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Abstract

This thesis outlines the design and development of an active motion simulator for the investi-

gation of wrist kinematics in multiple gravity loaded positions. Using optical trackers on the

third metacarpal, radius, and ulna, the position of the wrist was monitored in real time without

introducing material incompatibilities as present for electromagnetic tracking systems. Per-

formance of the system was performed using a series of five cadaver upper limbs that com-

pared the ability to produce repeatable trials using unrestrained active motion techniques over

passive manipulation methods. Comparisons to achieve static positions as well as motion trials

in flexion-extension and radial-ulnar deviation planes proved the superior performance of com-

puter controlled motion over that of passive manipulation. Investigation into the application of

tendon portioning to model in-vivo conditions more accurately suggest that they may improve

overall quality of motion.

Keywords: Active Motion Simulator, Wrist Kinematics, Reparative Surgery Assessment,
Muscle Portioning, Gravitational Effects
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Chapter 1

Introduction

OVERVIEW: This chapter begins with a review of the basic anatomy and biome-

chanics of the wrist and forearm then continues with an overview of common joint

simulation methods and a comparative discussion of active and passive in-vitro

joint manipulation techniques. Previously implemented in-vitro simulators have

successfully reproduced motion using cadaveric specimens but their platforms lack

versatility for a range of kinematic investigations that stem from material incom-

patibilities, spatial tracking methods, and control limitations. This chapter con-

cludes with a discussion of the rationale for developing an active wrist and fore-

arm motion simulator that permits studies to be performed with the arm in multiple

orientations.
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1.1 Anatomy of the Wrist & Hand

An understanding of the anatomy of the wrist is crucial when studying wrist joint motion. The

following section will discuss the three main tissue structures of the wrist; osteology (bony

structure), ligaments, and myology (musculature).

1.1.1 Osteology

The wrist is comprised of 27 bones that articulate with the distal forearm to provide the rigid

structure necessary for everyday tasks [1]. Bones have two layers of tissues, a dense outer layer

known as cortical bone and a porous core known as cancellous bone [2], and are categorized

as long bones or irregular bones of which only long and short bones reside in the hand and

wrist. Long bones have three recognizable regions including both the proximal and distal ends

(epiphysis) that articulate with adjacent bones, and a shaft (diaphysis) [3]. Short bones are

equally wide as they are long to form a cube like structure for providing support and stability

with little relative movement [4].

1.1.1.1 Radius

The radius is the shorter of the two parallel long bones (Figure 1.1) that make up the forearm

and is located on the lateral side of the ulna when positioned in the anatomic position [5]. The

proximal end of the radius is cylindrical forming the radial head with a concave surface that

articulates with the capitellum of the distal humerus allowing for axial rotation of the forearm.

The radius narrows distally to form the radial neck that gives way to the shaft of the bone. A

rough projection on the medial, anterior surface of the proximal radius, known as the radial

tuberosity, is the insertion for the biceps brachii tendon responsible for supination [1]. The

shaft bows laterally along the length presenting three surfaces; dorsal border, volar border,

and medial border. The distal radius has of two articulating surfaces; the ulnar notch on the

medial side that interfaces with the ulna, and a smooth concave groove on the distal surface to

articulate with the lunate and scaphoid of the carpus. A conical projection on the lateral side

of the distal radius is termed the radial styloid process.
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Figure 1.1: The radius is lateral bone of the forearm adjacent to the ulna. A: Proximal Radial

Head, B: Radial Styloid Process, C: Radioscaphoid Fossa, D: Radiolunate Fossa
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1.1.1.2 Ulna

The ulna is the longer of the two parallel long bones (Figure 1.2) that make up the forearm

and is located medial to the radius when in the neutral anatomical position [1]. Similar to the

radius the ulna has three segments; the proximal end, the shaft and the distal end. A major

difference from the radius is that the ulna converges to a smaller head distally while the radius

diverges to a larger metaphysis. The proximal end forms a cup-like projection that articulates

with the trochlea of the distal humerus consists of three parts: the olecranon process, semilunar

notch, and coronoid process. The olecranon process is the most proximal edge of the projec-

tion with an anteroinferior concave surface forming the upper portion of the semilunar notch.

The coronoid process is the distal portion of the semilunar notch with a smooth anterosuperior

surface to close the cup-like structure of the semilunar notch. The semilunar notch is the con-

cave curvature residing between these projections creating a hinge joint structure to articulate

with the trochlea of the humerus. A concave groove on the lateral side of the proximal extrem-

ity, known as the radial notch, articulates with the radial head to allow rotation about the ulna

during supination and pronation. The distal end of the ulna contains two distinct eminences; a

round articulating surface on the lateral side to articulate with the distal radius, and the ulnar

styloid process projecting distally on the medial side.
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Figure 1.2: The ulna is the medial bone of the forearm. A: Ulnar Styloid Process, B: Coronoid

Process, C: Olecranon Process, D: Radial Notch
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1.1.1.3 Carpal Bones

There are eight short bones arranged into two rows of four that make up the carpal bones of the

hand (ossa carpi). The proximal row from the lateral side moving medially is composed of the

scaphoid, lunate, triquetrum, and pisiform while the distal row naming in the same direction

is composed of the trapezium, trapezoid, capitate, and hamate. For the purpose of this thesis

only three carpal bones will be discussed in detail: the scaphoid, the lunate, and the capitate

(Figure 1.3). The cube-like structure of the carpal bones present six surfaces on each bone of

which the volar and dorsal surfaces are intended for the attachment of ligaments and tendons

while the remaining four surfaces articulate with the surrounding bones.

The scaphoid is the largest and most lateral carpal bone in the proximal row with five artic-

ulations; the distal radius, trapezium, trapezoid, capitate, and lunate. The proximal surface is

convex in shape to articulate with the concave groove on the distal radius. The lunate has a deep

crescent-like form and has four articulations: scaphoid, hamate, triquetrum, and distal radius.

The proximal surface of the lunate is convex to articulate with the concave distal radius while

the distal surface is concave to articulate with the capitate. These two bones are the primary

means of axial load transfer from the forearm to the hand as they bridge the distal radius to the

remaining carpal bones [6]. The capitate is the largest of the carpal bones and moves in concert

with the third metacarpal during flexion-extension.

1.1.1.4 Metacarpals

The metacarpals are five long bones (Figure 1.3) that provide the structure of the palm of

the hand [6]. The naming convention starts medially moving laterally assigning the thumb as

the first metacarpal and the small finger as the fifth metacarpal. The proximal metacarpal is

concave and articulates with the respective carpal bone(s) in the distal row of the wrist. The

distal metacarpals are convex and articulate with the proximal phalanges. The shaft of each

metacarpal has three surfaces; medial, lateral, and dorsal. The medial and lateral surfaces

are concave while the dorsal surfaces are relatively flat allowing for insertion of the extensor

tendons.
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Figure 1.3: The five metacarpal bones of the hand (left) with their relative position to the distal

row of carpals; (proximal row) scaphoid, lunate, triquetrum, pisiform and (distal row) trapezium,

trapezoid, capitate, hamate [7]

1.1.1.5 Phalanges

The phalanges are the remaining 14 bones that make up the digits. Each digit contains three

phalanges named after their respective position; proximal, middle, and distal with an exception

to the thumb which only contains a proximal and distal phalanx [6]. These structures are not

involved with the motions of the wrist, rather they allow for the insertion of tendons from the

muscles responsible for the flexion and extension of the digits to provide grip strength.
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1.1.2 Ligaments

Ligaments are fibrous connective tissues composed of collagenous fibers that act to bind bones

together across an articulation to provide joint stability [8]. The ligaments in the hand and wrist

are categorized into intrinsic and extrinsic groups on both the volar and dorsal sides as seen in

(Figure 1.4). Intrinsic ligaments originate and insert on adjacent carpal bones to provide a rigid

framework for the wrist. Extrinsic ligaments bridge the carpal bones with either multiple carpal

bones, the proximal metacarpals, or the distal radius and ulna. Ligaments are conventionally

named with the bone of origin as the prefix and end with the bone of insertion. They are

also placed into broader categories that describe a group of ligaments such as: radiocarpal,

ulnocarpal, distal radioulnar, intercarpal, and carpometacarpal ligaments.

1.1.2.1 Radiocarpal Ligaments

There are four extrinsic radiocarpal ligaments on the palmar surface of the wrist that originate

from the distal lateral surface of the radial styloid and span medially into the adjacent carpals:

radioscaphocapitate, long radiolunate, short radiolunate, and radioscapholunate [9]. These

ligaments bridge the radius to the adjacent carpal bones to provide stability to the wrist dur-

ing extension. On the dorsal surface of the wrist there is only the radiocarpal ligament that

originates from the medial dorsal surface of the radial tubercle and inserts into the proximal

tubercles of the lunate and triquetrum to provide lateral support to the wrist during flexion [8].

1.1.2.2 Ulnocarpal Ligaments

The ulnocarpal ligaments are extrinsic and only present on the volar side of the wrist. The

ulnolunate ligament originates from the base the ulnar styloid process and inserts into the

proximal lunate. The ulnocapitate ligament originates from the fovea of the ulnar head and

inserts into the proximal capitate. These ligaments provide medial support to the wrist during

extension.
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1.1.2.3 Distal Radioulnar Ligaments

The distal radioulnar ligaments are responsible for maintaining the congruity between the ulnar

head and the ulnar notch of the radius, the distal radioulnar joint (DRUJ), during pronation and

supination [10]. The distal palmer radioulnar ligament originates from the anterior surface of

the ulnar notch on the radius and inserts on the anterior head of the ulnar head. The distal dorsal

radioulnar ligament originates from the posterior surface of the ulnar notch on the radius and

inserts into the posterior surface of the ulnar head.

1.1.2.4 Intercarpal Ligaments

The intercarpal ligaments are intrinsic to the wrist that maintain congruity between and pro-

vide rigid attachments that only allow slight movements between adjacent carpals. The liga-

ments are named with respect to the affected carpals and labeled as follows: scaphotrapezial,

scaphotrapezoidal, scapholunate, scaphocapitate, triquetrocapitate, lunotriquetral, trapezio-

trapezoid, capitotrapezoid, capitohamate, and triquetrohamate.

1.1.2.5 Carpometacarpal Ligaments

The carpometacarpal ligaments are responsible for attaching the proximal metacarpal to the

distal row of carpal bones on both the volar and dorsal side of the hand to maintain the stability

of the carpometacarpal articulation.
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Figure 1.4: Ligaments of the right wrist and hand for the dorsal [top] and volar [bottom] views

showing their origins and insertions [11]
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1.1.3 Joint Capsules

The wrist is composed of an array of synovial joints and are classified into the distal radioulnar

joint (DRUJ), radiocarpal joint, intercarpal joint, and the carpometacarpal joints of which

only the first three will be discussed. Articular cartilage covers the surfaces of the fifteen bones

that bridge the distal forearm to the hand; distal radius and ulna, eight carpal bones, and the

proximal metacarpals. Articular cartilage is a low friction, avascular tissue that allows joints to

track smoothly during motion. However, this tissue is not present on either the dorsal or volar

surfaces as these are occupied by ligament attachments and are non-articular portions.

1.1.3.1 Distal Radioulnar Joint (DRUJ)

The DRUJ is the articulation between the ulnar notch of the radius and the medial ulnar head

[12]. The dorsal and volar radioulnar ligaments maintain joint congruency during pronation

and supination [10]. A fibrocartilaginous ligament known as the articular disk attaches the

radius to the ulna to allow for a more evenly distributed force between the bones and directs

the synovial fluid in the joint to areas of higher friction.

1.1.3.2 Radiocarpal Joint

The radiocarpal joint is responsible for the transfer of force between the hand and distal fore-

arm primarily through the articulation of the lunate and scaphoid with the distal radius [12].

The joint is composed of the distal radius, scaphoid, lunate, triquetrum, and the radioulnar disk

and to allow the wrist to achieve flexion, extension, radial and ulnar deviation [13].

1.1.3.3 Intercarpal Joint

The articulations between the carpal bones which are held together by the palmer and dorsal

intercarpal ligaments form the intercarpal joints. Articulating cartilage found on their surfaces

allow for rotation and translation during wrist motion. The intercarpal articulations form the

midcarpal joint between the proximal and distal rows of carpal bones and contribute to flexion-

extension and radioulnar motions of the wrist.
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1.1.3.4 Carpometacarpal Joint

The carpometacarpal joints are the articulations between the metacarpal bases and the corre-

sponding carpal bone in the distal row including the trapezium, trapezoid, capitate, and hamate.

These are ellipsoid joints that allow for slight movements in flexion/extension as well as ab-

duction/adduction allowing flexibility in the palm of the hand.

Figure 1.5: The joints of the wrist including the distal radioulnar, radiocarpal, intercarpal, and

carpometacarpal joints [11]
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1.1.4 Myology

Human muscle is classified into three types of tissue: smooth, cardiac, and skeletal of which

only the later will be discussed. Skeletal muscle is a contractile soft tissue that spans across

joints and attaches to bone through tough, fibrous connective tissue known as tendons [14].

Muscles fibers within the muscle belly actively generate tension across a joint by contracting

in length producing a moment arm to effectively manipulate the position of the joint. The

amount of force generated depends on the size, type, and insertion length from the joint center

of the muscle. Tendons are responsible for anchoring the muscle belly to the bone and do not

actively change length, although they may experience slight changes in length due to their vis-

coelastic nature.

Since muscles can only produce contractile forces to shorten the muscle, they coordinate with

muscles influencing joint motion in the opposite direction to form antagonistic pairs. Typically,

a single muscle is not entirely responsible for the motion around the joint; rather a group of

synergistic muscles aid in the motion with the muscle applying the largest load classified as the

primary mover [15].

The six main muscles responsible for the motion of the wrist are the extensor carpi radialis

brevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), flexor

carpi radialis (FCR), flexor carpi ulnaris (FCU), and abductor pollicis longus (APL) [16]

(Figure 1.6). These muscles are extrinsic to the wrist as they originate from medial and lat-

eral epicondyles of the distal humerus, with exception to the APL, and their muscle bellies

reside in the proximal forearm [14, 15]. Pronation and supination of the wrist are primarily

controlled via the biceps brachii and pronator quadratus respectively through their insertions

on the proximal radius and ulna [14].



14 Chapter 1. Introduction

Figure 1.6: Muscles of the right upper extremity for both the volar [left] and dorsal [right] com-

partments [17]
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1.1.4.1 Volar Compartment

These muscles reside in the ventral forearm and assist one another with flexion as well as ulnar

and radial deviation of the wrist.

The FCU is the primary flexor muscle and is a synergist to ulnar deviation acting to stabi-

lize the wrist during finger extension. The muscle originates from the medial epicondyle of the

humerus and inserts into the dorsal surfaces of the pisiform, hamate, and the proximal end of

metacarpal V [15].

The FCR is a powerful synergist muscle that aids in both wrist flexion and radial deviation

[16]. The muscle originates from the medial epicondyle of the humerus and inserts into the

base of metacarpals II & III.

The APL is the primary abductor of the wrist and extends the thumb. Unlike the other flexor

muscles, the APL originates from the posterior aspect of the radius and ulna instead of the

medial epicondyle of humerus and inserts into the base of metacarpal I and the trapezium.

1.1.4.2 Dorsal Compartment

The muscles in the dorsal forearm assist with wrist extension as well as adduction and abduc-

tion. The extensor muscles are antagonists to the flexors.

The ECU is the primary muscle for both wrist extension and adduction. The muscle origi-

nates from the lateral epicondyle of the humerus and inserts into the base of the small finger to

oppose the FCU that inserts on the ventral side.

The ECRL is synergist muscle that assists in wrist extension as well as abduction. The muscle

originates from the lateral epicondyle of the humerus and inserts into the base the index finger

to oppose the FCR.
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The ECRB is a synergist muscle in wrist extension and abduction and stabilizes the wrist during

finger flexion. The muscle originates from the lateral epicondyle of the humerus and inserts

into the base of the long finger to oppose the FCR.

1.1.4.3 Forearm Rotators

The biceps brachii and supinator are the primary supinator muscles and the pronator teres and

pronator quadratus are the primary pronators of the forearm.

The biceps brachii is the primary supinator of the forearm and is a synergistic muscle for

elbow flexion. The muscle has two proximal heads that originate from the supraglenoid tu-

bercle and the coracoid process of scapula and converges to a single head that inserts into the

radial tuberosity in the proximal forearm.

The supinator is a syngeristic muscle that assists the biceps brachii with supination of the

forearm. The muscle originates on the lateral epicondyle of the humerus and the proximal ulna

and inserts into the proximal shaft of the radius.

The pronator teres originates from the medial epicondyle of the humerus and the proximal

ulna and inserts onto the lateral midshaft of the radius.

The pronator quadratus is a synergistic muscle that assists the pronator teres with pronation of

the forearm. It spans from the anterior distal shaft of the ulna to the radius [15].



1.2. Wrist Kinematics & Biomechanics 17

1.2 Wrist Kinematics & Biomechanics

1.2.1 Range of Motion

When describing the motions of the wrist joint it is important to understand the anatomical

neutral position in which all range of motion such as flexion-extension, radioulnar deviation,

and pronation-supination are defined. The neutral position of the wrist is defined as the third

metacarpal relative to the distal forearm [18, 19]. Neutral forearm rotation is defined as the

palm of the hand parallel with the humerus with the elbow at 90 degrees of flexion; not to be

confused with the neutral anatomical position of the body where the palm of the hand is facing

anteriorly.

1.2.1.1 Flexion-Extension Motion

Flexion-extension motion (FEM) of the wrist (Figure 1.7) has a center of rotation based around

the centroid of the capitate in the sagittal plane. Range of FEM is approximately 160 degrees

depending on several factors including age and gender. Full extension of the wrist averages

70 degrees from neutral with the radiocarpal joint contributing to 67% of the paired motion

with the midcarpal joint. In full flexion the wrist averages to 90 degrees from neutral with

the radiocarpal joint sharing 40% of the motion and the midcarpal joint sharing 60%. Wrist

extension is restricted by the combination of the palmer ligaments and the dorsal surface of the

distal radius while flexion is only limited by the dorsal radiocarpal ligaments [20].

Figure 1.7: Motion of the wrist in flexion (left) & extension (right) [21]
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1.2.1.2 Radial-Ulnar Deviation

Radioulnar deviation (RUD) of the wrist (Figure 1.8) has an approximate range of 60 degrees

with the center of rotation acting about the capitate-scaphoid articulation [20]. The wrist av-

erages 25 degrees radially from neutral with 60% from the midcarpal joint and 35 degrees of

ulnar deviation with 86% of the motion from the radiocarpal joint. Major limitations to mo-

tion result from carpal impaction with the radial styloid and tightening of the ulnar collateral

ligaments in radial deviation, and the radial collateral ligaments in ulnar deviation.

Figure 1.8: Motion of the wrist in radial (left) & ulnar (right) deviation [21]

1.2.1.3 Pronation-Supination Motion

Pronation and supination of the forearm (Figure 1.9) is the rotation in the transverse plane of

the radius about the ulna following the longitudinal axis drawn between the radial and ulnar

heads. Forearm rotation averages to 155 degrees with 70 degrees from neutral in pronation

and 85 degrees in supination. The radioulnar ligaments are the primary limitation to supination

while pronation is limited by the crossing of the radius and ulnar shafts.

Figure 1.9: Motion of the wrist in pronation (left) & supination (right) [21]
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1.2.2 Joint Geometry

Joints are classified by their shape and mobility as either condyloid, saddle, planar, hinge,

pivot, or ball-and-socket (Table 1.1). The geometry of the articulating surfaces between the

bones determines the congruency within the joint; a more rounded surface will have a greater

contact area and inherently be more stable as the joint naturally will remain engaged when

under tension provided from supporting tissues such as ligaments and tendons [22].

