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Abstract 

Meeting the energy demands of the future will require a breadth of technologies and 

materials for generating and converting electricity. Increasing activity and reducing costs 

of electrocatalysts for fuel cells is among the most important challenges for the technology. 

With advances in nanomaterials there has been increased interest in creating novel catalysts 

with both high activity and excellent long-term durability. This thesis aims to understand 

how modification of nanostructured carbons can be used to improve the activity and 

durability of catalysts and supports for the oxygen reduction reaction (ORR). Using an 

integrating approach to synthesis, characterization, and electrochemical testing, it is shown 

that modifications via heteroatom doping and surface functionalization can improve upon 

the catalytic properties of nanostructured carbons. This work includes successful co-doping 

of nitrogen and phosphorus into carbon nanotubes for metal-free catalysis, improving Pt 

catalyst support properties of carbon black via ozone treatment, and evaluating popular test 

protocols for studying carbon corrosion in fuel cells.  
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1 Introduction & Literature Review 

1.1 Proton Exchange Membrane (PEM) Fuel Cells 

Fuel cells (FC) are energy devices that convert chemical energy directly to electrical 

energy. While several types of FCs exist, the proton exchange membrane (PEM) FC is the 

most popular and widely used because of its low temperature operation, scalability, and 

high energy density. These properties also make PEMFCs useful for applications in light-

duty vehicles, transit vehicles, backup power generation, and consumer electronics. With 

increasing global demand for energy, and a shift towards cleaner, more reliable sources, 

PEMFCs have regained attention in the last several years because they have no operating 

emissions and the hydrogen used to power them can be renewably generated. Additionally, 

for automotive applications FCs have some key advantages over battery powered vehicles 

including longer range, faster refueling time, and simple vehicle integration. FCs, however, 

have struggled to gain traction in commercial applications as a result of their high cost, 

poor long-term durability, and lacking hydrogen infrastructure. 

A PEMFC is a galvanic cell meaning it generates electricity by drawing electrons 

from a spontaneous chemical reaction [1], specifically the combination of hydrogen and 

oxygen to form water. The heart of a PEMFC is called the membrane electrode assembly 

(MEA). The MEA is a sandwich structure with several layers. In the center is the proton 

conducting PEM, which is a perfluorinated-sulfonic acid (the most widely used is called 

Nafion, from Dupont). Directly in contact with this, on either side, are the catalyst layers 

(CL) which typically consist of platinum (Pt) nanoparticles supported by high surface area 

carbon black, with a proton conducting ionomer dispersed throughout. On the outside of 

each catalyst layer is a gas diffusion layer (GDL) made of conducting carbon fiber, through 

which fuel and oxygen diffuse to the CL. A schematic of the working principle of a 

PEMFC, and a highlight of the electrode structure is shown in Figure 1-1. The PEM is on 

the order of 10-50 µm in thickness and the CL is generally no more than 2 µm thick [2]. 

The MEA is held between two plates called bipolar plates, which have small channels that 

direct the fuel and oxidant across the back of the GDL. Bipolar plates are made of graphite 

or metal alloys as they need to be good conductors and resistant to corrosion [3]. An MEA 
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between a pair of bipolar plates makes a single fuel cell. An FC stack consists of many 

cells placed together in series.  

 

Figure 1-1. Schematic of PEMFC operation (a) and a schematic of an electrode structure 

showing the catalyst layer between the PEM and GDL (b). The GDL represents a carbon 

fiber structure that is commonly used.  

At the anode, H2 gas is introduced, passing through the GDL to the anodic catalyst 

layer. Here, the H2 is split into a pair of H+ ions, (i.e.: protons), and two electrons are split 

from the H2 molecule. Because the PEM is a proton conductor, but not an electron 

conductor, H+ ions pass through the PEM, while the electrons pass through an external 

circuit, where a load is connected. At the cathode, oxygen is introduced in the form of air, 

or pure O2. As O2 diffuses to the cathodic catalyst layer, it meets protons that have passed 

through the PEM and electrons that have passed through the external circuit. These 

combine at the so-called triple point to form water in a reaction known as the oxygen 

reduction reaction (ORR). The reactions occurring at the anode and cathode are hydrogen 

oxidation reaction (HOR) and ORR respectively. They are shown here: 

 Anode: HOR  H2 →  2H+ + 2e−  E0 = 0 V (1-1) 

 Cathode: ORR  O2 + 4H+ + 4e− → 2H2O E0 = +1.23 V (1-2) 
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While the anodic HOR reaction also requires a catalyst, its kinetics are orders of 

magnitude fast than the ORR so that it is not a limitation to FC performance. So, anode 

catalysts can have considerably lower Pt loading than the cathode catalyst [4]. 

The thermodynamic reaction potential for the ORR, that is, for PEMFC operation, 

is 1.23 V. However, a real PEMFC at open circuit potential (OCV) – the potential at zero 

current – will have a voltage closer to 1.0 V. These losses are due to parasitic reactions at 

each electrode resulting from fuel crossover and lowering the equilibrium electrode 

potential. The voltage difference between the theoretical reaction potential and the real 

potential at which the reaction proceeds is called the overpotential, 𝜂 [1]. The overpotential 

is one of the fundamental challenges with FC technology, which would ideally have an 

output of 1.23 V, but operates closer to 0.7 V [5]. The reason for this are several types of 

voltage loss that occur in FCs. At potentials near the OCV, the losses are called activation 

overpotential, 𝜂𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, and are due the sluggish reaction kinetics of the ORR. This is 

the main reason for using the Pt catalyst, as the overpotential from kinetic losses would 

otherwise be much greater without such a catalyst. In addition to kinetic losses, PEMFCs 

also suffer from ohmic losses and mass transport losses [4]. Ohmic losses, 𝜂𝑖𝑅, occur across 

the entire range of operation for a FC and become more noticeable as the current density 

increases. These losses are a product of electrical resistances in the FC system, especially 

between the CL, GDL, bipolar plates, and current collectors. Ohmic losses become worse 

at higher current densities, following Ohm’s law. Mass transport losses, 𝜂𝑀𝑇, occur 

primarily at high current densities and result from the imperfect diffusion of reactants 

across the GLD to the CLs. For very high current densities a large volume of oxygen needs 

to be fed to the cathode. Getting this oxygen to the catalyst layer evenly and effectively is 

facilitated by the bipolar plate channel design, the GDLs, and increased feed pressure, but 

it is still difficult [4]. Figure 1-2 shows a polarization curve measured for a real PEMFC 

with the different loss regions highlighted. In addition to getting fuel and oxygen to the 

CL, there is water management to consider. Too much water will flood the MEA, blocking 

the gasses from reaching the CL. Too little water can cause the membrane to dry out, 

drastically decreasing its proton conductivity and leading to poor cell performance [2].  
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The current of an FC stack depends on the total area of the MEAs, which is given 

in A/cm2. The stack voltage, meanwhile, scales with the number of cells, since any single 

cell is limited by the electrochemical reaction and overpotentials just described. Most 

PEMFCs operate at 0.6~0.7 V so that they can produce a meaningful current density (see 

Figure 1-2). For vehicles, FC stacks consist of up to 300 cells to achieve voltages of 200-

300 V and total power around 80-100 kW [6].  

 

Figure 1-2. Polarization curve of a PEMFC under typical operating conditions showing 

regions of potential loss. 

 

1.1.1 Catalyst Durability 

Durability remains one of the primary challenges facing fuel cells today. The loss 

of performance with operation time is a serious barrier to the real-world use of PEMFCs 

where they must compete against much more mature technologies, such as gasoline engines 

in vehicles and diesel generators for backup power applications. Great strides have been 

made to improve the durability of FCs in the last decade as significant studies have been 
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conducted in this regard by industry, government, and academia. The United States 

Department of Energy (DOE) has been among the most active in terms of organizing and 

support FC research and studies published through their Fuel Cell Technologies Program 

have become valuable guides for researchers and industry [7]. Since the mid-2000s there 

have been durability targets for PEMFC durability. Currently, the targets for 2020 are 5000 

hours of operation with <10% loss of performance for automotive applications and 60,000 

hours operation for stationary power systems [7], [8]. In addition, the objectives include 

efficiencies of 65% and 45% for automotive and small-stationary uses. 

Though there are a number of degradation pathways related to system or stack 

components, the main reason for loss of FC performance is degradation of the catalysts and 

membrane [9]–[11]. For the sake of this thesis, only catalyst and support durability is 

considered. Some of the main mechanisms of catalyst degradation include poisoning, Pt 

dissolution and Ostwald ripening, migration and agglomeration, and carbon support 

corrosion. Poisoning is a result of impurities in the hydrogen or air feeds such as sulfur 

dioxides which block catalytic Pt sites [12]. A similar loss of activity can be observed if 

species formed by the oxidation or decomposition of the catalyst support or membrane, 

such as CO, adsorb onto the Pt. Pt dissolution occurs via the repeated oxidation and 

reduction at the Pt surface which slowly erodes the nanoparticle surface. At potentials 

above 0.8 V, Pt oxide will form and this formation may involve the penetration of oxygen 

and even water. This results in Pt ions being dissolved in the electrolyte and a loss of 

performance. Ostwald ripening is migration of single atoms from one particle to another 

resulting from the trend to minimize Gibb’s free energy in high-surface area system of 

particles. Agglomeration and migration occur due to electrode potential changes and the 

corrosion of the Pt support.  

Support corrosion is one of the most common pathways to performance degradation 

as the electrode environment is very harsh for carbon. The presence of excess water, low 

pH, high electrode potentials, and elevated temperature all lead to a highly corrosive 

environment. Carbon corrosion is a result of oxidation to, primarily, CO2: 

 C + 2H2O → CO2 + 4H+ + 4e− (1-3) 
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This can happen thermodynamically at potentials as low as 0.2 V, though it is relatively 

slow. However, at elevated temperatures this oxidation is increased, and in the presence of 

Pt can proceed quickly above 0.6 V [13]. A second mechanism, the direct oxidation to CO, 

also happens at elevated potential and includes the possibility of poisoning the Pt catalyst. 

Support corrosion is exacerbated during start-up and shut-down of the FC when voltages 

can nearly double the OCV, reaching as high as 1.8 V [14]. A number of system 

engineering strategies have been employed by FC manufacturers for mitigating this effect 

[10], but the development of a more durable support is still highly desirable. 

 

1.1.2 Costs 

FC cost is undoubtedly one of the most significant challenges impeding the 

commercial feasibility and success of the technology. The DOE has a 2020 target price of 

$40/kW and ultimate, long term target of $30/kW. They report current prices (2014 

technology) as $55/kW based on mass production of 500,000 units per year and calculated 

using a bottom-up approach from component costs [7]. Meanwhile, Oak Ridge National 

Lab conducted a study with major PEMFC OEMS and estimates a current price of 

PEMFCs systems at $280/kW based on 20,000 systems per year [5]. Shown in Figure 1-3 

is a breakdown of FC stack costs by component type at low and high manufacturing rates 

of 1000 and 500,000 units per year. These costs are calculated using the state-of-the art 

technology and information from the DOE and compiled by the Oak Ridge National Lab 

[5].  
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Figure 1-3. Fuel cell stack costs by component at 1000 and 500,000 systems per year 

manufacturing rate [15]. 

The current state of the FC industry is on the order of 1000 units per year. At this 

rate, costs are relatively evenly spread among various stack components, with membranes, 

GDLs, and catalysts, and gaskets (all part of the MEA) making up 74% of the costs. The 

catalyst is only 15% of the total stack at the current production rates. Meanwhile at 500000 

units per year, the components of the MEA makeup 68% of the total, a slight reduction. 

However, the most startling fact illustrated by these charts is that at high production rates 

the catalyst constitutes 46% of total stack costs. Rather than decreasing with economies of 

scale, the cost of the catalyst for PEMFCs increases considerably when moving from 1000 

to 500,000 units per year. In part, the apparent increase is due to the decreasing costs of all 

other FC components with large scale manufacturing, contrasted against the price of Pt, 

which will not decrease with scale, nor is it likely to decrease with time. Thus, although 

tremendous advances in FC technology and Pt reduction in particular has been achieved in 

the last decade [16], there is significant work ahead to achieve ultra-low Pt loading and 

ultimately move away from Pt containing catalysts. These steps are needed to meet the 

ultimate target price for PEMFCs of $30/kW.  
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1.1.3 ORR in Alkaline Media 

Alkaline fuel cells (AFC) are similar to PEMFCs in that they use hydrogen and 

oxygen as fuel and create electricity through the HOR and ORR. In contrast to PEMFCs, 

hydroxyl ions (OH-) pass from the cathode towards the anode, rather than protons moving 

from anode to cathode. Rather than a polymeric membrane, AFCs use a liquid electrolyte 

of potassium hydroxide (KOH) which has a very good OH- conductivity. The reactions at 

the anode and cathode are HOR and ORR, as in a PEMFC, but in alkaline media the 

reactions are slightly different: 

 Anode: HOR  2H2 + 4OH− → 4H2O + 4e−  E0 = 0.83 (1-4) 

 Cathode: ORR  O2 + 2H2O + 4e− → 4OH−  E0 = 0.40 (1-5) 

Famously, alkaline fuel cells were used by NASA for a number of space missions 

including providing power for the Shuttles. They boast a higher current density than 

PEMFCs and have been shown to have good performance with very low loading of 

precious metal catalysts. McLean outlines two of the major challenges have hindered the 

terrestrial use of AFCs [17]. One is the liquid electrolyte which makes packaging difficult 

and presents problems in terms of maintaining the right electrolyte level. The more 

important and difficult challenge is their sensitivity to impurities in the gas stream, 

particularly CO and CO2 (both of which are in air). These can react with the electrolyte to 

form undesirable products such as K2CO3, which quickly reduce cell performance. In the 

mid-2000s, a solid polymer based anion exchange membrane was proposed for AFC [18]. 

Anion exchange membranes offer several advantages including a solid-state FC stack, and 

good tolerance to carbonates compared with liquid KOH [19]. Direct alcohol fuel cells 

(DAFCS) use fuels such as ethanol (DEFC) and methanol (DMFC) instead of hydrogen. 

They often have an alkaline electrolyte, too, since anion conductivity is very important to 

their performance.  
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1.2 Electrochemical Half-Cell Evaluation of Fuel Cell 
Catalysts 

1.2.1 Cyclic Voltammetry 

Cyclic voltammetry (CV) is one of the most useful experimental techniques for 

studying electrochemical phenomena. It can be used to examine catalysis, redox reactions, 

plating and etching, and more. In the context of FCs, CV is extremely useful for studying 

the ORR under simulated operating conditions. This can be an effective method for 

screening new catalyst materials and understanding their catalytic activity, and durability.  

 CVs for FCs are done with a three-electrode electrochemical cell. This involves a 

cell containing the electrolyte, plus a working electrode (WE), reference electrode (RE), 

and counter electrode (CE). Potential is measured between the WE and RE, and current 

flows between the WE and CE. The RE is the point which the WE is measured against to 

determine the cell potential. The reference electrode must have a known potential, and be 

a species which is near impossible to polarize [1]. Some examples include the reversible 

hydrogen electrode (RHE), saturated calomel electrode (SCE), Ag/AgCl, Hg/Hg2SO4. 

These electrodes each have a known potential which is given relative to the standard 

hydrogen electrode (SHE). A reference electrode should be chosen whose reactants will 

not contaminate or poison the cell electrolyte or working electrode. For example, many 

groups studying Pt-based catalyst for fuel cells will not use an Ag/AgCl or calomel RE 

because of the dissolution of Pt with chloride ions [20]. In fact, many groups use perchloric 

acid (HClO4) instead of H2SO4 electrolyte since it has been shown that the bisulfate ions in 

the latter adsorb to Pt and reduce the ORR performance and limiting current [21]. For any 

reaction taking place at the WE, an opposing reaction will be taking place at the CE, as 

dictated by the current flow between the two. The CE should be a material that will not 

produce any electrolytic products that might interfere with the WE [1]. Typically Pt or 

graphite are chosen. An important consideration is that the surface area of the CE should 

be much larger than the area of the WE, to ensure that the reaction (and current flow) is 

never limited by the CE. Often a Pt wire or Pt mesh is used for this reason. 
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 Understanding the characteristic of CV curve for Pt catalysts is important for 

identifying trends and comparing several samples of interest. A typical CV of a Pt/C 

catalyst measured at room temperature in N2 saturated 0.5 M H2SO4, is shown in Figure 

1-4. The CV was recorded at 20 mV/s from 0.05 V to 1.0 V. In the plot are highlighted a 

number of important features which are characteristic of catalysts studied in this thesis. At 

the lower potential region, from roughly 0.05-0.4 V are the hydrogen adsorption and 

desorption regions. Here, a current is generated at the WE by the adsorption of hydrogen 

on the Pt surface. This region is often referred as the hydrogen under-potential deposition 

(HUPD) region, where HUPD occurs at potentials above the H2 → 2H+ + 2e− standard 

reaction potential (𝐸𝐻+/𝐻2

0 = 0 𝑉) [22]. The highlighted peaks correspond to certain crystal 

faces of Pt, (111) and (100), on which hydrogen adsorbs at slightly lower and higher 

potentials, respectively.  

In the region from 0.4~0.7 V, there is a low current density region known as the 

double layer region. Here, the charge arises from the capacitance created at the electric 

double layer of the electrode surface. For an electrode at some non-zero potential, 

oppositely charged ionic species in the electrolyte solution will be attracted towards the 

surface. Only a certain number of these ion will physically reach the electrode surface. This 

leaves a residual electrostatic charge at the electrode as a single layer of ionic species 

cannot compensate for this electrode charge. Thus, more ions from the solution will move 

towards the electrode surface, held at long range by the electrostatic force. The combination 

of that first, adjacent layer of ions, plus the longer range species which are pulled in, is 

referred to as the electric double layer, and is a function of the electrode surface area and 

potential, plus the type of ionic species in the electrolyte [1]. This region will show a higher 

current density with increasing electrode surface area.  
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Figure 1-4. A typical CV curve of a Pt/C catalyst in 0.5 M H2SO4. Labels indicating several 

regions of the curve where formation of electrochemical species creates easily identifiable 

peaks. 

The electrochemical surface area (ECSA) is an important metric for quantifying 

and comparing catalysts. It refers to the mass normalized surface area that is available for 

participating in an electrochemical reaction; in this case, that will be active in catalyzing 

the ORR reaction. Determination of the ECSA of Pt can be done in several ways, but 

perhaps the most common is using the by calculating the charge in the HUPD region. 

Integrating the curve from 0~0.3 V (0~0.4 in HClO4), and using the double layer region as 

a baseline, will give a total charge, Q, in Coulombs. Using a known quantity of 210 µC/cm2, 

representing a monolayer of adsorbed hydrogen on the Pt surface [23], we can determine 

the total electrochemically active surface by: 

 

𝐸𝐶𝑆𝐴 =
𝑄𝐻𝑈𝑃𝐷

 (𝐶)

210
𝜇𝐶

𝑐𝑚2 ∗ 𝑀𝑎𝑠𝑠𝑃𝑡 (𝑔)
 (1-6) 
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A couple of important assumptions that are made for this method. The first is that a perfect 

monolayer of hydrogen with total Pt coverage is adsorbed. Further it should be noted that 

the value of 210 µC/cm2 is an average for an assumed polycrystalline Pt surface. In reality 

each single crystal face of Pt will have different hydrogen adsorption properties, as 

mentioned earlier. Another assumption is that a total charge transfer occurs between the H 

and Pt. In fact, it is likely that the charge transfer is not perfect and thus some error exists 

in the method [23]. Nevertheless, using the H adsorption region for determination of ECSA 

is effective for quantifying the active surface area of catalysts and has been widely accepted 

in the community and shown to be reproducible across multiple labs [24], [25].  

As the potential is scanned above 0.8 V in the forward direction, another large peak 

appears. This peak is a result of the formation of Pt oxides. The reaction Pt +
1

2
O2 → PtO is 

the main oxide formation, however some PtO2 can also form. [2]. Using an upper potential 

limit (UPL) of 1.0 V limits the formation of oxide, which results in a smaller ORR peak 

around 0.8 V in the negative direction. It is also common to scan up to a UPL of 1.2 V 

which results in more complete formation of Pt oxide. The size and position of the ORR 

peak under N2 conditions is important although performing a CV in O2 saturated electrolyte 

with a rotating disk electrode (RDE) is a more meaningful test of the ORR activity. 

