering different rates for HGT could provide further

insights about MP dynamics.
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