Table 1.1: Types of joints and their degrees of freedom (DOF) with a example of each [23]

DOF Example

Condyloid 3 Wrist

Saddle 2 Thumb

Planar 2 Finger

Hinge 1 Elbow

Pivot 1 Vertebrae

Ball & Socket 3 Shoulder
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1.2.3 Antagonistic Muscle Pairs

Muscles function as unidirectional actuators producing purely tensile forces through the con-

traction of the muscle length when stimulated by a motor neuron [20]. As a result muscles

may only induce motion in one direction and must coordinate their contractions in antagonistic

pairs to effectively provide and control motion [16, 24]. These antagonist pairs allow for hold-

ing static positions, controlling rate of angular rotation, and applying continuous muscle tone

to maintain joint congruency [14]. Typically, a single muscle is not entirely responsible for the

motion around the joint rather a group of synergist muscles aid in the motion with the muscle

applying the largest load classified as the primary mover [15].

Figure 1.10: Antagonistic muscle pairs for the elbow; the brachialis activates while the triceps

relax to induce elbow flexion [left] and the biceps relax while the triceps activate to induce elbow

extension [right] [25]
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1.2.4 Cross Sectional Area

The cross sectional area of a muscle plays an important role in the amount of force it is capable

of producing [19]. The physiological cross sectional area PCSA is the area of the cross section

that is perpendicular to the muscle fibers at the largest point and is not to be confused with

the anatomical cross sectional area (ACSA) which is the cross sectional area of the muscle

perpendicular to the longitudinal axis. For non-pennate muscles the fibers are parallel to the

longitudinal axis of the muscle therefore PCSA and ACSA are coincident. The size of cross

sectional area is directly proportional to the strength as larger muscles will have more fibers

to produce contractile force. For instance, the maximum peak flexion force for the wrist is

approximately 70% greater than that of extension primarily due to the flexor muscle group

(FCU, FCR, & APL) containing a larger PCSA then the extensor muscle group (ECRB, ECRL,

& ECU) [26].

1.2.5 Moment Arms

A moment arm is the perpendicular distance of tendon insertion from the center of a joint which

transforms force into moment to produce motion. The flexor muscle groups of the wrist are

significantly larger than those of the extensor muscle group, which combined with the larger

PCSA of the flexors results in the increased strength in flexion over extension [27]. During

wrist flexion moments average to 12.2 ± 3.7 Nm, peaking at 40 degrees from neutral while

extension moments are only 7.1 ± 2.1 Nm, remaining relatively constant between 30◦ and 70◦

from neutral. Abduction and adduction moments average 11.0 ± 2.0 Nm and 9.5 ± 2.2 Nm

respectively with no peak moments due to the limited motion [19].

1.2.6 Kinematic Chains

The upper limb is represented as an open chain linkage system composed of three rigid bodies:

upper arm, forearm, and hand. The dynamics of each component is that of its own motion plus

the sum of every proximal body in the link. For instance, the dynamics of the hand is the sum

of all three links while the dynamics of the forearm are only the sum of the forearm itself and

the upper arm as it is proximal to the forearm in the linkage [28].
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1.3 Euler Angles

Euler angles describe the pose of local coordinate systems of rigid bodies in Euclidean space

with respect to the global reference frame (Figure 1.11). These angles describe a sequence of

three elemental rotations around the axes of a coordinate system from which any orientation

in space may be reached. Rotations may either be intrinsic or extrinsic depending on which

coordinate system the rotations are based around.

Figure 1.11: Euler rotations, Z-X-Z, showing a rotation about Z0 axis (left), X1 axis (middle), and

Z2 axis (right) [29]

Extrinsic rotations are around the axes of the global reference frame X-Y-Z and may occur

in any order as long as a rotation about the same axis is not immediately repeated. Intrinsic

rotations are around the local coordinate system axes which produce a new set of axes denoted

by a single or double apostrophe for each rotation. For instance, an intrinsic rotation about

the x-axis produces a y’ and z’-axis, followed by a rotation about the y’-axis produces an x’

and z”-axis. The order of rotations is important to ensure translations arrive at their intended

position. Euler angles use θ theta, φ phi, and ψ psi to track the rotations of the rigid bodies in

Euclidean space and will be used in this thesis for tracking wrist position.

Using the three Euler angles, a 3x3 rotation matrix that describes the orientation of the ro-

tated coordinate system with respect to the initial can be constructed (Equation 1.1).



1.3. Euler Angles 23

X =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



Y =


cos(φ) 0 sin(φ)

0 1 0

−sin(φ) 0 cos(φ)



Z =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



R = ZYX (1.1)

Otherwise expressed as:

R =


xi x j xk

yi y j yk

zi z j zk

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (1.2)

Likewise, the rotation matrix can be decomposed (Equation 1.3) to provide the three Euler

angles of the local coordinate system with respect to the reference frame at that specific instant

of time [30]:

θ = atan2(r32, r33)

φ = atan2
(
− r31,

√
r2

32, r
2
33

)
ψ = atan2(r21, r11) (1.3)
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1.4 Coordinate Transformations

1.4.1 Transformation Matrix

Raw data collected from the tracking system provides pose, position and orientation of the

bones of interest with respect to the global frame. The 6 DOF of each local frame which

includes the Cartesian coordinates and the axial rotations are represented by a transformation

matrix T (Equation 1.4) which is a 4x4 (16 element) array of real numbers composed of a 3x3

(9 element) rotation matrix R, a 3x1 (3 element) translation matrix P, and an arbitrary 1x4 (4

element) row [0,0,0,1] to maintain orthogonal properties when transposed [31].

R =


xi x j xk

yi y j yk

zi z j zk

 P =


Px

Py

Pz

 w =

[
0 0 0 1

]

T =



xi x j xk Px

yi y j yk Py

zi z j zk Pz

0 0 0 1


(1.4)

The rotation matrix holds the orthonormal direction vectors (x,y,z) and the unit direction vec-

tors of the body’s local coordinate system relative to the reference coordinate system. These

direction vectors are organized so each column represents the orientation of the body relative

to the reference frame and the rows represent the orientation of the reference frame relative to

the body which is important to ensure that the transpose of the rotation matrix is equal to its

inverse. The translation matrix states the origin of the local coordinate system in relation to the

reference frame but does not describe any orientation characteristics. The last row [0,0,0,1] acts

to make the transformation matrix square to ensure that the vectors are represented in homo-

geneous coordinates. Homogeneous coordinates are a system of coordinates used in projective

geometry due to their simplicity when compared with Cartesian coordinates that are used in

Euclidean geometry.
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1.4.2 Transformation Chain

A transformation chain is an equation that explains the steps undergone to change the frame of

reference from one object with respect to another, commonly used to shift the frame of refer-

ence onto a rigid body of interest and away from the global. Tracking wrist motion requires the

relative movements of the third metacarpal with respect to the radius, MC
R T, but the incoming

data relates the motion of each bone with respect to the global frame. The transforms of each

rigid body can be multiplied in sequence to alter the data with respect to another object of

interest, thus creating a transformation chain.

By multiplying the transform of the third metacarpal relative to the global frame, MC
G T, by

the inverse transform of the radius relative to the global frame, R
GT, it would read as the third

metacarpal with respect to the global frame with respect to the radius (Equation 1.5). The

common global frames effectively cancel out to remain with just MC
R T.

MC
R T = MC

G T [R
GT ]−1

MC
R T = MC

G T G
R T (1.5)

Where the superscript represents the dependent (distal) body and the subscript represents the

independent (proximal) body under consideration. The same equation is relevant for relating

the radial data to the ulna (Equation 1.6).

R
UT = R

GT [U
GT ]−1

R
UT = R

GT G
UT (1.6)
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1.5 Body Segment Coordinate Systems

A vector space is created from a set of mutually perpendicular vectors of magnitude one, known

as an orthonormal basis, and is the underlying component of coordinate systems. The Inter-

national Society of Biomechanics (ISB) set a standard of identifying joint coordinate systems

(JCS) for each bone to further improve communications between researchers in this field [18].

Local coordinate systems (LCS) are established for bones based on bony landmarks to allow

for tracking the three Cartesian coordinates and three axial rotations relative to the more prox-

imal or global coordinate system (GCS). For the purpose of tracking wrist joint position the

bones of interest are the ulna, radius, and third metacarpal since the carpal bone motions are

not generally considered in the research community. Pronation and supination of the forearm

may be tracked by determining the position of the radius relative to the ulna while the flexion-

extension and radioulnar deviation may be tracked by determining the position of the third

metacarpal relative to the radius.

From three bony landmarks, PA-PB-PC, an orthonormal coordinate system can be established

which will ultimately characterize the position and orientation, otherwise known as the pose,

of the each bone or segment being described [18]. Two vectors, v1 and v2, are created from the

landmarks with PA as the origin.

PA = (PAx, PAy, PAz)

PB = (PBx, PBy, PBz)

PC = (PCx, PCy, PCz) (1.7)

Two vectors, v1 and v2, are created from subtracting each point from the origin.

v1 = (PBx − PAx, PBy − PAy, PBz − PAz)

v2 = (PCx − PAx, PCy − PAy, PCz − PAz) (1.8)
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These vectors are normalized to a unit length of one to complete the set of orthonormal vectors

that comprise the local coordinate system of the bony body segment. The magnitude of each

vector is calculated as follows:

|PA| =

√
P2

Ax + P2
Ay + P2

Az

|PB| =

√
P2

Bx + P2
By + P2

Bz

|PC | =

√
P2

Cx + P2
Cy + P2

Cz (1.9)

Where each element in the vector is divided by the magnitude to normalize it to a unit length.

P̂Ax = PAx / |PA|

P̂Ay = PAy / |PA|

P̂Az = PAz / |PA|

P̂Bx = PBx / |PB|

P̂By = PBy / |PB|

P̂Bz = PBz / |PB|

P̂Cx = PBx / |PC |

P̂Cy = PBy / |PC |

P̂Cz = PBz / |PC |

(1.10)

The unit vectors are arranged into a 3×3 rotation matrix to provide a description of orientation

of the local coordinate system with the origin set as point PA.

R =


P̂Ax P̂Bx P̂Cx

P̂Ay P̂By P̂Cy

P̂Az P̂Bz P̂Cz

 P = [PAx PAy PAz]T (1.11)

The rotation and the positional matrices are combined to create a 4×4 transformation matrix.

T =



P̂Ax P̂Bx P̂Cx PAx

P̂Ay P̂By P̂Cy PAy

P̂Az P̂Bz P̂Cz PAz

0 0 0 1


(1.12)

The ISB created an agreed upon list of anatomical landmarks commonly used to establish local

coordinate systems to track the bones of the upper limb. Specific coordinate systems for the

carpal bones are neglected as their motion will be considered as a single unit during tracking

of the wrist.
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The radial coordinate system, XrYrZr, has its origin, Or, midway along the principle axis of

inertia that spans from the ridge between the radioscaphoid and radiolunate fossae to the center

of depression of the radial head (Figure 1.12). In the transverse plane this will place Or at

approximately the center of the diaphysis. For a right arm the Yr axis points proximally along

the longitudinal axis, the Zr axis points laterally (radially), and the Xr axis points in the volar

direction. For a left arm the Yr axis points distally along the longitudinal axis, the Zr axis

points medially (ulnar), and the Xr axis points dorsally (Appendix A).

Figure 1.12: Construction of an ISB radial coordinate system for a left arm. A: Radial Styloid

Process, B: Dorsal Radioulnar Aspect, C: Volar Radioulnar Aspect, E: Radial Dish Center, F:

Origin
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The ulnar coordinate system, XuYuZu, has its origin, Ou, midway along the principle axis of

inertia defined by the center of the dome depression on the distal head and the coronoid process

at the proximal end (Figure 1.13). In the transverse plane this will place Ou at approximately

the center of the diaphysis. For a right arm the Yu axis points proximally along the longitudinal

axis, the Zu axis points laterally (radially), and the Xu axis points in the volar direction. For

a left arm the Yu axis points distally along the longitudinal axis, the Zu axis points medially

(ulnar), and the Xu axis points dorsally (Appendix A).

Figure 1.13: The construction of an ISB ulnar coordinate system for a left arm. A: Radial Styloid

Process, B: Coronoid Process, C: Olecranon Process, D: Origin
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The third metacarpal coordinate system, XmYmZm, has its origin, Om, midway between the

distal and proximal extremities at approximately the center of the diaphysis in the transverse

plane. For a right arm the Ym axis points proximally along the longitudinal axis, the Zm axis

points laterally (radially), and the Xm axis points in the volar direction. For a left arm the Ym

axis points distally along the longitudinal axis, the Zm axis points medially (ulnar), and the Xm

axis points dorsally (Appendix A).

Figure 1.14: The construction of an ISB metacarpal coordinate system for a left arm. A: Distal

Head, B: Proximal Head, C: Origin
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1.6 Methods of Tracking

With ever increasing technology there are a variety of methods currently adopted for measuring

in vitro joint kinematics of which most predominately include, but are not limited to, goniome-

ters, inertial sensors, image based tracking, electromagnetic tracking, and optical tracking.

1.6.1 Goniometer

Goniometers measure the flexibility of a joint by comparing the angle of two bones relative

to one another using either an over joint or lateral method [32]. The over joint method aligns

the dial to either the inner or outer surface of the joint to measure the angle while the lateral

method places the dial (Figure 1.15) adjacent to the joint with the center or rotation of the dial

aligned with that of the joint [33]. This method allows for a simple means to measure joint

angle for in vitro specimens since calibration is not required for the instrument. The drawbacks

are that the center of motion for some joints shifts during flexion/extension and the substantial

estimation errors of the position of the joint segments by the operator [34].

Figure 1.15: An instrument for the measurement of angles [35]
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1.6.2 Inertial Measurement Units

Inertial measurement units (IMU) are relatively small compared to the other tracking methods

and are composed of accelerometers and gyroscopes to measure translation and rotation for

each of the three axis (Figure 1.16). Through forward kinematics the position of each segment

being tracked may be interpreted from the kinematic information received from each IMU.

This method is excellent for interpreting impact forces and changes in rotational energy of

body segments while being able to estimate change in position. The drawbacks are that the

IMUs are sensitive to drift error due to signal noise which may result in up to approximately 10

to 25 degrees per minute of use if not calibrated correctly [36]. Since the upper extremities of

the human body are modeled as open kinematic chains the results in the motion of a link will

be that of itself as well as every proximal link before it requiring complex equations to deduce

the individual link motion when analyzing multi-linkage systems.

Figure 1.16: A 9DOF digital IMU sensor [red rectangle] with a 3DOF accelerometer to measure

acceleration (ax,ay,az) [left], a 3DOF gyroscope to measure rotation (wx,wy,wz), and a 3DOF

magnetometer to measure magnetic north for a body segment between two points [blue circles]

[37]
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1.6.3 Image Based Tracking

Image based tracking, or video tracking, is the process of programmatically stitching together

a sequence of images from a video source to recognize and track the motion of an object of

interest between frames and determine the behaviours exhibited [38]. Edge matching between

sequential frames is a technique that detects boundaries of sharp changes in values, otherwise

known as contrast, between adjacent pixels and outlines that region. For instance, a bouncing

white ball in a well-lit black room would provide the best contrast for tracking.

Using this method for tracking human motion becomes a Gaussian problem that uses a prob-

ability distribution of possible relative poses from an image along with a predefined skeletal

model (Figure 1.17) to predict the most likely outcome [39]. The shortfalls of tracking human

motion using a single camera arise from the loss of image depth and scale, reflective ambigu-

ities where multiple poses produce similar images, and lost observations due to occlusions of

limbs during motion [40].

Figure 1.17: Image based tracking attempts to map an object from an image to a known rigid body,

such as the human skeletal model, to provide feedback of position and pose [41]
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New developments in technology have led to the introduction of the Microsoft Kinect (Mi-

crosoft Corp., WA), which was initially intended as a hands free controller interface for the

Microsoft XBox 360 gaming console that recognizes gestures from the user using two cameras

and an infrared sensor to reconstruct a 3D representation of all objects in the frame of view.

Matching this information to a skeletal model can provide a more accurate estimate of pose and

position of individual body segments that a singular camera could achieve [41]. These methods

are excellent for general motion of limbs for investigating gait, however they are limited by the

assumption of bone positions based on skin markers and are unable to provide any insight to

the kinematics of the underlying skeletal system.

Figure 1.18: Microsoft XBox Kinetic used for mapping the human skeletal model to the user in the

frame of reference [42]
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1.6.4 Electromagnetic Tracking Systems

Electromagnetic Tracking Systems (EMTS) are commonly used in invasive surgery as the

method does not require a direct line of sight between the source and sensor [43]. This method

uses induction coils to generate a magnetic field from a tracker which is read by the sensor

to determine the pose and attitude of the tracker. By sequentially activating three coils within

the tracker the sensor can record the disturbance in the surrounding magnetic field to obtain

a 5 DOF reading of the tracker [44]. By introducing multiple trackers to the system each can

effectively become a sensor during their latency period thus increasing the system accuracy

to 6 DOF. The major drawback to this method is that the use of ferromagnetic materials such

as cobalt-chromium and titanium distort the magnetic fields and drastically degrade the posi-

tional accuracy of the system [45]. Special design considerations are needed as conventional

fasteners and medical tooling may not be used.

Figure 1.19: Electromagnetic sensors induce a magnetic field in three directions (x,y,z) that is

interpreted by a detector for orientation and strength to obtain the estimated position of the trackers

in 3D space
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1.6.5 Optical Tracking Systems

Optical tracking systems use an array of at least two infrared cameras Figure 1.20 to triangulate

the global Cartesian coordinates of the markers within the field of view [45]. Passive markers

are commonly spheres or surfaces that reflect infrared light emitted from the camera and are

the more mobile option as there are no wires or power sources required (META Motion). How-

ever, there is error associated with artifacts from other potential unwanted reflective surfaces

in the field of view of the camera which have to be filtered from the data. Passive markers

are relatively large to ensure they are detected by the camera resulting in the system having to

estimate the marker centroid producing a floating center point. Active markers contain light

emitting diodes (LEDs) that emit their own infrared light requiring a power source from either

a battery or the terminal [44]. The intensity of light from an LED allows the point of recogni-

tion to be much smaller than a passive marker lowering the relative error from a floating center.

Furthermore the LEDs can be activated in succession with respect to the other markers to allow

for an ordered marker array which can aid in trouble shooting.

Figure 1.20: An array of cameras may determine the location of infrared LEDs [red circle] that

can provide the position and orientation of a rigid body in space [46]
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From the point array obtained by both optical and electromagnetic trackers, the joint motion

can be determined using inverse kinematics to give the pose and attitude of the bones relative

to one another [47]. The Cartesian coordinates of markers can be assigned to specific bones

and important bony landmarks to create relevant body segment coordinate systems within a

computer program to later analyze. Markers defined relative to anatomical landmarks of the

bone assist in joint angle calculations. A stylus is a tracker with a predefined tip length, or rigid

body, assigned to it and is used to digitize landmarks of the bone segments to align the trackers

coordinate systems with their respective bones.
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1.7 Clinical Complications

Wrist pain is a debilitating health issue that can be classified as either mechanical, neurological,

or systemic and can decrease overall quality of life and independence of those affected. It may

be the result from sustaining a traumatic injury or the onset of a degenerative disease [48].

1.7.1 Traumatic Injuries

Upper limb injuries are most commonly the result of a trip or fall where the wrist is extended as

a protective mechanism and may result in bone fractures or injury to ligaments causing sprains

[49, 50]. The most common injury is Colles Fracture (Figure 1.21) which occurs at the distal

radius and requires casting, pin fixation, external fixation or open reduction & internal fixa-

tion to maintain the normal bone position [6, 51, 52]. Soft tissue injuries may sprain or tear

ligaments and in severe cases result in joint dislocations. These injuries may increase laxity

between adjacent bones potentially influencing the range of motion and altering normal carpal

motion.

Figure 1.21: Uncorrected Colles fracture (left) and an internal fixation method (right) [53]
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1.7.2 Degenerative Disease

Degenerative diseases may result from wear and tear or a past injury and can reduce the healthy

layer of articular cartilage present in the joint causing painful bone on bone articulation. In the

event of extreme degradation, wrist fusion may be employed to alleviate pain, however the loss

of wrist motion is functionally disabling. Wrist arthroplasty may be performed to restore wrist

function, however relative to the experience with the hip, knee and shoulder these devices have

a higher failure rate and have yet to be optimized. Hemi-arthroplasty replaces a single side

with the adjacent surface still the native tissue, and a full-arthroplasty replaces the full joint

(Figure 1.22).