 

1.2.2 Determining ORR Activity by Rotating Disk Electrode (RDE) 

Thin-film RDE is a particular type of CV measurement which uses a spinning 

electrode to increase the diffusion of reactants to the electrode surface. An RDE electrode 

is structured with a flat disk of electrode material surrounded by a sheath of 

polytetrafluoroethylene (PTFE) material. The electrode is typically Pt, Au, or glassy 

carbon. The electrode is connected to a shaft inside a rotator which can rotate at a set speed. 

During rotating, a vortex of electrolyte solution flows towards the electrode surface, 

ensuring an excess of reactants is available. At a given, rotation rate, then there is a 

theoretical maximum current density that can be achieved for a given experimental setup. 

A very thin layer of electrolyte directly adjacent to the catalyst layer, called the Levich 

layer, will rotate with the electrode. The result of this is a steady state at the catalyst layer 
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surface with the current limited by the diffusion of O2 across the Levich layer [1]. That 

limiting current is described by the Levich equation: 

 ilim = 0.201nFAD
2
3ν−

1
6COω

1
2 (1-7) 

Here, 𝑛 is the number of electrons transferred in the reaction, 𝐹 is Faraday’s constant 

(96458 C/mol) 𝐴 is the electrode area in cm2, ω is the rotation rate in RPM. 𝐶𝑂 is the 

concentration of oxygen in the electrolyte in mol/cm3. 𝐷 is the diffusion coefficient and ν 

the kinematic viscosity of the reactant in the electrolyte (both in cm2/s). The value for the 

kinematic viscosity of water, 0.01 cm2/s, is often used for aqueous electrolytes [26]. The 

values of each parameter for our testing conditions is given in Table 1-1.  

 

Table 1-1. Parameters for the Levich equation for ORR at 25°C, 1 atm. 

Electrolyte Parameter Symbol Value Units Ref. 

0.5 M H2SO4      

 Solubility of O2 C 1.18 x10-6 mol/cm3 [27] 

 Diffusion Coefficient D 1.4 x10-4 cm2/s [27] 

0.1 M KOH      

 Solubility of O2 C 1.10 x10-6 mol/cm3 [28] 

 Diffusion Coefficient D 1.4 x10-4 cm2/s [28] 

 

A typical ORR curve for Pt/C in acidic electrolyte is shown in Figure 1-5. Recalling 

Figure 1-2, the FC polarization curve, the ORR plot is analogous although with the axis 

switched. The region from 0.8-1.0 V is the kinetic region, where activation losses occur. 

This is an area of particular interest as the activity of a catalyst is generally measured here, 

around 0.9 V vs RHE. The onset potential is an often cited metric when referring to ORR 

curves. Onset potential is the potential at which current density begins to increase as the 

reaction begins. A higher onset potential indicates that the reaction has a lower 

overpotential, which is preferred. The linear portion from 0.6~0.8 is a mixed kinetic and 

diffusion regime and the plateau from 0~0.6 V is known as the diffusion limited region. In 

this region the limiting current (or Levich current) is determined by parameters in the 

Levich equation, as discussed. 
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Figure 1-5. ORR polarization curve of Pt/C catalyst recorded using RDE at 1600 RPM in O2 

saturated H2SO4 at 25°C, scan rate 20 mV/s. The kinetic and diffusion limited regions are 

highlighted on the curve.  

The RDE method is inherently complicated and thus some amount of error can be 

expected between measurements and between labs. The community has, to date, accepted 

a number of norms for measuring Pt-based catalyst, though it remains difficult to compare 

results from one lab to another. That is changing, however. Researchers at several national 

labs in the US, as well as the Army Research Center have been working towards 

standardizing RDE methods so that meaningful comparisons of ORR activity can be made 

from one lab to another. A small group has made considerable contributions in the last five 

years, in this respect. The impacts of catalyst ink composition [29] and of the thin-film 

drying method [30] have been explored. In an effort towards unified standards, the same 

groups have reported best practices for RDE measurements, benchmarked the performance 

of commercial catalysts, and demonstrated good repeatability [24], [25], [30], [31]. The 

DOE has also hosted several webinars on this in 2013 and 2014 [32], [33]. These efforts 

are an encouraging sign for the FC electrocatalyst research community. 
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1.3 Nanostructured Carbons for Electrocatalysts & Supports 

For decades, fuel cells have utilized the unique properties of nanoscale materials in 

the catalyst layer. In particular, the high surface to volume ratio of such make them 

excellent for this application, where mass transport of reactants in different phases is 

critical to overall performance. Carbon is one of the most abundant elements on earth. 

Carbon nanomaterials are excellent candidates for electrocatalysts and supports not only 

for their high surface area, but for their electrical conductivity, their ability to support metal 

catalyst particles, and their potential to be modified for specific functionality. In this 

section, several families of nanostructured carbon materials are reviewed including a brief 

discussion of synthesis methods, typical characteristics, and advantages or disadvantages 

for use in catalysts and supports. 

   

1.3.1 Carbon Black 

By far the most common FC catalyst support material is carbon black (CB). Carbon 

black is a general name for a family of carbon materials such as acetylene black, furnace 

black, and more. Besides being used as a fuel cell catalyst support material, CB is used as 

an additive in rubber, pigment in paints and inks, and as a polymer additive. CBs are 

synthesized via several methods but most popular is the partial combustion of oil with 

natural gas followed by quenching in water [34], [35]. Among the most popular types of 

CB are Vulcan from Cabot Corp and Ketjenblack from AkzoNobel. One of the most 

attractive reasons that CBs continue to be used in FC catalysts is their low cost; with which 

more novel nanostructures like CNTs and graphene still cannot compare.  

CBs can have a wide range of surface areas from 15-2000 m2/g. They consist of 

primary particles in the range of 5-30 nm which form larger agglomerate units with 

dimensions on the order of tens of microns. A scanning electron microscope (SEM) image 

of a high surface area CB (800 m2/g) is shown in Figure 1-6. The images, at 50000x and 

100000x magnification, show the large agglomerates and the joined primary particles of 

roughly spherical shape. For use in FC catalysts, CB has a host of properties that make 

them good support materials including electrical conductivity, high surface area, and low 
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cost. Furthermore, their agglomerate structure allows for both homogenous dispersion of 

catalyst particles and accessible contact with ionomer in the catalyst layer [2]. The 

chemical structure of CB includes many small graphitic crystal phases several nanometers 

in dimension. Their surface may have dangling hydrogenated bonds or oxygen containing 

groups due to their synthesis conditions [36], and contamination from sulfur and nitrogen 

is not uncommon, resulting from the oil used to make CB.  

 

Figure 1-6. SEM image of high surface area CB showing aggregates and primary particles.  

Although CB possesses a number of excellent qualities for use as a catalyst support, 

there are some significant drawbacks to its use. The most important challenge for CBs is 

their poor corrosion resistance. As discussed in the preceding section, a FC catalyst layer 

is a highly corrosive environment with temperatures as high as 120°C, low pH, and 

electrode potentials well above 0.6 V. Though CB contains small graphitic phases, overall 

it has a highly amorphous structure with a surface that is prone to corrosion via oxidation 

[37].  Graphitization by extended high temperature treatment is known to be an effective 

method of hindering carbon corrosion by oxidation [2]. 

 

1.3.2 Carbon Nanotubes 

Carbon nanotubes (CNTs) are an allotrope of carbon; essentially a rolled up sheet 

of graphene. CNTs are the 1-dimensional manifestation of sp2 carbon, with the 0D and 2D 

versions being fullerenes and graphene, respectively. The first report of CNTs was by 

IIjima in 1991 [38], although CNTs were originally conceived and may even have been 
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observed years before then [39]. CNTs appear in several forms including single walled 

(SWCNT) and multi-walled (MWCNT) and can have a number of orientations depending 

on which bond configuration lies in the axial direction. Each of configuration possesses 

slightly different characteristics as a result of their physical form. For example, SWCNTs 

have metallic-level conductivity and theoretical strength higher than steel. In general, all 

CNTs exhibit either  metallic or semiconducting electrical conductivity which has made 

them highly attractive for a number of applications in sensing devices and microelectronics 

[40]–[42].  

CNT synthesis falls under three main categories including laser ablation, arc-

discharge, and chemical vapor deposition (CVD). Laser ablation and arc discharge both 

involve heating of graphite to several thousand degrees Celsius, through a high voltage arc 

or high energy laser, and collecting the nanotubes from the soot produced [43]. These two 

methods can produce extremely thin SWCNTs, but their orientation is random and the 

process always yields a variety of other carbon types at the same time. CVD has become 

more popular because of the excellent control over the CNT growth and relative ease of 

scale up. CNTs are grown via the decomposition of a vapor phase carbon precursor with 

the help of a transition metal catalyst which helps to nucleate the growth [43], [44]. CVD 

growth requires temperatures in the range of 500-900°C and a carbon source and metallic 

catalyst. Carbon sources are often gaseous hydrocarbons such as methane, ethane, or 

carbon monoxide [45], as well as many other solid and liquid precursors [44]. Metal 

catalysts for CNT growth can include Ni, Fe, and other transition metals. Their size and 

shape have a strong effect on the morphology of CNTs [46], [47]. Growth from catalyst 

particles proceeds via base-growth or tip-growth mechanisms where the catalyst stays at 

the substrate or moves along at the top of the tube, respectively. This will depend largely 

on the strength of interaction between the catalyst particle and substrate. Base-growth of 

CNTs is shown schematically in Figure 1-7, along with an SEM image of MWCNTs grown 

via CVD on carbon fiber. SWCNTs can be produce by CVD method but require very small 

and well dispersed catalyst particles [48]. In addition to conventional CVD, plasmas 

enhanced CVD (PECVD) and microwave-assisted PECVD have been used to grow CNTs 

[49]–[51]. The use of plasma and microwaves enhance the growth rate and alignment of 

CNTs. 
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Figure 1-7. (a-d) Base-growth of CNTs (SW and MW) via CVD. (a) Fe catalyst particles are 

deposited on the substrate. (b) The catalyst becomes saturated with carbon from the 

decomposition of hydrocarbon gas on the particle. As they become saturated, nucleation of 

the CNT begins with a layer of graphitic carbon around the catalyst particle. (c) Continued 

influx of carbon precursors results in the growth of the CNT. On the larger catalyst, multiple 

layers are formed and grow as MWCNT. (d) CNT growth continues as long as carbon is 

provided and reaction conditions are maintained. (e) Aligned MWCNTs grown on carbon 

paper using ferrocene as catalyst precursor. The dark horizontal line is the axis of the carbon 

fiber. CNTs have grown normal to the fiber. 

CNTs have become increasingly popular in research and some commercial 

application. Mass production of various lengths and diameters has been achieved so that 

CNTs are available for purchase from myriad suppliers. Besides being used in logic, 

memory, and sensing devices, CNTs have been used for FCs for several years. In one 

capacity, CNTs are being used as an electrode micro-porous layer (MPL). The MPL is the 

side of the GDL adjacent to the CL. It has smaller and more disperse pore structure than 

the GDL as it is meant to evenly distribute fuel gases across the CL, at the micron scale. 

Besides this, CNTs have bene studied at length for use as catalyst supports and metal-free 

catalysts. It is well known that the good electrical conductivity, high surface area, and 

graphitic nature of CNTs make them excellent candidates for catalyst supports [2], [16].  
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1.3.3 Graphene 

Graphene is a 2-dimensional material comprised of sp2 hybridized carbon atoms, 

first physically discovered in 2004 [52]. Graphene has become very popular due to its 

remarkable electrical conductivity, mechanical strength, and thermal conductivity. It has a 

super-high specific surface area (theoretically >2600 m2/g) which makes graphene 

excellent for facilitating chemical reactions; although it’s relatively inert basal plane 

surface means that further functionalization is necessary for many applications. Graphene 

has been used in a variety of applications including composite materials [53], fuel cell 

catalysts[54], batteries [55], and more. In a broad sense, two categories of graphene 

materials may be classified. The first is pristine, single layer graphene. This type can be 

synthesized via mechanical exfoliation [52], or by chemical vapor deposition on a metal 

catalyst substrate [56]. The second class of graphene materials is often referred to as 

graphene nano-platelets (GNP) or reduced graphene oxide (rGO). This material is mostly 

synthesized via intercalation or oxidation of graphite followed by exfoliation and/or 

reduction, yielding small particles of graphene sheets with 2-100 layers stacked together 

and lateral dimensions on the order of 0.1-100 µm [57]. The properties of GNPs are not as 

remarkable as pristine graphene, but it can be made at large scales of tons per year [58]. 

Until recently, graphene was plagued by the fact that production in large quantities 

is very difficult and expensive. In the recent years, after significant investments and efforts 

by academia, industry, and government, a number of processes have emerged for mass 

production of graphene. Roll to roll processing has allowed for continuous CVD synthesis 

of pristine graphene and its facile transfer from metal substrate to usable polymeric or other 

substrates [59]. Researchers at Sony reported single layer graphene of more than 100 m in 

length [60]. Similarly, GNPs have been produced in large quantities by various methods 

including high shear mixing [61], and by exfoliation and reduction of graphene oxide (GO) 

[62]. 
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1.4 Modified Carbon Nanomaterials as Catalyst Supports 

Heteroatom doping has been used in a variety of nanostructured carbon materials, 

including graphene and CNTs, to enhance their electrical, chemical, and mechanical 

properties. Among the most common dopants are nitrogen, boron, sulfur, and phosphorus. 

N-doping has been by far the most common in the last decade due to the relative ease of 

synthesizing N-doped carbons and its beneficial effects. Doping with atoms such as B, S, 

and P can also have notable effects on the carbon structure. The creation of charged sites, 

the stretching of carbon bonds, and the disruption of local electronic structure in the 

otherwise neutral sp2 lattice can enhance ORR activity and binding of metal particles. 

These phenomena are discussed here in the context of several types of modification, along 

with a brief review of synthesis methods. 

 

1.4.1 Oxidizing Treatments 

Oxygen functionality on carbon surfaces has been studied for several decades and 

its effect on both metal catalyst particle dispersion and on ORR activity of the carbon itself 

has been promising. The earliest reports are with CB or activated carbon, but CNTs and 

graphene have been the subjects of similar studies. Oxidation with a strong acid is among 

the most common methods of introducing surface groups [36], [63], [64], but treatment 

with ozone [65]–[67], and annealing in air [68] have also been reported. There are a variety 

of surface oxides that may form including carboxyl, hydroxyl, lactones, ethers, ketones, 

quinones, and more [36]. The presence of any particular species will depend on the carbon 

used and the type of oxidation. It has been shown that presence of surface oxides can 

modify the pH of the carbon surface, which may have an impact on the deposition of 

metallic particles on the surface [63], [65], [68], [69]. In fact, several reports have shown 

that surface oxides improve the dispersion of metallic nanoparticles [63], [67], [70], [69]. 

Additionally, some oxygen containing species can improve the catalytic activity of carbon 

to ORR and other reactions [69], [71], [72]. One of the main drawbacks of increased 

oxygen-containing surface groups is that carbon corrosion at elevated potential and 

temperature can be intensified as a result. 
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1.4.2 Nitrogen Doping 

Nitrogen has received by far the most attention as a heteroatom dopant in carbon. 

There has been a growing body of literature published, focusing on synthesis, theoretical 

studies, characterization, and applications [73], [74]. N-doping is an excellent way to tune 

or modify the properties of carbon nanostructures. The inclusion of N-sites in the carbon 

lattice effects the electronic structure of the material and increases the activity around the 

dopant sites. Much of the change in the properties of N-doped carbons are associated with 

the difference in electronegativity between nitrogen (χ = 3.05) and carbon (χ = 2.55) [75]. 

This difference creates a polarized charge density within the sp2 bonding structure. N-

dopants also bring an additional electrons to the carbon lattice which promotes π-π 

bonding. There have been several theoretical studies on the electronic effects of N-doping 

in graphene, though with conflicting results [73]. Some have suggested that the electron 

donating nature of N dopants is the reason for excellent ORR activity in N-doped carbons 

[76]–[78], contradicting the explanation of difference in electronegativity between N and 

C. N-graphene and NCNTs have been used as metal catalyst supports [79]–[81], and some 

have calculated that the changes in electronic structure resulting from N dopants can double 

the binding energy of Pt–C bonds [82].  

The ways in which N-dopants exist in a carbon lattice is of significant interest and 

has been studied extensively. Commonly, three types of N-dopants are referred to. These 

are pyrrolic, pyridinic, and graphitic type N. Pyrrolic and pyridinic N are bonded to two 

carbon atoms in five and six sided rings, respectively, and exist at edge sites within the 

carbon lattice. Graphitic nitrogen is substitutionally bonded to three carbons within the sp2 

structure, away from edges. Depending on the type of synthesis, one type of N species may 

be more prevalent than others. Because of their bonding nature, pyridinic and pyrrolic N 

are more reactive than graphitic N. In addition to the three species mentioned, other N-type 

bonding can also occur though they are referred to infrequently in the literature and are 

assumed to make up a small percent of the doped species in N-graphene. Figure 1-8 shows 

the various types of N-dopants as they might exist in an sp2 carbon lattice.  
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Figure 1-8. N-type dopants in sp2 carbon 

N-doping has proven useful for improving both the activity and durability of ORR 

catalysts [83]. The activity of N-doped carbon is greater than that of unmodified carbons 

for a number of reasons including the change in spin and charge densities in the vicinity of 

the dopants [84]. Compared to graphene or other un-doped carbon supports, N-graphene 

reduces the energy for O2 dissociation, and destabilizes the ORR intermediate species on 

the Pt surface, pushing the reaction forward [85]. In a review by the O’Hayre group [83] 

they summarize the reaction pathways of ORR on N-doped carbons. In addition to the 

direct enhancement of ORR, N-dopant sites act as good anchoring sites for Pt nanoparticle 

and the strong bonds between the doped support and catalyst particles prevents migration 

and aggregation that otherwise lead to loss in activity. This was shown by theoretical 

calculations by Groves et al, who concluded that the “increase in binding energy is 

proportional to the number and proximity of N atoms to the C–Pt bond and is a result of 

the N atoms locally destabilizing the delocalized double bond present in the pure C 

structure” [82]. The inherent properties of nanostructured carbon, and the added 

functionality of N-dopants such as modified electronic structure and enhanced activity near 

N-sites make N-doped carbon excellent materials for electrochemical devices.  

Nitrogen doped carbon nanotubes (NCNTs) are an increasingly popular N-doped 

material. Among the first to synthesize NCNTs were Stephan in 1994 [86] and Sen in 1997 

[87]. Synthesis is often done via pyrolysis of a nitrogen and carbon containing complex 

with some catalyst particles. Combinations could include iron(II) phthalocyanine [88], or 

Fe(III)(acetylacetonate)3, acetonitrile, and tetrahydrofuran [89], or ferrocene and imidazole 
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[90]. Liming Dai, one of the leading researchers in the field, published a report in Science 

[88] on NCNT arrays used as catalysts in both alkaline and acidic media, claiming that they 

could achieve higher current density in alkaline FCs than even a Pt/C catalyst. They also 

suggest that pyrrolic N-dopants result in more positive neighboring carbons than pyridinic 

N. Saha et. al. grew NCNTs on carbon paper and showed that Pt nanoparticles dispersed 

better on NCNTs than on CNTs and that the performance of the NCNT supported catalyst 

was superior in RDE and MEA testing [89]. 

Single layer Nitrogen-doped graphene was first synthesized in 2009 via CVD 

growth with ammonia [91]. Since then, N-graphene has been studied as a Pt catalyst 

support in a number of reports. Some of have shown that Pt deposited on N-graphene is 

more uniform than on un-doped graphene, and demonstrated its durability by imaging 

using TEM before and after durability cycling, which shows minimal change in particle 

size [92].  The Sun group used ZrO2 nano-cages to anchor Pt nanoparticles even more 

strongly to an N-graphene support, which resulted in remarkable stability [93]. Geng et al 

synthesized N-graphene material with a flower-like morphology and deposited Pt 

nanoparticles via impregnation [94]. They studied the durability of that catalyst compared 

with a commercial Pt on Vulcan carbon (Pt/C) catalyst and found that commercial Pt/C 

and Pt/N-graphene to had dropped to 32% and 50% of their initial values, demonstrating 

the improved durability of Pt/N-graphene. Jafri et al [81] used plasma treatment to doped 

graphene to an N concentration of 3 at.%. Pt nanoparticles were deposited by a reduction 

with NaBH4 and a MEA was prepared using Pt/N-graphene as the cathode catalyst. They 

found the power densities of Pt/N-graphene and Pt/graphene to be 440 and 390 mW/cm2, 

respectively. N-graphene also performs well as a metal-free ORR catalyst in alkaline 

conditions [95]. Other non-precious catalysts have also been deposited onto N-graphene 

for ORR in alkaline solution, such as Mn3O4  Fe, Co, and Fe–CO [96], [97]. These materials 

showed excellent activity and durability compared with conventional Pt catalysts. For 

alkaline solutions, though, N-graphene is most often proposed as a metal-free catalyst, 

where it’s tremendous catalytic activity has been well documented. 
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1.4.3 Phosphorus Doping 

Phosphorus is commonly used as an n-type dopant in materials such as silicon. As a 

dopant in carbon, its excess valence electrons make it interesting for modifying electrical 

properties. P can be more difficult to incorporate into a carbon lattice due to its significantly 

larger size compared with the carbon and with nitrogen or boron, for example. Synthesis 

of P-doped CNTs has been reported as early as 2005 [98] via CVD with triphenylphosphine 

(TPP). Since then P-doping of carbon nitride [99], graphite [100], [101], graphene [102]–

[104], and mesoporous carbon [105] have been reported. Concentrations of 1-2 at. % P are 

most common in the literature [90], [105], [106]. 

P-doped species may exist in a number of bonding configurations consisting of 

different P-C and P-O bonds [103]. Compared with other atoms such as sulfur, phosphorus 

dopant atoms come with a wide spread of the lone pair states, and the lowest unoccupied 

molecular orbital (LUMO) state is more distributed which increases the reactivity, an 

attractive feature for ORR enhancement [107]. Modelling of P-doped nanotubes have 

shown that P-C bonds are greatly stretched compared to C-C bonds which introduces 

considerable strain in the sp2 rings [109]. Similarly, P-graphene would include an out-of-

plane deformation caused by the presence of the P atoms. The excess lattice strain caused 

by this deformation also increases reactivity of the site.  

RDE tests of P-graphene and graphene demonstrate the improved catalytic efficiency 

of the doped material towards ORR in alkaline media. In alkaline media, P-doped graphene 

and CNTs have been successfully demonstrated as metal-free catalysts [101], [105], [106] 

Even at relatively low P-doping levels, P-CNTs have demonstrated better ORR activity 

than even Pt/C catalysts in 0.1 M KOH [106]. Pt nanoparticles supported on P-doped 

mesoporous carbon have also shown excellent performance for methanol oxidation [110], 

and ORR in acidic media [111], [112]. Some have suggested that the P-sites act as good 

anchoring sites for Pt nanoparticle dispersed on P-CNTs and shown that their performance 

is even better than Pt/C and Pt/CNTs [113]. 
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1.4.4 Sulfur, Boron Doping 

Sulfur doping has become perhaps the most studied following nitrogen. There have 

been a flurry of reports published on the subject, especially since 2012. Synthesis of S-

graphene has been done in a variety of ways. Thermal treatment of GO in a solid state 

reaction is popular using benzyl disulfide [114] or phenyl disulfide [115] as the dopant 

precursor. Also commonly reported is the use of a gas phase dopant such as CS2 [116]. The 

large difference in electronegativity between N, B, or P and carbon creates significant 

charge density in local doping regions. In the case of sulfur and carbon the difference in 

electronegativity is relatively small, suggesting that other factors lead to the increased 

activity observed with S-graphene catalysts.  Good catalytic properties of S-doped carbon 

have been attributed to the large size of sulfur compared with carbon and N creates strain 

and defect sites in the carbon lattice, and to a difference in the spin density of sulfur [116], 

[117]. S-graphene has been found to have higher metal-free ORR activity in alkaline 

solution than graphene, with both the onset potential and total current density being higher 

for the doped sample [114]. Chen’s group report improved performance of Pt catalysts 

when using S-graphene as a support material [115]. They conducted both experimental and 

computational investigations as to the effect of S doping in graphene for ORR catalysts. 

Compared to Pt/graphene and Pt/C catalysts, Pt/S-graphene had higher current density and 

dramatically improved durability, retaining 87% of its ECSA after durability testing via 

RDE.  

Boron is widely used as a dopant atom in silicon based electronics where its 

electronic structure makes it perfect for creating p-type semiconductors. Its small size also 

lends itself to facile doping into an sp2 carbon lattice. Synthesis of B doped carbon usually 

involves a solid state reaction of GO with boric acid (B2O3) though gaseous dopant 

precursor materials such as BCl3 have also be used [118]–[120]. Reported dopant levels 

are on the order of 1-5 at. % [120]. The lower electronegativity of B creates a positively 

charged site on the B atom. O2 molecules which hold a slightly negative charge are 

therefore chemisorbed directly to the B dopant sites [121]. This promotes the ORR and 

helps explain the good activity of B-doped carbon catalysts. In the case of graphene 

prepared by reduction or exfoliation of GO, it should be expected that there are residual 
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oxygen species on the graphene and thus, oxidized states of B will account for some of the 

overall B content. While few experimental test have been done with Pt on B-graphene, 

DFT studies show that Pt absorption is increased significantly when in very close proximity 

to the dopant atom [122],  suggesting that B-graphene could also be a highly durable 

catalyst support.  

 

1.4.5 Multi-atom Doping 

As heteroatom doping gained popularity among researchers and the remarkable 

performance of these materials became clear, it was only natural that co-doped carbons 

should be explored. With the prospect of adding functionalities from two different dopant 

atoms, a number of research groups set out to investigate the potential of co-doped carbons 

and, particularly, their applicability for fuel cell catalysts. In most cases, the dopant pair 

consists of N plus one of B, S, P, which may be a result of the relatively better 

understanding regarding N-doping. 

N-B- and N-P-carbon have also been studied as metal free catalysts [119]. 

Electrochemical evaluation of each catalyst suggests that both co-doped varieties are 

superior to N-graphene for ORR performance. The mass activities of the N-, N-B-, and N-

P-graphene catalysts as tested were 0.45, 0.53, 0.80 mA/mg, respectively. The authors 

attribute the improved performance over N-graphene to additional asymmetric spin density 

resulting from the extra dopant species (B or P).  They also suggest, however that nitrogen 

plays a critical role in the co-doped graphene performance. Their results show that samples 

of B- and P-graphene synthesized by the same method as their respective co-doped 

equivalents but without the N source had lower ORR activity compared with N-graphene. 

Liang et al synthesized N and S dual doped mesoporous graphene (N-S-graphene) by solid 

state reaction of GO with melamine and benzyl disulfide [123]. They claim N and S 

concentrations of 4.5 at. % and 2.0 at. %, respectively, which compare closely to the 

individually N- and S-doped samples they prepared for their study. ORR results clearly 

show that the metal-free dual doped graphene performs better than either N- or S-graphene 

in alkaline solution, with an earlier onset potential and greater current density.  
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1.5 Thesis Objectives 

As stated, there is tremendous promise for FC technology presently and in the future. 

Especially as world energy demand continues to grow, and the need for renewable and 

highly resilient energy systems is bolstered, FCs stand poised to play an important role. In 

order to improve the activity, stability, and costs of PEM fuel cell catalysts, it is clear that 

a materials-based solution can be highly effective, as has been shown. The ORR cathode 

catalyst remains the most pressing challenge for meeting near-future goals. Understanding 

the requirements for these catalyst and the ways in which to test them is critical for 

development. Controlling and exploiting the properties of materials at the nanoscale is a 

skill that researchers and engineers continue to hone. In this spirit, and with an 

understanding of the requirements for active and durable FC catalysts, we look to carbon 

nanostructures. These novel materials, and modifications thereof, have already proven to 

be highly valuable in a number of electrochemical device applications and particularly in 

PEMFCs. In my thesis work I have aimed to study the modification of carbon 

nanostructured materials and to evaluate their ORR activity and durability under simulated 

FC conditions. Specifically, the thesis aims to address two main issues: 

I: To create novel catalyst support materials through synthesis and modification of 

nanoscale carbons 

This is achieved through two studies. The first included synthesizing phosphorus 

and nitrogen co-doped nanotubes and examines how synthesis parameters effect nanotube 

growth and morphology as well as doping characteristics. By characterizing the PNCNTs, 

several conclusions can be drawn about their chemical and physical nature and these are 

correlated to CV measurements of their ORR activity. Comparison of the co-doped 

PNCNTs to NCNTs is also done to identify specific advantages of the additional 

phosphorus dopants. 

Secondly, a study of surface treated carbon black supports was done. Using 

inexpensive, commercially available support materials, I hoped to examine the benefits of 
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using a simple, one-step treatment process via ozone or ammonia for use improving support 

characteristics and catalyst activity. Determining the effects of pre-treatment by either 

method can provide useful insight on improved particle-support interactions and in-turn 

any subsequent improvement in ORR activity and durability. This is done physically by 

gas sorption and XPS, followed by XRD and XANES analysis to examine the Pt, and 

finally electrochemical testing to compare catalyst activity.  

II: To measure and understand the catalytic activity and durability of FC catalysts using 

RDE voltammetry 

 In addition to RDE studies as a part of the modified carbon studies, which are 

critical to evaluating their ORR activity and understand their electrochemical 

characteristics, this aim of this work was to provide insight on RDE testing and its 

effectiveness for understanding real FC performance. The fifth chapter provides insights 

into two popular degradation protocols for studying carbon corrosion in the FCs catalyst. 

The goal was to highlight the need for well-designed protocols for accelerated stress testing 

by demonstrating clear inconsistencies between RDE and MEA data, using well known 

carbons. This work is important for the relevance of academic research efforts on FC 

catalysts which heavily rely on RDE as a screening and evaluation method. It is necessary 

for the success of novel catalysts that their performance translate from the half-cell to full 

scale MEA testing. 

 

1.6 Thesis organization 

This thesis contains six chapters (two introductory, three articles, and one conclusive 

chapter), which are organized in an “integrated article” format per the Thesis Regulation 

Guide from the School of Graduate and Postdoctoral Studies at Western University. The 

outline of each chapter is as follows: 

Chapter 1 is an introduction to PEMFCs including their working principle and main 

technological challenges. This is followed by a review of the catalyst materials used in 

modern FCs, especially functionalized and doped carbons. The use of these materials as 
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both Pt support and metal-free catalyst is discussed. Finally, the research objectives and 

thesis structure are outlined. 

Chapter 2 describes in greater detail the experimental methods used for synthesis and 

surface modification of nanomaterials, methods of physical characterization, and 

parameters for electrochemical testing of nanomaterials especially for ORR activity. 

Chapter 3 is a report on the synthesis of phosphorus and nitrogen co-doped nanotubes 

(PNCNT) and their potential as metal-free catalysts. Specifically, PNCNTs are grown via 

CVD and characterized by several methods to determine their physical and chemical 

structure. Synthesis parameters are varied and their effects documented. Furthermore, the 

ORR activity of PNCNTs are compared to NCNTs to demonstrate the benefits of co-doping 

with phosphorus and nitrogen. 

Chapter 4 is a study of modified CB used as a Pt catalyst support for PEMFCs. Through 

a one-step method of either ozone or ammonia treatment, the catalytic activity and 

durability of Pt/CB catalyst can be improved. The chemical and structural differences in 

the modified and unmodified CB are investigated, as well as the support Pt characteristics. 

These changes are discussed in the context of improved activity towards ORR and 

durability after CV cycling. 

Chapter 5 is a report focused on the testing of carbon support corrosion via RDE. The 

effects of testing temperature, scan rate, and scan speed are evaluated and results compared 

to MEA data for three well known carbons. In particular, the article aims to highlight the 

need for robust testing protocols for accelerated stress tests which are meant to represent 

real fuel cell durability data. This chapter is, in a sense, a red flag for this research 

community to ensure meaningful results – ones that are likely to translate to real FC 

systems – can be drawn using when using RDE. 

Chapter 6 summarizes the work presented in the thesis and draws overarching 

conclusions, tying the articles together. A brief prospective is given on future avenues of 

research in this field.  
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2 Experimental Methods 

The use of nanomaterials is inherently challenging because of their size. Fortunately, 

several advanced characterization techniques are available to examine the structure, 

morphology, and chemical and electronic nature of materials. In this chapter, a number of 

those methods are outlined which are applicable to the studies in this thesis. Since an 

exhaustive description of characterization methods would be well beyond the scope of this 

report, emphasis will be placed on studies of carbon nanomaterials and Pt/carbon structures 

used as electrocatalysts. For each case, a limited description of background fundamentals 

is given. 

 

2.1 Materials Synthesis and Preparation 

2.1.1 Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is a method of growing materials using gas-

phase precursors. Typically, gases are introduced to a reaction chamber at some elevated 

temperature and react with a substrate either directly or with the aid of a catalyst. One 

advantage of CVD is that it has chemically selectivity, as opposed to physical vapor 

deposition (PVD) methods such as sputtering, which deposit material over the entire 

substrate regardless of its characteristics. CVD has become one of the most popular ways 

to grow CNTs. A vapor-phase carbon source such as a gaseous hydrocarbon can be used 

in conjunction with a metallic catalyst, especially iron or nickel [1]. NCNTs can be grown 

by a similar method using precursors that also contain nitrogen [2].  

In Chapter 3, we used the so-called floating catalyst method to deliver Fe catalyst 

particles to the substrate. A schematic of the CVD system used is shown in Figure 2-1. The 

reaction chamber is a quartz tube with 25 mm diameter. The precursor materials and 

catalyst are held separately but in the same location in the tube. The catalyst is melted and 

evaporated near the entrance of the furnace where the temperature is roughly 200°C. The 

precursors are also melted and as they begin to evaporate the vapors are carried by inert 
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gas to the center of the tube where it deposits on the substrate, which could be carbon paper 

or alumina. Ar was used as the carrier gas and the flow rate was controlled by a typical 

rotameter (Matheson Tri-Gas). After the furnace was turned off and the system was 

allowed to cool to room temperature, material was collected by scraping the soot from the 

substrate.  

 

Figure 2-1. Schematic of the experimental setup for floating catalyst CVD of phosphorus and 

nitrogen co-doped CNTs. 

 

2.1.2 High Temperature Gas Phase Treatment 

Powder samples can be heat treated using a quartz tube as reaction chamber and a 

conventional tube furnace for temperature control. Normally, the furnace is used in a 

horizontal orientation, however when treating powders with a gas, this is not an optimal 

setup for mass transport of gas through the sample, nor for holding the powder. Commonly, 

in chemical engineering, fluid bed reactors are used for mixtures of gas and solid phase 

materials [3]. Adapting this, in an elementary way, this system was designed to improve 

mass flow of gases through powder samples and support the sample directly. A fritted 

porous quartz disk was used as a filter which allowed gases to pass through but not the fine 

powder. A photograph of this experimental setup and a closer photo of the quartz filter is 

shown Figure 2-2. In my experiments, gas was flowed from the bottom of the tube towards 

the powder. The length of the tube above the quartz disk was >40 cm, and the gas kept at 

low flow-rates, which ensured minimal powder was lost. The temperature of the system 

was controlled using built-in furnace control. Ar and NH3 gas flow was controlled using 

basic rotameters. 
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Figure 2-2. Experimental setup for ammonia treatment of carbon nanomaterials. (a) Tube 

furnace with inlet and outlet gas lines visible at the bottom and top of the quartz tube. (b) 

Image of a carbon powder sample in the center of reaction tube, supported on a fritted quartz 

disk. 

 

2.1.3 Atomic Layer Deposition 

Atomic layer deposition (ALD) is a process akin to chemical vapour deposition 

(CVD), which introduces precursor chemicals that react and deposit onto a substrate of 

choice. In a typical CVD process, reactants are flowed continuously for the duration of the 

deposition process. In ALD, two or three precursor chemicals are used and are fed to the 

chamber in sequence, with a purge between. The result is a series of cyclic, self-limiting 

reactions that allow for very fine control of the deposition [4]. For example, during the 

deposition of aluminum oxide (Al2O3), tri-methyl-aluminum (TMA) is first pulsed into the 

chamber where it reacts with active OH surface sites on the substrate. After a short reaction 

time the chamber is purged and evacuated. Removing the excess reactants from the first 
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half-reaction ensures that only a single atomic layer is deposited [5]. Next, H2O is 

introduced as the 2nd precursor and reacts with of the monolayer of TMA which uniformly 

covers the substrate surface, forming Al2O3. The H2O is then pumped out, concluding the 

first ALD cycle. 

Ozone treatment using ALD was done in a similar manner with repeated cycles 

consisting of the following three steps: (1) an ozone pulse of 200 ms, (2) a 10s exposure of 

the sample to the O3, and (3) a 1s pulse of N2 and 10s delay to purge excess ozone and any 

gaseous by-products that may have been created [6]. 

 

2.1.4 Microwave Assisted Polyol Process for Pt nanoparticle Growth 
and Deposition 

Synthesizing Pt nanoparticles and depositing them on to support materials is an 

important capability needed to prepare PEMFC catalysts. One of the most common 

methods for producing metallic nanoparticles is a solution based reduction of the metal 

salt. In the case of Pt chloroplatinic acid (H2PtCl6•6H2O) is often used. Microwave-assisted 

polyol method has been used previously to grow colloidal Pt nanoparticles from 

chloroplatinic acid [7], [8]. Though myriad reducing agents are available, previous 

literature has shown that weaker reducing agents, such as sodium citrate or ethylene glycol 

(EG), can produce smaller and more evenly dispersed Pt nanoparticles than strong reducing 

agents such as sodium borohydride [9]. We used EG as both the solvent and reducing agent. 

Besides being a mild reducing agent, EG also has a higher viscosity than aqueous solutions, 

which hinders agglomerations of small colloidal nanoparticles [10]. Adjusting the pH of 

the solution will also affect the reducing rate of the metal particles and it has been shown 

that adjusting the pH to above 10 is an effective way to control the size, and in some cases 

the shape, of Pt nanoparticles [7]. The advantage of using microwave heating, as opposed 

to conventional heating elements or hot plates, has also been recognized. In particular, 

microwave heating can accelerate reactions significantly over conventional heating and 

provide localized, short term heating for lower total energy usage [7], [11].  
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Our procedure is briefly described here. 150 mL of EG was added to 50 mg of support 

carbon in a glass beaker. For a catalyst of 40 wt. % loading, 88.9 mg of H2PtCl6•6H2O was 

added (the salt has 37.5% Pt content). This solution was then sonicated for 2 hours to ensure 

an excellent dispersion of both support and salt. During this time, a concentrated solution 

of NaOH in EG was used to bring the pH of the sample solution to 11. The pH was adjusted 

at least one hour prior to heating. The beaker was placed in a commercial microwave oven 

(1100 W, Panasonic) and heated for 2 minutes, until bubbles were just visible. The mixture 

was then allowed to cool to room temperature. Once cooled, the solution was stirred and 

reagent grade HCl (37%) added dropwise to bring the pH <2. Stirring continued for 15 

minutes before finally filtering and washing with pure H2O. Finally, the washed product 

was dried in a vacuum oven at 60°C for 24 hours.  

 

2.2 Physical Characterization 

It is imperative for any materials research efforts to be able to accurately characterize 

the materials made. This may involve imaging the material structure, identifying its 

elemental composition, or probing its electronic properties. Herein, a number of the 

experimental techniques used for this thesis work are described. 

2.2.1 Scanning Electron Microscopy (SEM) 

A scanning electron microscope (SEM) was used for visually examining 

synthesized materials. The instrument used is a high-resolution Hitachi S-4800 field 

emission SEM, shown in Figure 2-3(a). It is normally operated under vacuum conditions 

of ~1x10-7
 torr, with either 5 kV or 10 kV acceleration and 15 µA current. The SEM was 

operated in secondary electron (SE) mode using both the upper and backscattered (mixed) 

electron collectors. By using mixed collectors, added contrast can be see between elements 

with different atomic numbers. This is particularly useful for imaging Pt on carbon samples 

where the Pt will appear brighter compared to the carbon support, as can be seen in Figure 

2-3(b). Powder samples were deposited on carbon tape and excess blown away with 
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compressed air. As the samples had good conductivity, no additional sample preparation 

was needed. 