Figure 1.22: Total wrist arthroplasty restoring motion to the joint [54]

1.7.3 Bracing Methods

Bracing is commonly used immobilize the joint during a period of recovery after sustaining an

injury or reparative surgery. They are also used in high intensity sports to prevent injury. In

sports, dynamic bracing provides athletes with the required mobility but restricts the motion to

within a specific range while static braces prevent motion entirely. Studies of the effectiveness

of current brace designs on controlling wrist motion are needed to optimize these devices to

allow for both rehabilitation and injury prevention. These aforementioned clinical scenarios

often employ laboratory-based testing to determine the motion, stability and loading at the

wrist with special interest in improving subsequent treatment techniques.
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1.8 Biomechanical Testing & Simulation of Motion Pathways

Understanding wrist kinematics is crucial for advancing surgical methods as it allows for quan-

titative analysis to determine the overall quality of the technique. Alterations of wrist motion

as a result of arthritic disorders or traumatic injuries such as ligament tears, or a fractured bone

result in a decreased quality of life for the effected individual. Methods such as arthroplasty,

soft tissue repairs, and fracture fixation techniques intended to alleviate these wrist complica-

tions must be deemed safe for clinical use before are adopted as a viable option.

New repair techniques may be validated through the use of virtual in-silico computer simu-

lations or physical in-vitro cadaver models to simulate in-vivo conditions. Both methods have

their associated strengths and weaknesses that will ultimately affect the likelihood of them be-

ing adopted as the primary method of pre-clinical testing.

Although testing devices and simulations exist to examine the kinematics of the wrist, none

of the published platforms have been able to evaluate wrist motion with the arm in all the

common orientations which occur in normal activities. The conventional approach has been to

place the wrist in a vertical position relative to gravity so that motion mimics an inverted pen-

dulum in neutral forearm rotation which does not encompass the full versatility of the wrist.

To fully validate the functionality of an experimental procedure it should be tested at a range

of pronation/supination positions to test its compatibility with the DRUJ as well as multiple

gravity loaded orientations.
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1.8.1 In-Silico Simulations

The use of in silico wrist models have the advantage of being relatively inexpensive when

compared to in vitro studies and provide a high-speed computational platform eliminating the

cumbersome task of monitoring and maintaining an experiment such as wear testing (Strick-

land, 2009). With virtual simulations anatomic specimens are not required, hence they not

deteriorate with prolonged use. Wrist modeling allows for unlimited uses from which one

specimen can encompass an entire array of variations for a single experiment thus strengthen-

ing the comparative results which is not available for in vitro experiments.

The drawbacks with this method are that soft tissues are viscoelastic in nature and therefore are

difficult to accurately model in CAD software. This results in the creation of simplified models

to mimic in vivo motions to achieve comparable results [26]. To validate a virtual model the

results must lie within two standard deviations of the identical physical model to ensure the

accuracy of the results for future studies. Since many assumptions are made during the cre-

ation of a virtual model, there are many variables that may influence the quality of the results.

Therefore, these models must undergo sensitivity testing to ensure that small changes will not

drastically alter the end result of the study.

The wrist joint is combination of complex articulations amongst the carpal bones of which

their exact kinematics during wrist motion is not yet fully documented. The non-linear defor-

mation and strain rate dependent properties of the tendons and ligaments associated with the

wrist result in many assumptions required for modeling that set constants for variables such as

bone density, ligament stiffness, and cartilage properties [55].

With improvements in technology, virtual simulations are rapidly becoming more reliable and

wide spread within the research community but due to their limitations from assumptions and

general unknowns they continue to be less reliable than what is currently achievable using in

vitro experiments.
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1.8.2 In-Vitro Simulators

1.8.2.1 Passive Motion Simulators

Wrist joint kinematics can be reproduced through passive motion simulators that use external

forces from either the researcher or a mechanical apparatus to manipulate the position of the

hand relative to the forearm. Human manipulation of a specimen may result in unrepeatable

movements thus diminishing the quality of the results. A 6 DOF Stewart platform (Figure 1.23)

simulator has been used to analyze the kinematics of the carpal bones during repeated hammer-

ing motions [56]. This simulator excises all subcutaneous tissue, disarticulates the phalanges,

and transects the radius and ulna at the distal third, restricting to only intercarpal movement.

Figure 1.23: A Stewart platform for simulating 6DOF passive wrist motion uses six actuators to

achieve 3 degrees of freedom of translation and rotation each with the wrist mounted on the top

surface of the platform [57]

Nishiwaki et al. used a simulator (Figure 1.24) that fixed cadaveric upper limbs amputated at

the mid humerus to a base, using an array of pneumatic actuators to maintain a minimum tone

load on the extensor carpi ulnaris, extensor carpi radialis longus & brevis, flexor carpi radialis,

flexor carpi ulnaris, and abductor pollicis longus [58]. Trackers were attached to the radius,

ulna, third metacarpal, scaphoid, lunate, and capitate. All motions were passively generated

by the investigator from a rod protruding distally from the third metacarpal.
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Figure 1.24: A platform that uses an array of pneumatic actuators sutured to the tendons of interest

to maintain a tone across the wrist [59]

Passive motion relates to any force applied to an appendage that does not originate from a

muscle anatomically responsible for the motion of that joint. For instance, an actuator attached

at the distal insertion of the biceps intended to simulate elbow flexion would be considered

passive motion. The importance to differentiate simulators as active and passive arises from

the difference in potential kinematic outcomes as an external force may incorrectly simulate the

motion of the joint if the true line of action of the muscle is not recreated. In vivo conditions

have muscle tone that compresses a joint into its natural congruency which if not present in

a passive simulator may increase joint laxity and provide ’sloppy’ motions. Passive motion

simulators that incorporate these muscle tones ultimately will provide more reliable results but

are still subject to errors in the force vectors applied.
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1.8.2.2 Active Motion Simulators

Active simulators are a more reliable method for joint simulation as the forces are applied di-

rectly to the muscle tendons of interest to manipulate joint position. Algorithms designed using

antagonistic relationships between opposing muscles such as the flexors and extensors allow

for conditions to more accurately model an in vivo scenario.

Motion of the wrist is generally controlled through force-position algorithms that work to

move the wrist in a controlled manor from one position to the next using the antagonistic

muscle pairs. The primary mover muscle in the direction of the motion is position controlled

to maintain a continuous angular velocity while the opposing muscles hold the constant muscle

tone load set for the simulator. To reverse the direction of motion the position-force algorithm

switches so that the muscles previously under position control is maintaining a tone load while

the antagonist acts to change position of the joint.

Linear actuators or servomotors may be used to apply forces to the tendons of interest. Lin-

ear actuators are relatively inexpensive and provide force feedback to the system but have no

measure of position and are subject to compressibility if pneumatic. Servomotors are the more

expensive option and require programming to sync the native software with the simulator but

provide positional feedback and are not subject to position error. Force transducers are required

to record the force output adding an additional level of complexity to the system.

Dunning et al. [51] developed a platform for simulating active motion on cadaveric upper

limbs using a manifold of pneumatic actors to deliver computer controlled forces to nine mus-

cles of interest (Figure 1.25). Specimens were mounted with the forearm horizontal, cables

were sutured to the musculotendinous junctions of the tendon insertion, and electromagnetic

receivers (Flock of Birds, Ascension Technologies, Burlington, VT) were used to track relative

motion of unstable distal radial fractures. This method of actuation is more accurate at mod-

eling in-vivo motion but is inherently unrepeatable as it is an open loop control system with

no positional feedback of the wrist from the trackers. The system requires extensive heuristic
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tuning for the magnitude of tendon forces prior to testing for each new specimen to achieve

the desired motion which are visually assessed by the investigator for approval. This method

is superior to passive motion but there is no guarantee that successive intra-specimen trials will

be under identical conditions with regards to rate of angular rotation and loading.

Figure 1.25: Active motion simulator using a manifold of pneumatic actuators acting on 9 muscles

of interest to induce motion [51]

Werner et al. reported the first functional active wrist simulator (Figure 1.26) that produced

repeatable wrist motion [16]. Using an electromagnetic spatial tracker the position of the third

metacarpal, lunate, and ulna were recorded to provide real time feedback of the cadaver spec-

imen to follow a determined path for the wrist to follow. The specimens were transected mid-

way along the forearm and cemented into the base of the simulator with all soft tissue excised

with exception to the tendons and ligaments of interest. Optical tracking is a more modern

method for recording spatial position and was not a viable option during the development of

this simulator ultimately introducing material limitations that prevent analysis of any proce-

dures involving ferromagnetic metals commonly used in fracture fixation methods and joint
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arthroplasty/arthrodesis.

Figure 1.26: Palmar view of Werner’s wrist joint simulator [16]

Erhart et al. recently published the most advanced active motion simulator to date that tracks

the wrist motions using active optical markers [60]. Linear pneumatic actuators are used to

induce motion following an antagonistic pair algorithm with the arm fixated vertically at 90

degrees flexion and a static forearm rotation. For this simulator the lines of action of the

muscles are more accurately represented as they pass through their respective origins before

diverting to the actuators.

Ideally, an active motion simulator will encompass the full range of motion with no limita-

tions towards material compatibility or achievable forearm positions. All lines of action are

recreated to resemble their anatomically correct position and the simulator is able to maintain

tone loads during position-force controlled algorithms.



48 Chapter 1. Introduction

1.9 Thesis Rationale

Research into the development of a reliable in vitro wrist simulator to accurately recreate in-

vivo conditions will provide a means to accelerate the development of improved methods of

injury prevention, rehabilitation and joint reconstruction of the wrist. As outlined previously,

while significant advances in wrist simulation have occurred in recent years, current simulators

continue to be challenged to recreate relevant clinical motions.

The rationale for this thesis is to design a more versatile method for testing wrist motion that al-

lows for active forearm rotation, more accurately model the natural anatomical line of action of

the muscle-tendon units present in-vivo, and introduce the ability for testing in multiple gravity

loaded positions. Moreover, a simulator designed with modern technology and not limited by

material compatibilities is a secondary goal.
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1.10 Objectives & Hypotheses

The objective of this research was to develop a reliable method for testing wrist specimens

for common surgical techniques and prosthetics that include, but are not limited, to fracture

fixation, ligament repair, and arthroplasty.

Specific Objectives:

1. To design & develop a platform to accurately maintain tone loads of various muscles in

the forearm for passive motion trials in all planes of wrist motion.

2. To create reliable motion within an accuracy of 1 degree of the desired pathway in flex-

ion/extension and radioulnar deviation.

3. Successfully produce active motion trials in multiple gravity loaded positions such as

gravity flexion, gravity extension, and gravity neutral (inverted pendulum).

Hypotheses:

1. The system will be able to maintain the desired muscle tone to within 1.0 N with minimal

influence from fluctuations of the other supporting muscles.

2. The system will be able to produce motion trials with inter-specimen variance less that

1.0◦ and minimal out of plane motion.

3. The effects of gravity on the wrist joint will produce significant increases in the mus-

cles groups opposing the motion of gravity of the wrist while producing unrelated force

curves (flat lines) for gravity assisted motion.
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1.11 Thesis Overview

Chapter 2 describes the iterative design process undertaken to develop an active wrist simula-

tor and validates the methods implemented to produce repeatable motion profiles with respect

to passive trials.

Chapter 3 is an investigation into the effects of gravity on the kinematics of the wrist by

examining percentage of muscles force increase as well as fluctuations in the center of rotation

in the FEM plane.

Chapter 4 describes the study undertaken to improve muscle loading across the DRUJ by

adjusting the ratio of forces applied within each muscle group based on EMG and PCSA data

gathered from existing studies.

Chapter 5 is a summary of the work to date and provides closing thoughts on the relevance of

developing an active motion wrist simulator and how it will affect orthopaedic research moving

forward.
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Chapter 2

Development & Validation of an Active
Motion Wrist Simulator

OVERVIEW: This chapter covers the methods employed to develop a wrist mo-

tion simulator platform capable of passive and active motion simulation. It in-

cludes hardware selection, controller design, and methods used to recreate motion

profiles. Using five human cadaver upper limbs, a comparative analysis of active

versus passive manipulation techniques was performed to test the repeatability of

motion between inter-trial and inter-specimen motions.

(A portion of this work has been presented at the 2015 Vancouver Canadian Or-

thopaedic Research Society (CORS) conference.)

56
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2.1 Introduction

In-vitro wrist kinematic research enables investigators to achieve a greater insight into the be-

haviours of individual bones and muscles during motion that would otherwise be unattainable

from living patients. The most common method of reproducing in-vitro wrist motion is through

passive manipulation of cadaver specimens, most commonly obtained by direct manipulation

from an investigator or an actuator. This method is desirable due to the simplicity of apparatus

design required and does not require complicated control algorithms to achieve results. The

alternative method is active manipulation which differs from passive in the mechanisms of gen-

erating motion; actuators are attached directly to the tendon insertions at the wrist to achieve

the desired motion. This method is significantly more complicated to implement successfully

but has the potential to produce much more repeatable and relevant results when modeling in-

vivo conditions than passive simulators.

As outlined in Chapter 1 (Section 1.8.2.1), passive manipulation provides the simplest means

for reanimating cadaver limbs for the investigation of wrist kinematics as the muscles may be

toned simply by attaching pneumatic actuators or hanging weights from the major muscles of

interest (discussed later). The drawbacks to passive manipulation are to produce undesirable

motions as a result of the application of external forces and the general inability of human in-

vestigators to outperform machine repeatability. First, there is no guarantee that natural motion

is being achieved as minor translations of one bone relative to another, due to external forces,

may render all data collected irrelevant. Using a human investigator will undoubtedly introduce

irregularities between subsequent trials decreasing overall system repeatability with respect to

variables as rate-of-motion and pathway variance. These subtle differences in the rate of mo-

tion or inconsistent translations of bones between trials become an issue when considering the

viscoelastic tendencies of the tissues present in the wrist and may result in inconsistent kine-

matics due to hysteresis. Nishiwaki et al. [1, 2] developed a method of passive manipulation

that used a manifold of computer controlled pneumatic actuators driving cables guided through

a series of pulleys to maintain specific tones on the tendons of interest. All motion trials were

induced by the investigator through a rigid pin protruding distally from the third metacarpal.
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A 6 DOF Stewart platform was developed and shown to produce repeatable passive manipula-

tion which eliminates human error from the trials but this approach is still at risk of producing

unnatural wrist motions [3].

Active manipulation of a specimen will ultimately approximate in-vivo conditions more ac-

curately as many of the inconsistencies that arise from external forces and fluctuations in trial

repeatability are eliminated or significantly reduced. All forces applied to the wrist should be

true to their anatomical lines of action present in-vivo from their insertion at the wrist to their

origins at the epicondyles of the elbow. Dunning et al. [4] developed an open loop active

motion platform that used a manifold of the pneumatic actuators attached to the distal muscu-

lotendinous junction of the nine muscles of interest to induce motion. The cadaver specimen

was mounted in a horizontal position and the computer controlled tendon loading parameters

were activated to produce motion of the wrist against gravity. The system was able to produce

motion but there was no guarantee that successive trials would follow the same motion profile

or angular rate of rotation. As demonstrated by Werner et al. [5], a simulator that reproduces

motion by directly manipulating the major muscles of the wrist can provide a more reliable

quantification into the subtle behaviour of the carpal bones within the dynamic wrist. How-

ever, some drawbacks to Werner’s most recent version of the simulator [6] are the inabilities

to investigate the effects of gravity on wrist kinematics and electromagnetic tracking limits the

list of compatible materials that can be used in proximity to the simulator.

In order to accurately model conditions of an in-vivo wrist for the full investigation of kine-

matics, a simulator must be designed to limit the known errors associated with passive manip-

ulation while building on the existing simulators that have pioneered the field of active wrist

motion over the past two decades. Hence, the objective of this study was to develop a reli-

able method for testing wrist specimens for common surgical techniques and prosthetics that

include, but are not limited, to fracture fixation, ligament repair, and arthroplasty.
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2.2 Methods

2.2.1 Simulator Development

2.2.1.1 Platform Design

A single degree of freedom (1 DOF) platform was constructed from Derlin® (DuPont, Eleuthe-

rian Mills, DE) to allow for three attainable positions of a cadaver specimen including neutral

gravity (forearm vertical), gravity flexion (forearm horizontal, flexion against gravity), and

gravity extension (forearm horizontal, extension against gravity). The base of the platform at-

taches to the rotating frame via two cylindrical support blocks as illustrated in Figure 2.1 and

are locked in position using a dowel pin. The simulator was balanced using CAD software

(SolidWorks, MA) so that it would balance in place to reduce possible injury or pinch hazards

due to a tendency to swing upon removing the dowel pin. This platform provides the under-

lying structure required to successfully achieve active manipulation of cadaver specimens as

seen in Figure 2.1. The material is non-porous and abides by all health and safety requirements

for equipment within a laboratory that handles biohazardous material.

Figure 2.1: The DuPont™Derlin® platform allows for three attainable position positions: gravity

neutral (right), gravity extension (top left), and gravity flexion (bottom left).



60 Chapter 2. Design, Development, & Validation

2.2.1.2 Motor Manifold

To manipulate the position of the wrist and forearm seven muscles were required for full control

as were reviewed in Chapter 1 (Section 1.1.4 and Figure 1.7): extensor carpi radialis brevis

(ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), flexor carpi

radialis (FCR), flexor carpi ulnaris (FCU), pronator teres (PT), and biceps brachii (BI). To

provide forces to these muscles a manifold of seven SmartMotors (SM2316D-PLS2, SMI An-

imatics Corp., CA) were attached to the platform and daisy chained through the RS232 serial

port on the data acquisition chassis (NI PXI 1050, National Instruments, Austin, TX). Motors

were controlled through a LabVIEW (National Instruments, Austin, TX) interface and spooled

to control the magnitude of forces applied to muscle-tendon units via suture. Factory tuning

for the motors were left unaltered as they provided satisfactory response time between motor

positions.

2.2.1.3 Force Transducers

Force transducers (Figure 2.2) were implemented onto each of the aluminum motor mounts to

gain force feedback from each motor. Each motor mount was fitted with two 90 degree strain

gage rosettes to create a full bridge (Full Bridge III) style force transducer that converts the

bending moment of the motor mount into change in resistance. All force transducers were

calibrated using an in-line 1DOF load cell (Vishay Precision Group, Raleigh, NC) (Appendix

B). The force transducers were connected to the NI SCXI module on the data acquisition board

and read into a custom LabVIEW program for the simulator.
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Figure 2.2: Motor manifold showing the arrangement of the 6 servomotors [top] (biceps brachii

motor not shown) below the top surface of the simulator platform. A free body diagram [middle]

represents the mount as a cantilever beam with rigid attachments [red triangle] and tendon force

producing a bending moment through the beam,. The placement of the two tee rosette strain gages

[orange squares] is shown on the top and bottom surfaces of the aluminum bracket [bottom].
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2.2.1.4 Cable Guide Rail

Guide blocks with ceramic guide pins in conjunction with epicondyle guides were used to con-

verge the suture lines from the motor manifold as they approached the specimen and closely

mimic the anatomically correct line of actions present in-vivo (Figure 2.3). The guide blocks

ensured that the suture lines maintained a perpendicular vector to the motors so as to not de-

viate from the calibrated state, and directed the cables to a narrower channel applying as little

resistance at each junction as possible. The epicondyle guides are Delrin® blocks that fix to the

lateral and medial epicondyles of the humerus (to mimic the origins of the FCR, FCU, ECRL,

ECRB, and ECU) with three cable slots each to guide the sutures through their approximate

anatomical origins.

Figure 2.3: Three stage cable guide system acts to converge the sutures (red) from the motor

manifold through the lower guide rail [C], upper guide rail [B], to the epicondyle guides [A] on

the specimen
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2.2.1.5 Humeral Clamp

A clamp was designed to rigidly fix the specimen to the simulator by gripping the exposed

humerus in a vice like device (Figure 2.4). Four adjustable screws with semi-circular end

blocks were used to applied force radially at two points on the humeral shaft to effectively cre-

ate a cantilevered beam; two points of contact were required to prevent rotation from generated

moments from the motor forces. Machined teeth on the inner radius of the end effectors act to

prevent axial rotation of the specimen during the investigation (Appendix C).

Figure 2.4: A four screw cylindrical vice for rigidly attaching a cadaveric specimen to the surface

of the simulator via the humerus
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2.2.1.6 Ulnar Support Tower

To maintain the cadaver specimen in 90 degrees of elbow flexion during the investigation, two

pins were inserted in the ulna at proximal and distal thirds of the shaft extending perpendicular

in the ulnar direction. Since the ulna has a stable articulation with the humerus and remains

relatively stationary with negligible rotation during pronation and supination it can be assumed

that rigidly fixating the ulna to the simulator will have no affect on DRUJ kinematics [7, 8]. A

4DOF ulna support tower , 1DOF rotation & 1DOF translation per block, attaches to the ulnar

pins allowing for an adjustable base as shown in Figure 2.5 (Appendix C).

Figure 2.5: Ulnar support tower with two pins to rigidly fix the ulna to the simulator base; refer to

Figure 2.1 for the orientation of the ulnar support with respect to the arm
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2.2.1.7 Passive Guide Rail

An adjustable steel guide rail system with a slot to house the passive metacarpal guide pin was

developed to further increase the repeatability of passive trials. At the beginning of each new

position the guide rail was adjusted for height and neutral wrist position to ensure that planar

motion was maintained. An array of light emitting diodes (LED), controlled from a micro-

controller (Arduino, Italy), spaced evenly along the guide rail at 10◦ increments further aided

the repeatability of passive manipulation motion trials and reduced errors from environmental

stimulus. The LED array was illuminated sequentially to provide the investigator a constant

rate of angular rotation between trials to improve overall performance during passive trials

(Figure 2.6).

Figure 2.6: A guide rail system for passive motion trials that limits motion to a single plane. The

track is equipped with an array of LEDs [A], connected to an Arduino microcontroller [B] mounted

to the steel frame [C] that light up at a specified rate as a reference for the investigator
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2.2.2 Control Algorithm Development

2.2.2.1 Force Controller Development

A method for reducing system error with respect to a set point is to use a proportional-integral-

derivative controller (PID controller) that takes a series of input parameters consisting of a

target value and current system values and output parameters which effect the behaviour of the

system. Two types of PID controllers are open and closed loop. Open loop controllers operate

without feedback from the system and tend to be unreliable or unrepeatable, while closed loop

controllers continuously acquire system data. A closed loop PID force controller was devel-

oped to allow each motor to maintain a target load for a designated muscle. Input parameters

were the current position of each motor and the calibrated force from the array of strain gages.

The output parameter was a change in motor position, acting to spool in the cable to increase

force and spool out to decrease the force. The system set point was an array of individual

muscle forces for each motor to maintain.

Heuristic tuning was used to gain the appropriate responses from the motors that requires

a series of steps that required tuning for a purely proportional (P controller), proportional-

derivative (PD controller), and final the full controller. The proportional term, Kp, was scaled

until the system oscillated continuously about the target point without growing or shrinking

when under steady load. The derivative term, Kd was added to reduce system oscillation and

achieve steady state, however not necessarily zero system error. Finally, the integral term, Ki

was added to reduce steady state error and allow for the system to achieve the target force.

The sum of these terms effect the system behaviour and are represented in a PID diagram in

Figure 2.7.
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Figure 2.7: Closed loop PID controller to maintain target loads (set point) on each muscle based

on input from the current motor position and strain gage force and effecting the motor position to

increase/decrease force on the motor.

2.2.2.2 Position Controller Development

The conventional method of tracking wrist motion is to compare the position of the third

metacarpal with respect to the radius to determine flexion-extension motion (FEM) and radial-

ulnar deviation (RUD), and the radius with respect to the ulna to determine pronation-supination

motion (PSM). Optical triad-cluster trackers (Certus Optotrak, Northern Digital Inc., VT) were

attached to the third metacarpal, radius, and ulna to obtain their relative positions in real time

during the investigation. Using digitized skin points from the specimen and a custom Lab-

VIEW program, a local coordinate system per bone was constructed that adhered to the ISB

standards (refer to Appendix A for the construction of ISB coordinate systems used for track-

ing).

Euler angles between the third metacarpal, radius, and ulna were decomposed in real time and

paired with the target angles as the input parameters for the position PID controller as shown

in Figure 2.8. The output was interpreted as a shift in force balance between antagonistic mus-

cle groups that were categorized into quadrants of overlapping muscles: flexors (FCU/FCR),
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extensors (ECRL/ECRB/ECU), radial & ulnar deviators (FCR/ECRL & FCU/ECU). By main-

taining minimum loads of 8.9 N [5] in groups resisting motion and increasing the magnitude

of groups aiding in motion the force imbalance result moved the wrist in the desired direction.

Figure 2.8: Cascading closed loop PID controller for the control of wrist position. An initial

PID controller sets the force offsets required to induce motion and passes its output the force PID

controller to coordinate the new force offsets.

The force feedback controller used for maintaining tone loads was a cascading loop responsible

for adjusting the motor position to follow the fluctuating target tone loads of corresponding

antagonistic quadrants to reduce positional error. For instance, a target angle of 10 degrees

radial deviation and 20 degrees flexion with the wrist currently in neutral would result in an

increase of the flexor and radial deviator groups’ target forces while dropping the extensor and

ulnar deviator groups’ target to their minimum of 8.9 N. This shift in muscle force would result

in an acceleration of the wrist in the desired direction to reduce the error between the target

and actual wrist angle. Motion was achieved by running a script in the LabVIEW program to

continually update the target angles at a desired rate.
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2.2.3 Clinical Evaluation of the Active Motion Simulator

Five fresh frozen cadaver upper extremities, average age 70 ± 16 years (55 to 79 years, 3 male)

were amputated at the mid-humeral level and attached to the simulator via the humeral clamp

and the ulna support tower to maintain elbow position at 90 degrees flexion. To preserve the

natural function of the arm and avoid tissue desiccation all soft tissue was left intact. Krackow

sutures (#2 Ethibond) were placed on the distal musculotendinous junctions of each of the

muscles involved in motion (Figure 2.9). Sutures of the flexors, extensors and pronator teres

were passed under the skin, parallel to their muscle bellies, to their insertions at the lateral and

medial epicondyles of the humerus and the biceps was oriented parallel to the humerus and

attached to a satellite motor. The biceps brachii and pronator teres muscles were neglected for

this investigation as they were each toned to 45.0 N and locked at neutral forearm rotation.

Figure 2.9: Krackow suture made to the distal musculotendinous junction of each tendon to transfer

forces from the servo motor manifold to the wrist

Cable guides were anchored to the bone on both the lateral and medial epicondyles where the

suture lines passed through to recreate and maintain the physiological lines of action throughout

the study. The sutures were linked to their corresponding motors responsible for maintaining

muscle tone loads. All skin incisions were sutured using techniques employed clinically, and

remained closed through the duration of the study to preserve the specimen’s natural fluids.

Wrist positions were tracked in real time using active optical trackers attached to the ulna,

radius and third metacarpal.
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2.2.3.1 Motion Trials

The performance of the simulator was thoroughly assessed in the gravity neutral position as

it is the most common among researchers [5, 9] (the kinematic effects between gravity loaded

positions are thoroughly analyzed in Chapter 3). Five motion cycles were performed through

the full range of flexion-extension and radioulnar deviation to ensure the wrist was performing

under identical circumstances; an additional cycle at the beginning was discarded to eliminate

undesirable behaviour associated with the onset of initial motion. Motion trials were performed

at approximately 5◦/s for both passive and active manipulation methods and ranged from 50

degrees flexion to 50 degrees extension and 15 degrees radial deviation to 20 degrees ulnar

deviation while restricting out-of-plane motion. All trials were performed in the gravity neu-

tral position as stated above since it is the most challenging of the three gravity positions to

achieve motion due to the inherent instabilities associated with the inverted pendulum config-

uration. The guide rail (Section 2.2.1.7) was mounted for on the simulator for passive trials

and calibrated to the specimen to ensure pure planar motion with minimal out-of-plane devia-

tion. To reduce investigator errors, the LED array was programmed to activate sequential for

the investigator to follow to provide the desired rate of motion. Active trials were performed

independently of the guide rail with no restrictions to motion from any external apparatus or

guide mechanism; all motion was controlled through the loading of the tendons.

2.2.3.2 Static Position Trials

To test the simulator’s ability to reproduce a static position five trials were collected by moving

the wrist in increments of ten degrees between the extremes in flexion-extension and radioulnar

deviation. Passive trials followed the LED array on the guide rail to maintain consistency

between trials, and active motion was dependent on the positional feedback from the optical

trackers. To account for subtle fluctuations in motion, a sample period of three seconds in each

position was recorded and averaged to a single point for each trial.
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2.2.3.3 Center of Rotation Algorithm

A three dimensional fitting algorithm for matching points to a circle of best fit was adapted from

an online source in accordance to the Berkeley Software Distribution (BSD) license [10]. From

three points in space two vectors are created and normalized to determine a set of orthonormal

vectors that define a reference plane. A centroid is established using root means square to

determine a point with the lowest summed distance to all three points and returns the set of

orthonormal vectors and radius of the circle (Figure 2.10). This process is applied through the

range of data to determine the overall centroid of the range motion (Appendix D).

Figure 2.10: Circle fitting algorithm that matches three points [blue circles] in 3-dimensional

space to a circle and returns the centroid [red x] and vectors defining the plane of best fit [10]

2.2.4 Outcome Variables & Statistical Analysis

The repeatability of motion passive and active trials was compared by reporting inter-trial av-

erage standard deviation (ASD) between specimens (N=5). A one-way (manipulation method)

Repeated Measures ANOVA (RM-ANOVA) was performed to determine significant effects

(p<0.05) of actuation techniques on the profile trends of wrist motions collected from average

motion profiles between trials.
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2.3 Results

2.3.1 Repeatability of Motion Profiles

The accuracy of the simulator during active motion trials far outperformed the passive motion

trials by approximately 12 times (N=5 specimens). The mean error for active motion trials

did not exceed 0.23◦ while passive trials were high as 3.04◦ with an ASD of 0.25◦ and 1.54◦

respectively (Figure 3.2). Overall, the magnitude of mean errors during active motion were 9%

of those present during passive motion and 16% the size for ASD. A one-way (manipulation

method) RM-ANOVA test measuring mean error between trials showed significant difference

between passive and active trials (p<0.002), however no difference was found between static

trails (p<0.05).
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Figure 2.11: A comparison between the repeatability of static position and motion trials between

passive [white] and active [black] manipulation methods. The data shows the overall mean error

from trials and the standard deviation of mean errors between specimens (N=5).
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2.3.1.1 FEM Motion Trials

The cycles were split into their individual motions and the leading 1 s of data was removed

to eliminate disturbances present at the point of motion inversion. All five motion trials in

flexion and extension were overlaid to present a visual representation of the consistency of per-

formance for each method of actuation. Positive angles represent flexion and negative angles

represent extension as presented in Figure 2.12. Passive motion trials were less repeatable than

active as each individual trial is visible while the individual active trials are indistinguishable

from one another.
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Figure 2.12: Repeatability of all passive [right] and active [left] motion trials for extension [top]

and flexion [bottom] for a single specimen
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2.3.1.2 RUD Motion Trials

The cycles were conditioned as previously mentioned for flexion-extension and overlaid on

Figure 2.13 to present a visual representation of the consistency of performance for each

method of actuation. Positive angles represent ulnar deviation and negative angles represent

radial deviation with time along the horizontal axis. Again, passive motion trials were less

repeatable than active motion trials as noticed by the correlation of data for both methods.
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Figure 2.13: Repeatability of all active [left] and passive [right] motion trials for radial [top] and

ulnar [bottom] deviation for a single specimen
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2.3.1.3 Static Trials

Active trials were able to reproduce static positions marginally better than found in passive

trials as shown in Figure 2.14 with exception to near neutral wrist positions in FEM. Note that

three of the specimens were unable to achieve 20 degrees of radial rotation during active trials

due to forces exceeding the safety limits of the simulator and therefore were excluded from the

results. Overall, active trials were more effective at reproducing static positions than passive

trials.
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Figure 2.14: Repeatability of all active [left] and passive [right] trials in the FEM [top] and RUD

[bottom] planes for a single specimen
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2.3.2 Center of Rotation Repeatability

Using the 3D circle fitting algorithm to determine the center of rotation of each motion trial,

with respect to the radial coordinate system, the mean error and standard deviation for each

specimen was averaged to determine the overall average performance of the the simulator (Ta-

ble 3.1). Active trials overall had a lower error and standard deviation than passive trials by

71.5% and 66.0% respectively in the FEM plane of motion with a mean error of 0.26 mm from

the average COR (0.26 ± 0.18 mm & 0.90 ± 0.53 mm).

Table 2.1: Average center of rotation in all three gravity loaded positions (mm[SD])

Passive Active

Extension 0.55[0.31] 0.34[0.23]
Flexion 1.24[0.75] 0.17[0.13]
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2.3.3 Repeatability of Tendon Forces

Any trends in the tones generated to produce the desired motion were a byproduct of the

position-force controller during active manipulation trials. To maintain consistency with other

investigators the reporting of tendon forces will cover peak forces during motion, and average

forces required to maintain static positions [5]. Passive trials were neglected for this compari-

son as the tendons were maintaining minimum tone loads and therefore provided no insight on

the behaviour of muscles during motion.

2.3.3.1 Static Trials

Trends in the tendon forces behaved as expected during static position trials for active motion

with muscles responsible for motion in the related direction having larger magnitudes than their

antagonist pair. Table 2.2 displays the average muscle forces required to maintain the extreme

positions in each plane of motion in the gravity neutral position. Note that the differences

in percent contribution between positions in FEM was relatively small since the wrist was

stationary with gravity to assist in maintaining the position, while the differences between

positions in RUD was much larger.

Table 2.2: Average of five specimens for muscle forces required to hold the wrist in a static position

during active manipulation (percent of total muscle force [SD])

FCR FCU ECRL ECRB ECU
Gravity Neutral
50◦ of flexion 0.12[0.06] 0.18[0.01] 0.21[0.02] 0.21[0.01] 0.28[0.06]
50◦ of extension 0.22[0.12] 0.11[0.01] 0.32[0.07] 0.17[0.10] 0.18[0.10]
20◦ of radial deviation 0.21[0.04] 0.10[0.06] 0.31[0.07] 0.20[0.03] 0.20[0.03]
20◦ of ulnar deviation 0.06[0.03] 0.19[0.05] 0.20[0.03] 0.20[0.03] 0.34[0.02]
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2.3.3.2 Motion Trials

The peak tendon forces from each motion were averaged amongst the five specimens and are

shown in Table 3.3. The gravity neutral position is unique as it behaves as an inverted pen-

dulum where the effects of gravity inverse as the wrist passes through neutral (vertical). This

trend was observed most clearly for extension and flexion motions as the extensor and flexor

tendon groups, respectively, displayed higher magnitudes of force while the opposing group

maintained near minimum tones. During motions in the RUD plane subtle trends between the

radial and ulnar deviator groups emerge with each group displaying greater magnitudes during

its respective motion.

Table 2.3: Average peak tendon forces in the gravity neutral position during FEM and RUD planar

motions of the wrist (N [SD])

FCR FCU ECRL ECRB ECU

Extension 23.0[15.4] 20.7[8.8] 50.0[25.7] 39.9[15.2] 47.1[17.6]
Flexion 26.4[12.0] 21.3[4.5] 19.00[12.0] 13.1[3.6] 15.0[3.5]
Radial 40.6[15.9] 24.1[19.1] 57.34[20.8] 38.5[29.4] 53.8[47.7]
Ulnar 33.0[19.6] 32.0[15.5] 50.92[25.7] 38.5[29.5] 59.4[44.5]

The forces over two cycles of FEM and RUD motion trials are shown below in Figure 2.15 &

2.16. There are noticeable increases in the extensor and flexor muscle groups at the onset on

motion during each of their respective motions, which subsides as the wrist passes neutral. The

minor force increase in the flexor group at the onset of extension is the result of the transfer of

force from the extensors through the wrist and to the flexors which is quickly compensated for

by the force controller.
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Figure 2.15: Tendon forces during active FEM motion (forces[N] in gravity neutral position). Two

full cycles of motion are shown with positive angles representing flexion
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Figure 2.16: Tendon forces during active RUD motion (forces[N] in gravity neutral position). Two

full cycles of motion are shown with position angles representing ulnar deviation
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2.4 Discussion

The results from the wrist simulator were as expected with active motion trials greatly outper-

forming those from passive trials for both inter-specimen and center of rotation repeatability. It

is important to note that the comparison of a computer-aided guidance system against a human

investigator as the means of manipulating motion is an unfair match up, however it provides

valuable reassurance to the use of an automated system for controlling the motion of the wrist

to achieve low states of operational error.

The passive motion trials in this investigation were modeled after the simulator developed by

Nikiwashi et al. with regards to method of manipulation and restraint to motion from a passive

guide rail system. As there were no published results on the performance of this simulator,

our passive motion data was assumed to be a suitable substitute. The significant increase in

repeatability of active versus passive motion trials provides a clear indication of the benefits to

using active manipulation methods to achieve motion. The major discrepancy between these

simulators are the methods of actuation; pneumatic actuators are subject to positional errors

due to the compressibility of air while servomotors are effectively rigid with negligible posi-

tional error.

Werner et al. reported forces necessary to hold the wrist in static positions through a range

of circumduction using a clock position system for a right arm that related the 6 o’clock po-

sition to flexion and 3 o’clock to radial deviation [5]. The results between the two simulators

are in strong agreement with percent contribution of the wrist extensors in these positions but

larger magnitudes of error are present within the flexor group. These inconsistencies may be

due to the absence of the APL in our simulator that would ultimately effect the contribution

patterns of the flexors. This trend remained true for the maximum required tendon forces dur-

ing cyclic FEM motion trials, with the flexor forces considerably lower than those reported by

Werner. For cyclic RUD motion trials the results were larger than reported by Werner, with ex-

ception to the FCR and ECU, which again may be due to the absence of the APL or difference

in controller logic. Discrepancies between the forces could result from apparatus interference
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from redirecting suture cables through guide blocks and pulleys at large angles which would

ultimately increase the system friction and required force unlike our current design.

Since there are no published reports on the effect of the method of wrist manipulation on

the center of rotation during FEM motion trials there is no data to reference. However, the dif-

ference in COR error between methods validates the need for further investigation into transla-

tional errors associated with passive motion from the application of external forces to manipu-

late motion. The ’sloppy’ behaviour exhibited during passive motion may be result of restricted

tendon forces resulting in loads that are five times less than experienced during active motion.

It should be noted that this difference in loading during passive motion is unrepresentative of in-

vitro conditions and therefore kinematic investigations should use active motion when possible.

Due to the anatomy of the wrist the RUD motion profiles were incompatible with the cen-

ter of rotation algorithm described in Section 2.2.3.3 which fits points along a curve in three

dimensional space to a single centroid of motion. The nature of the wrist joint having two ar-

ticulations, radiolunate and radioscaphoid, effectively generated two centroids which resulted

in skewed and unrealistic data. The COR for RUD motions were neglected for this analysis.

Simulating motion with the wrist oriented in a vertical gravity loaded position models the

behaviour of an inverse-pendulum which are inherently unstable due to the effects of gravity

(as is discussed later in Chapter 3, Section 1). This instability was most apparent during static

trials in the FEM plane with the wrist near neutral position because the standard deviations of

mean error was noticeably larger than during larger angles of flexion or extension. This trend

was not present during RUD mostly probably due to the dual points of contact of the wrist.