 

Figure 2-3. (a) Photograph of Hitachi S-4800 SEM instrument at UWO. (b) Typical SEM 

image of Pt on carbon black catalyst using 10 kV acceleration voltage and mixed detectors in 

SE mode to enhanced the elemental contrast. 

 

2.2.2 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) is a useful tool for imaging samples at 

very high resolutions. TEM has a resolution well under 1 nm, which is notably better than 

SEM. As the name suggests TEM creates an image by collecting electrons which have 

passed through a sample. Therefore, only extremely small and conductive samples can be 

imaged using TEM. The result is sub-nanometer resolution that allows for simple 

determination of particle size, observation of material architectures, and identification of 

amorphous and crystalline phases including the ability to directly measure lattice spacing. 

A TEM instrument requires very high vacuum conditions, a large energy source for 

accelerating electrons at very high voltages, and a column of advanced electron optics 

consisting of magnets and lenses [12]. A schematic of the inner parts of a TEM column is 

shown in Figure 2-4(b).  

TEM imaging was performed by a technician on a field-emission TEM (JEOL 

2010F) at the Canadian Center for Electron Microscopy (CCEM) at McMaster University. 
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Operating voltage of 200 kV was used. A photograph of the instrument is shown in Figure 

2-4(a). Normally, complicated sample preparation is one of the challenges of doing TEM. 

However, since all of the samples which were analyzed by TEM for this thesis were powder 

based, their preparation was straightforward. A small amount (~0.5 mg) of sample was 

sonicated in high-purity methanol to disperse it well. Subsequently, a single drop of that 

solution was dropped onto a holey carbon TEM grid and allowed to dry in air. The grid 

was then checked using our TEM at UWO to ensure its quality before imagining at CCEM. 

 

Figure 2-4. (a) Photograph of the JEOL 2010F instrument at the Canadian Center for 

Electron Microscopy. 

 

2.2.3 Gas-Sorption 

Gas sorption is a technique for determining the surface area and pore size of 

materials. It is often referred to simply as BET, after the scientists who developed the 

method: Brunauer, Emmett, and Teller [13]. This method works by measuring the 

adsorption of nitrogen molecules onto a sample surface at set pressures. A sample of known 

weight is brought to a precise temperature and near-vacuum pressure. Then, gaseous N2 is 

(a) (b) 
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added to the sample cell in known amounts and the pressure change is recorded. N2 

molecules physically adsorb to the surface and cover a known area (~16 Å2). An isotherm 

of the adsorption and then desorption of N2, the latter as the pressure is reduced again to 

vacuum levels, is recorded at set points throughout the test. By measuring the amount of 

N2 adsorbed and the pressure change, the total surface area of the sample can be 

determined. Knowing the weight of the sample to good precision allows for calculation of 

the specific surface are of the sample in m2/g. Two important assumptions made when 

using this method. The first is the only one N2 molecule can occupy a surface site on the 

sample. Unfortunately this is not entirely true as multilayer adsorption can take place. The 

second assumption is that there is no interaction between adjacent molecules of N2. Again, 

the assumption is not perfectly correct. Despite the discrepancies between the assumed 

model and real physical phenomenon, gas sorption remains a highly reproducible method 

and an excellent tool for determining material surface area and pore size. 

 Conducting a gas-sorption analysis involves several steps. The sample weight must 

be accurately known. To do this, the empty cell is first measured, then measured again after 

the material is added. Following this, degassing is done to remove any residual 

contaminants, especially water, from the sample so that it is dry and clean before analysis. 

Degassing is done at elevated temperature under vacuum or an inert gas blanket. Finally, 

the sample and cell are weighed again after degassing to get the true sample weight. The 

instruments used for measurement was a Micrometrics TriStar II Series porosity analyzer 

for chapter 4, and a Quantachrome Nova 2000e surface area & pore size analyzer in chapter 

5. Specifics on the degassing conditions is given in each chapter. 
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Figure 2-5. Typical N2 gas sorption isotherm of a high surface area material with adsorption 

points in black and desorption in red. The hysteresis during desorption is a result of 

micropores. 

 

2.2.4 Raman Spectroscopy 

Raman is a spectroscopic technique that measures light scattering due to molecular 

vibrations in a sample. The vibrations occur as a result of excitation from incident light, 

typically in the visible or infrared range. The incident photons from the laser cause 

molecular vibrations between molecules in the sample. As those high energy vibrations 

relax, they emit a photon of lesser energy than the incident photon (𝐸𝑒𝑚𝑖𝑡 < 𝐸𝑖𝑛𝑐), this is 

called Stokes scattering [12]. Alternatively, the scattered light may be of higher energy 

than the incident (𝐸𝑒𝑚𝑖𝑡 > 𝐸𝑖𝑛𝑐), which is called anti-Stokes scattering. In reality, a third 

mechanism, Raleigh scattering, where the emitted photons are of equal energy to the 

incident (𝐸𝑒𝑚𝑖𝑡 = 𝐸𝑖𝑛𝑐), is the most prevalent and thus the most intense. However, Raman 

only measures Stokes or anti-Stokes scattering. This is important because it means that 

only polarizable molecules can be imaged by Raman [12]. 
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Figure 2-6. (a) Molecular vibrational energy states of a molecule in high and low energy states, 

showing incident and emitted photons. (b) Photon absorption and emission energies for 

different scattering mechanisms. 

Similar to other spectroscopic techniques, a Raman scan produces a spectrum of 

intensity vs wavenumber, which is the inverse of the wavelength (cm-1). The plotted 

spectrum, then, has characteristic peaks for different kinds of molecular species in a sample 

that can be identified as fingerprints. Some Raman spectra of different carbon samples is 

shown in Figure 2-7. Of specific importance for studying carbon materials are the G-band 

and D-band, which appear around 1585 and 1350 cm-1, respectively. The G-band 

corresponds to sp2, or highly graphitic carbon such as that which might be found in CNTs 

or graphene. The D-band, meanwhile, corresponds to defects or disorder in the sp2 lattice, 

or to sp3 carbon. An important metric is the ID/IG value which is the ratio of the areas under 

each peak. This value quantifies the relative amount of defects compared to ordered carbon 

and can be used to compare materials. 

The instrument in our lab is a HORIBA Scientific LabRAM spectrometer. Samples 

are placed on clean glass slide under the optical microscope for measurement. Calibration 

is done with a piece of pure Si which has a well-known peak. A 532 nm laser is used for 

excitation. The power of the laser, the exposure time, and the number of accumulations 

(i.e. number of scattering spectra recorded) can all affect the results and tuning these is 

necessary to reduce noise and get reliable signals. With carbon samples, a low laser power 
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is generally good meaning more accumulations must be used to get a good signal to noise 

ratio. 

 

Figure 2-7. (a) Raman spectra for (1) highly ordered graphite, (2) polycrystalline graphite, 

(3) amorphous carbon, (4) diamond-like carbon [14]. The D- and G-bands at 1350 and 1590 

cm-1, respectively, are noticeable especially in (2) and (3). 

 

2.2.5 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) gives crystallographic information about materials by 

measuring the phase shifts caused by X-ray light with the material. X-rays are generated in 

an X-ray tube where high energy electrons are accelerated at a metal target, causing the 

emission of high energy photons that we know as X-rays [12]. Our instrument is a Bruker 

D8 Advance X-ray diffractometer which uses a Cu Kα X-ray source with a wavelength of 

0.1542 nm. The output of an XRD scan is a spectrum with the y-axis being the intensity 

and x-axis is 2𝜃, where 𝜃 is the angle of incident X-rays on the sample. Certain peaks arise 

because of the phase shift of the diffracted X-ray due to the lattice spacing of the material. 

The diffraction follows Bragg’s law: 

 𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃 (2-1) 
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Where n is an integer, 𝜆 the wavelength of the light, d is the spacing between crystal planes 

in the material, and 𝜃 is the angle of the incident light. For a certain lattice spacing, d, light 

reflected will be in or out of phase. If it is out of phase it interferes with itself destructively 

resulting in a weak signal. If the diffracted light is in phase it will constructively interfere 

resulting in increased intensity and a peak at that angle in the spectrum. 

 

Figure 2-8. Schematic of Bragg’s law with incident and reflected X-ray light from two atomic 

planes of a material with spacing, d. 

XRD is most often used to identify the various crystal planes of elements in a 

sample. This can be useful to determining the state of a particular material, and the height 

and width of the peaks can provide further information about the relative amounts of each 

crystal type. In addition, the peaks can be used to determine lattice sizing or nanoparticle 

size using the Scherrer equation [15]: 

 
𝑑 =

𝑘𝜆

β cos 𝜃
 (2-2) 

Where k is a constant, usually assumed to be ~0.9 [16], 𝛽 is the full-width half-max 

(FWHM) of the peak of interest, and 𝜆 and 𝜃 are the same as above. Using this equation, 

and fitting the peak of the XRD spectrum, we can determine the average particle in sample. 

This is particularly useful for finding the average size of Pt nanoparticles in a catalyst 

sample. 
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2.2.6 X-Ray Photoelectron Spectroscopy 

XPS is a powerful surface analysis technique that measures the energy of electrons 

emitted from a material upon excitation from an X-ray. An X-ray photon is directed at the 

sample and causes the emission of an electron from one of the atom’s core shells, which 

are labelled K, L, M and so on. The emitted electron is called a photoelectron and it will 

have a very specific kinetic energy which is measured by the instrument. This energy value 

is the same energy that is required to eject the electron from the core and is called the 

binding energy [12]. Knowing the values of these binding energies, we can then identify 

the elements that are present in the sample by matching those of the emitted photons. 

Because of the relatively low energy of emitted photons, they can only escape a material if 

they are about 10 nm from the surface or less [12]. This is why XPS is a very surface-

sensitive technique and not the ideal method for studying bulk characteristics. Low energy 

electron detection also requires high vacuum conditions for measurement.  

The peaks at a particular binding energy for an atomic shell will be shifted to 

slightly higher or lower energy values when the element in question is bonded in different 

configurations. For instance, carbon 1s peak can occur in the range of 281-293 eV, 

depending on what it is bonded to [12]. Using these shifts we can identify particular bonds 

present in the sample. Often, a broad peak appears around the binding energies of a few 

bonding configurations. In this case, fitting of the peak is necessary to elucidate the exact 

types of bonds present, and to get quantitative data about the concentration of various 

elements. One example where this often proves very useful is for studying nitrogen doping 

in carbons. The N 1s peak occurs around eV but can be shifted depending on the bonding 

environment. Peaks for pyridinic, pyrrolic, and graphitic N appear at 398.1, 399.9, and 

401.1 eV, respectively [17]. Fitting the measured spectrum with peaks centered at these 

three energies, we can determine their relative amounts from the area of each fitted peak. 

The fitting procedure can be very complicated so, for the sake of this thesis, all fitting and 

analysis of the XPS spectra was left to the surface science experts who have developed 
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techniques for analyzing this data. XPS analysis was done at Western Surface Science 

facility using a Kratos AXIS Nova spectrometer. 

 

2.2.7 X-Ray Absorption Spectroscopy (Synchrotron) 

Synchrotron radiation is a type of high energy light that arises from the motion of 

rapidly accelerating electrons. This change in motion causes the emission of a high energy 

X-ray photon. The wavelength (λ) and energy of the emitted light can be controlled by 

controlling the speed and motion of the electron from which it is emitted.  Synchrotron 

radiation has several advantages over traditional X-ray excitation techniques including 

specific wavelength selection, super-high brightness, polarizability, short pulse times, and 

the ability to study samples in solid, liquid, or gas phase [18]. Generally, a particular beam-

line is dedicated to either “soft X-rays” (0.1 ≤ 𝜆 ≤ 10 𝑛𝑚), or “hard X-rays” (0.01 ≤ 𝜆 ≤

0.1 𝑛𝑚) [19]. As a rule of thumb, lower energy soft X-rays are suitable for studying lighter 

elements and high energy hard X-rays are suitable for studying heavier elements such as 

transition metals [20]. 

Though synchrotron radiation can be used for a number of analysis techniques, in 

the context of this thesis, the most important technique is X-ray absorption spectroscopy 

(XAS). XAS is the study of the change in absorption coefficient of a material with indecent 

X-ray photons of varying energies [21]. For an X-ray energy equal to that of the binding 

energy of an electron, a large change in the absorption coefficient is seen as a prominent 

absorption edge in the XAS spectrum. The absorption edge for a material corresponds to 

an atomic orbital of that element. At energies much greater than the absorption edge, 

scattering of the emitted photoelectron results from interactions with neighbouring atoms. 

This region, well beyond the absorption edge, is the extended X-ray absorption fine 

structure (EXAFS) region. However, energies at the pre-edge, the absorption edge, and just 

past the edge constitute the X-ray absorption near edge structure (XANES) region [22]. 

The regions where XANES and EXAFS information is extracted in shown in Figure 2-9. 

Notice the x and y axis are the X-ray energy and absorption coefficient, respectively. 

XANES analysis gives information about an atom’s oxidation state, spin state, and electron 
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vacancies [21]. XANES analysis is done by subtracting the baseline absorption peak of a 

reference sample and comparing the intensity and area under the whiteline curve [23]. 

Mathematical methods can be used to calculate quantitative whiteline parameters but this 

is beyond the scope of this thesis. XANES measurements for this thesis were done at 

Advanced Light Source at Berkley and analysis done with the help of Dr. Mohammed 

Norouzi-Banis. 

 

Figure 2-9. XAS spectra showing the XANES and EXAFS specific regions and highlighting 

the absorption edge. The vertical axis is the absorption coefficient and the horizontal axis is 

the x-ray energy. 

   

2.3 Electrochemical Characterization 

Cyclic voltammetry is an electrochemical measurement technique wherein the 

current is measured from an electrode of interest while a range of potentials is applied at a 

chosen rate. As outlined in the introduction section of this thesis, a three electrode cell is a 

common experimental apparatus used for cyclic voltammetry. In our case, the working 

electrode (WE) is a glassy carbon disk (diameter: 0.5 cm, Pine). The reference electrode 

(RE) is a mercureous sulfate electrode with saturated potassium sulfate electrolyte, 
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Hg/Hg2SO4 (K2SO4). The counter electrode (CE) is a Pt wire. A photograph of the three-

electrode electrochemical cell used is shown in Figure 2-10.  

Impurities can be one of the leading causes of poor results in electrochemical work. 

To minimize this, the cell was cleaned frequently with aqua-regia to remove any 

contaminants, followed by washing with copious amounts of ultrapure (18.2 MΩ) water. 

In fact, only ultrapure water is used for all aspects of the electrochemical experiments. 

Before testing any new catalyst, the glassy carbon electrode was polished with a dispersion 

of 0.05 µm alumina until a mirror-like finish was achieved. The electrolyte was prepared 

using high-purity sulfuric acid (99.999%, Sigma), or KOH, and ultrapure water to produce 

a solution of 0.5 M H2SO4. The RE and CE were washed with copious amounts of ultrapure 

water prior to placing in the cell. Both the CE and RE were placed in the cell a minimum 

of 30 minutes prior to any measurements to ensure the system was at equilibrium.  

Inks were prepared consisting of catalyst powder, ultra-pure water, isopropanol, and 

a small amount of 5 wt. % Nafion solution. A new ink was sonicated 60 minutes in an 

ultrasonic bath before use. It should be noted that inks older than one week were never 

used since they are prone to particle agglomeration and generally perform poorly compared 

to fresh ink. Once ready, small aliquots (typically 10 µL) of ink were dropped onto the 

polished glassy carbon electrode and allowed to dry in air under a heat lamp.  
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Figure 2-10. (a) Three-electrode electrochemical setup 

CV measurements are first done with N2 saturation. N2 gas is bubbled into the 

electrolyte for at least 30 minutes prior to any measurements to ensure no air is in the cell. 

Checking for a stable open circuit voltage confirms that the cell is in a steady-state. For Pt-

catalysts, 40 or more cycles are used to activate and clean a freshly made electrode. This 

step removes unwanted organics from the Pt surface by the repeated formation and 

reduction of an oxide layer and the adsorption and desorption of hydrogen. These activation 

cycles ensure the best possible activity measurements. Specific CV scan profiles are given 

in each chapter of this thesis but typically a potential window from roughly 0-1.2 V vs 

RHE is used with a scanning rate of 10 or 20 mV/s. To record CVs and ORR polarization 

curves in O2 saturation, pure O2 is bubbled for at least 30 minutes to ensure saturation. 

Again, the open circuit potential can be monitored to ensure steady state is reached in the 

cell. For an ORR polarization curve, using the rotating disk electrode (RDE) is the 

preferred method. More specifics for the electrochemical measurements made in each 

chapter are given in the experimental sections of that chapter.  
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3 Synthesis of Phosphorus and Nitrogen Co-doped Carbon 
Nanotubes for Metal-Free Oxygen Reduction Catalysts 

 

Heteroatom doping in nanostructured carbon materials has become increasingly popular. 

Doping carbon nanotubes (CNTs) can introduce mechanical, electrical, and chemical 

properties that are not otherwise observed in pristine CNTs. Nitrogen doping has been by 

far the most popular choice for researchers as a result of the excellent functionality of N-

CNTs, especially in electrochemical applications. More recently there has been some 

interest in doping CNTs with two or more elements, to understand the synergistic effects of 

co-doping. Herein we synthesize phosphorus and nitrogen co-doped CNTs (PNCNT) 

grown via chemical vapour deposition. Several synthesis parameters are varied to study 

the effects on tube morphology and the physical characteristics of the PNCNTs are studied 

via TEM, Raman, and XPS. It is shown that gas flow rate affects the PNCNT length and 

concentration of phosphorus precursor affects tube diameter. Studies by XPS, and Raman 

confirm the presence of phosphorus and show a modified carbon structure with both 

dopants compared to only nitrogen. Finally, some preliminary electrochemical results are 

presented indicating that PNCNTs have improved ORR activity compared to NCNTs in 

alkaline media, with 62% increase in current density at 0.8 V. The improved activity is 

attributed to the combined effect of both P and N dopants. Koutecky-Levich analysis 

suggests the PNCNTs catalyze ORR via a mixture of both two- and four- electron pathways. 
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3.1 Introduction 

Electrochemical energy devices such as fuel cells and metal-air batteries are excellent 

candidates for addressing the ever-growing demands for reliable and renewable energy. 

These devices, in particular, rely on the oxygen reduction reaction (ORR) which is 

inherently sluggish and thus requires catalysis to meet performance standards for 

commercial application. Typical ORR catalysts consist of Pt or other noble metals, though 

these render fuel cells prohibitively expensive for many applications. Metal-free catalysts 

have been a long sought-after alternative to noble metal catalysts, though they have 

historically been unable to match the incredible catalytic activity of materials like platinum.  

Doped carbons have become one of the leading family of candidate materials for metal 

free catalysts. Nitrogen doping, in particular, has been extensively studied over the last 

several years [1] and it is now widely accepted that N-doping enhances the properties of 

carbons especially towards ORR catalysis via modification of the physical and electronic 

structure of the material [2], [3].  Meanwhile, boron, sulfur and phosphorus doping have 

also been studied for electrochemical devices [4]. Phosphorus is one of the more difficult 

of these elements to dope, due in part to its large atomic radius compared with carbon. 

Compared to N or B, for instance, the strain induced by a P atom in an sp2 carbon lattice is 

considerable due to the long P-C bond length, which may result in an out-of-plane 

protrusion of the P atom [5]. On the other hand, phosphorus has an electron donating nature 

which makes it attractive as a dopant for catalytic activities, where modification of the 

carbon electron structure has been shown to be one advantage of N-doped carbons [6]. On 

its own, phosphorus has been studied as a dopant in CNTs [7], [8] graphene [9], [10], and 

mesoporous carbons [11], [12]. In several of these cases it has been shown that P-doping 

can effectively improve the ORR activity of the carbon compared with an un-doped 

counterpart. 

Co-doping nitrogen and phosphorus has been very recently studied in several instances. 