Limitations to this study worth noting arise from the use of elderly cadaver specimens for

kinematic analysis, absence of an investigation into the effects of rate, and neglecting the APL

from the study. In-vitro studies with cadaveric specimens raise potential issues with the rel-

evance of data collected as reported by King et al. that showed a significant degradation of

cyclic peak loads in dense connective tissues of 8.6 ± 4.6 % over an 18 hour period (p <
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0.0001) at room temperature ( 23 ± 2◦C) [11]. Although data collection for this thesis used

cadavers at room temperature for periods up to 23 hours, any degradations such as creep to the

tendons would be compensated by the motors; tendon creep would decrease the load resulting

in motor spooling to adjust for the offset in load. However, degradation to ligaments would

effectively ’loosen’ the DRUJ and may effect normal carpal bone motion. An 18 hour post-day

study determined no significant degradation (p < 0.05) in motion repeatability for a cadaveric

specimen (Appendix E). Further investigations to understand the effects that the rate of motion

has on the repeatability of the simulator would provide insight into the roll that hysteresis has

post-mortem on wrist kinematics and the ability of the simulator to compensate for positional

errors at higher speeds.

With the design of a new simulator comes the advantages from modern technology, and an

ever increasing base of literature to learn from. Technologies present today such as optical

tracking and smart motor interfacing abilities far exceed what was available to researchers two

decades ago allowing simulator platforms to be made smaller, smarter, and more repeatable.

The ability to use optical tracking rather than an electromagnetic tracking system eliminates

the ferric material restrictions due to interference on the systems resolution opens the clinical

investigations to arthroplasty, external fixation, and open reduction & internal fixation of the

wrist. The ability to rotate the wrist into multiple states of gravity loading will allow investi-

gations into the affects of gravity on wrist kinematics and muscle loading within the forearm.

Smart motor interfacing increases the response time and reliability of actuation as well as al-

low for higher resolution of position accuracy with respect to hydraulic or pneumatic actuators.

With any method to simulate in-vivo conditions there are limitations in accuracy due to ei-

ther a general lack of knowledge or the inability recreate the anatomically correct conditions.

Although the simulator was successful in creating repeatable motion between specimens, the

forces represented by each muscle may not truly represent those present in a living person.

Forces for this study had a minimum set point of 8.9 N and even though each effectively acted

independently from the other muscles in the group (FEM or RUD), they may not be represen-

tative of the ratios present in-vivo.
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2.5 Conclusions

To properly study the biomechanics of the wrist it should be under simulated active conditions

rather than passive motion where abnormal forces and moments are applied by the investi-

gator. A simulator that uses actuators to simulate the shortening of tendons in fresh-frozen

cadaver forearms successfully reanimated cadaver upper limbs more repeatedly than possible

from human investigators [5]. Future work should explore the appropriate ratios of muscle con-

tributions during wrist motion obtained from electromyography (EMG) collected from people

to more accurately model in-vivo conditions. This may lead to more relevant scaling of the

force outputs to ultimately model wrist motion more realistically.
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Chapter 3

The Effects of Gravity on Wrist
Kinematics in Multiple Loaded Positions

OVERVIEW: This chapter compares the effects of gravity on wrist kinematics dur-

ing active motion trials in three positions; gravity neutral (vertical, as conducted

in Chapter 2), gravity flexion, and gravity extension. Measured outcomes looked at

differences in repeatability during FEM and RUD motion trials, out-of-plane devi-

ation, discrepancies between the center of rotation between positions, and changes

in tendon forces. A comparative analysis discussing the outcomes and their rele-

vance to validating the need for developing a reliable method of simulating wrist

motion is also included.

(A portion of this work was been presented at the 2015 Vancouver Canadian Or-

thopeadic Research Society (CORS) conference.)
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3.1 Introduction

In-vitro kinematic research of wrist biomechanics on cadavers has allowed for the investigation

into the complex articulations between bones and soft tissues at the distal forearm and wrist

joints. Mechanical apparatuses have been developed to apply loads directly to the tendons of

interest (as discussed in Chapter 2, Section 2.2.3) to more accurately simulate in-vivo condi-

tions during motion trials and track relative motion using appropriate spatial tracking methods

(Chapter 1.3) for kinematic analysis. Given that the majority of the day is spent with our wrists

by our sides during walking or in a horizontal gravity loaded extension position while sitting

and typing at a keyboard or driving a vehicle, no investigation to date has reported on the ef-

fects of gravity on the wrist during simulated active motion trials for either trends in motion

pathways or force between positions.

The difference between gravity loaded positions stem from the balance of the antagonistic

nature of the wrist joint with the influence of gravity on the center of mass of the wrist. Gravity

effectively acts at the center of mass of an object, which for the wrist in a non-vertical position

should never cross the joint center of rotation on the horizontal plane, unless exceeding 90 de-

grees of wrist flexion-extension, and therefore will always resist motion in a single direction.

For instance, in a horizontal gravity loaded extension position, the weight of the hand will nat-

urally result in wrist flexion no matter the position in the FEM plane. This is not the case for

a vertical gravity loaded position which requires the balance of forces between the flexor and

extensor, where one group is active and the other is maintaining minimum tone, to inverse at

approximately neutral to effectively resist the tendency of the wrist to accelerate during motion.

’Approximately’ is used as there is a period of transition through neutral where gravitational

effects momentarily subside as the center of mass passed the center of rotation on the horizon-

tal plane (Figure 3.1). Simulators, such as those used by Dunning et al. [1, 2] and Gordon et

al. [3, 4], used the approach where cadaveric upper limbs were tested with the humerus in a

vertical orientation with the wrist pointing down, and then immobilize the elbow at 90 degrees

flexion with the forearm parallel to the floor. Although these were passive motion simulators,

they reported the tendon forces necessary to maintain a neutral wrist position through a range of
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forearm rotation, hence providing insight into force differences between the flexors and exten-

sors in gravity loaded flexion and extension positions. Issues with these methods arise from the

shift in muscle force required to hold neutral wrist positions between pronation and supination

as reported by Mogk et al. [5] who stated that extensor forces increased in pronation and flexor

forces increased in supination. Fully functional active motion simulators, like those reported

by Werner et al. [6] and Erhart et al. [7], were capable of recreating motion using computer

control algorithms to adjust tendon forces from a manifold of actuators to ultimately achieve a

static position or follow a motion profile. Specimens were rigidly fixed at 90 degrees of elbow

flexion with the forearm in a vertical position pointing upwards, hence restricting all motion to

the vertical gravity position.

Figure 3.1: The wrist in a vertical gravity loaded position showing the affect of gravity [red dot]

acting at the center of mass [black dot] with respect to the center of rotation [blue dot] about the

wrist. In flexion [left] gravity acts to further flex the wrist. In extension [right] gravity acts to

further extend the wrist. In neutral [center] the center of mass is vertically in line with the center

of rotation and generates a negligible about of torque about the wrist.

A simulator capable of producing repeatable active motion trials between multiple gravity

loaded positions would enable researchers to perform more comprehensive investigations into

differences between pre and post-operative as well as healthy wrist kinematics. Hence, the

purpose of this study was to validate the ability of an active motion simulator to reproduce

repeatable motion trials under a variety of gravity loaded conditions.



90 Chapter 3. Gravitational Effects on Kinematics

3.2 Methods

3.2.1 Specimen Preparation

Five fresh frozen cadaver upper extremities, average age 70 ± 16 years (55 to 79 years, 3 male)

were amputated at the mid-humeral level and attached to the active motion wrist simulator out-

lined in Chapter 2 at 90 degrees elbow flexion. Sutures (#2 Ethibond) were made, using the

Krackow method, into the distal musculotendinous junction of the biceps brachii (BI), prona-

tor teres (PT), flexor carpi ulnaris (FCU), flexor carpi radialis (FCR), extensor carpi ulnaris

(ECU), extensor carpi radialis longus (ECRL), and extensor carpi radialis brevis (ECRB). All

incisions were closed using suture techniques employed clinically during the investigation to

preserve the natural fluids and the sutures were routed through guide blocks to mimic anatom-

ical lines of action. Electric servomotors (SMI 2316D-PLS, Animatics, CA), force transducers

(Vishay Precision Group, Raleigh, NC), and optical trackers (Certus Optotrack, Northern Dig-

ital Inc., Waterloo, Canada) were used to control the tendon force and wrist position during

the investigation. A custom LabVIEW (National Instruments, Austin, TX) program set all mo-

tions to 5◦/s with a sampling rate of 15.0 Hz. The biceps brachii and pronator teres tendons

were toned to 45.0 N and locked at neutral forearm rotation. Wrist position is presented as the

metacarpal with respect to the radius as outlined by the ISB standards in Chapter 1 (Section

1.5).

3.2.2 Data Collection

Five active trials, each consisting of five cycles through a full range flexion-extension (FEM)

and radioulnar deviation (RUD), were performed in each of the three gravity loaded positions.

The initial trial from each cycle as well as the peaks of motion were neglected from the analysis

to prevent non-steady motion and force spikes from effecting the results. All five specimens

were able to perform a range of motion of 50 degrees flexion to 5 degrees extension while only

four could achieve 10 degrees radial deviation to 20 degrees ulnar deviation; motions that did

not satisfy the range of motion were neglected. Trials were performed at 5 ◦/s lasting approxi-

mately 20 s during FEM and 7 s during RUD.
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To test the simulator’s ability to reproduce a static position five trials were collected by mov-

ing the wrist in increments of 10 degrees between the extremes in FEM and RUD. A sample

period of 3 s was collected for each static position in case of optical marker dropout and to

smooth subtle fluctuations in the position controller. Each trial recorded the time stamp, mo-

tor forces, wrist angles, and raw tracker transformations used in post processing to determine

the kinematic characteristics of each motion and the repeatability between trials. All data was

collected in the same day and tested under identical conditions. Note: there was no significant

difference in repeatability of motion trials (p<0.05) with respect to time in the first 18 hours of

testing (Appendix E).

3.2.3 Outcome Variables & Statistical Analysis

The repeatability of motion for the simulator was reported using an inter-trial average stan-

dard deviation (ASD) between specimens (N=5). A one-way (gravitational position) Repeated

Measures ANOVA (RM-ANOVA) was performed to determine significant effects (p<0.05) of

gravity on the profile trends of wrist motions collected from average trial error from the target

motion pathway.
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3.3 Results

3.3.1 Repeatability of Motion Profiles

The mean errors and average standard deviations was computed between consecutive trials for

all motions in each position (N=5 specimens). The accuracy of the simulator was quite high

with average error between trials never exceeding 0.23◦ for extension, 0.7◦ for flexion, 0.21◦

for radial deviation, and 2.8◦ for ulnar deviation with ASD of 0.24◦, 0.31◦, 0.24◦, and 0.45◦

respectively (Figure 3.2). A significant increase in error for flexion in the gravity flexion posi-

tion was present (p<0.05). Overall, the simulator achieved the best performance in the gravity

neutral position with a mean error of 0.18±0.25◦ between all motion trials. The simulator per-

formed similarly in the gravity loaded extension and flexion positions with mean error of 0.22

± 0.32◦ and 0.33 ± 0.51◦ respectively.
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Figure 3.2: A comparison between the repeatability of static position and motion trials between

gravity neutral [white], gravity extension [gray], and gravity flexion [black] positions showing

standard error within each specimen and the standard deviation between error in specimens [+1

SD]
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3.3.1.1 In-Plane Motions

For each specimen (N=5) the mean trial error with respect to the target angle was computed in

all three positions and were sampled at intervals of 10 degrees for FEM trials (Figure 3.3) and

at 5 degrees for RUD trials (Figure 3.4). A one-way RM-ANOVA test indicated that there were

no significant differences of average error from target between the three positions (p<0.05)

during flexion-extension or radioulnar deviation motions. A latency of 5 degrees behind the

target angle was present at the onset of each trial during FEM motions that was not present

in RUD motions resulting in larger magnitudes of error early in the trial, however the error

converged on zero approximately halfway through each trial when the wrist passed neutral

position. Unlike the FEM trials that converged at zero error with the wrist in neutral position,

the motions in the RUD plane maintained the initial error of 5 degrees and only converged on

zero error at the final stage of the trials (the termination point). Note that minor changes to

the PID controller were made regarding tuning the proportional constant to achieve a desirable

response; rule of thumb being that limbs from larger specimens require a large proportional

constant to handle the increased forces required to induce motion.
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Figure 3.3: Repeatability of extension [top] and flexion [bottom] motions in all three positions are

displayed showing the overall mean error of all motion trials with respect to the desired angle of

all specimens (N=5)
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Figure 3.4: Repeatability of extension [top] and flexion [bottom] motions in all three positions are

displayed showing the overall mean error of all motion trials with respect to the desired angle of

all specimens (N=5)
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3.3.1.2 Out-of-Plane Motions

Out-of-plane motion for this study was undesirable as all the trials were restricted to unidirec-

tional motion within a single plane. As discussed in Chapter 2 (Section 2.2.2), the position

controller acts to reduce error between the actual and desired angle of the wrist by adjusting

the magnitude of tendon forces as groups; extensors, flexors, radial deviators, and ulnar de-

viators, however a change to one group may have undesired effect to motion in other planes.

Figures 3.3 & 3.4 illustrate tendency of the wrist to deviation from planar motion during FEM

and RUD. A one-way RM-ANOVA revealed no significant differences between gravity loaded

positions for flexion, extension, and ulnar deviation trials at a significance level of p=0.05.

However, a significant difference in trial error for radial deviation was determined resulting in

the rejection of the null hypothesis that all trials were equal. Motion in the FEM plane per-

formed better than in the RUD plane as the out-of-plane motion was minimal with the mean

out-of-plane error between trials less than 1 degree from neutral while those in the RUD plane

had FEM errors that exceeded 1 degree from neutral, with the worst out-of-plane error at ap-

proximately 4 degrees. The simulator FEM performance operated within 1 degree of error

satisfying the objectives of this thesis as outlined in Chapter 1, Section 1.10.
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Figure 3.5: The mean out-of-plane deviation with respect to the wrist angle during extension [top]

and flexion [bottom] motions in all three positions illustrates the ability of the simulator to produce

planar motion (N = 5 specimens)
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Figure 3.6: The mean out-of-plane deviation with respect to the wrist angle during radial [top] and

ulnar [bottom] deviations in all three positions illustrates the ability of the simulator to produce

planar motion (N = 5 specimens)
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3.3.2 Center of Rotation Repeatability

Using a circle fitting algorithm to match points along the motion pathway to a centroid of

best fit, as discussed in Chapter 2 (Section 2.2.3.3), the mean centroid of motion and standard

deviation for each arm in the series was determined. There were no apparent differences be-

tween the variability of the center of rotation between either positions or motions, however it

is important to note that the optical tracking method used has a resolution of 0.01 mm with

an positional accuracy of 0.1 mm [8] and therefore no statistical analysis was performed. The

overall repeatability of the center of rotation (COR) in the FEM plane for active motion was

0.28 ± 0.14◦. The motion profiles for the COR in the RUD plane produced non-circular profiles

that were incompatible with the circle fitting algorithm and therefore were neglected for this

investigation.

Table 3.1: Average center of rotation in all three gravity loaded positions (mm[SD])

Active
Gravity Neutral
Extension 0.34[0.23]
Flexion 0.17[0.13]

Gravity Flexion
Extension 0.35[0.07]
Flexion 0.24[0.14]

Gravity Extension
Extension 0.28[0.10]
Flexion 0.32[0.10]

3.3.3 Repeatability of Tendon Forces

Tendon forces acted independently during motion trials with the control algorithm acting to

maintain a wrist position through the fluctuation of force. Consequently, any trends in the

force profiles were not an intentional result yet strong trends emerged between motions for each

specimen. To maintain consistency with other investigators [6] the reporting of tendon forces

covers peak forces during motion, and average forces required to maintain static positions.
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3.3.3.1 Static Trials

The mean force and standard deviation for each tendon required to hold the wrist in a position

for each of the three gravity loaded positions was sampled over a 3 second period and averaged

between all 5 specimens (Table 3.2). The tendon forces behaved as expected, with respect to

gravity, where positions that resisted gravitation force on the hand had larger force magnitudes

and those that were assisted by gravity had lower force magnitudes. With the gravity neutral

position as the normal, trends in the gravity loaded flexion and extension positions displayed

increased forces in the flexor and extensor groups, respectively, as the weight of the hand

had to be overcome. The biceps brachii and pronator teres muscles were neglected for this

investigation as they were each toned to 45.0 N and locked at neutral forearm rotation.

Table 3.2: Average of five arms for muscle forces required to hold the wrist in a static position

during active manipulation (percent of total muscle force [SD])

FCR FCU ECRL ECRB ECU
Gravity Neutral
50◦ of flexion 0.12[0.06] 0.18[0.01] 0.21[0.02] 0.21[0.01] 0.28[0.06]
50◦ of extension 0.22[0.12] 0.11[0.01] 0.32[0.07] 0.17[0.10] 0.18[0.10]
10◦ of radial deviation 0.21[0.04] 0.10[0.06] 0.31[0.07] 0.20[0.03] 0.20[0.03]
20◦ of ulnar deviation 0.06[0.03] 0.19[0.05] 0.20[0.03] 0.20[0.03] 0.34[0.02]

Gravity Flexion
50◦ of flexion 0.23[0.06] 0.19[0.04] 0.22[0.06] 0.17[0.03] 0.19[0.05]
50◦ of extension 0.34[0.04] 0.28[0.06] 0.16[0.06] 0.12[0.03] 0.11[0.03]
10◦ of radial deviation 0.33[0.06] 0.17[0.05] 0.27[0.07] 0.11[0.04] 0.11[0.04]
20◦ of ulnar deviation 0.15[0.01] 0.31[0.01] 0.13[0.01] 0.13[0.01] 0.29[0.02]

Gravity Extension
50◦ of flexion 0.15[0.05] 0.14[0.06] 0.25[0.06] 0.22[0.03] 0.24[0.04]
50◦ of extension 0.25[0.09] 0.20[0.08] 0.22[0.05] 0.16[0.07] 0.17[0.06]
10◦ of radial deviation 0.23[0.06] 0.09[0.04] 0.32[0.05] 0.18[0.04] 0.18[0.04]
20◦ of ulnar deviation 0.08[0.02] 0.20[0.05] 0.20[0.04] 0.19[0.03] 0.32[0.01]
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3.3.3.2 Motion Trials

The peak tendon forces from each motion were averaged amongst the five specimens in each

of the three gravity loaded positions (Table 3.3). The gravity neutral position is unique from

the other two as it behaves as an inverted pendulum where the effects of gravity inverse as

the wrist passes through neutral (vertical). This trend was observed most clearly for extension

and flexion motions as the extensor and flexor tendon groups, respectively, displayed higher

magnitudes of force while the opposing group maintained near minimum tones. The trends

between the gravity flexion and extension positions were similar in the sense that the forces

in tendon groups required to move the wrist against gravity were observed to be active during

both motions in the FEM plane while the antagonist group maintained neutral force with little

contribution to motion. RUD motion trials in gravity neutral exhibited trends between the radial

and ulnar deviation groups with each group displaying greater magnitudes during its respective

motion. This trend holds true for the remaining gravity loaded positions but with a shift in

balance within each group in favour of the muscle opposing gravity. For instance, during ulnar

deviation in gravity extension the tendons, ECU & FCU, are activated to induce motion but the

ECU displays higher magnitudes to overcome the effect of gravity on the wrist.
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Table 3.3: Average peak tendon forces for each plane of motion of the wrist (N [SD]).

FCR FCU ECRL ECRB ECU
Gravity Neutral
Extension 23.0[15.4] 20.7[8.8] 50.0[25.7] 39.9[15.2] 47.1[17.6]
Flexion 26.4[12.0] 21.3[4.5] 19.00[12.0] 13.1[3.6] 15.0[3.5]
Radial 40.6[15.9] 24.1[19.1] 57.34[20.8] 38.5[29.4] 53.8[47.7]
Ulnar 33.0[19.6] 32.0[15.5] 50.92[25.7] 38.5[29.5] 59.4[44.5]

Gravity Flexion
Flexion 14.2[4.0] 17.0[7.7] 21.6[4.5] 19.0[2.3] 24.8[8.8]
Extension 28.2[10.4] 30.6[12.3] 13.0[3.1] 12.2[1.3] 15.5[7.0]
Radial 38.3[13.5] 14.4[2.7] 35.9[11.2] 9.4[0.7] 12.7[1.3]
Ulnar 28.6[13.7] 22.8[1.0] 24.3[12.6] 11.2[0.4] 19.6[2.7]

Gravity Extension
Extension 13.9[3.1] 18.0[7.3] 38.5[8.9] 36.4[10.3] 43.2[16.9]
Flexion 17.1[8.9] 17.5[8.2] 14.3[2.5] 14.5[2.6] 17.5[5.5]
Radial 37.4[16.2] 12.9[3.1] 46.5[15.6] 21.5[7.5] 26.1[10.5]
Ulnar 27.5[16.7] 25.9[4.8] 37.5[11.0] 22.7[7.4] 36.7[13.7]
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3.4 Discussion

The results of this simulator were quite accurate and indicated a high level of repeatability

between all trials with respect to motion profile, center of rotation, and force trends produced

which could have the potential for further improvement with system revisions and tuning of

the PID parameters.

The mean error and standard deviation between consecutive motion trials, with exception of

flexion in the gravity loaded flexion position, were less than 0.5◦ and 1.0◦ respectively, sug-

gesting that the simulator was able to achieve steady state motion for each trial. The trends

in trial error with respect to the target angle, as shown in Figures 3.3 & 3.4, are the result of

the tuning parameters of the system. The latency is inherited from force-position algorithm

explained in Chapter 2 (Section 2.2.2.2) that reads a motion profile from a text script to adjust

the target angle, which will ultimately result in the motion response to lag behind the desired

position but may be reduced through further tuning of the proportional, derivative, and integral

constants of the PID controller. Note that the point of convergence with zero error on each

plot was at approximately neutral wrist position which is not by coincidence; rather the trend

was influence by the joint anatomy and the fluctuations of tendon moment arms as discussed

in chapter Chapter 1 (Section 1.2.5).

The moment arms for the extensor carpi radialis longus & brevis tendons are greatest at 40

degrees extension and decrease linearly to 40 degrees flexion by approximately 50% while the

extensor carpi ulnaris tendon remains relatively constant [9]. The same is true for the flexor

carpi radialis that has its greatest moment arm at 40 degrees flexion and decreases linearly to

40 degrees extension decreasing by approximately 50% while the flexor carpi ulnaris remains

relatively constant. These changes in moment arms may account for the latent behaviour in

the FEM profiles as the influence of the tendon forces begin at their lowest state and gradually

increase through out the trials causing the wrist to converge on zero error at neutral. This trend

was not present during RUD trials and at no time were these motions influence directly by

gravity.
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Out-of-plane motion trials behaved as expected during FEM trials where there were minor

RUD errors that followed no particular trend between the three gravity loaded conditions, most

likely due to the absence of gravitational effects in that plane. In the RUD plane, radial devia-

tion trials had near zero out-of-plane error in both gravity flexion and extension positions while

the neutral position experienced error in extension approximately 4 times larger than the others.

The behaviour was most likely due to the differences in loading across the wrist between the

gravity neutral position and the rest since the FEM muscle groups responsible for correcting

error were constantly trading responsibility when the wrist moved out of plane. This behaviour

was not present in the gravity loaded flexion and extension positions since there was always

one FEM muscle group responsible for opposing gravity. The trend during ulnar deviation was

an extension error at extreme radial deviation and a flexion error at extreme ulnar deviation.

This suggests that the extensor carpi ulnaris overpowers the flexor carpi ulnaris and that the

flexor carpi radialis overpowers the extensor carpi radialis longus at extreme ranges of motion.

The differences in the variances of the center of rotation between positions were negligible

since they were at the scale of the lowest resolution of the optical tracking system. The fluctu-

ations in the centroid of motion may have been the result of resolution error rather than from

actual translations of the bones during motion.

The active motion simulator used by Dunning et al., as reviewed in Chapter 1 (Section 1.8.2.1),

was most comparable to the gravity loaded positions with exception to the minimum tone load

of 11.3 N and the orientation of the humerus requiring the forearm to be in pronation for ex-

tension trials and supination for flexion trials. Regardless of these discrepancies there was

no notable differences in performance between the two simulators, as both exhibited similar

magnitudes of force required to maintain neutral wrist position. Note that in order to compare

our results to those published by Dunning, the forces of the ECRL and ECRB from our stud-

ies were summed to compare against the ECRL forces of Dunning’s. Table 3.4 illustrates the

similar performances of both simulators. A noticeable difference between the ECU loads in

pronation/gravity extension was most likely due to the change in the line of action of the ECU
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as it had to span across the dorsal forearm in pronation thus decreasing its effectiveness as it

diverges from the perpendicular tangent line of action.

Table 3.4: The average forces for balancing the wrist in neutral for gravity loaded positions be-

tween the simulator developed for this investigation and Dunning’s (N[SD] )

Dunning Current
Gravity Extension
Pronation
FCU 11.3[0.9] 14.0[5.7]
FCR 11.1[0.9] 10.7[1.7]
ECRL 67.5[10.8] 29.6[18.6]
ECRB — 24.9[18.6]
ECU 50.9[11.0] 26.3[13.5]

Gravity Flexion
Supination
FCU 19.0[4.0] 17.2[6.3]
FCR 16.1[4.8] 15.7[3.4]
ECRL 17.3[5.5] 10.9[3.4]
ECRB — 8.9[3.3]
ECU 12.5[1.1] 9.3[0.5]

Limitations to this study worth noting, as discussed in Chapter 2 (Section 2.4), arise from

several areas including: the use of elderly cadaver specimens for kinematic analysis, a lack of

understanding of the effect of the rate of motion on the repeatability of motion cycles, and the

effect of generating motion with the absence of the abductor pollicis longus as used by other

investigators [6, 10]. King et al. reported significant degradation of cyclic peak loads in dense

connective tissues of 8.6 ± 4.6 % over an 18 hour period (p < 0.0001) at room temperature (

23 ± 2◦C) [11] for in-vitro testing. This may influence the overall laxity of the joint over time

and some minor effect on repeatability, but any elongations to the tendons would ultimately

be compensated for by an adjustment to the servo motor. As mentioned in Chapter 2 (Section

2.4), an 18 hour post-day study determined no significant degradation (p < 0.05) in motion

repeatability for a cadaveric specimen (Appendix E).
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3.5 Conclusions

The overall effects of gravity on the simulator’s ability to produce repeatable motion were

negligible as there were no major differences in error between each of the three gravity loaded

positions with exception to radial deviation trials in a gravity neutral position. Due to the

inherited behaviours from the PID controller for minimizing the positional error, there exists a

latency at the onset which may be reduced through further tuning of the PID parameters. The

forces recorded for static and motion trials in all three gravity loaded positions agreed with

those published by other researchers on their simulator platforms with minor differences arising

from methods used for actuation. Regardless of these limitations, the overall trial repeatability

met with the objective outlined in Chapter 1 (Section 1.4).
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Chapter 4

The Effects of Muscle Portioning on the
Loading Conditions & Kinematics of the
Wrist in a Vertically Oriented Gravity
Loaded Position

OVERVIEW: This chapter investigates the effects of applying tendon portioning

to the active motion simulator developed in Chapter 2 and performs a compara-

tive analysis for the overall repeatability of motion profiles and loading across the

wrist. Tendon loading ratios were established from published data on the physio-

logical cross sectional area (PCSA) of muscles and compared to passive and active

motion trials using equal tendon loading portions in the flexion-extension plane.

Outcomes examined was the influence of portioning on the repeatability of motion

profiles for both in-plane and out-of-plane motion, and the influence on overall

loading of the wrist during motion.
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4.1 Introduction

The development of active motion simulators to reanimate cadaver specimens has improved

researchers’ abilities to produce more reliable data for the investigation of joint kinematics.

Accurately modeling the in-vivo behaviour and portions of individual muscles for an in-vitro

experiment poses a challenging task as there is limited literature on this subject, however the-

oretical ratios may be derived from existing data on the cross sectional areas of the muscles

of the wrist. As discussed in Chapter 1 (Section 1.2.4), the physiological & anatomical cross

sectional areas of the muscles in the forearm primarily responsible for wrist motion are coin-

cident as the muscle fibers all run parallel to the longitudinal axis [1].

Skeletal muscles are the method of actuation for human joints such as the wrist, elbow or

shoulder and are contracted voluntarily when innervated by an action potential from the central

nervous system [2]. The force which a muscle can produce is determined by the combina-

tion of the intensity of an action potential and the physiological cross sectional area PCSA of

the muscle at its thickest section. The magnitude of the cross sectional area is directly pro-

portional to the quantity of motor units within the muscle belly where more motor units will

generate a larger overall contractile force [3]. Other factors such as tendon moment arms and

electromyography (EMG) [4, 5, 6, 7] have been used for investigation of muscle portioning but

there is not enough published data on literature and therefore will not be discussed in this thesis.

Existing simulators have recreated loading scenarios during in-vitro studies by either assigning

equal magnitudes to all muscles [8], heuristically tuning the loading ratios until achieving the

desired result [9], or by applying a scaling method based from anatomically relevant data drawn

from cross sectional area of muscles [10, 11, 12, 13]. Gordon et al. made efforts to scale forces

of the supinator and pronator muscles in the forearm drawing from previously established re-

lationships between PCSA and EMG data [14] to scale agonist tendons in a group with respect

to the primary mover. Kedgley et al. investigated the effect of tendon loading ratios of a gleno-

humeral joint on the repeatability of active motion trials using a shoulder simulator. Four sets

of ratios based on: (1) equal tendon loading, (2) average PCSA of the muscles, (3) product
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of constant EMG and PCSA, and (4) variable ratios of EMG and PCSA data. Overall, all ra-

tios were reported effective in producing repeatable motion within 2 degrees [15, 16]. Similar

methods were implemented with an active motion shoulder simulator developed by Giles et al.

[17] which drew from previously reported PSCA and EMG ratios to provide a more realistic

loading scenario of the shoulder throughout the range of motion. However, the most relevant

simulators developed by Werner et al. [18] or by Erhart et al. [19] make no mention of scaling

of forces in the algorithm used to produce motion of the wrist, rather, each muscle acts inde-

pendently to increase force offsets about the wrist to gain the desired position.

In view of the foregoing, the purpose of this study was to investigate the effects of tendon

loading ratios on the repeatability of active wrist motion using passive motion trials as com-

mon point for comparison. Two sets of ratios were drawn from: (1) equal tendon loading, and

(2) averaged PCSA of the muscles of the forearm.
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4.2 Methods

A simulator developed to animate cadaver upper limb specimens along motion profiles was de-

veloped in Chapter 2.0 for the investigation of wrist kinematics. To summarize, seven electric

servo motors SmartMotors (SM2316D-PLS2, SMI Animatics Corp., CA) were attached to the

flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis longus, flexor carpi radialis

brevis, extensor carpi ulnaris, pronator teres and biceps brachii to achieve the full motion of

the wrist in flexion-extension, radial-ulnar deviation, and pronation-supination. Force trans-

ducers were mounted to each motor for force feedback with a resolution within 1.0 N and 6

DOF optical trackers (Optotrak Certus, NDI, Waterloo, ON) on the third metacarpal, radius,

and ulna provided force and position feedback for a custom LabVIEW (National Instruments,

Austin, TX) control algorithm.

One fresh frozen cadaver upper limb (78 years, male) was tested on a custom active motion

wrist simulator. Incisions were made to suture to the flexor carpi ulnaris (FCU), flexor carpi

radialis (FCR), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB),

extensor carpi ulnaris (ECU), pronator teres (PT), and biceps brachii achieve the full range of

motion of the wrist. Sutures (#2 Ethibond) were passed under the skin adjacent to the respec-

tive muscle to a guide block rigidly fixed on each the medial and lateral epicondyles (depending

on origin of tendon) to maintain an appropriate anatomical line of action. All incisions were

closed to preserve the natural fluids of the specimen. The sutures were attached to electric

servo-motors (SMI 2316D-PLS, Animatics) to provide means of motion. Each motor mount

was fitted with a force transducer (half-bridge strain gage) to provide force feedback in real

time allow a motor to maintain a tone load. Optical trackers (Certus, NDI) were mounted to

the third metacarpal, radius, and ulna to provide real time position of the wrist in flexion/ex-

tension motion (FEM), radial/ulnar deviation (RUD), and pronation/supination motion (PSM).

Trials were performed at 5◦/s and collected at a sampling rate of 15 Hz using a custom Lab-

VIEW algorithm. A PID controller was responsible for balancing the loads of the muscles to

maintain the desired wrist orientation.
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It was expected that scaling forces with respect to anatomical ratios drawn from PCSA data

will ultimately reduce the overall force across the wrist and result in less dramatic fluctuations

during motion from sudden adjustments to the tone loads. Passive and active motion trials were

performed in a gravity neutral (vertical) position through 50 degrees flexion to 50 degrees ex-

tension while maintaining non-planar motion to zero. Passive trials used equal tendon loading

and maintained a minimum tone of 8.9 N for each muscle through the full range of motion. To

determine the effect of portioning the repeatability of motion and change in loading, scaling

trials were compared to the default condition with all tendon having equal magnitudes. To

summarize, three simulation approaches were employed: (1) passive manipulation, (2) equal

tendon loading, and (3) PCSA ratio loading.

For PCSA ratios the tendon with the largest contribution was set to the upper limit at 100.0%

scaling of the original portion while the percent contribution of the remaining tendons were

calculated with respect to this value. Table 4.1 illustrates the relative values for each muscle

in each of the methods and their calculated percentages within the flexor and extensor groups

[3]. The portions were implemented on the simulator in the flexion-extension plane of motion

by restricting the target loads of each tendon accordingly while maintaining an absolute lowest

value of 8.9 N as reported by Werner [18]. No portioning was applied to the radial or ulnar

deviator groups for this investigation as this was a preliminary study to prove the concept of

muscle portioning in active motion.

Table 4.1: Relative sizes of PSCA [cm2] for the flexor and extensor muscle groups with the percent

of total calculated from the sum of each group [3]

PCSA %
Flexors
FCU 3.4 100.0
FCR 2.0 58.8

Extensors
ECRB 2.7 100.0
ECU 2.6 96.3
ECRL 1.5 55.6
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4.3 Results

4.3.1 Repeatability of Motion Trials

4.3.1.1 In-Plane Motion Profiles

Both active motion trials were more repeatable then those produced using passive motion as

illustrated by Figure 4.1 & 4.2. Passive motion trials were more variable in both flexion and

extension as indicated by the magnitude of standard deviation with respect to the active trials as

they were clearly distinguishable while the active motion plots for the equal tendon loading and

PSCA ratio portions were not. In extension, all three experiments performed with similar error

with respect to the target position with exception to the beginning of motion for active trials.

An initial latency was present for both active loading techniques that was not present during

passive motion trials resulting in an overcompensation of position at 4 s eventually settling

down near zero error after 12 s of motion. Note that this trend was repeated very consistently

between active trials and cannot be considered random error rather a behaviour inherited from

the PID controller logic. The magnitudes of standard deviation between trial in flexion were

similar to those in extension, however the latency in position was not present and active motion

trials performed repeatably at near zero error as of 4 s in to the trial.
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Figure 4.1: Repeatability of extension motion showing average motion trial [red], target angle

[dashed black line], and standard deviation [gray lines]. The average trial error from the target is

represented as green [passive], blue [equal loading], or orange [PCSA ratio]
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Figure 4.2: Repeatability of flexion motion showing average motion trial [red], target angle

[dashed black line], and standard deviation [gray lines]. The average trial error from the target is

represented as green [passive], blue [equal loading], or orange [PCSA ratio]
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4.3.1.2 Non-Planar Deviations

There were no notable differences in out-of-plane active motion, that being tendency to ab-

ductor or adduct during FEM motion, between the two portioning techniques in either flexion

or extension (Figure 4.3). The similar performance was most likely occurred because there

was no tendon portioning was applied to the radial or ulnar deviator muscle groups and were

identical between trials. However, the trials with the PCSA loading ratio were more consis-

tent with respect to the equal tendon loading trials with standard deviation between all trials

approximately 15.7% lower during extension and 32.8% lower during flexion.
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Figure 4.3: Repeatability of experimental motion [solid lines] with respect to desired [dashed line]

for out plane motion (RUD plane) during PCSA portioned [red] and equal loading [black] loaded

scenarios in extension [left] and flexion [right]
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4.3.2 Repeatability of Tendon Forces

An effect of portioning the tendon forces was found to reduce overall force during extension

but not in flexion as seen in Figure 4.4. The latency observed from the motion trials carries

through to the force data as an inherent characteristic of the PID controller; since there exists a

larger magnitude of error between the actual and desired angles the proportional constant will

ultimately increase the forces to reduce error. Once the PCSA portioned trials ’catch up’ dur-

ing extension, there is a noticeable difference of 5-10 N between the trials with PCSA falling

below that of the default state. The same trend is present during flexion trials, however the

effect is too subtle to state any differences.
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Figure 4.4: The sum of all tendon forces averaged between trials for extension [left] and flexion

[right] motions comparing equal loading [black] to the PCSA portioning [red]
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4.4 Discussion

There were no apparent difference in the performance of planar FEM motion trials between

equal loading and PCSA portioned methods, however evidence of subtle improvements to per-

formance in the later regions of motion and decreased overall forces supports the need for

further investigation.

4.4.1 Effects of Portioning on the Motion Profile

The latency for achieving steady state extension motion in portioned trials was most likely at-

tributed to the combination of the behaviour of the force controllers and the portioning method

itself that establishes a primary mover. The onset of the latency occurred at the inception of

extension motion where there had been a reduction of total extensor force available by 16.0%

requiring the majority of load to be provided by the ECRB and ECU muscles. Naturally, the

larger load required by these two muscles to compensate for the restricted ECRL would take a

longer time to reach, under identical PID parameters for the position-force controllers, as well

as overshoot the target upon reaching the desired angle. These behaviours may be reduced

with further tuning of the position-force controller parameters used to move the wrist along the

desired path. Flexion motion on the other hand did not behave any differently between either

of the portioning methods regardless of a 41.2% reduction to the FCR (20.2% overall reduc-

tion to flexor group). This was most probably the result of larger moment arms present for the

FCR and FCU with respect to the extensor muscles (with exception of the ECRB) therefore

increasing the influence of motion over the extensors.

There was no apparent difference between out-of-plane deviations during motion with regards

to error from desired path, but there was a considerable decrease in variance of motion between

the portioned and default loading conditions. Understanding that the FCR and ECRL were re-

stricted by 41.2% and 44.4% respectively the unintentional tendency to induce radial deviation

during sudden fluctuations in the extensor or flexor forces seemed to subside and result in a

smoother motion profile as seen in Figure 4.3.
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4.4.2 Effects of Portioning on Magnitude of Forces

Portioning the tendon forces only influenced the performance of the arm during extension

trials where a noticeable decrease in overall force was present in the second half of the trial.

This provides evidence that the ECRL may be more influential as a wrist abduction, due to

its insertion on the second metacarpal, and less as an extensor with respect to the ECRB with

its insertion onto the third metacarpal. By portioning the ECRL the wrist had less tendency

to abduct during extension and required less corrective forces from the adductors to eliminate

non-planar motion resulting in overall lower magnitudes of force across the wrist.

4.4.3 Developing Tendon Portioning Ratios

Where there is an abundance of published literature on loading ratios derived from PCSA, mo-

ment arms, and EMG data for the pronator quadratus and biceps brachii muscles in forearm

rotation as used by Gordon et al. or for the deltoid and rotator cuff muscles during shoulder

motion as used by Giles et al., there remains a shortage of data necessary for developing accu-

rate loading conditions of the wrist during motion. Published data on the PCSA and moment

arm of forearm muscles as well as the EMG contributions of flexor and extensor muscles as

groups are readily available in literature but there remains a lack of availability of individual

EMG data on the extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi

ulnaris, flexor carpi radialis, and flexor carpi ulnaris during motions of the wrist. Without

this insight from the EMG data it remains largely speculative as to what the individual force

contributions actually are and must be drawn from PCSA and MA data until available.