Few groups have reported the synthesis of co-doped P and N graphene [13], [14]. Cruz-

Silva performed density functional theory analysis of P and N co-doped CNTs and showed 

that the presence of an N dopant atom adjacent to a P-dopant can act to reduce the lattice 

strain in the carbon, potentially making co-doping easier than doping only phosphorus [5]. 
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The same group [15], and others [16], [17] have synthesized PNCNTs. Here we report 

synthesis of PNCNTs and examine the effects of CVD process parameters. The 

morphology and physical structure of PNCNTs is studied by scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and Raman spectroscopy. XPS results 

show the presence of phosphorus and nitrogen at the surface of PNCNTs and provide 

concentrations of each. Finally, the ORR activity of the PNCNTs in alkaline media was 

tested and compared to that of NCNTs in order to determine the effect of phosphorus on 

the activity of these metal-free catalysts. Koutecky-Levich analysis shows a mixed two and 

four electron ORR pathway catalyzed by PNCNTs.  

 

3.2 Experimental 

3.2.1 Sample Preparation 

PNCNTs were prepared via floating catalyst CVD method using ferrocene (98%, 

Aldrich) as the catalyst with triphenyl-phosphine (TPP) (99%, Sigma) and imidazole (99%, 

Sigma) as the P and N sources, respectively. Both precursors also provided the carbon for 

CNT growth. Imidazole and TPP (0.5, 1.5, 2.5, and 5.0 wt.%) were placed in a small quartz 

crucible for 2000 mg total precursor mixture. 20 mg of ferrocene was placed in a small 

holder, separate from the precursors, on the quartz crucible. The substrate alumina crucible 

was placed in the center of a quartz tube in a tube furnace. The precursors were placed near 

the opening of the furnace and Ar gas was flowed through the tube for 20 minutes to 

remove air. The temperature was raised to 850°C, at which point the ferrocene and the 

precursors were evaporated and transferred to the substrate by the Ar flow. The substrates 

were kept at the set temperature for 10 minutes and then cooled to room temperature with 

continued Ar flow. The PNCNTs were scraped from the soot built up on the substrate. 

NCNTs were prepared by the same method with only 2000 mg imidazole. 

3.2.2 Physical Characterization 

The morphology and structure of the nanomaterials were studied using scanning 

electron microscope (Hitachi S-4800 field-emission - SEM) and transmission electron 
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microscope (JOEL 2010F - TEM). X-ray diffraction (XRD) pattern was obtained using a 

Bruker D8 Advance using a Cu-Kα source. Raman spectrum was measured using a 

HORIBA Scientific LabRAM HR Raman spectrometer system with a 532.4 nm laser at 

room temperature. 

3.2.3 Electrochemical Measurements 

Catalyst ink consisted of 3 mg of the prepared catalyst plus 588 µL of isopropanol and 

12 µL of 5 wt. % Nafion solution (Ion Power) for a 5 mg/mL solution. The ink was 

sonicated for 60 minutes in an ultrasonic bath at room temperature. Four 5 µL aliquots of 

the catalyst ink were dropped onto a polished glassy carbon (GC) electrode (Pine, 5 mm 

diameter) and dried under a heat lamp. After the last aliquot had dried, a small amount of 

ultrapure water was dropped onto the electrode to improve wetting in the electrochemical 

cell. The prepared GC electrode with catalyst served as the working electrode. A Pt wire 

and Hg/HgSO4 electrode were used as the counter and reference electrodes, respectively. 

A correction of -0.658 V vs. RHE was used for the Hg/HgSO4 electrode and all potentials 

henceforth are given with respect to RHE. Measurements were done using a standard 

potentiostat (AutoLab). All measurements were done at room temperature using 0.1 M 

KOH electrolyte prepared with Milli-pure water (18.2 MΩ/cm2) and high purity KOH 

(>99.9%, Aldrich). CVs were measured under high purity N2 or O2 saturation, cycled from 

0.05-1.2 V at 10 mV/s. ORR curves were taken under O2 saturation which was achieved 

by bubbling O2 for a minimum of 20 minutes. The electrode was rotated at 1600 RPM and 

potential scanned from 0.05-1.2 V at 10 mV/s.  

 

3.3 Results 

Synthesis of PNCNTs was carried out using a floating catalyst CVD method as 

described previously [18]. Based on this setup several parameters were found to play 

important roles on the formation of PNCNTs. The flow of Ar gas carries both catalyst and 

precursor to the substrate, making it an important parameter for tube growth. We varied 

the inlet gas flow between 0.85 and 1.72 SLPM to find good growth conditions. Figure 3-1 

shows bundles of PNCNTs made at different gas flow rates. The tubes grown at 0.85 SLPM 



64 

 

 

are very short compared to those at higher rates, suggesting that a higher rate is needed to 

ensure good mass transport to the substrate. The yield was also extremely low at 0.85 

SLPM. At higher flow rates the length is >50 µm and bundles with widths from 5-40 µm 

were common in each case. Ar flow above 1.72 SLPM led to a build-up of excess precursor 

vapour at the exhaust end of the tube, resulting in poor nanotube growth. The length of 

tubes appears to be a function of the gas flow rate, as seen in Figure 3-2(a). 

  
Figure 3-1. PNCNTs synthesized with Ar flows of 0.85 (a), 1.17 (b), 1.46 (c), 1.72 (d) SLPM. 

The length of tubes roughly increases with the flow rate, with a maximum of 61 µm at 

1.46 SLPM, and a slightly decrease to 54 µm at 1.72 SLPM. This result is intuitive as the 

increased gas flow improves mass transport of the vaporized precursor materials. On the 

other hand, the gas flow has no apparent effect on the diameter of the tubes (Figure 3-2(a)). 

This can be understood because the tube diameter is related mainly to the catalyst particle 
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size and the nature of the precursor’s chemical structure [19]. Despite the slightly longer 

tube length at 1.46 SLMP, we chose to use 1.72 SLPM for subsequent experiments because 

the overall yield was better at this flow rate.  

 

 

Figure 3-2. (a) Average PNCNT diameter (in nm) and length (in µm) for various Ar flow rates 

with precursor TPP concentration of 2.5 wt. %. (b) Average diameter of PNCNTs as a 

function of the TPP concentration in the precursor mixture, grown with 1.72 SLPM Ar flow. 

With the chosen gas flow rate, we proceeded to synthesize PNCNTs with varying 

amounts of TPP precursor, from 0-5 wt. %. The effect of TPP precursor on the quality and 

diameter of nanotubes was studied by examining more than 200 nanotubes for each 

concentration under SEM. The results indicated that increasing the concentration of TPP 

resulted in an increase in the average tube diameter, as seen in Figure 3-2(b). Error bars 

represent one standard deviation. This increase may be a result of increased wall thickness, 

as others have observed [16], [18]. At 5 wt. % TPP, the quality of nanotubes was very poor 

compared to lower concentrations, with SEM images showing significant amorphous 

carbon. PNCNTs referred to herein were prepared with 2.5 wt. % TPP at 1.72 SLPM.  

TEM images of NCNTs and PNCNTs are shown in Figure 3-3. The bamboo-like 

structure, which is characteristic of NCNTs [20], [21], is clearly seen in the TEM images 
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of those and the PNCNTs. Interestingly, there appear to be two types of tubes in Figure 

3-3(b), one with a narrow channel and very thick walls (centered and right), and a second 

type with a wider channel (left side of image). This phenomenon also recently observed by 

Nicolls et al [16].  Thick walls and a thin channel are seen in Figure 3-3(c) which also 

shows some amorphous carbon build-up on the PNCNT. A high-magnification image of 

the wall of a PNCNT is shown in Figure 3-3(d). The wall thickness is ~30 nm and appears 

to have only short range order. Furthermore, the carbon planes are not perfectly parallel 

and have varying interplanar distances greater than that of pristine sp2 carbon, indicative 

of disorder in the carbon lattice likely caused by the presence of heteroatoms.  

 

Figure 3-3. TEM images of (a) NCNTs and (b,c) PCNTs. (d) HR-TEM image of the nanotube 

wall in PCNTNs. 

Raman spectroscopy was used on the PNCNTs and NCNTs to better understand the 

effects of the dopants on the carbon structure of the nanotube and determine their relative 



67 

 

 

amounts of ordered and disordered carbon. The spectra of PNCNTs and CNTs are shown 

in Figure 3-4. The G-band intensity, which normally occurs around 1582 cm-1 in pristine 

CNTs, correlates to highly ordered, sp2-type carbon resulting from the lateral vibrations of 

C-C bonds in a ring. The D-band, around 1350 cm-1, correlates to disordered carbon. In 

order to find a relative amount of amorphous to ordered carbon, one can compare the ratios 

of the D and G-band peak areas to find the value ID/IG. The ID/IG ratio for NCNTs and 

PNCNTs are 2.08 and 2.70, respectively. From this result, it appears that P dopants increase 

the disordered nature of the CNTs, including the amount of amorphous carbon, compared 

to N-only doping. In addition, the G-band is down-shifted from 1580 cm-1 in NCNTs to 

1565 cm-1 in PNCNTs, which may be due to the additional stretching of C–C bonds in the 

vicinity to the large phosphorus atoms compared to the distortions caused by only nitrogen 

dopants, and may be indicative of changes to the electronic bonding structure [22].  

 

Figure 3-4.  Raman spectra of NCNTs and PNCNTs 

An X-ray photoelectron spectroscopy (XPS) survey was done to determine the 

chemical composition of NCNTs and PNCNTs. The spectra for each are shown in Figure 

3-5(a). The concentrations of various elements in each species is given in Table 3-1. The 

nitrogen content in each sample is the same (6.2 at. %) suggesting that other differences in 

the chemical and electrochemical properties of the PNCNTs may be attributed to the 

presence of the phosphorus, of which there is 1.1 at. %. This phosphorus content is in line 
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with aforementioned literature values for similarly doped carbon nanomaterials. A fitting 

method was used to deconvolute the N 1s and P 2p peaks in each sample. By doing so it is 

possible to determine the bonding nature of nitrogen and phosphorus, respectively. The 

high-resolution N 1s peaks for NCNT and PNCNT are shown in Figure 3-5(b) and (c), 

respectively. There are two peaks within the N 1s signal. The peak centered at 398.1 eV 

corresponding to pyridinic N and the peak at 400.8 eV corresponding to quaternary 

(graphitic) N. Interestingly, the ratio of graphitic to pyridinic nitrogen is higher in the 

PNCNTs which suggests that the presence of the phosphorus may play a role in promoting 

higher energy nitrogen species during doping. A high-resolution P 2p peak from the 

PNCNT sample is shown in Figure 3-5(d). In this case there are two peaks each at higher 

and lower energy corresponding to P0 and P–O bonding, respectively. The double peak is 

due to orbital splitting between 2p3/2 and 2p1/2 which is highlighted with the dashed line. 

Although many claim that the lower energy P 2p peak at 130-132 eV corresponds to P–C 

bonding, it has been importantly noted that evidence of P–C bonds from XPS data is 

somewhat ambiguous [23], [24]. We can say that the peak centered around 130.2 eV 

corresponds to a P0
 state, while that at 132.4 eV corresponds to phosphate-type P–O 

bonding. It may be that the slightly increase oxygen content in the PNCNTs is a result of 

phosphate groups at the surface.  

 

Table 3-1.  Composition of NCNT and PNCNTs determined by XPS analysis 

Element NCNT (at. %) PNCNT (at. %) 

C 90.3 88.7 

O 2.8   3.8 

N 6.2 6.2 

P – 1.1 
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Figure 3-5. XPS survey spectra for PNCNTs and NCNTs (a). High resolution N 1s peak for 

NCNT (b) and PNCNT (c), and high-resolution P 2p peak for PNCNTs (d). 

PNCNTs are potentially attractive materials for metal-free catalysis of ORR. To 

understand the difference in catalytic activity of PNCNTs and NCNTs, the two materials 

were tested using RDE in 0.1 M KOH electrolyte at room temperature. An equal amount 

of material, 0.81 mg/cm2, was deposited onto the glassy carbon electrode for comparison. 

CV curves were recorded at 10 mV/s in O2 saturated electrolyte, and are shown in Figure 

3-6(a). There is an increased current density at the ORR peak around 0.62 V for the PNCNT 

sample compared to NCNTs, indicating higher catalytic activity. In addition, the double 
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layer capacitance appears slightly larger for PNCNT, as seen in the wider region of the CV 

below 0.5 V. This could be a result of slightly increased surface area or surface roughness. 

Further comparison of the two nanotube materials was done by evaluating their ORR 

activity by linear sweep voltammetry. The polarization curves shown in Figure 3-6(b) were 

recorded at 1600 RPM with a scan rate of 10 mV/s. While the two curves are similar, it can 

be seen that the PNCNTs show higher current density throughout. The onset potentials of 

NCNTs and PNCNTs are 0.85 V and 0.90 V, respectively. The higher onset potential 

demonstrates improved activity of the co-doped catalyst, further confirming that the 

presence of phosphorus and nitrogen together results in good ORR catalysis. At 0.8 V, 

PNCNTs have a current density of -0.21 mA/cm2 which is 62% greater than NCNTs with 

a current density of -0.13 mA/cm2 at the same potential. High current density in the kinetic 

region is highly desirable as it translates to a high operating potential in a fuel cell. Using 

the kinetic current, ik, and normalizing to the catalyst loading, the mass activity of PNCNTs 

and NCNTs at 0.8 V are 0.24 mA/mg and 0.15 mA/mg, respectively, revealing a 62% 

improvement in mass activity for PNCNTs compared to NCNTs. In addition to the 

presence of additional phosphorus surface groups and synergistic effects of P and N co-

doping, the higher current density compared to NCNTs may be attributed to surface 

heterogeneity in the PNCNTs that contribute to improved ORR catalysis.  
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Figure 3-6. (a) CVs recorded in O2 saturated 0.1 M KOH solution for NCNTs and PNCNT 

(b) ORR polarization curves for NCNT and PNCNT recorded at 1600 RPM. (c) ORR curves 

for PNCNT at various rotation rates. (d) Koutecky-Levich plot from data in (c). 

In Figure 3-6(c) the ORR curves of PNCNTs recorded at 400, 900, 1600, and 2500 RPM 

are shown. The plot illustrates flat mass-transport region at each rotation rate. A Koutecky-

Levich plot was prepared using the data from the ORR curves at varying rotation rates, ω, 

wherein the inverse current density, at several potentials is plotted against, ω-1/2. This is 

shown in Figure 3-6(d). The highly linear and parallel fit of the points for each potential 

value indicating first-order rate kinetics with respect to O2 [25]. Using the same ORR data, 

the number of electrons transferred for each oxygen molecule, n, can be calculated using 

the Levich equation: 



72 

 

 

 𝑗lim = 0.201𝑛𝐹𝐴𝐶𝐷2/3𝜈−1/6𝐶𝜔1/2 (3-1) 

Where jlim is the diffusion limiting current, F is Faraday’s constant, A is the electrode area, 

C is the concentration of O2 in electrolyte, D is the diffusion coefficient of oxygen in the 

electrolyte, 𝜈 is the kinematic viscosity of the electrolyte (assumed to be equal to water). 

The average value of n at 400 RPM is 3.0, while the average value of n at 2500 RPM is 

2.7. This slight inconsistency may suggest a two-step reaction is taking place where the 

second step proceeds more slowly than the first [26]. Since the ORR reaction involves 

either a two or four electron transfer, these values suggests that there is a combination of 

ORR mechanisms at work on PNCNTs. One pathway is the direct reduction of O2 to H2O 

(4 electron), and the other is a reduction first to H2O2 (2 electron). Further studies with 

rotating ring disk electrode (RRDE) could elucidate more information on the exact ratio of 

H2O to H2O2 production at the electrode. 

 

3.4 Conclusions 

PNCNTs were synthesized via floating catalyst CVD and grown on alumina substrates. 

It was found that, using this method, the length of PNCNTs could be controlled by 

adjusting the gas flow rate and that increased concentration of TPP in the precursor blend 

resulted larger tube diameters. Furthermore, PNCNTs had thicker tube walls and narrow 

central cavities compared to NCNTs. XPS confirmed the presence of phosphorus and 

Raman analysis showed an increase in disordered carbon in the co-doped sample compared 

to nitrogen doped only. Measurements of PNCNTs in alkaline solution showed a higher 

onset potential for ORR and 62% increase in current density at 0.8 V compared with 

NCNTs, indicating that co-doping with phosphorus and nitrogen can improve the catalytic 

activity of CNTs more than doping with nitrogen alone. Additional testing of the ORR 

activity in acidic media, and a study of PNCNTs as a Pt-catalyst support would be good 

candidates for future studies. 
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4 Effects of Ammonia and Ozone Treatment for Carbon 
Black Supported Pt Electrocatalysts 

 

The long term commercial success of proton exchange membrane fuel cells is still heavily 

dependent on reducing their costs and improving performance. The platinum catalyst still 

accounts for a large portion of fuel cell system costs and is one that will not decrease with 

large scale manufacturing. Tremendous research efforts have bene made towards lowering 

costs and increasing the utilization of Pt, especially at the cathode, where sufficient Pt is 

necessary to catalyze the otherwise sluggish oxygen reduction reaction (ORR). Using 

modified carbon support materials has been shown to offer several benefits include several 

benefits including improved Pt stability and corrosion resistance. Herein, we compare a 

commercial Pt on carbon black (Pt/CB) sample to similar catalyst supported by ozone 

treated (O3-CB) and ammonia treated carbon black (NH3-CB). SEM, TEM, and XRD 

analysis of Pt nanoparticles deposited on each support show good distribution and small 

size on both modified CBs, while gas-sorption and XPS confirm the presence of functional 

groups on the supports. Half-cell electrochemical tests confirm the mass activity of the 

modified CB supported catalysts increases in the order Pt/CB < Pt/NH3-CB < Pt/O3-CB, 

with an 18% increase in mass activity for Pt/O3-CB over Pt/CB. Further, Pt/O3-CB offers 

improved durability in the fuel cell operating potential range compared to Pt/CB, with only 

7% mass activity loss after durability testing. This work demonstrates a facile, one-step 

treatment method for modifying a low-cost CB support to be used as Pt-supported catalyst 

with improved catalytic activity and durability. 
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4.1 Introduction 

Lowering the cost of proton exchange membrane fuel cells (PEMFC) is one of the 

paramount challenges to the long-term success of the energy-converting technology. 

Because of the sluggish kinetics of the cathodic oxygen reduction reaction (ORR), platinum 

(Pt) based catalysts are used in PEMFCs to achieve acceptable performance. While 

significant reductions in Pt loadings have been made in the last decade, the catalyst still 

accounts for a significant portion of the FC cost; one that will not decrease with projected 

economies of scale [1]. Additionally, the long-term operation of the FCs is critical for their 

role in vehicle powertrains, where lifetimes of roughly 5000 hours is needed with minimal 

performance loss. Some of the main mechanisms of catalyst activity loss in PEMFCs 

include support corrosion, particle agglomeration, and Pt dissolution [2]. In this respect, 

considerable research efforts have been made for increasing the activity of Pt catalysts and 

improving their stability [3]. Despite the many catalyst architectures proposed, Pt 

nanoparticles supported on carbon black remain the state-of-the-art for PEM fuel cell 

catalysts. The role of the support has been studied in depth [4], [5] and a variety of other 

materials including carbon nanotubes (CNTs) [6], graphene [7], and metal oxides [8], have 

been shown to be good candidates. To date, however, none of these advanced 

nanostructured supports has been extensively used in commercial FC stacks because their 

cost and difficult synthesis compared to carbon black remains a barrier. 

Typically, carbon black is prone to corrosion at high electrode potentials when 

oxidation to CO and CO2 are observed [9]. This is especially problematic during start-up 

and shut-down of the FC when electrode potentials can reach up 1.5 V or higher. With 

advances in FC controls and engineering systems, the corrosion of carbon supports during 

start-up and shut-down can be mitigated to some extent. An excellent review of these 

system strategies for reducing carbon corrosion has been published [10], and more recently, 

Yu and colleagues present a table of the FC system strategies employed by major fuel cell 

companies for limiting carbon corrosion and cell reversal [11]. Besides carbon corrosion, 

Pt dissolution and particle migration will occur in the potential range from 0.6-1.0 V which 

is the operating range of a PEMFC [12]. Hence, there remains a need for developing 

catalysts which are more immune to Pt dissolution and migration. The use of novel support 
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materials with increased interactions between the particles and support material have been 

shown to be effective in this regard [13]–[15].  