This study has limitations. First, attempts to implement portioning ratios established from the

combination of moment arm and PCSA data were unsuccessful in providing a suitable means

of actuation as the reduction for the extensors was too great to overcome the flexors past the

point of inflection (neutral wrist position). Deficiencies were present in the process from which

these ratios were established and their failure cannot be attested to a lack a relevance. Second,

only one specimen was tested due to time constraints present. More specimens are required for

a complete quantitative analysis on the effects of the PCSA portioning on wrist kinematics.
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4.5 Conclusions

Portioning is a well established method for modeling in-vivo conditions during active motion

cadaveric studies as demonstrated by several investigators already for the shoulder, elbow, and

forearm. Loading ratios drawn from PCSA data demonstrated the potential to reduce inter-trial

variance as well as lower overall force across the wrist by 5-10 N when tuned accordingly.

Further tuning may reduce the latency present in the first half of the portioned trials to sus-

tain steady state motion which would make this the desirable method over the current default

loading conditions for further investigations. Future work will investigate deeper into loading

ratios drawn from EMG signals as published data becomes more readily available.
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Chapter 5

General Discussion & Conclusions

OVERVIEW: This chapter reviews the objectives and hypotheses outlined in Chap-

ter 1 (Section 1.4). The steps taken during the development of the simulator and

decisions for the method of approach are highlighted. The strengths and weak-

nesses are reviewed, as are the testing methods used to validate the performance

of the wrist simulator and compare it to other existing simulators. Finally, an

outline for future work to further improve simulator performance and the clinical

research is proposed.
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5.1 Summary

The understanding of wrist kinematics in-vivo is crucial when quantitatively analyzing repar-

ative methods such as fracture fixation, arthroplasty, and ligament repair with respect to the

healthy state. In Chapter 2 the process behind the design and development of an active mo-

tion simulator was outlined with emphasis on the rationale for the methods of actuation and

tracking. The seven tendons of interest for controlling wrist motion and forearm rotation were

sutured and attached to a manifold of seven electric servomotors (SM2316D-PLS2, SMI An-

imatics Corp., CA) responsible for applying forces. Each motor was instrumented with a full

bridge style strain gage (Vishay Precision Group, Raleigh, NC) and calibrated (Appendix B)

to provide force feedback. The simulator was able to maintain target tendon loads and ef-

fectively simulate passive motion trials comparable to the simulator used by Nishiwaki et al.

[1, 2]. Using optical tracking methods (Certus Optotrak, Northern Digital Inc., VT), the rel-

ative positions of the third metacarpal, radius, and ulna were obtained to provide real time

positional feedback to the system without restricting the material compatibilities present with

electromagnetic tracking. The tendons were divided into four quadrants; flexors, extensors,

radial deviators, and ulnar deviators to influence motion of the wrist in flexion-extension and

radioulnar deviation. Using a minimum tone load of 8.9 N the muscle groups were activated

to produce motion in the desired direction. A cascade PID controller was developed to limit

positional error between the actual and desired wrist position by adjusting the balance of forces

between the muscle quadrants.

Objectives 1 & 2 outlined the generic performance requirements of the simulator based off

existing simulator platforms. These were satisfied in Chapter 2 as the simulator was successful

in reproducing motions in all planes of the wrist. Five cadaver specimens were tested for planar

motion for flexion-extension and radioulnar deviation in a gravity neutral position which ulti-

mately was the least stable position to generate motion due to the shifting gravitational effects

at neutral wrist position. Motion trials were collected in each of the planes from 50 degrees

flexion to 50 degrees extension for FEM and 20 degrees ulnar deviation to 10 degrees radial

deviation. Static trials were then performed through each range of motion at intervals of 10
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degrees for FEM and 5 degrees for RUD to gain an understanding of the stability of the wrist

at each stage of motion. Overall, the simulator was able to produce motion along a pathway to

within 0.3 ± 0.4◦ between trials which exceeded the objective of 1 degree.

Chapter 3 outlined the steps taken to satisfy Objective 3 by investigating the effects of grav-

ity on the ability for the simulator to produce repeatable motion as well as comment on the

kinematic differences between planar motion, non-planar motion, and force trends. As hypoth-

esized, the force trends between the gravity loaded positions showed noticeable increases in the

muscles groups responsible for opposing gravitational forces; the flexor group was greater in

gravity loaded flexion and the extensor group was larger in gravity loaded extension. However,

the position of the arm had no significant effect on either the repeatability or motion profile in

the FEM plane as discussed in Chapter 3 (Section 3.4). The tendon force distribution to hold

a static neutral position in gravity flexion and extension positions compared closely to those

reported by Dunning et al. [3] with minor discrepancies that arose from differences in forearm

position between studies; Dunning reported forces in supination and pronation while ours re-

ported in neutral forearm rotation.

Chapter 4 focused on an early investigation into the effects of portioning the tendon loads

to more closely match those present in-vivo used ratios drawn from published literature on the

physiological cross sectional area (PCSA) [4, 5, 6, 7, 8, 9, 10]. These ratios interfered with

the tuning parameters of the PID controller introducing a latency at the onset of motion during

each trial due to the restricted tendon forces. Overall, the PCSA reduced the trial variation and

produced smoother motion as a result of a restriction to the flexor carpi radialis and extensor

carpi radialis longus tendons that ultimately reduced the tendency of the wrist to rotate radially

during flexion or extension motion trials.
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5.2 Strengths & Limitations

To our knowledge, the simulator developed in this thesis was the first ever with capabilities of

performing both passive and actionin-vitro motion trials as well as having the freedom to test

flexion-extension and radioulnar deviation between three gravity loaded positions. Using opti-

cal cameras to track the relative positions of the bones removes the limitations of using ferric

materials in the proximity of the study as is present with electromagnetic tracking systems used

by other investigators. This freedom allows for the use of conventional fasteners and apparatus

for collecting data such as load cells, eliminating the need for custom designed plastic com-

ponents. Using electric servo motors provided a more desirable resolution and more precise

increments in position than attainable by hydraulic or pneumatic actuators used by others.

The simulator and investigations presented in this thesis have some limitations. Optical track-

ing requires a line of sight between the cameras and trackers to maintain a fix on the position,

requiring the investigation design to adapt to these needs that could possibly hinder the process.

For instance, during attempted pronation-supination trials the trackers rotated out of view of

the camera after 40 degrees of rotation, hence multi-bodied trackers would be needed to in-

corporate forearm rotation into investigations. The investigations discussed in this thesis used

elderly cadavers which are suboptimal due to the poor bone quality and degrading articulator

cartilage generally present in the joints of these specimens. However, elderly specimens were

acceptable as the purpose of this thesis was to validate the performance of the active motion

simulator and there were no clinical measures being performed. Finally, studies only consid-

ered static positions and motion trials along a single plane (FEM or RUD) and did not perform

multi-planar motions such as the dart throw which would have provided an understanding of

the simulator’s ability to follow two continually changes target positions.
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5.3 Current & Future Directions

The simulator satisfied the objectives outlined at the beginning of the study in Chapter 1 (Sec-

tion 1.10), however there are a variety of avenues ahead to further improve the performance of

motion trials. Future studies will look further into tendon loading ratios developed from pub-

lished data on moment arms, physiological cross sectional area, and electromyography signals

to more accurately model in-vivo conditions during motion trials as well as a specific PID tun-

ing process to reduce the latency present at the onset of motion. With the simulator able to

accurately reproduce motion trials in all three positions, there are several clinical studies on

the horizon. One such study is the investigation into the contribution and behaviour of indi-

vidual carpal bones (scaphoid, lunate, capitate) during wrist motion, requiring three additional

trackers to be incorporated into the apparatus design. As there are already reports published

by Nishiwaki et al. in a neutral gravity position it will act a benchmark to compare to before

continuing to gravity loaded flexion and extension positions.

The list of clinically relevant studies that can be undertaken now is very robust. A series of

studies of the kinematics and stability of the carpal bones, both intact and subsequent to injury

and repair, is needed and can be achieved readily using this system. Implant development for

wrist replacements is in its infancy, but is an exciting clinical option. However, a wide range of

biomechanical studies will be required, and the simulator herein is well positioned to undertake

this task. Also, a series of studies looking into the influence of forearm instabilities and repairs

can also be easily conducted. A relatively new field that is emerging and lacks research is the

kinematic effects of dynamic wrist bracing for post-operative support or preventative injury for

sports. Braced versus unbraced motion trials while tracking the third metacarpal, radius, ulna,

and the carpal bones of interest would provide valuable insight into how bracing actually effects

the kinematics of the wrist. However, given that braces generally require rigid components on

the dorsal and volar surfaces of the wrist to provide the necessary support, access to the carpal

bones becomes a challenge and may require custom designed components and modifications to

allow for tracking without tracker impingement. This will be well-suited using the technology

developed in this treatise.
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Appendix A

Establishing Bone Coordinate Systems

Coordinate systems for the ulna, radius, and third metacarpal were established in accordance

to ISB standards outlined in Chapter 1 (Section 1.5). Methods for establishing coordinate

systems for the ulna and radius were adapted from previous research at our laboratory, however

no convention previously existed for referencing a metacarpal bone. The following section

outlines the bony landmarks digitized for each bone, after denuding, and the process used to

create a left/right standard reference frame.

131



132 Chapter A. Establishing Bone Coordinate Systems

A.1 Local Reference Frame: Ulna

The coronoid process (CP), ulnar styloid process (US), and a distal medial aspect of distal head

(UM) were digitized as points and a trace following the circumference of the trochlear notch

was collected (Figure A.1). From these points, a vector was drawn between the CP and UM to

establish a midpoint that would serve as the distal point for the longitudinal axis. The centroid

from the trochlear notch trace was determined using the circle fitting algorithm from Appendix

D and was set to the proximal point for the longitudinal axis of the ulna. The midpoint of the

longitudinal axis was set as the origin (UO) of the ulnar coordinate system from which the

remaining vectors were related to. For a left arm, a vector was established between UO and

the distal point of the longitudinal axis, v1, to establish the y axis directed distally. A reference

vector was created from UO and US, v2, to define a plane along the y-axis. The x axis was

established by crossing v2 with v1 (v2 × v1) so positive x was directed dorsally. For a right

arm, a vector was established between UO and the proximal point of the longitudinal axis,v1,

to establish the y axis directed proximally. A reference vector was created from UO and US,

v2, to define a plane along the y-axis. The x axis was established by crossing v2 with v1 (v2 ×

v1) so positive x was in the volar direction. Regardless of side, the x axis was crossed with the

y axis (x × y) to establish the z axis.

Figure A.1: An ulnar coordinate system is established from bony landmark digitizations of the

ulnar styloid [A], distal medial head [B], coronoid process [C], and olecranon process [D] and the

calculated locations of the trochlear notch centroid [E] and origin [O]
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A.2 Local Reference Frame: Radius

The radial styloid process (RS), dorsal sigmoid notch aspect (DSiN), proximal radial dish

(RD) and volar sigmoid notch aspect (VSiN) were digitized and the proximal radial dish was

traced with the stylus (Figure A.2). Using an open source sphere fitting algorithm (Appendix

D), the proximal radial dish trace was matched to a sphere to determine the approximate cen-

troid, however if the articular surface was damaged or flat then the RD was substituted. Either

of these points served as the proximal point for the longitudinal axis. A vector was drawn be-

tween dorsal and volar sigmoid notch aspects from which a midpoint was established. Another

vector was then drawn from this midpoint to the RS; the midpoint of this vector established

the distal point of the longitudinal axis of the radius. The midpoint of the longitudinal axis

was set as the origin (RO) of the radial coordinate system from which the remaining vectors

were related to. For a left arm, a vector was established between RO and the distal point of the

longitudinal axis, v1, to establish the y axis directed distally. A reference vector was created

from RO and RS, v2, to define a plane along the y-axis. The x axis was established by crossing

v2 with v1 (v2 × v1) so positive x was directed dorsally. For a right arm, a vector was established

between RO and the proximal point of the longitudinal axis,v1, to establish the y axis directed

proximally. A reference vector was created from RO and RS, v2, to define a plane along the

y-axis. The x axis was established by crossing v2 with v1 (v2 × v1) so positive x was in the volar

direction. The x axis was crossed with the y axis (x × y) to establish the z axis.

Figure A.2: A radial coordinate system is established from bony landmark digitizations of the

radial styloid [A], dorsal sigmoid notch aspect [B], and volar sigmoid notch aspect [C] and the

calculated locations of mid-sigmoid notch [D], distal longitudinal marker [E], proximal longitudi-

nal marker [F], and the origin [O]
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A.3 Local Reference Frame: Metacarpal

Note: This is a novel method designed for the purpose of this investigation to

apply a reference frame to the third metacarpal that conforms to the ISB standards

outlined in Chapter 1 (Section 1.5).

The proximal head centroid (PH), distal head centroid (DH), dorsal-radial aspect (DR), and

dorsal-ulnar aspect (DU) were collected. A vector was drawn between proximal and distal

centroids to serve as the longitudinal axis of the third metacarpal (Figure A.3). The midpoint

of the longitudinal axis was set as the origin (MO) of the metacarpal coordinate system from

which the remaining vectors were related to. A vector was drawn between the radial and ulnar

dorsal aspects to establish a midpoint, Pmid, that served as a reference point for establishing

the z axis. For a left arm, a vector was established between MO and the distal point of the

longitudinal axis, v1, to establish the y axis directed distally. A reference vector was created

from MO and Pmid, v2, to define a plane along the y-axis. The z axis was established by crossing

v2 with v1 (v2 × v1) so positive z was directed ulnarly. For a right arm, a vector was established

between MO and the proximal point of the longitudinal axis,v1, to establish the y axis directed

proximally. A reference vector was created from MO and Pmid, v2, to define a plane along the

y-axis. The z axis was established by crossing v2 with v1 (v2 × v1) so positive z was directed

radially. Regardless of side, the y axis was crossed with the z axis (y × z) to establish the x

axis.

Figure A.3: A metacarpal coordinate system is established from bony landmark digitizations of the

distal head [A], proximal head [B], dorsal radial aspect [C], and dorsal ulnar aspect [D] and the

calculated location of the origin [O]
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A.4 Applying Local Transforms

With the local coordinate systems established, the transformation matrices from each bone with

respect to its tracker were used to relate the raw tracker data to each bone. Using transformation

chains, as discussed in Chapter 1 (Section 1.4.2), raw tracker data in the global frame was

manipulated to describe bone to bone motions by using a serious of steps; bone to tracker,

tracker to global, global to tracker, and tracker to bone. The two transformations for this thesis

were the relation of the third metacarpal to the radius (Equation A.1), and the radius to the ulna

(Equation A.2).

MC
R T = MC

C1 T C1
G T G

C2T C2
R T (A.1)

R
UT = R

C2T C2
G T G

C3T C3
U T (A.2)

Where C1, C2, and C3 refer to the optical trackers (Certus Optotrak, Northern Digital Inc.,

VT) attached to the third metacarpal, radius, and ulna respectively.



Appendix B

Force Transducer Calibration

B.1 Validation of a Load Cell

To ensure that the load cell (Model 31 Low, Honeywell, NJ) was capable of providing reliable

force data, a series of known masses were hung in small increments with the load cell in a

vertical orientation; note that the load cell was zeroed before the first mass was applied. The

default calibration for the load cell was in strong agreement with the masses with a coefficient

of determination of R2 = 0.9952 and an average error of 0.17±0.03g (Figure B.1).
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Figure B.1: The load cell was validated by hanging masses of known quantities in incremental and

had an R2 value of 0.9952
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B.2 Force Transducer Calibration

Since each force transducer was made in house there using two 90 degree tee rosette strain

gages each (Vishay Precision Group, Raleigh, NC), there was no guarantee of consistency be-

tween units. The calibration was a three stage process that gained an initial calibration for gain

and bias, tested the calibration against the load cell, and then checked for error between gravity

loaded positions First, the load cell was attached in line between the motor and a rigid attach-

ment to the simulator; note that the line of action was maintained perpendicular to the motor as

would be relevant during testing. To reduce the magnitude of spikes in force, spring was added

between the load cell and simulator to allow small fluctuations in motor position. The motor

position was incremented by small steps of approximately 5 N and 5 samples were recorded

at each position to compare to the load cell force and strain reading from the transducer to

obtain the gain and bias for each unit. Unloaded measurements at rest states had a standard

deviation of 0.09 N due to measurement noise. Next, the experiment was repeated for the same

transducer but instead the strain value, the calibrated force value was collected with respect to

the load cell force and then replotted to confirm agreement between methods. If correlation

was poor (R2 < 0.95) then the first two steps were repeated. Finally, the simulator was rotated

into the gravity loaded positions and the experiment was repeated again for each with the same

gain and bias values determined from the gravity neutral position. All correlations collected

were larger than 0.99, suggesting a very strong agreement with the load cell. Note: when ro-

tating between gravity loaded positions there was a shift in bias for each load cell which was

compensated by zeroing the data at the begin off each trial.
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Simulator Mechanical Drawings
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D.1 BSD License

Copyright (c) 2014, Florian Knorn,

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-

CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LI-

ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-

CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
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D.2 3D Circle Fitting MATLAB Algorithm

function [center,rad,v1n,v2nb] = circlefit3d(p1,p2,p3)
% circlefit3d: Compute center and radii of circles in 3d which are defined
% by three points on the circumference
%
% usage: [center,rad,v1,v2] = circlefit3d(p1,p2,p3)
%
% arguments: (input)
% p1, p2, p3 - vectors of points (rowwise, size(p1) = [n 3])
% describing the three corresponding points on the same circle.
% p1, p2 and p3 must have the same length n.
%
% arguments: (output)
% center - (nx3) matrix of center points for each triple of points in
% p1, p2, p3
%
% rad - (nx1) vector of circle radii.
% if there have been errors, radii is a negative scalar
% ( = error code)
%
% v1, v2 - (nx3) perpendicular vectors inside circle plane
%
% Example usage:
%
% (1)
% p1 = rand(10,3);
% p2 = rand(10,3);
% p3 = rand(10,3);
% [center, rad] = circlefit3d(p1,p2,p3);
% % verification, result should be all (nearly) zero
% result(:,1)=sqrt(sum((p1-center).ˆ2,2))-rad;
% result(:,2)=sqrt(sum((p2-center).ˆ2,2))-rad;
% result(:,3)=sqrt(sum((p3-center).ˆ2,2))-rad;
% if sum(sum(abs(result))) < 1e-12,
% disp('All circles have been found correctly.');
% else,
% disp('There had been errors.');
% end
%
%
% (2)
% p1=rand(4,3);p2=rand(4,3);p3=rand(4,3);
% [center,rad,v1,v2] = circlefit3d(p1,p2,p3);
% plot3(p1(:,1),p1(:,2),p1(:,3),'bo');hold on;plot3(...
% p2(:,1),p2(:,2),p2(:,3),'bo');plot3(p3(:,1),p3(:,2),p3(:,3),'bo');
% for i=1:361,
% a = i/180*pi;
% x = center(:,1)+sin(a)*rad.*v1(:,1)+cos(a)*rad.*v2(:,1);
% y = center(:,2)+sin(a)*rad.*v1(:,2)+cos(a)*rad.*v2(:,2);
% z = center(:,3)+sin(a)*rad.*v1(:,3)+cos(a)*rad.*v2(:,3);
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% plot3(x,y,z,'r.');
% end
% axis equal;grid on;rotate3d on;
%
%
% Author: Johannes Korsawe
% E-mail: johannes.korsawe@volkswagen.de
% Release: 1.0
% Release date: 26/01/2012

% Default values
center = [];rad = 0;v1n=[];v2nb=[];

% check inputs
% check number of inputs
if nargin~=3,

fprintf('Error: cirlefit3d\nThree input matrices are needed.\n');
rad = -1;return;

end
% check size of inputs
if size(p1,2)~=3 | | size(p2,2)~=3 | | size(p3,2)~=3,

fprintf('Error: cirlefit3d\nInput matrices must have 3 columns.\n');
rad = -2;return;

end
n = size(p1,1);
if size(p2,1)~=n | | size(p3,1)~=n,

fprintf('Error: cirlefit3d\nAll input matrices must have the same number or rows.\n');
rad = -3;return;

end
% more checks are to follow inside calculation

% Start calculation
% v1, v2 describe the vectors from p1 to p2 and p3, resp.
v1 = p2 - p1;v2 = p3 - p1;
% l1, l2 describe the lengths of those vectors
l1 = sqrt((v1(:,1).*v1(:,1)+v1(:,2).*v1(:,2)+v1(:,3).*v1(:,3)));
l2 = sqrt((v2(:,1).*v2(:,1)+v2(:,2).*v2(:,2)+v2(:,3).*v2(:,3)));
if find(l1==0) | find(l2==0), %#ok<OR2>

fprintf('Error: cirlefit3d\nCorresponding input points must not be identical.\n');
rad = -4;return;

end
% v1n, v2n describe the normalized vectors v1 and v2
v1n = v1;for i=1:3, v1n(:,i) = v1n(:,i)./l1;end
v2n = v2;for i=1:3, v2n(:,i) = v2n(:,i)./l2;end
% nv describes the normal vector on the plane of the circle
nv = [v1n(:,2).*v2n(:,3) - v1n(:,3).*v2n(:,2) , v1n(:,3).*v2n(:,1)...