Modification of the carbon support surface with functional groups can be an effective 

way to improve catalyst activity and durability. Previous studies have shown that the ozone 

treatment can increase the acidity of carbon surfaces [16], which promotes good deposition 

and adhesion of Pt particles due to interactions between the surface groups and precursor 

Pt salt [17], [18]. It has also been reported that increasing the surface heterogeneity of a 

carbon sample can improve the dispersion of Pt particles on its surface [19]. Recently, our 

group used atomic layer deposition (ALD) to treat nitrogen-doped CNTs (NCNT) with 

ozone and found that a non-destructive surface treatment could be applied by varying the 

temperature and number of cycles [20]. 

Meanwhile, nitrogen doping has been thoroughly studied especially for graphene 

[21] and carbon nanotubes [22], [23], and to some extent, carbon black [24]–[26]. Nitrogen 

doped carbons have proven to be effective catalyst supports because of their density of 

high energy binding sites for Pt [28], and for the electronegative nature of nitrogen which 

can promote good activity towards ORR. Ammonia treatment of carbon black has been 

shown to increase the catalytic activity of the carbon itself towards the oxidation of sulfuric 

acid [27]. Further, carbon black treated with urea and selenourea was shown to have good 

ORR activity in acidic solution [25]. Carbon black functionalized via pyrolysis with 

polyaniline has been studied as a metal-free catalyst in methanol fuel cells [24]. Another 

group used 4-aminomethypyridine to functionalize Vulcan carbon and found the product 

to be a good support for small and disperse Pt particles.  

Herein we report the modification of a commercially available, high surface area 

carbon black via one step treatment with either ozone or ammonia. The purpose of this 

study was to evaluate pre-treatment of carbon black using either ammonia or ozone and its 

effects on the carbon surface, the dispersion of Pt nanoparticles, and any changes in the 

ORR activity and catalyst durability. Gas phase ammonia treatment was done at via high 

temperature annealing, while ozone treatment was done via pulsed exposure in an ALD 

system. These carbons were characterized via N2 gas-sorption and X-ray photoelectron 
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spectroscopy (XPS). Subsequently, Pt nanoparticles were deposited on the carbon samples 

via microwave-assisted polyol method in ethylene glycol (EG). The prepared catalysts 

were examined by scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), and X-ray diffraction spectroscopy (XRD) to determine the Pt particle size, 

distribution, and crystal information. X-ray absorption near edge structure (XANES) 

analysis was also done at the Pt L3-edge to identify any effects of support treatment on the 

electronic state of Pt. Finally, the catalysts were tested via thin-film rotating disk electrode 

(RDE) in a half-cell reaction to determine their catalytic activities towards ORR, and 

subjected to accelerated stress tests (AST) to study their durability in the load-cycle 

potential range. Using a one-step treatment and a low-cost, widely available support 

material is attractive for commercial purposes and any improvements as a result of such 

treatment could be a value-added step in the preparation of new PEMFC catalysts. 

 

4.2 Experimental 

4.2.1 Sample Preparation 

NH3-CB was prepared by thermal treatment of high surface area carbon black 

(AkzoNobel) under Ar flow with NH3 at 950°C for 15 minutes. O3-CB was prepared via 

pulsed ozone treatment using an atomic layer deposition system (Gemstar, Arradiance). 

200 cycles of ozone were applied at 250°C with each cycle consisting of a 200 ms pulse of 

ozone with 10 s exposure, then a 1 s pulse of N2 and 10 s exposure to purge the system 

before the next cycle.  

Pt on CB catalysts with 40 wt.% nominal loading were prepared by a microwave-

assisted polyol method similar to those previously described [29], [30]. Briefly, 175 mL of 

EG (ReagentPlus ≥99%, Sigma), 50 mg of O3-CB (or NH3-CB) and 88.9 mg of 

H2PtCl6·6(H2O) (reagent grade, Sigma Aldrich) were sonicated for 2 hours in a room 

temperature sonic bath. NaOH in EG solution was used to bring the pH of the mixture 

above 10. The solution was then heated in a consumer microwave (1100 W, Panasonic) for 

two minutes. After cooling, HCl (37%) was added drop wise to the solution, while stirring, 

to adjust the pH to <2. The addition of acid has been shown to improve the deposition of 
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Pt on the substrate surface for this synthesis [31]. The solution was then filtered, washed 

with ultra-pure water, and dried overnight in a vacuum oven at 60°C. The Pt/C catalyst 

used for comparison was 46 wt. % Pt on unmodified CB from TKK (TEC10E50E). 

 

4.2.2 Electrochemical Measurements 

Catalyst ink consisted of 3 mg of the prepared catalyst plus 3 mL of 80:20 (wt. /wt.) 

solution of ultrapure water and isopropanol plus 30 µL of 5 wt. % Nafion solution (Ion 

Power). This was sonicated for 60 minutes in an ultrasonic bath at room temperature. Two 

10 µL aliquots of the catalyst ink were dropped onto a polished glassy carbon (GC) 

electrode (Pine, 5 mm diameter) and dried under a heat lamp. After the second aliquot had 

dried, a small amount of ultrapure water was dropped onto the electrode to improve wetting 

in the electrochemical cell. The prepared GC electrode with catalyst served as the working 

electrode. A Pt wire and Hg/HgSO4 electrode were used as the counter and reference 

electrodes, respectively. A correction of -0.658 V vs. RHE was used for the Hg/HgSO4 

electrode and all potentials henceforth are given with respect to RHE. Measurements were 

done using a standard potentiostat (AutoLab). All measurements were done at room 

temperature using 0.5 M H2SO4 electrolyte prepared with Milli-pure water (18.2 MΩ/cm2) 

and high purity H2SO4 (99.999%, Aldrich). Initially, the working electrode was cycled a 

minimum 40 times from 0.05-1.0 V at 100 mV/s to condition and activate the fresh catalyst. 

CVs were measured under N2 (99.999%) saturation, cycled from 0.05-1.0 V at 20 mV/s. 

Electrochemical surface area (ECSA) values were calculated by integrating the peak of the 

CV curve in the hydrogen under-potential deposition (HUPD) region (0.05~0.3 V), using the 

current of the double layer (taken at 0.4 V) as a baseline and a charge of 210 µC/cm2
, 

representing the charge of a monolayer of hydrogen adsorbed on the Pt surface. ORR 

curves were taken under O2 saturation which was achieved by bubbling O2 (99.99%) for a 

minimum of 20 minutes. The electrode was rotated at 1600 RPM and cycled from 0.05-1.0 

V at 20 mV/s. The reported polarization curves use the anodic scan, with baseline 

correction from the N2 saturated CV. Mass and specific activities are reported at 0.9 V, 

using the kinetic current, 𝑖𝑘, which is determined from the ORR curves using the equation: 
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𝑖𝑘  =

(𝑖 × 𝑖lim)

(𝑖𝑙𝑖𝑚 − 𝑖)
 (4-1) 

where 𝑖𝑙𝑖𝑚 and 𝑖 the limiting current and working electrode current, respectively. The 

limiting current was taken as the current at 0.4 V. ASTs were done by scanning from 0.6-

1.0 V at 50 mV/s for 4000 cycles in N2 saturated electrolyte. CVs were recorded at various 

points in the 4000 cycles to monitor the loss of ECSA over the duration of the AST. ORR 

activity was measured before and after the AST. 

 

4.2.3 Physical Characterization 

Gas sorption was carried out using a Micrometrics TriStar II Series porosity 

analyzer using high purity N2 gas as the adsorbate. Before measurement, samples were 

degassed at 90° for one hour then 300°C for three hours under an Ar purge. Specific surface 

area was calculated using the multi-point Brunnaeur, Emmet and Teller (BET) method. X-

ray diffraction (XRD) spectroscopy was performed using a Bruker D8 Advance using a 

Cu-Kα source (40 kV, 40 mA). Scanning electron microscopy was done with a Hitachi S-

4800 field-emission SEM at 5-10 kV in secondary electron mode. Transmission electron 

microscopy (TEM) and high-resolution TEM were done using a JEOL 2010F at the 

Canadian Center for Electron Microscopy. To prepare samples for TEM after AST, the 

RDE tip with thin catalyst layer was sonicated in high purity methanol for several seconds 

to disperse the catalyst. A drop of this solution was then deposited onto a holey carbon 

TEM grid and allowed to dry in air. 

 

4.3 Results 

4.3.1 Modified Carbon Characterization 

Untreated carbon black sample (CB), was compared with carbon after ammonia 

treatment (NH3-CB) and ozone treatment (O3-CB). A physical characterization of the 



82 

 

 

modified CB supports before deposition of Pt was done to identify differences in the 

properties of the carbons which could be correlated to differences in their Pt-support 

characteristics or catalytic performance. Gas-sorption at 77 K using N2 was used to study 

the surface area of the three CB samples and the isotherms for each are shown in Figure 

4-1. The specific surface area of these catalyst are 780, 759, and 904 m2/g for CB, O3-CB, 

and NH3-CB. These results indicate a surface area increase of 16% with ammonia 

treatment and decrease of 3% with ozone treatment. A small decrease in surface area after 

ozone treatment of carbon black has been observed previously [16], [32]. The increased 

surface area with ammonia treatment is expected and has been shown in other 

nanostructure carbon materials [33]. Ammonia treatment at high temperature will etch 

some carbon [34] and reduce oxygen containing surface groups [27], [35].  

 

Figure 4-1. Gas sorption isotherms taken at 77 K for CB, O3-CB, and NH3-CB.  

X-ray photoelectron spectroscopy (XPS) surveys were done to study the surface 

groups on each CB sample and the concentrations of oxygen and nitrogen. Each sample 

showed similar surveys with only carbon, oxygen, and nitrogen detected. The high 

resolution C 1s peaks for each sample are shown in Figure 4-2(a). Each shows a dominant 

C=C bond character with a peak at 283 eV, as is expected for carbon black. An important 

difference between the unmodified and modified CB samples is seen in the shoulder at the 

higher binding energy (left) side of the C 1s peak, from 285~287 eV. In NH3-CB, and to a 
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greater extent in O3-CB, this shoulder appears as a result of higher energy functional 

groups at the sample surface. Fitting analysis suggests a mixed signal from several oxygen 

containing structures which could include a mixture of alcohols, ethers, and double bonded 

oxygen species. Oxygen containing groups make up 19.1 % of the C 1s peak area for O3-

CB, compared to 15.7 and 16.1 % for NH3-CB and CB, respectively, pointing to increased 

oxygen functionality in O3-CB as a result of the ALD ozone treatment. The total oxygen 

concentrations in CB, O3-CB, and NH3-CB were 1.4, 2.4, and 1.6 at. %, respectively. The 

O 1s peak of O3-CB is shown in Figure 4-2(b). The peak is well defined and confirms the 

presence of highly aromatic system of bound oxygen species consisting or ethers, quinones, 

and carboxylic groups. Nitrogen was found in concentrations of 0.1, 0.2, and 0.7 at. % in 

CB, O3-CB, and NH3-CB. The N 1s peak was hardly present in CB or O3-CB, compared 

to NH3-CB, which is shown in Figure 4-2(c) below. The peak is made up of two smaller 

peaks at 400.2 and 398.3 eV, corresponding to pyrrolic and pyridinic nitrogen groups, 

respectively [36]. There appears to be a higher density of the pyridinic nitrogen, part of a 

six sided ring, compared to the five sided pyrrolic nitrogen. These results confirm the 

modification of O3-CB and NH3-CB surfaces with additional oxygen and nitrogen, 

respectively. 
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Figure 4-2. (a) High resolution C 1s peak for CB, O3-CB, NH3-CB. High resolution O 1s peak 

in O3-CB (b) and N 1s peak in NH3-CB (c). 

4.3.2 Characterization of Pt Catalysts 

SEM and TEM were used to examine the catalyst morphology and the distribution 

and size of Pt particles. Images from these techniques are shown in Figure 4-3. The SEM 

images show an even distribution of particles and relatively uniform particle size for each 

catalyst. Though an accurate particle size analysis is not possible using SEM images, it is 

apparent that the particles are <5 nm in each sample. The SEM results confirm that the 

reduction of Pt-salt and deposition on the carbon supports was highly successful. Others 

have pointed out that using EG as the solvent and reducing agent can be advantageous 

because of its high viscosity compared to aqueous or alcoholic solutions, and its relative 

weakness as a reducing agent [37]. The high viscosity retards the agglomeration of small 

particles and the slower reduction allows for more nucleation of the salt, resulting in very 

small and uniform Pt particles.   
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High-resolution TEM images (Figure 4-3) allow for a direct observation of particles 

and suggest a relatively narrow particle size distribution on each catalyst. Particle size 

analysis was done via manual image analysis measurements of more than 250 particles on 

each of the catalysts. From this method, the average particle diameter was 2.40 ±0.64 for 

Pt/CB, 2.13 ±0.65 for Pt/O3-CB, and 1.98 ±0.47 nm Pt/NH3-CB (± being one standard 

deviation). The smaller particle size of Pt/O3-CB is likely related to the acidic surface oxide 

groups which promote excellent dispersion of the chloroplatinic acid precursor during 

synthesis [18], [32], [38]. On NH3-CB, the increase in surface area by >100 m2/g compared 

to CB provides myriad sites for Pt deposition to occur, resulting in the very small particle 

size observed.  
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Figure 4-3. SEM, TEM, and high-resolution TEM images of Pt/CB (a, d, g) Pt/O3-CB (b, e, 

h) and Pt/NH3-CB (c, f, i) showing good distribution of particles and relatively homogeneous 

particle size. 

XRD analysis confirmed the presence of Pt on each catalyst and can be used to 

determine the average particle size. The spectra for each catalyst in shown in Figure 4-4(a). 

There are clear peaks at 2θ values of 39.8, 46, and 67.5 degrees, corresponding to the (111), 

(200) and (220) of Pt, respectively, and at 24.8° corresponding to the carbon (002) plane 

from the support. The Pt peaks confirm the metallic nature of the catalyst particles and the 

broad Pt(111) peak in the XRD spectra of these catalysts is indicative of very small 

particles. Using the Scherrer equation [39], the Pt particle size, d, was calculated using the 

peak width of the (220) crystal peak, the Cu-Kα wavelength of 0.154 nm and a shape factor, 

k, of 1.0. The particle sizes are 2.86, 1.96, and 1.90 nm for Pt/C, Pt/O3-CB, and Pt/NH3-
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CB (Table 4-1). The carbon (002) plane is visible at 24.8° in each spectra, as expected from 

the CB support. We can estimate the carbon crystallite lateral dimension, Lc,  using the 

Scherrer equation, as CB is known to have graphitic micro-phases [40]. The carbon (002) 

crystallite sizes are 2.65, 1.81, and 2.00 nm for CB, O3-CB, and NH3-CB. This indicates 

a reduction in the size of the graphitic micro-phases in NH3-CB and O3-CB, compared 

with the unmodified CB. Reduction in the size of these small crystal phases also 

corresponds to an increased density of micro-phase boundaries which could act as higher 

energy sites, promoting bonding of Pt particles. This explanation would fit with the 

observation of decreased particle size in the modified samples. Inductively coupled plasma 

mass spectrometry (ICP-MS) analysis provided accurate Pt concentrations for the catalysts 

used in this study; the values of which are given in Table 4-1. These values are similar 

enough to exclude any effects from differences in Pt loading on the activity or stability of 

the catalyst. Furthermore, having similar loadings allows for a more straightforward 

comparison of Pt particle size. 

 

Table 4-1. Properties of supported Pt catalysts. 

Sample SABET (m2/g)* C(002) crystallite size, 

LC (nm) 

Pt wt.% dXRD  

(nm) 

dTEM  

(nm) 

Pt/CB 780 2.63 46.0 2.86 2.40 

Pt/O3-CB 759 1.45 36.6 1.96 2.13 

Pt/NH3-CB 904 1.42 38.7 1.90 1.98 

* Gas sorption analysis on carbons only 

 In order to further understand the Pt-support interactions in the treated CB samples, 

high energy X-ray absorption near-edge structure (XANES) analysis was performed on the 

Pt L3 edge of the catalysts. The spectra are shown in Figure 4-4(b). In each sample, there 

is a strong absorption edge at 11565 eV (referred to as the whiteline); the integrated 

intensity of which is related to the d-orbital vacancies in Pt [41].  A qualitative analysis of 

the whiteline shows higher intensity for Pt/O3-CB than for Pt/CB or Pt/NH3-CB. This is 

noticeable in the inset where the normalized spectra are overlaid with no offset. This points 

to an increased density of unoccupied 5d orbitals in Pt which suggests increased Pt-

substrate interactions compared to the other two samples [42], [43]. Catalyst-support 
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interactions can play an important role in promoting good ORR activity and stabilizing 

catalyst particles. 

 

Figure 4-4. XRD (a) and XANES (b) and spectra of Pt/CB (black), Pt/O3-CB (red), and 

Pt/NH3-CB (blue). The inset is (b) is a highlight of the XANES absorption edge at 11565 eV. 

 

4.3.3 Electrochemical Characterization 

CV was used to determine the activity and durability of the three catalysts in an 

electrochemical half-cell setup. The overlaid CV curves from 0.05-1.0 V for each catalyst, 

taken under N2 saturation, are shown in Figure 4-5(a). The ECSA of Pt/C, Pt/O3-CB, and 

Pt/NH3-CB were 68.2, 72.2, and 71.4 respectively. ECSA values are similar for each 

catalyst, though Pt/CB has the lowest of the three catalysts. There is little change in shape 

of the HUPD regions as expected from the similar particle size and metallic nature of each 

Pt in each sample indicating minimal effects of either modified CB support on the 

adsorption of hydrogen. The slightly smaller catalysts particles in the two modified carbons 

can explain the small increased in ECSA for both, compared to Pt/CB. The current density 

of the ORR peak is slightly increased for Pt/NH3-CB and even more for Pt/O3-CB, with 

respect to Pt/CB (Figure 4-5(a)). ORR polarization curves recorded at 20 mV/s with 

rotation of 1600 rpm is shown in Figure 4-5(b). The shape of each curve is typical of 

supported Pt catalysts. A limiting current around 5 mA/cm2 with 0.5 M H2SO4 electrolyte 

is consistent with literature [44]. In the kinetic and mixed kinetic/diffusion region above 
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~0.8 V, there is an obvious increase in current density for both Pt/NH3-CB and Pt/O3-CB. 

Mass activity (MA) for Pt/O3-CB was 38.8 mA/mgPt compared to 36.5 and 33.0 mA/mgPt 

for Pt/NH3-CB and Pt/CB, respectively. Both modified CB supports show improvement 

compared to untreated CB, with ALD ozone treatment and high temperature ammonia 

treatment resulting in 18% and 11% increase in initial MA, respectively. As the XANES 

analysis data suggested, Pt supported on the O3-CB showed a higher degree of unoccupied 

density of states, which may account for the increased in ORR activity [42]. Furthermore, 

the increased limiting current seen in the Pt/O3-CB may be attributed to increased 

hydrophilicity of the oxygenated surface which allows electrolyte, and hence protons, to 

reach the catalyst surface. NH3-CB supported Pt likely shows the slight improvement in 

ORR activity due to the high support surface area and decreased Pt particle size compared 

to CB, with some improvement potentially the result of N-dopants at the surface. 

 

 

Figure 4-5. CV curves normalized to Pt loading (a) and ORR polarization curves at rotation 

rate of 1600 RPM for Pt/CB, Pt/O3-CB, Pt/NH3-CB. Recorded in N2 (a) and O2 (b) saturated 

0.5 M H2SO4 with a scan rate of 20 mV/s.  

 

To study the durability of the catalyst with prolonged use, an AST was done 

consisting of 4000 potential cycles from 0.6-1.0 V in N2 saturated H2SO4. This potential 
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window is commonly used for RDE ASTs and is meant simulate the operating range of a 

PEM fuel cell. The AST primarily targets catalyst degradation via Pt dissolution. CVs 

recorded throughout the AST were used to determine the ECSA, and the results are shown 

in Figure 4-6(a). The Pt/CB, Pt/O3-CB, and Pt/NH3-CB retain 73, 84, and 70% of their 

original ECSAs, respectively. Complementing the AST data, HR-TEM images were 

acquired each catalyst after the AST to investigate changes in the Pt particle size after 

cycling. The particle sizes for Pt/CB, Pt/O3-CB, and Pt/NH3-CB increased to 3.36, 2.39, 

and 2.84 nm from their original sizes corresponding to a 40, 12, and 43% increase. Post-

AST images for Pt/CB and Pt/O3-CB are shown in Figure 4-6(c and d), including inset 

histograms of the particle size distribution before and after AST. The order of relative 

particle size increase in the three catalysts corresponds to the order of ECSA loss (Pt/O3-

CB < Pt/CB < Pt/NH3-CB). These results indicate a good ECSA retention during AST and 

stable, small particles in Pt/O3-CB compared to the other two samples. The reduced surface 

area of the carbon may have some part to play in the durability of the Pt/O3-CB but this 

effect should be minimal considering the relatively small difference from untreated CB. 

Rather, the improved particle stability may be ascribed to the increased density of oxygen-

containing surface functional groups, which others have pointed to as having stabilizing 

effects on dispersed Pt particles due to increased surface homogeneity and because their 

presence creates an energy barrier to particle migration [18], [19]. NH3-CB appears to have 

poor ECSA retention after AST, losing slightly more of its original than the untreated CB. 

The reason for this may be the higher surface area of the ammonia treated carbon and the 

initial Pt particle size which was smallest on Pt/NH3-CB. The very small original size has 

high surface energy and thus increased potential for particle growth. It appears that high 

surface area of the NH3-CB and the relatively low concentration of N-functionality did 

little to prevent that growth. Pt/CB experiences considerable growth despite having the 

largest original particle size, suggesting poor stability of the Pt particles on the unmodified 

CB surface. 
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Figure 4-6. Relative ECSA values during AST cycling (a) and MA before and after AST (b) 

for Pt/CB, Pt/O3-CB, and Pt/NH3-CB. TEM images of Pt/CB (c) and Pt/O3-CB (d) after AST. 

The insets in (c) and (d) show histograms of the particle size distribution before and after 

AST. Cycling was done from 0.6-1.0 V in N2 saturated 0.5 M H2SO4 at room temperature. 

ORR polarization curves were taken at the beginning of life (BOL) and end of the 

AST to determine how well each catalyst retained its original MA. The MA for each 

catalyst at BOL and AST are shown in Figure 4-6(b). Pt/O3-CB and Pt/NH3-CB have 

losses in MA of 7% and 11% after 4000 cycles. Meanwhile, Pt/CB loses 15% of initial MA 

after cycling. Despite losing slightly more of its original ECSA, Pt/NH3-CB retains a larger 

fraction of its original MA after AST compared to Pt/CB. Although the improvement in 
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MA is small, the results may be due to an increase in the surface-area specific activity in 

Pt/NH3-CB because of more buried Pt atoms, compared to surface atoms. The average 

particle size after AST for Pt/NH3-CB is 2.84 nm, compared to 3.36 nm in Pt/CB, 

suggesting that the MA should still be better in NH3-CB. The improved durability in the 

Pt/O3-CB is likely a result of the aforementioned stability of the small Pt particles on the 

support surface. Further, the electronic interactions between the Pt particles and support, 

as evidenced by XANES, lead to increased electron vacancy in the 5d orbitals. It’s possible 

that the changed electron state of Pt supported by O3-CB has some effect on dissolution 

potential of the Pt [45], retarding Pt dissolution in this AST potential range.  

Overall, it appears that Pt/O3-CB shows the most promise due to its combination 

of good mass activity and stability in the operating potential. While ammonia treatment 

shows good dispersion and very small particles, the stability of those particles is lacking, 

showing little improvement over untreated CB. Future work could be done to optimize the 

ozone treatment process for CB and incorporating these catalysts in MEAs for single cell 

testing at a larger scale. 

 

4.4 Conclusions 

A one-step treatment of CB with either ozone or ammonia was used to introduce 

surface functionality on the support material for improved properties for catalyst activity 

and durability. Gas sorption results showed a considerable increase in specific surface area 

after NH3 treatment, and a slight decrease after ozone treatment, compared to untreated 

CB. After deposition of Pt via reduction in EG, particle size analysis via TEM and XRD 

showed smaller Pt particles on Pt/O3-CB and Pt/NH3-CB, compared to Pt/CB. This is a 

result of increased high-energy sites and the acidic surface on treated CBs which promote 

good Pt anchoring during deposition. XANES analysis showed an increase in Pt L3 edge 

absorption intensity for the Pt/O3-CB catalyst, pointing to higher density of unoccupied d-

orbitals in the Pt and a higher degree of Pt-support interaction, compared to CB or NH3-

CB. The ECSAs of the three catalysts do not vary considerably but there is an increase in 

the MA. Pt/O3-CB and Pt/NH3-CB have MA values of 38.8 and 36.5 mA/mgPt, 
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respectively, which is 18% and 11% higher than Pt/CB (33.0 mA/mgPt). After AST, the 

ozone and ammonia treated CB catalysts retained 93% and 89% of initial MA, compared 

to Pt/C which retained 85% of initial MA. The increased durability of the Pt/O3-CB is 

attributed to the increased density of active sites, highlighted by XPS analysis, which 

hinder particle growth during cycling. This work demonstrates a simple, one-step method 

for modifying CB which results in stable small Pt particles, increasing ORR activity and 

catalyst durability in the operating range. These results are meaningful as they point to a 

low cost opportunity for increasing PEM fuel cell performance.  
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5 Accelerated Stress Testing By Rotating Disk Electrode for 

Carbon Corrosion in Fuel Cell Catalyst Supports 

 

Reproduced with permission from J. Electrochem. Soc. 2015 162:F783-F788; 

doi:10.1149/2.0911507jes 

 

Durability is one of the key remaining challenges to widespread adoption of proton 

exchange membrane fuel cells (PEMFCs). The durability and continued high performance 

of a PEMFC using carbon supported catalysts is highly dependent on the stability of the 

carbon support. Presently, there are a multitude of accelerated stress test (AST) protocols 

using rotating disk electrode (RDE) voltammetry to study the corrosion of carbon catalyst 

support materials, though it remains unclear whether all of these tests provide meaningful 

reproduction of in-situ membrane electrode assembly (MEA) test results. We evaluate two 

carbon corrosion ASTs and compare results to MEA data for three well known carbon 

supported catalysts. Physical characterization of each carbon type by gas sorption, XRD, 

and Raman, is used to elucidate the observed trends in corrosion resistance and the effects 

of testing temperature, scan rate, and upper potential limit are examined. We find that AST 

results are highly dependent on temperature and total testing time, concluding that the first 

protocol is only valid at 60°C, while the second accurately represents MEA data. This 

study highlights the importance of different RDE AST parameters when developing ASTs 

that correlate with in-situ MEA testing. 
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5.1 Introduction 

The widespread adoption of proton exchange membrane fuel cells (PEMFCs) for 

both motive and stationary applications is primarily dependent on reducing costs and 

improving the durability of the membrane electrode assembly (MEA). Prolonged use can 

be highly stressful on the MEA, making the loss of performance over the lifetime of the 

PEMFC one of the key limitations of the technology. Thus the durability of the cathodic 

catalyst, which facilitates the otherwise sluggish kinetics of the ORR, is of particular 

importance. State of the art PEMFC catalysts use Pt nanoparticles supported by a network 

of conducting carbon material. These catalyst particles and the supporting carbon must 

endure harsh operating conditions which include high electrode potentials, acidic 

environment, and temperatures up to 100°C. Pt catalyst degradation may proceed by 

several mechanisms including dissolution, Ostwald ripening, and physical agglomeration. 

The latter two mechanisms are exacerbated by carbon corrosion, which results in a 

reduction of the overall catalyst surface area [1]–[3]. In addition to this, severe carbon 

corrosion can lead to physical detachment of the Pt nanoparticle catalysts from the 

electrode structure, resulting in a total loss of catalytic activity towards the ORR from those 

detached particles [1], [4], [5]. 

Carbon corrosion, especially by electrochemical oxidation, has been extensively 

studied [4], [6]–[10]. Corrosion may occur by partial oxidation to intermediate surface 

groups or via multi-step oxidation to gaseous CO2. Carbon surface groups may include 

quinones/hydroquinones, lactones, phenols, carbonyls, and carboxyls [11]–[13]. One 

proposed mechanisms of oxidation is [6], [14], [15]: 

 C → C+ + e- (5-1) 

 C+ +H2O → CO + 2H+ + e- (5-2) 

 2CO + H2O → CO + CO2(g) + 2H+ +2e- (5-3) 

 



100 

 

 

While the oxidation of carbon is thermodynamically possible at > 0.207 V vs SHE, 

the kinetics of this reaction are extremely sluggish below 0.9 V. However, in the presence 

of Pt carbon oxidation may take place as low at 0.6 V [8]. These conditions, plus high 

humidity and an acidic environment, make degradation of the support material a point of 

particular concern. Indeed, carbon corrosion is observed both in real fuel cell systems, 

especially during start-up and shutdown, and in single cell testing of the membrane 

electrode assembly (MEA). To reach the DOE targeted fuel cell lifetime of 5,000 and 

30,000 hours for automotive and stationary power applications, respectively [16], it is 

necessary to use accelerated stress tests (AST) which simulate a long performance lifetime 

on a timescale that is practical for research and engineering purposes.  

Using single fuel cell test stations to test MEAs is a highly effective method for 

studying the performance of catalysts, catalyst supports, and membranes [15], MEA testing 

can be used to demonstrate the activity and durability of a fuel cell in an integrated way 

because it replicates the variety of operating conditions present in a real-world system. The 

disadvantage of this method, however, is that it can be difficult to decouple the effects of 

the myriad parameters and components involved in the system which makes interpreting 

AST data more complex.  

Cyclic voltammetry by thin film rotating disk electrode (RDE) is a convenient 

alternative for testing fuel cell catalysts and catalyst support materials. Compared to in-situ 

MEA testing, RDE is advantageous in that catalyst activity can be easily de-convoluted 

from other components. It requires only small amounts of catalyst material, can often be 

done within a day, and needs far less of the complicated equipment and infrastructure 

needed for MEA testing. Though RDE is limited in terms of reproducing the complex 

environment of a real PEMFC environment, it is highly effective for screening and 

comparing catalysts and its minimal material requirements make it ideal for research 

purposes [17], Currently, there are a wide variety of RDE test protocols employed by 

different research groups around the world. Due to the nature of RDE testing, variations in 

test procedures can often lead to vastly different results from one lab to the next [18]. Thus, 

there is currently a trend to move toward standardization of protocols for catalyst activity 

and durability to allow more direct comparison of results [17]–[21]. 
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Herein we study the effectiveness of RDE AST protocols for evaluating fuel cell 

catalyst support corrosion. We use three Pt catalysts supported on well-studied carbons: 

high surface area carbon (HSC), Vulcan carbon (VC), and a highly graphitized, low surface 

area carbon (LSC). Our test procedures are based on two test protocols suggested by the 

United States Department of Energy (DOE) for accelerated stress testing of catalyst 

supports by RDE [22]. By using these protocols we hoped to identify trends in carbon 

corrosion based on changes in electrochemical surface area (ECSA) and mass activity. Our 

aim is to determine whether these protocols can predict the trends observed during in-situ 

MEA testing [23]. It is expected that not all RDE ASTs can accurately represent the catalyst 

support durability observed in real fuel cell systems. In a broader sense, the goal of this 

study is to highlight the disparities between the data from ASTs done in-situ (MEA) versus 

those done ex-situ (RDE), and to suggest that a careful selection and evaluation of RDE 

AST parameters is needed.  

 

5.2 Experimental 

The carbon supports used in this work were: high surface area carbon (HSC), 

Vulcan XC72 (VC), and low surface area, graphitized carbon (LSC). HSC and LSC were 

supplied by TKK and VC was supplied by Cabot. Catalysts used were 47wt. % Pt/HSC, 

50 wt. % Pt/VC, and 47 wt. % Pt/LSC. Catalyst inks were prepared by mixing 3 mg of 

catalyst, 3 mL of an 80:20 (wt./wt.) mixture of ultra-pure H2O to isopropyl alcohol, and 30 

µl of 5 wt. % Nafion in alcoholic solution. The mixture was then sonicated to ensure good 

dispersion and wetting of the catalyst. Two 10 µl aliquots of ink were deposited onto a 

polished gold electrode (Pine, AFE5T050AUHT, 5.0 mm dia.) and allowed to dry in air. 

The electrodes were kept stationary during drying. All electrochemical measurements were 

carried out in 0.09 M H2SO4 electrolyte using a Pt wire as the counter electrode and a 

reversible hydrogen electrode as the reference electrode. All potentials reported henceforth 

are vs. RHE. Each catalyst was activated by cycling from 0.05 to 1.0 at 100 mV/s in N2 

until no changes were observed in the cyclic voltammetry (CV) curve. CVs were recorded 

scanning from 0.05 – 1.0 V at 20 mV/s in N2. ORR activity was measured at 0.9 V on the 
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anodic scan in O2. ORR and mass activity values are corrected for a baseline scan under 

N2. The ECSA was calculated by integrating the area of the CV curve in the hydrogen 

under-potential deposition (HUPD) region and using the charge value of 210 µC/cm2
Pt, 

corresponding to a monolayer of adsorbed hydrogen atoms on Pt. 

 Test protocols were as follows. Protocol A: 5000 cycles, 1.0 – 1.5 V, scan rate 500 

mV/s. This protocol was tested at 25, 40, 50, and 60°C. CVs in N2 and ORR activity were 

recorded at 0, 1000, 3000, and 5000 cycles. Protocol B: 6000 cycles, 1.0 – 1.6 V, scan rate 

100 mV/s, tested at 25°C with CVs recorded under N2 every 1000 cycles and ORR activity 

recorded at 0, 1000, 2000, and 6000 cycles.  

Water vapour sorption analysis was carried out on carbon samples at 40°C using a 

Quantachrome Hydrosorb-1000. The samples were degassed under vacuum for 18 h at 

120°C before analysis. Nitrogen gas sorption data was acquired using a Quantachrome 

Nova 2000e surface area & pore size analyzer after a degassing at 120°C for minimum 4 

hours. X-ray diffraction (XRD) spectroscopy was performed on HSC and VC using a 

Bruker D8 Advance (Cu-Kα source, 40 kV, 40 mA). Raman spectroscopy was performed 

on HSC and VC using a HORIBA Scientific LabRAM HR Raman spectrometer system 

with a 532.4 nm laser and optical microscope at room temperature. 

 

5.3 Results 

The MEA baseline to which we compare RDE results was reported originally by 

Mukundan et al [23]. MEA testing data was collected using a 50 cm2 standard test cell at 

Ballard Power Systems, Inc. A potential hold at 1.2 V was used to evaluate the durability 

of three catalysts supported by HSC, VC, and LSC. The carbon catalyst support materials 

used in the study by Mukundan are the same as those used in this study, albeit with different 

Pt loadings. We believe that the differences in these carbons are significant enough that 

clearly distinct trends in durability should be observable despite differences in the Pt 

loadings. The absolute ECSAs of each catalyst in the present study are given below. 

Polarization curves were recorded for each after 0, 20, and 400 hours with the exception of 
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HSC which was measured after 100 hours instead of 400 due to a more rapid performance 

drop. The results of the MEA ASTs are shown in Figure 5-1. Each of the catalysts tested 

shows similar beginning of life (BOL) performance. After a 20 hour potential hold, LSC 

and VC catalysts remain reasonably stable while HSC catalyst shows a drastic drop in 

performance. At 100 hours, the performance of HSC has dropped so low as to render a 

longer potential hold unnecessary. Meanwhile, after 400 hours the performance of the VC 

drops considerably while LSC shows very little degradation. 

 

Figure 5-1. Polarization curves for catalysts supported on LSC, VC, and HSC after different 

hold times at 1.2 V. Tests were carried out using a 50 cm2 fuel cell with serpentine hardware, 

operated at 80°C in saturated H2/N2 at 150 kPa absolute pressure for 400 hour 

The results of the MEA ASTs are not unexpected. The decrease in performance can 

be correlated to trends in the durability of the carbon support with more stable carbons 

demonstrating better performance throughout the AST. The apparent durability of the 

studied catalyst supports, then, is in the order LSC > VC > HSC. These trends in durability 

are linked to differences in the physical properties of each carbon support, and should be 

reflected in a well-designed RDE AST protocol.  
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In order to gain insight into the MEA results, we examined physical differences in 

the three support carbons being studied using several methods. Water vapour and N2 

sorption analysis was performed to determine their sorption properties and surface area 

while Raman spectroscopy and X-ray diffraction spectroscopy were used to identify 

differences in their relative degrees of graphitization. Figure 5-2a shows the N2 gas sorption 

isotherm for each of the carbons. The multi-point BET surface areas of HSC, VC, and LSC 

area are 876, 210, and 149 m2/g, respectively. Ignoring, for a moment, the effects of 

hydrophobicity and crystallinity, the surface area and durability of the carbons are expected 

to be inversely related. The high surface area in HSC lends itself to rapid degradation as 

there are many potential oxidation sites. In addition to the kinetic losses associated with 

carbon corrosion, a further loss in performance may also occur due to increased mass 

transport resistance arising from the collapse and compaction of the carbon support as it 

oxidizes to CO2 [23]. This compaction and resulting loss in porosity may be caused by 

complete oxidation of the carbon to CO2 which can lead to loss of carbon support material 

through physical changes to the structure. 

 The relative hydrophobicity for each of the three carbons was measured using 

water vapour sorption analysis. A higher affinity for water can improve proton conductivity 

in real fuel cell systems. However, it also increases the rate of carbon corrosion by 

oxidation. Increased contact improves water transport which is the source of oxygen for 

the corrosion reaction [14]. The results of the water vapour sorption analysis are shown in 

Figure 5-2b. In this case the volume of adsorbed water is normalized to each material’s 

specific surface area. This allows for a direct comparison of the hydrophobicity of each 

carbon material by removing the variance in surface area. The results clearly show that 

LSC has the lowest volume of adsorbed water, meaning that it is the most hydrophobic of 

the three carbons. VC and HSC showed similar hydrophobicity but HSC had the highest 

adsorbed water content, making it most hydrophilic. Thus, the hydrophobicity increases as 

HSC < VC < LSC, which matches both the trends in surface area (Figure 5-2a), and 

durability (Figure 5-1). The hydrophobicity of LSC may be related to its higher degree of 

graphitization compared to the other two carbons. 



105 

 

 

XRD and Raman spectroscopy were also done for HSC and VS, and are shown in 

Figure 5-2(c) and Figure 5-2(d). As shown in Figure 5-2©, the (002) peak and (100) peak 

are clearly visible for both carbon materials. While the XRD spectra are similar, the (002) 

peak is broader for the HSC material, which points to less crystallinity compared with VC. 

Raman spectroscopy is another powerful tool for analyzing carbon samples. The results of 

Raman analysis on HSC and VC are shown in Figure 5-2(d). The most meaningful range 

of wavenumbers for carbon black is between 1000 and 1800 cm-1where the D-band and G-

band appear [24]. For the carbon samples, the D-band occurs around ~1345 cm-1 and 

corresponds to amorphous carbon while the G-band, which appears at ~1580 cm-1 

corresponds to sp2 carbon (i.e. more graphitic). Others have examined carbon black using 

Raman spectroscopy and used the ratio of the integrated intensities of the D and G bands, 

ID/IG, as a measure of the level of crystallinity in the sample [24]. HSC was measured to 

have a ID/IG value of 1.89, with D- and G-band peaks at 1338 and 1585 cm-1, respectively. 

VC had an ID/IG value of 1.83 and D- and G-bands centered at 1347 and 1578cm-1, 

respectively. The higher an ID/IG value in HSC indicates a slightly more disordered carbon, 

although the values are similar.  
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Figure 5-2. (a) Sorption isotherms of H2O (a) and N2 (b) on HSC, VC, and LSC (exclusive of 

Pt). (c) XRD and (d) Raman spectra of HSC and VC. 