- v1n(:,1).*v2n(:,3) , v1n(:,1).*v2n(:,2) - v1n(:,2).*v2n(:,1)];
if find(sum(abs(nv),2)<1e-5),

fprintf('Warning: cirlefit3d\nSome corresponding input points are nearly collinear.\n');
end
% v2nb: orthogonalization of v2n against v1n
dotp = v2n(:,1).*v1n(:,1) + v2n(:,2).*v1n(:,2) + v2n(:,3).*v1n(:,3);
v2nb = v2n;for i=1:3,v2nb(:,i) = v2nb(:,i) - dotp.*v1n(:,i);end
% normalize v2nb
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l2nb = sqrt((v2nb(:,1).*v2nb(:,1)+v2nb(:,2).*v2nb(:,2)+v2nb(:,3).*v2nb(:,3)));
for i=1:3, v2nb(:,i) = v2nb(:,i)./l2nb;end

% remark: the circle plane will now be discretized as follows
%
% origin: p1 normal vector on plane: nv
% first coordinate vector: v1n second coordinate vector: v2nb

% calculate 2d coordinates of points in each plane
% p1 2d = zeros(n,2); % set per construction
% p2 2d = zeros(n,2);p2 2d(:,1) = l1; % set per construction
p3 2d = zeros(n,2); % has to be calculated
for i = 1:3,

p3 2d(:,1) = p3 2d(:,1) + v2(:,i).*v1n(:,i);
p3 2d(:,2) = p3 2d(:,2) + v2(:,i).*v2nb(:,i);

end

% calculate the fitting circle
% due to the special construction of the 2d system this boils down to solving
% q1 = [0,0], q2 = [a,0], q3 = [b,c] (points on 2d circle)
% crossing perpendicular bisectors, s and t running indices:
% solve [a/2,s] = [b/2 + c*t, c/2 - b*t]
% solution t = (a-b)/(2*c)

a = l1;b = p3 2d(:,1);c = p3 2d(:,2);
t = 0.5*(a-b)./c;
scale1 = b/2 + c.*t;scale2 = c/2 - b.*t;

% centers
center = zeros(n,3);
for i=1:3,

center(:,i) = p1(:,i) + scale1.*v1n(:,i) + scale2.*v2nb(:,i);
end

% radii
rad = sqrt((center(:,1)-p1(:,1)).ˆ2+(center(:,2)-p1(:,2)).ˆ2+(center(:,3)-p1(:,3)).ˆ2);
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D.3 3D Sphere Fitting MATLAB Algorithm

function [center,radius,residuals] = spherefit(x,y,z)
% Fit a sphere to data using the least squares approach.
%
% Fits the equation of a sphere in Cartesian coordinates to a set of xyz
% data points by solving the overdetermined system of normal equations, i.e.
% xˆ2 + yˆ2 + zˆ2 + a*x + b*y + c*z + d = 0
% The least squares sphere has radius R = sqrt((aˆ2+bˆ2+cˆ2)/4-d) and
% center coordinates (x,y,z) = (-a/2,-b/2,-c/2).
%
% Input arguments:
% x,y,z:
% Cartesian coordinates of noisy data points
%
% Output arguments:
% center:
% coordinates of the least-squares fit sphere center
% radius:
% least-squares fit sphere radius
% residuals:
% residuals in the radial direction
%
% Examples:
% [center,radius,residuals] = shperefit(X)
% [center,radius,residuals] = spherefit(x,y,z);

% Copyright 2010 Levente Hunyadi

narginchk(1,3);
n = size(x,1);
switch nargin % n x 3 matrix

case 1
validateattributes(x, {'numeric'}, {'2d','real','size',[n,3]});
z = x(:,3);
y = x(:,2);
x = x(:,1);

otherwise % three x,y,z vectors
validateattributes(x, {'numeric'}, {'real','vector'});
validateattributes(y, {'numeric'}, {'real','vector'});
validateattributes(z, {'numeric'}, {'real','vector'});
x = x(:); % force into columns
y = y(:);
z = z(:);
validateattributes(x, {'numeric'}, {'size',[n,1]});
validateattributes(y, {'numeric'}, {'size',[n,1]});
validateattributes(z, {'numeric'}, {'size',[n,1]});

end

% need four or more data points
if n < 4
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error('spherefit:InsufficientData', ...
'At least four points are required to fit a unique sphere.');

end

% solve linear system of normal equations
A = [x, y, z, ones(size(x))];
b = -(x.ˆ2 + y.ˆ2 + z.ˆ2);
a = A \ b;

% return center coordinates and sphere radius
center = -a(1:3)./2;
radius = realsqrt(sum(center.ˆ2)-a(4));

if nargout > 2
% calculate residuals

residuals = radius - sqrt(sum(bsxfun(@minus,[x y z],center.').ˆ2,2));
elseif nargout > 1

% skip
else

% plot sphere
hold all;
sphere gd(6,radius,center);
hold off;

end



Appendix E

The Effects of Tissue Degradation on
System Performance: An 18 Hour Test

Investigations discussed in this thesis generally ran longer than 18 hours due to the large

amount data that had to be collected and debugging required as this was the first series of

tests undertaken. A paper published by King et al. reported significant degradation of cyclic

peak loads in dense connective tissues of 8.6 ± 4.6% over an 18 hour period (p < 0.0001) at

room temperature (23 ± 2◦C) which raises a concern with the validity of data collected in this

thesis. To determine whether there was a significant difference in the repeatability over time a

specimen was tested in a gravity neutral position through a range of FEM (5 cycles) immedi-

ately after specimen preparation was complete (t-0) and then remained room temperature for

an 18 hour period (undergoing testing) before testing again at the end of the 18 hour period

(t-18).

The average standard deviation (ASD) for flexion-extension motions at t-0 and t-18 were

0.14◦ and 0.18◦ with average error never exceeding 0.24◦ and 0.29◦ respectively. A one-way

(time) repeated measures (RM) ANOVA was performed on the average error of each trail set to

identify differences between samples, however no significant difference was present (p<0.05).

Therefore, regardless of the degradation of dense connective tissues over an 18 hour period in

standard room temperature there is no effect on the ability of the simulator to perform repeat-

able trials. However, attention should be paid to studies that investigate articulations of the

joint as they could very well be an effect present there.
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Appendix F

Bone Tracker Design

For the purpose of this thesis optical triad-cluster trackers (Certus Optotrak, Northern Digi-

tal Inc., VT) were mounted to the third metacarpal, radius, and ulna using custom designed

mounts. The parts were designed using a 3D CAD program (SolidWorks, Dassault Systemes,

MA) and fabricated using 3D printing rapid prototyping methods (Replicator, MakerBot, NY)

using polylactic acid (PLA) filament which allowed for unique geometries and properties un-

available by conventional fabrication methods. Each part was printed using a 10% infill option

that builds with a honeycomb structure on inside of the component to effectively reduce weight

by approximately 90%. This reduction in weight was intended to reduce the overall effect of

the trackers on the center of mass of the bones they were attached to. The benefits of using 3D

printed parts arise from the ability to rapid prototype a series of components, each with minor

modifications to the rest, in a short amount of time for extremely lost costs when compared

to prices charged by machine shops. Multiple parts may be printed in a single batch and can

have unique geometries that involve splines and curves that would require complicated CNC

mills to reproduce. Not to mention that 3D printing is totally awesome. Although each tracker

was unique, there were two similarities between them; the first being the mounting holes for

the optical tracker to mount to, and the second being the V-notch where the mount attaches

to the bone to maximize the amount of surface area in contact with the bone. Care was taken

to ensure that the tracker was mounted at an appropriate angle to the camera throughout the

motion trials in the investigation. Figures F.1 displays the design and positioning of the optical

tracker mounts.
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Curriculum Vitae
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DUNCAN J. IGLESIAS

EDUCATION 

2015-PRESENT BACHELOR OF COMPUTER SCIENCE (BSC), SPECIALIZATION IN COMPUTER SCIENCE 

University of Western Ontario, London, Ontario 

2013-2015 MASTER OF BIOMEDICAL ENGINEERING (MESC), BIOMECHANICS WITH COLLABORATION IN 

MUSCULOSKELETAL HEALTH RESEARCH (CMHR) 

University of Western Ontario, London, Ontario 

 Focus: Mechatronics, Wrist Kinematics & Biomechanics 

2008-2013 BACHELOR OF APPLIED SCIENCE (BSC), MECHANICAL ENGINEERING (OPT. BIOMECHANICS) 

WITH PROFESSIONAL INTERNSHIP 

Queen’s University, Kingston, Ontario 

   Focus: Mechatronics, Biomechanics, Robotics, Computer-Aided Design, FEA 

 Internship: Reliability Intern - INVISTA Canada Kingston Site (Kingston, Ontario) 

RESEARCH INTERESTS 

BIOMEDICAL    - BIOMECHANICS AND KINEMATICS OF HUMAN JOINTS 

- IN-VITRO ASSESSMENTS OF STANDARD/NOVEL SURGICAL TECHNIQUES 

- MECHATRONIC SYSTEM DEVELOPMENT AND THIRD PARTY SOFTWARE INTERFACING 

- JOINT ARTHROPLASTY ASSESSMENT AND PROTOTYPE DEVELOPMENT    

AERO SPACE    - UNMANNED AERIAL VEHICLE (UAV) DESIGN & DEVELOPMENT 

      - AUTONOMOUS NAVIGATION & STABILIZATION OF MULTIROTOR VEHICLES 

RESEARCH EXPERIENCE 

2013-PRESENT   GRADUATE RESEARCH PROJECT (THESIS) – ACTIVE WRIST MOTION SIMULATOR 

      University of Western Ontario, London, Ontario 

Designed & Developed a Simulator to Reanimate Cadaver Upper Limbs for the 

Investigation of Wrist Kinematics using LABVIEW and NDI Optical Tracking 

2012-2013    DESIGN & IMPLEMENT CAPSTONE PROJECT – NIAGARA PROSTHETICS & ORTHOTICS 

      Queen’s University, Kingston, Ontario 

Further Developed & Tested a Load Dispersal Implant for Transfemoral 

Amputees to Increase the Functionality of Lower Limb Prosthetics 

2013 UNDERGRADUATE RESEARCH PROJECT (THESIS) – WALKING GAIT FOOT MONITOR 

Queen’s University, Kingston, Ontario 

Designed & Developed a Wireless Wearable Mechatronic Device to Monitor Toe 

Clearance during Walking Gait and Report the Patient’s Likelihood of Tripping  

2013 ROBOTIC SYSTEMS - FINAL PROJECT 

Queen’s University, Kingston, Ontario 

Focus: Multi-Link Systems, Hazardous Environment, Kinematics 
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2012 HUMAN BIOMECHANICS - FINAL PROJECT 

Queen’s University, Kingston, Ontario 

Assessed the Differences in Knee Motion during Squatting With and Without 

Shoes using NDI Optical Tracking and a Custom MATLAB Point Filter 

2012 COMPUTER AIDED DESIGN - FINAL PROJECT 

Queen’s University, Kingston, Ontario 

Optimized the Geometry of a Commercial DJI Quadcopter Arm for Inflight 

Parameters Using ANSYS with the Input Point Script Built using MATLAB 

TEACHING EXPERIENCE 

2015     GRADUATE TEACHING ASSISTANT, UNIVERSITY OF WESTERN ONTARIO 

Mechanical Component Design - MME 3380 

Focus: 3 Axis CNC Milling, Pump Assembly, Component Identification, Strain 

2014     GRADUATE TEACHING ASSISTANT, UNIVERSITY OF WESTERN ONTARIO 

Modern Control Systems - MME 4450 

Focus: Simulation of Response, PID Control, SIMULINK, PID, LabVIEW 

 

2014 SUMMER ENGINEERING ACADEMY, UNIVERSITY OF WESTERN ONTARIO 

Applications of 3D Printing in Biomedical Engineering Research 

Focus: Rapid Prototyping, 3D Printing, Joint Modelling 

 

2014     GRADUATE TEACHING ASSISTANT, UNIVERSITY OF WESTERN ONTARIO 

Mechanical Component Design - MME 3380 

Focus: 3 Axis CNC Milling, Pump Assembly, Component Identification, Strain 

2013     GRADUATE TEACHING ASSISTANT, UNIVERSITY OF WESTERN ONTARIO 

Engineering Design Studio - ES 1050 

Focus: Engineering Design, Brain Storming, Constructive Feedback 
Presentation: Post Graduate Opportunities and How to Work Towards Them  

2012-2013    UNDERGRADUATE TEACHING ASSISTANT, QUEEN’S UNIVERSITY 

Engineering Design Studio - APSC 100 

Focus: Professional Communication, Project Management, Design Process 

PROFESSIONAL EXPERIENCE 

2015-PRESENT   RESEARCH ENGINEER – HAND & UPPER LIMB CENTRE, ST. JOSEPH’S HOSPITAL 

London, Ontario 

Responsible for developing laboratory apparatus/software for obtaining data 

from cadaveric specimens to further our understand of wrist kinematics 

2013     MUSCULOSKELETAL BIOMECHANICS INTERN (4 MONTH CO-OP) 

Queen’s University, Kingston, Ontario 

Designed & Developed a Lower Limb Inertial Data Collection Laboratory and 

Apparatus using Arduino Microcontrollers with a MATLAB User Interface  
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2011-2012    MECHANICAL RELIABILITY ENGINEERING INTERN (16 MONTH CO-OP) 

INVISTA Canada, Kingston, Ontario 

Focus: Reverse Engineering, Failure Analysis, Update P&ID’s, Maintenance Plans 

ACADEMIC INVOLVEMENT 

2013-2015 SOCIAL COORDINATOR – ROTH|MCFARLANE HAND & UPPER LIMB CENTRE (HULC) 
University of Western Ontario, London, Ontario 

2013-PRESENT   AERO DESIGN TEAM – TEAM MANAGER & CONTROL SYSTEMS LEAD  
University of Western Ontario, London, Ontario 

2013-2015    SPORTS FACILITATOR – FACULTY OF BIOMEDICAL ENGINEERING 
      University of Western Ontario, London, Ontario 

2012     QUEEN’S UNIVERSITY REPRESENTATIVE – ONTARIO UNIVERSITY FAIR 
      Toronto, Ontario 

2011-2012    QUEEN’S SPACE ENGINEERING TEAM (QSET) – CONTROL SYSTEMS TEAM 
      Queen’s University, Kingston, Ontario 

2009-2013    APPLIED SCIENCE 2012 YEAR EXECUTIVE – MERCHANDISE/EVENTS/PRESIDENT 
      Queen’s University, Kingston, Ontario 

PRESENTATIONS & CONFERENCES 

2015     CANADIAN ORTHOPAEDIC RESEARCH ASSOCIATION (CORS) 2015 CONFERENCE 
      Vancouver, British Columbia 

Title: “Design & Development of an In-Vitro Active Motion Wrist Simulator for the  
      Investigation of Wrist Kinematics in Multiple Gravity Loaded Positions” 

2014     BONE & JOINT SEMINAR SERIES  
      London, Ontario 
 
2015     TALKS ON FRIDAYS (TOFS) – LAWSON HEALTH RESEARCH INSTITUTE 

London, Ontario 
Title: “Design & Development of an In-Vitro Active Motion Wrist Simulator for the     

     Investigation of Wrist Kinematics” 
 

2014      BME SEMINAR – UNIVERSITY OF WESTERN ONTARIO 
London, Ontario 

Title: “Repeatability of an Active Motion Simulator in Pure Flexion/Extension”  

2014      CANADIAN ORTHOPAEDIC RESEARCH ASSOCIATION (CORS) 2014 CONFERENCE 
      Montreal, Quebec 

AWARDS 

2015     1ST PLACE (DESIGN) - SAE AERO DESIGN COMPETITION EAST ADVANCED CLASS (FLORIDA)  

2014     1ST PLACE (DESIGN) - SAE AERO DESIGN COMPETITION EAST ADVANCED CLASS (TEXAS)  

2014     2ND PLACE (OVERALL) - SAE AERO DESIGN COMPETITION EAST ADVANCED CLASS (TEXAS)  

2013      GRADUATE RESEARCH ASSISTANTSHIP DEPARTMENT OF BIOMEDICAL ENGINEERING (2 YEAR) 

2013     DEAN’S HONOUR LIST – ACHIEVED A GPA GREATER THAN 3.5 FOR AN ACADEMIC YEAR 
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COMPUTER SKILLS 

Operating Systems: Windows, Linux 
Core Languages: C/C++, Java 
Mechanical Engineering: LabVIEW, SolidWorks, MATLAB, 3D Printing, AutoCAD, ANSYS 
 

PERSONAL PROJECTS 

UAV DESIGN    SAE AERO DESIGN COMPETITION EAST 2015 (ADVANCED CLASS) 
- Designed & Developed the Onboard Telemetry Circuitry using an Arduino 

Microcontroller for Remote Payload Release using a Mobile Android App  
Past: FPV Quadcopter (Go Pro Hero 3), SAE Aero Design Competition West 2014 

ANDROID APPS   PREDICTIVE TIME TO DROP 
- Enabled Position Tracking of an RC Plane From an Android Mobile Phone 
- Designed & Implemented an Estimated Time to Drop Algorithm to Assist in 

the Release of a Payload to Hit Target to Increase Accuracy of Impact 

     NATO Phonetic Alphabet Learner 
- Created an Interactive Learning Tool to Learn & Practice the NATO Alphabet 
- Implemented Text to Speech for Teaching & Speech to Text for Practicing 
- Intended for Use by Pilots/Military/Vigilante  

3D PRINTING    NEXUS 5 MOBILE PHONE CASE 
- 3D Scanned a Nexus 5 Mobile Phone and Imported the Point Cloud into 

SolidWorks to Customize into a Case with the Western Engineering Logo 
- Completed the Print using a MakerBot Replicator with Flexible Filament  

     3D PRINTING IN BIOMEDICAL ENGINEERING 
- Designed a Workshop for a Western’s Summer Engineering Academy 
- Focused on Hemi & Total Radiohumeral Arthroplasty of the Elbow 
- Instructed Students on SolidWorks to Explore Various Implant Properties 

     Past: Hand Phone Charger, Quadcopter Frame, Wearable Devices, Cases, Bones 

ARDUINO & PI   PRINT TO PEER HOME 3D PRINTING & MONITORING  
- Modified a Power Bar with a Relay Shield Controllable by the PI’s I/O Pins 
- Developed a Python Script to Toggle Power States of Lights and Printer 

through an SSH Connection and Monitor Print Status via Webcam 

MISCELLANEOUS   [MIG Welding, SolidWorks, FEA Study], [HTML&CSS, WordPress], [Python, GitHub] 
Squat Rack: Designed & Built a Modular Exercise Cage Rated for +300lb 
Personal Website: WordPress Platform for Displaying UAV Projects 
METAR Converter: Scraps a Website using Beautiful Soup for Aviation Data 
Custom PC Build: i5 3570K, 16.0GB RAM, 120GB SSD   

MISCELLANEOUS  

Just for a conversation starter I am currently working towards my recreational pilot’s license, while 
tackling small side projects in my basement such as developing a prototype drone platform for next years 
Unmanned Systems Canadian Competition (USCC), a universal remote that communicates with your 
SmartPhone via Bluetooth, and creating a low-cost robotic manipulator with a feedback system for small 
tasks.   
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