Taken together, the N2 and H2O sorption data (Figure 5-2(a) and (b)), XRD data 

(Figure 5-2(c)) and Raman data (Figure 5-2(d)) clearly explain the in-situ durability trend 

observed for the three catalysts (Figure 5-1). This is important, as the ultimate goal of this 

study was to evaluate the ability of RDE ASTs to accurately predict in-situ MEA trends in 

catalyst durability. Clearly, any reliable RDE AST should demonstrate the following trend 

in catalyst stability: HSC < VC < LSC. 

Many previous studies have used RDE to perform ASTs on carbon supported 

catalysts for PEMFCs. Some have investigated the effect of potential range on the 

oxidation of carbon [25], others have used RDE ASTs for potential cycling coupled with 
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CO2 monitoring or electron microscopy to investigate the support corrosion [26], [27]. 

Very recently, a protocol comparable to one used in this study has been used to compare 

HSC with a ceramic catalyst support to highlight the excellent durability of the latter [28]. 

The AST protocols selected for this work were suggested by the US Department of Energy 

[22], and will herein be referred to as protocol A and protocol B. Protocol A consists of 

cycling under N2 from 1.0–1.5 V vs. RHE at 500 mV/s for 5000 cycles at 60°C. Protocol 

B consists of cycling under N2 from 1.0–1.6 V vs. RHE at 100 mV/s for 6000 cycles at 

25°C. The former is done at elevated temperature, but with a lower upper potential limit 

(UPL) of 1.5 V compared to a UPL of 1.6 V in the protocol B. The two protocols are 

alternatives, with one requiring a single 8-hour working day (protocol A), and one which 

takes roughly 24 hours to complete (protocol B). The chosen potential range above 1.0 V 

prevents the reduction of formed Pt oxide, minimizing the effect of Pt dissolution caused 

by repeated redox reactions, and isolating the effects of carbon corrosion [29]. Although 

others have shown the presence of Pt to enhance carbon oxidation in PEMFCs [8], [30], 

the carbon materials in this study are significantly different, as seen in the physical 

characterization data, to reliably illustrate the different trends seen during in-situ durability 

studies. 

Using protocol A, we first tested the durability of each carbon at 25°C. The CVs 

obtained for Pt/HSC at 0, 1000, 3000, and 5000 cycles are shown in Figure 5-3(a). As is 

clear, there is almost no change in the CV curves before and after the AST at 25°C. The 

initial ECSA values of Pt/HSC, Pt/VC, and Pt/LSC at 25°C were 75.1, 39.6, and 45.5 m2/g, 

respectively. These values very closely agree with those reported for the catalysts tested in 

Figure 5-1. (HSC: 74 m2/g, LSC: 44 m2/g, VC: not explicitly stated). The inset in Figure 

5-3(a) shows a highlight of the capacitive double layer region from roughly 0.4 –0.6 V for 

the 25°C AST. Even with this expanded view there is very little change seen in the curves, 

suggesting good support durability. This result is surprising, given that HSC demonstrated 

rapid performance loss in MEA testing. It is apparent from the results of the AST that, at 

25°C, this protocol is not aggressive enough to accurately reproduce the results seen in-

situ.  In order to improve the predictive capabilities of the AST, we repeated protocol A at 

60°C; the CV curves from this test are shown in Figure 5-3b. There is considerably more 

degradation of the carbon sample at 60°C than at 25°C, as seen in the change in CV curves 
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with cycling. The HUPD region from roughly 0.05–0.4 V decreases in size with cycling 

especially for the 60°C AST, pointing to a decreasing ECSA. The inset in Figure 5-3b 

highlights the capacitive double layer region for the 60°C case, showing notable changes 

in the double layer capacitance. At the elevated temperature, the double layer capacitance 

increases from 0 to 1000 to 3000 cycles, finally decreasing at 5000 cycles. The increase in 

the double layer charging current is likely due to both an increase in the pseudo-capacitive 

groups on the surface of the carbon, as well as an increase in the carbon surface area, which 

may arise due to the creation of micropores as CO2 is formed. After 5000 cycles the double 

layer appears to have reduced, which may indicate the removal of surface species and loss 

of carbon material. Indeed, it has been previously reported that severe oxidation may result 

in some surface species being removed, hence lowering the columbic charge in the double 

layer region [7]. The changes in the double layer region for the 60°C AST reflect the 

extreme degradation seen in MEA testing for HSC. 

 

Figure 5-3. Cyclic voltammograms of HSC catalyst at different cycles for (a) 25°C and (b) 

60°C. Cycling at 500 mV/s from 1.0 – 1.5 V vs. RHE in 0.09 M H2SO4. 

Pt/VC and Pt/LSC were also tested using protocol A at 25°C and 60°C, and their 

ECSA values are plotted, along with those of Pt/HSC, in Figure 5-4. For the AST at 25°C, 

Pt/LSC, Pt/VC, and Pt/HSC each retains 96% of their original ESCA after testing. This 

result is surprising and clearly not in agreement with MEA data. When the same protocol 
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is carried out at 60°C, the ECSA values drop from their original value to 91%, 61%, and 

44% for Pt/LSC, Pt/VC, and Pt/HSC after cycling. This trend of degradation matches much 

more closely to that seen in the MEA data. These results indicate a strong dependence on 

testing temperature for AST RDE protocols.  

 

Figure 5-4. Calculated ECSA at BOL and after 5000 cycles for catalysts on HSC, VC, and 

LSC at 25°C (a) and 60°C (b). 5000 cycles at 500 mV/s from 1.0 – 1.5 V vs. RHE in 0.09 M 

H2SO4. 

To further examine the influence of temperature on carbon corrosion during ASTs, 

protocol A was done using Pt/HSC at several temperatures between 25 and 60°C. The 

results of these tests are shown in Figure 5-5. There is a clear trend of decreasing ECSA 

and mass activity with increasing temperature after the AST. After 5000 cycles the ECSA 

decreases from initial values to 91%, 79%, 70%, and 44% for tests at 25, 40, 50, and 60°C, 

respectively. Mass activity shows a similar trend with post-AST activities of 88%, 68%, 

61%, and 44% of initial values for the 25, 40, 50, and 60°C tests, respectively. We have 

found that at 25°C the AST does not accurately predict the in-situ MEA data. This suggests 

the need for elevated temperature, or a more aggressive AST protocol when using ambient 

temperature, in order to accurately represent in-situ PEMFC degradation. 
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While performing protocol A at 60°C does appear to reliably predict in-situ MEA 

trends in catalyst stability, it is desirable to have an RDE AST protocol that can be run at 

room temperature. This is because many RDE electrodes cannot be used at temperatures 

>25°C. Protocol B uses a lower scan rate of 100 mV/s and is carried out at 25°C, with an 

UPL of 1.6 V. For Pt/HSC, the ESCA value recorded after 4000 cycles is just 17% of the 

original, and after the full 6000 cycles, the carbon has degraded so much that calculation 

of the ESCA from the CV curve double layer region is not meaningful. Furthermore, the 

mass activity for Pt/HSC dropped by 75% after this AST. Meanwhile, for Pt/LSC, 

reasonably good durability is seen with ESCA values at 4000 and 6000 cycles of 90% and 

86% of the original, respectively. Pt/LSC exhibited a reduction in mass activity of 34% 

after AST. Importantly, the results of these tests align well with in-situ MEA data for the 

HSC and LSC supported catalysts.  

 

Figure 5-5. ECSA (a) and mass activity (b) after AST cycling at 25, 40, 50, and 60°C for 

Pt/HSC. Cycling at 500 mV/s from 1.0 – 1.5 V vs. RHE in 0.09 M H2SO4. 

The two protocols originally suggested have different UPL and different scan rates. 

Both parameters can affect the outcome of an AST. Figure 5-6 shows the ECSA (a) and 

MA (b) of Pt/HSC tested at 25°C by a modified protocol A with UPL of 1.6 V, rather than 

1.5 V, and protocol B. The modified Protocol A, with scan rate of 500 mV/s and 5000 

cycles has a total cycling time of 200 minutes. Protocol B has a scan rate of 100 mV/s and 
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6000 cycles for a total cycling time of 1200 minutes. It is clear from Figure 5-6 that the 

longer, slower AST is considerably more aggressive on the carbon supported catalysts. For 

protocol B, the hydrogen adsorption region became almost negligible beyond 4000 cycles 

so that no ECSA values could be reported. If we examine the ECSAs after the first 200 

minutes it appears that the faster scan rate of protocol A is more aggressive. After 200 

minutes, the ECSA of Pt/HSC drops to 83%, having cycled 5000 times at 500 mV/s. During 

the same time in protocol B, having only completed 1000 cycles at 100 mV/s, the ESCA 

of Pt/HSC remains unchanged. We can say, then, that a faster scan rate and increased cycle 

number is more aggressive, if the total test time is kept constant. However, for a given 

number of cycles, a slower scan rate of 100 mV/s and correspondingly longer time is 

drastically more aggressive than a high scan rate or 500 mV/s with less total test time. This 

can be explained by the amount of time spent at high potentials between 1.0-1.6 V where 

carbon oxidation is favourable. These results imply that time spent holding the catalyst in 

this potential range is more effective in corroding the carbon support than repeated, rapid 

cycling. Each of these test protocols was also performed on Pt/LSC with minimal 

degradation noted. Even with a UPL of 1.6 V, the more accelerated, high scan rate protocol 

does not produce the same trend of degradation as seen in the MEA data or in the 60°C test 

with UPL of 1.5 V. 
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Figure 5-6.  ECSA (a) and mass activity (b) of HSC catalyst at 25°C, cycling from 1.0 – 1.6 V 

vs RHE at 100 mV/s and 500 mV/s, respectively. 

 The importance of temperature, scan rate, and total scanning time has been 

discussed. In terms of reproducing the support corrosion data seen in MEA testing, protocol 

A is appropriate only when used at elevated temperature (60°C) and not at room 

temperature. Protocol B reproduces the results from the MEA testing well. While the 

comparison with the MEA data is only qualitative, it is the trend in support degradation 

that is of importance. This study may be useful for further development of RDE ASTs not 

only for carbon corrosion but for overall catalyst degradation. When selecting AST 

parameters, careful consideration should be given to temperature, potential window, scan 

rate, UPL, and total scanning time. This study highlights the need for efforts towards 

standardized RDE testing and ensuring that the technique is accurately representing real 

PEMFC data.  

5.4 Conclusions 

AST protocols designed to study catalyst support corrosion by RDE were evaluated 

using three representative carbon types which have been well studied in previous literature. 

The objective of this study is to bring to attention the drastic inconsistencies between MEA 

(in-situ) and RDE (ex-situ) carbon durability data that may arise if the RDE protocol is not 
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carefully considered. As there are many AST protocols being used by various labs, it is 

worth highlighting this potential difference as the trends observed from RDE data may not 

accurately represent the durability of catalyst supports in real fuel cell systems. This is 

especially important for screening catalyst support materials which are likely much more 

similar than those studied here. It was determined that for protocol A, 5000 cycles from 

1.0-1.5 V at 500 mV/s, elevated temperature of 60°C is necessary to reproduce the 

degradation observed in MEA tests. When performed at 25°C, this particular AST showed 

no noticeable signs of degradation to an HSC supported catalyst which is otherwise known 

to have poor durability. Thus, temperature is shown to have a considerable effect on the 

durability of carbon supports during RDE ASTs. Protocol B (6000 cycles from 1.0-1.6 V 

at 100 mV/s) results in carbon corrosion data which agrees well with MEA data even when 

performed at room temperature. Additionally, potential scan rate is also shown to affect 

support durability protocols insofar as they result in longer exposure to high potentials, 

which accelerates corrosion. The drastic differences in end of test ECSAs and activities 

following these ASTs provide further evidence that carbon support durability is critical to 

overall catalyst durability. Importantly, it is found that not all RDE AST protocols can 

accurately represent the durability of carbon supports in fuel cell systems. Hence, a careful 

selection of parameters is needed to produce meaningful results via the RDE method. 
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6 Conclusions & Outlook 

This thesis includes three original research articles (chapters 3-5) related to carbon 

nanomaterials and their use as FC catalysts and supports. The first is a study of co-doped 

CNTs with nitrogen and phosphorus, with physical properties and electrochemical activity 

compared to nitrogen doped CNTs. The second report examines two methods for treating 

commercial carbon black, with ammonia or ozone, in order to improve its properties as a 

Pt support. The final study is an evaluation of the effectiveness of two AST protocols. The 

goal of this was to determine whether these ASTs done in a half-cell configuration could 

reliably predict the degradation phenomena seen in real FC MEAs. 

It was found that phosphorus could be successfully introduced into CNTs by a one-

step CVD method for growth and doping of PNCNTs, using TPP as a precursor. Variation 

of the carrier gas flow rate used for CVD showed increased yield at higher flows and a 

dependence on the nanotube diameter was seen with changing TPP concentration. P 

concentration of 1 at.% was found, along with 6.2% nitrogen, which was the same 

concentration found in NCNTs. Further, the ratio of pyrrolic to pyridinic N was higher in 

the PNCNT sample, suggesting that the presence of P may influence N doping. PNCNTs 

showed a higher degree of disorder in the carbon compared to NCNTs, as well as increased 

wall thickness with relatively narrow channels. Electrochemical tests showed that PNCNTs 

have a 62% higher current density in the kinetic region (taken at 0.8 V vs RHE) compared 

to NCNTs and Koutecky-Levich analysis suggest a mixed 2 and 4 electron transfer process 

for the ORR catalyzed by PNCNTs.  

In the 4th chapter, CB with either ammonia treatment (NH3-CB) or ozone treatment 

(O3-CB) are compared to untreated CB for use as a Pt support. Physical characterization 

of the carbons before Pt deposition show an increased in surface area for NH3-CB, and a 

slight decrease in surface area but increase in pore size for O3-CB. Surface N and O 

concentrations of 0.7 at% and 2.4 at.% were found on NH3-CB and O3-CB, respectively, 

compared to N and O concentrations of 0.1 and 1.4 at.% for CB. The particle size of Pt 

deposited by microwave assisted polyol method decreased in the order Pt/CB > Pt/O3-CB 

> Pt/NH3-CB and is attributed to acidic surface groups in O3-CB and increased surface 
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area and nitrogen active sites in NH3-CB. XANES analysis suggested some electronic 

interactions between the Pt and O3-CB support, which was not seen in either of the other 

two supports. ORR testing by RDE revealed that mass activity increased in the order Pt/CB 

< Pt/NH3-CB < Pt/O3-CB and durability cycling tests in the Pt-dissolution range showed 

good retention of ECSA, particle size, and mass activity for Pt/O3-CB compared to 

Pt/NH3-CB and Pt/CB. This is attributed to the functional groups and surface homogeneity, 

plus modified electronic structure of Pt, on the ozone treated CB. Pt/NH3-CB showed no 

considerable improvement in stability after AST compared to untreated CB. Thus, ALD 

ozone treatment of the commercial carbon black is shown to increase ORR activity, and 

improve Pt particle stability compared to an untreated CB support.  

Finally, the third report of this thesis highlights several important considerations for 

performing accelerated durability tests using RDE. Two protocols were proposed by the 

DOE for studying carbon corrosion: protocol A (5000 cycles, 1.0-1.5 V, 0.5 V/s) and 

protocol B (6000 cycles, 1.0-1.6 V, 0.1 V/s). Using three well known carbon black supports 

it was shown that protocol A was unsuitable for predicting MEA degradation patterns when 

used at room temperature, but was suitable at 60°C. At room temperature, protocol A 

resulted in no observable loss in ECSA for a catalyst supported on high surface area carbon 

which is well known to have poor corrosion resistance. Additionally, a clear temperature 

dependence was shown for the protocol A when measured at several temperatures from 

30-60°C. Protocol B appeared to match the MEA durability data well. Scan rate was seen 

to affect AST results as longer time spent at high potentials (above 1.0 V) results in more 

carbon corrosion. The results of the study are important because they highlight the need to 

carefully choose the parameters of RDE AST protocols. A number of factors should be 

considered including temperature, scan rate, and upper potential limit. RDE ASTs are 

frequently used in catalyst research to compared durability of catalysts, though their goal 

should also be to predict trends in durability that will be true at the MEA level. Thus, they 

need to be accurately benchmarked and planned. 

The three studies in the thesis share a common theme of nanoscale carbon support 

materials for fuel cells. The first study addresses the long-term goal of metal-free catalysts 

where the co-doped PNCNTs are themselves the catalysts. For the second study, the 



119 

 

 

research shifted slightly towards more industrially relevant solutions, offering a potential 

for improved catalyst activity and durability after a low-cost, one-step carbon pre-

treatment. The last study was carried out entirely at Ballard Power Systems under direction 

of the scientific team there. That research is important for the community in terms of 

understanding the need for robust testing protocols for RDE durability studies, and 

furthered my own experience with carbon corrosion and included investigating state-of-

the-art catalyst support materials. Taken together, my research suggests that modified 

carbon nanomaterials show tremendous promise for increasingly functional FC catalyst 

supports. As a Pt support and as metal-free catalyst, doping and functionalization of 

nanostructured carbon endows these already exciting materials with even more remarkable 

properties. Further, this research supports ongoing efforts towards standardizing RDE 

protocols for rapid catalyst evaluation by highlighting the need for carefully chosen 

parameters to produce results that reasonably represent MEA-level behavior. 

 

6.1 Future work 

Further work in this field could take many forms. Regarding the study of co-doped 

phosphorus and nitrogen CNTs there are several logical next steps that could be pursued. 

One is to test their ORR activity in acidic media, which would provide an indication of 

their usefulness in PEM fuel cells. Though it is expected that this activity will be extremely 

low compared to any Pt-containing catalyst, it would be interesting to see if the reaction 

proceed more quickly than on pristine CNTs or NCNTs. A more promising path for 

potential commercial use would be to compare NCNTs and PNCNTs as Pt nanoparticle 

supports. NCNTs are known to provide good ORR enhancement and stability, compared 

to CNTs. Certainly, examining the effect of added phosphorus dopants on the deposition 

of Pt particles and comparing the ORR activity and durability to Pt/NCNTs would be both 

novel and of considerable interest. Of course, RRDE studies can also elucidate more 

information on the nature of the ORR mechanism on PNCNTs. 

Obvious next steps for the pre-treated carbon black would be an optimization of the 

ozone treatment to produce the best ORR activity and reasonable durability. For 
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thoroughness a comparison between ALD ozone treatment and a high-temperature gas 

phase ozone treatment would be interesting, from the perspective of its effects on the 

carbon black and on any resulting differences in the Pt supporting properties or catalytic 

activity. Regarding the carbon corrosion AST study, a comprehensive study could be done 

using 2-3 protocols at the MEA level and 2-3 protocols by RDE and evaluating their 

comparability and whether they can be repeated at difference facilities. As stated in the 

introduction section, several researchers at the US DOE and some national labs have 

already begun the process of benchmarking the most common catalyst materials with 

rigorous standards and ensuring their repeatability. Any further work towards this goal 

would be welcomed by academia and industry alike.  

Looking ahead, the long term goals for fuel cells dictate that either ultra-low Pt-group 

metal (PGM) content, or PGM free catalysts will be needed to make FCs affordable at high 

volume manufacturing levels. Several strategies for achieving this via core-shell and 

alloyed catalysts seem to show good potential. Re-thinking the electrode structure is 

another area for potentially break-through research. 3M did this years ago with their 

nanostructure thin-film architecture. Combining the novel alloys or catalyst materials 

structures with emerging synthesis and fabrication techniques such as ALD may also prove 

highly successful. ALD has shown potential already in terms of synthesizing single-atom 

catalyst materials. As the tools for manipulating and controlling nanoscale materials 

continue to improve and become more commonplace, synergistic approaches to 

preparation of the catalyst structure and MEA as a whole may lead to improved FC 

performance and reduced manufacturing costs.  

Several of the world’s largest automakers have already deployed their first 

generation FC vehicles in places like California, Japan, and Europe. As the number of FC 

vehicles increases and the hydrogen infrastructure grows to support them, the development 

of high performance and low cost FC catalysts will become even more urgent. Whatever 

form the catalyst takes in the long term, FCs are poised to become an important part of the 

energy spectrum. Combined heat and power options, quiet operation, and clean, renewable 

fuel make the FCs attractive for providing future energy solutions with a high level of 

resilience.  
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